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Abstract 

The availability of freshwater is one of the major factors that are limiting South Africa’s 

development. With this in mind the area under investigation in this study forms part of the 

Sandspruit catchment, which is about 100 km north-east of Cape Town near the town of 

Riebeek Kasteel. The climate is semi-arid with a Mediterranean landscape.  

This study forms part of multiple studies that were initiated to assist in alleviating the crisis 

brought about by the continuing drought in the Western Cape Province. This study investigated 

the possibility of utilising the Kasteelberg Mountain, located near the town of Riebeek Kasteel, 

as an additional source of freshwater.  

The regionally fractured sandstone aquifer was the focus during the modelling, volume and 

porosity calculations in this hydrogeological research of the Kasteelberg Mountain Aquifer. 

This resulted in an estimated water reserve that can be sustainably extracted.  

Sustainable development is needed to protect the sensitive ecosystems against anthropologic 

and climate-driven impacts. The study started with analysing the responses from water level 

loggers that were installed in boreholes in the study area to monitor the water fluctuations 

during the seasons so as to utilise this resource sustainably. During the study, the physical 

geology of the area was characterised. Geographic Information Systems (GISs) were used to 

generate maps and derive volumetric information needed to estimate water volumes, and this 

included the delineation of the watershed, elevation and the spatial maps of the boreholes that 

were monitored. A cascade model was created by using climate data collected from local 

weather stations and the physical character of the local sandstone to study the waterflow 

through the mountain. The cascade model was used to appraise its potential in runoff. Some 

common features between the proposed model and HYDRUS-1D runoff model are also 

discussed. Data was also used in the HYDRUS-1D model where the results generated were 

compared with the cascade model results and the measured results from fieldwork studies.  

The study therefore reflected on the volume of water present in the mountain aquifer and 

despite the area experiencing its worst drought in a century, this excess water was available for 

extraction. 
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Opsomming 

Die studie-area vorm deel van die Sandspruit-opvangsgebied. Die klimaat is semi-droog en kan 

beskryf word as ’n bedreiging vir ontwikkeling. ’n Studie is gedoen met die hoop om ŉ 

addisionele varswaterbron te vind. 

Hierdie studie vorm deel van ŉ groter studie wat ten doel het om die droogtegeteisterde Wes-

Kaap se druk te verlig deur addisionele varswaterbronne te vind. Die studie fokus op die 

Kasteelberg, wat net buite die dorp Riebeek Kasteel geleë is.  

Tydens hierdie hidrologiese ondersoek is daar gevind dat die akwifer hoofsaaklik bestaan uit 

sandsteen wat deel van die Tafelberg Groep vorm. Nate en krake is ook volop in hierdie poreuse 

sandsteenrotse. Vir die doeleindes van hierdie studie is die akwifer as homogeen met 

betrekking tot sy geologiese samestelling beskou.  

Die studie het grondwatervlakregistreerders geïnstalleer in bestaande boorgate om die 

seisoenale waterfluktuering te meet. Die fisiese karakterisering van die geologie is onderneem 

waar die totale porositeit en samestelling eerstens vasgestel is. Geografiese Inligtingstelsels 

(GIS)- sagteware is gebruik om die berg te karteer, asook die waterskeidings af te lei, 

oppervlaktes te bepaal, metings van die berg te doen en die verspreiding van die toetsboorgate 

te karteer. Plaaslike weerstasiedata is bekom en deur middel van die opstel van ’n kaskade-

model in MS Excel is die geofisiese inligting ingespan om meer te ontdek van die water wat 

deur die berg vloei. Excel is dus ook gebruik om die volume van die akwifer te bepaal en die 

model kon die waterdravermoë van die akwifer benader. Excel-resultate is gevolglik vergelyk 

met die HYDRUS-1D-model se resultate en die model het die Excel-resultate bevestig en met 

fisiese waarnemings ooreengestem wat in die veld gemaak was. Die studie het daarin geslaag 

om te bewys dat hoewel die Wes-Kaap tans deur die ergste droogte in 100 jaar geteister word, 

die Kasteelberg Akwifer steeds genoeg neerslag ontvang om as waterbron vir plaaslike 

ontginning te dien, wat sodoende die druk op die bestaande waterinfrastruktuur sal kan verlig. 
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 INTRODUCTION 

 

In recent years, numerous advances have been made both at a national and international level 

in the field of water quality monitoring and management. With the recent increased interest in 

water resources management and security, more resources are being allocated to water resource 

management research and development globally. The first widespread assessment of South 

Africa’s water resources was done in the 1950s, coinciding with the start of modern hydrology 

(Midgley et al. 1952). Other national studies later followed in 1969, 1981, 1994 (WR90), 2008 

(WR2005) and 2013 (NWRS2) (Pitman 2011). These studies have both shaped and changed 

our understanding of climate cycles, rainfall and water resources in South Africa. This has led 

to the National Water Act 36 of 1998, which made the Department of Water Affairs and 

Forestry (DWAF) the custodian of water resources in South Africa.  

The area of interest in this study is the Sandspruit catchment, a tributary of the Berg River, 

which is located near the agricultural town of Riebeek West. The Sandspruit catchment covers 

an area of 155 km2 roughly 50 km north of Cape Town, South Africa. Rainfall occurs 

predominantly in the winter months of May to October (Du Plessis & Schloms, 2017). The 

study area receives a mean annual rainfall of 400 mm, with temperatures ranging between a 

maximum of 24 to 31oC and minimum of 8 to 11oC (Bugan 2014). The climate of the study 

area is classified as semi-arid and the mean annual evaporation is estimated at 2 200 mm 

annually (Bugan 2014).  

An additional water source is needed to help with the sustainable management of the area as 

groundwater is extracted for both agricultural and municipal purposes. This has led to 

numerous studies by the Department of Water Affairs and Forestry and other interest groups 

that investigated and continue to investigate and monitor the groundwater salinity in the area 

so as to determine the impact on sustainable use (De Villiers 2007; Fey & De Clercq 2004b; 

Fourie 1976; Gorgens & De Clercq 2006; Greef 1990; Van Rensburg et al. 2011; Bugan 2014). 

This widespread use of groundwater in the area gave rise to the question of how much is 

available to sustainable extraction. The model estimating the groundwater reserve is shown in 

the Results chapter and is discussed in later chapters.  
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Water users in the study area need to be informed about the potential damages of over-

extraction and its associated environmental repercussions. To better interpret and display the 

situation in the study area, geographical information systems (GISs) will be used. A GIS is a 

very powerful tool to display spatial and temporal information visually. 

In Chapter 2, previous studies and reports will be discussed. The studies and reports include 

hydraulic density of populations and its effects and strain on water. The Department of Water 

and Sanitation has also stated that the Western Cape is experiencing the worst drought in 400 

years and has have still not recovered (DWS 2019). In Figure 23, it can clearly be seen that 

seasonal rainfall pattern shifts occur in the Western Cape. The paper by Du Plessis and Schloms 

(2017) shows a projected recovery period during which both groundwater and conventional 

water storage methods (dams) are recharged during the 20- to 40-year cycles. This study will 

thus attempt to ascertain the possibility of utilising groundwater to act as a buffer during the 

“dryer” years, as shown in this study. Due to the study area being used predominantly for 

agricultural practices, the availability of water is crucial for the local economy.  

 

Figure 1 Illustrates the moving of a period rainfall pattern over the last 100 years, observed 
during the months of April and May in the Western Cape, South Africa (Du Plessis & Schloms 

2017) 

 

Official statistics are used to describe the current state of dams in the Western Cape (see Table 

3). With the background stated in both the current situation and the discussion on past studies, 

mention will be made to the water security and growth concerns that influence the future of the 

province.  
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The Kasteelberg Mountain in the Sandspruit catchment was identified as it has been 

functioning as a “sustainable” water supply for over a century. GIS data such as DEMs and 

contour maps will first be created to later adapt and calculate the surface and volume of the 

mountain.  

Borehole and weather station data will be used in Excel to model a cascade model and prepare 

the data for later modelling in HYDRUS-1D.  

Upon completion of these tasks, the results are displayed in Chapter 4 and discussed in Chapter 

5. In the concluding Chapter 6, fulfilment of the objective set in this study and the results are 

discussed. The hypothesis is re-evaluated and altered to incorporate findings and lessons 

learned during the study.  

It is necessary to first investigate the methods and assumption associated with this study in the 

Aims and Objective Chapter. The final aim of this thesis is therefore to monitor groundwater 

changes and ultimately to calculate the volume and water-carrying capacity of the Kasteelberg 

Mountain Aquifer.  

 

1.1. Motivation 

Demand for clean water overtook storage capacity and is placing South Africa in a position 

where the buffering capacity of rivers is reduced due to a lack of said resource (Turton 2009) 

and subsequently compromising national water supply security and sustainable development.  

The study area has been identified to be a potential new source of freshwater for the City of 

Cape Town. Previous work has been done in the area to determine the possibility of utilising 

this water resource. Yet the resource potential has not yet been estimated. This study will use 

previous studies along with newly collected and acquired data to achieve this objective. Given 

that the West Coast of South Africa is characterised as a Mediterranean climate with infrequent 

winter rainfall and is a semi-arid region with high summer evapotranspiration, freshwater is a 

scarce resource – even more so in the Western Cape. The Atlantic Ocean can be found directly 

to the west and the cold Benguela current flows along the coast, generating the Mediterranean 

climate with mainly winter rainfalls. This leads to a large demand for agricultural water during 

the seasons with high evapotranspiration, which puts a strain on existing water resources. 

Vegetation in the area includes fynbos, succulents, bushes and some sedges.  
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There is increased pressure globally on freshwater resources and in South Africa, specifically 

in the Western Cape Province, a new water source is needed. The implementation of modern, 

more water-effective agricultural methods and industry will have to be implemented by policy 

to compensate for water scarcity in the country. Other anthropogenic impacts, such as 

agriculture, industry, habitat destruction, increasing population and the pollution of these 

natural resources, pose a clear and imminent danger if not correctly managed. An immediate 

response to the preservation and protection of these freshwater resources is vital to sustainable 

economic growth and development. To achieve this goal, a clearer understanding of the local 

Kasteelberg Mountain aquifer is needed. This will also be one of the outcomes of this study.  

Climate change is also expected to play a significant role in the future of the western/south-

western regions of South Africa (Bugan 2014; WWF 2012), adding to the already stretched 

reserves. 

 

1.2. Hypothesis  

Kasteelberg is a high-rainfall area and is surrounded by large-scale agricultural and mining 

activity, which makes it ideal to clearly show the groundwater variation during summer and 

winter months. From these datasets two models will be created: HYDRUS and a cascade model 

in Excel. The cascade model will be used to estimate the water-carrying potential of the aquifer 

and the HYDRUS model will be compared to the cascade model to see to what degree the two 

approaches differ in their results.  

 

1.3. Aims and objectives of the study 

The aim of this study is to review available data and to supplement it with newly collected data, 

to calculate the capacity of the Kasteelberg Mountain Aquifer, to measure groundwater changes 

during seasonal change, to determine the reserve potential of the aquifer and to discuss the 

possible utilisation of the aquifer by the local municipalities.  

To calculate the capacity of the Kasteelberg Mountain Aquifer 

The area plays host to numerous parties utilising the aquifer for agricultural and municipal 

uses. Investigating links between the surface and groundwater may give insight into the health 

of the aquifer system and the current management thereof. A case can then be made for the 
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utilisation of the water resource and whether the current ecological protective measures are 

satisfactory.  

To measure groundwater changes during seasonal change 

By using local boreholes, the changes in water levels were measured over the span of 

multiple seasons to study the correlation between groundwater level, rainfall and the 

consequent lag before recharge occurs. 

To determine the reserve potential of the Kasteelberg Mountain Aquifer 

This will be achieved using GIS software, local geology and geological maps to help 

calculate the water retention and carry capacity of the aquifer. 

To discuss the possible utilisation of the Kasteelberg Mountain Aquifer  

This will be accomplished by comparing the groundwater table during the summer and winter 

seasons, monitoring rainfall and calculating the recharge and water absorption potential of the 

aquifer. These measurements will be used in combination with the volume calculations of the 

aquifer in GIS software. The results will be used to speculate as to the feasibility of utilising 

the aquifer for freshwater in the surrounding area.  

 

1.4. Approach and methodology 

A comprehensive approach to understanding the hydrological response to the Kasteelberg 

Mountain Aquifer was taken in this study. The research includes archival and collected 

temporal, spatial, hydrological and meteorological data sets.  

The study involved the following steps: 

 Literature review  

 Data collection 

 Fieldwork 

 Interpretation of hydrological and climate data 

 Calculating the Kasteelberg’s dimensions using Qgis 

 Cascade model  

 Hydrus model 

 

The closest weather station is located on the slope of the mountain and was used during this 

study. Other known weather stations in the surrounding area include stations in Moorreesburg 
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(South African Weather Service), De Hoek (South African Weather Service), Laggewens 

(Department of Agriculture and South African Weather Services) and Goedertrou (WRC –

currently inactive).  

Weather (meteorological) data is necessary for rainfall and evaporation estimations that 

represent the driving force of water fluxes in the catchment. Rainfall data is used to calculate 

the surface water and groundwater flow.  

In a study that was conducted in November 2008 (Jovanovic et al. 2011b) it was decided to 

divide the Sandspruit catchment area into three sections, based on geology. The upper reaches 

are defined by sandstone and Malmesbury shale. The mid-reaches are defined by the undulating 

Malmesbury shales. The lower reaches are defined by Malmesbury shales in conjunction with 

alluvial sandy soils. 
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 LITERATURE REVIEW 

 

2.1  Introduction 

South Africa is a water-scarce country with an average annual rainfall of 465 mm, with 860 mm 

being the world average (NWRS2 2013a). In the past, South Africa has invested heavily in 

water infrastructure (1930s, 1970s, and 1980s) and monitoring water quality (NWRS2 2013b). 

Water supply cannot simply be solved by building more dams and new infrastructure. There 

are currently 4 395 dams of which 350 are controlled by the Department of Water Affairs 

(DWA) (NWRS2, 2013a). Addressing the water security issue (discussed in full later in this 

chapter) will include upgrading of existing infrastructure with modern technologies and 

rehabilitating South Africa’s “water banks”, namely catchment areas that feed both surface and 

subsurface water reserves. The general conception that dams are our only water resource is 

wrong and people need to be educated about this. They need to understand that the current 

water infrastructure depends on the natural “infrastructure” that supplies and sustains a healthy 

ecosystem, of which society may utilise the excess water. Annually, 10 000 million m3 surface 

water and 2 000 million m3 groundwater is allocated in South Africa (NWRS2 2013a) for 

anthropogenic uses. Figure 2 shows the main water sources and uses for the Boland district. 

This is a water-scarce area and a large part of the local economy is agricultural in nature. 

Multiple businesses also rely on the agricultural sector for products or for employment. This 

study will attempt to indicate if the Kasteelberg Aquifer is a viable additional source of water 

in the area.  

 

The World Wildlife Fund (WWF) recently stated that the climate change models predict a grim 

future for South Africa’s already stressed water reserves, stating that changes in both rainfall 

and temperature will negatively impact South Africa’s water storage capabilities. While South 

Africa is a water-scarce country, it boasts as the country with the third highest level of 

freshwater biodiversity, with 223 river ecosystems and 792 types of wetland ecosystems.  
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1.4.1. Hydraulic density of population 

Researchers have been warning about this impending humanitarian crisis for more than a 

decade (Ferreira 2017), yet little was done to prepare for this crisis. Despite these warnings by 

researchers, the local government expanded free housing, which increased the strain on water 

resources. 

With a still growing population and limited water resources it has been reported that South 

Africa has an annual water deficit of 38 billion m3 (Cowan 2017).  

 

2.2  Geological background 

2.2.1  Introduction  

The Cape Super Group (CSG) is composed of sediments that were deposited in a shallow 

marine environment with evidence of tidal waves (Rust 1967). Also present are non-marine 

braided-fluvial environments that date back to the early Ordivician to early Carboniferous 

period. Outcrops are found along the entire length of the Cape Fold Belt (CFB) and are 

Figure 2 Land use in the Boland mountains (WWF, 2013) 

Stellenbosch University https://scholar.sun.ac.za



21 

 

predominantly siliclastic in nature. The succession of quartz arenites, shale, siltstone, 

conglomerates and a thin diamictite unit are subdivided into the Table Mountain, Bokkeveld 

and Witteberg groups respectively (Broquet 1992; Du Toit 1954; Rust 1967; Theron & Loock 

1988; Theron 1962).  

The regional geology (see Figure 3) of the study area is generally composed of the Malmesbury 

Group and the Table Mountain Group (TMG). The catchment area is within the limits of the 

Swartland and Tygerberg “terranes” as described by Von Venh (1983). Regionally the 

lithology of the area is characterised by low-grade-metamorphosed volcanic sedimentary 

succession, intruded by syn- to post-orogenic granitiods (Gresse et al. 2006). Poor exposure in 

the area has resulted in extrapolation in the regional geology and should be included in 

uncertainty studies.  

 

2.2.1  Malmesbury Group 

The Malmesbury Group is currently divided into three subgroups (see Figure 10), referred to 

as the south-western Tygerberg formation, central Swartland Subgroup and the north-eastern 

Boland Subgroup (Gresse et al. 2006). The Malmesbury Group overlies the Swartland Group, 

but is locally separated by an unconformity.  

