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O C E A N O G R A P H Y

Projected 21st century changes in extreme 
wind-wave events
Alberto Meucci1*, Ian R. Young1, Mark Hemer2, Ebru Kirezci1, Roshanka Ranasinghe3,4,5

We describe an innovative approach to estimate global changes in extreme wave conditions by 2100, as a result 
of projected climate change. We generate a synthetic dataset from an ensemble of wave models forced by inde-
pendent climate simulation winds, enhancing statistical confidence associated with projected changes in extreme 
wave conditions. Under two IPCC representative greenhouse gas emission scenarios (RCP4.5 and RCP8.5), we find 
that the magnitude of a 1 in 100-year significant wave height (Hs) event increases by 5 to 15% over the Southern 
Ocean by the end of the 21st century, compared to the 1979–2005 period. The North Atlantic shows a decrease 
at low to mid latitudes (≈5 to 15%) and an increase at high latitudes (≈10%). The extreme significant wave height 
in the North Pacific increases at high latitudes by 5 to 10%. The ensemble approach used here allows statistical 
confidence in projected changes of extremes.

INTRODUCTION
Human activities in both coastal and offshore regions are strongly 
affected by local wind-generated wave (wind-wave) events. There 
has been increasing interest in changes in wind-wave climate both 
historically and for future projections (1, 2, 3). Long-term satellite 
measurements have shown that wind-wave climate is changing over 
the global oceans (1). Coordinated international efforts (4) have been 
focused on collecting and analyzing international datasets and models 
to understand mean and higher percentile global ocean wind-wave 
climate. Although understanding how mean conditions are projected 
to change is important, it is the extreme wave conditions that are 
critical for both coastal and offshore areas. The design sea state for 
offshore and coastal structures is typically defined as the maximum 
significant wave height that can be expected over an N-year period 
(5). Offshore structures, such as oil rigs, or wind farms, and coastal 
protection structures (rock breakwaters and sea walls), usually consider 
the 1 in 100-year significant wave height, Hs, as the design sea state.

Wind-wave extremes are also crucial for the determination of 
coastal sea levels and coastal erosion, and changes in the climate 
may further exacerbate the already predicted strong societal and 
economic impacts of wind-waves on the world’s coasts (6, 7). It has 
been estimated (8) that in 2010, 290 million people worldwide lived 
below the 100-year flood level and US$9600 billion of assets were 
exposed to inundation. Therefore, it is of paramount importance to 
understand the implications of climate change on extreme wind-
wave conditions.

In many scientific fields, the one in N-year values (i.e., the return 
values) of extreme events is estimated using extreme value analysis 
(EVA) (9). Long and homogeneous time series are needed to perform 
a robust analysis and confidently estimate these extreme values. 
However, spatial and temporal sampling (10, 11), along with obser-
vational bias issues (12, 13, 14, 15, 16, 17), limit estimates of extreme 

significant wave heights. Thus, extreme value estimates are typically 
characterized by large statistical uncertainty.

Dynamical and statistical analysis approaches have been applied 
to investigate possible changes in the wind-wave climate from pro-
jections of the mean and percentile values (2, 3, 18), yet, aside from 
a few studies (19, 20, 21, 22), a reliable analysis of the projected 
changes in wind-wave extremes is lacking. This results in a lack of 
consensus on whether the frequency or magnitude of these extreme 
events is affected by climate change.

The present analysis aims to quantify how the magnitude and 
frequency of wind-wave extreme events may change under future 
projected climate scenarios. Hence, we need to determine the dif-
ference between historical estimates of extremes and future projec-
tions. Determining these differences when both the historical estimates 
and future projections of extremes contain large statistical uncer-
tainty is problematic. Therefore, here, we use an ensemble approach 
that can reduce uncertainties attributable to standard EVA methods 
(i.e., enhance confidence in the estimated extreme values), as well as 
quantifying intermodel and interscenario uncertainties (3, 23, 24, 25). 
In this approach, we analyze an ensemble of Global Climate Models 
(GCMs) used to force a wave model, as independent realizations of 
ocean wave conditions, thus enabling the pooling of the highest ex-
treme wave conditions (after applying bias correction to reduce the 
effect of different GCM forcing; see Materials and Methods). This 
approach forms a large dataset that increases the confidence of the 
statistical estimates thereof. This approach has been shown to work 
well when applied to single-model ensemble forecasts of historical 
extreme sea states (26, 27, 28, 29) but has not previously been applied 
to extreme values extracted from different GCMs and to future 
projections of global extremes. Although at the present resolution, 
GCMs are not able to resolve localized extreme events such as the 
tropical cyclones (TCs) (20, 22), the strength of this approach is that 
it produces more robust results compared to previous studies that 
have attempted to address the intrinsically uncertain nature of the 
ocean-atmosphere state (30).

