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Abstract—This paper considers a location-based optimal relay
selection scheme for a relay-assisted wireless network where
available decode-and-forward relays are distributed as a homoge-
neous Poisson point process. To solve an optimum relay selection
problem, a central entity or the source requires information
pertaining to all relay locations. Since the task of feeding this
information back is impractical, we investigate a threshold-based
limited feedback distributed relay selection policy. We show that
the total number of relays feeding back is a Poisson distributed
random variable. For a given threshold-based limited feedback
distributed relay selection policy, we obtain analytical expressions
for the average rate and the outage probability over the fading
and no-fading communication scenarios. The derived analytical
expressions are verified and the performance achieved by the
proposed relay selection policy is illustrated through extensive
simulations. It is observed that the limited feedback distributed
relay selection policy can achieve almost the same performance
with the optimum relay selection policy by only utilizing location
information from a few number of relays.

Index Terms—Feedback, cooperative communications, relays,
Poisson point process (PPP), stochastic geometry.

I. INTRODUCTION

Relay-assisted wireless communications is an important
means to improve the coverage and rate in next generation
wireless systems. Especially, by utilizing spatial and multiuser
diversity efficiently, it is envisioned that relays will be an
integral part of high-frequency wireless communications in
the millimeter wave bands [1]. However, the full scale of
these benefits due to deployment of relays in wireless systems
cannot be achieved without having a well-designed adaptive
relay selection mechanism taking signal quality indicators at
multiple relay locations into account [2]–[4]. It is clear that
any such relay selection mechanism will require a certain
level of feedback from the relay nodes while choosing the
optimum relay for high-levels of communications fidelity and
spectral efficiency. This is an onerous requirement in practical
implementations for networks with large numbers of relays.

In this paper, we develop a low-complexity limited feedback
distributed relay selection policy that requires feedback only
from a few number of relays on the average. We derive
some key statistical properties of the proposed relay selection
policy for when relays are randomly distributed over the plane
according to a homogeneous Poisson point process (HPPP).
In particular, we show that the number of relays feeding
their channel quality indicators back to the source node for
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relay selection obeys to a Poisson distribution with a certain
mean whose analytical form is completely characterized. The
proposed feedback mechanism is fully distributed since the
relay nodes solely utilize their local channel state information
to decide as to whether they feed back or not. We obtain the
average rate and outage probability attained by the proposed
limited feedback distributed relay selection policy, and show
that it is enough to multiplex only five relays over the feedback
channel to achieve almost the same performance with the
all-feedback scenario. From an implementation and system-
design point of view, this presents a massive reduction in the
feedback load with a negligible loss in the communications
performance. An extensive simulation study is performed to
illustrate and corroborate the analytical results.

Relay selection problem for randomly deployed relay net-
works was the subject of some previous papers, among which
we briefly mention those that are most relevant to the current
paper below [5]–[13]. Considering both random location and
fading, a relay selection scheme which maximizes the end-to-
end signal-to-noise ratio (SNR) was proposed and analyzed
in [5]. Another relay selection mechanism choosing the relay
with the best SNR to the destination was considered in [6],
and the outage probability was analyzed for different selection
combining schemes. In [7], a set of relays that can successfully
decode the source’s message was first identified, and then
the relay in this set having the minimum path loss to the
destination was selected for communications. This requires
the first hop location knowledge and channel state information
(CSI) as well as the second hop location knowledge. Similarly,
a quality-of-service (QoS) region satisfying the target outage
probability was considered in [8].

In [9], the relay having the best channel to the destination
was selected to forward the messages when both location
knowledge and CSI are available. A similar relay selection
was also considered in [10]. Based on the first hop loca-
tion and channel knowledge, the work [11] considered the
selection of the closest relay to the source in order to relay
the messages to the destination. In [12], the optimum relay
activation probability was analyzed when relays were selected
based on their distances to the source node. In [13], a random
relay selection policy choosing a relay in an area around the
source-destination mid-point was proposed and its outage was
compared with the nearest-neighbor relay selection.

All of the above previous studies assume the existence of
information pertaining to all relay locations and/or wireless
channels at a central entity or the source node. This operating



assumption requires a large feedback load on the network,
which does not scale well with the number of relay nodes
in the network. In this paper, we focus on solving this
open problem in the literature by proposing a threshold-
based limited feedback distributed relay selection policy. We
obtain fundamental statistical properties for the proposed relay
selection mechanism and derive its performance. As a practical
design guideline, we show that having five relays on the
average to feed back is enough to achieve almost the same
performance with having all relays feeding back their channel
quality indicators.