The formation of the Malmesbury Group is currently interpreted as a marine depositional 

environment (Rozendaal & Scheepers 1995; Belcher 2003) with the interlayered intermediate 

to mafic volcanic rocks probably representing oceanic crust. The origin of the Malmesbury 

Group is thought to be linked to a passive continental margin setting and the resulting filling 

of a basin with marine and flyschoid (a syn-orogenic sediment) deposits, within the passive 

continental margin (Rozendaal & Scheepers 1995; Belcher 2003). Shale layers from the 

Precambrian era are deeply weathered and were submerged in an oceanic environment till the 

late tertiary (Verwoerd et al. 1974). The Malmesbury Group have been subjected to low to 

medium-grade metamorphism as well as polyphase plastic and brittle deformation (Rozendaal 

& Scheepers 1995). 
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Figure 3 Local geological map of south-western Western Cape, from Belcher (2003) who 
adapted it from Rabie et al. (1974). 
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The Malmesbury Group is often difficult to study due to limited outcrops and the argillaceous 

nature of the group’s lithological units that make up the bulk of the group (Demlie et al. 2011).  

2.2.2  Tygerberg Terrane  

The Tygerberg Terrane is overlain by the Malmesbury Group and is currently interpreted as a 

turbidite sequence. Its deposition as a turbidite deposit would have been located on the edge of 

an oceanic basin shown by the greywackes and phyllites (Rozendaal & Scheepers 1995). This 

feature is exposed for 3 km between Sea Point and Cape Town, which also exhibits sedimentary 

structures such as cross-bedding, ripple marks, ripple cross-lamination graded bedding and 

slumping channelling (Gresse et al. 2006). Interlayered rocks ranging from intermediate to 

mafic volcanic are currently thought to represent oceanic rocks (Rozendaal & Scheepers 1995).  

The Bloubergstrand member exposed 15 km north of Cape Town, exhibits a local volcanic 

succession with a tuff, agglomerate and altered amygdaloidal andesite make-up.  

2.2.3  Swartland Terrane 

The Swartland Terrane consists of the Swartland Group and the Franschhoek and Bridgetown 

Formations, with the Moorreesburg, Klipplaat and Berg River Formations grouped to form the 

Swartland Group.  

These formations that make up the Swartland Subgroup are considered tectonostratigraphic 

units that are exposed in the form of the Swartland and Spitskop domes (Gresse et al. 2006). 

Sediment deposition is thought to be associated with the deformation of an accretionary 

prism/fore-arc (Belcher 2003).  

The Swartland Terrane is an ancient shelf deposit due to the occurrence of mica schists, fine-

grained quartzites and quartz schists, limestone and dolomite lenses (Rozendaal & Scheepers 

1995). 

The Berg River Formation is the lowermost formation and is made up of chlorite schist and 

greywacke (impure limestone lenses and quartz schist are found towards the top) (Gresse et al. 

2006).  

2.2.4  Boland Subgroup 

The Boland Terrane is representative of a nearshore depositional environment, indicated by 

coarse-grained quartzites, quartz schists and psammites (sandstone or arenite) with 

conglomerate and phyllite bands present (Rozendaal & Scheepers 1995). 
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2.2.5  Table Mountain Group (TMG) 

The Table Mountain Group (TMG) can be found in the Western and Eastern Cape Provinces 

of South Africa. The genesis for the TMG are thought to be sedimentary deposits that were 

deposited during the Ordovician to Silurian age, in an east-trending basin on a stable 

continental shelf (Rust 1973). The TMG has been influenced by two major tectonic events, 

Permo-Triassic Cape Orogeny and by the fragmentation of Gondwana in the Mesozoic.  

Outcrops can be found from Nieuwoudtville to Cape Agulhas and stretching east towards 

Algoa Bay. The TMG also diminishes in thickness, from 4 400 m in the south to merely 900 m 

at its northern limit. Major sections of the TMG in the study area are quartzitic sandstones 

(Rozendaal & Scheepers 1995; Bugan 2014; Jovanovic et al. 2011b; Verwoerd et al. 1974). 

The Cape Orogeny had the effect of tectonically thickening the sequences in the Southern Cape 

where strain was higher.  

In the study area, the TMG can be divided into three distinct units, as summarised in Figure 

9. 
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Table 1 Lithology specific to the study area, adapted from (SRK, 2007) 

Formation Major lithological units Maximum thickness in study 

area 

(m) 

Piekenierskloof Quartzitic sandstone & 

conglomerate 

10 

Graafwater Impure sandstone & shale 55 

Peninsula Quartzite  500 

 

2.2.6  Piekenierskloof Formation 

The Piekenierskloof Formation, contrary to the group it forms part of, thins towards the south. 

As in Table 1, the Formation is only 10 m thin in the study area. The unit comprises basal 

conglomerates overlain by coarse grained sandstone.  

2.2.7  Graafwater Formation 

The Graafwater Formation follows conformably on the Piekenierskloof Formation and is only 

55 m thick near the Kasteelberg, see Table 5. The unit as a whole is 440 m thick in Graafwater 

and thinning in the east and north (Rust 1967). 

2.2.8  Peninsula Formation  

The Kasteelberg mostly consists of the Peninsula Formation, as seen in Figure 10. The figure 

also shows that the Formation in this area is ~500 m thick, see Table 5. Characteristic of the 

unit are successions of medium to coarse grained, thickly bedded, grey sandstone which 

weathers to a greyish colour (Rust 1967).  

The CFB is located 33 S and is east-west striking, which predominantly consists of sedimentary 

and metamorphic rocks. The entire geological succession with each respective sub-division, 

thickness and lithology is summarised in Table 2.  

The geology of the Sandspruit catchment is dominated by the Table Mountain Group (TMG) 

in the elevated areas and the Malmesbury shales dominating the mid to lower elevated areas 

(Jovanovic et al. 2011b). Granite in the area also contributes to the surrounding clay soils, 

being derived from the weathered granite (Jovanovic et al. 2011b). 

Semi-weathered rocks originating from the Malmesbury Group also cause a low hydraulic 

conductivity, with hydraulic conductivity decreasing with decrease in elevation (Jovanovic et 

al. 2011b). 
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2.2.9  Structural features  

The Malmesbury Group acts as both a stratigraphic and tectonic link that incorporate the three 

terrains or domains, namely the Tygerberg, Swartland and the Boland subgroups (Gresse et al. 

2006). Further structural features include the Colenso- and Piketberg-Wellington fault. The 

Colenso fault (Saldanha-Stellenbosch) acts as the physical divide between the south-western 

Tygerberg and central Swartland subgroup (Gresse et al. 2006). Tygerberg Terrane features S-

type granite that is separated by the Colenso Fault from the younger I-type granitoids in the 

Swartland Terrane (Gresse et al. 2006), while the Piketberg-Wellington fault zone divides the 

central Swartland and north-eastern Boland subgroup (Gresse et al. 2006; SRK 2007). Both 

the Colenso and Piketberg-Wellington fault zones display reactivation in a sinistral strike-slip 

and vertical displacement (Gresse et al. 2006; SRK 2007).  
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Table 2 Local geological sequences in the study area (adapted from Jovanovic et al. 2011b; 
Belcher 2003; Demlie et al. 2011; Gresse et al. 2006) 

Period Group Formation Lithology 

Quaternary - - Silcrete/Ferricrete 

- Loam and sandy loam soil 

Springfontein Light grey to pale red sandy soil 

Paleozoic Table 

Mountain 

Graafwater Light grey quartzitic sandstone with thin 

siltstone, shale and polymictic 

conglomerate beds 

Piekenierskloof Grey to reddish quartzitic sandstone with 

miner grit, conglomerate and reddish 

shale lenses 

Peninsula Light grey quartzitic sandstone with thin 

siltstone, shale and polymictic 

conglomerate beds 

Proterozoic Malmesbury Bridgetown Greenstone with dolomite and chert 

lenses, graphitic schists, metavolcanic rocks 

with WPB-MORB affinities 

Moorreesburg Greywacke and phyllite with beds and 

lenses of quartzite schist, limestone and 

grit, quartz-chlorite-muscovite-feldspar schists, 

graphitic schists and arenitic layers near the 

Klipplaat contact 

Klipplaat Quartz schist with phyllite beds and 

minor limestone and chlorite schist 

lenses, sericite and limestone 

Berg River Schist and fine-grained greywacke with 

beds and lenses of quartz schist and impure 

limestone lenses, graphitic schists quartz-

chlorite-muscovite-feldspar schists toward the 

top of the formation 

Pre- to 

Early 

Cambrian 

Cape 

Granite 

suit 

- Hybrid granodiorite 

 

2.3   Geomorphology 

Surface drainage is largely dependent on the geomorphology or topographic gradient (see 

Figure 4) of the area with the groundwater flow largely also following this trend (Demlie et 

al. 2011). The DEM will later be used in conjunction with Figure 14 to populate the Excel 

cascade model.  

Up to 61% of the catchment area slopes at gradients between 0 to 4 degrees, with 27% sloping 

at 4 to 7 degrees (Demlie et al. 2011). 
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Land cover in the study area is divided into 90% grain and 4% grapes, with the remaining 6% 

of land use being allocated to reserves and mountain veld (Demlie et al. 2011). This also 

implies that the largest portion of this land is ploughed annually, which impacts on groundwater 

recharge. 

 

Figure 4 DEM of the study area 

 

It is important to fully understand the geological setting of the Kasteelberg. In Figure 10 one 

can see that the mountain has a major fault line along its southern side. In a NE to SW direction, 

there is a dip in the shale and sandstone. This means that water that penetrates the sandstone 

will be trapped at the base of the sandstone and on the less penetrable shale formation. This 

provides the opportunity for groundwater to accumulate in and below the mountain, except if 

Stellenbosch University https://scholar.sun.ac.za



29 

 

the fault system plays a role in decanting water to the shale layers below. It was therefore 

necessary to understand what the typical rates of water movement in the shales would be, as 

this defines the temporal storage effect in the system. This section therefore reflected on all the 

shale components of the Malmesbury formation and the reported physical character of these 

layers was used in the next section.  

2.4  Study area 

The research was conducted in a tributary or sub-catchment area that feeds into the Berg River. 

The Berg River currently supplies freshwater to the Greater Cape Town area and is a major 

freshwater source in the Western Cape. The Berg River combined with the Riviersonderend 

contributes 80% of the water needed by the Greater Cape Town and West Coast regions 

annually, contributing 450 million m3 of freshwater. In 2004, 12% of South Africa’s Gross 

Domestic Product (GDP) was generated in this management area (De Clerq et al. 2013, WWF 

2012).  

An estimated 9% of the annual rainfall contributes to river flows, of which 4% recharges the 

local aquifers (De Clerq et al. 2013; WWF 2013). Studies focusing on groundwater recharge 

started in the mid-1980s, becoming more frequent and utilising modern technologies during 

the last couple of decades. It is thus important to reflect on the progress made and the current 

body of knowledge acquired in the field.  

Groundwater recharge is subject to temporal and spatial variation of both the precipitation and 

geology. Groundwater recharge is a notorious component of the hydrological budget to 

accurately quantify (Stephens & Knowlton 1986; Jackson & Rushton 1987; Cook & Kilty 

1992; Stone et al. 2001; Conrad et al. 2004). With the study area being in an area allocated to 

an arid zone, the task of establishing a water budget further increases the difficulty due to 

recharge factors such as time, space and geomorphology (Verma 1979; Yair & Lavee 1985; 

Simmers 1988; Conrad et al. 2004). 

Inputs used in relation to water balance equations can be defined by direct or vertical recharge, 

rivers and lateral inflow mechanisms (Conrad et al. 2004). The study area (Figure 5) was 

selected because it receives seasonal rainfall and has an “isolated” mountain. This means that 

the mountain does not form part of a larger mountain chain, and limited geological variation is 

expected. Studies have also been conducted in this area to determine the possibility of 

commercialising the groundwater, but have yet not attempted to determine the water storage 

capacity of the aquifer.  
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The study area boundary was set to establish and ensure that the study area is not influenced 

by “outside” impacts (Figure 16). This means that the catchment area represented a closed 

system regarding water fluxes. These boundaries separated this catchment area from the 

adjacent catchment system, e.g. watersheds. This was essential in ensuring accurate 

assessments of geology, soil type and land cover (agriculture) that influence water movement. 

To achieve this, a watershed analysis was prepared in Map Window, based on a DEM from the 

USGS. 

• Precipitation data was obtained by using data captured by local weather stations. The 

mountain (Kasteelberg) as focus had higher rainfall than the surrounding regime, with a 

reduction in rainfall relative to the distance from the mountain. 

•  Infiltration rates are important to the study as this will be the basis of the recharge 

potential calculations later in the study. This will be essential during the building of the cascade 

model. The influence of the geology, the soil type and agriculture will add to our understanding 

of the infiltration potential of the top soil (soil type and agriculture) and the permeability of 

deeper rock layers. 

Table 3 illustrates the Water Source Areas (WSAs) of South Africa. The distribution is not 

equal and areas such as the study area need another water source for sustainable development. 

Due to the local economy being mostly based on agriculture, industries reliant on the 

agricultural sector are employing thousands of workers. The resulting need for sustainable 

growth is felt in the entire community.   
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Table 3 Water Source Areas (WSAs) are grouped into 21 areas in South Africa, water source 
areas in bold are classified as the country’s strategic water source areas (WWF 2013) 

Water Source Area Main Rivers Threats 

Amatole Great Kei; Keiskamma; Great Fish, 

Tyume; Amatele 
Land degradation; fires; alien invasive vegetation 

Boland Mountains Berg; Breede; Riviersonderend Large-scale plantations; land degradation; climate 

change; alien invasive vegetation; fires 

Eastern Cape Drakensberg Mzimvubu; Orange; Bokspruit; Thina; 

Klein Mooi; Mthatha 
Land degradation; fires; climate change 

Enkangala Drakensberg Pongola; Bivane; Assegaai; Vaal; 

Thukela; Wilge 
Coal mining; large-scale plantations; land degradation 

Grootwinterhoek Olifants River; Klein Berg; Doring Land degradation; climate change; 

alien invasive vegetation; fires 

Kougaberg Kouga; Baviaanskloof; Olifants; 

Gamtoos; Gouritz 
Climate change; alien invasive vegetation; fires 

Langeberg Doring; Duiwenhoks; Naroo; Gouritz; 

Breede. 
Climate change; alien invasive vegetation; fires 

Maloti Drakensberg Caledon; Orange; Senqu Large-scale cultivation; land degradation 

Mbabane Hills Usutu; Lusushwana; Mpuluzi; Inkomati, 

Pongola 
Large-scale plantations; land degradation 

Mfolozi Headwaters Lenjane, Black Mfolozi; Pongola Large-scale plantations and cultivation; coal mining land 

degradation 

Mpumalanga Drakensberg Elands; Sabie; Crocodile; Olifants Large-scale plantations; coal mining; land degradation 

Northern Drakensberg Senqu; Caledon; Thukela; Orange; Vaal Coal mining; land degradation 

Outeniqua Groot Brak; Olifants Large-scale plantations; alien invasive vegetation; fires 

Pondoland Coast Mzimvubu, Mngazi, Mntafufu; Msikaba Large-scale cultivation and plantations; coal mining; 

land degradation 

Southern Drakensberg uMngeni; Mooi; Thugela; Mkomasi; 

uMzimkulu 
Large-scale plantations; land degradation 

Soutpansberg Luvuvhu; Little Letaba; Mutale; 

Mutamba; Nzhelele 
Large-scale plantations and cultivation; land degradation 

Swartberg Gamka; Sand; Dorps; Gouritz; Olifants Climate change; alien invasive vegetation; fires 

Table Mountain Hout; Diep Climate change; alien invasive vegetation; fires 

Tsitsikamma Groot Storms; Klip; Tsitsikamma Large-scale plantations; land degradation; alien 

invasive vegetation 

Wolkberg Middle Letaba; Ngwabitsi; Oliphants Large-scale plantations; land degradation; climate change 

Zululand Coast Mvoti; Thukela; Mhlatuze Large-scale cultivation; coal mining; land degradation 
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Figure 5 The location of the study area, which is part of the Sandspruit, Western Cape, South 
Africa 

 

2.4.1  Local dam levels and water availability 

Cape Town recently suffered from drought, and dam levels were extremely low. Table 4 shows 

how water security was compromised. The dams were estimated to run dry early 2018 and this 

was referred to as Day Zero by local authorities. The crisis led to the Western Cape Province 

being proclaimed a disaster zone due to the widespread drought.  
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Table 4 Dam levels in the Western Cape, for the years 2016 and 2017 (Head 2017) 

Dam % 2016 

(start of  

December)  

% 2017 

(start of  

December) 

% difference  

Cape Town System Dams 

(Combined) 

52 34 -18 

Theewaterskloof 45 21 -24 

Voëlvlei Dam 61 26 -35 

Clanwilliam Dam 82 30 -52 

Brandvlei Dam 48 28 -20 

Berg River Catchment 61 50 -11 

Breede River Catchment 54 29 -25 

Gouritz River Catchment 30 20 -10 

Olifants River Catchment 81 30 -51 

Western Cape state of dams 52 32 -20 

 

Freshwater ecosystems in South Africa were mapped and classified into National Freshwater 

Ecosystem Priority Areas (NFEPSs). The NFEPS show that 60% of river ecosystems and 65% 

of wetlands are being threatened (WWF 2013), with 23% of river ecosystems and 48% of 

wetlands being at critical risk (WWF 2013). Only 12% of South Africa’s land surface currently 

generates more than 50% of the country’s surface water supply (WWF 2012). The WWF and 

Council for Scientific and Industrial Research (CSIR) have combined resources to conduct a 

water run-off study, which revealed that only 8% of South Africa’s surface is responsible for 

50% of the run-off (WWF 2013). Apart from this, 21% of South Africa receives less than 

200 mm annual rainfall (WWF 2012). Two thirds of South Africa’s water resources are also 

shared with South Africa’s neighbouring countries (WWF 2013).  