RESULTS
Model ensemble
We investigated changes in global 100-year return period significant 
wave heights, ​​H​s​ 

100​​, over the 21st century, from an intermodel 
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ensemble of seven global wave model runs [using the same 
WAVEWATCH III v3.14 (31) wave model] forced with indepen-
dent GCM surface winds, part of the international Coupled Model 
Intercomparison Project 5 (CMIP5) (32). The present ensemble is 
part of a larger grouping of models (3), which has been used to ex-
amine projected changes in mean and percentile wave conditions. 
The subset of seven models that was chosen as the estimation of 
extreme conditions requires at least 6-hourly data over the full 
duration of the model runs, in contrast to the estimation of mean 
and percentile projections. These 6-hourly data were available for 
this subset, which was previously tested for its wind-wave simula-
tion skill (33). The smaller number of ensemble members renders 
the present analysis computationally feasible. The subset was further 
tested to ensure that it was representative of the larger ensemble 
(see Materials and Methods), reproducing comparable mean and 
99th percentile climatology, as well as projected changes, in both 
quantities by 2100 (see fig. S1).

The ocean wave extremes were pooled from the ensemble of 
global wave model runs, which collectively represent an equivalent 
time period much larger than commonly adopted EVA approaches 
(see Materials and Methods). To be able to pool the model results in 
this manner, the data must be independent and identically distributed 
(i.i.d.) (9). In the present case, we made the pragmatic assumption 
that the model results are independent, as each wave model run is 
forced with a different GCM, independently initiated. To be identically 
distributed, the models must generate comparable extreme values 
(see Materials and Methods) (29). These assumptions are verified 
by pair-wise model comparisons as shown in fig. S7.

The tail of the empirical probability distribution function (epdf) 
of the synthesized dataset was constructed as in fig. S2, which 
demonstrates that there are contributions from each of the seven 
models (identically distributed; see Materials and Methods). Although 
all models contribute as shown in fig. S2 (B and C), the contribu-
tions are not uniform, as shown by the nested gray bar plots (fig. S2, 
B and C). This occurs because the stacked colored bars represent 
the 1000-peak ensemble of non–bias-corrected Hs model results. A 
bias correction (see Materials and Methods), performed using the Z 
standardized variable, largely reduces the uneven contribution of 
GCMs such as the MRI-CGCM3 (fig. S2, D and E). After the bias 
correction, we fitted a probability density function (fpdf) to the 
pooled data and interpolated the 100-year return period, as is commonly 
done in the peaks over threshold (PoT) EVA approach (Materials 
and Methods). For clarity, we refer to the probability distribution 
function of the synthesized data as epdf and to the probability density 
function fitted to these data as fpdf. Note that with the ensemble 
dataset, the 100-year value can be determined by interpolation, rather 
than extrapolation, which would be necessary in a conventional 
EVA. In the case of the ensemble analysis, the required probability 
level (100-year value) is within the sampled probabilities.

The performance of the intermodel ensemble approach is demon-
strated in Fig. 1. This figure shows the ​​H​s​ 

100​​ estimates obtained with 
the model ensemble, compared with conventional PoT approaches 
applied to both altimeter data (34) and a single-wave model forced 
with National Oceanic and Atmospheric Administration (NOAA) 
Climate Forecast System Reanalysis (CFSR) winds (35). The 
comparison of the ​​H​s​ 

100​​ values obtained from both the CFSR-forced 
wave model run and the satellite dataset shows the level of un-
certainties around the extreme estimates (Fig. 1). The wave model 
forced with the CFSR high-quality wind field, which has been 

calibrated against in situ and remote ocean observations (35), acts as 
a model benchmark to compare with the climate simulations. These 
climate simulations run just with prescribed boundary conditions, 
without any in situ or remote sensing observation assimilated 
throughout the years. Note that this CFSR-forced reanalysis simula-
tion is independent of the ensemble used (i.e., not a member of the 
ensemble). Figure S3 shows the differences between the model 
ensemble and the CFSR-forced global distributions of ​​H​s​ 

100​​. Although 
there are differences of magnitude between the various approaches, 
the spatial distributions obtained with the intermodel ensemble of 
pooled extremes (Fig. 1A) is remarkably similar to the other data-
sets processed using traditional EVA approaches (Fig. 1, B and C). 

Fig. 1. Magnitude of the 100-year return period significant wave height ​​H​s​ 100​​[m] 
resulting from three different dataset EVAs. (A) The 1979–2005 intermodel en-
semble of the bias-corrected Z standardized variable highest peaks (see Materials 
and Methods), pooled from global wave model runs forced with seven GCM sur-
face winds. (B) The 1985–2018 calibrated altimeter dataset using the PoT approach 
with exponential distribution fit. (C) The 1979–2005 peaks over 99.6th percentile 
threshold for the single global wave model run forced with a reference NOAA CFSR 
wind speed (exponential distribution fit).
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The main differences are found in the TCs areas, where both the 
GCMs and altimeter data are unable to adequately model extremes 
due to their coarse resolution (22) and sampling density (34). The 
spatial distribution and magnitude of the extreme values estimated 
from the intermodel ensemble are also remarkably similar to previ-
ous global significant wave height EVAs (24, 28, 29, 36), providing 
further support for the multimodel approach.

