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Abstract

Majority of state-of-the-art deep learning methods are
discriminative approaches, which model the conditional
distribution of labels given inputs features. The success of
such approaches heavily depends on high-quality labeled
instances, which are not easy to obtain, especially as the
number of candidate classes increases. In this paper, we
study the complementary learning problem. Unlike ordi-
nary labels, complementary labels are easy to obtain be-
cause an annotator only needs to provide a yes/no answer
to a randomly chosen candidate class for each instance. We
propose a generative-discriminative complementary learn-
ing method that estimates the ordinary labels by modeling
both the conditional (discriminative) and instance (gener-
ative) distributions. Our method, we call Complementary
Conditional GAN (CCGAN), improves the accuracy of
predicting ordinary labels and is able to generate high-
quality instances in spite of weak supervision. In addition to
the extensive empirical studies, we also theoretically show
that our model can retrieve the true conditional distribution
from the complementarily-labeled data.

1. Introduction

Deep supervised learning has achieved great success in
various applications such as visual recognition [16, 7] and
natural language processing [12]]. Despite the effective-
ness of supervised classifiers, acquiring labeled data is of-
ten expensive and time-consuming. As a result, learning
from weak supervision has been studied extensively in re-
cent decades, including but not limited to semi-supervised
learning [14], multi-instance learning [29]], learning from
side information [8]], and learning from data with noisy la-
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bels [22].

In this paper, we consider a recently proposed weakly-
supervised classification scenario, i.e., learning from com-
plementary labels [9} 28]. Unlike an ordinary label, a com-
plementary label specifies a class that an input instance does
not belong to. Given an instance from a class, it is labori-
ous to choose the correct class label from many candidate
classes, especially when the number of classes is relatively
large or the annotator is not familiar with the characteris-
tics of all candidate classes. However, it is less demanding
and inexpensive to choose one of the incorrect class as a
complementary label for an instance. For example, when
an annotator is labelling an image containing an animal that
she has never seen before, she can easily identify that this
animal does not belong the usual animal classes he can see
in daily life, such as, “not dogs”. In medical field, a doc-
tor may not be able to identify the exact disease type given
symptoms. However, he/she can easily obtain complemen-
tary labels denoting some disease types a patient does not
belong to.

Existing complementary learning methods modified the
ordinary classification loss functions to enable learning
from complementary labels. [9] proposed a method
that provides a consistent estimate of the classifier from
complementarily-labeled data where the loss function satis-
fies a particular symmetric condition. However, this method
only allows classification loss functions with certain non-
convex binary losses for one-versus-all and pairwise com-
parison. Later, [28] proposed to use the forward loss correc-
tion technique [25] that learns the conditional, Py‘ x, from
complementary labels, where X denote the input features
and Y denote labels. [10] derived an unbiased estimator of
the true classification risk with arbitrary loss functions from
complementarily-labeled data.

To clarify the differences between learning with ordinary
and complimentary labels, we define the notion of “effective
sample size”, which is the number of instances with ordi-



nary labels that carries the same amount of information as
instances with complementary labels of a given size. Since
the complementary labels are weak labels, they carry only
partial information about the ordinary labels. Hence, the ef-
fective sample size n; for complementary learning is much
smaller than the given sample size n (i.e., n; << n). Cur-
rent methods for learning with complementary labels need
arelatively large training set to ensure low variance for pre-
dicting ordinary label.

Although n; is small under complementary learning set-
tings, we can still use all samples with size n to estimate the
instance distribution Px. However, current complementary
methods focus on modeling conditional Py x and thus fail
to account for information hidden in Py, which is essential
in complementary learning.

To improve the prediction performance, we propose
a generative-discriminative complementary learning ap-
proach that learns both Py x and Px |y in a unified frame-
work. Our main contributions can be summarized as fol-
lows:

e We propose a Complementary Conditional Genera-
tive Adversarial Net (CCGAN), which simultane-
ously learns Py |x and Px|y from complementary la-
bels. Because the estimate of Py |y benefits from Py,
it provides constraints on Py x and helps reduce its
estimation variance.

e Theoretically, we show that our CCGAN model
is guaranteed to learn Px |y from complementarily-
labeled data.

e Empirically, we conduct comprehensive experiments
on benchmark datasets, including MNIST, CIFAR10,
CIFAR100, and VGG Face; demonstrating that our
model gives accurate classification prediction and gen-
erates high-quality images.