South Africa is divided into nine Water Resource Management (WRM) areas, which are each 

responsible for the management of water resources in their area. The division of these areas is 

based on geology (aquifer systems), geography (catchment area), financial viability, 

stakeholders and equity consideration. WRMs are in turn managed by Catchment Management 

Agencies (CMA) which monitor and control the integrated water resource management.  

In 2012, the World Economic Forum (WEF) released a Global Risk Report (World Economic 

Forum 2012) which stated that the number one risk was a total financial collapse, followed by 

global freshwater supply (WWF 2012). It is noteworthy that the third greatest risk (global food 

shortage) and fourth (volatility in energy and agricultural prices) are both directly related to 
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water supply. In the 2015 Global Risk Report, the top risk in terms of impact is listed as a water 

crisis (World Economic Forum 2015). 

The Western Cape encountered a further water-related challenge, which was eutrophication of 

water resources due to cyanobacteria blooms, causing the microcystin levels to rise in dams 

(Turton 2009). Turton (2009) also shows the correlation between climate change and these 

cyanobacteria blooms.  

Water is also partially “lost” (non-revenue water) during agricultural practices, industry and 

mining. Industry makes use of inefficient water-reliant processes, not reusing water and limited 

reduction in water pollution. Mining companies also vary in their water usage due to 

fluctuations in mineral prices, but mostly fail to reuse water. The agricultural sector may be the 

largest challenge in reducing water loss, due to water lost in canal systems, irrigation systems 

and crop selection.  

2.4.2  Water security 

Which factors define water security? First, the physical (hydrological) environment must be 

considered. This will include the water availability, annual water budget and variables that 

influence water access. Other factors include the socio-economics of the area in question, type 

of industries (if present), agriculture and anthropogenic water management infrastructure. Last, 

future climate variation should be considered (Grey & Sandoff 2007).  

2.5  Groundwater and hydrology  

During a similar study by Haws et al. (2005) using HYDRUS-1D, it was found that the use of 

dual-porosity resulted in improved accuracy with regard to water flow modelling. It was also 

noted in the study that solute transport wat not modelled with success. This study only focuses 

on water flow and thus chose to use this modelling method due to its limitations not influencing 

the current study in its current form.  
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Figure 6 Actual (a) and idealised (b) dual-porosity reservoir model (Warren & Root 1963) 
used in the HYDRUS-1D model 

 

Interporosity flow is the fluid exchange between two media, namely matrix and fractures, that 

constitute a dual-porosity system. Warren and Root (1963) defined the inter-porosity flow 

coefficient, λ, as 

 

          Equation 1 

 

where km is the permeability of the matrix, kf  is the permeability of the natural fractures, and α 

is the parameter characteristic of the system geometry (Gringaten 1984; Serra et al. 1983). 

The interporosity flow coefficient is a measure of how easily fluid flows from the matrix to the 

fractures (Gringaten 1984). The parameter α is defined below by Equation 2. 

 

         Equation 2 

 

where L is a characteristic dimension of a matrix block and j is the number of normal sets of 

planes limiting the less-permeable medium (j = 1, 2, 3). On the other hand, for the multi-layered 

or "slab" model letting L = km, as the thickness of an individual matrix block (Serra et al. 1983), 

λ can then be described as in Equation 3. 
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         Equation 3 

 

The storativity ratio, ω, is defined by Gringaten (1984) as 

 

      Equation 4 

 

where V is the ratio of the total volume of one medium and ϕ is the ratio of the pore volume of 

the medium to the total volume of that medium. Subscripts f and f + m refer to the fracture and 

to the total system that constitutes fractures and the matrix. Consequently, the storativity ratio 

is a measure of the relative fracture storage capacity in the aquifer (Gringaten 1984). 

 

 

De Clercq et al. (2010) monitored the climate of the Sandspruit since 2004. There are also other 

climate stations in the region, used in the studies of Wasserfall (2010) and Vermeulen (2013).  

Vermeulen (2010) studied the difference between two land uses: renosterveld and a wheat 

production system. See Figure 8 and 9, with their respective impacts on groundwater levels. 

This study along with the study conducted by De Clercq et al. (2009) in Figure 9 illustrates 

past studies conducted in the area and the need to expand thereon.  
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Figure 7 Estimated potential transpiration PT for renosterveld and wheat field with Hydrus 
(Vermeulen, 2010) 

 

The use of weather station data and the monitoring of borehole formed the basis of this study. 

Figure 8 shows the variation in precipitation and evapotranspiration in the area around the 

study area. Figure 9 indicates the distribution of rainfall and evapotranspiration, indicating ET 

to be more dominant than rain.  
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Figure 8 Characterisation of the climate variation through a comparison between (a) 
Franschhoek, (b) HLS Boland, and (c) Langebaanweg in terms of evapotranspiration (ET), 

average temperature (TM) and rainfall (R/d) (De Clercq et al. 2009) 

 

2.5.1  Groundwater monitoring and modelling 

Groundwater and HYDRUS-1D modelling were used by Bugan (2014) to investigate the 

hydrology of the Sandspruit. This study, on the edge of the Sandspruit, will use the same but 

more detailed information as the aims of this study are similar to Bugan’s (2014).  
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Table 5 Geological characteristics of the local lithology (Lin 2007) 

Lithology Density (g/m3) Porosity (%) 

Clean sandstone 2.65 5.7 

Fractured sandstone 2.3 16.4 

Siltstone 2.45 17.1 

Shale 2.35 14 

 

When considering Table 5, the focus is rightly on the Kasteelberg Mountain and not the 

surrounding area due to the much larger yield in the fractured TMG. As shown in Figure 9, 

the mountain mostly comprises the Fractured TMG and the surrounding mainly the 

Malmesbury Group. 

 

Figure 9 Geological cross section of the Kasteelberg region, with the SW fault possibly causing 
a permeable barrier to impede free flow of water (SRK, 2007) 

 

2.5.2  Hydrological modelling 

De Clercq et al. (2010) showed through hydrological modelling how the Sandspruit responded 

to flows from the Kasteelberg. This study by De Clercq et al. (2010), Bugan (2014), Wasserfall 

(2013), Vermeulen (2010) and Fey & De Clercq (2004b) focus on the area surrounding the 

study area. The studies by Bugan (2014) focused on the salinity in the Sandspruit, Wasserfall 

(2013) focused on hillslopes and Vermeulen (2010) on groundcover and evapotranspiration 

(Figure 8 and 9). These studies are important but lack the focus on the Mountain aquifer and 

the role it plays in the hydrological cycle of the Sandspruit. This study will follow a similar 

approach and methodology but will be adapted to indicate the role of the Kasteelberg Mountain 

Aquifer. Hydrological modelling will thus make use of multiple sources and various techniques 
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to increase accuracy of the results. HYDRUS-1D will be used to verify data collected and 

compare results from Excel, GIS, climate and borehole data.  

 

 

Figure 10 The modelled results in salt movement from the Sandspruit catchment linked to 
water movement, (De Clercq 2015). 

 

Figure 13 summarises the current understanding of the hydrogeological setting of the Berg 

River catchment, indicating the seasonal responses of the perched water table in relation to 

the movements of salt. It is noteworthy that the salt output is minimal in relation to the other 

environments in Figure 10. This could be due to minimal agricultural-related chemicals or 

fertiliser being used in these areas, with constant recharge of the mountain aquifer from 

precipitation and the geological make-up of the aquifer not being high in salt. These facts 

from literature and field observations will later be used in determining parameters in the 

modelling of the aquifer in HYDRUS-1D. Figure 12 is a graphic representation of the 

dynamic in groundwater occurrence in the Kasteelberg to the Berg River landscape by De 

Clercq (2015). The weathering zone, as indicated in Figure 12, shows the response of the 

perched water table to seasonal precipitation in the study area. This will be monitored over 

multiple seasons during this study. The results from monitoring the boreholes in the study 

area will later be used to correlate the results from the HYDRUS-1D model.  
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Figure 11 A graphic representation of the dynamic in groundwater occurrence in the 
Kasteelberg to Berg River landscape (De Clercq 2015) 

 

2.6  Concluding remarks 

Geology in the study area was extensively researched by Verwoerd et al. (1974) and the fault 

on the western side of the mountain makes the geological characteristics of the Kasteelberg 

Mountain unique and distinct from its surroundings, see Figure 15. With the geology being 

distinctly different from its surroundings, the establishment of boundaries was also that much 

easier. The geomorphology is also central to determining the boundary limits of the study 

area. This was due to the slope of the mountain, which made it distinct from its surroundings. 

This in turn resulted in very limited to no agricultural activity in the study area, which could 

augment the amount of water introduced into the system. This limitation to the local 

agricultural industry resulted in vegetation being natural and homogeneous, which will later 

reduce the number of unknown factors, with soil being limited on top of the mountain and the 

slopes. From literature and field observations the majority of water is sorted in joint and 

cracks rather than through soil infiltration. This also made the determining of the pressure 

head in modelling homogenous for this study.  

Initially, the local mine was thought to be a challenge due to its manipulation of the water 

table so as to prevent flooding. This challenge was overcome due to using and observing 

boreholes between the mine and the mountain.  

Expected challenges are that precipitation will be measured from a weather station next to the 

mountain. This is noteworthy in that it will undoubtedly influence the accuracy of the amount 
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of excess water in the system. With the focus of this study being the creation of a model and 

not the volume available for extraction, which is secondary, this was decided to be a 

sufficient source of precipitation data for the study.  
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 METHODOLOGY 

3.1  Introduction  

The reason for choosing the study area is due to the presence of an aquifer system that has been 

used for more than a century with multiple studies regarding geology, water use and local 

catchment management. This will make it possible to build a hydrological model from the 

abovementioned studies when combined with volume studies conducted during this study. The 

possible environmental impact that relate to improved water resource management at local 

level will be discussed. The aim should thus be to find a balance between a sustainable 

environment and sustainable land use. Aspects of the model population will also be discussed 

in this section.  

Water accumulates in shallow fractures can differ in orientation, size and interconnectedness. 

This is important to consider, seeing that the major geology in the aquifer is fractured 

sandstones. The precipitation that percolates into these voids then migrate between each other 

or remain isolated above an aquitard. If the void is unable to distribute its excess water, it may 

become a perched spring or seep. Due to gravity, the groundwater in these systems might 

eventually migrate to deeper fractures that might lead to influencing the regional water table 

and the piezometric surface. One example of the piezometric surface in the Kasteelberg 

Mountain being reached, was during the month of August when streams started flowing from 

the mountain.  

To achieve a balance between environment and sustainable land use, monitoring of the local 

boreholes was undertaken and it will be addressed in this chapter. Following this, GIS software 

is central to the understanding of hydrological systems and was utilised during this study. GIS 

software was first used to create a DEM map of the area; after this a watershed could be created 

with the help of SWAT software (Kiesel et al. 2013). Lithology is also important in 

understanding the workings of the aquifer and its interaction with a range of factors such as 

recharge and porosity. Precipitation and evapotranspiration data from year to year was used. 

QGIS was also used to calculate the surface area and volume of the Kasteelberg Mountain. 

With the surface calculated and the rough edges excluded to increase accuracy (see Figure 15), 

volume calculations were now possible. With the volume of the aquifer now known, the 

porosity of the strata was used to estimate the water storage potential of the aquifer. With the 

precipitation and evapotranspiration data sets, the water storage potential and the overflow 
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could now be calculated and modelled. Making use of the final calculations in Excel, the 

modelling was completed in Hydrus-1D.  

The model concept in Excel was created to illustrate the response from the data gathered during 

the investigation of the Sandspruit catchment. From the conceptual model created by Bugan 

(2014) (see Figure 12), it is known that the Sandspruit catchment receives on average 

473 mm/a precipitation (De Clercq et al. 2013). The model also shows the increased amount 

of precipitation as one moves closer to the mountain (494 mm/a) and the opposite is true when 

moving away from the mountain, with precipitation shown to be 321 mm/a. This also impacts 

the infiltration rates due to slope and varying precipitation. The vegetation also changes and 

this will affect the leaf area index in calculations in Hydrus. Due to that study area being limited 

to the mountain, this study will use a constant value when calculations require a leaf area index. 

Evapotranspiration was calculated at 443 mm/a from the Hortec datasets seen in the addendum. 

As expected, the precipitation is still indicated to recharge the water table. This change in 

precipitation decreasing from the mountain to the lowland have led this study to take note of 

the study conducted by Bugan (2014) and will thus only focus on the Kasteelberg Mountain. 

Groundwater in the study area is heavily relied upon by the local communities for various daily 

activities. Research in the area has thus far been restricted to field scale compared to the 

catchment studies, of which Bugan (2014) is a good example.  

In this study, the catchment area will be spatially defined and mapped using QGIS and Swat 

software (Kiesel et al. 2013). Defining the catchment area will enable measuring of the annual 

precipitation and evapotranspiration. Measurements will be used to link rainfall, surface runoff 

and infiltration rate in the catchment area. Geology and subsequent geological processes will 

increase the understanding of the subsurface environment to better model the Kasteelberg 

Mountain Aquifer. Soil type data (topsoil) in the catchment area will be used to study the 

infiltration rates, impermeable layers and surface runoff of the aquifer. Infiltration reduction 

caused by agriculture may also be incorporated.  

Findings include borehole readings that were monitored in the study area over multiple seasons. 

Precipitation from local weather stations was also used in this study. These data sets were also 

considered during GIS processes. Lithology and ground cover is also used in calculations that 

are later used to calculate the volume of the aquifer as well as the porosity thereof.  
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Figure 12 Conceptual flow model of the Sandspruit catchment area (Jovanovic et al. 2011a) 

3.2  Lithology and hydrology  

Groundwater quality in the lower reaches of the study area are predominantly saline, with EC 

ranging between 33 mS/m and 2 060 mS/m (Jovanovic et al. 2009). Past studies have shown 

groundwater yields of 0.9-2 l/s in the Malmesbury Group, 2.25 l/s in the TMG and 0.1-20 l/s 

in the Cape Granite Suite (Demlie et al. 2011). Table 6 summarises the yield results 

documented by Demlie et al. (2001) which will be used to calculate the cascade model in Excel. 

The reported mean water yield in the two groups (in the study area) are 0.5 to 2.0 l/s, which is 

classified as medium to low yield (SRK, 2007).  

Geology in the study area is dominated by the Malmesbury Group in the mid to lower reaches 

of the mountain. The upper reaches of the mountain (900 mamsl) are dominated by the Table 

Mountain Group (TMG) formations. Alluvial sediments also cover the foot slopes and increase 

in thickness towards the lower elevations. The bottom section of the mountain is classified as 

Graafwater – Piekenierskloof Formations. The remaining geology in the watershed area is 

grouped as the Malmesbury Group (Table 6), and this group is representative of low-grade 

metamorphic rocks such as phyllitic shale, quartz, sericrete shist, siltstone, sandstone and 
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greywacke. Field investigations have pointed out that some hills in the area are granite plutons 

protruding through the Malmesbury Formation. These granite hills are also characteristically 

distinct due to the hills being surrounded by clayey soil, which is derived from the weathered 

granite (Anchor Environmental and Freshwater Consulting Group 2007). 

Table 6 Shows the minimum, maximum, mean and standard deviation with regard to 
borehole yields (l/s) linked to geological units, adapted from Demlie et al. 2011) 

Geological association  Malmesbury TMG Cape 

Granite 

Rock type Shale Sandstone Granite 

Number of test sites 

(boreholes) 

12 12 11 

Minimum 0.02 0.01 0.01 

Maximum 3.38 17.07 1.60 

Mean 0.83 2.28 0.38 

Standard deviation 0.94 4.47 0.45 

 

3.1  Monitoring of boreholes 

The key data collected during this study consist of borehole water depth measurements and 

stream flow monitoring. This was done during the period of 4 June 2013 to 4 April 2016. These 

readings were acquired through direct measurement and using borehole level loggers (Solinst), 

logging change of the water levels and temperature of boreholes with Solinst loggers. Borehole 

level logging was used to indicate the water fluxes during the seasons, and to observe the 

responses of the water table with regard to precipitation. 

The relative levels of the boreholes in the landscape and the relative depths of the water table 

at the different boreholes were studied, making use of the SRTM 30 m elevation data in QGIS, 

see Figure 13. 

