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Summary 

Freshwater habitats are disproportionately rich in biodiversity, and are among the most 

threatened, yet poorly protected ecosystems. Aquatic insects make up much of the total 

freshwater fauna and contribute greatly to ecosystem functioning. At the broad-scale, aquatic 

insect distribution is driven by combinations of traits, as well as regional climate gradients and 

historical landscape context. Locally, both aquatic insect species richness and diversity are 

driven by various aspects related to vegetation and to physiochemical environments. Effective 

conservation requires thorough understanding of species distribution patterns at various spatial 

scales. My overall aim here is to combine broad-scale, theoretical biogeography, and local-

scale empirical ecology to investigate drivers of aquatic insect distribution across Africa. 

Species are often binarily classified as ‘widespread generalists’ or ‘narrow-range specialists’ 

based on their ecological traits. Results in Chapter 2 show that ecological and biological traits 

are highly interactive among dragonflies, and inferring geographical range size based on 

ecological preference and/or biotope specialization alone should be approached with caution.  

Biological traits related to phenology and mobility were also strong drivers of dragonfly range 

size, indicating that conservation efforts should include multiple species across all habitat 

types.  

Regional climates show considerable variation across latitudinal and longitudinal gradients, 

and determine areas of high species richness and diversity. In Chapter 3, I show strong 

latitudinal and longitudinal gradients for South-African dragonfly species richness and 

endemism. Dragonfly assemblage-turnover boundaries coincided with significant geographical 

features and/or areas where contemporary climate changed from one condition to another. 

However, these dragonfly assemblage turnover-boundaries were gradual rather than discrete 

throughout South Africa. 

At the local scale, natural and artificial ponds contribute greatly to overall biodiversity, 

especially when they are of high quality and occur in networks across the landscape. I show 

that ponds characterized by high heterogeneity support diverse aquatic insect assemblages 

(Chapters 4 and 5). Chapter 4 showed artificial reservoirs, occurring alongside natural ponds 

in ecological networks, to expand the area of occupancy for most widespread dragonflies, 
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aquatic beetles and true bugs. Some species with specific habitat requirements were confined 

to natural ponds, suggesting the significance of natural ponds for conserving the full range of 

insects. 

Dragonflies, aquatic beetles and true bugs occupy low-quality artificial reservoirs at low 

abundance to survive the adverse effects of drought (Chapter 5). However, many insects 

exclusively occupied natural ponds, emphasizing the overall importance of naturalness, and 

suggests that there is merit in improving artificial reservoirs. This would most likely be by 

having macrophytes and vegetated banks similar to those of natural ponds. 

Investigating aquatic insect distribution patterns is important for conservation, and here, I 

demonstrate the value of dragonflies as model organisms for investigating the drivers of broad-

scale distribution patterns. Studying other taxa is also appropriate, as I have demonstrated at 

the local scale, but not always possible due to limited distribution knowledge. I recommend 

broad-scale investigations of other complementary taxa to determine their added value for 

elucidating the drivers of overall insect distribution patterns, and so address our current 

shortfalls to improve insect conservation.  
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Opsomming 

Varswaterhabitatte is besonders biodivers, en val onder die mees bedreigde, onder-beskermde 

ekosisteme. Varswaterinsekte vorm ‘n groot deel van alle varswaterdiere, en het hoë waarde 

vir ekosisteem-werking. Breë-skaalse waterinsekverspreiding word aangedryf deur 

kombinasies van eienskappe, sowel as streeksklimaat en historiese landskap-konteks. Oor 

plaaslike skale word beide waterinsek spesierykheid en diversiteit aangedryf deur verskeie 

aspekte van plantegroei, en chemiese omgewings. Effektiewe bewaring vereis goeie begrip van 

spesieverspreidingspatrone oor verskeie ruimtelike skale. My algehele doel is om breë-skaalse, 

teoretiese bio-geografie, en fyn-skaalse empiriese ekologie te kombineer, om sodoende die 

dryfkragte van waterinsekverspreiding oor Afrika te ondersoek.  

Spesies word dikwels op ‘n binêre wyse geklassifiseer as ‘wyd-verspreide generaliste’ of 

‘streeksgebonde spesialiste’, gebaseer op hul ekologiese eienskappe. Bevindinge in Hoofstuk 

2 toon dat ekologiese en biologiese eienskappe onder naaldekokers hoogs interaktief is. 

Afleidings van geografiese verspreiding, gebaseer op ekologiese voorkeur en/of biotoop 

spesialisme, hoort versigtig benader te word. Biologiese eienskappe verwant aan fenologie en 

beweeglikheid was ook beduidende dryfkragte van geografiese verspreiding onder 

naaldekokers, wat aandui dat bewaringspogings verskeie spesies vanaf alle habitat moet betrek. 

Streeksklimaat verskil aansienlik oor breedte- en lengtegradiënte, en bepaal waar areas van hoë 

spesierykheid en diversiteit voorkom. Ek bewys in Hoofstuk 3 dat sterk breedte- en 

lengtegradiënte vir Suid-Afrikaanse naaldekoker spesierykheid en inheemsheid bestaan. 

Naaldekoker gemeenskapsomsetgrense stem ooreen met beduidende geografiese strukture 

en/of areas waar kontemporêre klimaat verander tussen streke. Hierdie naaldekoker 

gemeenskapsomsetgrense is egter geleidelik eerder as diskreet oor Suid-Afrika. 

Natuurlike en kunsmatige damme dra by tot algehele biodiversiteit oor die plaaslike skaal, 

veral wanneer dié damme van hoë kwaliteit is, en aangetref word in netwerke wat strek oor die 

landskap. My bevindinge bewys dat damme wat gekenmerk word deur hoë variasie diverse 

waterinsek-gemeenskappe ondersteun (Hoofstukke 4 en 5). Bevindinge in Hoofstuk 4 bewys 

dat kunsmatige damme, tesame met natuurlike damme in ekologiese netwerke, die 

besettingsarea van meeste wyd-verspreide naaldekokers, waterkewers en ware watergoggas 
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vergroot. Sommige spesies met spesifieke habitatvereistes was beperk tot natuurlike damme, 

wat aandui dat natuurlike damme belangrik is vir die bewaring van die volle spektrum van 

waterinsekte.  

Naaldekokers, waterkewers en ware watergoggas beset lae-gehalte kunsmatige damme in lae 

hoeveelhede, om die ongunstige toestande van droogte te oorleef (Hoofstuk 5). Heelwat 

waterinsekte word egter slegs in en rondom natuurlike damme aangetref, wat beklemtoon dat 

die natuurlikheid van damme belangrik is. Hierdie bevindinge dui aan dat daar meriete is om 

kunsmatige damme te verbeter, waarskynlik deur om plantegroei wat soortgelyk aan dié van 

natuurlike damme is, te stimuleer. 

Om ondersoek in te stel op waterinsek-verspreidingspatrone is belangrik vir natuurbewaring, 

en hier bewys ek dat naaldekokers waardevol is om die drywers van breë-skaalse 

verspreidingspatrone aan te dui. Om ander insek-groepe te ondersoek is hoogs gepas, soos hier 

aangedui vir plaaslike studies, alhoewel dit nie altyd moontlik is nie, as gevolg van beperkte 

kennis met betrekking tot hul verspreidingspatrone. Ek beveel breë-skaalse studies aan vir 

ander ooreenstemmende insek-groepe, om te bevestig wat hul bydraende waarde is om die 

dryfkragte van algehele insekverspreiding te verklaar. Sodoende kan ons huidige 

tekortkominge aanspreek om insekbewaring te verbeter. 
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Chapter 1 Introduction 

1.1 The significance of freshwater habitats 

Freshwater habitats cover about 1% of the world’s surface, and are disproportionally rich in 

biodiversity compared to terrestrial habitats, containing nearly 10% of all described species 

(Dijkstra et al. 2014). Freshwater ecosystems are among the most threatened and poorly 

protected ecosystems on the planet, as delineation of protected areas is mostly focused on 

terrestrial habitats (Heino 2009). Yet, freshwater ecosystems experience greater biodiversity 

loss compared to any other terrestrial ecosystems (Sala et al. 2000; Moilanen et al. 2007). 

Adding to the vulnerability of freshwater ecosystems, is that freshwater is a necessary resource 

for life and collectively provides a range of goods and services, including material goods (e.g. 

clean water and food) and recreational services (e.g. fishing, boating and overall spiritual well-

being) (Revenga et al. 2005; Doi et al. 2013). Due to our reliance on water, urban settlements 

are concentrated close to freshwater bodies (Strayer 2006), and with the ever-expanding human 

population globally, freshwater resources are increasingly exploited through abstraction, 

diversion, and contamination (Dudgeon et al. 2006).  

Based on the assumption that high aquatic diversity is associated with larger waterbodies, 

several past investigations have focused mainly on lotic habitats (Davies et al. 2008). There is 

no doubt that large rivers and streams contribute substantially to local and regional biodiversity 

(Williams et al. 2004; Gehrke 2005; Brasil et al. 2018), through their inter-basin variation in 

habitat conditions and dynamic flow regimes (Wan et al. 2015; Domisch et al. 2017). The 

threats to lotic habitats are well recognized, and include pollution input (Lorenz et al. 2017), 

loss of riparian vegetation (Dallas and Day 2007), invasion of alien plants (Bennett et al. 2001) 

and reduction of infiltration capacity through substrate compaction and substrate covering 

(Trombulak and Frissell 2000; Alberti et al. 2007). Lentic habitats, both natural and artificial, 

are common and widespread across the world (Downing et al. 2006), and have recently 

received increasing research attention (Oertli et al. 2009). Their overall small sizes, abundance 

and immense heterogeneity have led to a significant contribution to regional biodiversity, 

comparable to that of the most biodiverse rivers (Williams et al. 2004). Some of the main 

threats to lentic habitats include trampling and grazing (Carchini et al. 2005), infilling and 

removal due to urbanization (Ball-Damerow et al. 2014; Hill et al. 2017a), and accumulation 

of pollutants (Biggs et al. 2005). Lentic habitats are not only important from a biodiversity 
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perspective, but are also valued for their contribution to socio-economic stability and 

agricultural productivity (Oertli et al. 2009). 

1.2 The significance of insects 

Insects make up much of total fauna and are one of the most diverse groups globally, with well 

over 1 million species described, yet an immense number of species remain undiscovered 

(Stork et al. 2015; Foottit and Adler 2017). Due to the rich evolutionary history of insects 

(Labandeira 2018), they possess a wide variety of traits that enable them to thrive in a range of 

habitats (Poff et al. 2006). Insects live in close association with their physical and chemical 

environment and are highly sensitive to changes to their surroundings (Webster and Cardé 

2017). Being one of the most abundant groups, insects make a substantial contribution to 

ecosystem function through the provision of valuable ecosystem services, such as food web 

stabilization (Griffiths et al. 2015), pollination (Hoehn et al. 2008), nutrient cycling (Jouquet 

et al. 2011), and biocontrol (Frank et al. 2008). As a result, insects are of major conservation 

concern and a range of synergistic threats to their overall diversity have been identified 

(Gerlach et al. 2012). These include habitat loss due to urbanization and agriculture, local and 

regional establishment of alien invasive species and global climate change, all driving 

functional and habitat homogenization (Gossner et al. 2016).  

Aquatic insects, defined as those that spend at least one life stage below the water surface, 

occupy a wide range of aquatic habitats and collectively make up 6% of all known insect 

species (Dijkstra et al. 2014; Harrison et al. 2016). Aquatic insects contribute greatly to 

freshwater ecosystem functioning, and aside from being important food sources for a range of 

aquatic vertebrates, they fulfill many roles as primary consumers, detritivores and predators, 

and provide several other ecosystem services related to water filtration and control of pest 

species populations (Green et al. 2015; Macadam and Stockhan 2015). Most rely on aquatic 

environments during their immature stages, and terrestrial environments during their highly 

mobile adult stages, making them particularly vulnerable to environmental change. 

Anthropogenic activities exert immense direct pressure on freshwater insects (Darwall et al. 

2012), some of which include poor water management (Haxton and Findlay 2008), pollution 

from various sources (Biggs et al. 2005; Lorenz et al. 2017), and disruption of river courses 

through reservoir construction (Bredenhand and Samways 2009; Krajenbrink et al. 2019). 

There are also several indirect pressure forces (i.e. those that are associated with their terrestrial 

surroundings), such as vegetation removal, soil erosion, and urbanization (Revenga et al. 
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2005). Aside from anthropogenic activity, global climate change contributes greatly to overall 

changes in aquatic insect population sizes (Dudgeon et al. 2006), and the symphony of 

anthropogenic activities and climate change places about 33% of all aquatic insects at risk of 

extinction (Sánchez-Bayo and Wyckhuys 2019).  

 

1.3 Biological traits, climate and historical context as broad-scale drivers of aquatic 

insect distribution  

Insects possess several biological attributes, or traits, which enable their overall success in a 

variety of aquatic habitats (Arribas et al. 2012). ‘Traits’ is the broad term referring to various 

aspects of ecology, life history, morphology, and biological interaction, all of which are 

interactive and important driving forces of species’ adaptive capacity, and ultimately, range 

sizes (Gaston 2003; Rundle et al. 2007; Diniz-Filho et al. 2010). In the aquatic realm, lentic 

and lotic habitats are very different in terms of geological permanence and overall ecological 

stability (Arribas et al. 2012), and the relationships between ecological preference and range 

size have received much attention (e.g. Ribera et al. 2003; Hof et al. 2006, Marten et al. 2006). 

Since most lentic habitats are short-lived in comparison to lotic habitats, there is strong 

evidence for lentic insects being more mobile, and having wider ranges farther away from the 

equator, as was found for European and North American dragonflies (Hof et al. 2006), and 

European water beetles (Ribera and Vogler 2000). Life history traits, or those associated with 

phenology and lifespan, can be expected to interact directly with ecological traits, and 

collectively contribute to colonization capacity of insects (Ribera 2008). For example, insects 

with shorter generation times may be able to outlive and persist in seasonal aquatic habitats, 

and reproductive stages can reach new habitats to complete their life cycles (Suhling 2001).  

 

Dispersal ability has been the topic of studies investigating the underlying biological 

mechanisms of aquatic insect distribution ranges. However, there is an overall lack of 

information on dispersal tendencies and capabilities for most aquatic insects (Rundle et al. 

2007). Yet, their ability to move between habitats in response to changing environmental 

conditions has a profound effect on their distribution ranges, and movement between habitats 

may be facilitated by either passive (e.g. on wind currents) or active means (e.g. directed flight 

movement) (Bilton et al. 2001). Most large aquatic insects disperse actively during their adult 

stages, and morphological traits, specifically those related to body size and wing size, have 

been used as surrogate measures for dispersal ability (e.g. Guitiérrez and Menéndez 1997; 
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Wakeling and Ellington 1997; Malmqvist 2000; Schilder and Marden 2004). Many of these 

studies have concluded that body size, wing size, and wing muscle mass play important roles 

in determining insect dispersal ability, and ultimately, their range sizes.    

 

How climate affects the broad-scale distribution patterns of insects, especially in the aquatic 

realm, has received considerably less research attention compared to plants and terrestrial taxa 

(Diniz-Filho et al. 2010; Heino 2011), challenging the evaluation of abiotic driving forces 

behind diversity patterns. However, for some aquatic insects, latitudinal and elevation variation 

in temperature and rainfall are significant factors determining regional species richness and 

diversity (Heino 2001, 2009; Pearson and Boyero 2009). These findings show contemporary 

regional climates to be strong driving forces of aquatic insect distribution and migration 

patterns, through associations with hydrology (Bêche and Statzner 2009) and availability of 

breeding habitat (Pedgley et al. 1995). Historical context, especially with regards to past 

glaciations, may also have affected geographical gradients (Heino 2011). This is related to 

varying rates of speciation and dispersal, which is assumed to be higher in tropical regions with 

more opportunities for speciation, leading to higher species richness closer to the equator 

(Mittelbach et al. 2007). Areas that experienced long periods of relatively stable climatic 

conditions, and are characterized by variable topographic gradients, are also expected to have 

higher levels of species endemism, driven by prolonged geographical isolation (Griffiths 

2010). It has also been suggested that other historical factors, including changes in sea level 

and periods of floods and drought, may have had an influence on species distribution patterns 

(Matthews 1998). Yet, the effects of historical factors on aquatic insect distribution patterns 

are poorly investigated, predominantly due to the lack of taxonomic information for most insect 

taxa.  

 

1.4 Local factors influencing richness and diversity, and aquatic insects as indicators 

Aquatic insects depend on various aspects related to their local habitats (Paavola et al. 2000; 

Diniz-Filho et al. 2010), and vegetation cover and composition plays a key role in determining 

local aquatic insect diversity and assemblage composition. Most aquatic insects are associated 

with marginal, submerged and riparian vegetation of ponds (Fairchild et al. 2003; Pryke et al. 

2015; Briggs et al. 2019) and rivers (Karaouzas and Gritzalis 2006; Samways and Sharratt 

2010). Although vegetation cover overall promotes aquatic insect diversity, especially in urban 

settings (Goertzen and Suhling 2013), vegetation structure plays an equally important role in 
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determining the local distribution of species (Smith et al. 2007; Briggs et al. 2019). Invasion 

by alien plant species has a profound effect on local aquatic insect communities, as these aliens 

can spread quickly and replace native vegetation assemblages (Strayer et al. 2003). This 

homogenizing effect, along with increasing shade cover beyond the natural threshold, reduces 

riparian vegetation complexity, and eliminates perching and breeding microhabitats for many 

aquatic insects. However, the impoverishing effects of alien vegetation are reversible, and 

several insects show remarkable recovery after alien tree removal (Magoba and Samways 

2010; Samways and Sharratt 2010).  

 

Aside from vegetation characteristics, aquatic insects are also sensitive to chemical properties 

of their habitats, as it relates to water quality (Kietzka et al. 2016; Hill et al. 2017b). Water 

chemistry gradients can determine local insect diversity directly, e.g. by influencing their 

activity, development, and physiology (Thorp and Rogers 2014), as well as indirectly, e.g. by 

determining presence or absence of competitors and/or predators (Lytle 2015). Responses to 

vegetation cover and in-water chemical gradients are highly variable among freshwater taxa 

(Mlambo et al. 2011; da Rocha et al. 2016; Briggs et al. 2019), indicating that locally diverse 

insect assemblages require a wide variety of resources and environmental conditions, both 

being important determinants of habitat heterogeneity (Palmer et al. 2010; Hill et al. 2015). 

 

Due to their overall high local abundance, short life-cycles, high ecological sensitivity, and 

varying responses to change in their surroundings (Baker and Sharp 1998; Masese and Raburu 

2017), aquatic insects have widely been used as environmental and ecological indicators to 

ascertain freshwater quality (Bulánková 1997; Bonada et al. 2006). Aquatic insects can also be 

useful as biodiversity indicators, and some may be representative of other co-occurring taxa 

(Englund et al. 2007). Dragonflies and damselflies (Odonata, hereafter collectively referred to 

as ‘dragonflies’) are one of few insect groups that are well-known at the species-level and are 

widely used as indicators of freshwater ecosystems at local scale (Clark and Samways 1996). 

Adult dragonflies are particularly sensitive to changes in vegetation characteristics (Samways 

and Taylor 2004; Samways and Sharratt 2010), water flow dynamics and habitat permanency 

(Clark and Samways 1996), and water chemistry (Kietzka et al. 2016). They also respond to 

several anthropogenic impacts, including habitat transformation (Samways and Steytler 1996), 

the spread of alien invasive plants (Samways and Taylor 2004), water pollution, and road 

construction (Soluk et al. 2011). Their overall ability to move between habitats in response to 

deteriorating environmental conditions emphasizes their use as indicators of ecological 
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integrity of lentic and lotic systems. These species-level responses to local environmental 

change led to the development of the Dragonfly Biotic Index (DBI) in South Africa, which has 

been used successfully to identify areas of conservation concern (Simaika and Samways 2012) 

and to monitor habitat recovery following alien tree removal (Samways and Sharratt 2010).  

 

Although not as well-known at species-level compared to dragonflies, aquatic beetles 

(Coleoptera) and true bugs (Hemiptera) have received increasing attention as complementary 

indicators of freshwater quality (Englund et al. 2007; da Rocha et al. 2010; Guareschi et al. 

2012; Apinda-Legnouo et al. 2014). In the case of both taxa, they are common occupants of a 

wide variety of aquatic habitats (Reavell 2003; Turner 2007b, Romero et al. 2017), and are 

variably sensitive to vegetation structure, water quality components, disturbance levels and 

flow regimes, at least at the family-level. Aside from being food items to many other freshwater 

taxa, beetles and bugs serve several ecological roles as predators, scavengers, and algae feeders 

(Lytle 2015; Yee and Kehl 2015). Due to their overall high adaptive capacity, some beetle 

families (e.g. Dytiscidae, Gyrinidae and Hydrophilidae) and some bug families (e.g. 

Notonectidae and Veliidae) have been identified as early colonizers of most aquatic habitats, 

and are useful for detecting local changes in ecological integrity (da Rocha et al. 2010). These 

taxa are important components of indices such as the Walley-Hawkes-Paisley-Trigg Index 

(WHPT) used in the United Kingdom (Paisley et al. 2014), and the South African Scoring 

System (SASS), used as a rapid assessment tool for lotic ecosystems across southern Africa 

(Chutter 1995; Dickens and Graham 2002). Beetles and bugs, along with other 

macroinvertebrates, have been used successfully to determine ecological reserves and flow 

requirements of single rivers (O’ Keeffe and Dickens 2000), have been used in several river 

impact assessments (Dickens and Graham 1998), and also have high value for assessing lentic 

habitat integrity (Apinda-Legnouo et al. 2014; Romero et al. 2017; Briggs et al. 2019). 

 

1.5 Biodiversity hotspots in South Africa 

The Maputaland-Pondoland-Albany (MPA) biodiversity hotspot is the region encompassing 

the east coast of southern Africa, and is recognized as an important area of plant endemism, 

supporting more than 1 900 endemic species (Steenkamp et al. 2004). The MPA biodiversity 

hotspot is naturally subject to El Niño-Southern Oscillation (ENSO) events, leading to periodic 

drought and flooding events (Wessels et al. 2007). High human population density has led to 

the region becoming increasingly impacted by anthropogenic activities (Bailey et al. 2015), 
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mostly through urbanization and land cover transformation as a result of plantation-forestry 

(Smith et al. 2008). However, instigation of Ecological Networks (ENs; networks of 

conservation corridors) in the MPA biodiversity hotspot is a design and management procedure 

specifically aimed at mitigating the harsh effects of plantation-forestry on biodiversity, through 

conserving structural and functional complexity of whole ecosystems (Samways et al. 2010). 

Using the EN approach, about one-third of the landscape remains unplanted, making up a 

network of inter-connected corridors and patches containing natural grassland, natural forest, 

streams, ponds, and wetlands (Samways and Pryke 2016).  These ENs can be as effective as 

adjacent protected areas in conserving biodiversity (Joubert and Samways 2014; Pryke et al. 

2015), and have been shown to be effective for conserving several terrestrial taxa (Bazelet and 

Samways 2011; Yekwayo et al. 2016; Gaigher et al. 2019; Joubert-van der Merwe et al. 2019), 

as well as some aquatic taxa (Pryke et al. 2015; Kietzka et al. 2015; Briggs et al. 2019). 

 

The Greater Cape Floristic Region (GCFR) biodiversity hotspot is the smallest floral kingdom 

in the world, restricted to the southern tip of Africa (Day and Day 2009). Regardless of the 

small geographical area the GCFR covers, the region is renowned for its astounding plant 

diversity, supporting more than 9 000 plant species, with more than 70% endemic to the region 

(Goldblatt and Manning 1999). The combination between the rich geological history and 

characteristic topographical variability of the region provides a unique and contrasting 

environment for various localized fauna, and the degree of endemism and diversity for aquatic 

invertebrates is comparable to that of terrestrial plants (Wishart and Day 2002; Samways 2006; 

Turner 2007a). In addition to geology and topography, variability and seasonality of rainfall 

driven by ENSO events (van der Niet and Johnson 2009) and the effects of fire (Linder 2005) 

set the stage for high species diversification throughout the region. For aquatic insects, the most 

notable examples include dragonfly genera such as Syncordulia and Chlorolestes (Samways 

and Simaika 2016), aquatic beetle genera such as Coelhydrus and Capelatus (Toledo and 

Turner 2004; Bilton et al. 2015), and some aquatic true bug genera such as Notonecta (Griffiths 

et al. 2015), all confined to the south-western Cape.  

 

1.6 Challenges to effective conservation of insects and other invertebrates 

Regardless of their high diversity and the important ecosystem functions that insects provide, 

most species (along with other invertebrate species) have greatly been neglected in 

conservation efforts globally (Cardoso et al. 2012). To emphasize, merely 70 invertebrate 
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species have been reported as extinct over the last 600 years (Dunn 2005), greatly under 

representative of the projected number of invertebrate species believed to exist on the planet. 

Of particular concern is that all other species have gone extinct before their discovery and 

formal description, known as Linnean extinctions (Triantis et al. 2010). Cardoso et al. (2011) 

identified three societal dilemmas which face parties and practitioners when determining the 

relevance of insect conservation. Firstly, the general public is unaware of the important roles 

that insects play in ecosystem functioning, with the exception of some butterflies and bees (the 

public dilemma). Consequently, the importance of insects for ecosystem functioning is often 

disregarded, challenging public participation in conservation efforts and in slowing current 

extinction rates (Martín-López et al. 2007; Ladle and Jepson 2008). Secondly, stakeholders 

and policymakers are mostly unaware of the conservation issues that face insects, with a strong 

focus on vertebrate species (the political dilemma). While focusing on vertebrate species as 

umbrellas for conservation is valid in some cases (Simberloff 1998), the effectivity of this 

approach is often misconstrued (Martín et al. 2010). Thirdly, basic information on insects and 

their environments is lacking (the scientific dilemma). Most modern scientists focus on other 

biological fields, leaving little monetary incentive to advance exploration, taxonomy, and 

biological and ecological studies (Cotterill and Foissner 2010).  

Complementing these societal dilemmas, Cardoso et al. (2011) and Hortal et al. (2015) 

identified additional shortfalls of modern global science. Among these are the lack of 

information on the distribution of species (Wallacean shortfall), the lack of information on the 

functional traits of species (Raunkiæran shortfall), the limited information available on the 

biological interactions among species (Eltonian shortfall), and the lack of knowledge of the 

sensitivity of species to environmental change (Hutchinsonian shortfall). The situation is 

similar across Africa, and effective conservation of freshwater habitats and their inhabitants is 

specifically challenging as most aquatic species are not well-known in terms of their 

distributions, biological attributes, biological interactions and their responses to habitat 

transformation. 

1.7 Thesis aim and outline 

The African continent is characterized by a unique combination of topographic settings and 

some of the world’s most variable arid and tropical climates, giving rise to a wide variety of 

lentic and lotic habitats across the continent (Dudgeon et al. 2011). It is now recognized that 
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African freshwater resources are no longer free from anthropogenic impact, and rapidly 

expanding human populations in developing countries place substantial pressure on freshwater 

resources, as is the case elsewhere (Darwall et al. 2011). Effective conservation requires a 

holistic understanding of biodiversity patterns at various spatial scales, as some factors operate 

at different, or multiple scales (Hui et al. 2010; Kriticos and Leriche 2010). To address the 

shortfalls identified by Cardoso et al. (2011) and Hortal et al. (2015), my overall aim was to 

combine broad-scale, theoretical biogeography and local-scale, empirical ecology to 

investigate the fundamental drivers of aquatic insect distribution across Africa (Figure 1.1).  

Figure 1.1 Schematic chapter outline. 
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In chapter 2, I set out to address the Raunkiæran and Wallacean shortfalls by investigating the 

overall importance of functional traits as drivers of aquatic insect distribution at a continental 

scale. The hard classification of species as ‘widespread habitat generalists’ or ‘narrow-range 

habitat specialists’ based only on habitat specialization may not be truly representative of 

geographic ranges in all cases, as several other functional traits contribute to species’ range 

sizes (Rundle et al. 2007; Büchi and Vuilleumier 2014). Dragonflies occurring in South Africa 

are well-known in terms of their biological traits and continental distributions at the species-

level, partly attributed to the development of the DBI (Simaika and Samways 2016). This 

makes dragonflies an ideal group to use as model organisms. My first hypothesis in chapter 2 

is that traits related to habitat preference, habitat specialization, life history, and mobility are 

interactive and carry equal weight in driving species range size. I also hypothesize that 

ecological sensitivity is complementary to traits driving the range size of individual species.  