2. Related Works

Generative Adversarial Nets Generative Adversarial
Nets (GANs) are a class of implicit generative models
learned by adversarial training [6]. With the development
of new network architectures (e.g., [3]) and stabilizing
techniques (e.g., [20]), GANs generates high-quality im-
ages that are indistinguishable from real ones. Conditional
GANs (CGANSs) [19] extend the GAN models to generate
images given specific labels, which can be used to model
the class conditional Px|y (e.g., AC-GAN [24], Projec-
tion cGAN [21], and TAC-GAN [3]]). However, training of
CGANSs requires ordinary labels for the images, which are
not available under the complementary learning settings. To
the best of our knowledge, our proposed CCGAN is the
first conditional GAN that is trained with complementary

labels. The most related works to us are the robust condi-
tional GAN approaches that aim to learn a conditional GAN
from labels corrupted by random noise [27, [11]. However,
our method generates better quality images and more accu-
rate prediction, by utilizing complementary labels.

Semi-Supervised Learning Under semi-supervised
learning settings, we are provided a relatively small
number of labeled data and plenty of unlabeled data.
The basic assumption for the semi-supervised methods
is that the knowledge on Px gained from unlabeled
data carries useful information for inferring Py |x. This
principle has been implemented in various forms, such as
co-training [1]], generative modeling [23|[17], etc. Inspired
by the commonalities between complementary learning
and semi-supervised learning, i.e., more data are available
to estimate Py than Py |x; we propose to make use of Px
to help infer Py|x in complementary learning.

3. Background

In this section, we first introduce the concept of learning
from so-called complementary labels. Then, we discuss a
state-of-the-art discriminative complementary learning ap-
proach, [28]], which is the most relevant to our method.

3.1. Problem Setup

Let two random variables X and Y denote the fea-
tures and the labels, respectively. The goal of discrimi-
native learning is to infer a decision function (classifier)
from independent and identically distributed training set
{x:,y: 7, C Xx) drawn from an unknown joint distribu-
tion Pxy, where X € X =R%andY € Y = {1,..., K}.
The optimal function, f*, can be learned by minimizing
the expected risk R(f) = E(x y)~py, ((f(X),Y), where
E denotes the expectation and ¢ denotes a classification
loss function. Because Pxy is unknown, we usually ap-
proximate R(f) using its empirical estimation R, (f) =
& i LUfF(%0), i)

In the complementary learning setting, for each sample
x, we are given only a complementary label § € Y\ y which
specifies a class that x does not belong to. That is to say, our
goal is to learn f that minimizes the classification risk R( f)
from complementarily-labeled data {x;,7;}7; C X x Y
drawn from an unknown distribution Py y-, where Y denote
the random variable for complementary label. The ordinary
loss function, £(-,-), cannot be used since we do not have
access to the ordinary labels (y;’s). In the following, we
explain how discriminative learning can be extended in such
scenarios.

3.2. Discriminative Complementary Learning

Existing Discriminative Complementary Learning
(DC'L) methods modified the ordinary classification loss



function ¢ to the complementary classification loss ¢ to
provide a consistent estimation of f. Various loss functions
have been considered in the literature, such as one-vs-all
ramp/sigmoid loss [9], pair-comparison ramp/sigmoid
loss [9l], and cross-entropy loss [28]. Here we briefly
review a recent method that modifies the cross-entropy
loss for deep learning with complementary labels [28].
The general idea is to view the ordinary label Y, as a
latent random variable. Suppose the classifier has the form
f(X) = argmax;cx) 9:(X), where g;(X) is an estima-
tion for P(Y = i|X). The loss function for complementary
labels is defined as /(f(X),Y) = ((MTg,Y), where
g = (1(X),...,9x(X))T and M is the transition matrix
satisfying

PY =j|X) =) p(Y =jly =i)P(Y =i[X). (1)
T S
ij

[9, [10]] assumed the uniform setting in which M takes 0
on diagonals and ﬁ on non-diagonals. [28]] relaxed this
assumption by allowing other values on non-diagonals and
proposed a method to estimate M from data. It has been
shown in [28]] that the classifier fn that minimizes the em-
pirical estimation of R(f), i.e.,

Ral) =+ D 0060 50) @

converges to the optimal classifier f* as n — oo.