Notation: We use boldface, upper-case and calligraphic
letters to represent vector quantities, random variables and
sets, respectively. We use R, N, C and R2 to denote the
real, natural and complex numbers, and the two-dimensional
Euclidean space, respectively. |x| denotes the absolute value of
a scalar quantity x (real or complex), whereas ∥x∥ is used to
measure the canonical Euclidean norm of a vector quantity x.
Expected value of a random variable X is denoted by E [X].

II. SYSTEM MODEL

A. Network Model

We consider a relay-assissted spatial wireless network in
R2. The network contains a source-destination pair having
arbitrary locations xs ∈ R2 (source node) and xd ∈ R2

(destination node). We will assume that xs = (−d, 0)
⊤ and

xd = (d, 0)
⊤ without loss of generality. The locations of po-

tential half-duplex (HD) decode-and-forward (DF) relay nodes
in the network are given by an HPPP Φ = {X1,X2, . . .}
having intensity λ > 0, where Xi ∈ R2 represents the ith
relay location for i ∈ N. When we focus on a particular
realization of Φ, we use φ = {x1,x2, . . .} to represent relay
locations.

We will assume that the direct link between source and
destination nodes is not available due to severe shadowing
by an object in the environment. We will also assume that
random fading coefficients change at a much faster time-scale
than the network node locations, which is usually the case
in typical wireless communication scenarios [14], [15]. In
such cases, it is an onerous task, if not practical due to the
triggered excessive relay switching rate, for the source node
to obtain CSI for all source-to-relay and relay-to-destination
channels, and establish a connection to another relay node
for handing over the data traffic each time fading coefficients
change. Hence, we will focus on relay locations as critical
channel quality indicators to determine the achievable data
rates between source and destination for relay-assisted wireless
communications.

B. Optimal Relay Selection Policy

Our relay selection criterion will be based on the relay
locations. This is also the optimum approach when only
location information but not the full CSI is available at the
source node. In this case, the optimum relay selection problem

is equivalent to solving

minimize
x∈R2

ŝ (x)

subject to x ∈ φ
(1)

for each φ ∈ Σ, where Σ is the collection of all
countable locally finite subsets of R2 and ŝ (x) =
max {∥xs − x∥ , ∥x− xd∥} [16]. The optimum relay selec-
tion policy, which we denote by Popt, is the one that solves
(1) for all φ ∈ Σ. It is shown in [16] that the outage probability
Pout (Popt) and the average rate Rave (Popt), respectively,
satisfy

Pout (Popt) = inf
P∈Ξ

Pout (P) ; Rave (Popt) = sup
P∈Ξ

Rave (P) , (2)

where Ξ is the set of all feasible relay selection policies,
Pout (P) is equal to Pout (P) = Pr {RΦ (P) ≤ ρ}, Rave (P)
is equal to Rave (P) = E [RΦ (P)] and RΦ (P), which is the
ergodic data rate from source to destination averaged over only
the fading process and can be given according to (3) at the top
of the next page. When we write XP , we refer to the location
of the relay selected by P .

III. DISTRIBUTED RELAY SELECTION WITH LIMITED
FEEDBACK

The solution of (1) assumes a centralized operation in which
information pertaining to all relay locations is available at
the source node (or at a central entity). Even though this
only requires relay locations as the CSI, which change at a
much slower time-scale than fading, the task of feeding this
information back to the source node is still onerous, and hence
impeding practical implementations.

To regulate the feedback load in the network, we will use
simple but practical threshold feedback policies. In particular,
it is well-known that this class of feedback polices possesses
certain optimality properties to maximize data rates [17]. In
this paper, we will use them to control the number of relay
nodes feeding their channel states back to the source node as
a measure of the total feedback load in the network. More
explicitly, for any given threshold value T ≥ 0, we will say
that a relay node located at X ∈ Φ and operating according to
a threshold-based limited feedback distributed relay selection
policy with threshold value T will feed its channel quality
indicator ŝ (X) back to the source node if and only if ŝ (X) ≤
T . Hence, the total number of relays feeding back is given by

NFB =
∑
X∈Φ

1{ŝ(X)≤T}, (4)

where 1{·} is the indicator. The average number of relays
feeding back is then equal to

µ (T ) = E [NFB] . (5)

The next theorem characterizes the distribution of NFB and
the functional form of its average value.

