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Abstract

Background: Global and local ancestry inference in admixed human populations can be performed using
computational tools implementing distinct algorithms. The development and resulting accuracy of these tools has
been tested largely on populations with relatively straightforward admixture histories but little is known about how
well they perform in more complex admixture scenarios.

Results: Using simulations, we show that RFMix outperforms ADMIXTURE in determining global ancestry
proportions even in a complex 5-way admixed population, in addition to assigning local ancestry with an accuracy
of 89%. The ability of RFMix to determine global and local ancestry to a high degree of accuracy, particularly in
admixed populations provides the opportunity for more accurate association analyses.

Conclusion: This study highlights the utility of the extension of computational tools to become more compatible
to genetically structured populations, as well as the need to expand the sampling of diverse world-wide
populations. This is particularly noteworthy as modern-day societies are becoming increasingly genetically complex
and some genetic tools and commonly used ancestral populations are less appropriate. Based on these caveats and
the results presented here, we suggest that RFMix be used for both global and local ancestry estimation in world-
wide complex admixture scenarios particularly when including these estimates in association studies.
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Background
Admixture, the exchange of genetic material between dis-
tinct populations, is a hallmark of modern society - it can
occur between closely or distantly related populations [1].
This exchange of genetic material leads to population
structure; the pattern, timing and extent has been investi-
gated in detail in a number of populations [1–3]. Such
studies on southern African populations are particularly
noteworthy as this area is postulated to be the geograph-
ical origin of modern humans [4]. Furthermore, it was the
final destination of various human population migrations

that have resulted in a unique pattern of genetic diversity
in the region [3, 5–8]. Therefore, investigating population
structure in modern southern African populations may re-
veal more about the area’s rich history.
Correctly and efficiently determining ancestral propor-

tions in an admixed population is possible by using com-
putational and statistical algorithms that adapt to a variety
of demographic scenarios [9–11]. The ability to determine
the ancestral origin of a particular chromosomal region
(or the overall admixture proportions) in an admixed indi-
vidual has enabled the mapping of the origins of genetic
risk factors in complex disease [12–14]. The majority of
the computational and statistical tools used for global and
local ancestry inference (GAI and LAI respectively) were
however tested on and tailored to 2- and 3-way admixed
populations (such as African Americans, Hispanics and
Latino’s). The extension to more complex admixed
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populations and the evaluation of the resulting accuracy
has yet to be investigated.
As with most geographical regions, southern Africa

houses a multitude of diverse human populations that
all share in the migratory history in the area. One of the
most unique populations in southern Africa is the South
African Coloured (SAC) population (as termed in the
South African census). The SAC population received an-
cestral contributions from 5 distinct populations; Bantu-
speaking African (~ 30%), KhoeSan (~ 30%), European
(~ 20%), East Asian (~ 10%) and South East Asian popu-
lations (~ 10%) [3, 5–8]. The admixture began approxi-
mately 15 generations ago and followed a continuous
migration model [3]. The extent, mode and timing of ad-
mixture events is unique and creates a highly complex
population with heterogenous ancestral haplotypes and
linkage disequilibrium patterns.
The first step in a study design aimed at characterizing a

relationship between ancestry and disease (such as
genome-wide association studies and admixture mapping)
is to understand the ancestral composition of the study
population. Here we have set out to test the accuracy of
global and local ancestry inference in one of the most
complex admixed populations world-wide, using newly
available dense genotyping data. A simulated 5-way
admixed population is generated, and global and local an-
cestry estimates are compared to the true values to deter-
mine the accuracy of the computational algorithm.

Results
The aim of this study was to determine the accuracy of
global and local ancestry inference (GAI and LAI re-
spectively) in one of the most complex populations
world-wide- putting it to the ultimate test. In order to
do this, a highly complex 5-way admixed population was
simulated. The GAI and LAI estimates were then com-
pared to the true simulated data.