4. Proposed Method

In this section, we will present the motivation and de-
tails of our generative-discriminative complementary learn-
ing method. First, we demonstrate why generative mod-
eling is valuable for learning from complementary labels.
Second, we present our Complementary Conditional GAN
(CCGAN) model that is trained using complementarily-
labeled data and provide theoretical guarantees. Finally, we
discuss several practical factors that are crucial for reliably
training our model.

4.1. Motivation

It is guaranteed that existing discriminative complemen-
tary learning approaches lead to optimal classifiers, given
sufficiently large sample size. However, due to the uncer-
tainty introduced by the complementary labels, the effec-
tive sample size is much smaller than the sample size n. If
we have access to samples with ordinary labels {x;, y; }7;,
we can learn the classifier f,, by minimizing R, (f). Since
knowing the ordinary labels is equivalent to having all the
K — 1 complementary labels, we can also learn f,, with

ordinary labels by minimizing the empirical risk

n K-1

R, (f) = ﬁ Z Z 0f(xi),y), 3

i=1 k=1

where y ;1 is the k-th complementary label for the i-th ex-
ample. In practice, since we only have one complementary
label for each instance, we are minimizing R,,(f) as shown
in Eq. , rather than R/, (f). Note that R,,(f) approxi-
mates R/ (f) by randomly picking up one complementary
label for the ¢-th example, which implies that the effective
sample size is roughly n/(K — 1). In other words, although
we provide each instance a complementary label, the accu-
racy of the classifier learned by minimizing R, is close to
that of a classifier learned with n/(K — 1) examples with
ordinary labels.

Because the effective sample size is usually much
smaller than the actual sample size, complementary learn-
ing resembles semi-supervised learning, where only a small
proportion of instances are associated with ordinary labels.
In semi-supervised learning, Px can be estimated with
more unlabeled samples compared to Py x, which requires
labels to estimate. Therefore, modeling Px is beneficial
because it allows us to take advantage of unlabeled data.
This justifies the motivation of introducing a generative
term in complementary learning. A natural way to utilize
Px is to model the class-conditional, Px|y. Px imposes
a constraint on Py y indirectly since Px = [ P(X|Y =
y)P(y)dy. Therefore, a more accurate estimation of Px
will improve the estimation of Py and thus Py x.

4.2. Complementary Conditional GAN (CCGAN)

Given the recent advances in generative modeling using
(conditional) GANs, we propose to use conditional GAN to
model Py y in the paper. A conditional GAN learns a func-
tion G(Y, Z) that generates samples from a conditional dis-
tribution @ x|y, neural network is used to parameterize the
generator function, and Z is a random samples drawn from
a canonical distribution Pz. To learn the parameters, we
can minimize certain divergence between (Jx y and Pxy
by solving the following optimization:

min max E

gnmax B ADEY))

Z~PZ]}7EY~PY[¢(1 - D(G(Zv Y)aY))L (4)

where ¢ is a function of choice and D is the discriminator.
However, the conditional GAN framework cannot be di-
rectly used for our purpose for the following two reasons: 1)
the first term in Eq. (E]) cannot be evaluated directly, because
we do not have access to the ordinary labels. 2) the condi-
tional GAN only generates X ’s and does not infer the ordi-
nary labels. A straightforward solution would be to generate
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Figure 1. GAN model with different supervision level. Figure (c) is our proposed method. The trapezoid blocks represent different
networks, GG denotes Generator, D denotes Discriminator, C' denotes true label classifier, M I denotes mutual infognation learner and C'
denotes complementary label classifier. In our model CCGAN, C is regarded as latent output. As shown in (c), C' can be decomposed

into C' and transition matrix M [28]], which can be referred to Eq. (T).

(x,y) from the learned conditional GAN model and to train
a separate classifier on the generated data. However, such
two-step solution results in a sub-optimal performance.

To enable generative-discriminative complementary
learning, we propose a complementary conditional GAN
(CCGAN) by extending the TAC-GAN [3] framework to
deal with complementarily-labeled data. The model struc-
tures of GAN, TAC-GAN, and our CCGAN are shown in
Figure [T} TAC-GAN decomposes the joint distributions as
Pxy = Py|xPx and Qxy = Qy|x@Qx and match the
conditional distributions and marginal distributions sepa-
rately. The marginals Px and @) x are matched using adver-
sarial loss [6]], and Py | x and Qy | x are matched by sharing
a classifier with probabilistic outputs. However, Py x is not
accessible in a complementary setting since the ordinary la-
bels are not observed. Therefore, Py|x and Qy|x cannot
be directly matched as in TAC-GAN. Fortunately, we make
use of the relation between Py x and Py x ( Eq. (E[) ) and
propose a new loss matching Py |x and Qy|x in a comple-
mentary setting. Specifically, we learn our CCG AN using
the following objective

