
GENETIC-ALGORITHM SEEDING OF IDIOTYPIC NETWORKS

FOR MOBILE-ROBOT NAVIGATION

Amanda M. Whitbrook, Uwe Aickelin, Jonathan M. Garibaldi
ASAP Research Group, School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road,

Nottingham, NG8 1BB, UK

amw@cs.nott.ac.uk, uxa@cs.nott.ac.uk, jmg@cs.nott.ac.uk

Keywords: Mobile-robot navigation, genetic algorithm, artificial immune system, idiotypic network.

Abstract: Robot-control designers have begun to exploit the properties of the human immune system in order to

produce dynamic systems that can adapt to complex, varying, real-world tasks. Jerne’s idiotypic-network

theory has proved the most popular artificial-immune-system (AIS) method for incorporation into

behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous

efforts have mostly focused on evolving the network connections and have often worked with a single, pre-

engineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as

a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA),

multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for

flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that

navigates around a maze by tracking colour. Results show that highly successful behaviour sets can be

generated within about 25 minutes, and that much greater diversity can be obtained when multiple

autonomous populations are used, rather than a single one.

1 INTRODUCTION

Short-term learning can be defined as the training

that takes place over the lifetime of an individual,

and long-term learning as that which evolves and

develops as a species interacts with its environment

and reproduces itself. The vertebrate immune system

draws on both types since, at birth, an individual

possesses a pool of antibodies that has evolved over

the lifetime of the species; the repertoire also adapts

and changes over the lifetime of the individual as the

living body responds to invading antigens. Recently,

researchers have been inspired by the learning and

adaptive properties of the immune system when

attempting to design effective robot-navigation

systems. Many artificial-immune-system (AIS)

methodologies adopt the analogy of antibodies as

robot behaviours and antigens as environmental

stimuli. Farmer’s computational model (Farmer et

al., 1986) of Jerne’s idiotypic-network theory (Jerne,

1974), which assumes this relation, has proved an

extremely popular choice, since the antibody

(behaviour) that best matches the invading antigen

(current environment) is not necessarily selected for

execution, producing a flexible and dynamic system.

The idiotypic architecture has produced some

encouraging results, but has generally suffered from

the same problems as previous approaches, as most

designs have used small numbers of pre-engineered

behaviours, limiting the self-discovery and learning

properties of the schemes. This research aims to

solve the problem by encoding behaviours as a set of

variable attributes and using a genetic-algorithm

(GA) to obtain diverse sets of antibodies for seeding

the AIS. Here, the first phase of the design is

described, i.e. the long-term phase that seeks to

produce the initial pool of antibodies.

The long-term phase is carried out entirely in

simulation so that it can execute as rapidly as

possible by accelerating the simulations to

maximum capacity. The population size is varied

and, in addition, two different population models are

considered, since it is imperative that an idiotypic

system is able to select from a number of very

diverse behaviours. In the first scheme there is only

one population, but in the second, separate

populations evolve in series but never interbreed. In

each case the derived antibody-sets are scored in

terms of diversity, solution quality, and how quickly

they evolve.

The paper is arranged as follows. Section 2

shows how the vertebrate immune system depends

on both short-term and long-term learning, and

discusses how AIS has been used as a model for

robotic controllers. It also highlights some of the

problems with previous approaches to AIS robot-

control and with evolutionary robotics in general.

Section 3 describes the test environments and the

problem used, and section 4 focuses on the

architecture of the long-term phase including details

of the GA. The experimental procedures are outlined

in Section 5 and the results are presented and

discussed in Section 6. Section 7 concludes the

paper.

2 BACKGROUND AND

MOTIVATION

Throughout the lifetime of an individual, the

adaptive immune system learns to recognise

antigens by building up high concentrations of

antibodies that have proved useful in the past, and

by eliminating those deemed redundant. This is a

form of short-term learning. However, the antibody

repertoire is not random at birth and the mechanism

by which antibodies are replaced is not a random

process. Antibodies are built from gene libraries that

have evolved over the lifetime of the species. This

demonstrates that the immune system depends on

both short-term and long-term learning in order to

achieve its goals.

When using the immune system as inspiration

for robot controllers, many researchers opt to

implement an idiotypic network based on Farmer’s

model of continuous antibody-concentration change.

In this model the concentrations are not only

dependent on the antigens, but also on the other

antibodies present in the system, i.e. antibodies are

suppressed and stimulated by each other as well as

being stimulated by antigens. In theory this design

permits great variability of robot behaviour since the

antibodies model the different behaviours, and the

complex dynamics of stimulation and suppression

ensure that alternative antibodies are tried when the

need arises (Whitbrook et al., 2007). However, past

work in this area has mostly focused on how the

antibodies in the network should be connected and,

for simplicity, has used a single set of pre-

engineered behaviours for the antibodies, which

limits the potential of the method. For example,

Watanabe et al. (1998a, 1998b) use an idiotypic

network to control a garbage-collecting robot,

utilizing GAs to evolve their initial set of antibodies.