GAI accuracy
A 5-way admixed southern African population was sim-
ulated. The average ancestry proportions across these in-
dividuals were in line with what is seen in the real-world
(Table 1) [3]. The simulations provided the basis with

which the global ancestry proportions as calculated by
ADMIXTURE [11] and RFMix [9] could be compared.
Supervised and unsupervised admixture analysis of the

simulated dataset by ADMIXTURE and that performed
by RFMix, confirmed that the simulated 5-way admixed
population is highly heterogenous. Average ancestral
proportions for both computational tools are given in
Table 1. The comparisons across the 5 ancestries for
each simulated individual are also depicted in Fig. 1.
Root Mean Squared Errors (RMSE) were calculated for
each comparison. As per the RMSE’s, RFMix outper-
forms both ADMIXTURE runs (unsupervised and super-
vised) in correctly estimating admixture proportions in
the 5-way admixed population, with the exception of
KhoeSan ancestry where the accuracy is largely equal.
Both ADMIXTURE runs over-estimates the Bantu-
speaking African contribution and under-estimates the
KhoeSan ancestral proportions. Similarly, the unsuper-
vised ADMIXTURE run overestimates European ances-
try and underestimates South East Asian ancestry.

LAI accuracy
Beyond global ancestry proportions, the simulation of a
5-way admixed population resulted in known local an-
cestry tracts, to which calls by a computational tool can
be compared. The ancestral origin of each parental
chromosomal region was determined using RFMix.
RFMix has been shown to outperform other computa-
tional tools in the estimation of local ancestry in com-
plex admixture scenarios [13]. The local ancestry calls
by RFMix were compared to the “true” simulated ances-
tral origin of each region. To determine the robustness
of RFMix when inaccurate admixture timing estimates
are available, we selected 10, 15 and 20 generations as
input for time since admixture. Although there were dif-
ferences in the accuracy of RFMix when the time since
admixture was varied, these differences were not signifi-
cant (except for Bantu-speaking ancestry) and the direc-
tion of these differences varied for each ancestral
population (Fig. 2). For this reason, a time since admix-
ture in line with the simulated population was used for
further analyses (15 generations).

Table 1 Average admixture proportions

Previously Reported (Uren et al.
2016) (%)

Simulation (%) ADMIXTURE
(unsupervised) (%)

ADMIXTURE
(supervised) (%)

RFMix (%)

Bantu-speaking
African

32 26 (95% CI: 25–28) 33 (95% CI: 32–35) 31 (95% CI: 30–33) 27 (95% CI: 26–30)

KhoeSan 30 33 (95% CI: 31–36) 25 (95% CI: 23–27) 34 (95% CI: 31–37) 33 (95% CI: 30–36)

European 19 23 (95% CI: 21–25) 26 (95% CI: 24–29) 21 (95% CI: 19–24) 22 (95% CI: 20–24)

East Asian 7 6 (95% CI: 5–9) 7 (95% CI: 5–9) 6 (95% CI: 5–8) 6 (95% CI: 5–9)

South East Asian 12 12 (95% CI: 10–15) 9 (95% CI: 8–12) 8 (95% CI: 7–11) 12 (95% CI: 10–14)
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The overall LAI accuracy across all ancestries (15 gen-
erations) is ~ 89%; 88% accurate in calling Bantu-
speaking African ancestry, 87% calling KhoeSan ancestry,
95% calling European ancestry, 86% calling East Asian
ancestry and 85% calling South East Asian ancestry. The
statistical significance of RFMix’s ability to call a specific
ancestry over another was assessed (Fig. 3). RFMix is
able to call East Asian and European ancestry more pre-
cisely than any of the other ancestries (Fig. 3).

Discussion
From the results, we note that the estimates obtained for AD-
MIXTURE is greatly influenced by the inclusion of admixed
reference populations. For example, the undercalling of South
East Asian ancestry is most likely due to inherent European
ancestry present in South East Asian populations and likewise,
Bantu-speaking ancestry in the KhoeSan population. This is
consistent with the trends seen in the LAI accuracy analysis.
This highlights the need for further improvement in computa-
tional tools to distinguish between intra-continental ancestral
populations, particularly in Africa as well as to perhaps tailor
these tools to complex admixture scenerios where admixture
with particular ancestral populations occurred at different
times [9]. This is particularly noteworthy as most modern-day

populations are admixed and therefore computational tools
should be able to account for this within the algorithms.
The evident difference in accuracy estimating admixture

