1 Title page

- 2 Names of authors, addresses and affiliation
- 3 Corresponding author: Sivert Nerhagen, CMV, MRCVS
- 4 Mailing address: Department of Clinical Sciences and Services, Royal Veterinary College,
- 5 Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
- 6 Email: snerhagen7@rvc.ac.uk
- 7 Sivert Nerhagen https://orcid.org/0000-0002-5009-1348
- 8 Hanne L Moberg, CMV, MRCVS
- 9 Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane,
- 10 North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
- 11 Gudrun S Boge, CMV, PhD
- 12 Department of Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life
- 13 Sciences, P.O. Box 5003 NO-1432 Ås, Norway
- 14 Gudrun Seeberg Boge https://orcid.org/0000-0001-6889-4002
- 15 Barbara Glanemann, DMV, Dip. ECVIM, PG Dipl Vet Ed, MRCVS
- 16 Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane,
- 17 North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
- 18 Barbara Glanemann https://orcid.org/0000-0003-4830-7610
- 19
- 20
- 21
- 22

23	TITLE
24	Prednisolone-induced diabetes mellitus in the cat: A historical cohort.
25	Keywords:
26	Glucocorticoid induced hyperglycaemia, corticosteroid, hyperglycaemia, glucosuria
27	ABSTRACT
28	Objectives Prednisolone is a commonly used drug in cats and potential adverse effects include
29	hyperglycaemia and diabetes mellitus. The aims of this study were to evaluate the frequency
30	and investigate potential predisposing risk factors for development of prednisolone-induced
31	diabetes mellitus (PIDM) in cats.
32	Methods The electronic records of a tertiary referral centre were searched for cats receiving
33	prednisolone at a starting dose of ≥1.9 mg/kg/day, for >3 weeks and with follow-up data
34	available for >3 months between January 2007 and July 2019. One hundred and forty-three cats
35	were included in the study.
36	Results Of the 143 cats, 14 cats (9.7%) were diagnosed with prednisolone-induced diabetes
37	mellitus. Twelve out of 14 cats (85.7%) developed diabetes within 3 months of the initiation of
38	therapy.
39	Conclusion and relevance Cats requiring high-dose prednisolone therapy should be closely
40	monitored over the first 3 months of therapy for development of prednisolone-induced diabetes
41	mellitus.

42 Introduction

Diabetes mellitus (DM) is one of the most commonly diagnosed endocrine 43 diseases in cats. Diabetes mellitus is characterised by clinical signs including 44 polyuria and polydipsia due to persistent hyperglycaemia and glucosuria as 45 46 well as polyphagia and weight loss due to an absolute or relative lack of 47 insulin¹. Most cats develop a disease comparable to type 2 DM in people and it is thought to develop due to a combination of insulin resistance and beta-cell 48 49 dysfunction due to environmental and genetic factors². Environmental factors include obesity³ and glucocorticoid administration⁴. Glucocorticoids are 50 51 commonly used drugs in veterinary medicine for treatment of a variety 52 disorders due to their anti-inflammatory and immune-suppressive properties⁵. 53 Although they are widely used, they also cause a range of adverse effects, 54 including alterations on glucose homeostasis. Glucocorticoid-induced diabetes mellitus (GIDM) is well recognised in humans⁶. Dose and duration of therapy 55 56 as well as patient body weight, amongst others, have been described as risk 57 factors for development of GIDM.

58	In feline patients, glucocorticoids have been suggested as a predisposing factor
59	for development of DM ⁴ and experimental studies have shown the diabetogenic
60	effects of prednisolone, dexamethasone, methylprednisolone and
61	fluorohydrocortisone in cats ⁷⁻¹⁰ . Despite prednisolone being perhaps the most
62	commonly used glucocorticoid in cats, prednisolone induced diabetes mellitus
63	(PIDM) is a poorly described entity in clinical practice. The aim of this study
64	was to determine the prevalence of PIDM in a feline referral-population
65	receiving prednisolone therapy and to further characterise potential
66	predisposing factors in the development of PIDM.
67	
68	
69	
70	
71	
72	
73	