B 5, AP o
pop Sy p, @1~ D(G(Z,Y)))
+ (XygE&nye(Y, C(X)) ®
t o, p (Y C(G(Z,Y)) o
t o, C™(G(Z,Y))) ’(5)

where / is the cross-entropy loss, C' is a function modeled
by a neural network with softmax layer as the final layer

to produce class probability outputs, C(X) = MTC(X),
and C™ is another function modeled by a neural network
with class probability outputs. From the objective func-
tion, we can see that our method naturally combines genera-
tive and discriminative components in a unified framework.
Specifically, the component (®) performs pure discrimi-
native complementary learning on the complementarily-
labeled data (only learns C'), and the components (@) and
(© perform generative and discriminative learning simulta-
neously (learn both G and C').

The three components in Eq. (5) correspond to the fol-
lowing three divergences: 1) component (@) corresponds to
Jensen-Shannon divergence between Px and @) x, 2) com-
ponent () represents KL divergence between Py x and

/Y\ +» and 3) component (¢) corresponds to KL divergence
between Q’Yl « and Qy|x, where Q’Yl  is a conditional dis-
tribution of ordinary labels given features modeled by C

and QIY\  1s a conditional distribution of complementary
labels given features implied by Q’Y‘  through the relation

/17\ v = M7 Q’Yl - The following theorem demonstrates
that minimizing these three divergences in our objective can
effectively reduce the divergence between QQy x and Py x.

Theorem 1 Let Py x and Qy x denote the data distribu-
tion and the distribution implied by our model, respectively.
Let Q’Yl «f QIY’I ) denote the conditional distribution of or-
dinary (complementary) labels given features induced by
the parametric model C. If M is full rank, we have

drv(Pxy,Qxy) < 2c1v/djs(Px,Qx)
+ C2||M_1||00\/dKL(PY|X7 Qv x)

+ 02\/dKL(QY|X7Q/y|X)a (6)




where dv is the total variation distance, d g is the Jensen-
Shannon divergence, d 1, is the KL divergence, and ¢, and
co are two constants.

A proof of Theorem I]is provided in Section S1 of the sup-
plementary file. An illustrative figure that shows the rela-
tions between the quantities in Theorem [I]is also provided
in Section S2 of the supplementary file.

4.3. Practical Considerations

Estimating Prior Py In our CCGAN model, we need
to sample the ordinary labels y from the prior distribution
Py, which needs to be estimated from complementary la-
bels. Let pp = [Py(Y = 1),...,Py(§7 = K)|T be
the vector containing complementary label probabilities and
Py =[Py(Y =1),..., Py(Y = K)]7 be true label proba-
bilities. We estimate Py by solving the following optimiza-
tion:

min || Py — M Py|?,
Py
s.t. prHl = 1land Py[z] > 0. @)

This is a standard quadratic programming (QP) problem and
can be easily solved using a QP solver.

Estimating M  If the annotator is allowed to choose to
assign either an ordinary label or a complementary label
for each instance, the matrix M will be unknown because
of the possible non-uniform selection of the complemen-
tary labels. In [28]], the authors provided an anchor-based
method to estimate M, we also follow the same technique.
Please refer to [28]] for more details.

Incorporating Unlabeled Data In practice, we may have
access to additional unlabeled data. We can readily incor-
porate such unlabeled data to improve the estimation of the
first term in Eq. (5), which further improves the learning of
G through the second term in Eq. (5) and eventually im-
proves the classification performance.

S. Experiments

To demonstrate the effectiveness of our method, we
present a number of experiments examining different as-
pects of our method. After introducing the implementa-
tion details, we evaluate our methods on three datasets, in-
cluding MNIST [18], CIFAR10, CIFAR100 [15], and VG-
GFACE2 [4]. We compare classification accuracy of our
CCGAN with the state-of-the-art Discriminative Learning
(DCL) method [28]] and show the capability of CCGAN
to generate good quality class-conditioned images from
complementarily-labeled data. In addition, ablation stud-
ies based on MNIST are presented to give a more detailed
analysis of our method. To be notified, we also have the In-
ception Score and Frchet Inception Distance (FID) to mea-
sure the generative performance of our model, the result is
shown in S3.