proportions using RFMix and ADMIXTURE can be attrib-
uted to a number of aspects. RFMix is able to harness a
multitude of prior information in order to perform LAI
(and therefore GAI) such as LD, relatedness and phase in-
formation. Overall, we hypothesize that the addition of this
information allows for the increased accuracy of RFMix
over ADMIXTURE. Additionally, it is interesting to note
that ADMIXTURE’s unsupervised algorithm which is used
to tease out fine-scale population structure in admixed pop-
ulations, performed poorly in relation to the supervised al-
gorithm. This is significant since it is the most widely used
ADMIXTURE algorithm and highlights the necessity to
move away from estimations not based on haplotypes.
We tested the robusteness of RFMix in calling local

ancestry tracts when the incorrect time since admixture
was used in the model. In our simulated dataset, we did
not find any statistical differences when using an inflated
or deflated time since admixture, with the excpetion of
calling Bantu-speaking ancestry. This apparent decrease
in accuracy using a time since admixture of 15 genera-
tions is largely a by-product of the increased accuracy
seen when calling KhoeSan ancestry; similar to the trend

Fig. 1 Comparison between observed global ancestry proportions and “true” proportions showing RFMix performs more accurately than
ADMIXTURE in ancestry determination. Admixture proportions calculated by ADMIXTURE are in red (Unsupervised) and black (Supervised), and RFMix
in blue. Root Mean Square Errors for every comparison are shown
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seen in the GAI accuracy results. Studies that under- or
overestimate the time since admixture as well as include
admixed ancestral populations that are genetically similar,
may experience similar trends with LAI accuracy values
across ancestral populations i.e. calling tracts of one an-
cestral population accurately might decrease the accuracy
of another ancestral population that is closely related. One
way to pre-empt this would be to incorporate (within the
computational algorithm) the specification of a time since
admixture for each ancestral population.

Conclusion
In conclusion, the findings presented here is the first of its
kind to detail the accuracy of LAI and GAI in one of the
most complex populations worldwide. Due to the accuracy
and versatility of RFMix which harnesses prior information
as LD, relatedness and phase information in determining

global and local ancestry in a single program, it should be
the algorithm of choice to characterize more complex ad-
mixture scenarios. The inclusion of accurate admixture pro-
portions as a covariate in association studies is vital, and it is
our opinion that researchers studying complex admixed pop-
ulations should use RFMix for this purpose.
Furthermore, we demonstrate that computational tools

are able to decipher the complex African genetic history
with a high degree of accuracy, but there is still some
room for improvement regarding the tailoring of com-
putational tools to handle intra-continental, admixed
reference and target populations.
As populations become increasingly mobile, the likelihood

of admixture between diverse groups is greater. Therefore
the extension of these and future computational tools to gen-
etically complex populations from across the world is vital
and. The conclusions of this study are therefore relevant and
generalizable to other admixed populations.

Fig. 2 Boxplot showing the robustness of RFMix when using inaccurate time since admixture estimates. Time since admixture of 10 (red), 15
(green) and 20 (blue) generations are shown. The median (bold horizontal line) and the upper and lower quartiles are shown. Data outside this range
are plotted as outliers. The differences in accuracies across generations for each ancestry were assessed using a Wilcoxon non-parametric test. All
statistically significant p values (< 0.01) are shown
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Methods
Data merging and filtering
KhoeSan genotype data from Martin and colleagues [15]
was merged with the genetic data generated as part of
the Population Architecture using Genomic and Epi-
demiology dataset [16] and genetic data from the Guja-
rati Indian and British populations from the 1000
Genomes Project [17]. Preliminary data filtering in-
cluded a filter for minor allele frequency (0.003), miss-
ingness per genotype (max 0.05) and missingness per
individual (max 0.01). A total of ~ 776 k SNPs passed
these filters and formed the initial merged dataset. Fur-
ther data filtering is described in the appropriate sec-
tions below. Data was phased using SHAPEIT2 utilizing
the published African American HapMap recombination
map [18, 19]. Populations in the final dataset are sum-
marised in Table 2.