Theorem 1: For any given threshold value T ≥ 0, NFB is
a Poisson distributed random variable whose mean µ (T ) is
given according to

µ (T ) = λT 2

(
π − 2d

√
T 2 − d2

T 2
− 2 arctan

(
d√

T 2 − d2

))
(6)



RΦ (P) =
1

2
min

{
E
[
log2

(
1 + SNR |Hs,r|2 G (∥xs −XP∥)

) ∣∣Φ] ,E [log2 (1 + SNR |Hr,d|2 G (∥XP − xd∥)
) ∣∣Φ]} . (3)

for T ≥ d, and µ (T ) = 0 for T < d.
Proof: See Appendix A.

Using (6), it can easily be seen that µ (d) = 0 and µ (T ) is a
continuous function of T . Further, by using (4) and (5), it can
also be seen that µ (T ) is a monotone increasing function of T
with limit limT→∞ µ (T ) = ∞. Hence, for any given feedback
load µ0 ≥ 0, we are guaranteed to find a threshold value T0

such that µ (T0) = µ0 by intermediate value theorem. From
a network design perspective, this observation shows that the
class of threshold-based distributed relay selection policies is
rich enough to satisfy any given feedback load constraint on
the network by properly allocating a common threshold value
to all relay nodes and allowing them to operate autonomously
while giving their feedback decisions.

In Fig. 1, we plot the simulated distributions of NFB for
λ = 0.5 and λ = 1, and compare them with the Poisson
distribution having mean µ (T ). As predicted by Theorem
1, simulated and theoretical distributions match each other
perfectly. In particular, Pr {NFB ≥ 1} is an important perfor-
mance indicator for relay-assisted spatial wireless networks
with distributed relay selection and limited feedback. The
relay with optimum location is always among the relays
feeding their channel quality indicators back to the source
node if NFB ≥ 1. Hence, with probability Pr {NFB ≥ 1},
there is no loss of optimality arising from implementing a
threshold-based limited feedback distributed relay selection
mechanism. Based on Theorem 1, this probability is equal to
Pr {NFB ≥ 1} = 1−e−µ(T ). This shows that the performance
loss due to having a threshold-based limited feedback dis-
tributed relay selection mechanism diminishes exponentially
fast as a function of the feedback load in the network. Numer-
ically, we have Pr {NFB ≥ 1} ≤ 0.99 whenever µ (T ) ≥ 5.
As a result, for a given relay intensity and source-destination
separation, choosing the threshold value such that µ (T ) = 5
implies almost a negligible performance loss, whilst providing
a massive reduction in the total feedback load required to
achieve Rave (Popt) and Pout (Popt).

We explicitly obtain the average rate and outage probability
achieved by a threshold-based limited feedback distributed
relay selection policy PFB for the power-law path-loss model
1
xα below. With a slight abuse of notation, we will denote
the average rate and outage probability by Rave (PFB, T ) and
Pout (PFB, T ), respectively, to indicate their dependency on
the threshold level T . If NFB = 0, there is no relay feeding
back to the source, and we assume that the source node does
not transmit any data due to lack of CSI in this case. Since
NFB = 0 for T < d (i.e., no relay feeds back for this range
of T ), we will only analyze the case T ≥ d below. Under
these operating conditions, the following theorem provides the
analytical expressions for the average rate achieved by PFB.

Theorem 2: For a given threshold-based limited feedback

distributed relay selection policy PFB having a threshold value
T ≥ d, the average rate Rave (PFB, T ) is equal to

Rave (PFB, T ) =


1
2

∫ SNR
dα

SNR
Tα

log2 (1 + s) fSopt (s) ds

if no-fading
1

2 ln 2

∫ SNR
dα

SNR
Tα

e
1
s E1

(
1
s

)
fSopt

(s) ds

if Rayleigh fading

, (7)

where E1(x) is the exponential integral defined as E1(x) =∫∞
1

e−tx

t dt for x > 0 and fSopt(s) is given in [16] as

fSopt(s) =
4λ

αs

(
SNR

s

) 2
α

arcsec

(
1

d

(
SNR

s

) 1
α

)

e
2λ

(
d

√
( SNR

s )
2
α −d2−( SNR

s )
2
α arcsec

(
1
d (

SNR
s )

1
α

)) (8)

for 0 < s < SNR
dα , and fSopt(s) = 0 for otherwise.