5.1. Implementation Details

Label Generation All the four datasets have ordinary
class labels, which allows generating labels to evaluate our
method. Following the procedure in [9], the label for each
image was obtained by randomly picking a candidate class
and asking the labeler to answer “yes” or “no” questions. In
this case, The candidate classes are uniformly assigned to
each image, and therefore the transition matrix M satisfies
M;; =1/(K —1),i# j;M;; =0,i = j. Also, data are
usually biased, and the annotators also tend to hold biased
choices based on their experience. Thus transition matrix
M could be biased [28]]. For uniformed M we assume M
is known. However, for biased M, we consider both cases
when true M is given, and M needs to be estimated during
training time. To be notified, when generating complemen-
tary data, we assume M is known.

Training Details We implemented our CCG AN model in
Pytorch. We trained our CCG AN model in an end-to-end
strategy, which means the classifier and GAN discriminator
share the common bottom to neck conventional layers ex-
cept for the final fully-connected softmax layer as well as
mutual information learner. To train our CCGAN model,
we optimized the whole objective equation [ using Adam
[L3] with learning rate 2¢ — 4, 81 = 0.0, B2 = 0.999
for both D and G network, where we train 2 steps of D
and 1 step of G in each iteration for 10,000 iteration in to-
tal. To train our baseline DC'L model, we apply the same
training strategy as [28] for all dataset. For the additional
VGGFACE2 dataset, we apply the same training settings as
CIFAR100. We adopted data augmentation for all datasets
except MNIST, where we first resized all images to 32 x 32
resolution, employed random croppings to change the im-
age into 28 x 28 and then applied zero-padding to turn the
image back with 32 x 32 resolution.

5.2. MNIST

We first evaluate our model on MNIST, which is a hand-
written digit recognition dataset that contains 60K training
images and 10K testing images, with size 32 x 32. We
chose Lenet-5 [18] as the network structure for the DC'L
method and the C' network in our CCGAN. We em-
ployed the DCGAN network [26] as the backbone of our
CCGAN. Due to the simplicity of MNIST data, the ac-
curacy of learning is close to that of learning with ordinary
labels if we use all 60K training samples. Therefore, we
sample a subset of 6K images as our basic sampling set .S
for training.

In the experiments, we evaluate all the methods un-
der different sample sizes. Specifically, we randomly
re-sampled subsets with r; x 6K samples, where r; =
0.1,0.2,...,1; and trained all the methods on these sub-
sets. The classification accuracy was evaluated on the 10k
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Figure 2. Test accuracy on (a) @;ﬁ\IIST dataset and (b) CIFARI10
dataset. z axis represents the proportion r; of labeled data in the
training set S. In this figure we test DC' L and our proposed model
CCGAN for comparison. We also show the performance of or-
dinary classifier trained on ordinary labeled data as the Oracle. In
this figure, transition matrix mM is uniform and assumed to be
known during training

test set. We report the results under the following three set-
tings: 1) We only use samples with complementary labels,
ignoring all ordinary labels, to train our model CCGAN
and baseline DC'L. 2) We also train ordinary classifier such
that all labeled data are provided with ordinary labels (Ora-
cle). This classifier is trained with the strongest supervision
possible, representing the best achievable classification per-
formance. The results are shown in Figure [2](a).

It can be seen from the results that our CCG AN method
outperforms DC'L under different sample sizes, and the
gap increases as the sample size reduces. our method out-
performs DCL by a large margin. The results demon-
strate that generative-discriminative modeling is advan-
tageous over discriminative modeling for complementary
learning. Figure [3| (a) shows the generated images from
TAC — GAN (Oracle) and our CCGAN. We can see
that our CCG AN generates high-quality digit images, sug-
gesting that CCG AN is able to learn Py |y very well from
complementarily-labeled data.