Confidence limits for the magnitude of the ​​H​s​ 
100​​ values vary 

because of different dataset characteristics and statistical approaches. 
The advantage of pooling extreme wave data from an intermodel 
ensemble of wave models is the reduction of the intrinsic uncertainties 
connected to EVA estimates (25). The pooled dataset, in effect, 
extends the length of the available model time series, being rep-
resentative of a time window longer than the return period sought 
(1 in 100 years, in this case). This increases the level of confidence in 
the extreme value estimates in comparison to common EVA approaches 
as shown in fig. S4, where a comparison of 95% confidence limits 
for ​​H​s​ 

100​​ obtained for both the intermodel ensemble and the single 
CFSR-forced model indicates a reduction in the magnitude by a 
factor of approximately 3 (see Materials and Methods). As a result, 
confidence in the determination of projected changes in significant 
wave height extremes by the end of the 21st century using the inter-
model ensemble is also improved.

Extreme value projections
In this study, a historical (1979–2005) intermodel ensemble was 
compared with an intermodel ensemble of future projections at the 
end of the 21st century (2081–2100) for two different Representative 
Concentration Pathways (RCPs): RCP4.5, intermediate emissions 
scenario, and RCP8.5, high-emissions scenario (37). We determined 
the global ​​H​s​ 

100​​ differences between these two periods for both emission 
scenarios (Fig. 2), with model extreme values bias-corrected using a 
standardized variable correction technique, which largely reduces 
the effect of GCM differences, caused by differences in both physics 
and model resolution (see Materials and Methods).

Results show that the Southern Ocean is characterized by an 
overall increase in the ​​H​s​ 

100​​ at the end of 21st century for both emission 
RCPs (Fig. 2). In this region, the intermodel ensemble estimates 
show increases of approximately 5% (RCP4.5) to 15% (RCP8.5) 
for ​​H​s​ 

100​​. The South Pacific shows decreasing wave extremes around 
30°S and a slight increase in the significant wave extremes around 
10°S. This indicates a possible strengthening of the trade winds by 
the end of the 21st century, in agreement with recent studies (38). 
Increases between 5 and 10% (both RCPs) are indicated in the Indian 
Ocean west of Australia and in large areas of the South Atlantic. The 
changes highlighted above are all statistically significant, as indicated 
by the hatching in Fig. 2. The hatching is performed as explained in 
Materials and Methods and in fig. S5. The Northern Hemisphere shows 
a more irregular pattern. The models predict increases in ​​H​s​ 

100​​ at the 
high latitudes of both the North Pacific and North Atlantic. However, 
tests of statistical significance (see Materials and Methods and Fig. 2 
hatching) indicate that the North Atlantic increases are not statistically 
significant. The projected decrease in extreme significant wave heights 
of −5 to −15% in the mid and low latitudes of the North Atlantic 
basin is, however, statistically significant.

Uncertainty assessment
To account for differences in the wave climatology across the models 
in the ensemble, a bias correction approach using a Z standardized 

variable (Materials and Methods) was used. To investigate the 
projected changes in extreme significant wave heights in more detail, 
we examined the epdf of this Z standardized variable (Materials and 
Methods) at specific locations (fig. S6). This Z ensemble strongly 
reduces the uncertainties associated with the ​​H​s​ 

100​​ estimates from 
both the historical 1979–2005 dataset and the two future projection 
scenarios. Figure S6 (A, D, and G) shows the 95% confidence intervals 
of the ​​H​s​ 

100​​ estimates at three selected locations from the following: 
the ensemble of models, each individual model, and the average across 
the models. The confidence limits represented by the error bars in the 
graphs are considerably smaller for the ensemble approach than for 
any of the single models when analyzed using a common PoT 
analysis. Figure S6 (B, C, E, F, H, and I) shows epdfs from 5° × 5° 
regions around these three specific locations, the averaging over the 
region being used to further reduce statistical variability in the epdfs. 
The Southern Ocean region around location (120°E, 50°S) is an area 
where the extreme significant wave height is projected to increase. 
The epdfs (fig. S6, B and C) show that this occurs because of an 
increase in both the frequency and the magnitude of extreme events 
for both RCP4.5 and RCP8.5. The changes in magnitude are depicted 
by a shift toward the right of the future scenario epdfs if compared 
to the histogram of the historical dataset. The changes in the Southern 
Ocean event frequency are shown by a translation of the future 
scenario epdfs along the y axis (fig. S6B). The quantile-quantile 
(Q-Q) plot (fig. S6C) analyzes the details of these changes. Here, 
the changes in frequency are shown by the departure of the future 

Fig. 2. Percentage change in the 100-year return period significant wave height 
by the end of the 21st century relative to the 1979–2005 period. Standardized 
variable analysis approach is used for the intervals 1979–2005 and 2081–2100. 
(A) RCP4.5 mid-emission scenario. (B) RCP8.5 high-emission scenario. The regions 
with statistically significant changes at 5% level (see Materials and Methods; Eq. 7) 
are hatched.
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scenarios red and orange quantiles from the 1:1 line in the region of 
plot represented by the bulk of the dataset.