The antibodies are composed of a precondition, a

behaviour, and an idiotope part that defines antibody

connection. However, the sets of possible

behaviours and preconditions are fixed; the GA

works simply by mixing and evolving different

combinations with various parameters for the

idiotope. Michelan and Von Zuben (2002) and

Vargas et al. (2003) also use GAs to evolve the

antibodies, but again only the idiotypic-network

connections are derived. Krautmacher and Dilger

(2004) apply the idiotypic method to robot

navigation, but their emphasis is on the use of a

variable set of antigens; they do not change or

develop the initial set of handcrafted antibodies, as

only the network links are evolved. Luh and Liu

(2004) address target-finding using an idiotypic

system, modelling their antibodies as steering

directions. However, although many behaviours are

technically possible since any angle can be selected,

the method is limited because a behaviour is defined

only as a steering angle and there is no scope for the

development of more complex functions. Hart et al.

(2003) update their network links dynamically using

reinforcement learning, but use a skill hierarchy so

that more complex tasks are achieved by building on

basic ones, which are hand-designed at the start.

It is clear that the idiotypic AIS methodology

holds great promise for providing a system that can

adapt to change, but its potential has never been

fully explored because of the limits imposed on the

fundamental behaviour-set. This research aims to

widen the scope of the idiotypic network by

providing a technique that rapidly evolves simple,

distinct behaviours in simulation. The behaviours

can then be passed to a real robot as a form of

intelligent initialization, i.e. a starting set of

behaviours would be available for each known

antigen, from which the idiotypic selection-

mechanism could pick.

In addition, long-term learning in simulation

coupled with an idiotypic AIS in the real world

represents a novel combination for robot-control

systems, and provides distinct advantages, not only

for AIS initialization, but also for evolutionary

robotics. In the past, much evolutionary work has

been carried out serially on physical robots, which

requires a long time for convergence and puts the

robot and its environment at risk of damage. For

example, Floreano and Mondada (1996) adopt this

approach and report a convergence time of ten days.

More recent evolutionary experiments with physical

robots, for example Marocca and Floreano (2002),

Hornby et al. (2000), and Zykov at al. (2004) have

produced reliable and robust systems, but have not

overcome the problems of potential damage and

slow, impractical convergence times. Evolving in

parallel with a number of robots, (for example

Watson et al. 1999) reduces the time required, but

can still be extremely prohibitive in terms of time

and logistics. Simulated robots provide a definite

advantage in terms of speed of convergence, but the

trade-off is the huge difference between the

simulated and real domains (Brooks, 1992).

Systems that employ an evolutionary training

period (long-term leaning phase) and some form of

lifelong adaptation (short-term learning phase) have

been used to try to address the problem of domain

differences, for example by Nehmzow (2002).

However, the long-term learning phase in

Nehmzow’s work uses physical robots evolved in

parallel, which means that the method is slow and

restricted to multi-agent tasks. Floreano and Urzelai

(2000) evolve an adaptable neural controller that

transfers to different environments and platforms,

but use a single physical robot for the long-term

phase. Keymeulen et al. (1998) run their long-term

and short-term learning phases simultaneously, as

the physical robot maps its environment at the same

time as carrying out its goal-seeking task, thus

creating the simulated world. They report the rapid

evolution of adaptable and fit controllers, but these

results apply only to simple, structured environments

where the robot can always detect the coloured

target, and the obstacles are few. For example, they

observe the development of obstacle avoidance in

five minutes, but this applies to an environment with

only one obstacle, and the results imply that the real

robot was unable to avoid the obstacle prior to this.

Furthermore, only eight different types of motion are

possible in their system. Walker et al. (2006) use a

GA in the simulated long-term phase and an

evolutionary strategy (ES) on the physical robot.

They note improved performance when the long-

term phase is implemented, and remark that the ES

provides continued adaptation to the environment,

but they deal with only five or 21 behaviour

parameters in the GA, and do not state the duration

of the long-term phase.

The method described here aims to capitalize on

the fast convergence speeds that a simulator can

achieve, but will also address the domain

compatibility issues by validating and, if necessary,

modifying all simulation-derived behaviours in the

real world. This will be achieved by transferring the

behaviours to an adaptive AIS that runs on a real

robot. The method is hence entirely practical for real

world situations, in terms of delivering a short

training-period, safe starting-behaviours, and a fully-

dynamic and adaptable system.