The spatial distribution of these monitored boreholes is also visually displayed in Table 7 and 

Figure 13. Boreholes chosen for this study were distributed around the Kasteelberg Mountain 

and were only used for monitoring and not for other uses, such as abstraction. One of the 

boreholes was on the western slope of the mountain and was located near a streamflow monitor 

position (Hobo data logger used to monitor streamflow). The other boreholes were located 

mostly to the north-east and were existing boreholes used for scientific monitoring. Other 

boreholes were accessible, but were used by farmers, and therefore would not necessarily 

reflect the correct water table responses for that region due to periodic extraction.  
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Table 7 Locations of the boreholes monitored during the study 

X-Longitude Y-Latitude Z (m)  Water table depth 2015 (m) Water table depth 2016 (m) Water table depth 2017 (m) 

Farms Name of borehole location April  May  June July August  April May June July August April May June July August 

18o51.08 6.49"E 33 o20 20.222"S 284.8 De Gift boerdery 8.84 0.7 0 0 0 7.62 0 0 0 0 8.1 0 0 0 0 

18 o51 46.505"E 33 o20 46.222"S 268.5 Groenrivier function centre 3 3.5 3.2 3.2 3 2.6 2.9 3 3 3 3 3.2 3 2.9 2.9 

18 o49 40.672"E 33 o19 24.214"S 245.9 Left side of the Klawervlei 

road 

2.27 1.9 2 2.3 1.7 2 1.6 1.6 1.8 2.1 2.1 2 1.9 2.2 1.9 

18 o50 40.245"E 33 o17 47.755"S 235.6 Vlakkerug 17.89 17.9 17 17 17.7 15.8 15.7 14.9 14.8 15.1 16.4 16.3 16.3 16.2 16.8 

18 o53 42.280"E 33 o18 29.941"S 158.0 Goedertrou - among reeds 2.85 2.85 3 2.7 3 2.6 2.5 2.7 2.7 2.6 2.5 2.7 2.8 2.8 2.9 

18 o53 42.853"E 33 o18 35.809"S 163.7 Goedertrou - in field 14.38 14.35 14.7 14.7 15 11 11.6 11.7 11.7 12 13.1 13.1 13.2 13.3 13.3 

18 o52 25.093"E 33 o21 24.798"S 244.1 Allesverloren 1.32 2.3 1.7 1.7 1.1 .3 0.2 0.2 0 0 1 1.3 1.2 0.8 0.9 

School 

18°51'43.2"E 33°21'05.3"S 264.0 Bone-wood 13.33 16 16.5 16.5 16.6 Sealed 

18°51'55.8"E 33°21'09.7"S 256.3 School rugby field 13 dry 13 10 10.1 10.1 10.7 10.7 10 9.8 13 Used 

on 

day 

dry 12.4 11 

PPC mine 

18 o50 16.65"E 33 o19 22.9"S 239.9 Site 1 (BH1) 23.5 25.1 25.5 25.6 26.3  

 

See addendum 
18 o51 24.35"E 33 o19 8.48"S 209.9 Site 2 (BH2) 12 12 11.7

5 

11.5 12.2 

18 o51 20.61"E 33 o18 28.4"S 204.7 Site 3 (BH3) 4.8 4.8 5 5.1 5.3 

18 o50 7.85"E 33 o18 1.26"S 216.5 Site 4 (BH4) 4.41 4.45 4.6 4.7 4.5 
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3.2  Atmospheric data 

Atmospheric variables that directly impact the hydrological processes are the amount of rainfall 

and its intensity over a period. Other hydrological processes also influenced by rainfall include 

infiltration rate, storage capacity and drainage. Atmospheric data also assists in estimating the 

evapotranspiration in the area, which in turn influences the recharge of the groundwater. 

Evapotranspiration is mainly controlled by air temperature, solar radiation, wind speed and 

relative humidity. Climate data was collected and used to apply in the temporal modelling of 

the aquifer.  

3.3  GIS  

In this section, the Soil and Water Assessment Tool (SWAT) was used along with Map 

Windows GIS software to determine the hydrological boundaries of the study area, seen in 

Figure 15 (Kiesel et al. 2013). ArcMap was used to improve the display of the findings from 

Map Windows. This was done due to ArcMap consisting of more options when displaying the 

findings, legend, scale, values and a North arrow. QGIS was used, if not otherwise stated in 

Figure 13 Locations of boreholes monitored during the study are indicated in purple. 
Those that are numbered are the property of PPC and have the longest continual 

datasets, 4 June 2013 to 4 April 2016. 
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the study. QGIS was central in determining geological boundaries and the volumetric 

calculations of the Kasteelberg Mountain and its surroundings using the 30 m SRTM dataset.  

Two Shuttle Radar Topographical Mission (SRTM) 30 m resolution data were used in this 

study (USGS 2015). These data sets are near-global Digital Elevation Models (DEMs), used to 

obtain elevation data for GIS software simulations. This data set was used in the flowing GIS 

section for volume calculations. The SRTM elevation data is based on radar information, 

meaning the true geological surface was used and not the canopy top or vegetation top surface.  

SWAT was developed at the Blackland Research Centre in Texas. It was initially developed 

for the United States Department of Agriculture (USDA) Agricultural Research Service 

(SWAT 2017). This modelling method is based on a daily time step model, including amongst 

others the effects and changes in management practices. Further uses include the simulation of 

catchments in lumped or distributed mode (Kiesel et al. 2013), which is achieved by 

automatically delineating the catchment into either sub-catchments of numerous smaller grid 

cells, which in turn are based on a DEM. Following over 30 years of ongoing development by 

the USDA, the full background is explained in detail in both Arnold et al. (1999) and Neitsch 

et al. (2001). However, only the tools within SWAT, used to derive hydrological relevant 

information for this research from the elevation models, were used as SWAT is imbedded in 

ARCMap, MapWindows and now also QGIS.  

A preliminary graphical image of the study area was created in Map Window, using the SWAT 

hydrology extension, which is based on TauDEM. The input files are restricted to the SRTM’s 

merged DEM and a projected geographical map. This image was further edited using the 

ArcMap software (Kiesel et al. 2013), where the smaller catchments were assigned different 

shades to better distinguish between these catchments, as shown in Figure 15. Last, QGIS was 

finally used in mapping the study area, determining geological boundaries and executing the 

volumetric calculations needed for the mass balance calculations. 

Mapping of the geological boundaries, geological lithology and geological structures was 

achieved with the help of a study by Verwoerd et al. (1974). The presence of mostly sandstone 

in the Kasteelberg Mountain helped with the porosity calculations, due to the relative 

homogenous nature of the lithology. It also helped with the watershed delineation used in 

identifying the study area. The watershed or basin was then used in conjunction with a DEM 

for later volumetric calculations.  

Stellenbosch University https://scholar.sun.ac.za



50 

 

The DEM (30 m SRTM as seen in Figure 14) was obtained from USGS Earth Explorer 

(https://earthexplorer.usgs.gov/). A 30 m resolution did result in adequate volumetric 

calculations of the Kasteelberg Mountain Aquifer for this study. 

 

Figure 14 DEM of the study area and surrounding area  
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Figure 15 Watershed model created with GIS software 

 

3.4  Spatial and temporal rainfall variability and associated trends in the Kasteelberg area 

– precipitation and evapotranspiration 

As indicated by De Clercq et al. (2012), the distribution of rainfall in the catchment is primarily 

influenced by elevation and especially the high mountains of the region. There is a general 

precipitation trend where 1 000 mm/a is indicated on top of the mountain, 600 mm/a at the foot 

of the mountain and 400 mm/a close to the Berg River itself. In an arid environment, such as 

the study area, the effect of evapotranspiration is one of the main, if not the dominant, water 

loss process in this area, after local abstraction for crops and vineyards. The focus of the project 

was however not to provide a regional temporal groundwater response, but to estimate the 

temporal storage volume of the mountain aquifer. The primary reason for modelling the 

precipitation gradient for the mountain was to provide differential input to a regional model. 
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The focus of this study was however to estimate the aquifer response in a one-dimensional 

system. Therefore, the temporal climate response of a single point was more important than 

regional distributed estimates.  

 

3.5  Land cover  

Water source areas (WSAs) are grouped in 21 districts and spatially reserved for uses as natural 

vegetation, cultivation, plantations, degraded land and mining. Natural vegetation is restricted 

to 63% at the land surface due partly to altitude and sloped areas having been limited by 

development (WWF 2013).  

Indigenous vegetation includes the Swartland renosterveld and Hawekwas, which form part of 

the fynbos biome. In the catchment area the natural vegetation, fynbos, has mostly been 

replaced with cultivated lands and pastures intended for agricultural use. Wheat is the main 

cultivated crop of the study area. Other crops include grapes, lupins and canola is present on a 

smaller scale. Farmers mostly follow a three-year planting rotation, i.e. cultivation only occurs 

every third year (Jovanovic et al. 2011b), which is why a stable and sustainable water supply 

is central to planning. During the fallow years, the land is used for grazing, during which 

groundwater extraction will be limited resulting in unhindered groundwater recharge and 

affecting evapotranspiration and infiltration rates due to change in vegetation. Construction of 

man-made erosion contours, erosion in the study area are thus considered to be minimal 

(Jovanovic et al. 2011b). 

 

3.6  Aquifer volume calculations  

Figure 16A shows the estimated water table in the Kasteelberg Mountain during the summer.  

This also shows the reason why the DEM was created (see Figure 15). From the created DEM 

the volume could be calculated using Figure 15 as an overlay boundary, which resulted in the 

aquifer being divided into layers for an Excel cascade model. Figure 16B shows the surface 

receiving rain and exposed to the effects of evapotranspiration. Figure 16C illustrates the 

reasons why the volume of the aquifer was calculated using blocks and not the entire surface 

area. By excluding the edges, the accuracy of the calculations is thus higher. Note that the 

limited surface area influenced by vegetation cover is severely limited, thus the decision was 

made to use a default value of 1 for leaf index during HYDRUS-1D modelling.  
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3.7  Porosity calculations 

 

3.7.1  Porosity  

Porosity (ɸ) is the ratio of the void space divided by the bulk volume of the material being 

measured, see Equation 5. Porosity can be measured in both a fraction and a percentage. The 

equation for calculating the porosity is given by Equation 1. 

A B 

C 

Figure 16 Illustrates the change in the water table before and after recharge for the 
Kasteelberg Mountain. A) shows the rough estimated water table in the Kasteelberg 
Mountain during the summer when recharge is at its lowest due to limiter precipitation 
during the summer months. It can thus be regarded as the minimum level of the water table. 
The three rectangles represent the blocks into which the mountain was divided for modelling 
purposes. B) shows the surface area receiving precipitation with the rectangles illustrating 
how the surface recharge was calculated. C) This figure should also be viewed along with the 
cascade model calculations in Excel. It also illustrates the reason why the volume of the 
aquifer was first calculated to later be used in the cascade system. 
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𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (ɸ) =  
𝑉𝑜𝑙𝑢𝑒 𝑜𝑓 𝑃𝑜𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑜𝑐𝑘
       Equation 5 

The importance of the porosity or total “free” space in a rock relates to the storage capacity of 

the material (aquifer in this study). The porosity value on its own is not representative of the 

true holding capacity. This is due to a generalised porosity for the aquifer. This sampling 

assumes homogeneous composition. Effective porosity refers to the interconnectedness of 

voids. 

Below in Table 8, the pore space is shown along with the aquifer being divided into eight 

layers. The layers represent horizontal section of 100 m each, based on the DEM that was 

overlain with a 2D contour map in Figure 17. This is due to the surface of each 100 m section 

being both exposed to precipitation and overlain by a top layer, which results in the cascade 

effect (Kiesel et al. 2013). The top layer is thus the only layer where the surface and rain surface 

are equal, due to no overlaying layer. Table 8. shows the formulas used in these volumetric 

calculations. 

Table 8 Screenshot from Excel, showing the division of the aquifer into eight layers, as well as 
density and porosity values that are used during modelling 

 

 

Effective porosity thus excludes isolated voids/pores and volumes occupied by air (Schalkwyk, 

2005). Total porosity refers to the total void space which includes the effective, non-effective, 

and isolated and the volume taken up by absorbed air and water on grain surfaces (Levorsen 

1967). 

Porosity can originate from both primary and secondary processes. Primary porosity is the 

space/void that remains after deposition. While secondary porosity is attributed to: vugs (a 

small to medium-sized cavity inside rock), solution channels, diagenesis and in some cases 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

Vol total poros 16 16 16 16 16 16 16 16

Surface (m2) 314045 1305586.007 1927384.993 2860636 3175836 5935174 12014298 37638682

Rain surface (m2) 314045 991541 935844 1924792 1251044 4684130 7330168 30308514

Volume (m3) 31404500 130558600.7 192738499.3 286063600 317583600 593517400 1201429800 3763868200

Contour (m) 900 800 700 600 500 400 300 200

Total pore volume

Rain

mm

ETo

mm 5,150,338 21,411,611 31,609,114 46,914,430 52,083,710 97,336,854 197,034,487 617,274,385

Density (g/m3) Porosity (%)

Clean Sandstone 2.65 5.7

Fractured Sandstone 2.3 16.4

Siltstone 2.45 17.1

Shale 2.35 14
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dolomitisation (Schalkwyk 2005). Fractures, shrinkage and dissolution are the most common. 

(Schalkwyk, 2005) 

 

3.7.2  Permeability 

Permeability is a physical property of any material, such as reservoir rock or porous medium, 

which allows the migration of fluid. It is related to effective porosity, yet not entirely dependent 

on it. Fluid flow is influenced by the size of the connection between voids and is measured in 

milidarcies (md). Permeability is measured in darcies where the SI unit of 1 darcy is equal to 

10-12 m2. 

 A viable reservoir rock should display between 5 to 500 md size connections between pores. 

Darcy’s law 𝑄 = −𝐾𝐼𝐴         Equation 6 

Darcy’s law (Q=KIA) is commonly used in the hydro industry to measure fluid flow, where Q 

is the flow discharge, K represents the specific permeability, with I being the hydraulic 

gradient, and A the area. 

Fluid saturation is expressed as a fraction or percentage that represents the pore volume 

occupied by fluid, mostly water or hydrocarbons (Schalkwyk, 2005). 

Fluid saturation (Sf) =
𝐹𝑙𝑢𝑖𝑑 𝑜𝑐𝑐𝑢𝑝𝑦𝑖𝑛𝑔 𝑝𝑜𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑟𝑒 𝑠𝑝𝑎𝑐𝑒 𝑖𝑛 𝑟𝑜𝑐𝑘
     Equation 7  

This saturation concept is important for the calculation of total water volume available, and is 

done by subtracting water saturation from the bulk volume. Water saturation (Sw) is normally 

indicated as a percentage of the total volume. 

 

3.8  Water table and factors that influence recharge 

Each respective layer has different water retention attributes, influencing the volume of water 

passed to the layer beneath it and the rate of flow thereof. This is central to understanding the 

recharge process in the Kasteelberg Mountain Aquifer as it shows that the rate is determined 

by soil type, vegetation and lithology, with slow initial water absorption in the top layers, 

contributing to the high evapotranspiration rates observed by Bugan (2014) in the study area. 

Bugan (2014) reported that evapotranspiration constitutes 94% of the water balance in the 

Sandspruit catchment, resulting in it being one of the most important factors to consider when 

Stellenbosch University https://scholar.sun.ac.za



56 

 

calculating recharge. Therefore, the layers were divided into thinner layers (horizontally) in 

Table 8, to improve the accuracy of the surface area affected by evapotranspiration.  

3.9  Cascade model 

Excel was used to convert the surface data obtained from QGIS. Multiple calculations could 

be done where layer responses were linked and dependant on one another. This provided the 

ability to easily generate graphs from both the non-refined and the refined data sets. That was 

essential to the modelling process and the first estimates of the water volumes in question and 

the type of responses to expect (Kruijne et al. 2008). 

The cascade model was calibrated using field data collected over a period of 30 months (25 

June 2015 to 22 December 2017), which represents different agrometeorological conditions in 

both the wet and dry periods. The cascade model used in this project was applied to the 

Kasteelberg Mountain Aquifer to apprise its storage capacity and runoff potential, as was also 

shown in studies such as those of Singh and Buapeng (1981), Kiesel et al. (2013) and Kruijne 

et al. (2008). 

By using this simple cascade water balance modelling approach, the total water storage of the 

study area’s aquifer was estimated. This was done by using the porosity of the aquifer, which 

is based on the lithology and meteorological data. The meteorological data as driver for the 

model included the field data collected over a 30-month period, which include borehole level 

readings, temperature, precipitation and evapotranspiration. The cascade model uses these data 

sets to determine the rate at which the top layer will reach its saturation point, which will then 

cascade to the following, underlying layer. The rate at which, if at all, the aquifer will fill (till 

it reaches the saturation point) will differ from year to year due to different precipitation and 

evapotranspiration parameters. Yet the potential volume of groundwater the aquifer is capable 

of retaining will remain relatively constant and was the focus of this study. From this, the 

sustainable use of the aquifer was also incorporated into the calculations and the average excess 

water. After the saturation point was reached, it was calculated based on the 30-month average.  

The eight layers chosen in this study were based on 100 m thick sections of the mountain to 

break up the cross-section of the mountain to improve accuracy due to rough surfaces and a 

30 m DEM. This could be refined for a more accurate estimation of the water-carrying 

potential, yet for the purposes of this study these parameters will suffice.  

Below is a screenshot from the Excel spreadsheet used for the main calculations (Table 9). The 

Kasteelberg Mountain was divided into eight layers, each being 100 m thick. The contour 
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values refer to the elevation above sea level. Data used include fractured sandstone density and 

porosity. The surface area (row 3) is the values obtained from QGIS. Rain surface was 

calculated by subtracting the bottom layer from the top layer due to the bottom layer only being 

exposed to rainfall where the top layer does not overlay the bottom layer, (see Figure 16 where 

the blue lines illustrate this point).  