In South Africa, regional climate is subject to pronounced effects of oceanic current systems, 

and climate is highly variable throughout the country as a result (Diester-Haass et al. 2012). In 

chapter 3, I focus on the Raunkiæran shortfall specifically, and investigate the role of 

contemporary climate and topography in driving dragonfly species richness and local 

endemism at the national scale. As dragonflies are well-known at sub-regional scale (Simaika 

and Samways 2016), I also investigate the relevance of contemporary climate, topography and 

geographical context as predictors of assemblage-turnover boundaries using South African 

dragonflies as model organisms. In chapter 3, I hypothesize that areas with high species 

richness are located where average rainfall and temperature is high, and that areas with high 

levels of endemism are determined by the combination of variable climate and topography. I 

further hypothesize that assemblage-turnover boundaries are well-defined and coincident with 

climate gradients and significant topographical features. 

To address the Eltonian and Hutchinsonian shortfalls, I investigate the effects of a set of 

environmental variables on the local distribution of lentic insects in two biodiversity hotspots 

in South Africa. The country is classified as semi-arid, which has led to a high density of 

artificial reservoirs, especially in agricultural areas (Bernstein 2013; Apinda-Legnouo et al. 

2014). In chapter 4, I use a complement of lentic taxa, i.e. dragonflies, aquatic beetles, and 

aquatic true bugs, to determine the ecological value of artificial reservoirs compared to natural 

ponds in conservation corridors in the MPA biodiversity hotspot, and investigate whether 

artificial reservoirs can expand their local area of occupancy. Conservation corridors benefit 
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several terrestrial taxa (e.g. Yekwayo et al. 2016; Gaigher et al. 2019) and some aquatic taxa 

(e.g. Pryke et al. 2015), and I hypothesize that artificial reservoirs which resemble natural 

ponds in terms of physical structure and water quality components benefit widespread species, 

but have little ecological value for endemic species. 

Finally, the GCFR biodiversity hotspot experienced one of the most severe hydrological 

droughts in recent years (Botai et al. 2018), and in chapter 5, I use the same complement of 

lentic taxa (i.e. dragonflies and aquatic beetles and bugs) to determine whether artificial 

reservoirs act as refuge habitats for pond insects during extreme hydrological drought. 

Extended periods of drought place substantial ecological pressure on freshwater communities 

(Collinson et al. 1995), and I hypothesize that aquatic insects predominantly found in natural 

ponds occupy artificial habitats during stress periods as a survival strategy against adverse 

ecological conditions, in spite of ecological difference between the two pond types. I also 

hypothesize that artificial reservoirs are unattractive habitats to endemic species, placing them 

at higher risk during stress periods. 

Individual chapters mentioned above are intended for peer-reviewed publication and some 

repetition among chapters was unavoidable. Chapter titles and major objectives are as follows: 

Chapter 2: Widespread habitat generalists vs. narrow-range habitat specialists: a valid 

division or not?  

*Under review with Journal of Biogeography

1. Determine whether habitat preference and/or biotope occupancy (i.e. habitat

specialization) can be used to explain latitude, longitude, and elevation range size of

dragonflies across Africa.

2. Determine the overall importance and significance of other functional traits, related to

mobility and life history.

3. Investigate whether findings correlate with existing measures of ecological sensitivity.
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Chapter 3: Drivers of regional dragonfly species richness and assemblage turnover at the 

southern tip of Africa

*Recently submitted to Biological Conservation

1. Determine the climatic and spatial factors driving regional trends in overall dragonfly

species richness, local endemism, and assemblage-turnover.

2. Identify assemblage-turnover boundaries across the coastal and interior regions of

South Africa.

3. Provide recommendations for conservation of local freshwater insects.

Chapter 4: Artificial reservoirs complement natural ponds to improve pondscape 

resilience in conservation corridors in a biodiversity hotspot  

*Published as: Deacon, C., Samways, M.J. and Pryke, J.S. 2018. Artificial ponds

complement natural ponds to improve pondscape resilience in conservation corridors in a 

biodiversity hotspot. PLoS One 13(9): e0204148. DOI: 10.1371/journal.pone.0204148. 

1. Identify the physical and environmental variables driving dragonfly, water beetle, and

water bug species richness, abundance, diversity, and composition in the MPA

biodiversity hotspot.

2. Determine the ecological value of artificial reservoirs vs. natural ponds for maintaining

population sizes and expanding the local area of occupancy for dragonflies, beetles and

bugs in conservation corridors.

Chapter 5: Aquatic insects decline in abundance and occupy low‐quality artificial 

habitats to survive hydrological droughts  

*Published as: Deacon, C., Samways, M.J. and Pryke, J.S. 2019. Aquatic insects decline in

abundance and occupy low quality artificial habitats to survive hydrological droughts. 

Freshwater Biology 64: 1643-1654. DOI: 10.1111/fwb.13360. 

1. Calculate the percentage change in average precipitation between the sampling period

(i.e. the dry period) and the last consistently wet decade.
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2. Identify the environmental variables driving aquatic insect species richness and 

composition. 

3. Identify environmental differences between natural ponds and artificial reservoirs. 

4. Determine whether artificial reservoirs can act as suitable habitats for the focal taxa 

during drought. 

5. Compare results with other, pre‐drought studies on the focal insect taxa in the same 

study area.  

 

Chapter 6: General conclusions 
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Chapter 2 Widespread habitat generalists vs. narrow-range habitat 

specialists: a valid division or not?  

*Under review with Journal of Biogeography

Abstract 

In insect ecology, species are often binarily assigned to ‘widespread habitat generalists’ vs. 

‘narrow-range habitat specialists’, implying that widely-distributed species are adapted to 

many biotopes over a large area, while narrowly-distributed species are adapted to a few 

selected biotopes in a small area. For conservation, this often translates into any one species 

being either a ‘less threatened generalist’ or a ‘threatened specialist’. We investigate here 

whether biotope occupancy and/or habitat preference can describe latitude, longitude and 

elevation range size, and determine the significance of other functional traits. We hypothesize 

that functional traits related to mobility and life history are equally important for determining 

species’ geographical range size. Species distribution data were obtained from the Odonata 

Database of Africa. Adult and larval biotope occupancy, as well as adult functional trait 

information, were captured from published sources. We then classified each focal species as 

lotic, lentic, or lotic/lentic, based on larval biotope occupancy. Using generalised linear 

modelling, we determined the significance of biotope occupancy by each of the two life stages, 

habitat preference, and other functional traits, in driving range size. We then tested for 

significant relationships between each driver of range size, and an existing measure of 

ecological sensitivity. We found significant relationships between number of adult biotopes 

occupied, as well as overall habitat preference, and species range size. Other functional traits, 

related to life history and adult morphology, also significantly influenced distribution ranges. 

Furthermore, we found that ecological sensitivity measures can be useful for understanding 

biogeographical patterns. Binary classifications of ‘widespread habitat generalists’ vs. 

‘narrow-range habitat specialists’ is largely valid. Although when based solely on habitat 

occupancy, hard categorization must be treated with caution, as additional functional traits 

related to phenology and mobility are important determinants of species range size. 

Keywords: dragonflies, damselflies, macro-ecology, freshwater, distribution, range size, 

habitat, Africa 
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2.1 Introduction 

Differences in species’ niche-size result from evolutionary trade-offs between their ability to 

use a spectrum of resources and their ability to use each one effectively (McArthur 1972). 

When native habitats become unsuitable, species respond to change by moving to suitable 

habitat, or having acclimatory or evolutionary responses over several generations (Durant et 

al. 2007). A ‘habitat generalist’ is defined as a species with multiple interactions with its 

surroundings, and is not specifically adapted to particular environmental conditions or habitat 

types (Devictor et al. 2010; Büchi and Vuilleumier 2014). The ‘jack-of-all-trades is a master 

of none’ hypothesis (Levins 1962) suggests that generalists can perform many activities, but 

they often perform these activities poorly, resulting in their highly opportunistic nature (Wilson 

and Yoshimura 1994). Consequently, habitat generalists are often highly efficient at obtaining 

resources from various sources and occupy many ecological niches, including human-disturbed 

ecosystems, and/or ecosystems experiencing high ecological pressure from climatic variation 

such as arid and semi-arid environments (Smart et al. 2006). This suggests that most generalists 

have wide geographical ranges over multiple biomes (Julliard et al. 2006).  

In turn, a ‘habitat specialist’ is defined as a species with few interactions with its surroundings, 

and is well adapted to its specific habitat (Wilson and Yoshimura 1994; Büchi and Vuilleumier 

2014). As most specialists occupy narrower niche space compared to their generalist 

counterparts, they are expected to have narrow and fragmented geographical ranges (Futuyma 

and Moreno 1988; Brouat et al. 2004). However, specialisation is often regarded as an 

evolutionary dead end, as it implies certain morphological and physiological characteristics 

that are highly modified (Rensch 1959). Whether specialisation is biologically irreversible 

remains poorly investigated, and requires that sister taxa together with their specialised and 

generalised ancestors are compared on the genetic level (Futuyma and Moreno 1988).  

A first premise for classifying species into ‘widespread habitat generalists’ or ‘narrow-range 

habitat specialists’ is that a definition of ‘habitat’ is required. It has been defined in various 

ways (Dennis 2010), with a workable definition being that of Haslett (2007) as ‘the sum of the 

abiotic and biotic factors essential to the life and reproduction of the species within its natural 

geographic range’. This is not to be confused with ‘biotope’ (which we also use here), defined 

as the ‘the specific physical features and structures (e.g. plants, rocks, water features) that make 

up habitats’.   
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Meaningful interpretation of ‘widespread habitat generalist’ vs. ‘narrow-range habitat 

specialist’ is challenging as to how specialisation relates to species’ range size (Julliard et al. 

2006; Verberk et al. 2018; Poisot et al. 2015). Furthermore, there are several other factors that 

influence species’ spatial distribution, including life history traits (Rundle et al. 2007), 

dispersal efficiency (Rundle et al. 2007; Büchi and Vuilleumier 2014), and biogeographical 

constraints (Hof et al. 2006). These additional drivers may vary with disturbance levels, 

presence/absence of competitors, predators and pathogens, climatic variation, and differences 

in requirements between different life cycle stages (Dall and Cuthill 1997; Büchi and 

Vuilleumier 2014), suggesting that ordering species along a generalist/specialist gradient is 

more practical. Doing so should include quantification of specialisation among multiple 

biotopes and habitat classes, in combination with ecological traits, such as diet and ecological 

resilience, responses to competition from con- and inter-specifics, and dispersal ability to track 

favourable conditions (Sol et al. 2009).  

Insects, being diverse, relatively easy to sample and highly responsive to change in their 

surrounding environments, are often good models for testing macro-ecological hypotheses. 

Dragonflies and damselflies (hereafter collectively referred to as ‘dragonflies’) have a long 

history of adaptation to many lotic (flowing water) and lentic (still water) habitats (Kalkman 

et al. 2008), and are generalist apex predators of various other invertebrate groups as both 

aquatic larvae and terrestrial adults (Simaika and Samways 2009a). They are also highly mobile 

as adults, easy to identify on the wing, and all species are variably sensitive to ecological 

conditions, making them excellent model organisms (Samways and Simaika 2016), 

particularly for biogeographical studies (Hassall 2015). 

Drivers of species’ geographical ranges have been investigated previously (e.g. Calosi et al. 

2010; Buckley and Roughgarden 2005). In turn, insect species are often categorised as either 

‘widespread habitat generalists’ or ‘narrow-range habitat specialists’ based on habitat 

occupancy, which may not be truly representative of other factors that contribute to variation 

in range size. Here, we challenge this binary assertion, and aim to 1) determine whether habitat 

preference and/or biotope occupancy can be used to explain latitude, longitude and elevation 

range size of dragonflies across Africa, 2) determine the overall importance and significance 

of other functional traits, related to mobility and life history, and 3) investigate whether our 

findings correlate with existing measures of ecological sensitivity. We hypothesise that species 
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which occupy both lentic and lotic habitats, or lentic-lotic transition habitats, have the widest 

geographical ranges, and that species which interact with multiple biotopes have relatively 

wider ranges compared to species that interact with few biotopes. We expect traits related to 

mobility and life history to correlate with habitat preference and biotope occupancy as drivers 

of range sizes, and expect our findings to support existing measures of ecological sensitivity. 

2.2 Data and methods 

2.2.1 Geographical and functional trait data acquisition 

We extracted northern and southern latitude range boundaries, western and eastern longitude 

range boundaries, and minimum and maximum elevation across Africa for each species 

recently confirmed from South Africa (154 species, comprising 62 genera and ~82 000 point 

records; see Appendix S2.1 in supporting information), from the Odonata Database of Africa 

(ODA; Clausnitzer et al. 2012). We then calculated the latitude, longitude and elevation range 

size (maximum latitude, longitude, elevation – minimum latitude, longitude, elevation) for 

each model species (refer to Appendix S2.2 for full species list). We considered using the area 

of occupancy for each model species, yet due to wide areas throughout Africa that remain 

unexplored, this measure was inaccurate for most species and produced unreliable results. We 

selected the species occurring in South Africa as our focal taxon set, as they are the most well-

known in terms of their taxonomy, habitat preferences, and functional traits (Dijkstra 2003). 

For the adult stage of each dragonfly species, we categorised and quantified their biotope 

preferences based on taxonomic descriptions and published field guides from across Africa. 

These categories included ‘lotic habitats’ (flowing water), ‘lentic habitats’ (still water), 

‘lentic/lotic habitats’ (transition aquatic habitats), ‘riparian and edge characteristics’ (i.e. 

terrestrial microhabitats), and ‘features associated with open water’ (57 biotope categories in 

total; See Appendix S2.3). For larval stages, we categorised and quantified their biotope 

preferences in a similar way to that of the adults, using all available taxonomic descriptions 

(from 1957-present), but excluded the ‘shallow river or stream’ and ‘deep river or stream’ 

categories, as larvae rarely occur below a depth of 1.2 m (Samways et al. 1996). We replaced 

‘riparian and edge characteristics’ with ‘margin characteristics’ (i.e. aquatic microhabitats 

along the margins of water bodies), and ‘features associated with open water’ with ‘substratum’ 

(50 biotope categories in total; see Appendix S2.4). Following these classifications, we 
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determined which species predominantly prefer lotic, lentic or lotic/lentic habitats based on 

their larval biotopes, as adults often occupy both lentic and lotic habitats.  

To determine the start, end, and duration of the adult life stage, we extracted recording dates 

for each model species from the ODA. For start of adult life stage, flight season starting mid-

September to mid-October was ‘Early spring’, flight season starting mid-October to mid-

November was ‘Late spring’, flight season starting mid-November to mid-December was 

‘Early summer’ and flight season starting late December to mid-February was ‘Late summer’. 

For end of adult life stage, flight season ending late January to late February was ‘Late 

summer’, flight season ending early March to mid-April was ‘Early autumn’, flight season 

ending late April to mid-May was ‘Late autumn’ and flight season ending late May to mid-

June was ‘Early winter’. For each dragonfly species, duration of adult life stage was 

summarised, as well as whether a particular species was previously recorded as an 

overwintering adult, extracted from Samways and Simaika (2016), van Huyssteen and 

Samways (2009) and van Schalkwyk et al. (2014). Average hind-wing length, average adult 

body length and adult flight mode (darter, hawker, percher, glider, etc.) were extracted from 

Samways and Simaika (2016) and the average hind-wing length to body-length ratio was 

calculated (values ranging between 0 and 1, hereafter referred to as ‘wing-to-body ratio’). To 

avoid ambiguity of our results, only ecological sensitivity (one of the three sub-indices from 

the Dragonfly Biotic Index (DBI); scores 0-3) was extracted from Samways and Simaika 

(2016), since the full score out of nine already contains some information regarding the 

distribution of the dragonfly species studied here. 

2.2.2 Statistical analyses 

The latitude, longitude and elevation range data were non-normally distributed according to 

Shapiro-Wilks tests. We used generalised linear modelling (GLM) with Gamma distributions 

and Log-link functions to test the significant effects of number of biotopes occupied by larvae 

and adults, overall habitat preference, and a set of additional functional traits, on latitude, 

longitude and elevation range sizes respectively.  

We used model selection to determine the functional traits that were most descriptive of 

latitude, longitude and elevation range size. Eleven variables were included in the model set 
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used for final selection: number of adult biotopes occupied, number of larval biotopes 

occupied, habitat preference (lentic vs. lotic vs. lentic/lotic), start of adult life stage, end of 

adult life stage, duration of adult life stage, overwintering as adults, adult 

temperament/behaviour, average hind wing size, average adult body size and wing-to-body 

ratio. We then built GLMs for each response variable with all possible combinations of 

independent variables. None of the models were overdispersed (Pearson’s Test for 

overdispersion), and we used the second-order Akaike’s information criterion (AICC) values 

to rank candidate models and ΔAICC to determine if more than one model was important, using 

the dredge function in the MuMIn package for R (Barton 2019; R Development Core Team 

2016).  

Subsequently, three independent GLMs containing the set of variables with the lowest AICC 

values were constructed in R (R Development Core Team, 2016) for latitude, longitude and 

elevation range size to determine their overall significance, using the lme4 package (Bates, 

Maechler et al. 2014). In addition, we performed generalised linear modelling for each 

significant variable for latitude, longitude and elevation range size, against ecological 

sensitivity derived from the DBI. In the case of all significant categorical variables, Tukey 

post-hoc tests were used to determine the pairwise differences for categories within each 

categorical variable, using the multcomp package in R (Hothorn et al. 2008).  

2.3 Results 

Of the 11 variables tested, five were important for latitude, longitude and elevation range sizes 

of dragonflies across Africa. These were: number of biotopes occupied by adults, habitat 

preference, end of adult life stage, wing-to-body ratio, and adult overwintering. Number of 

biotopes occupied by larvae, start of adult life stage, duration of adult life stage, adult flight 

mode, average hind-wing length, and average adult body length were not important descriptors 

of distribution range size.  

The best models identified by model selection for latitude and longitude range size included 

number of biotopes occupied by adults, late summer as the end of adult life stage, wing-to-

body ratio, lotic habitat preference for latitude range size, and lentic habitat preference for 

longitude range size. Lentic/lotic habitat preference, early autumn, late autumn, and early 

winter as end of adult life stage, and adult overwintering had no strong effects on predicting 
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latitude and longitude range size. The best model for elevation range size included number of 

biotopes occupied by adults, late summer as end of adult life stage, and adult overwintering. 

Habitat preference, early autumn, late autumn and early winter as the end of adult life stage, 

and wing-to-body ratio were not significant in determining elevation range. Subsets of the best 

models for each model scenario (ΔAICC  ≤  2) are given in Table 2.1.
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Table 2.1 Model ranking and selection estimates for functional traits explaining variation in 

latitude, longitude and elevation range size of dragonflies across Africa.  

Models with ΔAICc < 2 are shown. Best models highlighted in bold text. A_Biot: number of 

biotopes occupied by adults; E_Seas: end of adult life stage; Habitat: habitat preference based 

on larval biotope occupancy; M_Acti: duration of adult life stage; OW: overwintering as adults; 

WL: average hind-wing length; BL: average body length; WBR: wing-to-body ratio. 

Latitude range size differed significantly between species with different habitat preferences (F 

= 15.78, p < 0.001). Lotic species had significantly narrower latitude ranges than lentic and 

lentic/lotic species, and lentic species had slightly narrower ranges than lentic/lotic species, 

although not significantly (Figure 2.1a, see Appendix S2.5). End season of adult life stage had 

a further significant effect on latitude range (F = 9.08, p < 0.001). Species with adult life stages 

ending late summer had significantly narrower latitude ranges than those with adult stage 

ending early autumn, late autumn and early winter. Species with adult life stages ending early 

autumn had narrower latitude ranges than those ending in late autumn and early winter, and 

species with adult life stages ending in late autumn had narrower latitude ranges than those 

ending early winter, though none of these differences were significant (Figure 2.1b). Species 

Model Df AICc ΔAICc Weight 

Latitude range 

A_Biot + E_Seas + Habitat + WBR 6 1369.87 0 0.1 

A_Biot + E_Seas + Habitat + WBR + OW 7 1370.58 0.71 0.07 

A_Biot + E_Seas + Habitat + WBR + M_Acti 7 1370.76 0.89 0.06 

A_Biot + E_Seas + Habitat + WBR + WL 7 1370.96 1.09 0.06 

A_Biot + E_Seas + Habitat + WBR + BL 7 1371.01 1.15 0.06 

A_Biot + E_Seas + Habitat + WBR + OW + WL 8 1371.40 1.53 0.05 

A_Biot + E_Seas + Habitat + BL + WL 7 1371.44 1.57 0.05 

A_Biot + E_Seas + Habitat + WBR + OW + BL 8 1371.45 1.58 0.04 

A_Biot + E_Seas + Habitat + WBR + M_Acti + WL 8 1371.63 1.76 0.04 

A_Biot + E_Seas + Habitat + WBR + M_Acti + BL 8 1371.68 1.81 0.04 

Longitude range 

A_Biot + E_Seas + Habitat + WBR 6 1381.14 0 0.14 

Elevation range 

A_Biot + OW + E_Seas 5 2497.99 0 0.19 

A_Biot + M_Acti + E_Seas 5 2499.22 1.22 0.1 

A_Biot + OW + E_Seas + WBR 6 2499.35 1.36 0.1 

A_Biot + E_Seas 4 2499.58 1.59 0.09 

A_Biot + M_Acti 4 2499.71 1.71 0.08 

A_Biot + OW + E_Seas + WL 6 2499.87 1.88 0.08 
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occupying comparatively more adult biotopes (t = 7.53, p < 0.01) and with higher wing-to-

body ratios (t = 22.92, p < 0.001) had significantly wider latitude ranges (Figure 2.1c and d). 

Longitude range size differed significantly between species with different habitat preferences 

(F = 15.41, p < 0.001). Lotic species had significantly narrower longitude ranges than lentic 

species, and lentic species had significantly wider longitude ranges than lentic/lotic species. 

Lotic species had narrower longitude ranges compared to lentic/lotic species, but not 

significantly (Figure 2.1e, see Appendix S2.5). As with latitude range size, end season of adult 

life stage had a significant effect on longitude range (F = 8.37, p < 0.001), and species with 

adult life stages ending late summer had significantly narrower latitude ranges than those 

ending with adult stage ending early autumn, late autumn and early winter. Species with adult 

life stages ending early autumn had narrower latitude ranges than those ending late autumn and 

early winter, and species with adult life stages ending late autumn had narrower latitude ranges 

than those ending early winter, yet not significantly (Figure 2.1f). Species occupying more 

adult biotopes had significantly wider longitude ranges (t = 2.55, p < 0.05; Figure 2.1g), and 

species with higher wing-to-body ratios had significantly wider longitude ranges (t = 3.95, p < 

0.001; Figure 2.1h). 

For elevation, adult overwintering species had wider elevation ranges than those that do not 

overwinter as adults, although this difference was only marginally significant (t = 1.76, p = 

0.08; Figure 2.1i). Season in which adult life stages ended had a significant effect on range size 

(F = 7.14, p < 0.001). Species with adult life stages ending late summer had significantly 

narrower ranges compared to those with adult life stage ending late autumn. There was no 

significant difference in elevation range between adult life stages ending early autumn, late 

autumn and early winter (Figure 2.1j, see Appendix S2.5). Elevation range was also 

significantly higher for species that occupied more adult biotopes (t = 3.63, p < 0.001; Figure 

2.1k).  
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Figure 2.1 Functional traits driving dragonfly latitude (a-d), longitude (e-f) and elevation 

ranges (i-k) across Africa. For categorical variables, different letters indicate significantly 

different medians. For continuous variables, shaded areas indicate 95% confidence intervals. 
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Ecological sensitivity scores decreased with an increase in number of adult biotopes occupied 

(z = -4.80, p < 0.001; Figure 2.2a) and wing-to-body ratio (z = -1.99, p < 0.05; Figure 2.2b). 

Lotic species were significantly more sensitive to environmental change than lentic/lotic 

species (z = 3.31, p < 0.01; Figure 2.2c), and there was no significant difference in ecological 

sensitivity between lentic and lotic species, and lentic and lentic/lotic species. Adult 

overwintering species had significantly lower ecological sensitivity compared to those species 

that did not overwinter as adults (z = -2.71, p < 0.01; Figure 2.2d). There was no significant 

difference in ecological sensitivity between species with adult stages ending in different 

seasons. 

Figure 2.2 Relationships between ecological sensitivity derived from the DBI, and significant 

traits driving dragonfly latitude, longitude and elevation ranges across Africa. For continuous 

variables, shaded areas indicate 95% confidence intervals. For categorical variables, different 

letters indicate significantly different medians. 
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2.4 Discussion 

Overall habitat preference and number of biotopes occupied by adults were significant in 

determining species range sizes. However, several species did not conform to the general 

pattern. Furthermore, in addition to habitat preference and biotope occupancy, there were other 

functional traits related to life history and morphology that were significant in determining 

dragonfly ranges at a continental scale. These predictive factors varied in importance, yet 

ending season of adult life stage, ability to overwinter as adults, and wing-to-body ratios (as a 

proxy for dispersal ability of a particular species) were the most significant in determining 

distribution ranges overall. Season of adult emergence, duration of adult life stage (as a proxy 

for adult life span) and adult behaviour related to phylogenetic pedigree were of lesser 

importance. Finally, ecological sensitivity, as calculated by the DBI, correlated significantly 

with habitat preference, number of biotopes occupied, and functional traits related to phenology 

and mobility. 

 

2.4.1 Significance of habitat and biotope specificity  

Habitat specificity among freshwater species relates to flow regimes vis-à-vis water chemistry, 

restricting them to either lentic or lotic habitats (Foster and Eyre 1992; Larson 1997; Ribera 

and Vogler 2000). Yet many dragonflies occupy both lentic and lotic habitats, or occupy lentic-

lotic transition habitats. This ability to occupy multiple broad habitat types should have strong 

effects on their geographical distribution (Ribera and Vogler 2000; Hof et al. 2006). Here, 

lentic and lentic/lotic dragonflies had the widest latitude ranges, and lentic species had the 

widest longitude ranges, as was found for aquatic beetles across the Iberian Peninsula (Ribera 

and Vogler 2000) and dragonflies across Europe and North America (Hof et al. 2006). To 

compensate for habitat instability (Dobson and Frid 1998; Ribera et al. 2001), lentic species 

colonise new habitats faster than lotic species, and as a result, have comparatively wider 

latitude and longitude ranges (Ribera and Vogler 2000; Hof et al. 2006). For example, 

Sympetrum fonscolombii is a common and widespread lentic species throughout Africa, and 

one of the first species to arrive at many different types of lentic water bodies. Yet many lentic 

species (e.g. Orthetrum rubens, Africallagma sapphirinum and Urothemis luciana) are isolated 

by geographic features and/or climatic barriers, resulting in their comparatively narrow ranges. 

On the other hand, not all lotic species have narrow ranges, and some savanna species (e.g. 

Zygonyx torridus, Brachythemis lacustris and Pseudagrion sublacteum) have wide ranges over 

west-east river courses. The dragonflies investigated here had similar elevation ranges across 
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all broad habitat types, suggesting that different elevations did not exclude particular habitat 

types. 

 

We regarded ‘biotopes’ as the small, specific physical features that make up broad habitat 

types, and quantified generalisation/specialisation as the number of occupied biotopes. 

Ordering species along a generalist/specialist gradient is more robust when dealing with a high 

number of rare and localised species (Julliard et al. 2006), as with African dragonflies overall 

(Samways 2004; Samways and Simaika 2016). As expected, species with multiple interactions 

with their surroundings had wider latitude, longitude and elevation ranges than species with 

few such interactions (Gaston and Spicer 2001; Calosi et al. 2008). These widespread 

generalists included Ceriagrion glabrum, Anax imperator, Ischnura senegalensis, Pantala 

flavescens and O. julia, all opportunistic and common residents of many widely-distributed 

freshwater bodies and biotopes. In contrast, Ceratogomphus triceraticus, Syncordulia gracilis, 

P. newtoni and O. rubens, all rare narrow-range South African endemics, are restricted to 

specific biotopes, and have much narrower latitude, longitude and elevation ranges as their 

preferred biotopes. However, several species did not conform to this general pattern. These 

included Bradinopyga cornuta (highly adapted to life in and around rock pools), B. lacustris 

(residents of tree- and bush-lined meandering rivers in hot regions) and Lestes pallidus 

(restricted to shallow pans in open savanna), all showing high fidelity for their occupied 

biotopes (Samways and Simaika 2016). Yet they have wide latitude and longitude ranges, with 

their favoured biotopes being widespread but spottily distributed. Similarly, for elevation range 

size, some species (e.g. Agriocnemis exilis, P. spernatum, P. kersteni and Z. torridus) occupy 

few biotopes as adults, but occupy them across a wide elevation range, as their preferred 

microhabitats are common at various elevations and functionally similar. In contrast, some 

biotope generalists (e.g. Proischnura polychromatica and Chlorolestes umbratus) have narrow 

latitude ranges and are local endemics, likely resulting from geographical isolation by 

extensive mountain ranges (Hof et al. 2006), and habitat stability (Hamilton and May 1977). 