The error bars show that the projected changes by the end of 21st 
century are statistically significant for this location (i.e., the error bars 
do not overlap; fig. S6A). The North Pacific region around location 
(190°E, 50°N) is also an area where the extreme significant wave 
height is projected to increase. In this case, the comparison with the 
historical dataset (fig. S6, E and F) shows that the epdfs of the two 
projected emission scenarios are similar in terms of frequency, but 
there is an increase in the magnitude of extreme waves by the end 
of the century. The confidence limits (fig. S6D) indicate that this 
change is statistically significant for both future scenarios. The 
North Atlantic location (320°E, 40°N) is representative of an area 
where the extreme significant wave height is projected to decrease. 
The 5° × 5° region epdfs (fig. S6, H and I) show that this decrease is 
a result of a decrease in both the frequency and magnitude of the 
extremes for both RCP4.5 and RCP8.5 emission scenarios. The 
confidence intervals, however, indicate that the projected changes 
are not statistically significant (fig. S6G).

Change in frequency of extremes
An additional investigation of changes in the frequency of extreme 
events was undertaken by determining, for each single-wave model, 
the number of extreme events above defined thresholds for both the 
historical (1979–2005) and future projection (2081–2100) datasets. 
For each model, the threshold was set as a percentile of the historical 
dataset. The number of extremes above this value, for both the 
historical and future projection datasets of each model, was obtained, 
and then the seven-model difference in the number of the extremes 
(count/years) between historical and future projection was computed 
(see Materials and Methods). Initially, we tested a 99.6th percentile 
threshold, which approximately corresponds to the percentile, over 
the total number of model outputs, of the 1000 storm events pooled 
for the EVA performed at each location of the globe. To confirm the 
consistency of the results, we also tested a 90th percentile threshold. 
Figure 3A shows the change in the number of events above the 90th 
percentile level, and Fig. 3B shows the case for the 99.6th percentile 
threshold. For the Southern Ocean, the increase in the ​​H​s​ 

100​​ is associated 
with an increase in the number of extreme storms. This is a consistent 
result for both thresholds (Fig. 3). Thus, the change in frequency of 
these events affects the return period estimates. In the North Pacific, 
we found an increase in significant wave height at the end of the 
21st century (Fig. 2), but there is no significant increase in the 
frequency of occurrence of these events (Fig. 3). Here, it is an increase 
in the magnitude of the events that is responsible for the changes in 
the 100-year return period significant wave height. The projected 
decrease in values in the North Atlantic is associated with a decrease 
in the frequency of the extremes (approximately 1 event less per year 
for the 99.6th percentile threshold).

TC-generated wind-wave extremes
TC-generated wind-wave extremes deserve separate discussion as 
the coarse resolution of the GCMs, and the physics schemes used 
may limit the representation of TC extreme winds, and consequently 
the modeled wind-wave extremes. The present seven-model ensemble 
dataset performance in reproducing TC wind waves was analyzed 
and validated against observations by Shimura et al. (39) in the 
western North Pacific region. The analysis shows that three of seven 
models can represent at least 80% of the TC frequency, as well as 

winds more than 30 m/s. These models are BCC-CSM1.1, MIROC5, 
and MRI-CGCM3. The ability of these models to depict TC wind-
wave extremes is shown in fig. S8, where, for selected National Data 
Buoy Center (NDBC) buoy locations, we compare the bias-corrected 
seven-model ensemble wave heights with buoy and satellite altimeter 
wave height measurements. In addition, in fig. S10, an EVA is per-
formed for each of the wave model runs for the 1979–2005 historical 
period to show the differences between each model EVA performance in 
TC regions. The seven-model ensemble has only limited accuracy in 
representing these events and, as can be seen in fig. S8, underestimates 
extremes in TC regions. However, it is useful to investigate the magnitude 
and frequency changes (Figs. 2 and 3) in major TC regions [the western 
and eastern North Pacific; the North Indian, South Indian, and 
South Pacific; the Caribbean/Gulf of Mexico; and the open North 
Atlantic (www.ncei.noaa.gov/news/inventory-tropical-cyclone-tracks)], 
and how the GCM projections perform in these regions. Figure 2 
shows statistically significant decreases in the magnitude of ​​H​s​ 

100​​ in 
TC regions, except for the North West Pacific. Figure 3 shows that 
the frequency of TC extreme wind-wave events decreases globally 
by 2100. According to the recently published Intergovernmental Panel 
on Climate Change (IPCC) Special Report on the Ocean and Cryo-
sphere in a Changing Climate and reference reviews on global 
future projections in TC events (40, 41), there is medium confidence 
on a general future projected increase in category 4 and 5 TC events. 
If this is the case, ​​H​s​ 

100​​ future projected values should also increase 
as a result of the shift in magnitude of TC events. This differs from 
the results obtained with the present seven-model ensemble EVA 

Fig. 3. Changes in extreme event frequency. (A) Changes in the number of ex-
treme events per year over the historical 90th percentile threshold between the 
historical dataset 1979–2005 and future projection 2081–2100 for RCP8.5. (B) As 
for (A) but for the historical 99.6th percentile threshold. The similar spatial variability 
demonstrates consistency of the results for different selected thresholds.
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(Fig. 2). However, there is also emerging evidence (low confidence) 
on a reduction in the frequency of TCs (41), which is in agreement 
with Fig. 3 results. It should be noted that both the intensity and 
frequency of the 1000 pooled peaks will affect the EVA. Thus, the 
reduction in frequency would partially counteract the increase in 
TC intensity, thus reducing the ​​H​s​ 