5.3. CIFAR10

We then evaluate our method on the CIFAR10 dataset,
which consists of 10 classes of 32 x 32 RGB images, in-

K ‘0.2 04 06 08 10

Method
VGGFACE100
Ordinary label (Oracle)\0‘673 0.804 0.870 0.891 0.917
DCL 0.378 0.685 802 0.849 0.884
CCGAN 0.447 0.728 0.822 0.865 0.896
CIFAR100

Ordinary label (Oracle)‘0.439 0.804 0.870 0.891 0.917
DCL 0.252 0.452 0.561 0.609 0.651
CCGAN 0.320 0.520 0.571 0.632 0.660

Table 1. This table shows the test accuracy on VGGFACE100 and
CIFAR100 dataset. r; denotes the proportion of sampled labeled
data for training from the training set .S, best results are in bold

cluding 60K training samples and 10K test samples. We
deploy ResNetI8 [7] as the structure of the C' network in
our model. Since training GANs on the CIFAR10 dataset
is unstable, we utilize the latest conditional structure Big-
GAN [2] for our CCG AN backbone. If without mention,
the following dataset experiments apply the same settings.

We evaluate all the methods following the same proce-
dure used in the MNIST dataset. The results are shown in
Figure [2](b). Again our method consistently outperforms
the DC'L method for different sample sizes. Figure 3] (b)
shows the generated images from TAC — GAN (Oracle)
and our CCGAN. 1t can be seen that our CCGAN suc-
cessfully learns the appearance of each class from comple-
mentary labels.

5.4. CIFAR100 and VGGFACE100

We finally evaluate our method on CIFAR100 and VG-
GFACE?2 data, different from CIFAR10, CIFAR100 dataset
contains 100 classes and each class has 500 images in aver-
age and 10.000 testing images of 100 classes in total. VG-
GCAE? is a large-scale face recognition dataset. The face
images have large variations in pose, age, illumination, eth-
nicity, and profession. The number of images for each per-
son (class) varies from 87 to 843, with an average of 362
images for each person. We randomly sampled 100 classes
and constructed a dataset for evaluation of our method. We
selected 80% data as the training set .S and the rest 20% as
the testing set. Since our CC'G AN model can only gener-
ate fixed-size images, we re-scaled all training images into
32 x 32.

Because the number of classes is relatively large, the ef-
fective labeled sample size is approximately n/99, where n
is the total sample size. In case of limited supervision, nei-
ther DC'L nor our CCGAN can converge. Thus, we ap-
plied the complementary label generation approach in [28]],
which assumed only a small subset of candidate classes can
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Figure 3. Synthetic results for (a) MNIST (b) CIFAR10 (c) CIFAR100 and (d) VGGFACE100. The figures in the middle illustrate images
generated by TAC — GAN [5]], which is trained with ordinary labels. The figure on the right show images generated by CCG AN model,

which is trained with only complementary labels.

be chosen as complementary labels. In specific, we ran-
domly selected 10 candidate classes as the potential com-
pelementary label each class, and assigned them with uni-
form probabilities.

We used the same evaluation procedures used in MNIST
and CIFARI10. The classification accuracy is reported in
Table [T} It can be seen that our method outperforms DC'L
by 5% when the proportion of labeled data is smaller than
0.3 and is slightly better than DCL when the proportion
is larger than 0.5. Figure[3](c) shows the generated images
from TAC' —G AN (Oracle) and our CCGAN. We can see
that CCG AN generates images that are visually similar to
the real images for each person.

5.5. Biased M training

According to [28]], we also implement the biased tran-
sition matrix M setting. During the training time, we test
two settings: 1) we assume true M used for generating data
is known; 2) M can not be acquired and needs to be esti-
mated. For the unknown M, we follow the same settings as
[28]] and apply the same anchor method to estimate M. The
other training settings are the same as above experiments.
The result is shown in Table

5.6. Ablation Study

Here we conduct ablation studies on MNIST to study the
details and validate possible extensions of our approach.

(Oracle)

T
Method 0.2 06 10| 02 06 1.0
‘ True M Esimated M
MNIST
DCL 0.675 0.866 880 [0.563 0.787 0.894
CCGAN 0.839 0.908 0.918|0.773 0.837 0.916
CIFARI10
DCL 0.413 0.658 0.724|0.282 0.624 0.713
CCGAN 0.559 0.767 0.815|0.440 0.740 0.757
CIFAR100
DCL 0.2814 0.582 663 |0.176 0.381 0.574
CCGAN 0.320 0.621 0.664|0.206 0.445 0.589
VGGFACE100
DCL 0.461 0.769 0.863|0.161 0.660 0.836
CCGAN 0.533 0.805 0.866(0.174 0.681 0.850

Table 2. This table shows the test accuracy on MNIST, CIFAR10,
CIFAR100, and VGGFACE100 when M is biased, in this case,
we implement our model when M is known and estimated. r;
denotes the proportion of sampled labeled data for training from
the training set S.