3 TEST ENVIRONMENT AND

PROBLEM

The long-term phase requires accelerated

simulations in order to produce the initial sets of

antibodies as rapidly as possible. For this reason the

Webots simulator (Michel, 2004) is selected as it is

able to run simulations up to 600 times faster than

real time, depending on computer power, graphics

card, world design and the number and complexity

of the robots used. The chosen robot is the e-puck

(see Figure 1), since the Webots c++ environment

natively supports it. It is a miniature mobile-robot

equipped with a ring of eight noisy, nonlinear, infra-

red (IR) sensors that can detect the presence of

objects up to a distance of about 0.1 m. It also has a

small frontal camera that receives the raw RGB

values of the images in its field-of-view. Blob-

finding software is created to translate this data into

groups of like-coloured pixels (blobs).

The test problem used here consists of a virtual

e-puck that must navigate around a building with

three rooms (see Figures 2 and 3) by tracking blue

markers painted on the walls. These markers are

intended to guide the robot through the doors, which

close automatically once the robot has passed

through. The course is completed once the robot has

crossed the finish-line in the third room. Its

performance is measured according to how quickly

it reaches the finish-line and how many times it

collides with the walls or obstacles placed in the

rooms. Two different test environments are used;

World 1 (see Figure 2) has fewer obstacles and no

other robots. World 2 (see Figure 3) contains more

obstacles, and there is also a dummy wandering-

robot in each room.

Figure 1: A simulated e-puck robot.

The simulations are run in fast mode (no

graphics) with Webots version 5.1.10 using

GNU/Linux 2.6.9 (CentOS distribution) with a

Pentium 4 processor (clock speed 3.6 GHz). The

graphics card used is an NVIDIA GeForce 7600GS,

which affords average simulation speeds of

approximately 200-times real-time for World 1 and

100-times real-time for World 2. The camera field-

of-view is set at 0.3 radians, the pixel width and

height at 15 and 3 pixels respectively and the speed

unit for the wheels is set to 0.00683 radians/s.

Figure 2: World 1 showing e-puck start point.

Figure 3: World 2 showing e-puck start-point, dummy-

robot start-point and dummy-robot repositioning points.

4 SYSTEM ARCHITECTURE

4.1 Antigens and Antibodies

The antigens model the environmental information

as perceived by the sensors. In this problem there are

only two basic types of antigen, whether a door-

marker is visible (a “marker” type antigen) and

whether an obstacle is near (an “obstacle” type

antigen), the latter taking priority over the former.

An obstacle is detected if the IR sensor with the

maximum reading Imax has value Vmax equal to 250 or

more. (N. B. The IR sensors are used in active mode

where the readings correspond to the quantity of

reflected light.) If no obstacles are detected then the

perceived antigen is of type “marker” and there are

two varieties, “marker seen” and “marker unseen”,

depending on whether appropriate-coloured pixel-

clusters have been recognized by the blob-finding

software. If an obstacle is detected then the antigen

is of type “obstacle”, i.e. the robot is no longer

concerned with the status of the door-marker. The

obstacle is classified in terms of both its distance

from and its orientation toward the robot. The

distance is “near” if Vmax is between 250 and 2400

and “collision” if Vmax is 2400 or more. The

orientation is “right” if Imax is sensor 0, 1 or 2, “rear”

if it is 3 or 4 and “left” if it is 5, 6 or 7 (see Figure

1). There are thus eight possible antigens, which are

assigned a code value 0–7, see Table 1.

Table 1: System antigens.

Antigen

Code

Antigen

Type

Name

0 Marker Marker unseen

1 Marker Marker seen

2 Obstacle Obstacle near right

3 Obstacle Obstacle near rear

4 Obstacle Obstacle near left

5 Obstacle Collision right

6 Obstacle Collision rear

7 Obstacle Collision left

The behaviours that form the core of the

antibodies are encoded using a structure that has the

attributes, type T, speed S, frequency of turn F, angle

of turn A, direction of turn D, frequency of right turn

Rf, angle of right turn Ra, and cumulative

reinforcement-learning score L. There are six types

of behaviour; wandering using either a left or right

turn, wandering using both left and right turns,

turning forwards, turning on the spot, turning

backwards, and tracking the door-markers. The

fusion of these basic behaviour-types with a number

of different attributes that can take many values

means that millions of different behaviours are

possible. However, some behaviour types do not use

a particular attribute and there are limits to the

values that the attributes can take. These limits are

carefully selected in order to strike a balance

between reducing the size of the search space, which

increases speed of convergence, and maintaining

diversity, see Table 2.

4.2 System Structure

The control program uses the two-dimensional array

of behaviours Bij, i = 0, …, x-1, j = 0, …, y-1, where

x is the number of robots in the population (x ≥ 5)

and y is the number of antigens, i.e. eight. When the

program begins i is equal to zero, and the array is

initialized to null. The infra-red sensors are read

every 192 milliseconds and the camera is read every

384 milliseconds, but only if no obstacles are found,

as this increases computational efficiency.