 

Table 9 Screenshot from Excel, showing the division of the aquifer into eight layers, 
illustrating the values used in modelling, fractured sandstone, density and porosity and 

percentage infiltration rate 

 

 

Table 9 was constructed along with values obtained from the GIS model with the mountain 

being divided (based on Figure 17) by elevation. In Table 9 row 3, the value obtained from 

the metadata in the GIS model shows the surface area of layer one, which acted as the top of 

the mountain, at 900 m. The area that is referred to in layer two is calculated by dividing the 

previous (top) layer so as to not overestimate the exposed area.  

Table 9 features the calculations executed in Excel to determine the excess groundwater 

potential of the Kasteelberg Mountain Aquifer. In this figure, evapotranspiration (ET0) was 

divided from the rain data. Results in column F show the net effect of the two factors: a positive 

value will result in water added to the aquifer system and a negative value in the loss thereof. 

The first row (highlighted in green G, 10) is the total pore potential in the fractured sandstone. 

The second column, F, is the amount of rain/ET0 per rain surface area. An “IF” function was 

used in column G. Here the cascade effect applies, if the amount of groundwater entering the 

layer is more than the maximum water potential and the excess is transferred to the adjacent 

column. Column H is also used as a check, where negative values are normalised to 0. If the 

values are positive, it shows the net excess water that has accumulated through the system thus 
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far. This value (if positive) from column H is then transferred to column I, where the value 

recorded represents the amount of water transferred to the directly underlying layer.  

The approach followed in Excel was based on a typical cascade modelling approach. The 

measured precipitation and the calculated ET0 was used as the drivers for the approach. The 

following steps indicate the basis of the calculations and the approach followed. 

1. The mountain was divided into 8 x 100 m thick layers 

2. The total porosity of the fractured sandstone was calculated for each layer. 

3. The rainfall and evapotranspiration were factored in; in turn the response could now be 

calculated using these two values. 

4. As soon as a layer was saturated – not filled due to gravity making it unlikely to occur 

– the excess water was transferred to the deeper layer.  

5. The water-carrying capacity was then calculated resulting in the excess recharge to 

account for the surface runoff.  This is where the HYDRUS-1D model was used to correlate 

the results of this model and the HYDRUS model.  

To summarise, the cascade model was started with the following data set known: the surface 

of each layer, the surface area of each layer exposed to precipitation and evapotranspiration, 

and the volume. Previously mentioned data was generated in QGIS from the 30 m SRTM DEM 

and superimposed 2D contour map, Figure 17. 

The percentage infiltration rate was chosen to be “10” and the thickness of each layer was 

chosen to be 100 m respectively. 

The first calculation done in Excel was to subtract the Et0 from the precipitation. On days where 

precipitation was nil or less than the Et0 it would result in a negative value. This negative value 

would then be used as a starting value for the next day. This is done to “make up” for the water 

loss the previous day/period. This value response is then multiplied by the surface area that is 

exposed to precipitation, giving the recharge value. The porosity is then calculated by 

multiplying the porosity and dividing it by 100 to give the porosity percentage.  

Rain - Et0 = Response        Equation 8 

Response * surface exposed to precipitation = Recharge    

Recharge + pore space = Runoff  

Recharge was calculated as: 
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Rc = R – Eto        Equation 9 

where, Rc is the recharge (mm/day), R is the rainfall (mm/day) and ETo is the 

evapotranspiration (mm/day). 

Porosity percentage was calculated as: 

P = TP V        Equation 10 

where, P is the porosity percentage (%), TP is the total pore volume (%), V is the volume (m3). 

Recharge pr exposed surface area is calculated as: 

Rcs = Rs Rc        Equation 11 

where, Rcs is the recharge per surface area (mm3/m2), Rs is the surface area exposed to 

precipitation/recharge (m2), Rc is the recharge per day (mm/day). 

Rpcs  If ((P + Rcs) > P, (P + Rcs) – P, P)    Equation 12 

Where, Rpcs is the recharge that occur after factoring in the ET0 and the available pore volume, 

P is the porosity percentage, Rcs is the recharge per surface area. 

Following this step, it is calculated if there is excess water to what the layer can accommodate; 

this will result in a positive number of a nil.  

If (Rpcs > 0, Rpcs, 0)       Equation 13 

Over flow was calculated as: 

Overflow = If (Rcs-Rpcs) > 0, Rcs-Rpcs, 0)    Equation 14 

where the values were given in m3.  
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Table 10 Screenshot from Excel, showing the division of the aquifer into eight layers, and the input data to the left, rain and evapotranspiration 
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Table 11 Screenshot from Excel, showing the division of the aquifer into eight layers, and the input data in the left, rain and evapotranspiration 
and the calculations used to calculate the excess water in the system 
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3.10  Water storage 

Bugan (2008) logged soil samples from both outside and inside the Sandspruit area, and part 

of the current study area, and found that the surrounding area has similar soils, climate and 

geology, justifying sampling outside that study boundaries.  

3.10.1  Local studies in the past 

Past studies have attempted to quantify the specific yield of the aquifers in the greater Berg 

River basin, with the Sandspruit catchment being divided into two sections. The fractured 

sections are (see Table 6) divided based on their yield potential, respectively 0.1 - 0.5 L/s and 

0.5 – 2 L/s (Jovanovic et al. 2011b). The study by Jovanovic et al. (2011b) also noted the 

relationship between faulting and high yield and linking the groundwater recharge rate to the 

topographic elevation. Recharge is a combination of episodic and prolonged rainfall, generally 

in the winter months, from May to October. Groundwater in the study area were found both 

confined and unconfined (Demlie et al. 2011). 

Table 6 shows the groundwater yield of the Sandspruit area, indicating the two observable 

aquifer yield possibilities. The question remains whether the areas with similar yield are part 

of a larger system. An alternative could be that the independent isolated fractured systems 

behave similarly due to similar geology. This study treated the areas with similar yield as a 

single interconnected system.  

The Malmesbury Group hosts, spatially, most of the aquifers (Parsons 1995). With the rocks 

having an argillaceous nature along with poor groundwater quality, the economic potential is 

limited (Jovanovic et al. 2011b). With these limitations, their role in the environment cannot 

be understated as they are essential in the local community and maintain local smaller river 

flows in the area.  

The Sandspruit catchment is made up of a fractured aquifer system, found in the TMG, 

Malmesbury and Cape Granite suites, with the aquifers being defined as low to moderately 

productive (Jovanovic et al. 2011b). Aquifer characteristics are generally uniform in the TMG 

(Demlie et al. 2011). This is due to the isotropic nature of the lithological units found in this 

group (Demlie et al. 2011). 
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3.10.2  Groundwater 

Groundwater can be visualised as a liquid phase that fills the pores and fractures of the regolith. 

The top of this water body is referred to as the water table. The area between the water table 

layer and the surface  is referred to as the unsaturated or vadose zone. In this unsaturated zone, 

groundwater moves downward toward the water table, recharging the layer, assuming normal 

pressure gradients (Bugan R. D., 2014).  

Groundwater flow is generally slow – approximately a few centimetres to a couple of meters 

per day. The water pressure surface and water table depth are known as the hydraulic head. 

The hydraulic head is the main driving force in groundwater flow. Thus, with a hydraulic head 

present, the flow will be downward, away from high pressure towards lower pressure; no 

hydraulic head, no groundwater flow.  

 

3.10.3  Soil 

Generally, the soil present in the catchment area exhibits poor development, shallow and hard 

or weathering rock and brownish sandy loams (Jovanovic et al. 2011b). Also present is an 

abundance of lime, found naturally in the ground; hence the presence of local lime mining 

operations. Other soils found in the region are red and yellow with low- to medium-base status 

(Jovanovic et al. 2011b). The alluvial cover in the area is characterised as loam and sandy loam 

soils (Jovanovic et al. 2011b). 

Drainage in the catchment is greatly hindered by the Malmesbury shales due to its low 

conductivity along with low to medium swelling clays found in the area (Jovanovic et al. 

2011b). 

 

3.11  Hydrus model 

During the HYDRUS modelling, dual porosity was used to model this hydrological system. 

The naturally fractured sandstone in the aquifer along with the matrix of the surrounding rock 

were factored into the model. This dual-porosity approach is expected to result in more accurate 

results than only factoring in one of these parameters. The choice for this decision is based on 

the work of Haws et al. (2005). During the literature review, it is noted that this approach 

resulted in improved accuracy during a similar study.  
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The one-dimensional Hydrus model, version 4.0 was parameterised for the study site and used 

to predict daily aquifer water content and daily evapotranspiration. Field data were compared 

to HYDRUS-1D predicted data (a one-dimensional water flux model). 

For this study, the Hydrus-1D model was preferred due to the functionality that was required 

for this study, the availability of the model and the parameterisation that can be done at this 

scale. The Richardson equation is used to simulate soil water content in the model and an 

imbedded model by Feddes (1987) to simulate the uptake of water by roots (Šimunek et al. 

2005). Hydrus-1D expresses water content as water per volume, thus water content is expressed 

in volumetric units. 

HYDRUS-1D is a program designed to simulate one-dimensional movement of water in 

various porous media. To improve our understanding of the changes brought about by land use 

changes and their effect on the movement of water, both above and below surface, water 

simulation models like Hydrus become valuable tools.  

Hydrus was parameterised for this project, implementing the same criteria and data used in the 

Excel model explained above.  

 

3.11.1  Model setup  

Richards’s equation:  

 

          Equation 15 

 

is used for simulating water movement in a partially saturated porous medium, where h is the 

water pressure head, θ the volumetric water content, t the time, x the spatial coordinate (positive 

upward), S is the sink term, α is the angle between the flow direction and the vertical axis and 

K is unsaturated hydraulic conductivity (Šimunek et al. 2005). 

The water flow equation incorporates a sink term (S) to account for root water uptake. S is 

defined as the volume of water removed from a unit volume of rock (Šimunek et al. 2005). 

Allen et al. (1998) define ET0 as the evaporation from a reference surface, not short of water. 

The only factors affecting ET0 are climatic conditions and these parameters were captured by 

local weather stations; therefore, ET0 can be calculated from meteorological data.  
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The FAO Penman-Monteith (FAO-PM) method (FAO-ET0 calculator) was used to calculate 

the daily ET0 values by using the long-term meteorological data collected from the Swartberg 

weather station. The FAO-PM equation (6) was used for daily ET0 estimation.  

 

        Equation 16 

Where Rn is the net radiation, G soil heat flux, (es - ea) represent the vapour pressure  

deficit of the air, ρa is the mean air density at constant pressure, cp specific heat of the air, Δ 

the slope of the saturation vapour pressure temperature relationship, γ psychrometric constant, 

and rs and ra are the (bulk) surface and aerodynamic resistances (Allen et al. 1998). 

To calculate PET from ET0 the following equation was used:  

 

PET = ET0           Equation 17 
 

Where Kcmax is a function of weather data and vegetation height (Allen et al. 1998). Crop 

coefficient data was kept at a default value of one.  

Hydraulic parameters from soil data (aquifer parameters in this study) collected throughout the 

study were also imported into the model to predict water flow and root water uptake.  

 

3.12  Specifics of the model setup in HYDRUS-1D 

Within the HYDRUS model setup, specific routines were selected for this research. This is 

indicated as follows: 

1. Main processes:  

a. Water flow 

b. Root water uptake 

2. Geometry information 

a. Number of materials = 3 

b. Number of layers for mass balance = 4 

c. Depth of profile = 800 m (200 m per layer) 

3. Time information 

a. Delay time steps 

b. Final day = 902 

4. Output or print information 

a. Every 30.5 days 

5. Iteration criteria 

a. Max = 11 
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b. Water content tolerance 0.001 

c. Pressure head = 1 m 

6. Soil hydraulic model 

a. Dual porosity (Durner, Van Genuchten – Mualem) 

b. Hysteresis = no 

c. Water flow parameters (see Table 12) 

7. Water flow boundary conditions 

a. Upper: Atmospheric BC with Surface layer 

b. Lower: Constant pressure head 

8. Root water uptake 

a. Reduction model: Feddes 

b. Solute stress model: No Solute stress 

9. Root water uptake 

a. Pasture (Weeseling, 1991) (See Table 13) 

10. Time variable boundary conditions: 

a. Precipitation 

b. Potential ET 

c. Minimum allowed pressure head = 0.1 m 

d. LAI = 1 

11. Profile summary = 4 times 200m layers 

Within the HYDRUS model, specific water flow and rock hydraulic parameters were used and 

are provided in Table 12. These values were used based on the standardised values within the 

software, where the degrees of freedom are quite limited. Table 13 provides the values used 

related to root water uptake. Different from normal soil water modelling, in this research all 

layers in the model had a surface area, where exposed to the atmosphere, but only the top layer 

had full exposure to the atmosphere (see Figure 17).  

Table 12 Water Flow and rock hydraulic parameters where Ɵr is the residual soil water 

content, r Ɵs the saturated soil water content, Alpha the parameter  in the soil water 

retention functionL-1], n the parameter n in the soil water retention function, Ks the 

saturated hydraulic conductivity, Ks LT-1], l tortuosity parameter in the conductivity function 
[-], w2 the parameter w for material M [-]. Relative weighting factor for the sub curve of the 
second overlapping sub-region, Alpha2 the parameter a for material M [L-1], for the second 
overlapping sub-region and n2 the parameter n for material M [-], for the second 
overlapping sub-region. 

Ɵr Ɵs Alfa N Ks 1 W2 Alfa2 N2 

0.07 0.45 0.014 1.56 6 0.5 0.5 3 1.5 

0.08 0.5 0.014 1.37 3 0.5 0.5 3 1.5 

0.09 0.4 0.014 1.3 1 0.5 0.5 3 1.5 
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Table 13 Root water uptake where P0 is the value of the pressure head below which roots 
start to extract water from the soil, POpt the value of the pressure head below which roots 
extract water at the maximum possible rate, P2H the value of the limiting pressure head, 
below which roots cannot longer extract water at the maximum rate (assuming a potential 
transpiration rate of r2H), P2L as above, but for a potential transpiration rate of r2L, P3 the 
value of the pressure head, below which root water uptake ceases (usually taken at the 
wilting point), r2H the potential transpiration rate [LT-1] (currently set at 0.5 cm/day) and r2L 
the potential transpiration rate [LT-1] (currently set at 0.1 cm/day). 

P0 P2H P2L P3 r2H r2L 

-0.1 -2 -8 -80 0.005 0.001 

 

3.1  Conclusion 

Field observations made during the study assisted in choosing the correct parameters during 

modelling. From interviews with multiple farmers it became apparent that the water extracted 

was used for human consumption, while moving closer to the river, groundwater salinity 

increased. The local geology also showed that the rocks contain little salts and that regular 

water recharge due to precipitation washed away many of the salts. This observation, along 

with the previous statement regarding the water quality, according to the locals, influenced 

the parameters used in the HYDRUS-1D model.  

The question remains whether accurate data could be found in literature. Due to this study’s 

focus on the calculation of the water-carrying capacity of the Kasteelberg Mountain Aquifer. 

Data such as density and porosity of the local geology were used from literature. Weather 

data was also collected from a nearby station and not on the mountain itself. This influenced 

the recharge data to an unknown degree. With the study’s focus on modelling the aquifer 

system and not the accuracy of groundwater available for extraction, this was acceptable for 

the purpose of this study.  

The process followed during this study was that of field data collection, interpretation of that 

data and supplementing it with data from literature and acquired weather data. GIS was used 

to determine volume by creating a DEM. The DEM was used as necessary in creating a 3D 

model of the study area, which resulted in the dimensions of this model being used to determine 

the volume of the aquifer. GIS was also used for defining boundary limits in Figure 4 and 15 

so as to determine the extent of the study area, creating a watershed model. Boundary 

conditions included soil, rocks, and vegetation. Figure 17 shows the extent of the aquifer, and 
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these limits were used due to known geology, vegetation and no additional water being 

introduced into the system by means of agriculture. These factors limited the unknowns during 

modelling, which will be expanded on in the next chapter.  

An understanding of porosity in the aquafer was important in determining the parameters 

necessary to set up the model. These values were obtained from the local mine (SRK, 2007). 

True water table reactions in the region were measured for correlating the correctness of 

modelling. The field observations were thus necessary to confirm the accuracy of the model in 

the following section, which will also be discussed in the conclusion of the study. Modelling 

parameters were determined in this section to set up the model used in GIS, Hydrus and Excel. 

These results obtained from these models are discussed in the following section.  

Hydrus was selected as the modelling program of choice for this study. The reasons for this 

decision are that it is Windows-based, free to use and has free tutorials to help to use the 

program. It has also been used for over two decades and has a focus on water movement, which 

made it perfect for this study.  
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  RESULTS AND DISCUSSION 

 

4.1  Introduction 

The results pertain to the information generated in QGIS as derivatives from the SRTM 

elevation data. It also relates to the information gathered from boreholes and borehole 

loggers. The information was used in Excel modelling of the aquifer responses and lastly 

used in Hydrus modelling of the aquifer, specific data about the water-holding capacity of the 

different geological members were provided in the methods and literature section. 