Multiple Labels In this experiment, we give an intu-
itive strategy to verify the effectiveness of generative mod-
eling for complementary learning. In ordinary supervised
learning, discriminative models are usually preferred than
generative models because estimating the high-dimensional
Py is difficult. To demonstrate the importance of gen-
erative modeling in complementary learning, we propose
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plementary labels per image. In this figure we fix r;, = 0.2
and . And we show the result of DC'L and our proposed model
CCGAN, we also display the performance of ordinary classifier
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X axis denotes the ratio r; of labeled data.

to assign multiple complementary labels to each image and
observe how the performance changes with the number of
complementary labels. The classification accuracy is shown
in Figure [d We can see that the accuracy of our CCGAN
and DCL both increases with the number of complemen-
tary labels. When the number of complementary labels per
image is large, DC'L performs better than our CCGAN
because the supervision information is sufficient. However,
in practice, the number of complementary labels for each
instance is typically small and is usually one. In this case,
the advantage of generative modeling is obvious, as demon-
strated by the superior performance of our CCGAN com-
pared to DC'L.

Semi-Supervised Learning In practice we might have
easier access to unlabeled data which can be incorporated
into to our model to perform semi-supervised complemen-
tary learning. On the MNIST dataset, we used the addi-
tional 90% data as unlabeled data to improve the estimation
of the first term in our objective Eq. (3). We denote the
semi-supervised method as Semi-supervised complemen-
tary Conditional GAN(SCCGAN). The classification ac-
curacy w.r.t. different proportion of labeled data is shown
in Figure [5] We can see that SCCGAN further improves
the accuracy over CCGAN due to the incorporation of un-
labeled data.

6. Conclusion

We study the limitation of complementary learning as
a weakly supervised learning problem, where the effec-
tive supervised information is much smaller compared to
the sample size. To address this problem, we propose a
generative-discriminative model to learn a better data dis-
tribution, as a strategy to boost the performance of the
classifier. We build a conditional GAN model (CCGAN)
which learns a generative model conditioned on ordinary
class labels from complementary labeled data, and unify
the generative and discriminative modeling in one frame-
work. Our method shows superior classification perfor-
mance on several datasets, including MNIST, CIFARI10,
and CIFAR100 and VGGFACE100. Besides, our model
generates high-quality synthetic images by utilizing com-
plementary labeled data. In addition, we give a theoretical
analysis that our model can converge to true conditional dis-
tribution learning from complementarily-labeled data.
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Supplementary: ‘“Generative-Discriminative Complementary Learning”

S1. Proof of Theorem 1
According to the triangle inequality of total variation (TV) distance, we have
drv(Pxy,Qxy) < drv(Pxy, Py|xQx) + drv(PyxQx, Qxy)-
ey

Using the definition of TV distance, we have

drv(Pyix P PrixQx) = 5 [ Ipvix(ulolpx (@) = pyix(vlo)ax @)tz )

<5 [ ovxtilntes) [ o) - ax@lato

< adry(Px,Qx), 2

where p and g are densities, p is a (o-finite) measure, c; is a constant, and (a) follows from the Holder inequality.
Similarly, we have

dry (Py|xQx,Qy|xQx) < cadrv (Py|x, Qy|x), (3)
where ¢, is a constant. Combining (1), (2), and (3), we have
drv(Pxy,Qxy) < cidrv(Px,Qx) + cadry (Py|x, Qy|x)
< erdrv (Px, Qx) + cadrv (Py|x, Qy x) + c2drv (Qy x» Qv|x)- “4)

Since we have no access to Py |x, by simply adapting the proof of Theorem 1 in [27], we bound drv (Pyx, Q’Y‘ ) using
complementary conditional probabilities as

drv(Pyix, Qy)x) = . max__ Y {P(y[S,) — Q'(y]S,)}

S1,e S CX

cx
= max (L PO hey) — @ CHS, bev)

< sl,.Tgﬁgx<1’ M~ (P(-{S}gey) — Q' (-H{Sz}gex)))

UM max IPCESer) — QS5 Hoen)lh

M v (P, @), -

where P(-|{S,}) = [P(Y =1|51), -+, P(Y = K|Sk)]T, P(-|{Sz}) = [P(Y = 1|S1),--+, P(Y = K|Sk)]|T, (a) follows
from P(-|{S5}) = MP(:|{Sy,}), and (b) follows from the fact that 1T Az < ||Az||y < ||A[]1]|z||:. By combining (4) and
(5), we have
drv(Pxy,Qxy) < cidrv(Px,Qx) + C2HM_1||oodTV(P}7\Xa Q/Y‘X)
+ c2drv (Qy|x: Qy|x) (6)