100​​ future projected estimates.
As noted above, global wind-wave extreme projections in TC 

regions are affected by CMIP5 GCM resolution and model physics 
that limit the confidence around the estimates of TC wind-wave events 
(40). However, the present EVA approach can infer some informa-
tion on TCs, derived from a limited number of models contributing 
to the ensemble. In the future, this approach could take advantage 
of CMIP6 higher-resolution GCMs, with improved physics, to force 
a high-resolution global wave model [horizontal resolution of at 
least 0.25°; (22)], to estimate TC-generated wind-wave extreme 
future changes. In this way, the ensemble approach performance 
would be significantly improved, as a much larger amount of infor-
mation on TC wind-wave events would be embedded in the pooled 
highest peaks. In that case, we could estimate changes in TC-generated 
wind-wave extremes, as opposed to non–TC-generated waves, arguably 
still dominant in the present ensemble dataset (39). At the present 
level of accuracy, special care must be taken in interpreting the 
changes in ​​H​s​ 

100​​ in TC regions.

Change along global coastlines
A potential consequence of the projected changes in extreme wave 
conditions will be enhanced shoreline erosion and possibly coastal 
flooding in some regions. Figure 4 shows the projected changes in 
​​H​s​ 

100​​ along the world’s coastline in 2100 for RCP8.5. This was deter-
mined by assigning the change in ​​H​s​ 

100​​ at the closest model point to 

the coastal segment. This assessment ignores potential nearshore 
refraction and shoaling at this global scale. Table S1 shows the 
lengths and percentage of global coastline changes in ​​H​s​ 

100​​ in 5% 
increments. A total of 59% of the world’s coastlines are projected to 
experience an increase in extreme wave conditions (table S1). 
Consistent with Fig. 2B, high-latitude regions of both hemispheres 
are projected to have an increase in extreme significant wave height, 
while lower latitudes generally see a decrease. It should be noted, 
however, that because of model resolution, TC-generated waves are 
poorly resolved. Therefore, there is less confidence in the projected 
changes in ​​H​s​ 

100​​ in these tropical regions (30°S to 10°S, 10°N to 
30°N; see Materials and Methods). Although Fig. 2B shows increases 
in ​​H​s​ 

100​​ in the Southern Ocean up to 20%, these large increases are 
generally at latitudes further south than most of the continental 
coastlines. The southern tip of South America is projected to ex-
perience an increase of approximately 20%, with the west coast of 
New Zealand and Tasmania experiencing an increase of 10 to 
15%. Increases of 10 to 15% are also projected for the coasts of the 
North Pacific (Canada and Kamchatka Peninsula). As shown in 
Fig. 2 (see Materials and Methods), changes in the magnitude of 
​​H​s​ 

100​​ less than 5% are generally not statistically significant.

DISCUSSION
The ensemble approach adopted here has the major advantage that 
the resulting values of ​​H​s​ 

100​​ have considerably smaller confidence 
intervals than if estimates from a single model were used. This is an 
advantage when investigating changes in values of ​​H​s​ 

100​​. The reduction 
in the magnitude of the confidence intervals can be seen at specific 
locations in fig. S6 (A, D, and G) and globally in figs. S4 and S5 

Fig. 4. Percentage change in 100-year extreme value significant wave height along the global coastline between the historical dataset 1979–2005 and future 
projection 2081–2100 for RCP8.5. 
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(D and E). This allows the determination of projected changes in 
extremes with much greater statistical confidence. As a result, the 
present analysis has been able to estimate statistically significant 
changes in extreme significant wave height on a global basis. Although 
projected changes in extreme events appear robust, intramodel un-
certainties and uncertainties that arise from atmospheric downscaling 
and wind-wave modeling are not addressed by this analysis (3). 
Furthermore, some regions of the global oceans affected by local 
climate variability, such as TCs, present higher uncertainty due to 
model limitations in representing these natural phenomena at the 
current model resolutions (20, 21, 22, 39, 40, 41). Whether TCs are 
increasing in frequency or magnitude remains an open question 
(40, 41, 42, 43). However, increasing resolution and improved physics 
of next-generation models will further address remaining sources of 
uncertainties, with increasingly accurate estimates of the changes in 
future projected extreme significant wave heights. Furthermore, we 
advocate for a continuous archiving of data from GCMs to ensure 
long climate record. These GCMs are already run over centennial 
time scales, but high temporal data are archived only for limited 
time slices.