Proof: The proof follows from the equivalence of events
{NFB ≥ 1} and {Γopt ≤ T}, where Γopt = ŝ (Xopt) and
Xopt is the location of the relay selected by Popt. We omit
the details due to space limitations.

In the next theorem, we provide similar expressions for the
outage probability Pout (PFB, T ) achieved by PFB.

Theorem 3: For a given threshold-based limited feedback
distributed relay selection policy PFB having a threshold value
T ≥ d, the outage probability Pout (PFB, T ) is equal to

Pout (PFB, T ) =

{
e−µ(T ) if ρ ≤ R1

FSopt

(
22ρ − 1

)
if R1 < ρ < R2

1 if ρ ≥ R2

(9)

when there is no fading, where R1 = 1
2 log2

(
1 + SNR

Tα

)
, R2 =

1
2 log2

(
1 + SNR

dα

)
and FSopt

is given in [16] as

FSopt
(s) =


0 if s ≤ 0

e
2λ

(
d

√
( SNR

s )
2
α −d2−( SNR

s )
2
α arcsec

(
1
d (

SNR
s )

1
α

))

if 0 < s < SNR
dα

1 if s ≥ SNR
dα

.

(10)

On the other hand, Pout (PFB, T ) is equal to

Pout (PFB, T ) =


e−µ(T ) if s⋆ ≤ SNR

Tα

FSopt
(s⋆) if SNR

Tα < s⋆ < SNR
dα

1 if s⋆ ≥ SNR
dα

(11)

for Rayleigh distributed fading, where s⋆ is the unique solution
of the equation 1

2 ln 2e
1/sE1 (1/s) = ρ.

Proof: We give the proof only for the fading case due to
space limitations. In this case, we can write the outage event
as the union of two disjoint events according to

{RΦ (PFB, T ) ≤ ρ}

= {Γopt > T}
∪(

{Γopt ≤ T}
∩{

1

2 ln 2
f

(
Γα
opt

SNR

)}
≤ ρ
)
,



Fig. 1: Probability distribution of the number of relays feeding back for T = 3 and d = 1. (λ = 0.5 for the left-hand side
figure and λ = 1 for the right-hand side figure.)

where f(x) is defined to be f(x) , exE1(x) for x > 0. Hence,
we can write

Pout (PFB, T )

= e−µ(T ) + Pr

(
{Γopt ≤ T}

∩{
1

2 ln 2
f

(
Γα
opt

SNR

)}
≤ ρ

)
.

It can be shown that f(x) is a continuous and strictly de-
creasing function of x with limiting values limx→0 f(x) = ∞
and limx→∞ f(x) = 0. Hence, defining γ⋆ as the unique
solution of the equation 1

2 ln 2f
(

γ⋆α

SNR

)
= ρ, analyzing three

cases γ⋆ ≤ d, d < γ⋆ < T and γ⋆ ≥ T separately, and
defining s⋆ , SNR

γ⋆α , we obtain (11).
Several important remarks are in order about Theorem

3 characterizing the outage probability achievable with a
threshold-based limited feedback distributed relay selection
policy. In particular, we observe two regimes emerging in
Theorem 3 when we vary the target rate for both with and
without fading. When ρ ≤ 1

2 log2
(
1 + SNR

Tα

)
without fading

or s⋆ ≤ SNR
Tα with fading where s⋆ is the solution for

1
2 ln 2e

1/sE1 (1/s) = ρ, the outage probability is equal to
Pout (PFB, T ) = e−µ(T ). This is the feedback-limited regime
in which Pout (PFB, T ) is the same for both no-fading and
fading cases, depends only the average number of relays
feeding back (which in turn depends on T , λ and d), and
is independent of the target rate and fading behaviour. In
this regime, the threshold value is set so small that we are
guaranteed to achieve the target rate whenever there is at least
one relay feeding its channel quality indicator back to the
source node. We recall that the smaller T is, the relays feeding
back have the better channel gains and achieve higher rates.