Once an antigen code is determined, a behaviour

or antibody is created to combat it by randomly

choosing a behaviour type and its attribute values.

For example, the behaviour WANDER_SINGLE

(605, 50, 90, LEFT, NULL, NULL) may be created.

This behaviour consists of travelling forwards with a

speed of 605 Speed Units/s, but turning left 50% of

the time by reducing the speed of the left wheel by

90%. If the antigen code is 7 then the S, F, A, D, Rf

and Ra attributes of B07 take the values 605, 50, 90,

LEFT, NULL, NULL respectively. The action is

executed and the sensor values are read again to

determine the next antigen code. If the antigen has

been encountered before, then the behaviour

assigned previously is used, otherwise a new

behaviour is created. The algorithm proceeds in this

manner, creating new behaviours for antigens that

have not been seen before and reusing the

behaviours allotted to those that have.

However, the performance of the behaviours in

dealing with the antigen they have been allocated to

is constantly assessed using reinforcement learning

(see section 4.4), so that poorly-matched behaviours

can be replaced with newly-created ones when the

need arises. Behaviours are also replaced if the

antigen has not changed in any 60-second period, as

this most likely means that the robot has not

undergone any translational movement. The

cumulative reinforcement-score of the previously

used behaviour L is adjusted after every sensor

reading, and if it falls below the threshold value of -

14 then replacement of the behaviour occurs. The

control code also records the number of collisions ci

for each robot in the population.

A separate supervisor-program is responsible for

returning the virtual robot back to its start-point once

it has passed the finish-line, for opening and closing

the doors as necessary, and for repositioning the

wandering dummy-robot, so that it is always in the

same room as the mission robot. Another of the

supervisor’s functions is to assess the time taken ti to

complete the task. Each robot is given 1250 seconds

to reach the end-point; those that fail receive a 1000-

second penalty if they did not pass through any

doors. Reduced penalties of 750 and 500 seconds are

awarded to failing robots that pass through one door

and two doors respectively. When the whole

population has completed the course, the relative-

fitness µi of each individual is calculated. Since high

values in terms of both ti and ci should yield a low

relative-fitness, the following formula is used:

.

)()(

1
1

0

1∑
−

=

−++

=
x

k

kkii

i

ctct

µ

(1)

Table 2: System antibody types.

S
Speed Units /

s

F
% of time

A
% reduction

in speed of

one wheel

D
Either

left or

right

Rf
% of time

Ra
% reduction

in right

wheel-speed

No. Description

MIN MAX MIN MAX MIN MAX 1 2 MIN MAX MIN MAX

0 Wander single 50 800 10 90 10 110 L R - - - -

1 Wander both 50 800 10 90 10 110 - - 10 90 10 110

2 Forward turn 50 800 - - 20 200 L R - - - -

3 Static turn 50 800 - - 100 100 L R - - - -

4 Reverse turn 500 800 - - 20 200 L R - - - -

5 Track markers 50 800 - - 0 30 - - - - - -

The five fittest robots in the population are

selected, and their mean tn, cn and absolute-fitness fn

are calculated, where n represents the generation

number, and fn = tn + cn. In addition, the value of fn

is compared with that of the previous generation fn-1

to assess rate-of-convergence. The genetic algorithm

is complete when any of the four conditions shown

in Table 3 are reached. These are selected in order to

achieve fast convergence, but also to maintain a high

solution quality. Once convergence is achieved the

attribute values representing the behaviours of the

five fittest robots are saved for seeding the AIS

system. If there is no convergence then the GA

proceeds as described in section 4.3.

Table 3: Stopping criteria.

 Criteria - World 1 Criteria - World 2

1

n > 0 AND tn < 400 AND

cn < 60 AND |fn – f n-1| <

0.1

n > 0 AND tn < 600 AND

cn < 90 AND |fn – f n-1| <

0.2

2 n > 30 n > 30

3 tn < 225 AND cn < 35 tn < 400 AND cn < 45

4
n > 15 AND |fn – f n-1| <

0.1

n > 15 AND |fn – f n-1| <

0.2

Note that when adopting the scenario of five

separate populations that never interbreed, the five

robots that are assessed for convergence are the

single fittest from each of the autonomous

populations. In this case, convergence is dependent

upon the single best tn, cn and fn values. The final

five robots that pass their behaviours to the AIS

system are the single fittest from each population

after convergence.

4.3 The Genetic Algorithm

Two different parent robots are selected through the

roulette-wheel method and each of the x pairs

interbreeds to create x child robots. This process is

concerned with assigning behaviour attribute-values

to each of the x new robots for each of the y antigens

in the system. It can take the form of complete

antibody replacement, attribute-value mutation,

adoption of the attribute values of only one parent or

crossover from both parents.