 

4.2  The role of DEM’s in the study 

QGIS was used to generate a surface map for the study area. After this, a watershed map was 

created using the DEM. Figure 17 is the final product where the previous maps were combined 

to create a map where the surface area of the mountain could be calculated. HYDRUS-1D was 

used and discussed at the end of this chapter. The aquifer was modelled using only three layers 

in HYDRUS-1D and eight layers in Excel. This was done due to a modelling error in 

HYDRUS-1D when using eight layers (see Table 8). The map (Figure 17) shows that to 

increase accuracy in Excel, the mountain was divided into 100 m segments – eight in total. For 

this study, 100 m was chosen due to the steep slope of the mountain and because land cover 

would be negligible, as shown in Figure 17. 

The use of borehole data was paramount in observing the water table changes in the catchment 

area as it was expected to flux during the seasons. As was indicated in the literature study, the 

mountain aquifer and the adjacent groundwater aquifer are linked and therefore should be 

sensitive to changes in the mountain aquifer. The elevation of the boreholes with the occurrence 

of water depth is indicated in Table 14.  

Borehole data was collected using level loggers and can be found in the addendum of this study. 

Some of the boreholes monitored during this study can be seen in Figure 18 and 19. Data from 

the Water Council and the PPC cement mine were also used in this study.  
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Table 14 The regional water table is shown with measurements at the start of the rainy 
season and at the end of the rainy season. The last two columns are calculated by 
subtracting the measured water level in the borehole from the Z value, height of the 
borehole, as indicated on the DEM, shown in Figure 15. Table 14 shows the results of the 
regional water table before and after the main rainfall period for 2015. 

Z (m) 

hasl 

Water table depth 

2015 (m) 

 Name of borehole 

 location 

April September 

268.5 Groenrivier  3.0 3.0 

245.9 Klawervlei 2.3 1.7 

235.6 Vlakkerug 17.9 17.7 

158.0 Goedertrou - reeds 2.9 3.0 

163.7 Goedertrou - field 14.4 15.0 

244.1 Allesverloren 1.3 1.1 

264.0 Wood 13.3 16.6 

256.3 School  13.0 10.1 

239.9 Site 1 23.5 26.3 

209.9 Site 2 12.0 12.2 

204.7 Site 3 4.8 5.3 

216.5 Site 4 4.41 4.5 
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Figure 17 Surface of the Kasteelberg Mountain Aquifer, showing elevation starting at 200 m with 100 m increments 
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Figure 18 BH1 (Foot slope) – Water level from 11 August 2015 to 25 April 2016, this is indicated by the red line. The blue line indicates 
temperature during this time (generated by Solinst software). 
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Figure 19 BH2 (Mid slope) – Water level from 4 October to 25 April 2017, left to right, this is indicated by the red line. The blue line indicates 
temperature during this time. 
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4.3  Climate and borehole response data 

The use of weather stations in the near vicinity to study the meteorological conditions prevalent 

in the study area was also a priority. 

 

Figure 20 Rainfall in the study area, 2010 to 2017 (Hortec, 2018) 

Figure 20 shows the precipitation data acquired from Hortec for the years 2010 to 2017. The 

years 2011 and 2015 experienced less precipitation than the years 2010 and 2014. This may be 

due to the El-Niño effect. Data used to populate Figure 25 and 26 can be viewed in the 

addendum.  

The result in Figure 21 shows the groundwater response during the seasons when compared 

with rainfall in Figure 23. Borehole 1 (BH1) is situated closest to the Kasteelberg Mountain. 

Borehole 3 (BH3) is located further away from the mountain. Borehole 2 (BH2) was also 

located further away from the mountain, but is also nearest to the local open-pit mine. Figure 

24 also shows five noticeable response events. Three “high” points where the water level was 

relatively high can be observed on the far left, middle and far right of the figure. Two points 

where the water level decreased can be observed at 11th of the month in 2013 and 12th of the 

month in 2014.

Stellenbosch University https://scholar.sun.ac.za



75 

 

 

Figure 21 Ground water levels in the boreholes, BH1 is located closest to the Kasteelberg Mountain, with BH2 and BH3 both located further 
east, but BH2 being near a local open mine (data from 4 June 2013 to 4 April 2016) 
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The rainfall data used in Figure 21 are used in calculations with the results shown in Figure 

23 and 24. In Figure 22 the periods from day 100 to 281 and days 491 to 701 represent the 

summer months, and the three spikes during day 1 to 100, 281 to 491 and 701 to 876 represent 

the winter months or winter rain season. This is linked to the HYDRUS-1D modelling results 

seen in Figure 25 and 26. The results show correlation between precipitation and surface run-

off. It is interesting to note that the precipitation between day 701 and 876 is not significant 

enough to show a response in the HYDRUS-1D model. Arrows are also used in Figure 23 to 

indicate the periods with no to limited precipitation. This data set will later be used to assess 

the accuracy of the HYDRUS-1D model, in Figure 25 and 26.  
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Figure 22 Weekly rainfall in the study area, used in HYDRUS-1D modelling. Day 1 is 25 June 2015 to 22 December 2017; high precipitation is 
indicative of winter due to predominant winter rainfall in the study are (Hortec, 2018). 
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In Figure 24, the available weather and borehole data that overlap are combined to illustrate 

the borehole response. From the figure it can be derived that the groundwater level “rises” 

during months with high precipitation. This is however not the case at the end of the rainy 

season in the year of 2014. It is unclear why this occurred. A possible explanation could be that 

the weather station was adjacent to the mountain and not on top of the Kasteelberg Mountain. 

As the mountain received higher rainfall than the surrounding, it could be postulated that this 

might have contributed to the observed discrepancy.  

 

 

Figure 23 Daily precipitation and borehole water level 

 

In an attempt to better understand the correlation and abovementioned discrepancy, both the 

precipitation and water level fluxes were averaged in Table 15. As observed, the mentioned 

discrepancy occurred during the end of the eighth month of 2014. From Table 15, the total 

precipitation for a month can be observed along the averaged borehole response. From this 

perspective, the total precipitation is seen to correlate with the borehole responses, with a clear 

drop after the eighth month. This indicates a near instantaneous response to precipitation in the 

Kasteelberg Mountain Aquifer.  
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Table 15 Total monthly precipitation and average water level responses 

Year Rain (mm) BH1 (m) BH3 (m) 

01/01/2014 57.14 -25.32 -21.32 

01/02/2014 6.85 -24.5357 -21.1294 

01/03/2014 76.21 -23.9223 -21.032 

01/04/2014 1.52 -23.2951 -20.9307 

01/05/2014 127.24 -22.6597 -20.8175 

01/06/2014 126.24 -22.2132 -20.9397 

01/07/2014 123.94 -22.4647 -21.1293 

01/08/2014 125.73 -23.607 -21.6407 

01/09/2014 39.61 -24.8231 -21.8295 

01/10/2014 6.86 -25.137 -21.6898 

01/11/2014 47.49 -24.9384 -21.5197 

01/12/2014 4.57 -24.5936 -21.4034 

01/01/2015 18.79 -24.1378 -21.2902 

01/02/2015 4.32 -23.6617 -21.1544 

01/03/2015 16.76 -23.1711 -21.0109 

01/04/2015 4.06 -22.6612 -20.9146 

01/05/2015 66.29 -22.1191 -20.8087 

01/06/2015 70.34 -21.6818 -20.746 
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4.4  Implications of the Excel model  

During the modelling process in HYDRUS-1D, the program experienced problems with the 

huge database partly due to separating the Kasteelberg Mountain into eight segments of 100 m 

each, as shown in Table 16. This was solved by using the values calculated by the three layers, 

as indicated in Table 9.  

Table 17 mention surface area and effective surface area. The volume was calculated using 

Figure 27. By using Figure 12, a DEM of the study area and Figure 27, the aquifer was divided 

into eight layers. The surface area refers to the total area of the layers. This surface area was 

only used for the first layer that had no overlaying layers and thus impacting direct recharge by 

precipitation. Effective precipitation refers to the area with “direct” access to recharge, 

independent of overlaying layers. Figure 17 illustrates this surface area using a blue line.  

With the aquifer being split into three layers instead of eight (see full description in 

methodology), the straight blue lines show the surface area that was used (Figure 17b and 17c) 

to calculate the effective surface. The amount of excess water in the aquifer system available 

for extraction, averaging as 2,8 X 109 m3 per year was calculated in Excel, adding up the 

overflow for a full year. 

 

Table 16 Summary of the eight layers used in the Excel calculations, Table 11 

Layer Volume m3 Total Porosity m3 Surface Area m2 Effective Surface Area m2 
1 31404500 5,150,338 314045 314045 
2 161963101 26,561,949 1619631 1305586 

3 354701600 58,171,062 3547016 2241430 

4 640765200 105,085,493 6407652 4166222 

5 958348800 157,169,203 9583488 5417266 

6 1551866200 254,506,057 15518662 10101396 

7 2753296000 451,540,544 27532960 17431564 

8 6517164200 1,068,814,929 65171642 47740078 

 

Table 16 was constructed along with values obtained from the GIS model, with the mountain 

being divided into eight layers (based on Figure 18) by elevation. The GIS model gave the 

total volume of the mountain and with the contour map (see Figure 18) overlain on the DEM 

(see Figure 15) it was possible to horizontally divide the mountain into these 100 m layers and 

use these parameters when constructing the cascade model in Excel.  
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Table 17 Altered division of the Excel summary used in HYDRUS-1D modelling 

Layer Volume m3 Total Porosity 

m3 

Surface Area 

m2 

Effective Surface Area 

m2 

1 354701600 89883349 5480692 3547016 
2 1197164600 516760753 31509802 11971646 
3 4965298000 1520355473 65171642 49652980 

 

4.5  The Hydrus model and the Excel model in comparison  

With HYDRUS, it was important to use the correct hydrogeological parameters and understand 

the factors that impact on these parameters. This is often an arduous task to achieve due to the 

sheer number of options in the model.  

The modelling strategy rested on porosity and preferential flows through fractures, where 

preference was also provided for the simulation of water in the aquifer through preferential 

flows. The results generated in HUDRUS-1D are presented in Figure 24 and 25. The potential 

surface flux shows multiple negative peaks pointing to the driest periods in the data, with the 

potential surface flux being stable during the rainy season. Actual surface flux shows the fluxes 

more accurately than the potential flux. If viewed along with Figure 24 and Figure 25, the 

smaller-scale dry and wet increments are also depicted; thus the multiple smaller peaks. 

Between days 650 and 700, the peak perfectly corresponds to the measured rainfall. Surface 

run-off, if viewed alongside Figure 25, shows that the slow pace of recharge and the saturation 

point held over time also perfectly corresponds with this prediction. The peaks in Figure 24 

correspond with the point after the rain season when the maximum water table was not yet 

reached, due to relatively slow recharge. After this point, the water table is maintained for 

roughly 90 days before the groundwater starts to subside.  

The HYDRUS-1D model and its results are thus an accurate representation of the true events, 

as compared to real-world data. It is noteworthy that the peaks in HYDRUS-1D are not as 

accurate when it came to illustrating the steep slope in Figure 24. The HYDRYS-1D model 

shows peaks to be mostly symmetrical, yet the data show a steep slope during the dry seasons 

(see Figure 24). Field data also show a slow recharge rate, not depicted in the HYDRUS-1D 

model.  
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Figure 24 HYDRUS-1D results, A) Actual Surface Flux, B) Potential Surface Flux 
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Figure 25 HYDRUS-1D model results, A) Surface Run-Off, B) Cumulative Evaporation graph  
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4.6  Conclusion  

From the result section the indication is clear that the boreholes do respond to precipitation as 

hypothesised. It should be noted that conflicting to this are the boreholes between the local 

mine and the Kasteelberg Mountain. BH2 shows a very high frequency with regard to flux, 

with BH1 showing the strongest response to the precipitation during the winter months and 

BH3 mirroring BH1, but with lower flux, adding to the argument of the Kasteelberg Mountain 

Aquifer being a major source of groundwater in the area. It is also interesting to note the sudden 

“dip” in groundwater before the rainy seasons. This is due to the recharge occurring at a 

significantly slower rate. 

Figure 19 & 20 showed how the BH1 and BH2 responded to precipitation. BH1 and BH2 in 

Figure 19 & 20 are explained in Table 15. It is shown for the period 11 August 2015 to 25 

April 2016 and 4 October 2016 to 25 April 2017, how BH2 at the foot slope responded to rain 

and BH1 for the same period did not.  

Figure 22 can also be viewed with the HYDRUS-1D result in that dual porosity was used in 

the modelling to imitate the true environment of the aquifer. It is reasonable to believe that the 

mountain would consist of numerous fractures and cracks along its extremities, but that 

weathering had not penetrated the core of the mountain. The core being less porous would fill 

slower and possibly from the bottom up, where the fractures and cracks would fill at a much 

higher rate. This was one of the observations made, but no core sample was available to verify 

this idea.  

Figure 22 indicates that during the rainy season, the BH2 borehole in this part of the study area 

was not visibly recharged. This may, however, not be a realistic reflection of the truth. The 

local mine pumps water from its pit to not have the open-cast pit flooded. This may keep the 

water table relatively stable and not reflect the true effect of the recharge.  

It may also be attributed to the geology into which the boreholes are drilled, with the boreholes 

being drilled into non-porous material thus not reflecting recharge. This may be investigated 

in future studies where chemical analysis is done to determine the age and possible origin of 

the groundwater.  

  

Stellenbosch University https://scholar.sun.ac.za



85 

 

 CONCLUSION 

Prospects for new dams and redesigning the current dams are approaching practical limitations 

and is placing South Africa in a position where storage capacity is diminishing and does not 

adequately guarantee sustainable reserves, which subsequently compromises national water 

supply security. With this said, the need for this research was conceptualised to supplement 

similar studies being conducted with similar outcomes.  

The Kasteelberg Mountain, part of the Table Mountain Group (TMG), is a regionally fractured 

and predominantly sandstone aquifer. This study showed the potential of utilizing it as a source 

for bulk water supply in the local municipality to augment local demands in both the 

agricultural and residential sectors by use of the cascade model and the HYDRUS-1D model. 

From this perspective, the total precipitation is seen to correlate with the borehole responses, 

with a clear drop after the eighth month. This indicates a near instantaneous response to 

precipitation in the Kasteelberg Mountain Aquifer.  

The first studies relating to water systems in the Sandspruit were undertaken by Vermeulen 

(2010) and Bugan (2014). The first study by Vermeulen (2010) in part studied the water loss 

due to changes in vegetation. Another study by Bugan (2014) saw the assessment of dryland 

salinity in the Sandspruit and methods to combat salinity. With these studies completed and 

Wasserfall (2013) and Vermeulen (2010) investigating the surrounding area, the first 

investigation of Kasteelberg Mountain as a water source could begin. This study now 

contributes to the greater study to ultimately determine the viability of mountain aquifers being 

used by the City of Cape Town.  

The perched water table was directly monitored during this study. Field data collected over a 

period of 30 months (25 June 2015 to 22 December 2017), which represents different 

agrometeorological conditions in both the wet and dry periods, were also collated to 

supplement water levels in the observed boreholes. The water table showed a response to the 

precipitation and those mostly stable during both the dry and wet seasons were close to mining 

operations. This may however not be a realistic or natural reflection. The local mine extracts 

water from its pit to not have its open-cast pit flooded. The mine pumps the excess water to 

holding dams between itself and the Kasteelberg Mountain. Local farmers use it for irrigation. 

Thus, seepage from the holding dams and the seepage from the irrigation see the reintroduction 
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of the water and might be the reason boreholes in this area show minimum response. This may 

keep the perched water table relatively stable and not reflect the true effect of the recharge. 

The De Gift borehole showed the highest rate of response and recharge. This might be since 

this borehole is the closest to the mountain, or other geological factors might be responsible. 

Interaction between the aquifer and the surrounding study area could not definitively be proven. 

This was due to limited geological data available for the study area. A more detailed geological 

study will be needed to clearly identify boundaries between the different aquifer systems. This 

will also be advantageous in characterising the properties of the respective aquifer systems.  

The study was also conducted during some of the driest seasons in a century: 2011 and 2015. 

Measuring boreholes during this time, did not always produce a clear link between climate data 

and observation in the boreholes. However, with the major rain events that occurred, a 

correlation could be made between rain and borehole responses. 

The rainfall data used in these calculations show that during the periods from days 100 to 281 

and days 491 to 701 represent the summer months, and the three spikes during days 1 to 100, 

281 to 491 and 701 to 876 represent the winter months or winter rain season. This is linked to 

the HYDRUS-1D modelling results. The results show correlation between precipitation and 

surface run-off. It is interesting to note that the precipitation between day 701 and 876 is not 

significant enough to show a response in the HYDRUS-1D model. This might be due to 

parameters that are not sensitive enough to pick up this less significant spike in the data. It 

should be noted that if this study should be used to include the study of salinity, such as was 

done by Bugan (2014), the HYDRUS-1D dual-porosity methods should be replaced with a 

model capable of simulating solute transport. It was not under investigation in this study, but 

the limitation of this method should be noted as observed in Haws et al. (2005). 

The interconnectedness of fractured aquifer systems requires extensive knowledge about their 

ability to “communicate”. The interconnectedness is thus hard to prove and results in isolated 

aquifer systems or isolated fractures. The study focused on the theoretical capacity of the 

Kasteelberg Mountain Aquifer, regional recharge potential and changes in groundwater. The 

most significant changes observed in the water level occurred in boreholes with the closest 

proximity to the Kasteelberg Mountain. Bugan (2008) logged soil samples outside the 

Sandspruit area and on part of the current study area of this study and found that the 

surrounding area has similar soils, climate and geology, justifying sampling outside those study 
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boundaries. Results from his study showed variations (on annual scale) to be negligible 

regarding soil characteristics with regard to water storage. The responses from the two sporadic 

springs monitored, proved fruitful in understanding the fracture system and the calibration of 

the models. 