MATERIALS AND METHODS
Intermodel ensemble of ocean storms
An ensemble of global wave model runs of WAVEWATCH-III 
(WWIII v.3.14) (31), forced with surface winds simulated by different 
GCMs, was used to develop a dataset of storm wave conditions. These 
GCMs are part of the CMIP5, feeding into the Fifth Assessment 
Report of the IPCC. We selected the seven WWIII model runs that 
performed best in terms of wave climate prediction (33) and applied 
an EVA (9) to model output. The GCMs used to generate the surface 
winds, which forced the WWIII wave model (CMIP5/WWIII), were 
as follows: ACCESS1.0, BCC-CSM1.1, GFDL-CM3, HadGEM2-ES, 
INMCM4, MIROC5, and MRI-CGCM3 (33). The characteristics of 
each model are described in table S2. The data are available on the 
CSIRO data servers [Collaboration for Australian Weather and 
Climate Research (CAWCR) dataset at https://doi.org/10.4225/​
08/55C991CC3F0E8].

As noted above, this ensemble is a subset of the larger group used 
by Morim et al. (3) to investigate changes in mean and 99th percentile 
significant wave height by 2100. The smaller group was used here as 
the present analysis of extremes required at least 6-hourly data rather 
than monthly statistics. These data were archived for these seven 
models. In addition, the hourly data mean an increase in the amount 
of data by a factor of approximately 700 per model. Hence, the 
smaller ensemble was also required to render the problem computa-
tionally tractable. The present subset of models is drawn from 
clusters 2 and 4 of Morim et al. (3), which were broadly representative 
of the larger ensemble of models. However, to confirm that this is 
the case, the climatology for the subset was determined as the mean 
and 99th percentile significant wave height, ​​​   H ​​ s​​​ and ​​H​s​ 

99​​, for the 
historical time period (1979–2005). These results are shown in fig. S1 
(A and B) and are comparable to figure 1 of Morim et al. (3). 
Similarly, the percentage changes in ​​​   H ​​ s​​​ and ​​H​s​ 

99​​ between the historical 
(1979–2005) and future (2081–2100) time periods for both RCP4.5 and 
RCP8.5 are shown in fig. S1 (C to F). Again, this is directly com-
parable with figure 1 (​​​   H ​​ s​​​) and figure 2 (​​H​s​ 

99​​) of Morim et al. (3). 
These comparisons provide confidence that the present subset of models 
is representative of the larger ensemble consisting of 83 models.

EVA technique
Our aim here was to pool the data from the ensemble of the seven 
bias-corrected models. To this end, first, a threshold was set at the 
90th percentile for each of the seven models. Storm-independent 
peaks were then selected above this threshold, with independence 
guaranteed by ensuring that peaks are separated by a minimum of 
48 hours (44). The peak values from the pooled dataset were then 
ranked, and the highest 1000 were selected (29, 45). The procedure 
was conducted for both raw model 6-hourly outputs and bias-
corrected outputs (fig. S2, D and E). As for a PoT approach, we 
fitted an exponential distribution to the 1000 highest peaks and 
found the 100-year return period value at the desired probability 
level from the relationship (34, 46)

	​ P(x < ​x​​ 100​ ) = 1 − ​  ​N​ Y​​ ─ 100 ∙ ​N​ POT​​ ​​	 (1)

where NPOT is the number of peaks (1000) and NY is the equivalent 
duration in years of the pooled dataset from which the peaks were 
extracted. This process of selecting storm peaks from each of the 
models in the ensemble and pooling them to form extreme value 
histograms is shown diagrammatically in fig. S2. To perform the 
EVA, it is necessary to define a representative time period of the 
pooled dataset (i.e., define NPOT). Once the extremes from each of 
the models are pooled, we no longer have a single time series. Rather, 
we have a pooled set of extremes from multiple models, of which we 
verified the level of independence and identical distribution (fig. S7). 
Therefore, to compute the equivalent time period for this pooled 
dataset NY, we assumed that each of the model 6-hourly outputs are 
representative of a 6-hour time window; this value has been tested 
in previous literature (29, 45). Considering leap years for the historical 
dataset (1979–2005), the equivalent time is given by Eq. 2

	​​ T​eq​ hist​ = 27 years × 365.25 days × 4 hindcasts a  
                           day × 6 hours × 7 models = 189 years​	 (2)

and for the future projection (2081–2100), the equivalent time is 
given by Eq. 3

	​​ T​eq​ proj​ = 20 years × 365.25 days × 4 projections a  
                            day × 6 hours × 7 models = 140 years​	 (3)

As discussed above and in the following sections, the synthesized 
time period guarantees smaller return period confidence intervals, 
reducing the uncertainties. Equations 2 and 3 define the values of 
NY in Eq. 1. Note that as NY is larger than the desired return period 
(100 years), we are “in sample,” and no extrapolation of the epdf is 
required. The exponential distribution fitted to the epdf of the data 
is hence used only to smooth the tail of the epdf and aid interpolation 
of the extreme significant wave height at the desired probability level 
(i.e., one in 100-year event; see fig. S2). A similar approach to that 
applied here has been used to estimate projected changes in extreme 
significant wave height at selected North Sea locations (26, 27). In 
contrast, to the present approach, however, this previous analysis 
used only annual maxima from a single model.