Complete antibody replacement occurs according

to the prescribed mutation rate ε. Here, a completely

new random behaviour is assigned to the child robot

for the particular antigen, i.e. both the parent

behaviours are ignored.

Crossover is used when there has been no

complete replacement, and the method used depends

on whether the parent behaviours are of the same

type. If the types are different then the child adopts

the complete set of attribute values of one parent

only, which is selected at random. If the types are

the same, then crossover can occur by taking the

averages of the two parent values, by randomly

selecting a parent value, or by taking an equal

number from each parent according to a number of

set patterns. In these cases, the type of crossover is

determined randomly with equal probability. The

purpose behind this approach is to attempt to

replicate nature, where the offspring of the same two

parents may differ considerably each time they

reproduce.

Mutation of an attribute value may also take

place according to the mutation rate ε, provided that

complete replacement has not already occurred.

Here, the individual attribute-values (all except D)

of a child robot may be increased or decreased by

between 20% and 50%, but must remain within the

prescribed limits shown in Table 2.

4.4 Reinforcement Learning

Reinforcement learning is used in order to accelerate

the speed of the GA’s convergence. It can be

thought of as microcosmic short-term learning

within the long-term learning cycle. The

reinforcement works by comparing the current and

previous antibody codes, see Table 4. Ten points are

awarded for every positive change in the

environment, and ten are deducted for each negative

change. For example, 20 points are awarded if the

antigen code changes from an “obstacle” type to

“marker seen”, because the robot has moved away

from an obstacle as well as gaining or keeping sight

of a door-marker.

Table 4: Reinforcement scores.

Antigen code

Old New

Reinforcement status (score)

0 0 Neutral (0)

1 0 Penalize - Lost sight of marker (-10)

2-7 0 Reward - Avoided obstacle (10)

0 1 Reward - Found marker (10)

1 1 Reward – Kept sight of marker

(Score depends on orientation of

marker with respect to robot)

2-7 1 Reward - Avoided obstacle and gained

or kept sight of marker (20)

0 2-7 Neutral (0)

1 2-7 Neutral (0)

2-7 2-7 Reward or Penalize

(Score depends on several factors)

In the case where the antigen code remains at 1 (a

door-marker is kept in sight), the score awarded

depends upon how the orientation of the marker has

moved with respect to the robot. In addition, when

an obstacle is detected both in the current and

previous iteration, then the score awarded depends

upon several factors, including changes in the

position of Imax and in the reading Vmax, the current

and previous distance-type (“collision” or “near”)

and the tallies of consecutive “nears” and

“collisions”.

5 EXPERIMENTAL

PROCEDURES

5.1 General Procedures

The GA is run in Worlds 1 and 2 using single

populations of 25, 40, and 50 robots, and using five

autonomous populations of five, eight, and ten. A

mutation rate ε of 5% is used throughout, as

previous trials have shown that this provides a good

compromise between fast convergence, high

diversity and good solution-quality. Solution quality

is measured as q = (t + 8c)/2, as this allows equal

weighting for the number of collisions. For each

scenario, ten repeats are performed and the means of

the program execution time τ, solution quality q, and

diversity in type Zt and speed Zs are recorded. The

mean solution-quality is also noted when 240 repeats

are performed in each world using a hand-designed

controller. This shows how well the GA-derived

solutions compare with an engineered system and

provides an indication of problem difficulty. Two–

tailed standard t-tests are conducted on the result

sets, and differences are accepted as significant at

the 99% level only.

In World 2 the stopping criteria is relaxed in

order to improve convergence speed, see Table 3.

This is necessary since there are more obstacles and

moving robots to navigate around, which means that

completion time is affected.

5.2 Measuring Diversity

Diversity is measured using the type T and the speed

S attributes of each of the final antibodies passed to

the AIS system, since these are the only action-

controlling attributes that are common to all

antibodies. The antibodies are arranged into y groups

of five (y is the number of antigens) and each group

is assessed by comparison of each member with the

others, i.e. ten pair-wise comparisons are made in

each group. A point is awarded for each comparison

if the attribute values are different; if they are the

same no points are awarded. For example, the set of

behaviour types [1 3 4 4 1] has two pair-wise

comparisons with the same value, so eight points are

given. Table 5 summarizes possible attribute-value

combinations and the result of conducting the pair-

wise comparisons on them.

Table 5: Diversity scores.