The second regime is the rate-limited regime that emerges
when 1

2 log2
(
1 + SNR

Tα

)
< ρ < 1

2 log2
(
1 + SNR

dα

)
for the

no-fading case and when SNR
Tα < s⋆ < SNR

dα for the fad-
ing case. In this regime, the outage probability is equal
to Pout (PFB, T ) = FSopt

(
22ρ − 1

)
for the no-fading case

and Pout (PFB, T ) = FSopt (s
⋆) for the fading case, and

hence Pout (PFB, T ) is a function of ρ, the same for the all-
feedback and limited feedback cases, and independent of T .
Pout (PFB, T ) also depends on the fading behaviour since s⋆

is not necessarily the same with 22ρ − 1. In this regime, the
threshold value is set so big that we are guaranteed to have

at least one relay feeding its channel quality indicator back to
the source node whenever any relay achieves the target rate.

IV. NUMERICAL RESULTS

In this section, we present our numerical results illustrating
the analytical average rate and outage probability curves in
Theorems 2 and 3. In Fig. 2, we plot the average rate
Rave (PFB, T ) achieved by the threshold-based limited feed-
back distributed relay selection policy PFB as a function of λ
for various values of T ≥ d, where we set d = 1, SNR = 5 dB
and α = 4. For small values of T , there is a large gap between
the average rates achieved by PFB and all-feedback policies.
This is due to the fact that Pr {NFB = 0} = e−µ(T ) is large for
small values of T , and hence the source node cannot receive
any CSI from relays to choose one with high probability. More
specifically, for the considered range of λ ∈ [0.01, 4] in Fig.
2, µ (T ) ranges from 0.0123 to 0.4934 for T = 1.1, which
indicates that the source node is without any CSI more than
60% of time even for the most crowded relay network scenario
considered in this figure.

A similar behaviour with a decreased rate gap between the
limited feedback and all-feedback cases continues to hold for
T = 1.25. In this case, the source node can access to CSI
more than 87% of time when λ = 4. For T = 1.5, µ (T ) is
approximately equal to 3.1, 4.65 and 6.2 for λ = 2, 3 and 4,
respectively. As observed in Fig. 2, the rate gap between the
limited feedback and all-feedback cases becomes very small
after λ ≥ 2 for T = 1.5, which implies a significant reduction
in the feedback load without sacrificing from the achievable
data rates. Similar observations but with a smaller rate gap
continues to hold for T = 2. Based on our observations in
Fig. 2 and earlier explanations after Theorem 1, as a practical
network design rule of thumb, we can say that setting T
such that µ (T ) = 5 is enough to achieve the same average
rate attained by the all-feedback policy with almost negligible
performance loss.

In Fig. 3, we plot the outage probability curves achieved by
PFB for both as a function of λ and ρ. As in Fig. 2, simulation
and analytical results perfectly match each other. Feedback-
limited and rate-limited regimes discussed after Theorem 3
for outage probability are also apparent in this figure. While
drawing Pout (PFB, T ) in the top figures, we set ρ = 0.3.
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Fig. 2: Average rate achieved by the threshold-based limited feedback distributed relay selection policy for various values of
the threshold level, d = 1, SNR = 5 dB and α = 4. (No fading is assumed for the left-hand side figure and Rayleigh fading
with unit power is assumed for the right-hand side figure.)
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Fig. 3: Outage probability achieved by the threshold-based limited feedback distributed relay selection policy for various values
of the threshold level, d = 1, SNR = 5 dB and α = 4. The outage probability curves in the top figures are as a function of
λ with ρ fixed at 0.3. The bottom ones are as a function of ρ with λ fixed at 2. (No fading is assumed for the left-hand side
figures and Rayleigh fading with unit power is assumed for the right-hand side figures.)

For this value of ρ, s⋆ = 0.6022. Hence, we are in the
feedback-limited regime for T = 1.1, 1.25 and 1.5, and we
observe exactly the same outage probabilities for both no-
fading and fading cases. On the other hand, we are in the rate-
limited regime for T = 2, and the outage probabilities become
the same for both limited feedback and all-feedback relay
selections, i.e., see the red and black curves in the top figures.
As a function of ρ, the feedback-limited regime is manifested
through the flat portion Pout (PFB, T ) in the bottom figures.
In particular, when drawn as a function of ρ, Pout (PFB, T )
stays constant until a critical target rate, which is the feedback-
limited regime. In this regime, the outage probability depends

only on the average number of relays feeding back, i.e.,
Pout (PFB, T ) = e−µ(T ). On the other hand, after a critical
target rate value, outage probability curves coincide with each
other and move together as a function of ρ for both limited
feedback and all-feedback scenarios. This is the rate-limited
case, and the outage probability is independent of whether
we employ a threshold-based limited feedback relay selection
policy or not.