According to the relations between total variation (TV), KL divergence (dx1,), and Jensen-Shannon divergence (d jg5), we
can rewrite (6) as

drv(Pxy,Qxy) < 2c1v/dys(Px,Qx) + 02||M71Hoo\/dKL(P?\X’Q’y‘X)

+ 02\/dKL(QY\XaQ/y|X)7 (7

which follows from the Pinsker’s inequality. By replacing 2¢; in (7) with a new constant ¢; (using the same notation for
simplicity), we can obtain the inequality in Theorem 1. From the theorem, we can see that if the complementary labels are
highly-biased, it may cause M to be rank-deficient. In this case, our algorithm may not minimize the distance between Pxy
and Q xy efficiently.
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S2. Illustration of Our Objective Function (Eq. (5))

Px Py|x Py x
OO A

Ox Quix-Degy Mg

— Transformation

«— Divergence

Figure 6. Illustration of the divergence terms that are minimized in Eq. (5). Py|x ( Py x) is the conditional distribution of ordinal
(complementary) label given features on the real data. Q/Y‘ x ( Q’f,l ) is the conditional distribution of ordinal (complementary) label
produced by the classification network C' in Eq. (5). Qy|x is the conditional distribution of ordinal label given features induced by our
generator G. From the figure, we can see that minimizing (® leads to reduced divergence between Py |x and Qg,‘ x- Therefore, the
objective function minimizes the divergence between Py | x and Qv |x further because of ©. Combined with @), our objective minimizes
divergence between Pxy and Qxy .

S3. Quality of synthetic data

T

Method ‘ 0.2 0.4 0.6 0.8 1.0
CIFAR10

Ordinary label, IS | 5.16 £ 0.066 5.99 £0.058 6.19 +0.070 6.27 £0.070 6.53 & 0.082

CCGAN, 1S 528 +£0.048 5.90£0.065 6.27+0.094 6.27 £0.067 6.48 +0.052

Ordinary label, FID 54.33 39.18 35.18 3291 28.40

CCGAN, FID 50.75 37.47 33.86 34.55 31.63
CIFAR100

Ordinary label, IS | 5.11 £ 0.038 6.80 £0.084 7.59 4 0.154 7.94 £0.133  7.82 £0.09

CCGAN, IS 4.80 £0.042 6.36+0.059 6.73£0.095 7.17+0.085 7.22+£0.115

Ordinary label, FID 65.00 44.14 41.49 36.25 34.34

CCGAN, FID 79.13 44.01 43.63 36.21 34.63

VGGFACE100

Ordinary label, IS | 19.18 = 0.254 29.19 4 0.235 48.99 £ 0.533 54.59 £ 0.390 67.77 &+ 0.568

CCGAN, IS 16.49 & 0.243 28.10 £ 0.368 45.82 4 0.746 52.97 £ 0.470 62.30 & 0.409

Ordinary label, FID 100.48 66.00 42.98 38.07 26.26

CCGAN, FID 113.78 59.98 36.45 31.661 27.79

Table 3. This table shows the Inception Score and FID socore on CIFAR10, CIFAR100 and VGGFACE100 dataset. 7; denotes the
proportion of sampled labeled data for training from the training set .S. All these scores are under the uniformed M setting.

S4. More Generated Images

Ol >+345677 900/ A34r67]99
O/ 254586780V A34¥F 679
Ol @3ds 678 @1 d3456n7¢
0723456 73qa@0 /&35 967d9
0/ 3548277001 2345699
012341567 sW01 34567974
O3 Y077 9O 1 A3 /56)¢8¢q
01 A5YS 7890123450789
0/ 2345672901234 rb72¢9
O 2345 6728qO ) A34567 81
True M Estimated M Estimated M

Figure 7. Synthetic results for MNIST and CIFAR10. We set r; = 1 here. It shows the generated data with true M and esitimated M
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Figure 8. Synthetic results for CIFAR100. We set r; = 1 here. It shows the generated data with true M and esitimated M
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Figure 9. Synthetic results for MNIST and VGGFACE100. We set r; = 1 here. It shows the generated data with true M and esitimated
M
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