Expected: Attribute-

value status

Points

Frequency

for T

Score for

T

All five different 10 9.26 0.926

One repeat of two 9 46.30 4.167

Two repeats of two 8 23.15 1.852

One repeat of three 7 15.43 1.080

Two repeats, one

of two, one of three

6 3.86 0.231

One repeat of four 4 1.93 0.077

All five the same 0 0.08 0.000

Total 100.00 8.333

The y individual diversity-scores for each of T

and S are summed and divided by σy to yield a

diversity score for each attribute. Here σ is the

expected diversity-score for a large number of

randomly-selected sets of five antibodies. This is

approximately 8.333 for T (see Table 5) and 10.000

for S. It is lower for T since there are only six

behaviours to select from, whereas the speed is

selected from 751 possible values, so one would

expect a random selection of five to yield a different

value each time. The adjustment effectively means

that a random selection yields a diversity of 1 for

both S and T. The diversity calculation is given by:

y

z

Z

y

i

i

σ

∑
== 1

,
(2)

where Z represents the overall diversity-score and z

represents the individual score awarded to each

antigen.

6 RESULTS AND DISCUSSION

Table 6 presents mean τ, q, Zt, and Zs values in

World 1, and Table 7 summarises the significant

difference levels when comparing single and

multiple populations. The schemes that are

compared use the same number of robots, for

example a single population of 25 is compared with

five populations of five. In addition, the smallest and

largest population sizes are compared for both single

and multiple populations.

Table 6: World 1 means.

Pop.
size

τ (s) q Zt
(%)

Zs
(%)

25 417 220 40 86

40 530 216 53 95

50 811 191 49 90

5 x 5 508 155 55 100

5 x 8 590 146 54 100

5 x 10 628 144 58 100

Table 7: World 1 significant differences.

Comparison τ (s) q Zt
(%)

Zs
(%)

25 5 x 5 77.40 99.94 99.90 99.99

40 5 x 8 72.58 99.97 43.07 99.97

50 5 x 10 97.13 99.80 98.36 99.96

25 50 99.99 91.76 96.10 75.81

5 x 5 5 x 10 88.41 58.13 60.40 00.00

The tables show that there are no significant

differences between controller run-times when

comparing the single and multiple populations. Type

diversity is consistently higher for the multiple

populations, but only significantly higher when

comparing a single population of 25 with five

populations of five. However, solution quality and

speed diversity are significantly better for the

multiple populations in all three cases. Multiple

populations always demonstrate a speed diversity of

100%, indicating that the final-selected genes are

completely unrelated to each other, as expected. In

contrast, single-population speed-diversity never

reaches 100% as there are always repeated genes in

the final-selected robots. Evidence from previous

experiments with single populations of five, ten and

20 suggests that the level of gene duplication

decreases as the single population size increases.

This explains the lower Zt and Zs values for a

population of 25 robots. However, when comparing

the results from single populations of 25 with 50, the

only significant difference is in the run-time, with

25-robot populations running much faster. This is

intuitive, since fewer robots must complete the

course for every generation. There are no significant

differences when comparing five-robot and ten-robot

multiple populations. Run-times may be comparable

here because the course has to be completed fewer

times for the smaller population, but it requires more

generations for convergence since there seems to be

a reduced probability of producing successful robots.

In all cases, mean type-diversity ratings never

reach 100%, yet mean speed-diversity is always

100% in the multiple populations, which shows

there are no repeated genes. The reduced type-

diversity ratings must therefore occur because the

types are not randomly selected but chosen in a more

intelligent way. The relatively small number of types

(six) means that intelligent selection reduces the type

diversity, whereas speed diversity is unaffected

because there are many potentially-good speeds to

choose from and convergence is rapid. It is likely

that both intelligent selection and repeated genes

decrease the type-diversity scores for the single

populations, but in the multiple populations, the

phenomenon is caused by intelligent selection only.

The hand-designed controller demonstrates a

mean solution-quality of 336. (The scores from the

49 robots that failed to complete the course are not

counted.) This is significantly worse than all of the

multiple populations, but not significantly different

to the single populations, although single-population

quality scores are considerably better. The multiple

populations may have an advantage over the single

populations in terms of solution quality because, for

each population, they require a fast time and few

collisions for only one member in order to meet the

convergence criteria. The single-population case

demands good mean-scores from five robots.

Table 8 presents the significant difference levels

when comparing the results from World 1 with those

from World 2. There is a significant difference in

run-time in every case, which is not surprising

because the GAs in World 2 take, on average, 2.25

times as long to converge. This is partly due to the

World 2 simulations running only half as fast as

those in World 1 (because there are two robots to

control) and partly because the problem is harder to

solve. There are also significant differences in

solution quality for 50-robot single populations and

all the multiple populations, with World 2 producing

the lower-quality solutions. (The 25-robot and 30-

robot populations are almost significant.) This

difference is due to the less-stringent convergence

criteria in World 2. There are no significant

differences in type diversity or speed diversity

between the two worlds.