V. CONCLUSIONS

In this paper, we have considered a relay-assisted wireless
network with a single source-destination pair and spatially
deployed decode-and-forward relays. For a threshold-based



limited feedback distributed relay selection policy, we have
shown that the total number of relays feeding back is a Poisson
distributed random variable. We have characterized the average
value for this Poisson distribution analytically, and obtained
the analytical expressions for the average rate and outage
probability achieved by the proposed threshold-based limited
feedback distributed relay selection policy for both the no-
fading and fading communications scenarios. We have derived
useful and practical design rules for the limited feedback relay
selection, which indicates that setting the threshold value to
have five relay nodes feeding back on the average is enough to
achieve the same communications performance attained by the
all-feedback policy with almost negligible performance loss.
The performance loss becomes insignificant especially when
the relay intensity increases.

APPENDIX A
PROOF OF THEOREM 1

To prove this theorem, we first focus on the relay nodes
located inside the disc B (0, τ), which is centered around the
origin 0 and having radius τ . Let µ (T, τ) be the average
number of relays located in B (0, τ) and feeding their channel
quality indicators back to the source node. µ (T, τ) is equal to

µ (T, τ) = E

 ∑
X∈Φ∩B(0,τ)

1{ŝ(X)≤T}

 .

Using the monotone convergence theorem, it can be seen
that µ (T ) = limτ→∞ µ (T, τ). Let N be the number of relays
in Φ∩B (0, τ). Given the event {N = n}, all the relays are in-
dependently and uniformly distributed over B (0, τ), and hence
E
[∑

X∈Φ∩B(0,τ) 1{ŝ(X)≤T}

∣∣∣N = n
]

= nPr {ŝ (U ≤ T )},
where U is a generic random variable uniformly distributed
over B (0, τ). Using this observation, we can write µ (T, τ) as

µ (T, τ) = λπτ2Pr {ŝ (U) ≤ T} . (12)

Now, we are interested in calculating the probability
Pr {ŝ (U) ≤ T}, which is given by the following lemma.

Lemma 4: Let U be a random variable uniformly dis-
tributed over B (0, τ). Then, Pr {ŝ (U) > T} for T ≥ 0 is
given by

Pr {ŝ (U) > T} =


1 if T < d
τ2−T2

τ2 + ρτ (T, d) if d ≤ T ≤
√
τ2 + d2

2b∗(τ2−T2)

πτ2 − d2 sin(2b∗)
πτ2 + ρτ (T, d sin(b

∗))

if
√
τ2 + d2 ≤ T ≤ τ + d

0 if T > τ + d

where b∗ = arccos
(

T 2−τ2−d2

2dτ

)
, and

ρτ (T, d) ,
2d

√
T 2 − d2

πτ2
+

2T 2

πτ2
arctan

(
d√

T 2 − d2

)
.

Proof: The proof is omitted due to space limitations.
We will use Lemma 4 to conclude the proof, and it is

enough to focus only on the case where d ≤ T ≤
√
d2 + τ2.

In particular, it can be seen by using this lemma that
Pr {ŝ (U ≤ T )} = 0 for all values of T smaller than d.

Therefore, µ (T ) = limτ→∞ µ (T, τ) = 0 for T < d. For other
cases of this lemma where T ≥

√
d2 + τ2, the threshold value

grows without any bound when τ tends to infinity, which is
equivalent to the all-feedback case investigated in [16].

For d ≤ T ≤
√
d2 + τ2, we have Pr {ŝ (U ≤ T )} =

T 2

τ2 − ρτ (T, d) by using Lemma 4. As a result, µ (T, τ) =
λπT 2 − λπτ2ρτ (T, d). Taking the limit as τ tends to ∞,
we obtain (6). To obtain the distribution of NFB, we first
observe that the sum

∑
X∈Φ∩B(0,τ) 1{ŝ(X)≤T} has the char-

acteristic function φτ (t) = exp (µ (τ, T ) (eȷt − 1)). Since
NFB = limτ→∞ =

∑
X∈Φ∩B(0,τ) 1{ŝ(X)≤T} almost surely,

that NFB has a Poisson distribution with mean µ (T ) [18].
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