Preliminary test on raw model data
Data from the ensemble of models can be pooled to undertake EVA 
only if the data comply with specific criteria (29, 45). That is, the 
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data must be i.i.d. (9). To investigate whether the data are i.i.d., we 
selected several locations around the globe and constructed scatter 
plots of significant wave height values for the historical model data-
sets. The scatter plots are for values at the specific locations and the 
same times. Plots were performed between each combination of 
two models (fig. S7). As the models are forced with different wind 
fields, the scatter plots show low correlation (correlation coefficient 
< 0.13), and it is assumed that the models are sufficiently independent 
to perform the analysis (29, 45). In addition, Q-Q plots (fig. S7) show 
that generally the models are identically distributed, i.e., Q-Q line is 
close to the 1:1 line, indicating similar epdfs. This is particularly 
true for the bulk of the data, with greater divergence at the extremes. 
To further test the relationship between the models at the extreme 
values, we extracted the peaks over the 90th percentile for each m 
model and compared the quantiles with the quantiles of the inter-
model ensemble of extremes taken above the same percentile. 
We then computed the extreme quantiles root mean square error 
(RMSE) to define a performance parameter eRMSE (Eq. 4)

	​​ e​ RMSE​​ = 1 −  ​ 
∣​∑ ​RMSE​ m​​ _ n  ​ − ​H​s​ 

100​∣
  ─────────── 

​H​s​ 
100​

  ​​	 (4)

The performance parameter eRMSE (Eq. 4) describes the similarity 
(or discordance) between model distributions of the extremes. The 
smaller the eRMSE, the more similar the distribution of extremes 
between models, and thus the more robust is the ensemble EVA 
approach. RMSEm is the root mean square error of the m model 
90th percentile extreme quantiles in relation to the intermodel 
ensemble 90th percentile extreme quantiles, where n is the number 
of models (in this case, 7), and ​​H​s​ 

100​​ is the 100-year return period 
value estimated with the intermodel EVA approach (i.e., respectively 
for historical and future projection datasets).

The eRMSE results for both historical and future projection data-
sets (fig. S9) show reasonable agreement between model extremes 
(eRMSE < 0.05), except for the tropical areas, affected by TCs, which 
are still not adequately represented by the models, due to coarse 
resolution and missing physics. These results show that some GCMs 
seem to capture TC characteristics, while others still miss them. This 
is shown by the EVA performed on each single global wave model 
run over the 1979–2005 historical time slice (fig. S10).

Robustness of the results
To account for different biases and variances between the various models, 
we tested two bias correction approaches and a bias-uncorrected 
approach. As outlined above, we describe the results obtained from 
a standardized variable correction, which, we believe, works quite well. 
This approach allows a comparison between models with different 
biases and variances (47) by standardizing the significant wave 
height values to each model’s historical mean ​​​m​ hist​​and SD ​​​m​ hist​​ (here, 
m = 1, 2, …, 7 for the seven models). This is done for both historical (Eq. 5) 
and future projection (Eq. 6) significant wave height values Hs, m

	​​ Z​m​ hist​  = ​  
​H​s,m​ hist​ ‐ ​​m​ hist​

 ─ 
​​m​ hist​

  ​​	 (5)

	​​ Z​m​ proj​  = ​  
​H​s,m​ proj​ ‐ ​​m​ hist​

 ─ 
​​m​ hist​

  ​​	 (6)

The values of Hs were standardized for each of the seven models 
individually, and then the storm data (extreme values) were pooled. 
The EVA was then conducted on the 1000 highest Z values extracted 
from the pooled Zm variables. We then found the 100-year Z100 return 
period and from this computed ​​H​s​ 

100​​, inverting Eqs. 5 and 6. The 
inversion was done using the seven-model ensemble historical mean, 
​​​ens​ 

hist​​, and SD, ​​​ens​ 
hist​​. The changes ​∆​H​s​ 

100​​ between historical and future 
projection datasets are shown above in Fig. 2.

A second analysis directly compared the extreme significant wave 
height values from the intermodel ensemble of the historical dataset 
with the extreme significant wave heights of the intermodel ensemble 
of future projections. No bias correction was used in this analysis. 
The PoT analysis was performed on the 1000 highest significant 
wave height peaks selected as described above. The 100-year return 
period changes at the end of the 21st century (fig. S11A) show a 
similar spatial distribution to the Z-corrected results (Fig. 2), especially 
at the mid and high latitudes of both hemispheres. The main differ-
ences are found in the tropical areas where, as already mentioned 
above, the models have limitations in the representation of extremes 
(TC areas in fig. S10).

In a third approach, we extracted the 1000 highest peaks from 
bias-corrected historical and future datasets. We bias-corrected each 
of the CMIP5/WWIII outputs at the 99.8th percentile level, based 
on the 99.8th quantile of a reference climate model run. That is the 
WWIII wave model forced with surface winds from the CFSR of the 
American National Centers for Environmental Predictions (CFSR/
WWIII run). The delta found from the 99.8th percentile quantile of 
the reference runs was then added or subtracted to the cumulative 
distribution function of each of the CMIP5/WWIII runs, shifting 
the tail of the extremes to match the chosen quantile level. This process 
is similar to a correction with a quantile-based mapping method 
(48) but limited to a single quantile to preserve the variance of each 
model tail of the extremes. The changes in ​​H​s​ 

100​​ (fig. S11B) using 
this approach show greater variability than the first two approaches, 
but the general distributions are similar, especially at the mid and 
high latitudes of both hemispheres, demonstrating the robustness 
of the results in these regions of the global oceans. Changes in the 
tropical areas remain an open question, and this bias correction 
approach introduces larger deviations in the results for these areas.