Some other species (e.g. Tetrathemis polleni and O. trinacria) occupy many biotopes, but 

across narrow elevation ranges, due to their preferred biotopes (e.g. marshes, swamps and 

forest pools) only occurring in lowland tropical/subtropical settings.  

 

We expected that the number of larval biotopes occupied would be as important as the number 

of adult biotopes occupied for determining range size, since larval biotopes are the specific 

features which each dragonfly species needs to complete its life cycle (sensu Dennis et al. 
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2006). Yet, larval biotope occupancy was not significant for any of the range-size metrics 

investigated here. Perhaps larval biotope occupancy was a less significant factor because, 

firstly, most past dragonfly research has been on adult stages, and general ecology and 

taxonomy of larvae are poorly understood at the species level, leading to potential inconclusive 

interpretation (Simaika and Samways 2009b; Bried and Samways 2015). Indeed, the ODA 

focuses mostly on adult dragonflies, being easier to sample and identify, bringing into question 

whether adult data entries can reliably translate to larval distribution. Secondly, we noted that 

larval biotope occupancy was related within families, challenging species-level-interpretation. 

Thirdly, the ‘mother knows best’ principle (Valladares and Lawton 1991) might be involved, 

where reproducing females oviposit in suitable habitats and drive range size (Simaika and 

Samways 2009b), and larvae survive as they escape interspecific competition from co-

occurring dragonfly species (Suhling 2001). 

2.4.2 Significance of other functional traits 

Phenological events have strong limiting effects on insect population sizes, interactions with 

prey populations, and distribution ranges (Nakano and Murakami 2001; van Schalkwyk et al. 

2014). Adult dragonfly emergence in response to changes in environmental conditions is also 

a survival strategy to avoid water shortage, especially in Mediterranean-type and subtropical 

environments where flow regimes are unpredictable (Samways 2003). However, we found that 

adult life stage duration and emergence season had no significant effect on distribution ranges, 

yet adult dragonflies that died in late summer had the narrowest latitude, longitude and 

elevation ranges. Dragonflies are tropical of origin (Corbet 1999), yet some are adapted to 

survive cold climates (van Huyssteen and Samways 2009; Denlinger and Lee 2010). Those 

here that died by late summer (e.g. S. legator, S. gracilis and P. polychromatica) likely cannot 

survive lower temperatures coming about in later months, and have little opportunity to move 

across latitude, longitude and elevation gradients.   

Overwintering adults could theoretically have more generations/year, traverse the landscape as 

pre-reproductive adults during sub-optimal climatic conditions in search of favourable 

breeding sites, and ultimately breed when surface water becomes available (Corbet 1999; van 

Huyssteen and Samways 2009). We were unable to investigate the effects of voltinism on range 

size, as this information is lacking for most species investigated here. Yet, we found that 

overwintering adults had marginally wider elevation ranges, indicating that their resilience to 
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cold allows them to occupy habitats across wide elevation gradients, and they likely migrate 

across elevation gradients according to favourability of seasonal habitats. However, this is not 

the case for all adult overwintering dragonflies, and some (e.g. Aciagrion dondoense and 

Spesbona angusta) have much narrower elevation ranges than others with this trait. This is 

presumably linked to the unavailability of favourable habitats and/or biotopes across elevation 

gradients.  

Functional traits affecting dispersal ability are highly variable along the generalist/specialist 

gradient (Bilton et al. 2001; Jocque et al. 2010), and are fundamental in evolutionary 

persistence and biogeography (Rundle et al. 2007a). Freshwater taxa need to disperse to persist 

in their generally isolated aquatic habitats (Moss 1998), and consequently, many are able to 

travel long distances to avoid adverse environmental conditions and establish in favourable 

habitats (Rundle et al. 2007b). Here, we found that dragonflies with high wing-to-body ratios 

(e.g. Rhyothemis semihyalina, Trithemis annulata and U. assignata) had wider latitude and 

longitude ranges than those with low wing-to-body ratios (e.g. Ecchlorolestes nylephtha, A. 

falcifera and P. polychromatica). This is consistent with findings on mayflies (Ephemeroptera) 

and stoneflies (Plecoptera) in Sweden (Malmqvist 2000), with an overall positive correlation 

between wing-to-body ratio and range size.   

Unsurprisingly, most species with relatively high wing-to-body ratios here were anisopterans, 

and those with low wing-to-body ratios were zygopterans. Anisopterans are adapted for rapid 

flight in open spaces, while most zygopterans are reluctant fliers and adapted for manoeuvring 

in localised spaces (Wakeling and Ellington 1997), leading to significant differences in their 

range sizes. Yet, wing-to-body ratios were variable, with several species (e.g. A. exilis, I. 

senegalensis and C. glabrum) having low wing-to-body ratios and wide latitude and longitude 

ranges, and vice-versa (e.g. Hemicordulia africana and U. luciana). In cases where wing-to-

body ratios are weak predictors of range size, other factors, e.g. interspecific competition 

(Travis and Dytham 1999; Vogler and Ribera 2003), restrictive biogeographic settings (Hof et 

al. 2006), and ecological resilience (Malmqvist 2000) may be at play.  

We found that wing-to-body ratio had no strong effects on elevation range size, suggesting that 

dispersal ability does not influence performance of dragonflies across elevation gradients. As 

with Swedish mayflies and stoneflies (Malmqvist 2000) and North American dragonflies 

(Rundle et al. 2007b), our results support body size as a weak predictor of range size. Yet the 
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interaction between wing and body sizes is an important predictor of how well insects move 

across the landscape and maintain their distribution ranges (Rundle et al. 2007a). We expected 

adult flight mode to account for some variation in range size between species, but we found 

that this was not a clear case.  

2.4.3 Other considerations related to drivers of range size 

The sensitivity sub-index from the DBI reflects how well species survive in transformed 

habitats, and indicates which species require natural conditions to sustain their populations at 

any given habitat (Samways and Simaika 2016). Our results aligned well with the sensitivity 

sub-index of the DBI. Dragonflies that occupied the least biotopes, had lowest wing-to-body 

ratios, and did not overwinter as adults, had highest ecological sensitivity, and most had narrow 

latitude, longitude and elevation ranges. Furthermore, dragonflies occupying lentic/lotic 

transition habitats, and/or both lentic and lotic habitats had lower ecological sensitivity 

compared to lotic species. We did not include DBI sensitivity measures as part of our main 

analysis, as this sub-index comprises other ecological measures (e.g. habitat preference and 

resilience to disturbance) which is often difficult to quantify across wide geographic areas, and 

this measure of sensitivity gives priority to range-restricted and red-listed species (Simaika and 

Samways 2009b). Nevertheless, we aimed to demonstrate that such measures of ecological 

sensitivity are versatile and can further inform range sizes of organisms, while providing 

information on which species are most likely negatively affected by habitat disturbance. 

2.5 Conclusion 

Drivers of range size identified here align well with findings on dragonflies, and other aquatic 

insects, across various other geographical areas. Overall habitat preference and biotope 

occupancy/specialisation can at least in part explain general trends in range size variation for 

dragonflies across Africa, supporting classical description of habitat generalists being more 

widespread than habitat specialists. However, our results emphasise that such strict 

classifications and assumptions should be treated with caution, as there are several other traits 

(e.g. phenology, morphological traits related to dispersal, and sensitivity to ecological 

disturbance) that are equally important and interactive with habitat preference and biotope 

occupancy/specialisation. Subsequently, these traits should be considered along with habitat 

occupancy and biotope specialisation when determining the drivers of species distribution 

ranges. Here, we demonstrate that there is great variation in functional traits within taxonomic 
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groups, emphasising the need for more species-level investigations to improve our 

understanding of the biological drivers of range size variation, and to facilitate effective large-

scale conservation. 
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Chapter 3 Drivers of regional dragonfly species richness and 

assemblage-turnover at the southern tip of Africa  

*Recently submitted to Biological Conservation

Abstract 

Freshwater insect species distributions are poorly understood in southern Africa, yet knowing 

where species occur is essential for effective conservation planning. Regional climatic 

variation is subject to strong effects of oceanic current systems, which in turn, determine 

regional species occupancy. We hypothesize that oceanic currents, along with regional climates 

and topography, have been, and still are, important drivers of aquatic insect species richness, 

endemism, and assemblage composition, and expect strong assemblage-turnover boundaries to 

be concurrent with long-existing topographical features. We used generalized linear modelling, 

generalized dissimilarity modelling, and dragonflies as model organisms to determine the 

drivers of species richness metrics and assemblage-turnover rates, and to investigate the extent 

to which there are assemblage-turnover boundaries across South Africa. We found that regional 

latitudinal and longitudinal gradients were significant for species richness, levels of local 

endemism, and assemblage composition. In turn, these were related to seasonal rainfall, 

seasonal solar radiation, underlying geology, and topography, all of which are significant 

drivers of overall distribution patterns. We also found significant variation in assemblages 

between different sub-regions, and turnover boundaries were concurrent with topographical 

features and/or areas where there are significant spatial changes in sub-regional climate. 

However, assemblage turnover boundaries were only gradual and not sharp throughout the 

region, related to overall high dragonfly dispersal ability and gradual climatic changes between 

sub-regional climates. Modern-day regional climate and topography only partially explained 

dragonfly distribution, and we conclude that local factors and past geological events both 

contribute to current dragonfly distribution patterns. We recommend conservation efforts to be 

focused on areas with high species richness and endemism levels, but importantly also in areas 

with high assemblage-turnover rates to ensure protection of as many species as possible. We 

also propose further searches in areas with high endemism and high assemblage-turnover for 

possible discovery of unknown species, and further searches in under-represented areas to 

overall improve distribution data for known species. 
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3.1 Introduction 

Species geographical distribution is not random, with significant variation in distribution 

patterns between taxa and geographical areas (Heiser and Schmitt 2010). Consequently, 

investigating species distribution patterns is not only fundamental to biogeography, but also 

useful for conservation planning (Basset et al. 2011). Large-scale changes in species richness 

and diversity across latitude and elevation gradients are well-documented for terrestrial and 

marine taxa in the northern hemisphere (Heino 2001), with most showing an increase in species 

richness towards the equator (Ribera et al. 2003). Furthermore, high species diversity is 

associated with high habitat heterogeneity and low elevations at regional scales (Ricklefs and 

Lovette 1999). In contrast, biogeographical patterns among freshwater taxa have received 

much less attention (Willig et al. 2003; Hillebrand 2004), with broad-scale patterns generally 

weaker than for terrestrial taxa (Pearson and Boyero 2009), seemingly related to poor 

connectivity between freshwater habitats (Hillebrand 2004). 

To investigate overall changes in species richness and diversity in isolation from assemblage-

turnover (i.e. the interaction between local and regional assemblages) provides limited 

information regarding complex local assemblage structuring (Lennon et al. 2001), which is 

strongly driven by regional species pools (Ricklefs and Schluter 1993). Assemblage-turnover 

boundaries, or areas of high β-diversity, are significant indicators of where species assemblages 

change between local sites and/or wider regions (Moir et al. 2009), and provide important 

information regarding the underlying drivers which structure biological assemblages (Pires et 

al. 2018). At the regional scale, factors that influence dispersal of organisms (e.g. topography, 

significant geographical features, and connectedness between populations) can be greater than 

climatic drivers in determining assemblage structures (Henriques-Silva et al. 2013), especially 

for taxa with low mobility.  

A major challenge is defining whether and where assemblage-turnover boundaries occur, as 

they often follow climate gradients, and are gradual over wide geographic areas. In the context 

of South Africa, climatic conditions are highly variable throughout the country, and along the 

Stellenbosch University https://scholar.sun.ac.za



 54 

east coast, climate is driven by the warm, southwards-flowing Agulhas oceanic current system 

(Diester-Haass et al. 2002), while the northeast coastal region is characterized by a strong East 

African component. With increasing latitude southwards, the gradual change in climatic 

conditions from tropical-type climate to Mediterranean-type climate drives a gradual decrease 

in tropical species richness, at least for frogs (Poynton 1961, 1969). An inverse trend is 

expected for the southern Mediterranean-type species, which decrease in richness with 

decreasing latitude northwards. In contrast, the climate along the west coast of the region is 

driven by the northwards-flowing, cold Benguela oceanic current system, resulting in strong 

aridification effects and a general decrease in species richness with decreasing latitude 

northwards (Diekmann et al. 2003). These biotic and abiotic gradients are expected to lead to 

gradual changes in species assemblage composition along the coastal regions in southern 

Africa. 

 

Climatic conditions are also highly variable across the interior of South Africa, with 

assemblage-turnover boundaries proposed, at least in the south-eastern region, for flies 

(Stuckenberg and Kirk-Spriggs 2009), cicadas (Price et al. 2007) and fleas (van der Mescht et 

al. 2015). This area broadly coincides with the meeting place of five South African biomes 

(fynbos, succulent Karoo, Nama-Karoo, grassland, and savanna) (Mucina and Rutherford 

2006), and coincides with the division between the western and eastern sides of the Cape Fold 

Mountains. The western side is characterized by rolling hills combined with flat country, in 

contrast to the highly variable topographical gradients of the eastern side (Willows-Munro and 

Matthee 2011). Furthermore, the eastern side is affected by rearrangement of atmospheric 

current systems, creating an individualistic and contrasting abiotic environment (Chase and 

Meadows 2007). This is likely not the only turnover boundary occurring in interior South 

Africa, and other regions of interest include the transition between the Cape Fold Mountains 

and the Karoo, and the transition between Karoo and the central, high-elevation grasslands.  

 

Despite the global abundance and ecological importance of insects, their distribution patterns, 

and underlying drivers, have received much less attention than those for vertebrates (Diniz-

Filho et al. 2010), in part related to lack of information regarding their taxonomy and 

geographical ranges. However, dragonflies and damselflies (Odonata; hereafter collectively 

referred to as ‘dragonflies’) are taxonomically well known, especially in South Africa, and 

their distribution is well established (Samways and Simaika 2016). Most dragonflies as adults 

are strong dispersers, common occupants of many freshwater habitats (Grönroos et al. 2013), 
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and variably sensitive to environmental conditions (De Marco et al. 2015). Species richness, 

diversity and assemblage structure are determined by local factors, such as water 

physiochemical factors, vegetation cover and connectivity to nearby habitats (Harrington et al. 

2016), as well as regional factors, such as landscape heterogeneity and climate (Kalkman et al. 

2008). These species-level responses to various aspects of environmental heterogeneity make 

dragonflies excellent model organisms for detecting broad-scale biogeographical patterns. 

 

Using dragonflies as model organisms, our overall aim here is to investigate broad-scale 

biogeographical patterns across South Africa, with three objectives: 1) determine the climatic 

and spatial factors driving regional trends in overall dragonfly species richness, local 

endemism, and assemblage turnover, 2) identify assemblage-turnover boundaries across the 

coastal and interior regions of the country, and 3) provide recommendations for conservation 

of local freshwater insects. We hypothesize that climatic factors related to rainfall and 

temperature, and spatial factors related to topography and connectedness carry equal weight in 

determining species richness and assemblage patterns. We further anticipate assemblage-

turnover boundaries to be easily defined and concurrent with significant topographical features. 

 

3.2 Materials and methods 

3.2.1 Biological data 

Dragonfly distribution points for South Africa were extracted from the Odonata Database of 

Africa (Clausnitzer et al. 2009). After data validation, a total of 23 241 records were available. 

Additional field data were collected from November 2017 to April 2019, and regions where 

data points were lacking and/or regions of high conservation interest were specifically targeted. 

These regions included: areas surrounding the Orange River and Vaal River (Northern Cape), 

the eastern and western slopes of the Cederberg mountain range (Western Cape), the Southern 

Cape coastal belt, the southern Free State (foothills of the Maloti mountain range), the 

Kwazulu-Natal Midlands, and the coastal and mountainous interior regions of the Eastern 

Cape, collectively comprising 1 336 distribution records at 133 localities (Appendix S3.1). 

Adult dragonflies were recorded by walking along pond and river margins for one hour at each 

locality, recording all observed species. Field data were collected on cloudless, windless days, 

between 10h30 and 15h30 when dragonflies were at their activity peak. One voucher specimen 

of each species is housed in the Stellenbosch University Entomological Museum.  
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All dragonfly distribution data were combined and transformed to quarter degree spatial 

resolution (QDSR), assigning dragonfly species presence/absence to each cell and removing 

all duplicate species records. Dragonfly species richness and national endemic species richness 

were determined for each cell based on the generated presence/absence dataset. Cells with <2 

dragonfly species were excluded to correct for differences in sampling effort between 

assessors, and to account for regions with no water bodies, so improving overall reliability of 

distribution records (488 cells in total). We then calculated the proportion of national endemic 

species, and lentic, lotic and lentic/lotic species richness (based on larval biotopes from Chapter 

1) for each cell relative to total species richness for each individual cell. Beta diversity (species 

assemblage turnover) was calculated between all cell-pair combinations, and represented by 

the Jaccard dissimilarity measure. We selected this dissimilarity measure, as it does not rely on 

abundance data to reflect similarity between assemblages, but rather uses presence/absence of 

species. The Jaccard dissimilarity measure is also effective in detecting underlying ecological 

patterns (Oksanen et al. 2017). 

 

3.2.2 Environmental data and statistical analyses 

To investigate the effects of environmental variables on dragonfly assemblage turnover, 28 

interrelated spatial datasets were considered. These datasets included: latitude, longitude, 

elevation, 30-year monthly average rainfall (twelve spatial datasets), 30-year monthly average 

solar radiation (twelve spatial datasets), and 30-year average soil drain rate (Appendix S3.2). 

All spatial datasets were resampled to QDSR to match the generated dragonfly distribution 

dataset in QGIS (Quantum GIS Development Team 2017), and tested for covariation. Where 

there was high covariation among the 28 spatial datasets (Pearson correlation coefficient < -

0.7 or > 0.7), only one of the spatial datasets in the pair was included for further analysis. After 

these considerations, eight variables were retained for final analysis: latitude, longitude, 

elevation, 30-year average rainfall for early summer (December) and mid-autumn (April), 30-

year average solar radiation mid-summer (January) and mid-autumn (April), and 30-year 

average soil drain rate. 

 

We used generalized linear modelling (GLM) and model selection to determine the 

environmental drivers most descriptive of spatial patterns related to total species richness, 

endemic species richness, proportion of endemic species, and lentic, lotic and lentic/lotic 

species richness (in terms of their larval habitat preferences). We then constructed GLMs for 

each response variable with all possible combinations of environmental variables. These 
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models were overdispersed (Pearson’s Test for overdispersion), and we used quasi-likelihood 

second-order Akaike’s information criterion values (qAICc) to rank candidate models, and to 

extract the best model from each modelling scenario, using the MuMIn package for R (Barton 

2019; R Development Core Team 2016). As a result, six independent GLMs containing a set 

of environmental variables with the lowest qAICc values were constructed in R (R 

Development Core Team 2016) for total species richness, endemic species richness, proportion 

of endemic species, and lentic, lotic, and lentic/lotic species richness, using the lme4 package 

(Bates et al. 2014). 

 

We used generalized dissimilarity modelling (GDM, Ferrier et al. 2007) to determine the 

importance of environmental variables in driving dragonfly assemblage-turnover rates, to 

extrapolate species assemblage composition in areas where data were lacking, and to identify 

assemblage-turnover boundaries across space, using the gdm package in R (Manion et al. 2017; 

R Core Development Team 2016). The set of environmental variables which explained 

dragonfly assemblage turnover the best was selected by 500 permutations of randomized 

backwards selection on 50% of the total data, using the gdm.varImp function. Only variables 

with significantly higher importance (highest percentage change in model deviance; p < 0.05) 

were retained, and three I-spline basis functions were used for each environmental variable to 

investigate their effects on the full dataset. The effect of each variable was evaluated based on 

ranges of the partial response plots (Overton et al. 2009). Variation partitioning (Borcard et al. 

1992) was performed to determine the unique contribution of each environmental variable to 

total model deviance, and shared contribution between all combination of important variables 

to total model deviance, using the vegan package in R (Oksanen et al. 2017). Multidimensional 

scaling and principal component analysis (PCA) were used to visualize biological patterns 

between all cell pairs across space. Model outputs were transformed from environmental 

distances to biological distances, using the transform function. The first three PCA components 

were scaled to 8-bit format (1- 256 range) and assigned to a red, blue and green (RGB) colour 

palette, used to identify regions characterized by relatively similar environmental conditions 

and similar expected dragonfly assemblages, based on output values of each model scenario 

(Ferrier et al. 2007).  
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3.3 Results 

3.3.1 Overall importance of environmental variables for species richness metrics 

Overall, seven variables were selected as important in driving dragonfly species richness 

metrics across South Africa. These were latitude, longitude, elevation (m a.s.l.), average early 

summer and mid-autumn rainfall (mm/month), and average mid-summer and mid-autumn solar 

radiation (MJ/m2/day). Spatial gradients of the significant variables are provided in Appendix 

S3.3. 

Species richness overall increased from south to north, and was highest in the north-eastern 

region (Table 3.1; Figure 3.1a). Species richness decreased with increasing elevation, and high 

overall species richness was associated with areas with relatively higher mid-autumn rainfall, 

and relatively lower mid-summer solar radiation. Endemic species richness and proportion of 

endemic species richness were concentrated in the south-western region, and decreased from 

south to north overall (Figure 3.1b and c). Endemic species richness decreased from east to 

west, and was lowest in areas with relatively lower early summer rainfall and lower mid-

summer solar radiation (Figure 3.1b). The proportion of endemic species was highest at high 

elevations, and was associated with areas with relatively high mid-summer solar radiation 

(Figure 3.1c). 

Overall lentic, lotic, and lentic/lotic dragonfly species richness increased from south to north, 

and decreased with increasing elevation and increasing mid-summer solar radiation (Table 3.1; 

Figure 3.1d-f). Overall lentic species richness increased from east to west, and was highest in 

areas with relatively higher early summer rainfall and mid-autumn solar radiation (Figure 

3.1d). Overall lotic species richness was highest in areas with relatively high early summer 

rainfall (Figure 3.1e), and overall lentic/lotic species richness was high in areas with relatively 

high mid-autumn rainfall (Figure 3.1f).  
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Table 3.1 Significant t-values of variables driving species richness, endemic species richness, 

proportion of endemic species, and lentic, lotic and lentic/lotic species richness between all 

populated grid cells.  

(-) and (+) indicate trendline directions.  

Significance levels: * : p < 0.05; ** : p < 0.01; *** : p < 0.001. 

 

 

3.3.2 Overall importance of environmental variables for assemblage-turnover 

Backwards selection identified four environmental variables as important for driving dragonfly 

assemblage-turnover at the national scale. These were mid-autumn solar radiation 

(MJ/m2/day), average soil drain rate (mm/day), elevation (m a.s.l.) and geographical distance 

between cells (km) (Appendix S3.3). Total percentage explained deviance of the model was 

31.7%, and individual fractions of explained deviance for each environmental variable was 

between 0.5% and 10.1%. Shared fractions of explained deviance between environmental 

variables was between 0% and 12.6% (Figure 3.2). Mid-autumn solar radiation explained 0.6% 

of total deviance in the generalized dissimilarity model containing the selected variables. Soil 

drain rate explained 1.4% of total deviance, elevation explained 1.7% of total deviance, and 

geographical distance between cells explained 10.1% of total model deviance. The interaction 

between mid-autumn solar radiation and geographical distance between cells explained 5.3% 

of total model deviance, while the interaction between mid-autumn solar radiation, elevation 

and soil drain rate explained 12.6% of total model deviance. 

  

Variables 

Species 

richness 

Endemic species 

richness 

Proportion 

endemic 

Lentic species 

richness 

Lotic species 

richness 

Lentic/lotic species 

richness 

Latitude (+) 5.01 *** (-) -3.91 *** (-) -6.56 *** (+) 6.66 *** (+) 4.56 *** (+) 6.40 *** 

Longitude 
 (-) -2.71 **  (+) 5.10 *** 

  
Elevation (-) -3.25 **  (+) 3.44 *** (-) -3.14 ** (-) -4.70 *** (-) -1.99 * 

Early summer rainfall  (-) 4.94 ***  (+) -4.83 *** (+) 3.12 **  

Mid-autumn rainfall (+) 4.28 ***     (+) 3.77 *** 

Mid-summer radiation (-) -2.35 * (-) -4.01 *** (+) -2.52 * (-) 2.29 * (-) -2.62 ** (-) -2.54 * 

Mid-autumn radiation    (+) 6.58 ***   
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Figure 3.1 Spatial patterns of dragonfly species richness metrics across South Africa. Species 

richness (a), endemic species richness (b), proportion of endemic species (c), lentic species 

richness (d), lotic species richness (e) lentic/lotic species richness (f) are indicated. Spatial 

patterns c-f are shown as proportions (i.e. categorical richness relative to cell total species 

richness). 
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Figure 3.2 Variation partitioning of dragonfly species turnover among selected environmental 

variables. Values represent fractions of explained deviance as percentages. Only unique 

fractions and shared fractions > 5% are shown. Elev: elevation, Geo: geographical distance 

between cells, Rad: mid-autumn solar radiation, SDR: soil drain rate.  

Dragonfly assemblage-turnover rate increased rapidly with increasing soil drain rate, until it 

reached 6 mm/day, after which assemblage-turnover rate slowed, and remained constant 

from 7 mm/day to 12 mm/day (Figure 3.3a). The effects of soil drain rate on 

assemblage-turnover was relatively even throughout the country, but lower in the 

north-western coastal region, and north-eastern mountainous region (Figure 3.3b). 

Assemblage-turnover rate remained constant with increasing mid-autumn solar radiation, 

until 23.2 MJ/m2/day was reached, after which assemblage-turnover rate increased rapidly 

until the maximum solar radiation value of 29.2 MJ/m2/day was reached (Figure 3.3c). The 

effect of solar radiation on dragonfly assemblage-turnover was highest in the arid, north-

western regions (Figure 3.3d).
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Assemblage-turnover rate increased steadily between 0 m a.s.l. and 250 m a.s.l., and 

there was a rapid increase in assemblage-turnover rate between 250 m a.s.l. and 3 000 m 

a.s.l (Figure 3.3e). The effects of elevation were highest in areas of sharp topographical 

gradients, especially the areas surrounding the Drakensberg Mountains and the Cape Fold 

Mountains. Elevation also had an effect on assemblage-turnover rate on the Highveld (high-

elevation grassland region) and parts of the Northern Cape. (Figure 3.3f). Dragonfly 

assemblage-turnover rate increased rapidly throughout for geographical distance but slowed 

above 500 km and slowed further above 1 500 km (Figure 3.3g).  

3.3.3 Assemblage-turnover boundaries across the region 

Generalized dissimilarity models performed well in extrapolating assemblages across the 

country (Figure 3.3h), and landscape visualizations produced for observed and predicted 

assemblage turnover showed similar spatial patterns (Figure 3.4a and b). Both approaches 

showed an overall difference in species assemblage composition across the latitude gradient. 

Species assemblage composition was different between the north-eastern and south-eastern 

regions, and between the north-western and south-western regions. There was also an overall 

difference in species assemblage composition across the longitude gradient, where species 

assemblage composition was different between the north-western and north-eastern regions, as 

well as between the south-western and south-eastern regions. 

Along the south-eastern coast, clear assemblage-turnover boundaries areas were difficult to 

discern, and assemblage-turnover was gradual along the south-eastern coast, following the 

southern slopes of the Great Escarpment (Figure 3.4a and b). From the south-eastern coast 

northwards, assemblage composition changed following the coastal-inland elevation gradient. 

Coastal assemblages were distinct from mountain assemblages, and there was an overall 

change in assemblage composition over the southern foothills of the Drakensberg Mountains, 

and over the Amatola and Cape Fold Mountains. Furthermore, dragonfly assemblages which 

occupied southern mountain slopes were different from dragonfly assemblages occupying 

northern mountain slopes along the east coast.  