75	Selection of cases
76	The study protocol was approved by the Ethics Committee of the Royal
77	Veterinary College (Royal Veterinary College Ethical Approval Number
78	URN2017 – 1513). The electronic medical record system of a tertiary referral
79	institution was searched from January 2007 to July 2019 using following search
80	terms: cat, feline, prednisolone, pred, steroids, corticosteroids and
81	glucocorticoids. Identified records were then reviewed in detail and referring
82	veterinarians were contacted by telephone or email to obtain follow-up
83	information where necessary. Cats were included for analysis if following
84	criteria were all met:
85	1. Initial prednisolone dose was \geq 1.9 mg/kg/day.
86	2. Duration of treatment was a minimum of 3 weeks.
87	3. Follow-up data for at least 3 months after initiation of prednisolone

88 therapy was available.

Material and methods

	6

89	Cats that had received glucocorticoid therapy within 3 weeks of presentation or
90	were diabetic prior to or at the time of presentation and cats with neoplastic
91	diseases, including feline hyperadrenocorticism, were excluded.
92	
93	Cats were considered to have developed prednisolone-induced diabetes
94	mellitus if they had typical clinical signs associated with diabetes mellitus (e.g.
95	polyuria, polydipsia, weight loss and polyphagia) and if they had one of the
96	following criteria fulfilled
97	1. Hyperglycaemia (>8.1 mmol/L on more than two occasions) in
98	conjunction with glucosuria
99	2. Hyperglycaemia in conjunction with increased fructosamine levels
100	
101	Medical records review
102	The following details were extracted from the medical records in all cats;
103	signalment (age, sex, body weight and breed), working or final diagnosis and
104	initial prednisolone dose, duration of prednisolone therapy, frequency of

administration and development of PIDM. In addition, serum serum alanine
aminotransferase (ALT) and alkaline phosphatase (ALP) activities, serum

- 106 aminotransferase (ALT) and alkaline phosphatase (AI
- cholesterol concentration, urine specific gravity, glucosuria measured by urine 107

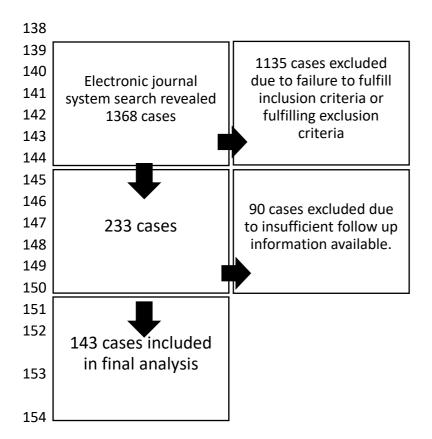
108 colorimetric dipstick, blood glucose concentration and body condition score

109 (BCS, scoring from 1 to 9 where 4 and 5 were considered normal) on

- 110 presentation were noted when available.
- 111 Statistical analysis

105

112 Data was compiled in Microsoft Excel and imported into Stata 15 (Stata Corp.,


113 College Station, TX), which was used for all statistical analyses. A p-value of

114 <0.05 was considered statistically significant. The continuous variables were

115 assessed graphically and by the Shapiro-Wilks test for normality and are

- 116 presented as medians (ranges). The categorical variables are described as
- 117 numbers (percentages). Breed was categorised as pure bred or mixed breed for
- 118 the statistical analysis. Associations between categorical and continuous
- 119 variables were explored by the two-sample t-test and Wilcoxon rank sum test
- 120 for normally and non-normally distributed variables, respectively. Associations