Tables 9 and 10 summarise the same data as

Tables 6 and 7, but for World 2. When comparing

single with multiple populations, the results reveal a

similar pattern to World 1 in terms of run-time, type-

diversity and speed-diversity, i.e., there are no

significant differences between run-times, although

they are slightly higher for the multiple populations.

Type diversity is consistently better for the multiple

populations, but only significantly higher when

comparing a single population of 25 with a five-

robot multiple population. Speed diversity is

consistently significantly higher for the multiple

populations, with all multiple populations producing

100% diversity. However, unlike World 1, there are

no significant differences in solution quality,

although the figures for the multiple populations are

better in each case.

Table 8: World 1 compared with World 2.

Pop.

size

τ (s) q Zt
(%)

Zs
(%)

25 99.99 97.61 50.34 11.19

40 99.99 96.61 24.70 84.41

50 99.93 99.97 80.09 87.67

5 x 5 99.99 99.99 57.16 66.94

5 x 8 100.00 99.99 14.38 0.00

5 x 10 100.00 99.86 27.51 66.94

Table 9: World 2 means.

Pop.
size

τ (s) q Zt
(%)

Zs
(%)

25 972 314 37 85

40 1292 266 51 89

50 1414 250 56 94

5 x 5 1211 258 58 100

5 x 8 1325 225 55 100

5 x 10 1498 208 57 100

Table 10: World 2 significant differences.

Comparison τ (s) q Zt
(%)

Zs
(%)

25 5 x 5 88.47 84.51 99.96 99.63

40 5 x 8 20.91 94.09 61.19 99.28

50 5 x 10 40.78 97.31 18.34 99.87

25 50 98.79 90.17 99.50 93.43

5 x 5 5 x 10 94.36 97.97 22.16 00.00

When comparing the results from single

populations of 25 robots with 50 robots, the only

significant difference is in type diversity, with 50-

robot populations producing more diverse sets of

behaviour type. Since type diversity is also

significantly higher in the five-robot multiple

populations, this suggests there may be a threshold

single population size, below which single

populations are significantly less diverse in

behaviour-type than their multiple-population

counterparts. There are no significant differences

when comparing five-robot and ten-robot multiple

populations, although the higher solution-quality for

ten robots almost reaches significance.

In World 2 the hand-designed controller

produces a mean solution-quality of 623 (not

counting the results from the 109 robots that failed

to complete the course). The performance is

significantly worse than the GA-derived solutions

from both the single and multiple populations in

World 2.

7 CONCLUSIONS AND FUTURE

WORK

This paper has described a GA method for

intelligently seeding an idiotypic-AIS robot control-

system, i.e. it has shown how to prepare an initial set

of antibodies for each antigen in the environment.

Experiments with static and dynamic worlds have

produced solution-sets with significantly better mean

solution-quality than a hand-designed controller, and

the system has been able to deliver the starting

antibodies within about ten minutes in the static

world, and within about 25 minutes in the dynamic

world. These are fast results compared with GAs

that have used physical robots and reported

convergence in terms of number of days rather than

minutes. The method hence provides a practical

training-period when considering real-world tasks.

The resulting antibody sets have also been tested

for quality and diversity, and it has been shown that

significantly higher antibody diversity can be

obtained when a number of autonomous populations

are used, rather than a single one. For sets of five

populations, the mean diversity of antibody speed is

100%, and one can run the genetic algorithm without

significantly increasing the convergence time or

reducing solution quality. In fact, for simpler

problems, multiple populations may help to improve

solution quality. Results have also shown that the

diversity ratings are not affected by the difficulty of

the problem.

The potential of the method to create high

behaviour-diversity augurs well for the next stage of

the research, which is transference to a real robot

running an AIS. This part of the work will

investigate how the idiotypic-selection process

should choose between the available solutions, and

how antibodies should be replaced within the system

when they have not proved useful. The work will

also examine how closely the simulated-world needs

to resemble the real-world in order that the initial

solutions are of benefit.

REFERENCES

Brooks, R. A., 1992. Artificial life and real robots. In F. J.

Varela and P. Bourgine (Eds.) Toward a Practice of

Autonomous Systems: Proceedings of the First
European Conference on Artificial Life. Cambridge,

MA: MIT Press.

Farmer, J. D., Packard, N. H., Perelson, A. S., 1986. The

immune system, adaptation, and machine learning.

Physica, D, Vol. 2, Issue 1-3, 187-204.

Floreano, D., Mondada, F., 1996. Evolution of homing
navigation in a real mobile robot. IEEE Transactions

on Systems, Man, and Cybernetics- Part B:

Cybernetics, Vol. 26, No. 3, 396-407

Floreano, D., Urzelai, J., 2000. Evolutionary robots with

on-line self-organization and behavioural fitness.
Neural Networks, Vol. 13, 431-443.