Along the west coast, a wide assemblage-turnover boundary coincided with the northern 

foothills of the Cederberg Mountains, and a second, wide turnover boundary was apparent 

along the lower reaches of the Orange River (Figure 3.4b). Species assemblage composition 
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changed from west to east following the coastal-inland elevation gradient, and a change in 

species assemblage composition coincided with the wide areas between the Cederberg 

Mountains and the Kamiesberg Mountains. A transition in assemblage composition was also 

evident between the western and eastern slopes of the Cederberg Mountains, and between the 

eastern foothills of the Cederberg Mountains and the Karoo. Changes in species assemblage 

composition were highly gradual and variable across central South Africa. A biologically 

similar dragonfly assemblage occupied the southern rim of the Kalahari, but gradually changed 

in structure across the regions surrounding the middle reaches of the Orange River and the low 

reaches of the Vaal River. Species composition also changed gradually along the north-western 

slopes of the Waterberg Mountains, and the northern part of the Drakensberg Mountain 

escarpment towards the northwest. 
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Figure 3.3 Generalized dissimilarity model transformations and fitting of selected 

environmental variables at the national scale. Average soil drain rate (a-b), average mid-

autumn solar radiation (c-d), elevation (e-f), geographical distance between grid cells (g), and 

observed compositional dissimilarity against predicted ecological distance (h) are indicated. 
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Figure 3.4 Observed (a) and predicted (b) spatial patterns of dragonfly assemblage-turnover 

across South Africa.  Quarter degree cells with similar colours are predicted to be similar in 

dragonfly assemblage. Topographical features mentioned in text are indicated in white.
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3.4 Discussion 

Dragonfly species distribution patterns were complex across the southern tip of Africa, yet our 

results indicate strong latitudinal and longitudinal gradients in species richness, endemism and 

assemblage composition across the region. Furthermore, other regional factors related to 

climate (i.e. average seasonal rainfall and average seasonal solar radiation), underlying geology 

(i.e. soil type and drain rate), and topography (i.e. elevation gradients and geographical distance 

between cells) significantly determined overall dragonfly species distribution patterns. 

Dragonfly assemblage-turnover boundaries were gradual rather than sharp throughout the 

country, and most of these boundaries broadly coincided with prominent topographical features 

and/or areas where significant climatic factors changed from one condition to the next.  

3.4.1 Significance of environmental variables for species richness metrics and 

assemblage turnover 

Overall species richness decreased with increasing latitude, complementing findings for 

beetles, mayflies, stoneflies and dragonflies across Europe (Ribera et al. 2003), dragonflies 

across South America (Boyero 2002) and amphibians across south-eastern Africa (Poynton 

1969). We also found that overall endemic species richness showed an inverse latitudinal trend, 

increasing from north to south, as well as from east to west across a longitudinal gradient. 

Patterns across longitudinal gradients have received much less research attention, yet east-to-

west gradients in species richness have been found for beetles, mayflies, stoneflies and 

caddisflies across north Africa (Beauchard et al. 2003). These observed patterns suggest that 

species richness and assemblage patterns are likely driven by a combination of climatic, 

topographic and geological factors. 

Average rainfall and seasonality have a strong influence on aquatic insect distribution through 

changes in hydrological regimes (Bêche and Statzner 2009), and dragonflies, being tropical of 

origin, favour warmer and wetter climatic conditions (Corbet 1999; Samways and Simaika 

2016). Although we did not find a significant relationship between rainfall and dragonfly 

assemblage composition, high overall species richness was associated with warm sub-regions 

receiving much rain from late summer to mid-autumn, similar to previous findings for South 

Africa (Finch et al. 2006), and North America (Hassall 2012). These subtropical climatic 

conditions, together with diverse aquatic habitat types (e.g. rivers, wetlands, swamp forests), 

present a range of favourable conditions for dragonflies, many of which occur throughout the 

rich southern African savanna (Hart et al. 2015). Conversely, endemism was concentrated in 
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the south-western sub-region with its arid summers, indicating that these species are 

biologically well-adapted to local conditions related to rainfall seasonality and seasonal habitat 

availability (Dijkstra et al. 2007).  

Unsurprisingly, overall dragonfly species richness and endemism were lowest in the hot but 

dry areas, along with a clear distinction in assemblage composition between low and high 

rainfall sub-regions. Aquatic habitats in the arid areas are mostly seasonal, with the exception 

of the Orange and Vaal Rivers, being the only large perennial river systems. Most dragonfly 

species are well-adapted to harsh abiotic conditions through increased developmental rates to 

outlive seasonal habitats (McPeek and Peckarsky 1998), and/or have highly migratory 

behaviour to seek out favourable habitats, ensuring completion of their life cycles (Suhling et 

al. 2005). The effect of habitat permanency on species assemblage composition was further 

emphasized through the significance of underlying geology and soil drain rate. The north-

western interior of South Africa is dominated by sandy desert soil with low water retention 

qualities, while soils in the coastal regions broadly consist of a mix between sand, loam and 

clay, with relatively higher water retention qualities (MacVicar 1977). In combination with 

average rainfall and temperature, soil type and the rate at which surface water is lost, influence 

habitat quality components and water permanency, shaping regional dragonfly assemblages. 

It is well known that environmental conditions change with elevation across local and regional 

scales (Harrington et al. 2016). Our findings that high species richness was associated with low 

elevation overall, and that the proportion of endemic species increased overall with elevation, 

were consistent with other findings on local aquatic insects (Samways and Niba 2010) and 

aquatic insects in other regions (Finn et al. 2013; Harrington et al. 2016). Although 

hydrological conditions are variable at low elevations in general, primary production is often 

high, with lowland areas supporting a diverse range of aquatic habitats, so increasing overall 

species richness (Samways and Niba 2010; Hart et al. 2015). However, many endemic 

dragonfly species in South Africa are restricted to high elevation streams where hydrological 

conditions are more predictable, and many likely use habitats at high elevation as refuges 

against harsh environmental conditions (Dijkstra et al. 2007). Our results showed that 

assemblage-turnover rate increased with elevation, suggesting that heterogeneity among high 

elevation habitats provides a range of microhabitats and that several species are restricted to 

certain elevation ranges, which in turn, leads to high variation between aquatic communities 

across elevation gradients (Samways 1989a; Finn et al. 2013). Low assemblage-turnover rates 
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at lower elevation may be a result of the presence of widespread species, capable of colonizing 

a wide variety of aquatic habitats. 

We found that geographical distance was an important driver of dragonfly assemblage-

turnover, and the importance of geographical distance can have three possible explanations 

(Fitzpatrick et al. 2017). Firstly, niche-based processes may be at play, where environmental 

dissimilarity increases as habitats become increasingly separated by geographical distance 

(Leibold et al. 2004). According to this explanation, species vary in their capability to perform 

well in relation to different environmental conditions between geographical areas (i.e. species 

sorting). Secondly, topographical processes may also be involved, which limit the ability of 

aquatic insects to reach suitable habitats (Garcillán and Ezcurra 2003). In other words, 

assemblage-turnover rates increase rapidly across landscapes characterised by significant 

dispersal barriers (e.g. mountains, deserts and oceans), as opposed to topographically similar 

landscapes. Thirdly, assemblage dissimilarity increases with distance, even across 

topographically similar landscapes, as a result of limited dispersal (Hubbell 2001). For South 

African dragonflies, the first two explanations seem most likely, with highly variable 

topography driving local ecological conditions, which greatly influences species occupancy 

(Samways and Simaika 2016), and although most dragonflies are highly mobile as adults, sharp 

topographic changes likely restrict dispersal, especially among Zygoptera (Heiser and Schmitt 

2010). 

Our results for assemblage turnover across the region left ~68% of deviance unexplained, thus 

we could not disregard the potential effect that historical factors may have had in honing current 

dragonfly assemblages (Huntley et al. 2016). This is emphasized by isolated mountain 

localities for some species such as Chlorolestes fasciatus in Mountain Zebra National Park, 

completely surrounded by the extensively arid Karoo (Samways 2008). Modelling dragonfly 

distribution relative to historical climate was beyond the scope of this study, but we found that 

endemic dragonfly assemblages were predominantly associated with the south-western area, 

especially the ancient Cape Fold Mountains, as was found for birds in the same area (Huntley 

et al. 2016). This could be related to the sub-region experiencing less climatic variability in the 

past, and its long history of being free of glaciation (Meadows and Baxter 1999). Conversely, 

tropical species associated with the north-eastern region of the country, and dryland species 

assemblages in the north-western region of the country likely persist by making regional 

movements in response to seasonal climatic variability, a fairly common phenomenon in the 
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area (Ott and Samways 2010). Nevertheless, deeper investigation regarding the relationship 

between historical climate and its contribution to speciation would add to our current 

understanding of insect distribution patterns in general.  Other factors not investigated here, 

related to habitat loss, habitat transformation, urbanisation, and complex predator/prey 

interactions likely also plays a key role in structuring dragonfly assemblages. 

3.4.2 Dragonfly assemblage structuring across the southern tip of Africa 

Dragonfly assemblage-turnover boundaries were gradual across the region, presumably related 

to high dispersal ability of dragonflies overall (Grönroos et al. 2013), and gradual spatial 

changes in climate. The gradual change in dragonfly assemblage composition along the east 

coast of South Africa likely results from the gradual change in climate, from subtropical in the 

northeast to Mediterranean in the southwest (Poynton 1961). Similar to the findings for frogs 

(Poynton 1969), the north-eastern coastal region of the country is rich in tropical dragonflies 

(e.g. Zyxomma atlanticum, Parazyxomma flavicans, Tholymis tillarga), but as climatic 

conditions change from sub-tropical to Mediterranean, many tropical lentic dragonflies (e.g. 

Acisoma variegatum, Diplacodes luminans and Tetrathemis polleni) drop out towards the 

south. In turn, several lotic Mediterranean-type climate dragonflies (e.g. Ecchlorolestes 

peringueyi, Syncordulia legator and S. serendipator) occupied only the south-western Cape, 

and some (e.g. Chlorolestes umbratus, Pseudagrion furcigerum and E. nylephtha) drop out 

from the south-western Cape along the south coast towards the east. In turn, many species (e.g. 

Agriocnemis falcifera, C. tessellatus and P. kersteni) have ranges across the entire east coastal 

band, evening out total species richness along the east coast, though there was an overall change 

from predominantly lentic/lentic species in the northeast to lotic species in the southwest.   

From our results, the coastal-inland changes in dragonfly assemblage composition were mainly 

driven by the elevation gradient, and there was a gradual change in dragonfly assemblage 

composition from predominantly lowland lentic species to high elevation lotic species. Several 

lowland species (e.g. Chalcostephia flavifrons, Hemistigma albipunctum and A. gratiosa) drop 

out with increasing elevation, and are replaced by high elevation species (e.g. Crenigomphus 

hartmanni, Notogomphus praetorius and C. draconicus) in the Drakensberg Mountains. 

Lowland species are also replaced by moderate to high elevation species (e.g. C. apricans, 

Metacnemis valida) in the Amatola Mountains. Elevation gradient played an equally important 

role in structuring regional dragonfly assemblages in the Limpopo Province, where lowveld 
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species gradually drop out with increasing elevation over the northern part of the Drakensberg 

escarpment (e.g. Onychogomphus supinus, Paragomphus cognatus and P. sjoestedti), and the 

Waterberg Mountains (e.g. Palpopleura deceptor, Tholymis tillarga and O. guineense).  

Across the western region, there was a significant decrease in overall species richness together 

with a gradual change in dragonfly assemblage composition towards the north, and most lotic 

species in the Western Cape (e.g. Ceratogomphus pictus, Zosteraeschna minuscula and P. 

cognatus) were absent beyond the north-eastern foothills of the Cederberg Mountains. This is 

not surprising, as there is a strong aridification gradient northwards across the western region 

(de Jager and Ellis 2017), and aquatic habitats become increasingly seasonal and/or absent 

throughout. Consequently, the arid coastal region was mostly occupied by widespread and 

opportunistic lentic/lotic species (e.g. Crocothemis erythraea, Sympetrum fonscolombii and P. 

massaicum), which readily colonise seasonal rivers and pans during wet years. Dryland lotic 

species (e.g. Mesocnemis singularis, Phyllomacromia picta, Platycypha caligata and P. 

vaalense) only started appearing along the Orange River on the Namibian border, which 

consistently holds water throughout the year. The limited number of records across the interior 

of South Africa challenged our ability to discern assemblage turnover boundaries in this area, 

yet we expect the few scattered seasonal habitats across the region to be occupied by 

widespread and opportunistic lentic species (e.g. Trithemis arteriosa, T. kirbyi, Orthetrum 

julia) during wet years.  

3.4.3 Implications for conservation 

Identifying the centres of high species richness, endemism and assemblage-turnover, along 

with their underlying drivers, is an important step towards effective conservation action 

(Simaika and Samways 2009). Dragonflies are a valuable umbrella taxon for other aquatic 

insects (Bried et al. 2007; Smith et al. 2007), including those in the south-western Cape and 

the north-eastern area of South Africa (Samways et al. 2011; Kietzka et al. 2019), suggesting 

that areas defined here as either high in species richness, high in endemism or having high 

assemblage-turnover rates might well represent other aquatic insects (Wishart and Day 2002). 

These areas have high conservation value, and selecting protected areas based on dragonflies, 

especially Red-Listed species, can be highly representative of other freshwater taxa, as has 

been suggested previously for the biodiversity hotspots in South Africa (Simaika and Samways 

2009). The south-western Cape is particularly significant, as many of the known dragonfly 

species, as well as several other taxa, have narrow geographical ranges.  
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Other dragonfly species might also await discovery in areas of high endemism and assemblage-

turnover, as has been shown recently by the discovery of new dragonfly species (Dijkstra et al. 

2007), and the re-discovery of dragonflies that were thought to be extinct from the south-

western Cape (Samways and Tarboton 2006), underscoring merit in further focused field 

investigations. Large areas across South Africa are unexplored, mainly due to being arid, which 

attracts little attention from a freshwater research perspective. This does not imply that these 

areas are unimportant, since freshwater species may be localised to high elevation localities 

where water supply is more reliable. Artificial waterbodies in arid areas may also serve as 

stepping-stone habitats allowing some species to extend their range sizes (Samways 1989b). 

There is thus merit for further field investigations in under-represented areas, so as to improve 

overall reliability of distribution data and inform conservation planning throughout the country. 

3.5 Conclusion 

Overall dragonfly species richness and assemblage structure varied substantially across South 

Africa, and our results support previous findings on the relationship between latitude and 

longitude gradients and species richness for other regions. However, this was not the case for 

endemic species richness, which showed a converse tendency. These endemics are much richer 

in the south, due mainly to ancient mountains retaining sufficient ground water to continually 

feed small streams even during periods of drought. Furthermore, we found that overall 

dragonfly species richness and assemblage composition were driven by a combination of 

climatic factors related to rainfall and temperature gradients, as well as topographical factors 

related to elevation. The significance of these factors was further emphasized through their 

associations with aquatic habitat quality and permanency. There also appears much variation 

among current dragonfly assemblages, having been driven by local and/or historical factors, 

which warrants further detailed investigation. Although there were clear differences in 

assemblages over wide areas, we demonstrate that assemblage-turnover boundaries were 

mostly gradual throughout South Africa, likely related to the high mobility of dragonflies, and 

gradual changes in climatic conditions from one area to the next, and dynamics over time. We 

recommend that conservation efforts should be focused on areas characterised by high species 

richness and endemism, as well as those characterised by high dragonfly assemblage-turnover. 

Further searches across the country may also lead to new species being discovered, and allow 

improvement of current distribution data for known species. 
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Chapter 4 Artificial reservoirs complement natural ponds to improve 

pondscape resilience in conservation corridors in a biodiversity hotspot 

*Published as: Deacon, C., Samways, M.J. and Pryke, J.S. 2018. Artificial ponds

complement natural ponds to improve pondscape resilience in conservation corridors in a 

biodiversity hotspot. PLoS One 13(9): e0204148. DOI: 10.1371/journal.pone.0204148. 

Abstract 

Natural ponds are rich in biodiversity, contributing greatly to regional aquatic biodiversity. 

Artificial reservoirs used for irrigation can be significant additional features of the landscape. 

They infill the local natural pondscape, and are attractors for aquatic insects. Here, we deter- 

mine the extent to which artificial reservoirs represent the local natural pond biota, and how 

they contribute to the pondscape in conservation corridors used to mitigate the impact of 

plantation forestry in a global biodiversity hotspot. We did this by: 1) identifying the environ- 

mental factors, including plants, that drive dragonfly, water beetle, and water bug species 

richness, diversity and composition, and 2) determining the value of natural ponds vs. artificial 

reservoirs for maintaining the population size and expanding the area of occupancy for 

dragonflies, beetles and bugs in conservation corridors. While vegetation cover was central for 

maintaining species richness and composition of the assemblages in general, many other 

environmental variables are necessary to encourage the full suite of local diversity. Artificial 

reservoirs are attractive habitats to many species, overall increasing area of occupancy for 75% 

of them (ranging from 62–84% for different taxa). These reservoirs provide complementary 

alternative habitats to natural ponds, leading to improved ecological resilience across the 

pondscape. We conclude that maintaining a diverse and heterogeneous pondscape is important 

for conserving local aquatic insect diversity, and that artificial reservoirs increase the local area 

of occupancy for a range of pond insects in conservation corridors, and improve the 

biodiversity value of these pondscapes.  

Keywords: aquatic insects, dragonflies, water beetles, water bugs, insect conservation, pond 

conservation
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4.1 Introduction 

Freshwater ponds are lentic water bodies <2 ha in size (Williams et al. 2016), common 

throughout the world (Holgerson and Raymond 2016). They contribute greatly to local ecology 

(Hill et al. 2016) and support high biodiversity, sometimes greater than that in larger water 

bodies such as rivers and lakes (Davies et al. 2008), due partly to their high habitat 

heterogeneity at the landscape scale (Davies et al. 2008). In transformed areas with limited 

numbers of natural ponds, artificial reservoirs can also provide refuge habitat for rare and 

threatened species (Chester and Robson 2013).  

Artificial reservoirs are constructed for water storage (Bichel et al. 2015) and may replace 

small, natural wetlands and ponds, especially in agricultural and urban landscapes (Samways 

1989a; Apinda-Legnouo et al. 2014). Compared to natural ponds, reservoirs are often of recent 

origin. Yet, reservoirs can support considerable freshwater biodiversity (Bichel et al. 2015; 

Oertli et al. 2010), and like natural ponds, can expand the area of occupancy for many aquatic 

species, often supporting rare species not in the immediate area (Samways 1989a; Oertli et al. 

2010). This may come about through provision of essential physical characteristics, such as 

vegetation structure, substrate composition, and reservoir size (Oertli et al. 2002; Nicolet et al. 

2004), or physicochemical characteristics such as elevation, temperature, and pH (Apinda-

Legnouo et al. 2014).  

Groups of ponds, natural and/or artificial, across a landscape are known as pondscapes (Hill et 

al. 2016). They are important in conservation efforts, as they support higher community 

diversity than single large ponds or reservoirs (Oertli et al. 2002; Martínez-Sanz et al. 2012). 

Pondscapes have been poorly explored in areas of the world with exceptionally high 

biodiversity. One of these areas is the Maputaland-Pondoland-Albany (MPA) biodiversity 

hotspot in South Africa, where large-scale conservation corridors of remnant land are in place 

to mitigate timber production (Pryke et al. 2015). These conservation corridors extend across 

the landscape to make up large-scale ecological networks (Samways and Pryke 2016). They 

have a rich toposcape of hills, wetlands, natural ponds, and artificial reservoirs (Kirkman and 

Pott 2002).  

With increasing pressures on water resources, there has been much interest in aquatic insects 

occupying freshwater habitats (Bowd et al. 2006; Bonada et al. 2006; Mlambo et al. 2011), as 
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a wide range of aquatic habitats lend themselves to understanding landscape ecology and 

contribute to conservation planning (McGeoch 2007). Aquatic insects make up much of the 

total freshwater fauna (Batzer and Wissinger 1996), fulfil many ecological roles (Bowd et al. 

2006; Fairchild et al. 2003), and have the potential to reflect the physical and biological state 

of ecosystems (Ormerod et al. 2009; Gerlach et al. 2013; Guareschi et al. 2012; Valente-Neto 

et al. 2016). The aquatic insects that occupy ponds, natural and artificial, in the MPA 

biodiversity hotspot are poorly studied, yet their diversity is likely to be high in view of what 

is known for dragonflies in the area (Samways 2008).  

Dragonflies are excellent model organisms for ecology (Clausnitzer et al. 2008; Samways and 

Simaika 2016), as they are taxonomically well-known, adults are easy to identify in field, they 

are highly mobile as adults, and they occupy almost any aquatic habitat. Furthermore, they are 

variously sensitive to environmental differences in relation to physical structure of the aquatic 

and aerial biotopes (Samways and Sharratt 2010) as well as in-water physicochemical 

conditions (Kietzka et al. 2016), leading to them being used in freshwater condition assessment, 

including in the MPA hotspot (Samways and Simaika 2016).  

Two additional insect groups receiving increasing attention as indicators of water quality are 

aquatic beetles and bugs (Savage 1994; Dickens and Graham 2002; Kazangaki et al. 2008). 

Twenty-four families of strictly aquatic beetles (Griffiths et al. 2015) and 17 families of true 

bugs (Reavell 2003) are known from South Africa. Aquatic beetles and bugs are highly mobile 

as adults, possess several unique morphological characteristics, have adaptations to various 

ecological conditions (Hutchinson 1933; Savage 1989), and fulfil many roles in many aquatic 

ecosystems (Griffiths et al. 2015; Stals 2003). At the family level, water beetles and water bugs 

variously respond to physicochemical change and vegetation structure (Dickens and Graham 

2002; Stals 2003; Samways 1991). However, especially in South Africa, their taxonomy and 

distribution are not well known, restricting their use as bioindicators.  

Little research has been undertaken using a range of aquatic taxa for assessing natural vs. 

artificial ponds, especially in conservation corridors designed and managed principally using 

terrestrial taxa and interactions. One study considers the drivers of the composition of various 

aquatic insect taxa composition in the MPA hotspot (Briggs 2015), in addition to that of 

dragonflies (e.g. Samways 1991; Samways 1989b; Samways et al. 1996).  
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Here, we focus on the value of pondscapes as conservation clusters, and: 1) identify the 

physical and environmental variables driving dragonfly, water beetle, and water bug species 

richness, diversity, and composition in the MPA hotspot, and 2) determine the ecological value 

of artificial reservoirs vs. natural ponds for maintaining population sizes and expanding the 

local area of occupancy for dragonflies, beetles and bugs in conservation corridors. As 

conservation corridors have proven to be an effective conservation measure for terrestrial and 

aquatic ecosystems, we identify the important features of artificial reservoirs relative to natural 

ponds for maintaining aquatic insect diversity across this production landscape.  

4.2 Sites, materials and methods 

4.2.1 Study sites 

Forty study sites were selected in the KwaZulu-Natal Midlands, South Africa: 20 natural ponds 

and 20 artificial reservoirs, in five geographical areas (Figure 4.1; Table 4.1). Sampling sites 

were selected to represent a spectrum of variation in natural quality, based on past records 

(obtained from satellite imagery) and initial inspection. Demarcation of natural pond sites was 

based on the presence/absence of hydrophilic plant species, benthic slow-flow characteristics 

of the water body, and the geomorphological setting. Only open grassland matrix valley 

bottoms and plains were considered, being the position of most ponds and reservoirs. 

Geomorphological data were obtained from the National Freshwater Ecosystem Priority Areas 

(NFEPA) database.  
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Figure 4.1 Locations of sampling areas in the Maputaland-Pondoland-Albany biodiversity 

hotspot. Pentagon: Mount Shannon Estate, diamond: Faber’s Hill Estate, circle: Good Hope 

Estate, triangle: Linwood Estate, and square: Mount Gilboa Estate. Black circles represent 

nearby towns.  
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Table 4.1 Geographic location and pond type of sampling sites in each sampling area. 

Area Site Latitude Longitude 

Mount Shannon Artificial reservoir 1 29° 42' 50" S 29° 59' 34" E 

Mount Shannon Natural pond 1 29° 42' 35" S 29° 58' 33" E 

Mount Shannon Natural pond 2  29° 42' 49" S 29° 59' 36" E 

Mount Shannon Natural pond 3 29° 42' 55" E 29° 59' 25" E 

Faber's Hill Artificial reservoir 1 29° 40' 26" S 29° 54' 57" E 

Faber's Hill Artificial reservoir 2 29° 40' 37" S 29° 56' 21" E 

Faber's Hill Artificial reservoir 3 29° 40' 20" S 29° 55' 10" E 

Faber's Hill Artificial reservoir 4 29° 44' 27" S 29° 54' 56" E 

Faber's Hill Natural pond 1  29° 40' 39" S 29° 55' 07" E 

Faber's Hill Natural pond 2 29° 40' 42" S 29° 54' 58" E 

Faber's Hill Natural pond 3 29° 40' 21" S 29° 56' 10" E 

Faber's Hill Natural pond 4 29° 40' 02" S 29° 56' 09" E 

Faber's Hill Natural pond 5 29° 40' 27" S 29° 56' 05" E 

Faber's Hill Natural pond 6 29° 44' 23" S 29° 55' 02" E 

Mount Gilboa Artificial reservoir 1 29° 14' 42" S 30° 20' 35" E 

Mount Gilboa Artificial reservoir 2 29° 14' 32" S 30° 19' 45" E 

Mount Gilboa Artificial reservoir 3 29° 14' 19" S 30° 20' 02" E 

Mount Gilboa Artificial reservoir 4 29° 15' 21" S 30° 19' 02" E 

Mount Gilboa Artificial reservoir 5 29° 14' 42" S 30° 17' 01" E 

Mount Gilboa Artificial reservoir 6 29° 14' 52" S 30° 19' 49" E 

Mount Gilboa Artificial reservoir 7 29° 15' 13" S 30° 18' 45" E 

Mount Gilboa Natural pond 1  29° 14' 44" S 30° 17' 40" E 

Mount Gilboa Natural pond 2 29° 15' 04" S 30° 15' 41" E 

Mount Gilboa Natural pond 3 29° 14' 59" S 30° 15' 05" E 

Mount Gilboa Natural pond 4 29° 14' 41" S 30° 19' 46" E 

Mount Gilboa Natural pond 5 29° 15' 15" S 30° 15' 37" E 

Mount Gilboa Natural pond 6 29° 15' 03" S 30° 14' 59" E 

Mount Gilboa Natural pond 7  29° 15' 02" S 30° 15' 03" E 

Mount Gilboa Natural pond 8 29° 14' 42" S 30° 19' 48" E 

Good Hope Artificial reservoir 1 29° 39' 18" S 29° 58' 12" E 

Good Hope Artificial reservoir 2 29° 39' 09" S 29° 58' 18" E 

Good Hope Artificial reservoir 3 29° 37' 40" S 29° 59' 06" E 

Good Hope Artificial reservoir 4 29° 40' 07" S 29° 58' 26" E 

Good Hope Natural pond 1  29° 39' 13" S 29° 57' 13" E 

Good Hope Natural pond 2  29° 39' 27" S 29° 58' 28" E 

Good Hope Natural pond 3 29° 40' 08" S 29° 58' 19" E 

Linwood Artificial reservoir 1 29° 33' 38" S 30° 05' 38" E 

Linwood Artificial reservoir 2 29° 32' 59" S 30° 06' 07" E 

Linwood Artificial reservoir 3 29° 33' 54" S 30° 06' 47" E 

Linwood Artificial reservoir 4 29° 33' 38" S 30° 05' 33" E 
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4.2.2 Data collection 

Data were collected during two sampling seasons: early summer (January-February) and late 

summer (February-March). Adult dragonfly (Odonata), water beetle (Coleoptera), and water 

bug (Hemiptera) individuals were sampled on cloudless, windless days, 10h30-15h30, once 

during each sampling season. Each insect order was treated as a separate entity, as they differ 

substantially in terms of habitat requirements and traits. Ten quadrats of 4 m2 were selected on 

the edge of the water body, and swept with an aquatic net (300 mm x 300 mm; 1000 micron 

mesh size) for 3 min to collect beetles and bugs. Quadrats were selected to represent all features 

of the water body at a depth of <1.2 m, below which aquatic insect diversity in this area drops 

off considerably (Samways et al. 1996). Collected individuals were identified to at least genus 

by making use of the Water Research Commission identification guides (Stals 2003), museum 

collections, and expert opinion (P. Reavell, pers. Comm.). In the case of adult dragonflies, two 

50 m transects were selected per site, wherein all individuals were visually recorded for 30 

min. Any other, large hawking species (e.g. Anax imperator) that were within 5 m of transects 

were also recorded. Dragonfly larvae were not included, as local larval taxonomy is not 

sufficiently well known to species level. To confirm the identity of species, individuals were 

collected with an insect net and identified using relevant field guides (Samways 2008; 

Samways and Simaika 2016). The procedure was repeated for the second sampling season. 

Two individuals of each species sampled are kept in a reference collection at the Stellenbosch 

University Entomological Museum.  

At each study site, ten point measurements of physicochemical conditions were recorded at 

each sampling depth on cloudless, windless days, 10h30-15h30: dissolved oxygen (mg/L), 

water temperature (°C), conductivity (μs), turbidity (cm visibility, using a clarity tube), and 

sampling depth (m, using a measuring pole). In addition, water body size (m2) and elevation 

(m a.s.l.) was recorded using Garmin eTrex 30 map data. Vegetation structure and composition 

was determined in five quadrats of 4 m2 at the edge of each water body. Within each quadrat, 

the percentage grass cover, percentage reed cover, percentage forb cover, average vegetation 

height, and dominant marginal and submerged plant species were recorded.  