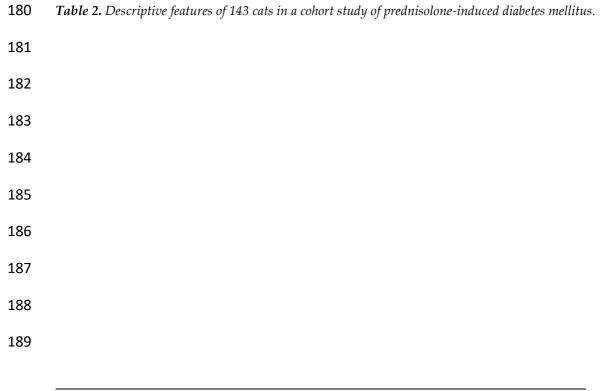
121	between categorical variables were tested using the $\chi 2$ test or the Fisher exact
122	test. Univariable logistic regression was used to explore the relationship
123	between prednisolone dose and PIDM development. Kaplan-Meier curves were
124	used to visualise time to development of diabetes in the PIDM group and cats
125	were censored if they died or were lost to follow-up. Box plot were used to
126	visualise prednisolone starting doses between the groups. Multivariable
127	analysis was not performed due to the lack of statistical power and limited
128	number of cases.
129	Results
130	Signalment and underlying causes
131	One hundred and forty-three (143) cats fulfilled all inclusion criteria (see figure
132	1). Of these, 66 (46%) were male and 77 (54%) were female. Breed distribution is
133	shown in table 1. Fourteen of 143 cats (9.8%) were diagnosed with PIDM. None
134	of the cats developing PIDM were Burmese. The median overall age at the time
135	of presentation was 5.9 years (0.6-18) and no significant difference in age was
136	found in cats developing PIDM and cats that did not develop PIDM ($p=0.895$).
137	

- *Figure 1:* Inclusion details of 143 cats in a cohort study of prednisolone-induced diabetes mellitus

Breed	n
Domestic Short hair	82
Domestic Long Hair	10
Persian	8
Bengal	6
Maine Coon	6
British Short Hair	5
Burmese	5
British Blue	4
Siamese	4
Cross Breed	2
Russian Blue	3
Oriental Short Hair	2
Burmilla	1
Chantilly- Tiffany	1
Devon Rex	1
Korat	1
Norwegian Forest Cat	1
Snowshoe	1

Table 1. Breed distribution of 143 cats in a cohort study of prednisolone-induced diabetes mellitus

164	Overall median body weight was 4.0 kg (2.4-7.9) and no significant difference in
165	body weight between the PIDM group and non-PIDM group was identified (p=


166	0.980). BCS was recorded in 100/143 of cases (13/14 of the PIDM group and
167	87/129 of the non-PIDM group), and the median BCS for both groups was 4/9.
168	There were no statistical differences in breed, sex distribution or neuter status
169	between the two groups (p =0.238, p =0.385, p =0.467, respectively; see table 2
170	for further details). Immune-mediated haemolytic anaemia and inflammatory
171	bowel disease and dermatological diseases were the three most common
172	underlying diseases treated with prednisolone (table 3). Seven (50%) of the cats
173	developing PIDM were treated for immune-mediated haemolytic anaemia, two
174	cats were treated for IBD and two for dermatological diseases. One cat was
175	treated for each of the following diseases: pure red cell aplasia, chronic rhinitis
176	and cholangitis.

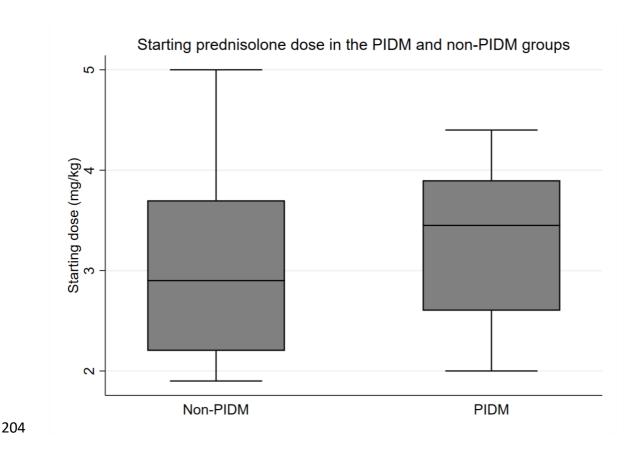
```
177
```

Variables	PIDM	non-PIDM	Overall
Age in years	7.5 (1.2-13.2)	5.9 (0.6-18.0)	5.9 (0.6-18.0)
Weight in kg	4.5 (2.2-5.4)	4.0 (2.2-8.1)	4.0 (2.2-8.1)