The 30 m SRTM DEM was obtained from NASA Earth Explorer. A resolution of 30 m may 

result in biased volume calculations for the Kasteelberg Mountain Aquifer, which may cause 

an overestimation or underestimation during volume calculations. This will be an important 

consideration if the aquifer is to be utilised in the future. Due to this study exploring the 

methods for calculating the water potential for the aquifer, the 30 m SRTM was sufficient for 

a rough estimate. The rough estimate of 2,8 X 109 m3 per year is both dependent on the 

precipitation and the parameters that were used in the modelling process.  

The cascade model executed in Excel was central in calculating the estimated 2,8 X 109 m3 

extractable water per year from the aquifer. From the GIS data, both obtained and created in 

this study, a clear understanding of the water-carrying capacity could be postulated. From this 

model the study was able to establish the surface area exposed to recharge and accordingly the 

recharge after factoring in the evapotranspiration. The subdivision of the aquifer into eight 

equal (only equal in thickness) units resulted in more accurate results than using only three 

layers in the HYDRUS-1D model, but lacked the response sensitivity needed in a dual-porosity 

system. To improve the results, the eight “layers” could be increased to accommodate even 

finer discrepancies in the surface of the mountain, such as valleys and crests. From the cascade 

model, the eight units were also modelled as lithologically homogeneous. From the geological 

maps of Verwoerd et al. (1974) and SRK (2007), this was a reasonable assumption to make 

during the testing of this model.  

The HYDRUS 1D results, however brief, shows two peaks on the surface runoff that coincide 

with observed sporadic stream flow events (days 184 and 587) from the south-western slope 

of the mountain – a good indication of the accuracy of the HYDRUS-1D model when correctly 

parameterised by accurate data. 

Borehole responses may also be attributed to the specific geology in the region of the boreholes, 

with the boreholes being drilled into non-porous material, thus not reflecting recharge 

adequately. This may be investigated in future studies where chemical analysis is done to 

determine the age and possible origin of the groundwater in the observed boreholes.  
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Reviewing the hypothesis, aim and objective, the following was achieved in this study: 

 A rough estimation was obtained with regard to the Kasteelberg Mountain’s volume 

and lithology.  

 Water storage potential was calculated. 

 The next step was monitoring the water responses across multiple years, to measure the 

water table responses to natural and anthropogenic events, with the possible stabilising 

effect of the mine. 

 Field data confirmed the hypothesis with regard to the water table being influenced by 

the seasons. 

 The study roughly measured the volume of water flow in the aquifer based on recharge, 

evapotranspiration and porosity.  

 The study measured the amount of excess water in the aquifer system available for 

extraction, averaging 2,8 X 109 m3 per year.  

 Additionally, a HYDRUS-1D model was also created to present the knowledge gained 

and calculate additional data with regard to groundwater flow and at what point rivers 

would respond, by starting to flow that would mark the saturation of the aquifer.  

South Africa is facing a slow-onset disaster with regard to pollution of the environment and 

natural resources (Barnes 2015), as seen in the past three years in the Western Cape.  

With the completion of this research project it is the hope of the author that the study will be 

used by local government to assist in water management planning in the area, with local 

municipalities and academics furthering the study to assist in managing an ecologically 

responsible and sustainable water resource in the municipality. The usage of this aquifer for 

local agriculture and households, will greatly assist in relieving strain on the larger Cape Town 

Metropole.  

5.1.1  Recommendations for future research 

Due to limited hydrogeological data regarding the core of the mountain, values from studies in 

the vicinity were used in calculations. In the future, test samples should be collected to verify 

the density and porosity of the sandstone through the entire mountain. It may justify this study 

for treating the mountain as a homogeneous sandstone aquifer or result in additional 

information generated to put these results in perspective.  

The study treats the system as a closed system. To a degree this holds true, but the study 

assumed that the aquifer consisted at zero stored water during the calculations. If the permanent 

water table values can be obtained, the results of this study will also improve.  

The speed (precipitation and evapotranspiration were averaged) at which the aquifer filled was 

unexpected. Yet future studies now have a starting point from a known water storage point to 
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increase the accuracy of future studies. Duel porosity that was used during modelling (the 

HYDRUS-1D model used duel porosity) to treat the mountain with a fractured “crust” and 

solid centre, resulted in two recharge paths and two different rates of recharge. This theory was 

discussed in Chapter 4, but requires more investigation to be proved or refuted.  

To further increase accuracy, the water from local dams (on farms) could also be factored in 

when calculating the available water in the aquifer. Some of the water used also returns to the 

system during agricultural practices, leaking pipes and leaking dams.  

In a follow-up study, the modelling should be done with a regionalised hydrological model, 

using the true rainfall distribution over the mountain. This will require rainfall distribution 

modelling to be done first.  

The local mine also pumps water from its pit into dams used by local farmers. This practice 

should also be studied due to the artificial recharge and recycling of the water in the system. 

An interesting part of the geology was that the results showed that the mountain aquifer and 

the lower slopes could possibly be disconnected hydrologically. This is due to the differences 

in response to precipitation and evapotranspiration. A chemical analysis and structural 

investigation may explain these discrepancies. It is also mentioned in Chapter 2 that the mine 

pumps water from their excavated area to prevent flooding, thus keeping the water table 

relatively stable. It was also discussed in Chapter 4 that the groundwater chemistry changes as 

one moves further away from the mountain. It may also be attributed to the geology into which 

the boreholes were sunk. However, De Clercq et al. (2010) indicated the relationship between 

rainfall distribution and the electrical conductivity of groundwater. There is still a need to 

investigate in future studies the age and possible origin of the groundwater.  

Calculating the water requirement of the local ecosystems would be beneficial for future 

ecological diversity studies; in other words, determining the minimum amount of water needed 

to sustain the local ecosystems. This will enable responsible water extraction by the local 

community and other possible interested parties.  

SRTM 30 m resolution images were used in the DEM and volume calculations. In future 

studies, 5 m resolution images would be advised to improve volume calculations. This will 

increase the DEM resolution and subsequently the area calculations used to derive the volume 

during Excel calculations.  
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Invasive plant species also reduce the water budget and need to be cleared from the 

ecosystem. This has been shown to release water back into the water cycle. Current initiatives 

by the WFWP (Working for Water Programme) and mostly farmers include an alien-clearing 

effort. 
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Addendum 

Borehole information and software used. 

BH1 Kasteelberg midslope. 
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BH2 Kasteelberg footslope 
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Precipitation vs Evapotranspiration (2010-2015) 
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HYDRUS-1D Mass Balance Information generated during the modelling process. 

******* Program HYDRUS 

 *******  

 Welcome to HYDRUS-1D                           

 Date: 3. 1.  Time: 21:45:59 

 Units: L = m  , T = days , M = mmol  

 

---------------------------------------------------------- 

 Time   [T]    0.0000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.18205E+03 0.29283E+02 0.49981E+02 0.45060E+02 0.57728E+02 

 In-flow [L/T]   0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 

 h Mean [L]   -0.10000E+03 -0.10000E+03 -0.10000E+03 -0.10000E+03 -0.10000E+03 

 Top Flux [L/T]  -0.22785E-05 

 Bot Flux [L/T]  -0.22785E-05 

---------------------------------------------------------- 

Time   [T]   30.4000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.29247E+03 0.61179E+02 0.99125E+02 0.74412E+02 0.57750E+02 

 In-flow [L/T]   0.18202E+01 -0.85254E-01 0.00000E+00 0.18746E+01 0.30825E-01 
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 h Mean [L]    0.22585E+02 0.36324E+02 0.12836E+03 0.69346E+02 -0.99698E+02 

 Top Flux [L/T]  -0.19055E+01 

 Bot Flux [L/T]  -0.22785E-05 

 WatBalT [L]    0.30534E+02 

 WatBalR [%]      27.654 

---------------------------------------------------------- 

Time   [T]   60.8000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.11844E+03 0.53114E+02 0.21799E+02 0.17817E+02 0.25709E+02 

 In-flow [L/T]   0.13916E+01 0.64549E+00 0.73598E+00 0.00000E+00 0.10146E-01 

 h Mean [L]   -0.32745E+08 -0.17352E+02 -0.31341E+08 -0.69315E+08 -0.23562E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.10144E-01 

 WatBalT [L]   -0.19306E+03 

 WatBalR [%]      139.976 

---------------------------------------------------------- 

Time   [T]   91.2000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.11663E+03 0.52165E+02 0.20774E+02 0.17861E+02 0.25828E+02 

 In-flow [L/T]   0.18890E+01 0.90619E+00 0.98059E+00 0.00000E+00 0.22340E-02 
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 h Mean [L]   -0.25774E+08 -0.29914E+02 -0.19883E+08 -0.52865E+08 -0.23445E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.22295E-02 

 WatBalT [L]   -0.25922E+03 

 WatBalR [%]      128.062 

---------------------------------------------------------- 

Time   [T]   121.6000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.19740E+03 0.60537E+02 0.88865E+02 0.22111E+02 0.25882E+02 

 In-flow [L/T]   0.29522E+01 0.00000E+00 0.19043E+01 0.10464E+01 0.14687E-02 

 h Mean [L]   -0.18676E+08 0.32993E+01 -0.32238E+02 -0.44394E+08 -0.23434E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.14706E-02 

 WatBalT [L]   -0.23959E+03 

 WatBalR [%]      90.908 

---------------------------------------------------------- 

Time   [T]   152.0000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.19249E+03 0.61179E+02 0.85087E+02 0.20306E+02 0.25921E+02 

 In-flow [L/T]   0.31109E+01 0.00000E+00 0.23146E+01 0.79512E+00 0.11444E-02 
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 h Mean [L]   -0.20342E+08 0.15889E+02 -0.18006E+03 -0.51176E+08 -0.23429E+08 

 Top Flux [L/T]  -0.31290E+01 

 Bot Flux [L/T]   0.11443E-02 

 WatBalT [L]   -0.30978E+03 

 WatBalR [%]      94.203 

---------------------------------------------------------- 

Time   [T]   182.4000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.18522E+03 0.61171E+02 0.79303E+02 0.18790E+02 0.25953E+02 

 In-flow [L/T]   0.40084E+01 0.13387E+01 0.22542E+01 0.41464E+00 0.95113E-03 

 h Mean [L]   -0.18812E+08 0.56500E+01 -0.25984E+04 -0.44953E+08 -0.23427E+08 

 Top Flux [L/T]  -0.40075E+01 

 Bot Flux [L/T]   0.95556E-03 

 WatBalT [L]   -0.38533E+03 

 WatBalR [%]      97.032 

---------------------------------------------------------- 

Time   [T]   212.8000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.17825E+03 0.60250E+02 0.73962E+02 0.18062E+02 0.25980E+02 

 In-flow [L/T]   0.18876E+01 0.25156E+00 0.14993E+01 0.13587E+00 0.82970E-03 
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 h Mean [L]   -0.29147E+08 -0.94771E-01 -0.47894E+05 -0.86952E+08 -0.23425E+08 

 Top Flux [L/T]  -0.18916E+01 

 Bot Flux [L/T]   0.83012E-03 

 WatBalT [L]   -0.45691E+03 

 WatBalR [%]      98.955 

---------------------------------------------------------- 

Time   [T]   243.2000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.17511E+03 0.60242E+02 0.70914E+02 0.17953E+02 0.26003E+02 

 In-flow [L/T]   0.14301E+01 -0.25526E+00 0.16314E+01 0.53177E-01 0.74625E-03 

 h Mean [L]   -0.22119E+08 -0.98454E-01 -0.48561E+06 -0.57916E+08 -0.23423E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.73960E-03 

 WatBalT [L]   -0.52837E+03 

 WatBalR [%]      99.203 

---------------------------------------------------------- 

Time   [T]   273.6000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.16705E+03 0.60537E+02 0.62606E+02 0.17887E+02 0.26025E+02 

 In-flow [L/T]   0.34323E+01 0.00000E+00 0.34311E+01 0.59605E-03 0.66916E-03 
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 h Mean [L]   -0.23427E+08 0.10668E+01 -0.34293E+07 -0.60220E+08 -0.23422E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.67061E-03 

 WatBalT [L]   -0.59550E+03 

 WatBalR [%]      100.617 

---------------------------------------------------------- 

Time   [T]   304.0000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.16949E+03 0.60537E+02 0.65079E+02 0.17834E+02 0.26044E+02 

 In-flow [L/T]   0.35719E+01 0.00000E+00 0.35639E+01 0.74177E-02 0.61798E-03 

 h Mean [L]   -0.24531E+08 0.42193E+00 -0.71770E+07 -0.60868E+08 -0.23421E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.61594E-03 

 WatBalT [L]   -0.67428E+03 

 WatBalR [%]      99.975 

---------------------------------------------------------- 

Time   [T]   334.4000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.16750E+03 0.60537E+02 0.63040E+02 0.17859E+02 0.26062E+02 

 In-flow [L/T]   0.34520E+01 0.00000E+00 0.34499E+01 0.15227E-02 0.56903E-03 
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 h Mean [L]   -0.22424E+08 0.98398E+00 -0.61895E+07 -0.53309E+08 -0.23421E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.57134E-03 

 WatBalT [L]   -0.74873E+03 

 WatBalR [%]      100.244 

---------------------------------------------------------- 

Time   [T]   364.8000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.16503E+03 0.60537E+02 0.60557E+02 0.17859E+02 0.26079E+02 

 In-flow [L/T]   0.33761E+01 0.00000E+00 0.33754E+01 0.22769E-03 0.53406E-03 

 h Mean [L]   -0.22483E+08 0.13213E+01 -0.63859E+07 -0.53352E+08 -0.23420E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.53415E-03 

 WatBalT [L]   -0.81701E+03 

 WatBalR [%]      100.528 

---------------------------------------------------------- 

Time   [T]   395.2000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.16504E+03 0.60537E+02 0.60638E+02 0.17768E+02 0.26095E+02 

 In-flow [L/T]   0.33812E+01 0.00000E+00 0.33800E+01 0.66757E-03 0.50545E-03 
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 h Mean [L]   -0.37502E+08 0.13150E+01 -0.16970E+08 -0.10359E+09 -0.23420E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.50257E-03 

 WatBalT [L]   -0.89662E+03 

 WatBalR [%]      100.134 

---------------------------------------------------------- 

Time   [T]   425.6000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.16903E+03 0.60537E+02 0.64554E+02 0.17833E+02 0.26110E+02 

 In-flow [L/T]   0.35089E+01 -0.29513E-01 0.35339E+01 0.40356E-02 0.47684E-03 

 h Mean [L]   -0.26377E+08 0.57363E+00 -0.59463E+07 -0.69642E+08 -0.23419E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.47534E-03 

 WatBalT [L]   -0.97331E+03 

 WatBalR [%]      99.216 

---------------------------------------------------------- 

Time   [T]   456.0000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.17065E+03 0.60799E+02 0.65881E+02 0.17842E+02 0.26124E+02 

 In-flow [L/T]   0.37075E+01 0.74907E-01 0.36227E+01 0.94364E-02 0.45432E-03 
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 h Mean [L]   -0.25543E+08 0.16430E+00 -0.49807E+07 -0.67242E+08 -0.23419E+08 

 Top Flux [L/T]  -0.21223E+01 

 Bot Flux [L/T]   0.45158E-03 

 WatBalT [L]   -0.10463E+04 

 WatBalR [%]      99.027 

---------------------------------------------------------- 

Time   [T]   486.4000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.17152E+03 0.60536E+02 0.67016E+02 0.17834E+02 0.26137E+02 

 In-flow [L/T]   0.13798E+01 0.76469E-01 0.12804E+01 0.22440E-01 0.48154E-03 

 h Mean [L]   -0.24314E+08 0.17550E+00 -0.47458E+07 -0.62482E+08 -0.23419E+08 

 Top Flux [L/T]  -0.13791E+01 

 Bot Flux [L/T]   0.43062E-03 

 WatBalT [L]   -0.11186E+04 

 WatBalR [%]      99.012 

---------------------------------------------------------- 

 Time   [T]   516.8000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.14784E+03 0.60409E+02 0.43411E+02 0.17874E+02 0.26150E+02 

 In-flow [L/T]   0.13929E+01 -0.37584E+00 0.17684E+01 0.00000E+00 0.41127E-03 
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 h Mean [L]   -0.21017E+08 -0.88013E-01 -0.67934E+07 -0.46971E+08 -0.23419E+08 

 Top Flux [L/T]  -0.13751E+01 

 Bot Flux [L/T]   0.41198E-03 

 WatBalT [L]   -0.12059E+04 

 WatBalR [%]      101.049 

---------------------------------------------------------- 

Time   [T]   547.2000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.14138E+03 0.60934E+02 0.36445E+02 0.17838E+02 0.26162E+02 

 In-flow [L/T]   0.43684E+01 0.86939E+00 0.34986E+01 0.00000E+00 0.39101E-03 

 h Mean [L]   -0.27750E+08 0.92546E+01 -0.21588E+08 -0.59191E+08 -0.23418E+08 

 Top Flux [L/T]  -0.43680E+01 

 Bot Flux [L/T]   0.39526E-03 

 WatBalT [L]   -0.12739E+04 

 WatBalR [%]      101.487 

---------------------------------------------------------- 

Time   [T]   577.6000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.13206E+03 0.58611E+02 0.29412E+02 0.17864E+02 0.26174E+02 