Geomorphological data of each study site were obtained from the NFEPA database, and each 

site was ground-truthed. In the event of inaccurate classification in the NFEPA database due 

to coarse spatial scale, the particular site was reclassified in field by making use of 

geomorphological classification guidelines (Tooth et al. 2014).  
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4.2.3 Statistical analyses 

In order to determine whether sampling was sufficient and that the subset of data was 

representative of the sampling area, two species estimators were calculated and compared with 

the number of observed species (Sobs):  

𝑆𝐶ℎ𝑎𝑜2 = 𝑆𝑜𝑏𝑠 +
𝑄1

2

2𝑄2
Chao2 

Where Q1 is species occurring exclusively in one sample and Q2 species occurring in two 

samples and,  

𝑆𝑗𝑎𝑐𝑘2 =  𝑆𝑜𝑏𝑠 + [
𝑄1(2𝑚−3)

𝑚
−

𝑄2(𝑚−2)2

𝑚(𝑚−1)
] Jackknife2 

Where m is the total number of samples collected. 

The Chao2 species estimator is proven to be very effective for insect studies as non- parametric 

estimators are better for datasets with a large number of rare species. Jackknife2 species 

estimator is another effective non-parametric estimator, that is particularly unresponsive to 

sampling bias.  

Generalized linear mixed modelling was used to pre-select and test the random and fixed 

effects of environmental variables on overall species richness and abundance, as well as within 

natural ponds and artificial reservoirs, using the lme4 package in R (Bates and Sarkar 2007; R 

Core Team 2016). For species richness, the three separate models (overall effect, within natural 

ponds and within artificial reservoirs) were built with pond size, elevation, site type, 

geomorphological class of pond, vegetation height, percentage total cover, percentage reed 

cover, percentage forb cover, percentage grass cover, water depth, dissolved oxygen, water 

temperature, water conductivity, water pH, and turbidity as fixed variables, and the sampling 

season and area where the sites were located as random variables. For species abundance, a 

single overall model was built with pond type as fixed variable, and area where site is located, 

sampling season and site identity as random variables, to determine the difference in abundance 

between natural ponds and artificial reservoirs. All generalized linear mixed models were fitted 

by a Laplace approximation and a Poisson distribution. For all significant regressions, we used 

piece-wise regressions to segregate environmental data and determine the breakpoint in each 

regression using the segmented package in R (R Core Team 2016; Muggeo 2017).  

The Shannon diversity index (hereafter referred to as “diversity”), accounting for species 

abundance and evenness, was calculated for each insect order at each sampling site in R using 
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the vegan package (R Core Team 2016; Oksanen et al. 2017) and log-transformed. Linear 

mixed modelling was then used to pre-select and then test the random and fixed effect of 

environmental variables on overall insect diversity, as well as within natural ponds and 

artificial reservoirs. The three separate models (overall effect, within natural ponds and within 

artificial reservoirs) were again built with site size, elevation, site type, geomorphological class 

of site, vegetation height, percentage total cover, percentage reed cover, percentage forb cover, 

percentage grass cover, water depth, dissolved oxygen, water temperature, water conductivity, 

water pH, and turbidity as fixed variables, and the sampling season and area where the sites 

were located as random variables. The linear models were fitted by a Laplace approximation 

and a normal distribution. In the case of categorical fixed variables, categorical pairwise t-tests 

and Tukey post-hoc tests were used to determine significance. Again, for all significant 

regressions, we used piece-wise regressions to segregate environmental data and determine the 

breakpoint in each regression using the segmented package in R (R Core Team 2016; Muggeo 

2017).  

Distance-based linear modelling (DistLM), based on resemblance matrices and effects of 

multiple predictor variables, was performed to explain the variation in species composition 

using recorded environmental variables, in PRIMER version 6 (Clarke and Gorley 2006). 

Forward selection of environmental variables was used, meaning that each environmental 

variable was added into the analysis until no significant effect on the species composition was 

evident. In addition, permutational multivariate analyses of variance (PERMANOVA) were 

used to determine the difference in environmental variables between natural ponds and 

artificial reservoirs. 9999 permutations were used to determine effects of environmental 

variables on the overall species composition of the three orders, as well as within each water 

body type. Permutational analyses were used to randomize factors and to select the factors that 

explained species composition the best. The Bray-Curtis similarity measure (which measures 

species composition based on the abundance of each species) was used to evaluate species 

composition of all groups.  

4.3 Results 

A total of 61 lentic species were sampled (4 895 individuals), comprising 27 dragonfly species 

(1 053 individuals), 16 beetle species (658 individuals) and 18 bug species (3 184 individuals). 

The number of observed species (Sobs) neared the estimated number of species (Chao2 and 
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Jackknife2) across the insect orders, as well as within each pond type. This indicated that 

sampling was sufficient, and that the subset of data is representative (Appendix S4.1). For the 

complete list of species, refer to Appendix S4.2.  

4.3.1 Influence of environmental variables on species richness, abundance and insect 

diversity  

Overall dragonfly species richness and diversity increased with an increase in water 

temperature, but diversity decreased with an increase in % forb cover (Table 4.2). There was a 

significant negative relationship between water body size, and dragonfly species richness, 

although dragonfly diversity increased with water body size, until a size of about 20 260 m2 

was reached, after which diversity decreased significantly (t = 10.4; p < 0.001). There was no 

significant difference between dragonfly abundance for natural ponds and artificial reservoirs 

(t = 0.6; p = 0.532). For natural ponds, dragonfly species richness and diversity increased with 

an increase in water temperature and % reed cover. Natural ponds in valley bottoms had 

significantly higher dragonfly species richness and diversity over natural ponds on open plains. 

In the case of artificial reservoirs, dragonfly species richness decreased with an increase in 

water body size. An increase in dissolved oxygen, sampling depth, % reed cover, and % grass 

cover gave an increase in dragonfly species richness. Dragonfly diversity decreased with an 

increase in dissolved oxygen, and in the case of % forb cover, decreased until about 22% cover 

was reached, above which there was an increase in diversity (t = 9.8: p < 0.001). Dragonfly 

diversity increased with water body size until about 15 400 m2, after which diversity decreased 

(t = 11.5; p < 0.001). For a summary on the ranges of measured environmental variables, 

consult Appendix S4.3. 
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Table 4.2 Effects of environmental variables on the overall species richness and diversity, and in the two water body types, natural vs. artificial. 

Chi square values are indicated, and t-values are indicated in bold in the case of categorical variables. (+): positive correlation; (-): negative 

correlation; (+/-): initial positive correlation; (-/+): initial negative correlation. Significance levels *: p < 0.05; **: p < 0.01; ***: p < 0.001 

Overall Natural Ponds Artificial reservoirs 

Species richness Shannon index Species richness Shannon index Species richness Shannon index 

Dragonflies Water body size (-)4.091* (+/-)13.036*** (-)17.066*** (+/-)26.098*** 

Temperature (+)8.815** (+)10.584** (+)6.521* 

Dissolved oxygen (+)10.919*** (-)4.196* 

Depth (+)6.64** 

% Reed cover (+)7.191* (+)3.894* (+)4.660* 

% Grass cover (+)3.928* 

% Forbs cover (-)4.104* (-/+)5.284* 

Geomorph class -3.154** -2.26* -6.252***

Beetles Depth (-)9.376** (-)4.403* 

Temperature (-)4.285* (-)4.408* (+)8.523** (+)23.155*** 

Conductivity (-)4.436* (-)4.743* 

pH (+)15.795*** 

Dissolved oxygen (-)17.851*** 

Elevation (-/+)8.317** 

% Forbs cover (+)9.526** (+)5.351* 

% Reed cover (-)9.970** 

Water body type 3.070** 2.636* 

Bugs Temperature (+)5.564* (+)7.361* (+)4.328* 

Conductivity (-)6.743* 

% Grass cover (-/+)9.814** 
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Type of water body (natural pond vs. artificial reservoir) had a significant effect on overall 

beetle species richness (Table 4.2), with natural ponds supporting more species. Overall beetle 

species richness increased with a decrease in water temperature and conductivity, while species 

richness decreased with an increase in water depth. There was no significant difference 

between beetle abundance for natural ponds and artificial reservoirs (t = -0.3; p = 0.077). For 

natural ponds, beetle species richness and diversity increased with water temperature, although 

beetle species richness decreased with increasing water depth. Beetle diversity increased with 

an increase in water pH, and decreased with increased dissolved oxygen and % reed cover. 

Beetle diversity decreased with increasing elevation, but above 1 500 m a.s.l., diversity 

increased (t = 0.9; p = 0.036). For artificial reservoirs, beetle species richness and diversity 

increased with increased % forb cover.  

Overall bug species richness increased with water temperature but decreased with increased 

conductivity (Table 4.2). There was no significant difference between bug abundances for 

natural ponds and artificial reservoirs (t = 0.1; p = 0.928). For natural ponds, bug species 

richness and diversity increased with water temperature. For artificial reservoirs, bug species 

richness decreased with an initial increase % grass cover but increased above 13% grass cover 

(t = 9.795; p < 0.001).  

4.3.2 Influence of environmental factors on dragonfly, beetle and bug assemblages  

Pond type (natural vs. artificial) had a significant effect on dragonfly (pseudo-F = 3.08), beetle 

(pseudo-F = 3.12) and bug (pseudo-F = 2.97) assemblages, respectively. Within each water 

body type, the geomorphological class had no effect on the species assemblage of any of the 

three groups. Of the 13 environmental variables measured, distance based on linear modelling 

(DistLM) selected six variables as significant to overall aquatic insect species composition. 

These were water temperature, pH, conductivity, depth, pond size and elevation (Table 4.3; 

Figure 4.2). Water turbidity, dissolved oxygen, % reed cover, % forb cover, total % vegetation 

cover, and vegetation height did not influence species composition. For overall dragonfly 

species composition, 14.3% of the variation was explained by water temperature, 7.8% 

explained by water body size, 4.8% explained by elevation, and 1.9% explained by water depth. 
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Table 4.3 Distance based on linear modelling (DistLM) sequential results indicating 

environmental variables most descriptive of aquatic insect species composition structure 

between habitat types.  

Significance levels *: p < 0.05; **: p < 0.01; ***: p <  0.001 

Group Type 
Environmental 

variables 
F 

Variation 

explained 

(%) 

Cumulative variation 

explained (%) 

Dragonflies Overall Temperature 5.181*** 14.29 14.29 

Water body size 2.792** 7.83 22.12 

Elevation 2.437* 4.79 26.91 

Depth 2.692* 1.93 28.84 

Ponds Temperature 4.556*** 20.2 20.2 

Reservoirs Temperature 3.177** 19.01 19.01 

Water body size 3.033** 27.87 46.88 

Beetles Overall pH 3.522*** 8.48 8.48 

Ponds pH 2.288* 11.28 11.28 

Reservoirs Depth 1.748* 8.85 8.85 

Bugs Overall Temperature 3.535*** 11.56 11.56 

Conductivity 3.032** 6.84 18.4 

Water body size 2.308* 2.13 20.53 

Ponds Temperature 3.399*** 15.89 15.89 

Reservoirs % Grass cover 4.122* 18.63 18.63 
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Figure 4.2 Distance-based redundancy analysis (dbRDA) results indicating significant effects 

of environmental variables on insect species composition. Vectors represent the effect of 

environmental variables on dragonfly (A), beetle (B) and bug (C) species composition between 

natural ponds (open circles) and artificial reservoirs (filled circles). Axes represent Bray-Curtis 

distance measure.  
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For overall beetle species composition, water pH explained 8.5% of total variation, and for 

overall bug species composition 11.6% of the variation was explained by water temperature, 

6.8% by conductivity, and 2.1% by water body size. Two variables (water temperature and pH) 

influenced species composition in natural ponds (Table 4.3). Water temperature explained 

20.2% of the variation in dragonfly species composition, and 15.9% of the variation in bug 

species composition. Water pH explained 11.3% of the variation in beetle species composition. 

Four environmental variables influenced species composition in artificial reservoirs. These 

were water temperature, depth, water body size, and % grass cover. Water temperature and 

water body size explained 19.0% of the variation and 27.9% of the variation in dragonfly 

species composition respectively. Sampling depth explained 8.9% of the variation in beetle 

species composition and % grass cover explained 18.6% of the variation in bug species 

composition.  

15% of the sampled dragonfly species were unique to natural ponds (Figure 4.2). These were 

Chlorolestes fasciatus, Elattoneura glauca, Proischnura rotundipennis and Zosteraeshna 

minuscula. No dragonfly species was unique to the artificial reservoirs. 25% of beetle species 

was unique to natural ponds (Figure 4.2), and included Amphiops sp., Aulonogyrus sp. 1, 

Copelatus sp., Derovatellus sp. and Orectogyrus sp., and 13% unique to artificial reservoirs, 

and included Aulonogyrus sp. 2 and Hydropeplus sp. 28% of the bug species sampled was 

unique to natural ponds (Figure 4.2). These were Borborophilus afzelii, Laccotrephes 

brachialis, Limnogonus capensis, Ranatra grandicollis and Sigara pectoralis. No bug species 

were unique to the artificial reservoirs.  

4.4 Discussion 

4.4.1 Relative significance of the environmental variables 

We found that any one of the investigated habitat descriptors cannot be substituted by another, 

and the focal taxa respond to each in different ways. As a result, high habitat heterogeneity 

created by the combination of environmental variables and pond types which maintain high 

insect diversity. Aquatic habitat heterogeneity in the form of vegetation complexity, substrate 

structure, and/or physicochemical characteristics are important for aquatic insects (Karaouzas 

and Gritzalis 2006; MacArthur and MacArthur 1961; Fairchild et al. 2000), and adult, 

terrestrial dragonflies (Kietzka et al. 2016), as we found here. This supports earlier studies 

(Mlambo et al. 2011; Fairchild et al. 2003; Kietzka et al. 2016; Drake 1990; Karaouzas and 
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Gritzalis 2006), whether at the regional scale (Scheffer et al. 2006), or at the finer scale of the 

pondscape (Hill et al. 2016; Samways and Pryke 2016).  

Many dragonflies occupying lentic habitats require marginal and/or submerged vegetation 

(Mlambo et al. 2011; Samways 2008; Samways and Simaika 2016) as perching sites, substrate 

for larvae to seek refuge, and to emerge as adults (Osborn and Samways 1996). Furthermore, 

vegetation provides habitat for food items for both adult and larval dragonflies. Here, margins 

of natural ponds were predominantly covered by a mixture of grasses and forbs, with little 

variation between ponds, and were neither extensive, nor casting much shade which otherwise 

diminishes local dragonfly assemblages (Samways and Sharratt 2010).  

Artificial reservoirs had less marginal grasses and forbs coverage, more reed coverage, and 

were rich in submerged aquatic weeds (dominated by Elodea spp.). These seemingly open 

habitats favour early aquatic beetle and bug colonization (Fernando 1958; Bloechl et al. 2010; 

Scheibler et al. 2016). However, consistent with recent suggestions (Mlambo et al. 2011; 

Fairchild et al. 2003; Juliano 1991), beetle species richness and diversity was positively 

correlated with increased forb cover in artificial reservoirs. Vegetation with complex growth 

forms allows Dytiscidae and Gyrinidae to exit the water when macerating prey (Balduf 1935), 

allows for the completion of their life cycles (Galewski 1971), and provides refuge against 

predators (Verberk et al. 2016), all of which are important for improving their persistence. As 

reeds are generally tall and throw much shade, few beetles select reedy stands as microhabitat. 

We found that only grass cover significantly drove bug species composition in artificial 

reservoirs, the reason for which is possibly the presences of some scavenger families (here, 

Hebridae, Hydrometridae and Veliidae) having a strong preference for vegetated margins, 

being surface dwellers that require emergent vegetation as refuge (Fairchild et al. 2003; 

Griffiths et al. 2015).  

Consistent with previous studies, adult dragonflies (Kietzka et al. 2016; Simaika et al. 2016), 

aquatic beetles (Mlambo et al. 2011; Briggs 2015) and aquatic bugs (Karaouzas and Gritzalis 

2006) respond to in-water physicochemical conditions. Although it has been suggested that 

adult dragonflies are likely unable to assess water biochemistry directly (Valente-Neto et al. 

2016), it has been found that in South Africa they actually can do so (Kietzka et al. 2016), but 

this is secondary to the primary response to certain visual cues from vegetation (Osborn and 

Samways 1996; Michiels and Dhondt 1990; Schindler et al. 2003).  
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The beetles and most bugs sampled here are water-dwelling during their adult and larval stages, 

and might also be capable of assessing water biochemistry directly. Nevertheless, moderate 

water temperature increases activity (Samways et al. 1996; Scheibler et al. 1996) and shortens 

larval development time (Osborn and Samways 1996) for dragonflies, beetles and bugs 

occupying both natural ponds and artificial reservoirs. For these reasons, most aquatic beetles 

occupy ponds characterized by moderate water temperature, yet dragonflies (and their larvae) 

and bugs may be able to tolerate slightly elevated water temperature. The effect of dissolved 

oxygen on dragonflies was only detected in artificial reservoirs, where oxygen levels were 

much more variable. In general, dragonfly larvae are reliant on dissolved oxygen for 

respiration, unlike adult beetles and bugs, being atmospheric breathers (Griffiths et al. 2015; 

Skaife 1979). Artificial reservoirs rich in dissolved oxygen were predominantly occupied by 

zygopterans, as most anisopterans (the majority sampled here) are physiologically better 

equipped to tolerate low dissolved oxygen conditions. Furthermore, high aquatic beetle 

diversity in natural ponds was associated with lower dissolved oxygen, as higher dissolved 

oxygen might be synonymous with presence of predatory vertebrate species, although not 

directly measured here.  

Fluctuating conductivity as a proxy for salinity (Bird et al. 2014) determines overall aquatic 

beetle and bug species richness, and shapes aquatic bug assemblages, as high salinity interferes 

with metabolic capabilities and water retention in aquatic insects (Baker and Christensen 

1991). Here, only aquatic beetle diversity in natural ponds showed a response to water pH, 

suggesting that most of our aquatic beetles have a strong preference for slightly alkaline waters, 

related to their physiology and development (Friday 1987).  

Overall, natural ponds and artificial reservoirs were clearly distinct in physical characteristics 

(size and depth). Artificial reservoirs here were much larger and deeper than the natural ponds. 

Island biogeography theory suggests that larger water bodies should sustain higher species 

richness and a more complex species composition (MacArthur and Wilson 1967). However, 

our findings suggest that dragonflies have a preference for maintained intermediate-sized 

natural ponds, as they provide a suitable number of microhabitats throughout the season, 

reducing competition for resources (Pryke et al. 2015; Kadoya et al. 2004). The water level of 

large artificial reservoirs may also fluctuate more than natural ponds as a result of agricultural 

abstraction and seasonal variation (Pryke et al. 2015; Samways 2008). Similarly, the water 

level of small natural ponds may fluctuate greatly between seasons. In both cases, marginal 
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and submerged vegetation is exposed (Kadoya et al. 2004), increasing competition for suitable 

microhabitats, as was the case in our area (Shulze 1982).  

We found that water body size and depth are less important to chance colonization by aquatic 

beetles and bugs. Most are highly mobile as adults and occupy mostly the shallow edges 

regardless of water body size (Fairchild et al. 2003; Davy-Bowker 2002). Water depth > 1.2 m 

sees a great drop in temperature and dissolved oxygen, combined with a decrease in aquatic 

insect richness and abundance in our area (Samways et al. 1996). Although size and depth are 

apparently of lesser importance to them than fine vegetation characteristics, larger and often 

deeper artificial reservoirs are still occupied by widespread generalist species (here, the largest 

proportion of beetles and bugs sampled), partly because larger size of a water body means a 

higher likelihood of being found by aerial and potential colonizing individuals moving across 

the landscape (MacArthur and Wilson 1967; Shieh and Chi 2010).  

We found that geomorphology of natural ponds was a significant descriptor of dragonfly 

species richness and diversity, but not of aquatic beetle and bug species richness, diversity or 

composition, suggesting that most beetle and bug species here occupy both the grassy valley-

bottom and open plain ponds. Geomorphology cannot fully be used as a measure of 

permanency, but remains important to consider as it is likely to be related to the relative age of 

ponds, determine variability in physicochemical characteristics (Kietzka et al. 2016) and 

climatic factors such as wind speed, surface water run-off, and variation in marginal/submerged 

vegetation structure (Tooth et al. 2014), all of which contribute to habitat heterogeneity.  

Among the narrow range of elevations we investigated (~1100–1500 m), there was little effect 

of elevation on overall dragonfly species richness and diversity, but wide elevation gradients 

over hundreds of meters significantly influence dragonfly species assemblages in this region 

(Samways 1989b). Here, the three dragonfly species C. fasciatus, A. nigridorsum and P. 

jucunda were present only at the highest elevations, A. pinheyi and Z. minuscula at intermediate 

elevations, and P. rotundipennis only at low elevations. With changing elevation, habitat 

characteristics related to vegetation composition and temperature change, resulting in a 

subsequent change in dragonfly species’ assemblages as different microhabitats become 

available/unavailable (Samways 1989b; Mendoza and Catalan 2010). Here, low beetle 

diversity was associated with natural ponds at intermediate elevations, but showed an increase 

at higher elevations. High beetle diversity probably arises from high species turnover between 
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lentic and lotic habitats at higher elevations (Biggs et al. 2005; Picazo et al. 2010) and high 

microhabitat availability in natural ponds at low elevations respectively (Guareschi et al. 2012). 

Increased aquatic bug species richness and diversity can be associated with increased elevation 

(Scheibler et al. 2016), but we did not find that here across our short elevation range. Aquatic 

bugs in this area are mainly widespread generalists (Griffiths et al. 2015; Reavell 2003) 

possessing great plasticity (Polhemus 2008), allowing them to occupy a variety of aquatic 

environments. The range of elevations investigated here might simply have been too narrow to 

detect differences in bug species richness and assemblages.  

4.4.2 Added ecological value of artificial reservoirs 

Range-restricted species (e.g. P. rotundipennis, a localized endemic damselfly), habitat-

specific species (e.g. deposition pools coupled with bushes for oviposition, C. fasciatus (a 

damselfly); cool, shallow water, B. afzelii and L. brachialis, both bugs) and nearly one third of 

beetles did not occupy the artificial reservoirs, as their preferred microhabitats were only 

available in natural ponds. Nevertheless, most of the sampled species were shared between 

natural ponds and artificial reservoirs (75% overall; 84% of dragonflies, 62% of beetles and 

72% of bugs), including two South African endemic dragonflies (A. sapphirinum and A. 

leucosticta), and one endemic beetle (Algophilus sp.).  

Comparatively, there was little difference in abundance between natural ponds and artificial 

reservoirs across all three insect taxa. This suggests that artificial reservoirs function well in 

maintaining local population sizes, expanding the area of occupancy and, as natural ponds and 

artificial reservoirs are interspersed and close together, improve functional connectivity for 

most pond species. However equally important is the landscape context, as many species 

require areas away from water to mature, forage, roost, and seek out hibernation sites (Conrad 

et al. 1999). The conservation management activity of setting aside remnant corridors in and 

among plantation compartments provides suitable habitats and makes up ecological networks 

(Samways and Pryke 2016) improving ecological resilience across the pondscape for aquatic 

insects. Although not directly measured here, dispersal ability should in part determine how 

well aquatic insects use landscape-scale ecological networks in addition to ecological 

preference (Vogler and Ribera 2003; Rundle et al. 2007). Most aquatic insects sampled here 

are highly mobile as adults, enabling them to move readily between interspersed lentic habitats 
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and track favourable ecological conditions (Fairchild et al. 2003; Conrad et al. 1999; Landin 

1980; Arribas et al. 2012). 

4.5 Conclusion 

The relatively similar environmental conditions in artificial reservoirs and natural ponds meant 

that most local species occupied the reservoirs (through similar levels of species richness, 

abundance and assemblage composition), emphasizing their great conservation value. 

Importantly however, it is the whole pondscape that is required to provide the wide range of 

environmental variables necessary to support this diversity. This is supported by no one 

environmental variable driving all the aquatic diversity in the same way. A range of pond types 

does this, as they provide a range of abiotic and biotic conditions. While the ideal is to achieve 

this with only natural ponds to support all the local diversity, reservoirs nevertheless go a long 

way to enhance the local abundance of most aquatic species.  

Nearly a quarter of the species occupied only natural ponds, indicating the fundamental 

importance of natural ponds if we are to conserve all the local aquatic diversity. Yet, artificial 

reservoirs as part of a functioning pondscape in large-scale conservation corridors, improve 

much aquatic diversity and abundance, so contributing to improved resilience in the face of 

climate and land-use change. They do this principally by increasing the area of occupancy for 

most species.  
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Chapter 5 Aquatic insects decline in abundance and occupy low‐

quality artificial habitats to survive hydrological droughts 

*Published as: Deacon, C., Samways, M.J. and Pryke, J.S. 2019. Aquatic insects decline in

abundance and occupy low quality artificial habitats to survive hydrological droughts. 

Freshwater Biology 64: 1643-1654. DOI: 10.1111/fwb.13360. 

Abstract 

Hydrological extremes have negative impacts on natural, agricultural, and urban landscapes 

and place substantial ecological pressure on freshwater habitats. However, the role of artificial 

freshwater habitats during hydrological drought is poorly understood. Insects make up much 

of total aquatic fauna and lend themselves to understanding how drought impacts freshwater 

ecosystems. Using the Greater Cape Floristic Region as an example of a drought‐prone area, 

we determined the effects of a severe drought on a subset of insects occupying lentic habitats 

in terms of their species richness, diversity, and assemblage composition. Here, we: 1) 

calculated the percentage change in average precipitation between a record dry season and the 

last consistently wet decade, 2) identified the environmental variables driving aquatic insect 

species richness, diversity and composition, 3) identified the environmental differences 

between natural ponds and artificial reservoirs, 4) determined whether artificial reservoirs act 

as suitable habitats for focal taxa during drought, and 5) compared these results to other, pre‐

drought studies. Environmental variables related to water chemistry and physical 

characteristics were drivers of species richness, diversity, and composition, yet vegetation 

cover remained a major driver. In terms of marginal vegetation cover, most artificial reservoirs 

did not resemble natural ponds, yet overall 38.4% of sampled aquatic insect species were 

shared between natural ponds and artificial reservoirs. We found some rare endemic species in 

artificial reservoirs that had never before been recorded in this habitat during wet years. When 

our drought findings were compared to earlier, wet years, species richness did not change 

significantly, although abundance was much lower during the drought year. We postulate that 

historically, these aquatic insects, which have been through many ecological filters such as 

drought, must have sought low‐quality habitats to survive water stress periods. Artificial 

reservoirs, being novel landscape features, cannot fully replace natural ponds, but enable some 

aquatic insects to survive drought. Artificial reservoirs can be attractive habitats to aquatic 
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insects when they resemble natural ponds, with specific reference to their marginal vegetation 

characteristics.  

Keywords: climate change, community, conservation, invertebrates, physical environment, 

ponds  

5.1 Introduction 

Hydrological extremes are increasing in frequency and magnitude in the face of 

anthropogenically induced climate change and have negative impacts on natural and agro‐

ecosystems (Dai 2013). Future precipitation patterns are predicted to be highly variable 

(Trenberth et al. 2014) and their ecological effects are often only visible after environmental 

conditions recovered to the pre‐impacted state (Bond et al. 2008; Mosley 2015). The effects of 

hydrological extremes on lotic ecosystems are fairly well understood (e.g. Bond et al. 2008; 

Dahm et al. 2003), yet their effects on biotic communities occupying lentic ecosystems have 

received much less research attention.  

In its simplest terms, drought is defined as an extended period of below‐average precipitation 

relative to the statistical multi‐year mean for a particular region (Druyan 1996) and is 

characterised by its duration, intensity, and spatial extent. Most droughts in the southern 

hemisphere are linked to the El Niño/Southern Oscillation phenomenon (Pohl et al. 2009; 

Schiewer 1998) and can be separated into four categories: hydrological, meteorological, 

agricultural, and socio‐economic (Bond et al. 2008). During hydrological droughts, substantial 

ecological pressure is placed on freshwater habitats through changes in the hydrological cycle 

and water levels, with cascading effects on water quality related to elevated water temperature, 

lower re‐aeration, and changes in re‐mineralisation processes (Bunn and Arthington 2002; 

Collinson et al. 1995; Mosley 2015).  

Natural ponds, which are associated with drainage lines, are impacted by drought through 

decreased stream input and surface runoff, as well as increased evaporation rates (Bond et al. 

2008). They are generally well vegetated, occupied by many permanent and semi‐permanent 

aquatic populations and are high‐quality habitat islands for several endemic aquatic plants and 

insects (Bilton et al. 2008; Mlambo et al. 2011). However, during drought periods, the drop in 

water level exposes the productive littoral zone (Furey et al. 2006) and diminishes aquatic and 
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amphibiotic biological communities (Bond et al. 2008). These small and isolated lentic habitats 

are also extremely vulnerable to agricultural activity and urbanisation, especially so in 

interaction with anthropogenic climate change (Declerck et al. 2006; Kotze et al. 1995).  