In addition to this, we test the consistency of Hs future changes, 
performing an EVA at different return levels. These correspond to 
the 1  in 10-, 20-, 50-, and 100-year return periods. The EVA 
extreme estimates for each return level are shown in fig. S12, with 
the percentage of change of the 2081–2100 RCP8.5 projections 
relative to the 1979–2005 period. The results show the different 
magnitude of the estimates for both historical and future projection 
datasets, from the smallest (10-year return period) to the largest 
(100-year return period). The percentage of change in significant 
wave height by the end of the 21st century, relative to the 1979–2005 
period, is consistent through the different return period analyzed. 
The 10-year return period results (fig. S12) are in agreement with 
Wang et al. (19) in the Southern Ocean, the eastern tropical Pacific, 
and the North Atlantic.

Model contributions
An important element of the pooled model approach is that all the 
models contribute to the EVA estimates. That is, the peaks composing 
the tail of the pooled extreme epdf come from all CMIP5/WWIII 
runs, rather than a small number of models dominating the selected 
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extreme values. To test this, the model contributing each of the peaks 
in the ensemble EVA was tracked. The number of peaks from each 
model making up the highest 1000 Z values in the pooled extreme 
dataset was determined at selected test locations. The model contribu-
tion to the 1000 peaks for non–bias-corrected data is shown for 
these locations as pie charts (fig. S13). This figure shows that even 
without any bias correction, all seven models contribute to the fpdf 
and thus the return period estimation. The bias correction process 
further ensures an even more uniform contribution to the peaks 
across the individual models of the ensemble, as shown in fig. S2.

Statistical significance
Once the 1000 peaks are extracted from the intermodel ensemble, 
we can bootstrap the confidence intervals at the 95% level (49). The 
bootstrap technique is performed by resampling 500 times the 1000 
pooled peaks with replacement. Each of the 500 samples is composed 
of 1000 values. With replacement, a bootstrap sample may have some 
values of the original 1000 peaks repeated and some not appearing 
(49). Then, for each grid point, we compute the 100-year return value 
fitting the exponential distribution to each of the 500 samples. The 
95% confidence level is given by the 0.025 and 0.975 percentiles of 
the 100-year return values found. The confidence intervals for both 
historical and future projection ​​H​s​ 

100​​ (fig. S5, D and E) are signifi-
cantly smaller than results found with common EVA techniques 
(see fig. S6, A, D, and G) (28, 29). Taking advantage of the reduced 
statistical uncertainty, we here introduce a test to evaluate the statistical 
significance of the extreme significant wave height changes at 
the end of the 21st century. The significant wave height changes at the 
end of the 21st century are regarded as statistically significant if the 
95% confidence limits of the historical and future extremes do not 
overlap, that is

	​ ∣∆ ​H​s​ 
100​∣ > 0.5 × (​CI​ 95,hist​​ − ​CI​ 95,proj​​)​	 (7)

where ​∆​H​s​ 
100​​ is the difference between historical and future projec-

tions of ​​H​s​ 
100​​ (Fig. 2) and CI95 are the confidence intervals (i.e., the 

range of values in which we are 95% confident to find ​​H​s​ 
100​​ for the 

historical CI95, hist and the future projection CI95, proj intermodel 
ensembles).

Statistically significant values of changes in ​​H​s​ 
100​​ are shown with 

hatching in Fig. 2. As can be seen in this figure, most areas where 
the changes in ​​H​s​ 

100​​ are greater than 5% in magnitude (positive or 
negative) are statistically significant. One of the major advantages of 
the pooled ensemble approach used here is that the reduction in 
confidence limits of the extreme value estimates means that differ-
ences in extreme values can be determined with greater statistical 
confidence.

A further demonstration of the increase that is statistical confi-
dence due to the pooled ensemble approach is demonstrated in fig. 
S14, which shows the changes in ​​H​s​ 100​​ by the end of the 21st century 
for RCP8.5, calculated using a peaks over 99.6th percentile thresh-
old (PoT) for each of the individual models in the ensemble. Figure 
S14 can be directly compared with the ensemble result in Fig. 2B. 
Although some of the spatial variations evident in Fig. 2B are 
evident when considering the models individually, the increase 
in statistical variability is evident. Applying the same approach as 
above to determine statistical confidence, we find that almost none 
of changes in ​​H​s​ 

100​​ are statistically significant at the 95th percentile 
level when using individual models.

A further comparative test was undertaken by evaluating the 
average of the changes in ​​H​s​ 

100​​ from the individual models in fig. S12. 
This yielded a result comparable to the ensemble result (Fig. 2B), 
augmenting confidence in the robustness of the ensemble approach. 
However, as shown in fig. S6 (A, D, and G), the confidence limits 
using such an averaging approach are still much larger than for the 
ensemble approach.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/24/eaaz7295/DC1
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