BCS (1-9)	4 (2-7)	4 (1-9)	4 (1-9)
Sex (%)			
Male entire	1 (7.1)	3 (2.3)	4 (2.8)
Male neutered	7 (50.0)	55 (42.6)	62 (43.4)
Female entire	0 (0.0)	2 (1.6)	2 (1.4)
Female neutered	6 (42.9)	69 (53.5)	75 (52.5)

178 Continuous variables reported as a median (range) and categorical variables as number (%).
 179 Body condition score = BCS. Prednisolone-induced diabetes mellitus = PIDM.

Diagnosis	Ν
Immune-mediated haemolytic anaemia	58

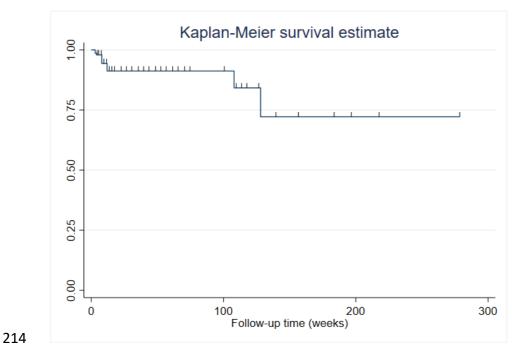

Inflammatory bowel disease	22
Dermatological diseases	21
Feline asthma	12
Immune-mediated thrombocytopenia	8
Inflammatory or immune-mediated disease suspected, but not	
confirmed	3
Hepatitis or cholangiohepatitis	3
Inflammatory ocular disease	3
Neurological diseases	1
Chronic rhinitis	1
Polyarthropathy	1
Myelodysplastic syndrome	1
Red cell aplasia	1
Idiopathic hypercalcemia	1
Laryngitis	1

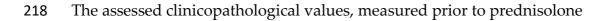
191 *Table 3. Details of underlying causes in 143 cats in a cohort study of prednisolone-induced diabetes*

mellitus.

194 PIDM and hyperglycaemia

- 195 The median prednisolone starting dose for the study population as a whole was
- 196 3.0 mg/kg. The PIDM group received higher daily starting doses of
- 197 prednisolone than the non-PIDM group (median 3.5 (2.0-4.4) vs 2.9 (1.9-5.0)
- 198 mg/kg/day, figure 2), but this was not statistically significant (p=0.164). The
- 199 median length of prednisolone treatment was 6 months and no statistical
- 200 difference was found in duration of prednisolone therapy (p=0.284) between
- the groups. One of the 14 (7%) cats in the PIDM group was administered
- 202 prednisolone twice daily, and 23/129 (17%) in the non-PIDM group. Nine of the
- 203 14 (65%) cats developing PIDM were started on insulin therapy.




Twelve of the 14 cats in the PIDM group received the diagnosis within the first
3 months of treatment (figure 3). The remaining two cats were never tapered off
their prednisolone therapy and both developed DM following a prednisolone

210 dose increase (from 1.0 mg/kg to 1.7mg/kg and from 0.25mg/kg to 2mg/kg

- 211 respectively) after being diagnosed with a relapse of their underlying immune-
- 212 mediated disease (thrombocytopenia and anaemia) after 108 and 128 weeks
- 213 being on prednisolone, respectively.

215 Figure 3: Kaplan-Meier curve showing the time to development of prednisolone-induced diabetes mellitus
216 in weeks. The vertical lines reflect censored cases.