Artificial reservoirs are common modern landscape features in arid and semi‐arid countries 

(Apinda‐Legnouo et al. 2014) with the main function of storing water (Votruba and Broža 

1989) to alleviate the effects of seasonal drought on the agricultural and socio‐economic 

sectors. Some artificial reservoirs are constructed in ancient waterways, and are frequently 

disturbed, low‐quality aquatic habitats, evident through their fluctuating water levels and 

general lack of marginal and submerged vegetation. However, artificial reservoirs with high 

water levels at the start of the wet season, and rich marginal vegetation, are attractive to aquatic 

biodiversity (Janssen et al. 2018; Nicolet et al. 2004; Oertli et al. 2002; Williams et al. 2008). 

These novel aquatic habitats increase the overall area of occupancy of several insect groups 

and can act as refuges by offering stable conditions during environmental stress (Osborn and 

Samways 1996; Samways 1989a).  

Many aquatic taxa that occupy drought‐prone lentic habitats have various resistance (related to 

life history) and resilience (related to dispersal and recolonisation) traits that enable them to 

survive droughts (Humphries and Baldwin 2003). However, some studies provide evidence 

that droughts have severe impacts on riparian and aquatic communities, leading to significant 

population declines (Jenkins and Boulton 2007; Osborn and Samways 1996; Samways and 

Niba 2010) and in some cases, local and regional extinctions (Boulton and Lake 2008). Aquatic 

insects make up much of total aquatic fauna (Batzer and Wissinger 1996) and fulfil several 

important biological and ecological roles. As such, aquatic insects can serve as indicators of 

environmental quality, and aid in understanding how droughts impact freshwater ecosystems 

(Apinda‐Legnouo et al. 2014; Bird 2010; Mlambo et al. 2011; Simaika et al. 2016).  

Dragonflies are excellent indicators of habitat quality as they are highly sensitive to local 

environmental changes, are well known taxonomically, are highly visible and widely 

distributed, and have life cycles with aquatic larval and terrestrial adult stages. Adults are 

highly mobile and respond strongly to vegetation composition (Kietzka et al. 2016; Samways 

and Niba 2010), allowing them to select suitable habitats (Samways and Sharratt 2010). As a 

result, diminishing or improving habitat conditions can be ascertained from the complement of 

dragonfly assemblages occupying various freshwater habitats.  
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Aquatic beetles and bugs are receiving increasing attention as indicators of water quality 

(Apinda‐Legnouo et al. 2014; Mlambo et al. 2011) as most are highly mobile as adults and 

fulfil many roles in aquatic ecosystems as herbivores, detritivores, and predators (Scholtz and 

Holm 1985). Both groups are atmospheric breathers, have amphibious adult stages (although 

they spend most time in the water) and are sensitive to biotic (e.g. aquatic and/or marginal 

vegetation structure, conspecific densities, presence of predators) and abiotic factors (e.g. water 

chemistry, climatic factors, habitat change) within their aquatic and terrestrial habitats 

(Karaouzas and Gritzalis 2006; Lytle 2015; Yee and Kehl 2015). Aquatic beetles and bugs are 

good indicators of localised conditions of lotic ecosystems at coarse taxonomic scale (Dickens 

and Graham 2002), with different families responding to varying degrees of environmental 

change (Stals and de Moor 2007).  

As there is limited information available on the response of lentic insect assemblages to drought 

events, we determined here whether artificial reservoirs, being novel landscape features, acted 

as supplementary habitats for dragonflies, beetles, and bugs occupying natural ponds using 

biological and environmental data obtained from the Greater Cape Floristic Region (GCFR) 

biodiversity hotspot (Mittermeier et al., 2004) during drought. We had five main objectives: 1) 

to calculate the percentage change in average precipitation between the sampling period and 

the last consistently wet decade, 2) to identify the environmental variables driving aquatic 

insect species richness and composition, 3) to identify environmental differences between 

natural ponds and artificial reservoirs, 4) to determine whether artificial reservoirs can act as 

suitable habitats for the focal taxa during drought; and, finally, 5) to compare our results with 

other, pre‐drought studies on the focal insect taxa in the same study area. These results will 

identify the key environmental differences between natural ponds and artificial reservoirs, and 

identify the important features of lentic habitats for supporting high aquatic insect species 

richness and diversity under extreme drought conditions. 

5.2 Methods 

5.2.1 Study sites 

The GCFR received highly variable precipitation during the last 2 decades (Botai et al. 2018) 

in combination with increasing intensity and frequency of heat addition (Dai 2013; Mosley 

2015; Trenberth et al. 2014). As in many parts of the world, this has led to one of the driest 
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hydrological years in the GCFR on record (years 2016–2017, Botai et al. 2018). Sixteen 

perennial natural ponds and 16 perennial artificial reservoirs were selected across the GCFR, 

from seven geographic locations, based on site availability and to represent regional 

biodiversity and a range of environmental conditions: Betty's Bay (two natural ponds), 

Cederberg (three natural ponds), Grabouw (five natural ponds, four artificial reservoirs), 

Franschhoek (four natural ponds), Stellenbosch (three artificial reservoirs), Somerset West 

(nine artificial reservoirs), and Worcester (two natural ponds; Figure 5.1).  

Figure 5.1 Locations of sampling sites in the Greater Cape Floristic Region. Pentagon: 

Cederberg; diamond: Worcester; star: Franschhoek; hexagon: Stellenbosch; triangle: Somerset 

West; circle: Grabouw and square: Betty's Bay. Filled circles represent nearby towns. 

5.2.2 Precipitation anomalies 

Merged microwave‐infrared precipitation rate and root‐mean‐square precipitation‐error 

estimated precipitation data (mm/month; quarter degree spatial resolution) were obtained from 

the NASA EarthData Portal (Tropical Rainfall Measuring Mission 2011) for March–August 

for the years 2000–2009 (the last consistently wet decade) and 2016–2017 (the dry sampling 

season). The average monthly precipitation was calculated for March–May (2000–2009 and 

2016–2017, respectively), and June–August (2000–2009 and 2016–2017, respectively) in 
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QGIS (Quantum GIS Development Team 2017). To calculate the percentage precipitation 

change during 2016–2017, the monthly precipitation average of March–May and June–August 

were subtracted from the monthly precipitation average of March–May and June–August 

2000–2009.  

5.2.3 Field data collection 

Sampling was over two seasons, spring 2016 (September– November) and autumn 2017 

(February–April), on cloudless, windless days, between 10h30 and 15h30. All adult individuals 

of dragonflies (Odonata), water beetles (Coleoptera), and water bugs (Hemiptera) were 

sampled. Ten quadrats of 4 m2 were selected along the edge of both natural ponds and artificial 

reservoirs, and swept with an aquatic net (300 mm × 300 mm; 1,000‐μm mesh size) for 30 min 

to collect beetles and bugs. Quadrats were selected to represent all structural features of the 

water body and no deeper than 1.2 m, below which aquatic insect diversity declines 

significantly in the region (Samways, 1996). Collected individuals were identified to species 

using Stals and de Moor (2007) and Griffiths et al. (2015), as well as museum collections. For 

adult dragonflies, two 50‐m long and 6‐m wide transects were selected per site, in which all 

adult dragonflies were recorded for a total time of 30 min. Hawking dragonfly species (e.g. 

Anax speratus, Zosteraeshna minuscula) that were within a few metres of transects were also 

included. Reference individuals are housed in the Entomology Museum, Stellenbosch 

University.  

At each study site, 10 point measurements of environmental parameters were recorded at the 

time of aquatic sweeping and averaged for each study site. These parameters were: water 

temperature (°C), dissolved oxygen (mg/L), conductivity (μS), pH, and water clarity (cm 

visibility). In addition, elevation (m above sea level), sampling depth (m), and water body size 

(m2) were recorded. Vegetation community composition and structure was determined in five 

random quadrats of 4 m2 along the edge of each water body. Within each quadrat, the % grass 

cover, % reed cover, % forbs cover, % total cover, and average vegetation height were 

recorded.  

5.2.4 Statistical analyses  

The Shannon diversity index (referred to as ‘diversity’ from here on), reflecting species 

dominance and relative abundance, was calculated for each insect order occupying each pond 
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type in R using the vegan package (Oksanen et al. 2017; R Development Core Team 2016). 

Generalised linear mixed models with Poisson distribution were calculated for dragonfly, 

beetle, and bug species richness for all ponds as well as for each taxon in natural ponds and 

artificial reservoirs separately. Further depending on the distribution of the data, generalised 

linear models with binomial distribution or linear mixed models with Gaussian distribution 

were created for dragonfly, beetle and bug diversity overall for all ponds as well as for each 

taxon per natural ponds and artificial reservoirs to test the effects of environmental variables 

on species richness and diversity in R using the lme4 package (Bates and Sarkar 2007; R 

Development Core Team 2016). These models were individually built for each focal taxon 

with pond size, elevation, pond type, vegetation height, % total vegetation cover, % reed cover, 

% forbs cover, % grass cover, sampling depth, dissolved oxygen, water temperature, water 

conductivity, water pH, and water clarity as fixed variables (18 separate models in total). The 

geographic distances between study sites were included as an additional fixed variable for all 

overall models. For generalised linear mixed models and generalised linear models, the seven 

locations where the sites were situated were included as a categorical spatial random variable 

as the data were spatially dependent, and these models were fitted by a Laplace approximation. 

In the case of categorical fixed variables, categorical pairwise t‐tests and Tukey post hoc tests 

were used to test for significance. For all significant regressions for both species richness and 

diversity models, piecewise regressions were performed to determine whether regressions had 

break points in their relationships between environmental variables and response variables, 

using the Segmented package in R (Muggeo 2017; R Development Core Team 2016).  

Principal coordinates of neighbourhood matrices (PCNMs) were used to determine the 

variation in species composition in relation to environmental variables and spatial structuring 

(i.e. geographic distances between sampling sites) in R using the vegan package (Oksanen et 

al. 2017; R Development Core Team 2016). To standardise biological datasets, Hellinger 

transformations were performed. The significant contribution to biological community 

variation, by each environmental variable and spatial structuring, was determined using 999 

permutations of redundancy analyses for each focal taxon individually. Chi‐squared tests were 

used to determine whether natural ponds and artificial reservoirs were significantly different in 

terms of physical and environmental properties.  

Biological data were compared with pre‐drought studies, following the same sampling 

methods, in the same geographic area for dragonflies (Simaika et al. 2016; field data obtained 
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2014– 2015), beetles and bugs (Apinda‐Legnouo et al. 2014; field data obtained 2005–2006). 

Although the sampling period of Simaika et al. (2016) did not coincide with the last 

consistently wet decade (2000–2009), past rainfall data suggested that the period 2010–2015 

had an average annual rainfall just below the historical annual average (Tropical Rainfall 

Measuring Mission 2011). As a result, the biological communities occupying lentic habitats in 

the study region during 2010–2015 were likely to be similar to those that were present during 

the last consistently wet decade. Average insect density for each taxon was calculated by 

dividing the abundance per taxon by the number of samples taken, for the pre‐drought studies 

and biological data here, respectively. To calculate the change in average insect density 

between our data and the pre‐drought studies, the average densities calculated here were 

divided by the average densities for the pre‐drought studies, and converted to percentage 

change in density. 

5.3 Results 

5.3.1 Precipitation deficit in the GCFR 

The average precipitation rate for March–May 2000–2009 (the last consistently wet decade) 

ranged between 25 mm/month in the northern (Cederberg) area and 73 mm/month in the 

southern (Betty's Bay) area (Table 5.1). For June–August 2000–2009, the average monthly 

precipitation rate ranged from 60 mm/month in the northern area to 163 mm/month in the 

southern area. For March–May 2016–2017, overall average precipitation was much lower than 

for 2000–2009 (Table 5.1), ranging from 8 mm/month below average in the northern area and 

40 mm/month below average in the southern area. During June–August 2016–2017, 

precipitation deficit was magnified with 22 mm/month below average in the northern area and 

43 mm/month below average in the southern area.  
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Table 5.1 Average rain season precipitation rate for the Greater Cape Floristic Region in 

mm/month and percentage difference (bold) of 2016–2017, for each sampling location. 

(-) Indicates below the monthly average of 2000–2009. 

5.3.2 Species sampled in the GCFR 

A total of 45 lentic species were recorded (5,069 individuals), comprising 22 dragonfly species 

(510 individuals; 20 species for natural ponds; 12 species for artificial reservoirs), 12 beetle 

species (665 individuals; 11 species for natural ponds; five species for artificial reservoirs), and 

11 bug species (3,894 individuals; 11 species for natural ponds; four species for artificial 

reservoirs). The number of observed species approached the estimated number of species 

(Chao2 and Jackknife2) across all insect orders, indicating that sampling was sufficient and the 

subset of data representative (Appendix S5.1). For the full species list, refer to Appendix S5.2. 

5.3.3 Environmental differences between natural ponds and artificial reservoirs  

Out of the 13 environmental variables measured, four variables were significantly different 

between natural ponds and artificial reservoirs (Table 5.2). These were water body size, 

elevation, % grass cover, and % forbs cover. Natural ponds and artificial reservoirs were 

statistically identical in terms of temperature, dissolved oxygen, conductivity, pH, water 

clarity, sampling depth, % reed cover, % total cover, and average vegetation height.  

Betty's Bay Cederberg Worcester Franschhoek Grabouw Stellenbosch Somerset West 

Average precipitation 

2000-2009 (March to 

May) 

82.22 25.02 42.93 50.45 52.44 55.44 72.73 

Average precipitation 

2000-2009 (June to 

August) 

162.94 59.79 101.47 115.33 101.31 118.55 148.58 

Average precipitation 

2016-2017 (March to 

May) 

46.00 17.10 25.01 29.22 27.09 29.27 39.88 

Average precipitation 

2016-2017 (June to 

August) 

120.03 37.58 87.35 95.73 89.37 90.34 110.06 

2016-2017 percentage 

difference (March to 

May) 

(-)44.1 (-)31.7 (-)41.7 (-)42.1 (-)48.3 (-)47.2 (-)45.2 

2016-2017 percentage 

difference (June to 

August) 

(-)26.3 (-)37.1 (-)13.9 (-)17.0 (-)11.8 (-)23.8 (-)25.9 
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Table 5.2 Means, standard errors (SE) and χ2 test results indicating differences between natural 

ponds and artificial reservoirs for each physical and physicochemical variable. 

Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001. 

5.3.4 Influence of environmental variables on insect species richness and diversity  

Overall, dragonfly species richness positively correlated to vegetation height until 0.14 m was 

reached, after which species richness increased at a lower rate (Table 5.3; Appendix S5.3). An 

increase in conductivity gave a positive correlation to overall dragonfly species richness until 

115 μS was reached, after which species richness only increased steadily. In the case of natural 

ponds, dragonfly species richness positively correlated with water clarity initially, but 

decreased above 89 cm visibility. For artificial reservoirs, dragonfly species richness and 

diversity positively correlated to % reed cover and % grass cover, although marginally for 

dragonfly diversity. Dragonfly species richness was positively correlated with conductivity, 

and negatively correlated with water depth, until about 0.4 m was reached, after which 

dragonfly species richness increased.

Natural ponds Artificial reservoirs 
X2 

Mean  SE Mean SE 

Temperature (ºC) 20.79 1.11 19.69 0.56 0.03 

Dissolved oxygen (mg/L) 10.75 2.78 8.32 0.75 0.31 

Conductivity (µs) 163.36 27.57 177.04 42.87 0.55 

pH 6.3 0.21 6.21 0.3 0 

Water clarity (cm visibility) 66.12 4.82 51.52 6.35 1.81 

Elevation (m a.s.l.) 371 61.9 319.13 49.47 3.89* 

Sampling depth (m) 0.55 0.04 0.53 0.03 0 

Water body size (m2) 2662.66 752.18 168277.48 100771.33 16.04*** 

% Grass cover 6.84 3.84 22.13 8.79 8.06** 

% Reed cover 6.32 5.26 5.75 2.88 0.03 

% Forbs cover 38.42 9.19 16 7.82 9.23** 

% Total cover 51.58 9.05 43.88 9.38 0.62 

Vegetation height (m) 0.51 0.1 0.32 0.08 0.04 
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Table 5.3 Significant effects of pre‐selected environmental variables on overall species richness and Shannon diversity index, and within each 

water body type. 

Table displays pseudo‐F values, Z‐values (bold) and t‐values (italics) in the case of categorical variables. 

Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001 

Overall Natural ponds Artificial reservoirs 

Richness Diversity Richness Diversity Richness Diversity 

Odonata Conductivity (µs) (+/+) 4.51 * (+) 5.85 * 

Water clarity (cm visibility) (+/-) 3.93 * 

Vegetation height (m) (+/+) 5.46 * 

% Reed cover (+) 7.53 ** (+) 1.73 * 

% Grass cover (+) 9.62 ** (+) 1.87 * 

Sampling depth (m) (-/+) 9.57 ** 

Coleoptera Elevation (m a.s.l.) (+) 10.73 ** 

Conductivity (µs) (-/+) 4.63 * (+) 16.31 *** 

pH (-) 6.25 * 

Pond size (m2) (+/-) 21.37 *** 

% Total vegetation cover (+) 18.03 *** 

% Forb cover (+) 2.14 * 

% Grass cover (+/+) 2.38 ** (+) 28.62 *** 

Pond type 3.11 ** 

Hemiptera Elevation (m a.s.l.) (-) 6.49 * 

Temperature (ºC) (-/+) 5.68 * 

Conductivity (µs) (+) 5.33 * 

Dissolved oxygen (mg/L) (-) 9.21 ** 

% Reed cover (-) 4.58 * 

% Grass cover (+/+) 2.45 * (-/+) 6.01 * 
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Natural ponds had higher overall beetle species richness than artificial reservoirs (Table 5.3; 

Appendix S5.3). Beetle diversity was positively correlated with % forb cover and % grass 

cover, but increased at a higher rate above 47% grass cover. For natural ponds, no 

environmental variables had a significant effect on beetle species richness and diversity. In the 

case of artificial reservoirs, beetle species richness was positively correlated with % total cover, 

and initially to water body size until a size of 155,738 m2 was reached, above which species 

richness decreased. Species richness was negatively correlated to conductivity until 53 μS was 

reached, above which beetle species richness then increased. Beetle diversity was positively 

correlated with elevation, conductivity and % grass cover, but negatively correlated with water 

pH.  

Overall, no environmental variables had a significant effect on bug species richness, yet bug 

diversity was positively correlated with % grass cover, and increased at a higher rate above 

24% grass cover (Table 5.3; Appendix S5.3). For natural ponds, bug species richness was 

negatively correlated with dissolved oxygen and % reed cover. Bug species richness was 

negatively correlated with water temperature and % grass cover, but increased above 17°C and 

39% grass cover, respectively. For artificial reservoirs, bug species richness was positively 

correlated with conductivity and negatively correlated with elevation. No environmental 

variables had a significant effect on bug diversity in artificial reservoirs.  

5.3.5 Influence of environmental variables on insect assemblage composition  

Ten of the sampled dragonfly species (45.5%) only occupied natural ponds (Appendix S5.1). 

These were: Africallagma sapphirinum, A. speratus, Ceriagrion glabrum, Chlorolestes 

umbratus, Elattoneura frenulata, Proischnura polychromatica, Spesbona angusta, 

Syncordulia legator, Trithemis annulata, and Crocothemis erythraea. Two dragonfly species 

(9%; Pinheyschna subpupillata and Syncordulia venator) only occupied artificial reservoirs. 

Seven aquatic beetle species only occupied natural ponds (25.3%; Agabus sp., Copelatus sp. 1 

and 2, Darwinhydrus sp., Helochares sp., Hydropeplus sp. and Philaccolus sp.). One aquatic 

beetle species, Perovatellus sp., only occupied artificial reservoirs (8.3%). Seven bug species 

(63.6%) only occupied natural ponds: Appasus capensis, Gerris swakopensis, Laccocoris 

spurcus, Mesovelia vittigera, Ranatra sp., Rhagovelia maculate, and Tenagogonus sp. No 

aquatic bug species exclusively occupied artificial reservoirs.  
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Out of the 14 variables measured, PCNM selected five significant variables for aquatic insect 

species composition. These were spatial structure, % total vegetation cover, temperature, 

conductivity, and pond type (Table 5.4). Pond size, elevation, sampling depth, dissolved 

oxygen, water pH, turbidity, vegetation height and % reed, % grass, and % total cover had no 

significant effect on species composition. For dragonfly composition, 20.50% of variation was 

explained by spatial structure, 6.90% explained by % total vegetation cover, and 5.08% 

explained by temperature, totalling 32.50% of variation explained. For beetle composition, 

pond type explained 9.31% of total variation, 6.00% explained by temperature, and 5.33% 

explained by conductivity, totalling 20.63% of variation explained. For bug composition, pond 

type explained 20.76% of total variation.  

Table 5.4 Comparative abundance, number of observed species (Sobs) and average density 

(calculated as the number of individuals per sample) between results, Simaika et al. (2016) (for 

dragonflies) and Apinda‐Legnouo et al. (2014) (for beetles and bugs).  

Change in density during sampling period given as percentage change. 

5.4 Discussion 

5.4.1 Precipitation deficit 

South Africa is considered a semi‐arid country with precipitation below the global average and 

is characterised by highly variable precipitation from one season to the next (Botai et al. 2018). 

Our results indicate that most of the GCFR experienced major precipitation deficiency during 

2016–2017, with below‐average precipitation ranging from 8 mm/month in the northern area 

to 43 mm/month in the southern area. Although having great socio‐economic impacts, the 

environmental impacts of hydrological droughts on lentic ecosystems are poorly understood. 

Similar to lotic ecosystems (Mosley 2015), hydrological droughts may result in substantial 

Dragonflies Beetles Bugs 

Sobs Abundance Density Sobs Abundance Density Sobs Abundance Density 

Results here 22 510 (140 samples) 3.64 12 665 (700 samples) 0.95 11 3 894 (700 samples) 5.56 

Simaika et al. 2016 28 1905 (90 samples) 21.17 

Apinda-Legnouo et 

al. 2014 5 2 086 (504 samples) 4.14 14 8 140 (504 samples) 16.15 

PERCENTAGE 

CHANGE 83% 77% 66% 
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changes in habitat quality, related to physical transformation, and alteration of physicochemical 

processes.  

5.4.2 Relative significance of vegetation 

Lentic insects showed a positive response to vegetation cover and complexity across all three 

taxa, and vegetation remains among the primary drivers of aquatic insect diversity (Kadoya et 

al. 2004; Samways and Taylor 2004). Competition for suitable habitat is often high where 

vegetation cover and complexity is absent, leading to low species richness and diversity 

(Fairchild et al. 2003). Most dragonflies require emergent and marginal vegetation as perching 

sites, for thermoregulation, and as microhabitats for oviposition. Emergent and submerged 

vegetation also serve as substrate for dragonfly larvae from which to hunt, seek refuge from 

predators, and/or emerge to adulthood. Early colonising beetles and bugs, although having been 

described as being little affected by vegetation structure (Bloechl et al. 2010), favour vegetated 

margins of water bodies for oviposition (Fairchild et al. 2003), and similar to dragonfly larvae, 

vegetation provides refuge, and is also where prey most commonly occurs (Verberk et al. 

2001). Artificial reservoirs characterised by little vegetation coverage and/or low vegetation 

complexity (most of the artificial reservoirs sampled here), had fewer natural resources 

available, resulting in low species richness and diversity (Fairchild et al. 2003).  

5.4.3 Relative significance of environmental variables 

Drought, in combination with anthropogenic influences, stimulates high stochasticity in water 

quality through climatic variation and hydrological shifts (Mosley 2015), and limits the 

delivery of water quality components from catchment areas (Olds et al. 2011; Worrall and Burt 

2008). We found that water temperature was among the primary drivers of overall dragonfly 

composition. In general, speed of development for lentic dragonfly larvae increases under 

warmer conditions, within their thermal limits (Corbet et al. 2006; Suhling et al. 2015). Adult 

aquatic beetles and bugs are atmospheric breathers, and do not rely on dissolved oxygen 

directly, yet bug species richness showed some response to water temperature and dissolved 

oxygen. Most bug species are early colonisers of water bodies and are physically and 

physiologically enabled to occupy lentic habitats fluctuating in daily/seasonal water 

temperature and dissolved oxygen (Florencio et al. 2009; Scheibler et al. 2016), but high 

concentrations of dissolved oxygen and low water temperature create suitable conditions for 

predators, influencing the occupancy and diversity of aquatic bugs (Lytle 2015).  
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Water pH and conductivity (as a proxy for total dissolved solids) may increase slightly in lentic 

systems during extended droughts (Ludovisi and Gaino 2010; Mosley et al. 2012) and changes 

in pH and conductivity ranges shape aquatic insect communities (Kietzka et al. 2016; da Rocha 

et al. 2016). We found that dragonfly diversity in natural ponds and beetle diversity in artificial 

reservoirs were highest where pH was close to neutral, implying that habitats deviating from 

neutral pH were dominated by single, generalist species. Bugs are more robust to pH gradients, 

as most dwell just under the water surface, or spend some time outside the water where pH is 

likely to be a less critical factor (Griffiths et al. 2015). Consistent with findings for dragonflies 

occupying GCFR rivers (Kietzka et al. 2016), high aquatic insect species richness was 

associated with relatively higher conductivity. This suggests that increased levels of 

conductivity do not inhibit aquatic insects (at least in the GCFR) to be effective colonisers of 

aquatic habitats (Suhling et al. 2006).  

High insect species richness, diversity, and abundance is associated with water clarity (O'Neill 

et al. 2015; da Rocha et al. 2016). Increased turbidity, as a result of lower frequencies of water 

replenishment, has a strong limiting effect on aquatic insect occupancy. Here, most dragonfly 

species preferred clear water, as turbid water interferes with the respiration efficiency of 

dragonfly larvae, and they rely on visibility to detect prey. Water clarity was expected to have 

an effect on beetle species richness and composition as they too, are visual predators that feed 

in water, yet this was unclear from our results, perhaps because there was great variation among 

species traits, e.g. with some feeding near the water surface. Bugs occupying natural ponds 

seemed to prefer turbid water to escape predation, as most are weak swimmers or surface 

dwellers in the region (Griffiths et al. 2015; Reavell 2003).  

Large (and relatively deep) water bodies remain inundated for longer periods, and some female 

aquatic insects are probably able to assess survivorship of eggs and larvae based on the size 

and depth of water bodies (Wildermuth and Spinner 1991). Aquatic insects as adults are often 

capable of traveling long distances (Arribas et al. 2012; Samways 2008), and large water bodies 

have a higher chance of being found by moving individuals. Large and vegetated artificial 

reservoirs seem to function as supplementary habitats for generalist pond insect species 

(Simaika et al. 2016), especially when natural ponds experience stress as a result of climatic 

variation.  
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Elevation is an important driver of aquatic insect species richness and diversity in the region 

(Apinda‐Legnouo et al. 2014; Samways and Niba 2010). Lentic and lotic habitats at high 

elevations share some structural and physicochemical similarities, they provide a range of high‐

quality microhabitats and often have high species turnover (Biggs et al. 2005). However, 

natural habitats at low elevations are highly variable, and have a higher risk of drying up 

completely during drought (Samways 1989a). Most of the sensitive endemic dragonfly species 

(e.g. S. angusta, P. polychromatica, and Syncordulia legator), as well as most bug species, 

were at elevations between 300 and 450 m above sea level, suggesting that the natural ponds 

(in the case of sensitive dragonflies) and artificial reservoirs (in the case of bugs) at 

intermediate elevations provide attractive habitats, as was found in another area of South Africa 

(Samways 1989b). This is probably due to the fact that lentic habitats at intermediate elevations 

have moderate natural variability, and as a result, provide a wide variety of microhabitats. Here, 

beetle diversity was highest at relatively high elevations, probably due to high competition for 

favourable microhabitats at low elevations (Ball‐Damerow et al. 2014), especially so during 

drought. However, bug species richness was highest at relatively low elevations, as many bug 

species are highly opportunistic and require these highly variable habitats to mature and breed 

(Lytle 2015).  

5.4.4 Complementarity among natural ponds and artificial reservoirs  

The artificial reservoirs investigated here resembled natural ponds in that they had similar 

chemical properties (e.g. water temperature, dissolved oxygen content, conductivity, and pH), 

had moderately clear water and had fluctuating water levels (although mostly 

anthropogenically induced in the case of artificial reservoirs). However, artificial reservoirs 

were much larger than natural ponds, they were mostly found at relatively low elevations, and, 

as most artificial reservoirs are relatively novel, frequently disturbed habitats, they had much 

less marginal vegetation complexity (here, mostly limited to sparse cover by tall grasses).  