Simulations
The computational workflow is summarised in Fig. 4. A
random subset of 55 reference individuals from the final
merged dataset described in Table 2 was used to generate
a simulated dataset using admix-simu (11 per reference
population) [20]. The remaining 444 reference individuals
formed the reference dataset for GAI and LAI. A demo-
graphic model consisting of specific ancestry proportions

Fig. 3 Boxplot showing the accuracy with which RFMix assigns an ancestral origin to a genetic region, stratified by reference population. The
median (bold horizontal line) and the upper and lower quartiles are shown. Data outside this range are plotted as outliers. The differences in accuracies
across ancestries were assessed using a Wilcoxon non-parametric test. All statistically significant p values (< 0.01) are shown

Table 2 Population characteristics of the final merged dataset

Population Number of individuals included

KhoeSan (Nama and ≠Khomani San) 284

European (British) 79

African (Yoruba and Luhya) 35

East Asian (Han) 50

South East Asian (Gujarati) 103
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and timing of migration, leading a continuous migration
model initializing at 15 generations ago, was used to gen-
erate a simulated 5-way admixed population [3] (please
see Table S1 for the specific admixing proportions). This
simulation results in a heterogenous population, reminis-
cent of a real-world SAC population (see Table 1).
The simulation does not take post-admixture selection

into account since it is highly unlikely that 350 years would
result in distinct selection signals, rather, the inherent selec-
tion signals in the source populations will be transferred in
a random manner to the simulated admixed population
(adaptive introgression). Genotype as well as local ancestry
calls were generated for this simulated dataset from real ref-
erence haplotypes, thus capturing the complexity of this
heterogenous 5-way admixed South African population.

Software choices
Although there are a number of software programs that
are able to estimate global ancestry (BAPS [21], HAPMIX
[22], LAMP [23], FRAPPE [24], sNMF [25] etc), ADMIX-
TURE is however the most utilized. Reasons for this in-
clude the ability to include related individuals in one run

and to generate accurate admixture proportions using
relatively low-density SNP-array data [11]. The other
widely used global ancestry algorithm, STRUCTURE has
been shown to overestimate admixture proportions in
even simple admixture scenarios, therefore given the
demographic history of the population presented here, this
software was not used [26].
RFMix was chosen as the local ancestry inference algo-

rithm of choice as it allows for parameter optimization
given the number of ancestral populations and the abil-
ity to perform LAI in populations more than 2-way or 3-
way admixed (limitations of LAMP [23] and HAPMIX
[22]). In addition, RFMix has the inherent ability to cal-
culate local and global ancestry simultaneously and al-
lows for array-based input data as well as whole genome
sequencing data. Furthermore, initial results by Daya
and colleagues suggested that RFMix is the most accur-
ate tool for local ancestry estimation (over and above
that calculated for LAMP-LD [27, 28]) in admixed
southern African populations however, only a 3-way ad-
mixture scenario was tested (San, Bantu-speaking and
non-African) [13].

Fig. 4 Computational workflow. The full dataset (n = 499) was divided into a dataset used for the simulation (n = 55) and a dataset used for GAI and
LAI (n = 444). Once the simulated SAC population was generated (including global and local ancestry estimations), these true values were compared to
values emanating from ADMIXTURE and RFMix. For details, please see the methods section
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GAI accuracy
Reference individuals not included in the dataset used
for the simulation, were allocated to the dataset used for
GAI and LAI. Global ancestry proportions were deter-
mined by ADMIXTURE [11] and RFMix [9]
The ADMIXTURE analysis was performed in a super-

vised and unsupervised manner after filtering the dataset
for linkage disequilibrium as per the manual’s recommen-
dations (50 kb window size, step size of 10 kb and R2

threshold of 0.1). The supervised algorithm allows for the
input of know ancestral origins of the reference individ-
uals whereas the unsupervised algorithm infers the ances-
try of all individuals given as input.
RFMix was run using default parameters, a time since

admixture of 15 generations (in line with the simulation)
as well as 3 expectation-maximization (EM) iterations (fur-
ther EM iterations were not shown to increase accuracy
[9]). The correlation of the two methods by means of the
Root Mean Squared Error (RMSE) was performed in R.

LAI accuracy
Local ancestry calls were generated by RFMix using the
same parameters as described in the previous section.
The ability to correctly assign local ancestry was calcu-
lated in two ways, at an individual level. The first deter-
mined the global accuracy using the formula dc

dt
, where

dc is the number of sites that had a called ancestry and dt
is the number of sites that had a correctly called ancestry
as compared to the simulations. The second method of
accuracy estimation looked at this accuracy per ancestral
population using the formula dca

da
where da is the number

of sites that had a called ancestry and dca is the number
of sites that the specific ancestry was correctly called
[29]. These accuracy estimators were then averaged over
all individuals in the simulated 5-way admixed dataset.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12863-020-00845-3.

Additional file 1: Table S1. Demographic model used to simulated
SAC population
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