 In-flow [L/T]   0.33367E+01 0.94969E+00 0.23866E+01 0.00000E+00 0.38147E-03 
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 h Mean [L]   -0.24832E+08 0.29847E+01 -0.18167E+08 -0.50828E+08 -0.23418E+08 

 Top Flux [L/T]  -0.33363E+01 

 Bot Flux [L/T]   0.38016E-03 

 WatBalT [L]   -0.13364E+04 

 WatBalR [%]      102.138 

---------------------------------------------------------- 

Time   [T]   608.0000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.12248E+03 0.54950E+02 0.23485E+02 0.17865E+02 0.26185E+02 

 In-flow [L/T]   0.18936E+01 0.10292E+01 0.86403E+00 0.00000E+00 0.36526E-03 

 h Mean [L]   -0.24833E+08 -0.54360E+01 -0.18289E+08 -0.50707E+08 -0.23418E+08 

 Top Flux [L/T]  -0.18933E+01 

 Bot Flux [L/T]   0.36645E-03 

 WatBalT [L]   -0.13995E+04 

 WatBalR [%]      102.757 

---------------------------------------------------------- 

Time   [T]   638.4000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.14928E+03 0.60488E+02 0.44712E+02 0.17881E+02 0.26196E+02 

 In-flow [L/T]   0.22650E+01 0.15791E+00 0.21067E+01 0.00000E+00 0.35524E-03 
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 h Mean [L]   -0.20269E+08 -0.81741E-01 -0.34998E+07 -0.47306E+08 -0.23418E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.35392E-03 

 WatBalT [L]   -0.14430E+04 

 WatBalR [%]      100.751 

---------------------------------------------------------- 

Time   [T]   668.8000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.14685E+03 0.60688E+02 0.42032E+02 0.17919E+02 0.26207E+02 

 In-flow [L/T]   0.17081E+01 -0.25826E+00 0.19660E+01 0.00000E+00 0.34332E-03 

 h Mean [L]   -0.19147E+08 -0.71237E-01 -0.48204E+07 -0.41390E+08 -0.23418E+08 

 Top Flux [L/T]  -0.17107E+01 

 Bot Flux [L/T]   0.34244E-03 

 WatBalT [L]   -0.15094E+04 

 WatBalR [%]      100.843 

---------------------------------------------------------- 

Time   [T]   699.2000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.13791E+03 0.60008E+02 0.33846E+02 0.17844E+02 0.26217E+02 

 In-flow [L/T]   0.34100E+01 0.69311E+00 0.27165E+01 0.00000E+00 0.33855E-03 
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 h Mean [L]   -0.27300E+08 0.24252E+01 -0.22051E+08 -0.56886E+08 -0.23417E+08 

 Top Flux [L/T]  -0.34096E+01 

 Bot Flux [L/T]   0.33185E-03 

 WatBalT [L]   -0.15778E+04 

 WatBalR [%]      101.367 

---------------------------------------------------------- 

Time   [T]   729.6000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.14928E+03 0.60819E+02 0.44316E+02 0.17919E+02 0.26227E+02 

 In-flow [L/T]   0.16216E+01 0.68771E+00 0.93359E+00 0.00000E+00 0.32500E-03 

 h Mean [L]   -0.18805E+08 0.49634E+00 -0.40056E+07 -0.40834E+08 -0.23417E+08 

 Top Flux [L/T]  -0.16214E+01 

 Bot Flux [L/T]   0.32206E-03 

 WatBalT [L]   -0.16533E+04 

 WatBalR [%]      100.561 

---------------------------------------------------------- 

Time   [T]   760.0000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.14747E+03 0.60513E+02 0.42945E+02 0.17777E+02 0.26237E+02 

 In-flow [L/T]   0.14734E+01 -0.36551E+00 0.18386E+01 0.00000E+00 0.30945E-03 
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 h Mean [L]   -0.35671E+08 -0.82140E-01 -0.16923E+08 -0.96195E+08 -0.23417E+08 

 Top Flux [L/T]  -0.14757E+01 

 Bot Flux [L/T]   0.31297E-03 

 WatBalT [L]   -0.17238E+04 

 WatBalR [%]      100.531 

---------------------------------------------------------- 

Time   [T]   790.4000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.15575E+03 0.60537E+02 0.51131E+02 0.17840E+02 0.26246E+02 

 In-flow [L/T]   0.33409E+01 0.00000E+00 0.33406E+01 0.00000E+00 0.31153E-03 

 h Mean [L]   -0.25490E+08 0.14980E+01 -0.63792E+07 -0.65593E+08 -0.23417E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.30451E-03 

 WatBalT [L]   -0.17970E+04 

 WatBalR [%]      99.913 

---------------------------------------------------------- 

Time   [T]   820.8000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.15758E+03 0.60537E+02 0.52950E+02 0.17841E+02 0.26255E+02 

 In-flow [L/T]   0.33311E+01 0.00000E+00 0.33308E+01 0.00000E+00 0.29882E-03 
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 h Mean [L]   -0.25441E+08 0.15352E+01 -0.63682E+07 -0.65406E+08 -0.23417E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.29661E-03 

 WatBalT [L]   -0.18712E+04 

 WatBalR [%]      99.819 

---------------------------------------------------------- 

Time   [T]   851.2000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.15344E+03 0.60537E+02 0.48876E+02 0.17767E+02 0.26264E+02 

 In-flow [L/T]   0.33689E+01 0.00000E+00 0.33686E+01 0.00000E+00 0.28372E-03 

 h Mean [L]   -0.38070E+08 0.13654E+01 -0.17447E+08 -0.10542E+09 -0.23416E+08 

 Top Flux [L/T]  -0.13747E+01 

 Bot Flux [L/T]   0.28920E-03 

 WatBalT [L]   -0.19466E+04 

 WatBalR [%]      99.953 

---------------------------------------------------------- 

Time   [T]   881.6000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.15197E+03 0.60662E+02 0.47154E+02 0.17882E+02 0.26273E+02 

 In-flow [L/T]   0.34057E+01 -0.20707E-01 0.34261E+01 0.00000E+00 0.28483E-03 
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 h Mean [L]   -0.23865E+08 0.11105E+01 -0.36727E+07 -0.61760E+08 -0.23417E+08 

 Top Flux [L/T]  -0.16176E+01 

 Bot Flux [L/T]   0.28225E-03 

 WatBalT [L]   -0.20230E+04 

 WatBalR [%]      100.027 

---------------------------------------------------------- 

Time   [T]   912.0000 

---------------------------------------------------------- 

 Sub-region num.          1      2      3      4 

---------------------------------------------------------- 

 Length [L]    0.80000E+03 0.13667E+03 0.20167E+03 0.19667E+03 0.26500E+03 

 W-volume [L]    0.14663E+03 0.60700E+02 0.41883E+02 0.17765E+02 0.26281E+02 

 In-flow [L/T]   0.17347E+01 -0.24551E+00 0.19799E+01 0.00000E+00 0.27618E-03 

 h Mean [L]   -0.38942E+08 -0.70363E-01 -0.19488E+08 -0.10687E+09 -0.23417E+08 

 Top Flux [L/T]  -0.17376E+01 

 Bot Flux [L/T]   0.27571E-03 

 WatBalT [L]   -0.20880E+04 

 WatBalR [%]      100.283 

---------------------------------------------------------- 

 Calculation time [sec] 0.280000030994415   
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Excel Calculations and results 

 

  

Layer 1 Layer 2

Oppervlak (m2) 314045 1619631.007

Volume (m3) 31404500 161963100.7

Diepte (m) 900 800

Density (g/m3) Porosity (%)

Clean Sandstone 2.65 5.7

Fractured Sandstone 2.3 16.4

Siltstone 2.45 17.1

Shale 2.35 14

percent infil 10 10

Dag rain Rain m ET mm ET m Response Layer 1 Layer 2

Vol total poros 16 16

Oppervlak (m2) 314045 1619631

reen oppervlak 314045 1305586

Volume (m3) 31404500 161963101

Dikte (m) 900 800

Total pore volume m3

Rain

mm

ETo

mm 5,150,338 5,150,338 afloop afloop akkumulasie 26,561,949 afloop opdam

1 3.2 0.0032 1.23 0.00123 0.00197 619 619 619 0 319,067 319,686 319,686 0

2 0 0 1.89 0.00189 -0.00189 -594 25 25 0 -306,110 13,576 13,576 0 0

3 0 0 1.67 0.00167 -0.00167 -524 0 0 0 -270,478 0 0 0 0

4 0.2 0.0002 1.26 0.00126 -0.00106 -333 0 0 0 -171,681 0 0 0 0

5 0 0 1.04 0.00104 -0.00104 -327 0 0 0 -168,442 0 0 0 0

6 0 0 1.73 0.00173 -0.00173 -543 0 0 0 -280,196 0 0 0 0

7 0 0 1.97 0.00197 -0.00197 -619 0 0 0 -319,067 0 0 0 0

8 0 0 2.32 0.00232 -0.00232 -729 0 0 0 -375,754 0 0 0 0

9 0 0 1.93 0.00193 -0.00193 -606 0 0 0 -312,589 0 0 0 0

10 0 0 2.13 0.00213 -0.00213 -669 0 0 0 -344,981 0 0 0 0

11 0 0 1.78 0.00178 -0.00178 -559 0 0 0 -288,294 0 0 0 0

12 0 0 5.25 0.00525 -0.00525 -1,649 0 0 0 -850,306 0 0 0 0

13 0 0 5.5 0.0055 -0.0055 -1,727 0 0 0 -890,797 0 0 0 0

14 1.6 0.0016 1.36 0.00136 0.00024 75 75 75 0 38,871 38,871 38,871 0 0

15 0 0 2.35 0.00235 -0.00235 -738 0 0 0 -380,613 0 0 0 0

16 0 0 3.85 0.00385 -0.00385 -1,209 0 0 0 -623,558 0 0 0 0

17 4.6 0.0046 0.45 0.00045 0.00415 1,303 1,303 1,303 0 672,147 672,147 672,147 0 0

18 2.4 0.0024 1.23 0.00123 0.00117 367 1,671 1,671 0 189,497 861,644 861,644 0 0

19 0 0 1.52 0.00152 -0.00152 -477 1,193 1,193 0 -246,184 615,460 615,460 0 0
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Part of Borehole 1 dataset  

 

Serial_number:    

2019549    

Project ID:    

Date Time LEVEL TEMPERATURE 

04/06/2013 0:52:45 20.4071 21.140 

04/06/2013 1:52:45 20.3999 21.149 

04/06/2013 2:52:45 20.3892 21.147 

04/06/2013 3:52:45 20.3797 21.152 

04/06/2013 4:52:45 20.3714 21.150 

04/06/2013 5:52:45 20.3684 21.143 

04/06/2013 6:52:45 20.3615 21.153 

04/06/2013 7:52:45 20.3623 21.160 

04/06/2013 8:52:45 20.3599 21.142 

04/06/2013 9:52:45 20.3579 21.153 

04/06/2013 10:52:45 20.3534 21.154 

04/06/2013 11:52:45 20.3484 21.145 

04/06/2013 12:52:45 20.3397 21.153 

04/06/2013 13:52:45 20.3305 21.151 

04/06/2013 14:52:45 20.3258 21.150 

04/06/2013 15:52:45 20.3259 21.158 

04/06/2013 16:52:45 20.3267 21.145 

04/06/2013 17:52:45 20.3280 21.150 

04/06/2013 18:52:45 20.3267 21.148 

04/06/2013 19:52:45 20.3322 21.147 

04/06/2013 20:52:45 20.3255 21.145 

04/06/2013 21:52:45 20.3205 21.146 

Part of the Riebeeks River weather station data set 

 

Date 
Tave 

°C 
Tmin 

°C 
Tmax 

°C 
SRad 
mJ/hr 

WSAve 
m/s 

Rain 
mm LWet\% WDir 

RHave 
% 

RHmin 
% 

RHmax 
% Sun\hrs 

25/06/2015 9.1 3.2 12 7.3 1.61 3.2 71 --- 80.3 63.3 96 4.5 

26/06/2015 9.5 6.1 13.6 10.2 1.77 0 0 --- 69.1 53.6 79.4 6.8 

27/06/2015 10.5 8.4 13.5 9.4 1.8 0 0 --- 72.8 53.5 91.9 6.4 

28/06/2015 9.8 8 12.7 7.2 2.38 0.2 42 --- 83.7 68.4 99.8 3.3 

29/06/2015 10.7 8.9 13.7 5.1 1.83 0 21 --- 85.6 74 99.6 1.8 

30/06/2015 11.6 9.3 14.8 10 1.21 0 21 --- 76.4 63.3 88.1 6.8 

01/07/2015 11.3 8.1 15.6 10.3 1.57 0 0 --- 71.5 55.4 82 6.9 

02/07/2015 13 9.9 17.2 10.3 1.28 0 0 --- 54.2 32 68.6 6.8 

03/07/2015 12.7 10.1 16.1 9.7 0.89 0 0 --- 61.8 51.5 68.6 6.1 

04/07/2015 13.8 12.2 17 10 0.9 0 0 --- 55 38.2 74.3 6.8 
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05/07/2015 11.2 9.3 14.5 10.3 1.52 0 0 --- 75.3 60.6 93.9 6.8 

06/07/2015 16.1 9.5 20.7 10.3 5.8 0 0 --- 39 19 81.7 6.6 

07/07/2015 19.6 11.3 25 4.9 6.31 0 25 --- 43.4 13.4 99.7 2.2 

08/07/2015 11.9 10.4 14.9 7.9 2.16 1.6 71 --- 91.7 74.6 99.8 4.3 

09/07/2015 13.9 10.9 18 9.5 2.65 0 0 --- 70 53.9 87.1 6.3 

10/07/2015 18.1 15.3 21.3 9.9 3.54 0 0 --- 45.9 37.7 58.8 6.8 

11/07/2015 11.6 8.6 15.4 1.7 3.23 4.6 67 --- 86.1 55 99.8 0 

12/07/2015 7.6 5.7 9.5 8.4 1.89 2.4 75 --- 81.5 60.4 99.8 4.5 

13/07/2015 6.9 5 10 9.8 1.61 0 0 --- 73.6 64 79.6 5.7 

14/07/2015 9.2 5.8 12.6 6.1 2.42 0.2 29 --- 47.8 32.3 74 2 

15/07/2015 8.1 5.6 11.1 9.4 1.95 0 0 --- 65.3 41.2 88.9 5.5 

16/07/2015 7.9 5.8 9.9 4.9 3.22 3.2 83 --- 93 84.6 99.8 2.1 

17/07/2015 8.5 7.2 9.3 0.6 8.99 71.4 100 --- 99.7 99.1 99.8 0 

Hydrus setup file 

 

Pcp_File_Version=4 

*** BLOCK A: BASIC INFORMATION ***************************************** 

Heading 

Welcome to HYDRUS-1D 

LUnit TUnit MUnit (indicated units are obligatory for all input data) 

m 

days 

mmol 

lWat lChem lTemp lSink lRoot lShort lWDep lScreen lVariabBC lEquil lInverse 

 t  f    t  f  t   f  t         f 

lSnow lHP1 lMeteo lVapor lActiveU lFluxes lIrrig lDummy 

 f           t   f       

NMat  NLay CosAlpha 

 3   4   1 

*** BLOCK B: WATER FLOW INFORMATION 

************************************ 
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MaxIt TolTh TolH   (maximum number of iterations and tolerances) 

 11  0.001   1 

TopInf WLayer KodTop InitCond 

 t    -1   f 

BotInf qGWLF FreeD SeepF KodBot DrainF hSeep 

 f      1   f   0 

  hTab1 hTabN 

  0.001  1000 

  Model Hysteresis 

   5     0 

 thr  ths  Alfa   n    Ks   l    w2  Alfa2   n2 

 0.07  0.45 0.014  1.56     6  0.5  0.5   3    1.5  

 0.08  0.5 0.014  1.37     3  0.5  0.5   3    1.5  

 0.09  0.4 0.014  1.3     1  0.5  0.5   3    1.5  

*** BLOCK C: TIME INFORMATION ****************************************** 

    dt   dtMin   dtMax  DMul  DMul2 ItMin ItMax MPL 

    0.1   0.0001    0.5  1.3  0.7  3  10  30 

   tInit    tMax 

     0    912 

 lPrintD nPrintSteps tPrintInterval lEnter 

  t     1    30.42   t 

TPrint(1),TPrint(2),...,TPrint(MPL) 

   30.4    60.8    91.2   121.6    152   182.4  

   212.8   243.2   273.6    304   334.4   364.8  

   395.2   425.6    456   486.4   516.8   547.2  

   577.6    608   638.4   668.8   699.2   729.6  
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    760   790.4   820.8   851.2   881.6    912  

*** BLOCK G: ROOT WATER UPTAKE INFORMATION 

***************************** 

  Model (0 - Feddes, 1 - S shape) cRootMax  OmegaC 

    0                 1 

   P0   P2H   P2L   P3     r2H    r2L 

  -0.1    -2    -8   -80   0.005   0.001 

POptm(1),POptm(2),...,POptm(NMat) 

 -0.25  -0.25  -0.25  

*** END OF INPUT FILE 'SELECTOR.IN' ************************************ 
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