In terms of aquatic insect occupancy, just under half (46%) of total sampled dragonflies and 

about a third of total beetles (34%) and total bugs (36%) were shared between natural ponds 

and artificial reservoirs. Seven of the 15 total endemic species recorded here occupied artificial 

reservoirs, including the dragonflies P. draconis, P. furcigerum, Z. minuscula, P. subpupillata, 

and S. venator, the beetle C. brevicollis, and the bug N. lactitans. Interestingly, P. draconis, P. 

furcigerum, Z. minuscula, P. subpupillata, and S. venator were previously only ever recorded 
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from montane lotic habitats (Samways and Simaika 2016) and C. erythraea was found to only 

occupy natural ponds here, although being exceptionally tolerant of impacted freshwater 

habitats (Samways 2003). Furthermore, the beetle C. brevicollis and bug N. lactitans are only 

known to occupy natural ponds (Challet and Turner 2006; Mlambo et al. 2011).  

From our results, artificial reservoirs, even with rich marginal vegetation, cannot fully replace 

the habitat function of natural ponds, but increase connectivity between isolated natural ponds 

and/or expand the area of occupancy for at least adult dragonflies. For adult beetles and bugs, 

spatial structuring of natural ponds and artificial reservoirs was a less critical factor. Instead, 

artificial reservoirs resembling natural ponds in terms of water chemistry (here, relatively 

higher water temperature and lower conductivity) were more attractive alternative habitats, at 

least in the case of beetles. Nevertheless, most beetle and bug species sampled here showed a 

strong preference for natural ponds, as these habitats provide the necessary resources that 

enable their survival and completion of their life cycles, most of which were limited in artificial 

reservoirs.  

5.4.5 Relative effects of drought on local insect assemblages 

For all three focal taxa, we recorded far lower individual densities in comparison to pre‐drought 

studies. However, the number of aquatic insect species remained relatively similar for each 

focal taxon between the pre‐drought and drought conditions, with the exception of beetles, 

being richer during drought conditions. These results indicate that the drought had little impact 

on the species richness of these three taxa. In the case of beetles, higher species richness during 

drought suggests that many species normally not found in lentic habitats may occupy ponds as 

they provide enough natural resources that enable them (at least the adults) to survive when 

natural resources become scarce in their natal habitats. Most of the aquatic insects investigated 

here can travel some distance to seek out favourable habitats in response to deteriorating 

ecological conditions (Lytle 2015), microhabitat availability (Kietzka et al. 2016), 

presence/absence of predators (Binckley and Resetarits 2005), and food availability (Yee and 

Kehl 2015), all of which are strongly affected by hydrological regimes. Occupancy at a 

particular pond type during stress periods does not imply effective reproduction, yet occupying 

a greater number of low‐quality habitats at low densities could ensure natural resource 

availability and enable reproducing individuals to reach the next optimal breeding season to 

complete their life cycles. This may be a key strategy explaining why these species have 

Stellenbosch University https://scholar.sun.ac.za



126 

persisted in the GCFR and other semi‐arid regions where ecological filters such as hydrological 

extremes have been imminent in the past (Samways 2010). However, we did not investigate 

passively dispersing insects here, which may show different responses to climatic variation and 

adopt alternative survival strategies (e.g. life history strategies) for improved resilience against 

ecological stress periods.  

5.5 Conclusion 

In summary, there are many habitat characteristics related to physical and physicochemical 

characteristics that drive species richness, diversity, and composition of actively dispersing 

aquatic insects, yet vegetation cover remained a major driver. Using the GCFR as an example 

of a drought‐prone region, artificial reservoirs share just under 40% of total sampled species 

with natural ponds, are attractive habitats to some rare endemic insects in times of drought, 

enabling an increase in the area of occupancy for some aquatic insects during drought. When 

their native habitats experience ecological pressure (in this case, extreme hydrological 

drought), some aquatic insects occupy low‐quality habitats at low population levels, seemingly 

to sustain themselves until a wet season comes again. From a conservation perspective, 

artificial reservoirs, primarily constructed to store water for urban and agricultural use, cannot 

fully replace the functional value of natural ponds, but those artificial reservoirs resembling 

natural ponds (especially when having abundant marginal vegetation) contribute to providing 

supplementary habitats during drought for many widespread generalist insect species, and 

significantly, also for some of the rare endemics. Artificial reservoirs are common landscape 

features, especially in semi‐arid regions, yet they differ fundamentally from natural ponds (at 

least in terms of their sizes, disturbance levels, vegetation composition and vegetation cover). 

There is merit in moving the characteristics of all artificial reservoirs closer towards those of 

natural ponds to further improve their effectiveness as conservation ponds for a range of highly 

mobile aquatic insects. 

5.6 References 

Apinda‐Legnouo, E.A., Samways, M.J. and Simaika, J.P. 2014. Value of artificial ponds for 

aquatic beetle and bug conservation in the Cape Floristic Region biodiversity hotspot. Aquatic 

Conservation: Marine and Freshwater Ecosystems, 24: 4522-4535.  

Stellenbosch University https://scholar.sun.ac.za



127 

Arribas, P., Valesco, J., Abellán, P., Sánchez‐Fernández, D., Andújar, C., Calosi, P., ... Bilton, 

D.T. 2012. Dispersal ability rather than ecological tolerance drives differences in range size

between lentic and lotic water beetles (Coleoptera: Hydrophilidae). Journal of Biogeography, 

39: 984-994.  

Ball‐Damerow, J.E., M'Gonigle, L.K. and Resh, V.H. 2014. Local and regional factors 

influencing assemblages of dragonflies and damselflies (Odonata) in California and Nevada. 

Journal of Insect Conservation, 18: 1027-1036.  

Bates, D.M. and Sarkar, D. 2007. lme4: Linear mixed‐effects models using S4 classes. R 

package version 1.1‐12.  

Batzer, D.P. and Wissinger, S.A. 1996. Ecology of insect communities in non‐tidal wetlands. 

Annual Review of Entomology, 41: 75-100.  

Biggs, J., Williams, P., Whitfield, P., Nicolet, P. and Weatherby, A. 2005. 15 years of pond 

assessment in Britain: Results and lessons learned from the work of Pond Conservation. 

Aquatic Conservation: Marine and Freshwater Ecosystems, 15: 693-714.  

Bilton, D.T., McAbendroth, L.C., Nicolet, P., Bedford, A., Rundle, S.D., Foggo, A. and 

Ramsay, P.M. 2008. Ecology and conservation status of temporary and fluctuating ponds in 

two areas of southern England. Aquatic Conservation: Marine and Freshwater Ecosystems, 

19: 134-146.  

Binckley, C.A. and Resetarits, W.J. 2005. Habitat selection determines abundance, richness 

and species composition of beetles in aquatic communities. Biological Letters, 1: 370-374.  

Bird, M. 2010. Aquatic invertebrates as indicators of human impacts in South African 

wetlands. WRC Report No. TT 435/09. Water Research Commission, Pretoria, South Africa.  

Bloechl, A., Koenemann, S., Philippi, B. and Melber, A. 2010. Abundance, diversity and 

succession of aquatic Coleoptera and Heteroptera in a cluster of artificial ponds in the north 

German lowlands. Limnologica, 40: 215-225.  

Stellenbosch University https://scholar.sun.ac.za



128 

Bond, N.R., Lake, P.S. and Arthington, A.H. 2008. The impacts of drought on freshwater 

ecosystems: An Australian perspective. Hydrobiologia, 600: 3–16.  

Botai, C.M., Botai, J.O. and Adeola, A.M. 2018. Spatial distribution of temporal precipitation 

contrasts in South Africa. South African Journal of Science, 114: 1-9.  

Boulton, A.J. and Lake, P.S. 2008. Effects of drought on stream insects and its ecological 

consequences. Aquatic Insects: Challenges to Populations, 2008: 81-102.  

Bunn, S.E. and Arthington, A.H. 2002. Basic principles and ecological consequences of altered 

flow regimes for aquatic biodiversity. Environmental Management, 30: 492-507.  

Challet, G. and Turner, C.R. 2006. Rediscovery of Coelhydrus brevicollis Sharp in South 

Africa with notes on Andex insignis Sharp (Coleoptera: Dytiscidae). Latissimus, 21: 21-24.  

Collinson, N.H., Biggs, J., Corfild, A., Hodson, M.J., Walker, D., Whitfield, M. and Williams, 

P.J. 1995. Temporary and permanent ponds: An assessment of the effects of drying out on the 

conservation value of aquatic macroinvertebrate communities. Biological Conservation, 74: 

125-134.

Corbet, P.S., Suhling, F. and Soendgerth, D. 2006. Voltinism of Odonata: A review. 

International Journal of Odonatology, 9: 1-44.  

Dahm, C., Baker, M.A., Moore, D.I. and Thibault, J.R. 2003. Coupled biogeochemical and 

hydrological responses of streams and rivers to drought. Freshwater Biology, 48: 1219-1231.  

Dai, A. 2013. Increased drought under global warming in observations and models. Nature 

Climate Change, 3: 52-58.  

Declerck, S., De Bie, T., Ercken, D., Hampel, H., Schrijvers, S., van Wichelen, J. ... Martens, 

K. 2006. Ecological characteristics of small ponds: Associations with land‐use practices at

different spatial scales. Biological Conservation, 131: 523-532. 

Stellenbosch University https://scholar.sun.ac.za



129 

Dickens, C.W.S. and Graham, P.M. 2002. The South African Scoring System (SASS) Version 

5 rapid bioassessment method for rivers. African Journal of Aquatic Science, 27: 1-10.  

Druyan, L.M. 1996. Arid climates. In: Schneider, S.H. (ed), Encyclopedia of climate and 

weather. Oxford University Press, New York, USA. pp. 48-50. 

Fairchild, G.W., Cruz, J., Faulds, M., Short, A.E.Z. and Matta, J.F. 2003. Microhabitat and 

landscape influences on aquatic beetle assemblages in a cluster of temporary and permanent 

ponds. Journal of the North American Benthological Society, 22: 224-240.  
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Chapter 6 General discussion and conclusions 

Freshwater insects and their associated habitats are in danger globally (Heino 2001), and 

several synergistic factors contribute to the overall vulnerability of freshwater ecosystems 

(Moilanen et al. 2008). Investigating insect biogeographical patterns across multiple spatial 

scales is timely and important, since local assemblage structures are determined by complex 

relationships between regional and local assemblages (Ricklefs and Schluter 1993). Having 

good understanding of the multi-scale drivers of distribution patterns is also fundamental for 

ensuring effective conservation among insects and their habitats. Yet, various aspects of 

biogeography are poorly investigated among aquatic insects, especially in terms of their 

underlying drivers (Willig et al. 2003). My overall aim was to investigate the significance of 

functional traits, contemporary climate and local environmental variables as drivers of aquatic 

insect species richness, diversity, and distribution across Africa. I approached this by 

investigating broad-scale, theoretical biogeography and local-scale, empirical ecology as 

related research topics, and in this chapter, I summarize my main findings from each data 

chapter, and discuss their implications for aquatic insect conservation (Figure 6.1). 

Biological and ecological traits are highly interactive among insect taxa, and most are variably 

responsive to changes in environmental conditions, driven by the set of traits that defines any 

one species (Arribas et al. 2012). Species’ traits determine their inherent capabilities to use a 

variety of resources, and are important drivers of their range sizes (Rundle et al. 2007). In 

conservation, this has led to species being binarily classified as ‘widespread generalists’ or 

‘narrow-range specialists’ based on their habitat preferences, as a common currency that is 

easily translated to identifying the conservation requirements of species. Yet, several authors 

have suggested that ordering species along a generalist/specialist gradient is much more 

practical (Büchi and Vuilleumier 2014), since several other biological traits (e.g. those related 

to dispersal and fecundity) contribute to the variation in their range sizes (Rundle et al. 2007). 

Although habitat preference has been shown to be important for driving species range size in 

other regions (Hof et al. 2006), my study was one of the first to investigate the significance of 

the combination between ecological and biological traits in driving aquatic insect distribution 

across Africa. I expected ecological traits to be important drivers of dragonfly range sizes, but 

also expected other biological traits to contribute equally to the variation in range size among 

dragonfly species across the African continent. 
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Figure 6.1 Summary of main findings from each data chapter. 
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My results presented in Chapter 2 indicated that overall, lentic dragonflies, and/or those that 

occupied more biotopes as adults (i.e. the generalists) had wider latitude, longitude and 

elevation ranges compared to lotic dragonflies, and/or those that occupied few biotopes (i.e. 

the specialists). In general, lentic habitats are short-lived and unpredictable compared to most 

lotic habitats (Ribera et al. 2001), and lentic species are well-adapted to outlive their habitats 

and migrate across the landscape to find other favourable habitats (Ribera and Vogler 2000). 

Likewise, generalist species are opportunistic, mostly robust to environmental change and 

highly migratory, allowing them to occupy a wide variety of biotopes (Julliard et al. 2006). 

Although the hard categorisation of species as ‘widespread generalists’ or ‘narrow-range 

specialists’ was mostly valid, there were many exceptions to this general premise. Some lentic 

dragonflies were confined to narrow regions, and some lotic dragonflies had wide ranges since 

their preferred habitats were common across wide geographical areas. In turn, some specialist 

dragonflies had wide ranges resulting from their favoured biotopes being common and 

widespread, while other seemingly generalist dragonflies had comparatively narrow ranges 

arising from their favoured biotopes being confined to small geographical areas and/or specific 

elevation ranges. Interestingly, my results have also shown that larval biotope occupancy was 

not significant for determining the range sizes of dragonflies, perhaps as a legacy of adults 

selecting for breeding habitats and so determined where the larvae were (Simaika and Samways 

2009), or overall biotope relatedness within the various dragonfly families. The lesser 

importance of larval biotope occupancy may also simply be because the distribution data that 

were used focused on adult distribution points. Larval ecology and taxonomy are not as well-

known as that of adult stages (Bried and Samways 2015), and larval distribution may differ 

slightly from adult distribution, yet only at the very local scale for most species except those 

that are highly migratory once having emerged as adults.  

As expected, biological traits related to phenology and mobility also had significant 

relationships with the variation in range sizes among dragonfly species. I found that the 

duration of adult life stage and time of adult emergence were not significant drivers of 

dragonfly range size. However, the season in which adults died had a significant effect on their 

range sizes, related to the ability of overwintering adults to move across the landscape and 

breed as soon as environmental conditions become favourable (van Huyssteen and Samways 

2009). My results have also shown that average wing and body sizes, as separate measures, 

were not significant drivers of dragonfly range sizes. Yet, the ratio of these two traits (i.e. wing-

to-body ratios) had a strong effect on latitude and longitude range size, as higher wing-to-body 
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ratios likely enhance dragonfly mobility, and enable them to reach favourable habitats (Rundle 

et al. 2007). Collectively, these results indicate that hard categorization of species as 

‘widespread generalists’ or ‘narrow-range specialists’ based on ecological traits alone should 

be approached with caution. Since other biological traits were also significant in determining 

dragonfly range sizes, conservation efforts should be inclusive of multiple species with various 

combinations of traits, across all habitat types. There is merit for extension to other focal 

groups, given the high variation in ecological and biological traits among aquatic insect taxa. 

Species traits also interact with local and regional climates, yet the significance of regional 

climates as drivers of broad-scale aquatic insect distribution patterns is poorly investigated 

(Heino 2011). Some previous investigations have indicated contemporary regional climate as 

a significant driver of aquatic insect migration and distribution patterns, although they are 

generally weaker compared to those of terrestrial taxa (Pearson and Boyero 2009). 

Nevertheless, regional climate is associated with hydrological regimes and availability of 

breeding habitats (Pedgley et al. 1995; Bêche and Statzner 2009), so determining areas of high 

species richness and diversity. In addition to its importance for determining regional richness 

and diversity, I expected regional climate, along with topography, both to be significant drivers 

of regional dragonfly assemblage structures through determining turnover boundaries among 

regional dragonfly assemblages, which I then addressed in Chapter 3.  

My results presented in Chapter 3 indicated that there was a strong latitudinal trend for 

dragonflies across South Africa, and species richness decreased overall with increasing 

latitude, as was found for aquatic insects elsewhere (Boyero 2002; Ribera et al. 2003). Here, 

high overall species richness was associated with the subtropical, high summer rainfall regions 

of the country, where aquatic habitats are diverse and abundant, presenting a range of 

favourable ecological conditions to various dragonfly species (Hart et al. 2014; Samways and 

Simaika 2016). In turn, dragonfly endemism showed an opposite trend, and increased with 

increasing latitude. There was also a strong longitudinal trend for endemic species richness, 

where the proportion of endemic dragonflies (i.e. endemic species richness relative to total 

species richness) increased from west to east. The highest levels of endemism were 

predominantly associated with the Mediterranean, winter rainfall regions of the country, where 

topography is highly variable, and dragonflies, along with other insect taxa, were likely honed 

over countless generations to be well adapted to local conditions (Dijkstra et al. 2014). 
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To my knowledge, this study is the first to investigate assemblage-turnover boundaries for 

aquatic taxa across South Africa, and I expected assemblage-turnover boundaries to be discrete 

throughout the country. This was not the case for dragonflies, as assemblage-turnover 

boundaries were gradual throughout the country, with most broadly coinciding with significant 

topographical features and/or areas where regional climate changed from one condition to the 

next. The gradual changes in dragonfly assemblage composition resulted from gradual changes 

in climatic conditions throughout, and the overall high mobility of dragonflies, enabling most 

species to traverse wide geographical areas, so occupying fundamentally similar habitats across 

wide regions (Grönroos et al. 2013). It was however, clear that most lotic species occupied the 

coastal and mountainous regions, where rivers and streams are abundant and hold water 

throughout the year (Kietzka et al. 2015), while lentic species richness was highest in the north-

eastern, subtropical regions, where coastal swamps and wetlands are abundant and highly 

variable in structure (Hart et al. 2014). Furthermore, the inland regions of the country were 

occupied mostly by opportunistic dragonflies having no specific habitat preferences (i.e. 

lentic/lotic species), since the South African interior is mostly arid throughout the year and 

aquatic habitats are spottily distributed throughout and are highly unpredictable in terms of 

hydrological regimes. 

Despite the overall importance of regional climate, my results also indicated that geographical 

factors are highly significant in shaping regional dragonfly assemblages. This may result from 

local conditions being highly disparate between regions, since they are defined by the 

combination of climatic and topographical gradients, resulting in dragonfly species sorting 

occurring across the country (Leibold et al. 2004). Although adult dragonflies are generally 

mobile insects, the variable topography (e.g. the occurrence of mountain ranges) throughout 

the country may also impose upon their mobility, leading to assemblage structures being 

different between wider regions (Garcillán and Ezcurra 2003). Indeed, some dragonfly 

populations were geographically isolated, suggesting that the deep historical context of the 

overall landscape is an important consideration, as it relates to certain areas experiencing less 

climatic variation in the past. 

At the local scale, small-sized ponds contribute greatly to overall biodiversity, and is often 

higher compared to that in large rivers and lakes (Williams et al. 2004). This is even more 

significant at the level of the pondscape, i.e. when ponds occur in networks, as individual ponds 

have different catchment areas and collectively contribute to overall habitat heterogeneity 
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(Biggs et al. 2005). The Maputaland-Pondoland-Albany (MPA) biodiversity hotspot was 

identified as an area of particular interest, since natural ponds and artificial reservoirs are 

interspersed and common in the ecological networks that make up much of the overall 

agricultural mosaic. Ecological networks have been shown to have high conservation value for 

several terrestrial insects (Gaigher et al. 2019; Joubert-van der Merwe et al. 2019), as well as 

some aquatic insects (Pryke et al. 2015; Briggs et al. 2019). In turn, natural ponds and artificial 

reservoirs are spottily distributed throughout the Greater Cape Floristic Region (GCFR), which 

also experienced a severe hydrological drought in recent years (Botai et al. 2018). Although 

some aquatic insects are adapted to climate extremes by having resistance and resilience traits, 

drought may lead to substantial population declines (Samways and Niba 2010), and when over 

extended periods, may lead to local and regional extinctions (Boulton and Lake 2008). Pond 

insects are poorly investigated in both regions, and I expected that artificial reservoirs occurring 

in ecological networks and in close association with natural ponds, as is the case for ponds in 

the MPA biodiversity hotspot, improve pondscape resilience. In the case of ponds in the GCFR, 

I expected artificial reservoirs to complement natural ponds during drought, and provide refuge 

habitats to widespread aquatic insects during ecological stress periods. 

My results presented in Chapter 4 and Chapter 5 showed that high habitat heterogeneity among 

ponds maintain high species richness and diversity of dragonflies and beetles, and to a lesser 

extent, true bugs, as was found previously (Apinda-Legnouo et al. 2014; Kietzka et al. 2015; 

Briggs et al. 2018). In the case of both pond types and in both regions, habitat heterogeneity 

related to vegetation cover and composition was a key driver of species richness, diversity and 

assemblage variation. Most aquatic insects are associated with vegetated margins of ponds, as 

vegetation provides insects with, among others, breeding microhabitats and refuge against 

potential predators (Osborn and Samways 1996; Mlambo et al. 2011). The complement of 

aquatic insects investigated in these two regions also responded differently to variation in water 

chemistry across the range of ponds. Variation in water chemistry contributes to overall habitat 

heterogeneity across the pondscape, and provides a range of optimal conditions for species’ 

physiological processes and development (Samways et al. 1996; Scheibler et al. 2016).  

For dragonflies and aquatic beetles and true bugs in the MPA biodiversity hotspot (Chapter 4), 

there was no significant difference in abundance between natural ponds and artificial reservoirs 

in conservation corridors, indicating that artificial reservoirs, are novel landscape features that 

maintain local aquatic insect population sizes. Furthermore, three-quarters of all sampled 
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species occupied both natural ponds and artificial reservoirs, indicating that artificial reservoirs 

expand the local area of occupancy for most widespread lentic insect species. Interestingly, 

some narrow-range endemic species also benefited by artificial reservoirs, but some insects 

with specific habitat requirements were confined to natural ponds, emphasizing the 

significance of naturalness if the ultimate goal is to conserve the full range of aquatic insects. 

For dragonflies and aquatic beetles and true bugs in the GCFR biodiversity hotspot (Chapter 

5), less than half of all sampled species occupied both natural and artificial pond types. Most 

dragonflies occupied both natural ponds and artificial reservoirs, and surprisingly, some 

endemic species, only ever recorded from rivers, were found to occupy artificial reservoirs 

during drought. Although the two pond types (natural and artificial) were relatively similar in 

terms of water chemistry, artificial reservoirs had much less marginal vegetation cover 

compared to natural ponds, and most beetles and true bugs exclusively occupied natural ponds. 

I also found that there was no significant difference in species richness compared to other, pre-

drought studies that investigated the same taxa and used the same set of ponds, yet overall 

abundance was substantially lower. While drought no doubt exerts strong selection pressure, 

these findings suggest that actively dispersing aquatic insects occupy low-quality habitats at 

low abundance during environmental stress periods, seemingly as a survival strategy that 

allows breeding individuals to reach the next favourable breeding season. However, natural 

ponds are important habitats for most aquatic insects, and should be included in conservation 

efforts to preserve as many aquatic taxa as possible. There is also merit in moving the 

characteristics of artificial reservoirs closer to those of natural ponds, to create attractive 

habitats for a range of aquatic insects, so improving overall pondscape resilience. 

In summary, having holistic understanding of species distribution patterns aids decision-

making for effective conservation of insect taxa along with their associated freshwater habitats. 

Broad-scale investigations, especially for African freshwater insects are important, yet 

challenging, since their distributions, biological traits, and responses to regional climate 

gradients are not fully understood. Given their popularity and the substantial amount of 

information available with regards to their ecological responses, dragonflies are an exceptional 

group and have previously been suggested as an umbrella taxon for other freshwater taxa (Bried 

et al. 2007; Kietzka et al. 2019), thus justifying their use as model organisms. Here, I have 

made a novel contribution to theoretical biogeography and local ecology, so addressing the 

Wallacean, Raunkiæran, Eltonian and Hutchinsonian shortfalls. My results indicated that 
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various aspects related to ecological and biological traits, climate, topography, and local 

environmental conditions drive dragonfly distribution at multiple spatial scales. My results 

further support the value of insect trait information, and emphasize the importance of large 

databases for detailing the distribution patterns of aquatic insects. Investigating other insect 

taxa also contributes to our increasing understanding of the drivers of insect distribution ranges, 

and my results have shown that aquatic beetles and true bugs respond to environmental 

variables, at least at local scale, complementing my findings for dragonflies. Therefore, I 

conclude that dragonflies are good model organisms, yet investigating other taxa is highly 

relevant. I recommend broad-scale investigations of other complementary taxa to determine 

their value for elucidating the drivers of overall insect distribution patterns, and so address our 

current shortfalls for all other taxa to improve conservation of scarce natural resources. 
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Appendices 

Appendix S2.1 African distribution records for dragonflies occurring in South Africa. 
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Appendix S2.2 Recently confirmed dragonfly species occurring in SA. * indicates endemics.

ZYGOPTERA Pseudagrion furcigerum * Bradinopyga cornuta 

Calopterygidae Pseudagrion gamblesi Chalcostephia flavifrons 

Phaon iridipennis Pseudagrion hageni Crocothemis divisa 

Chlorocyphidae Pseudagrion hamoni Crocothemis erythraea 

Platycypha caligata Pseudagrion inopinatum * Crocothemis sanguinolenta 

Platycypha fitzsimonsi * Pseudagrion kersteni Diplacodes lefebvrii 

Synlestidae Pseudagrion makabusiense Diplacodes luminans 

Chlorolestes apricans * Pseudagrion massaicum Diplacodes pumila 

Chlorolestes conspicuus * Pseudagrion newtoni * Hemistigma albipunctum 

Chlorolestes draconicus * Pseudagrion salisburyense Nesciothemis farinosa 

Chlorolestes elegans * Pseudagrion sjoestedti Notiothemis jonesi 

Chlorolestes fasciatus * Pseudagrion spernatum Olpogastra lugubris 

Chlorolestes tessellatus * Pseudagrion sublacteum Orthetrum abbotti 

Chlorolestes umbratus * Pseudagrion sudanicum Orthetrum caffrum 

Ecchlorolestes nylephtha * Pseudagrion vaalense * Orthetrum chrysostigma 

Ecchlorolestes peringueyi * ANISOPTERA Orthetrum guineese 

Lestidae Aeshnidae Orthetrum hintzi 

Lestes dissimulans Anaciaeschnura triangulifera Orthetrum icteromelas 

Lestes ictericus Anax ephippiger Orthetrum julia 

Lestes pallidus Anax imperator Orthetrum machadoi 

Lestes plagiatus Anax speratus Orthetrum robustum 

Lestes tridens Anax tristis Orthetrum rubens * 

Lestes uncifer Gynacantha manderica Orthetrum stemmale 

Lestes virgatus Gynacantha usambarica Orthetrum trinacria 

Platycnemididae Gynacantha villosa Palpopleura deceptor 

Allocnemis leucosticta * Pinheyschna subpupillata Palpopleura jucunda 

Elattoneura frenulata * Zosteraeschna minuscula Palpopleura lucia 

Elattoneura glauca Gompidae Palpopleura portia 

Mesocnemis singularis Ceratogomphus pictus Pantala flavescens 

Metacnemis valida * Ceratogomphus triceraticus * Parazyxomma flavicans 

Spesbona angusta * Crenigomphus hartmanni Rhyothemis semihyalina 

Coenagrionidae Gomphidia quarrei Sympetrum fonscolombii 

Aciagrion dondoense Ictinogomphus ferox Tetrathemis polleni 

Aciagrion gracile Lestinogomphus angustus Tholymis tillarga 

Africallagma fractum Neurogomphus zambeziensis Tramea basilaris 

Africallagma glaucum Notogomphus praetorius Tramea limbata 

Africallagma sapphirinum * Onychogomphus supinus Trithemis aconita 

Africallagma sinuatum Paragomphus cognatus Trithemis annulata 

Agriocnemis exilis Paragomphus elpidius Trithemis arteriosa 

Agriocnemis falcifera * Paragomphus genei Trithemis donaldsoni 

Agriocnemis gratiosa Phyllogomphus selysi Trithemis dorsalis 

Agriocnemis pinheyi Corduliidae Trithemis furva 

Agriocnemis ruberrima Hemicordulia africana Trithemis hecate 

Azuragrion nigridorsum Phyllomacromia contumax Trithemis kirbyi 

Ceriagrion glabrum Phyllomacromia monoceros Trithemis pluvialis 

Ceriagrion suave Phyllomacromia picta Trithemis stictica 

Ischnura senegalensis Syncordulia gracilis * Trithemis werneri 

Proischnura polychromatica * Syncordulia legator * Urothemis assignata 

Proischnura rotundipennis * Syncordulia serendipator * Urothemis edwardsii 

Pseudagrion acaciae Syncordulia venator * Urothemis luciana 

Pseudagrion assegaii Libellulidae Zygonoides fuelleborni 

Pseudagrion caffrum * Acisoma inflatum Zygonyx natalensis 

Pseudagrion citricola * Acisoma variegatum Zygonyx torridus 

Pseudagrion coeleste Aethriamanta rezia Zyxomma atlanticum 

Pseudagrion commoniae Brachythemis lacustris  
Pseudagrion draconis * Brachythemis leucosticta  
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Appendix S2.3 Detailed list of lotic, lentic/lotic and lentic biotopes, and riparian/edge and features associated with open water occupied by adult 

dragonflies, along with the description of each biotope. 
 