- therapy, are summarised in **table 5**. Neither blood glucose concentration, serum
- 220 cholesterol concentration, serum ALP nor ALT activities were associated with

- 221 the development of PIDM (p = 0.180, 0.623, 0.418 and 0.513, respectively).
- 222 Urinalysis prior to prednisolone treatment was available in 9/14 cats of the
- 223 PIDM group and 72/129 cats of the non-PIDM group. Glucosuria was detected

224	in 4/9 (44.4%) and 11/72	(15.3%) of the cats,	respectively ($p = 0.056$).
-----	--------------------------	----------------------	-------------------------------

	PIDM		non-PIDM		Overall	
Variables (units;						
reference					Median	
intervals)	Median (range)	n	Median (range)	n	(range)	n
Blood glucose						
(mmol/l; 3.4 -		1				
8.1)	8.7 (5.0-14.4)	0	7.1 (2.54-17.0)	56	7.2 (2.5-17.0)	66
Cholesterol		1		10		12
(mmol/l; 2.2-6.7)	3.3 (2.3-8.1)	3	3.2 (1.8-14.4)	7	3.3 (1.8-14.4)	0
ALT (IU/I; 25-		1		10		12
130)	57 (26-570)	3	59 (0-1186)	7	58.5 (0-1186)	0
		1		10		11
ALP (IU/I; 11-58)	23 (1-305)	3	17 (0-352)	6	17 (0-352)	9

225 ALT = alanine aminotransferase. ALP = alkaline phosphatase.

226 *Table 4.* Biochemical values in 143 cats in a cohort study of prednisolone-induced diabetes mellitus.

228 Discussion

The prevalence of PIDM was 9.7% in our study. This is lower than the reported 229 230 prevalence of 18.7% in people⁶, but significantly higher compared to proposed 231 prevalence of spontaneous feline DM in first opinion practices in the UK, which 232 has been reported to be 0.42% and 0.43%^{2,4}. As our study population is from a 233 tertiary referral centre the prevalence noted in our study might not be 234 representative of the general feline population, but is suggestive of an increased 235 risk for cats receiving high doses of prednisolone to develop diabetes mellitus. 236 To the authors' knowledge, no previous studies have reported the prevalence of 237 feline PIDM in client owned cats, but feline experimental studies have shown 238 the diabetogenic effects of prednisolone. Interestingly, two experimental studies 239 revealed a higher prevalence of hyperglycaemia and glucosuria in laboratory 240 cats receiving prednisolone than compared to our study; Middleton and 241 Watson⁸ showed that three out of six cats (50%) receiving 2mg/kg/day of 242 prednisolone developed hyperglycaemia after 7 days and it was shown by 243 Lowe and colleagues⁹ two out of seven cats (29%) receiving 4.4mg/kg/day

244	developed glucosuria (as a marker of hyperglycaemia) after 28 days. The higher
245	prevalence of hyperglycaemia and glucosuria in these studies likely reflects
246	both differences in study design and marked differences in monitoring
247	compared to our study.
248	GIDM is well described in humans. Factors including dose, duration of
249	glucocorticoid therapy, cumulative (or absolute) dose, relative potency of the
250	glucocorticoid, age, weight, known reduced insulin sensitivity and family
251	history of diabetes have been found to increase the risk of GIDM ⁶ . The starting
252	prednisolone dose was not significantly associated with development of PIDM
253	in our study, however a trend could be observed with a higher dose range
254	noted in the PIDM cats (3.5 vs 2.9 mg/kg). This is similar to what has been
255	shown in people, where high dose prednisolone therapy is more likely to
256	induce glucose intolerance ¹¹ . To avoid development of GIDM in people it has
257	been suggested to start in the lower end of the dose range and to reduce the
258	administration frequency to once daily or every other day once the underlying
259	disease is controlled ^{6,12,13} . Recently, it has also been shown in dogs that once

260	daily administration of prednisolone was associated with less side effects than
261	twice daily dosing ¹⁴ . Although no clear dose range has been established in cats,
262	it is likely that cats would benefit from a low-end starting dose and probably
263	also reduction in administration frequency to reduce the risk of side effects. The
264	majority of the cats in our study developed PIDM within 3 months of initiation
265	of therapy, which further supports a dose-dependent relationship.
266	Another unexplored component, which has been shown to play a role in
267	people ⁶ , is cumulative (or absolute) glucocorticoid dose. Long-term, high-dose
268	glucocorticoid (high cumulative dose) use has been associated with
269	development of GIDM in people and that cessation or alternating-day therapy
270	is protective (low cumulative dose) ¹² . Cumulative dose calculation was not
271	performed in this study due to lack of details in medical records regarding dose
272	changes during the treatment period. No differences related to duration of
273	therapy was found between PIDM and non-PIDH groups in our study. This,
274	however, could be due to an inadequate study population or that we did not
275	follow enough cases with prolonged prednisolone therapy. Two of the cats in