Hart, E., Ross, P., Webb, A., Lawson, A., 2003. A role for

immunology in ‘next generation’ robot controllers. In

Proceedings of the 2nd International Conference on

Artificial Immune Systems, 46-56.

Hornby, G., Takamura, S., Yokono, J., Hanagata, O.,

Yamamoto, T., Fujita, M., 2000. Evolving robust gaits

with AIBO. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA),

3040-3045.

Jerne, N. K., 1974. Towards a network theory of the

immune system. Ann. Immunol. (Inst Pasteur), 125 C,
373-389.

Keymeulen, D., Iwata, M., Kuniyoshi, Y., Higuchi, T.,

1998. Comparison between an off-line model-free and

an on-line model-based evolution applied to a robotics

navigation system using evolvable hardware. In

Artificial Life VI: Proceedings of the 6th International
Conference on Artificial Life, 199-209.

Krautmacher, M., Dilger, W., 2004. AIS based robot

navigation in a rescue scenario. Lecture Notes

Computer Science, 3239, 106-118.

Luh, G. C., Liu, W. W., 2004. Reactive immune network

based mobile robot navigation. Lecture Notes

Computer Science, 3239, 119-132.

Marocco, D., Floreano, D., 2002. Active vision and

feature selection in evolutionary behavioural systems.

In From Animals To Animats: Proceedings of the 7th

International Conference on Simulation of Adaptive
Behaviour (SAB-02), 247-255.

Michel, O., 2004. Cyberbotics Ltd – WebotsTM:

Professional Mobile Robot Simulation. International

Journal of Advanced Robotic Systems, Volume 1,

Number 1, 39-42.

Michelan, R., Von Zuben, F. J., 2002. Decentralized

control system for autonomous navigation based on an

evolved artificial immune network. In Proceedings of

the 2002 Congress on Evolutionary Computation, Vol.

2, 1021-1026.

Nehmzow, U., 2002. Physically embedded genetic

algorithm learning in multi-robot scenarios: the PEGA

algorithm. In Proceedings of the 2nd International

Workshop on Epigenetic Robotics: Modeling Cognitive

Development in Robotic Systems.

Vargas, P. A., de Castro, L. N., Michelan, R., 2003. An

immune learning classifier network for autonomous
navigation. Lecture Notes Computer Science, 2787,

69-80.

Walker, J. H., Garrett, S. M., Wilson, M. S., 2006. The

balance between initial training and lifelong

adaptation in evolving robot controllers. IEEE

Transactions on Systems, Man and Cybernetics- Part
B: Cybernetics, Vol. 36, No. 2, 423-432.

Watanabe, Y., Ishiguro, A., Shirai, Y., Uchikawa, Y.,

1998a. Emergent construction of behavior arbitration

mechanism based on the immune system. In

Proceedings of the 1998 IEEE International

Conference on Evolutionary Computation, (ICEC),

481-486.

Watanabe, Y., Kondo, T., Ishiguro, A., Shirai, Y.,

Uchikawa, Y., 1998b. Evolutionary construction of an

immune network-based behavior arbitration

mechanism for autonomous mobile robots. Electrical
Engineering in Japan, Vol. 123, No. 3, 1-10.

Watson, R. A., Ficici, S. G., Pollack, J. B., 1999.

Embodied evolution: A response to challenges in

evolutionary robotics. In J. L. Wyatt and J. Demiris

(Eds.) Proceedings of the Eighth European Workshop

on Learning Robots, 14-22.

Whitbrook, A. M., Aickelin, U., Garibaldi, J. M., 2007.

Idiotypic Immune Networks in Mobile Robot Control.

IEEE Transactions on Systems, Man and Cybernetics-

Part B: Cybernetics, Vol. 37, No. 6, 1581-1598.

Zykov, V., Bongard, J., Lipson, H., 2004. Evolving

dynamic gaits on a physical robot. In Proceedings of
The Genetic and Evolutionary Computation

Conference (GECCO), Late Breaking Papers.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Whitbrook, A; Aickelin, U; Garibaldi, JM

Title:

Genetic Algorithm Seeding of Idiotypic Networks for Mobile-Robot Navigation

Date:

2008

Citation:

Whitbrook, A., Aickelin, U. & Garibaldi, J. M. (2008). Genetic Algorithm Seeding of Idiotypic

Networks for Mobile-Robot Navigation. Cetto, JA (Ed.) Ferrier, JL (Ed.) Proceedings of the

5th International Conference on Informatics in Control, Automation and Robotics, ROBOTICS

AND AUTOMATION, VOL 1, pp.5-13. Elsevier BV. https://doi.org/10.2139/ssrn.2831226.

Persistent Link:

http://hdl.handle.net/11343/241090

File Description:

Accepted version