Biotope Description 

Lotic habitat and velocity  

Small stream 1st order stream and/or < 2 m channel size 

Large stream 2nd order stream and/or 2 m to 5 m channel size 

Small river 3rd order river and/or 5 m to 50 m channel size 

Large river 4th order river and/or > 50 m channel size 

Waterfall River or stream crossing steep topography where water rushes down vertically into a waterfall pool or swift section of the river or stream, but excluding the pool deposition zone 

Swift river or stream Fast to medium flow velocity, includes both riffles (turbulent flow; >0.4 m/sec) and glides (laminar flow; 0.01-0.4 m/sec) 

Sluggish river or stream Slow flow velocity (<0.01 m/sec) 

Shallow river or stream Water depth of <1 m 

Deep river or stream Water depth of >1 m 

Lentic/Lotic habitat  

Seep Shallow water seeping out of rocks, often forming a well-vegetated pool, rich in organic matter, with no to minimal flowing according to rainy season  

Wetland Very slow or stagnant water (dependent on time of year) 

Deposition pool Pools along rivers and streams, often deep and rich in organic material. May flow during the rain season. Also including eddies 

River bed pool Pools with much vegetation that are left behind in savanna river beds when the water level of the river drops 

Waterfall pool Pool directly below waterfalls 

Oxbow pond Pools in meandering river channels, often deep and rich in organic material. May flow during the rain season. 

Open swamp channel Channels in swampy areas that connect swamps, flowing in the rainy season, and bordered by reeds, especially Phragmites  

Canopied swamp channel Channels in swampy areas that connect swamps, flowing in the rainy season, and bordered by trees and tall reeds  

Lentic habitat  

Coastal swamp An open swamp in coastal regions, often isolated from the ocean, which remains wet all year  

Open swamp A swamp with no canopy cover, and rich in low emergent vegetation 

Marsh Lowland areas (occasionally highland areas in the Cape) which are flooded during the wet season and remain wet for most of the year 

Bog Wet, soggy lentic water body with deep layers of decaying organic material 

Pan Large, shallow lentic water body. May or may not dry up during dry season 

Waterhole Muddy, shallow water body, trampled by game. Also referred to as a wallow 

Dune pool Small to medium-sized lentic water bodies formed between coastal dunes. May be spring or rain fed 

Pothole Small pools, ground into the rock surface by freely moving stones over many years, creating hollows in bare rock that fill from river splash and rainwater 

Rock pool Small pools in river channels, completely lined with bedrock and with no vegetation cover 

Forest pool Small pools, rich in organic matter, within forest 

Perennial pond Small to medium-sized lentic water bodies, rain or spring fed 

Temporary pond Ponds that vary greatly in water level, and may dry up completely. Also includes semi-permanent ponds 

Lake Large natural lentic water bodies away from the coast (> 2 ha) 

Coastal lake Large natural lentic water bodies along the coast (>2 ha) 

Artificial farm or urban pond Artificially-made ponds in agricultural or urban areas (< 2 ha)  

Artificial reservoir Artificially-made lentic habitats including municipal dams, often used for recreation (> 2 ha) 

Riparian and edge characteristics Description 

Marshy edge  Shallow edge with abundant emergent and/or submerged vegetation 

Flooded edge Edge where water rises temporarily above the maximum level during times of high rainfall. Often with mud and abundant emergent vegetation 
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Grassy edge Edge lined with short and tall grasses 

Reedy edge Edge lined with reeds, native or invasive 

Palmiet edge Edge lined specifically with Palmiet reed 

Sedge edge Edge lined with short and tall sedges 

Bushy edge Edge lined with bushy or shrubby vegetation 

Wooded edge Edge with single or clumps of small trees 

Forested edge Shaded edge with virtually no sunlight penetration and occasionally ferns in the understorey 

Forest clearing Shaded edge with openings in the canopy 

Tree canopies Edge with accessible tree canopies where some dragonflies forage or seek shade during very hot times 

Open edge Edge with limited vegetation and canopy cover, and mostly bare, compacted soil  

Sandy edge Sandy edge, beach-like in places, and also usually with scattered tufts of vegetation 

Rocky edge Edge with small to medium sized rocks and cobbles 

Boulder-strewn edge Edge with large, immobile boulders. Often with mossy covering in the case of montane rivers 

Barringtonia forest Shaded, dense forest, lining lowland streams and rivers, and floods during the wet season, with a predominantly Barringtonia tree canopy 

Open grass/bush coastal dune Areas covered mainly with coastal grasses and some bushes and small trees 

Features associated with open 

water 
 

Open water Water surface away from edges with no emergent vegetation, rocks and/or boulders 

Boulders above water surface Boulders exposed above the water surface away from the edge, more visible when the water level is low 

Floating vegetation Edge and parts away from the edges with vegetation floating on the surface, including Aponogeton, water lilies and organic debris 

Submerged vegetation Dense submerged vegetation reaching in the water surface, including Stockenia, excluding algal mats 

Emergent vegetation Edge and parts part away from the edges with vegetation penetrating the water surface. May included grasses, sedges and herbaceous plants 

Stems over open water Open water away from the edges with few reeds and stems emergent from the water surface 

Algal mat Mats of algae floating on the water surface, usually seen in ponds/reservoirs/streams where there is some fertilizer input 
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Appendix S2.4 Detailed list of lotic, lentic/lotic and lentic biotopes, and substratum type and marginal features occupied by larval dragonflies, 

along with the description of each biotope. 
 

Biotope Description 

Lotic habitat and velocity  

Mountain trickle Small flowing trickle from mountains, usually at steep gradients and/or over high elevation trails 

Small stream 1st order stream and/or < 2 m channel size 

Large stream 2nd order stream and/or 2 m to 5 m channel size 

Small river 3rd order river and/or 5 m to 50 m channel size 

Large river 4th order river and/or > 50 m channel size 

Waterfall River or stream crossing steep topography where water rushes down vertically into a waterfall pool or swift section of the river or stream, but excluding the pool deposition zone 

Swift river or stream Fast to medium flow velocity, includes both riffles (turbulent flow; >0.4 m/sec) and glides (laminar flow; 0.01-0.4 m/sec) 

Sluggish river or stream Slow flow velocity (<0.01 m/sec) 

Lentic/Lotic habitat  

Seep Shallow water seeping out of rocks, often forming a well-vegetated pool, rich in organic matter, with no to minimal flowing according to rainy season  

Wetland Very slow or stagnant water (dependent on time of year) 

Deposition pool Pools along rivers and streams, often deep and rich in organic material. May flow during the rain season. Also including eddies 

River bed pool Pools with much vegetation that are left behind in savanna river beds when the water level of the river drops 

Waterfall pool Pool directly below waterfalls, often with strong currents and multidirectional flows. Excluding deposition pools 

Oxbow pond Pools in meandering river channels, often deep and rich in organic material. May flow during the rain season. 

Open swamp channel Pools in meandering river channels, often deep, and rich in submerged vegetation and organic material. May flow during the rain season 

Canopied swamp channel Channels in swampy areas that connect swamps, flowing in the rainy season, and bordered by trees and reeds  

Lentic habitat  

Coastal swamp An open swamp in coastal regions, often isolated from the ocean, which remains wet all year  

Open swamp A swamp with no canopy cover, and rich in low emergent vegetation 

Marsh Lowland areas (occasionally highland areas in the Cape) which are flooded during the wet season and remain wet for most of the year 

Bog Wet, soggy lentic water body with deep layers of decaying organic material 

Pan Large, shallow lentic water body. May or may not dry up during dry season 

Waterhole Muddy, shallow water body, trampled by game. Also referred to as a wallow 

Dune pool Small to medium-sized lentic water bodies formed between coastal dunes. May be spring or rain fed 

Pothole Small pools, ground into the rock surface by freely moving stones over many years, creating hollows in bare rock that fill from river splash and rainwater 

Rock pool Small pools in river channels, completely lined with bedrock and with no vegetation cover 

Forest pool Small pools, rich in organic matter, within forest 

Perennial pond Small to medium-sized lentic water bodies, rain or spring fed 

Temporary pond Ponds that vary greatly in water level, and may dry up completely. Also includes semi-permanent ponds 

Lake Large natural lentic water bodies away from the coast (> 2 ha) 

Coastal lake Large natural lentic water bodies along the coast (>2 ha) 

Artificial farm or urban pond Artificially-made ponds in agricultural or urban areas (< 2 ha)  

Artificial reservoir Artificially-made lentic habitats including municipal dams, often used for recreation (> 2 ha) 

Substratum  

Bedrock bottom Very firm and smooth bottom with virtually no loose stones/boulders 

Cobble bottom Firm bottom covered with particles between a size of 5 cm and 25 cm 

Gravel bottom Fairly firm bottom covered with fine and coarse gravel or pebbles 
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Sandy bottom Fairly firm bottom covered with fine and coarse sand particles 

Muddy bottom Soft bottom covered with mud and sometimes mixed with decaying organic material 

Leaf litter and twig bottom Bottom with twigs and leaves, making up high loads of organic material 

Submerged vegetation Dense submerged vegetation, usually in sluggish parts of rivers and still water, yet sometimes in fast flowing water. May or may not reach the water surface 

Submerged roots Submerged roots of grasses or sedges along the edge of flowing waters, or within the water course 

Margin characteristics  

Bare margin Margin mainly with mud, sand and/or gravel, and little to no vegetation 

Rocky margin Margin lined with small, medium and large sized rocks 

Flooded margin Temporary state of lotic habitat margin where water rises above the maximum level during times of high rainfall. Often with mud and abundant emergent vegetation 

Marshy margin  Shallow margin with abundant emergent and/or submerged vegetation 

Grassy margin Margin lined with short and tall emergent grasses 

Reedy margin Margin lined with emergent reeds, native or invasive 

Sedge margin Margin lined with emergent sedges 

Palmiet margin Margin lined specifically with Palmiet reed 

Bushy margin Margin lined with emergent bushes 

Forested margin Shaded margin with virtually no sunlight penetration, usually from surrounding trees 
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Appendix S2.5 Significant t-values (plain), F-values (bold) z-values (cursive) of latitude, 

longitude and elevation ranges for a subset of dragonflies across Africa. (+) indicates positive 

correlations.  

 
  Latitude range Longitude range Elevation range 

 Variable Test statistic Test statistic Test statistic 

Adult biotopes occupied (+) 7.527 ** (+) 2.551* (+)3.630 *** 

Habitat preference 15.778 *** 15.405*** 
 

Lentic - Lotic -2.961 ** -3.868 *** 
 

Lentic - Lentic/Lotic 
 

-2.587 * 
 

Lotic-Lentic/Lotic 
   

End of adult flight season 9.083 *** 8.367 *** 7.138 *** 

Late summer - Early autumn -4.586 *** -4.713 *** 
 

Late summer - Late autumn -5.231 *** -5.481 *** -2.632 * 

Late summer - Early winter -4.229 *** -3.838 *** 
 

Early autumn - Late autumn 
   

Early autumn - Early winter 
   

Late autumn - Early winter 
   

Overwintering as adults 
  

1.762 . 

Wing-to-body ratio (+) 22.923 *** (+) 3.954 ***   

 

Significance levels: . : p < 0.1; * : p < 0.05; ** : p < 0.01; *** : p < 0.001.
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Appendix S3.1 Sampling areas supplementing current dragonfly distribution records. Quarter 

degree grid cells visited from November 2017 – April 2019 indicated in black. (a) Orange 

River, Vaal River and surroundings, (b) Cederberg mountain range and surroundings, (c) 

Southern Cape coastal belt, (d) southern Free State and KwaZulu-Natal Midlands, and (e) 

coastal and interior parts of the Eastern Cape.
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Appendix S3.2 List of considered spatial datasets, along with their type classifications and 

sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clausnitzer, V., Dijkstra, K.-D.B., Koch, R., Boudot, J.-P., Darwall, W.R.T., Kipping, J., … 

and Suhling, F. 2012. Focus on African freshwaters: hotspots of dragonfly diversity and 

conservation concern. Frontiers in Ecology and the Environment, 10: 129-134. 

van Niekerk, A. 2001. Western Cape digital elevation model: product description. Centre for 

Geographical Analysis, Stellenbosch University, South Africa.  

van Niekerk, A. and Joubert, S.J. 2011. Input variable selection for interpolating high-

resolution climate surfaces for the Western Cape. Water SA, 37: 271-280. 

 

 

Variable Data type Source 

Latitude Topographic Clausnitzer et al. 2009 
   

Longitude Topographic Clausnitzer et al. 2009 
   

Elevation Topographic van Niekerk, 2001 
   

Seasonal average rainfall Climatic van Niekerk and Joubert, 2011 

Early spring (September)   

Mid-spring (October)   

Late spring (November)   

Early summer (December)   

Mid-summer (January)   

Late summer (February)   

Early autumn (March)   

Mid-autumn (April)   

Late autumn (May)   

Early winter (June)   

Mid-winter (July)   

Late winter (August)   

   

Seasonal average solar radiation Climatic van Niekerk and Joubert, 2011 

Early spring (September)   

Mid-spring (October)   

Late spring (November)   

Early summer (December)   

Mid-summer (January)   

Late summer (February)   

Early autumn (March)   

Mid-autumn (April)   

Late autumn (May)   

Early winter (June)   

Mid-winter (July)   

Late winter (August)   

   

Average soil drain rate Geological van Niekerk, 2001 
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Appendix S3.3 Spatial gradients of significant climatic and topographical factors identified by generalized linear modelling and generalized 

dissimilarity modelling. All spatial datasets are at quarter degree spatial resolution. (a) Early summer rainfall, (b) mid-autumn rainfall, (c) mid-

summer solar radiation, (d) mid-autumn solar radiation, (e) average soil drain rate and (f) elevation
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Appendix S4.1 Abundance, number of observed species (Sobs) and species estimators (Chao2 

and Jackknife2). 

 

 

Group Type Abundance Sobs Chao2 Jackknife2 

Dragonflies Overall 1129 27 26.67 (±1.31) 27.07 

 Pond 438 27 38.25 (±13.15) 37.24 

 Reservoir 691 23 30.00 (±11.66) 28.54 

Beetles Overall 658 16 16.00 (±0) 12.30 

 Pond 415 14 14.00 (±0) 12.29 

 Reservoir 243 12 13.50 (±2.29) 14.99 

Bugs  Overall 3078 18 18.50 (±1.32) 19.00 

 Pond 1038 18 18.67 (±1.31) 19.14 

  Reservoir 2040 13 13.17 (±0.54) 12.29 
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Appendix S4.2 Species list of aquatic insect species sampled. * = South African endemic, ✓ 

= Occupying artificial reservoirs, ✗ = Occupying natural ponds 

 

  Family Artificial 

reservoir 

Natural 

pond 

Faber’s 

Hill 

Mount 

Gilboa 

Good 

Hope 

Linwood Mount 

Shannon 

Odonata         

Acisoma 

variegatum 

Libellulidae ✓ ✗   ✓  ✗ 

Africallagma 

glaucum 

Coenagrionidae ✓ ✗ ✗ ✓✗ ✗ ✓ ✓✗ 

Africallagma 

sapphirinum* 

Coenagrionidae ✓ ✗ ✓✗ ✓ ✓  ✓ 

Agriocnemis 

pinheyi 

Coenagrionidae ✓ ✗  ✓ ✗   

Allocnemis 

leucosticta* 

Platycnemididae ✓ ✗ ✗ ✓ ✗  ✗ 

Anax imperator Aeshnidae ✓ ✗  ✓✗ ✓✗ ✓ ✓ 

Anax speratus Aeshnidae ✓ ✗ ✗ ✗  ✓ ✓✗ 

Azuragrion 

nigridorsum 

Coenagrionidae ✓ ✗ ✓     

Chlorolestes 

fasciatus 

Synlestidae  ✗  ✗    

Crocothemis 

erythraea 

Libellulidae ✓ ✗ ✓✗ ✓ ✓✗ ✓ ✓✗ 

Ellatoneura 

glauca 

Platycnemididae  ✗ ✗ ✗   ✗ 

Ischnura 

senegalensis 

Coenagrionidae ✓ ✗ ✓✗ ✓ ✓✗ ✓ ✗ 

Lestes plagiatus Lestidae ✓ ✗ ✓✗ ✓ ✓✗  ✓✗ 

Nesciothemis 

farinosa 

Libellulidae ✓ ✗ ✓✗ ✓ ✓✗ ✓  

Notogomphus 

praetorius 

Gomphidae ✓ ✗ ✓✗ ✓✗ ✓  ✓ 

Orthetrum julia Libellulidae ✓ ✗ ✓✗ ✓✗ ✓✗ ✓ ✗ 

Palpopleura 

jucunda 

Libellulidae ✓ ✗ ✓✗     

Pantala flavescens Libellulidae ✓ ✗  ✓✗ ✓✗ ✓ ✓✗ 

Paragomphus 

cognatus 

Gomphidae ✓ ✗ ✓ ✓✗ ✓✗   

Proischnura 

rotundipennis* 

Coenagrionidae  ✗     ✗ 

Pseudagrion 

caffrum 

Coenagrionidae ✓ ✗ ✓ ✓✗ ✓  ✗ 

Pseudagrion 

spernatum 

Coenagrionidae ✓ ✗ ✗ ✓✗ ✗ ✓ ✓ 
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Tramea limbata Libellulidae ✓ ✗ ✓ ✓ ✓✗ ✓ ✓✗ 

Trithemis 

arteriosa 

Libellulidae ✓ ✗ ✓✗   ✓  

Trithemis furva Libellulidae ✓ ✗ ✓✗ ✓✗ ✓✗ ✓ ✓✗ 

Trithemis stictica Libellulidae ✓ ✗ ✓✗ ✓✗ ✗ ✓ ✓ 

Zosteraeshna 

minuscula 

Aeshnidae  ✗ ✗  ✗  ✗ 

Coleoptera         

Algophilus sp.* Hydrophilidae ✓ ✗ ✓ ✓✗ ✓✗ ✓ ✓✗ 

Amphiops sp. Hydrophilidae ✓ ✗ ✗    ✗ 

Aulonogyrus sp. Gyrinidae  ✗ ✗  ✗   

Aulonogyrus sp. 2 Gyrinidae ✓     ✓  

Copelatus sp. Dytiscidae  ✗   ✗  ✗ 

Derovatellus sp. Dytiscidae  ✗  ✗ ✗  ✗ 

Gyrinus sp. Gyrinidae ✓ ✗  ✓✗ ✗  ✓ 

Helochares sp. Hydrophilidae ✓ ✗ ✗ ✓✗ ✗  ✗ 

Hydropeplus sp. Dytiscidae ✓   ✓    

Hyphydrus sp. Dytiscidae ✓ ✗ ✗ ✓✗    

Hyphydrus sp. 2 Dytiscidae ✓ ✗ ✓✗ ✓✗ ✓✗  ✗ 

Hyphydrus sp. 3 Dytiscidae ✓ ✗ ✓✗ ✓✗ ✗   

Orectogyrus sp. Gyrinidae  ✗   ✗  ✗ 

Philaccolus sp. Dytiscidae ✓ ✗ ✓ ✗ ✗   

Philaccolus sp. 2 Dytiscidae ✓ ✗ ✓✗ ✓✗   ✗ 

Rhantus 

concolorans 

Dytiscidae ✓ ✗ ✓✗ ✗ ✗  ✗ 

Hemiptera         

Agraptocorixa sp. Corixidae ✓ ✗ ✓✗ ✓✗ ✓✗  ✓ 

Anisops varia Notonectidae ✓ ✗ ✓✗ ✓✗ ✓✗  ✓✗ 

Appasus grassei Belostomatidae ✓ ✗ ✓✗ ✓✗ ✓✗ ✓ ✓✗ 

Borborophilus 

afzelii 

Nepidae  ✗ ✗  ✗  ✗ 

Enithares glauca Notonectidae ✓ ✗ ✓✗ ✓✗   ✓✗ 

Hebrus sp. Veliidae ✓ ✗  ✓✗ ✓   

Hydrometra 

albolineata 

Hydrometridae ✓ ✗ ✗ ✓✗    

Laccocoris sp. Naucoridae ✓ ✗ ✓✗ ✓✗ ✓✗  ✗ 

Laccotrephes 

brachialis 

Nepidae  ✗ ✗  ✗  ✗ 
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Limnogonus 

capensis 

Gerridae  ✗ ✗     

Micronecta sp. Micronectidae ✓ ✗ ✓✗ ✓✗ ✓✗  ✓ 

Neogerris 

severance 

Gerridae ✓ ✗ ✓✗ ✓✗ ✗  ✗ 

Plea pullula Pleidae ✓ ✗ ✓✗ ✓✗   ✓✗ 

Ranatra 

franarantsoana 

Nepidae ✓ ✗  ✓ ✓✗  ✗ 

Ranatra 

grandicollis 

Nepidae  ✗  ✗    

Rhagovelia 

nigricans 

Veliidae ✓ ✗ ✗ ✗  ✓ ✗ 

Sigara pectoralis Corixidae  ✗ ✗    ✗ 

Sigara sp. 2 Corixidae ✓ ✗ ✓✗ ✓✗ ✓✗ ✓ ✓✗ 
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Appendix S4.3 Summary statistics of environmental variables for artificial reservoirs and 

natural ponds. 

 

     

  Mean SE Min. Max. 

Artificial reservoirs     
Size (m2) 23933.7 7703.8 871.3 151604.6 

Elevation (m a.s.l.) 1346.1 39.9 951.0 1584.0 

Vegetation height (m) 0.8 0.1 0.2 2.5 

Total cover (%) 65.4 6.5 18.0 100.0 

Reeds cover (%) 14.0 4.8 0 90.0 

Forbs cover (%) 38.9 8.2 0 100.0 

Grasses cover (%) 12.8 3.7 0 60.0 

Depth (m) 0.6 0.1 0.4 0.9 

Dissolved oxygen (mg/L)  7.4 0.4 4.8 11.7 

Temperature (°C) 24.8 0.8 20.7 37.5 

Conductivity (μs) 61.6 5.9 31.7 119.0 

pH 7.4 0.1 6.8 8.6 

Turbidity (cm visibility) 57.0 6.0 5.0 100.0 

Natural ponds     
Size (m2) 7955.3 1925.7 213.5 30832.7 

Elevation (m a.s.l.) 1435.3 33.1 950 1550.0 

Vegetation height (m) 0.8 0.1 0.04 1.7 

Total cover (%) 83.4 5.5 16.0 100.0 

Reeds cover (%) 2.2 2.2 0.0 44.0 

Forbs cover (%) 38.0 8.4 0.0 100.0 

Grasses cover (%) 43.2 8.9 0.0 100.0 

Depth (m) 0.5 0.1 0.1 1.2 

Dissolved oxygen (mg/L)  6.2 0.4 2.8 8.8 

Temperature (°C) 21.5 0.4 18.0 24.5 

Conductivity (μs) 51.1 3.1 31.9 81.3 

pH 7.1 0.1 6.4 7.6 

Turbidity (cm visibility) 28.2 4.0 5.0 70.5 
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Appendix S5.1 Abundance, number of observed species (Sobs) and species estimators 

(Chao2 and Jackknife 2). 

 

 

 

 

Group Type Abundance Sobs Chao2 Jackknife2 

Odonata Overall 510 22 24.08 (±2.51) 26.08 

 Pond 278 20 3 (±3.24) 25.98 

 Reservoir 232 12 12.17 (±0.54) 11.36 

Coleoptera Overall 665 12 13.5 (±2.29) 15.00 

 Pond 622 11 15 (±5.29) 16.68 

 Reservoir 43 6 6 (±3.74) 6.81 

Hemiptera  Overall 3894 11 12.5 (±2.29) 14.00 

 Pond 1072 11 13.67 (±3.49) 15.83 

 Reservoir 2822 4 4.5 (±1.32) 5.00 
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Appendix S5.2 Species list of aquatic insects sampled. ✓ Indicates occupancy at artificial reservoirs,  indicates occupancy at natural ponds. 

  Common name 

Artificial 

reservoir 

Natural 

pond 

Betty's 

Bay Cederberg Worcester Franschhoek Grabouw Stellenbosch 

Somerset 

West 

Odonata 
          

Africallagma glaucum Swamp Bluet ✓  
  

 
 

 
 

✓ 

Africallagma sapphirinum* Sapphire Bluet 
 

 
 

 
     

Anax imperator Blue Emperor ✓  
 

  
 

 ✓ ✓ 

Anax speratus Orange Emperor 
 

  
  

 
   

Ceriagrion glabrum Common Citril 
 

 
    

 
  

Chlorolestes umbratus** White Malachite 
 

 
    

 
  

Crocothemis erythraea Broad Scarlet 
 

 
  

 
    

Crocothemis sanguinolenta Little Scarlet ✓  
  

 
   

✓ 

Elattoneura frenulata** Sooty Threadtail 
 

 
   

 
   

Ischnura senegalensis Tropical Bluetail ✓   
 

  ✓ ✓ ✓ 

Orthetrum julia capicola Julia Skimmer ✓  
 

 
 

 ✓ 
 

✓ 

Pinheyschna subpupillata* Stream Hawker ✓ 
       

✓ 

Proischnura polychromatica** Mauve Bluet 
 

 
 

 
 

 
   

Pseudagrion furcigerum** Palmiet Sprite ✓  
   

  ✓ ✓ 

Pseudagrion draconis* Mountain Sprite ✓  
 

 
 

 ✓ ✓ 
 

Spesbona angusta** Spesbona 
 

 
   

 
   

Syncordulia legator** Gilded Presba 
 

 
   

 
   

Syncordulia venator** Mahogany Presba ✓ 
       

✓ 

Trithemis annulata Violet Dropwing 
 

 
   

 
   

Trithemis arteriosa Red-Veined Dropwing ✓  
 

   ✓ ✓ ✓ 

Trithemis furva Navy Dropwing ✓  
 

 
  

✓ ✓ ✓ 
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Zosteraeshna minuscula* Friendly Hawker ✓  
 

 
  

✓ 
 

✓ 

Coleoptera 
          

Agabus sp. Diving Beetle 
 

 
 

  
    

Aulonogyrus sp. 2 Whirligig Beetle ✓   
  

 
   

Coelhydrus brevicollis** Diving Beetle ✓  
 

 
    

✓ 

Copelatus sp. 1 Diving Beetle 
 

 
    

 
  

Copelatus sp. 2 Diving Beetle 
 

 
    

 
  

Darwinhydrus sp.** Diving Beetle 
 

 
  

   
  

Derovatellus sp. Diving Beetle ✓ 
      

✓ ✓ 

Helochares sp. Water Scavenger Beetle 
 

 
    

 
  

Hydropeplus sp.** Diving Beetle 
 

 
    

 
  

Hyphydrus signatus Pigsnout Diving Beetle ✓   
  

  
 

✓ 

Philaccolus sp. Diving Beetle 
 

 
 

  
 

 
  

Rhantus concolorans Speckled Diving Beetle ✓  
      

✓ 

Hemiptera 
          

Appasus capensis Giant Water Bug          

Enithares sobria Common Backswimmer ✓       ✓ ✓ 

Gerris swakopensis Water Strider          

Laccocorris spurcus  Saucer Bug          

Micronecta scutellaris Pygmy Water Boatman ✓       ✓ ✓ 

Notonecta lactitans* Common Backswimmer ✓        ✓ 

Ranatra sp. Water Stick Insect 
 

 
  

 
 

 
  

Rhagovelia maculata Pygmy Water Cricket 
 

 
   

 
   

Sigara pectoralis Water Boatman ✓       ✓ ✓ 

Tenagogonus sp. Water Strider 
 

 
    

 
  

Tenagovelia vittigera Water Cricket 
 

 
 

 
 

  
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Appendix S5.3 Significant effects of pre-selected environmental variables on species richness and diversity for each focal taxon: (A) overall 

effects on species richness, (B) overall effects on diversity, (C) effects on species richness for natural ponds, (D) effects on species richness for 

artificial reservoirs and (E) effects on species diversity for artificial reservoirs. Dotted vertical lines indicate breakpoints in the case of piecewise 

regressions.

(A) 
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(B) 
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(C) 
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(D) 
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