276	the PIDM group developed diabetes mellitus 108 and 128 weeks after initiation
277	of prednisolone therapy. Both of these cats were diagnosed with immune-
278	mediated diseases and cessation of prednisolone was not achieved from
279	initiation of prednisolone treatment to the development of diabetes. As such,
280	both cats probably had a high cumulative dose. Prospective studies are needed
281	in cats to assess the effects of prednisolone dose, cumulative dose and
282	frequency of administration on PIDM development.
283	Relative glucocorticoid potency has been shown to play a role in human GIDM,
284	however prednisolone was chosen as the glucocorticoid of choice for this study
285	as this was the most commonly used glucocorticoid during the study period in
286	our hospital, only with a very few cases receiving long-term dexamethasone
287	and methylprednisolone. One of the cats in the non-PIDM group, however,
288	developed diabetes mellitus after cessation of prednisolone therapy, but
289	following methylprednisolone injections treatment. This is consistent with
290	previous experimental studies showing that methylprednisolone also is
291	diabetogenic in cats ^{10,15} .

292	Interestingly, BCS was not significantly associated with development of PIDM,
293	which is in contrast to what has been shown in cats with spontaneously
294	occurring diabetes mellitus ³ and from a pharmacological point of view, where it
295	has been shown that overweight cats have higher plasma prednisolone levels
296	than normal conditioned cats ¹⁶ . The lack of association noted in our study could
297	be due to a lack of power in the study, compliance in reporting BCS in our
298	medical records or perhaps due to weight loss prior to presentation secondary
299	to the underlying diseases.
300	Insulin therapy was only started in 9/14 cats, despite all cats fulfilling criteria
300 301	Insulin therapy was only started in 9/14 cats, despite all cats fulfilling criteria for the diagnosis of diabetes mellitus. We were not able to clarify the clinical
301	for the diagnosis of diabetes mellitus. We were not able to clarify the clinical
301 302	for the diagnosis of diabetes mellitus. We were not able to clarify the clinical reasoning why five of the cats did not receive insulin, but in most cats the
301 302 303	for the diagnosis of diabetes mellitus. We were not able to clarify the clinical reasoning why five of the cats did not receive insulin, but in most cats the prednisolone dose was reduced at the time of DM diagnosis. We suspect that
301 302 303 304	for the diagnosis of diabetes mellitus. We were not able to clarify the clinical reasoning why five of the cats did not receive insulin, but in most cats the prednisolone dose was reduced at the time of DM diagnosis. We suspect that this was adequate to improve glycaemic control in some cats and therefore

Finally, none of the biochemical abnormalities typically associated with DM 307

308	were predictive of PIDM. This is likely due to the low number of cases of PIDM,
309	however the finding of a trend towards an association between glucosuria
310	present prior to therapy and development of PIDM is interesting. This could
311	reflect impaired glucose tolerance and therefore could serve as a marker to
312	identify cats being predisposed to development of PIDM, but further studies
313	are needed to conclude on this matter. Based on this study it would be prudent
314	to advise close monitoring of cats with glucosuria prior to prednisolone therapy
315	for development of PIDM, especially during the first 3 months of therapy. As
316	with any retrospective study, the lack of standardised treatment, follow-up and
317	a significant number of cases and details lost to follow up, the conclusions of
318	this study should be interpreted with caution.

320 Conclusion

321 Cats requiring high-dose prednisolone therapy should be closely monitored
322 over the first 3 months of therapy for development of prednisolone-induced
323 diabetes mellitus.

324	Acknowledgments

- 325 The authors would like to thank the referring veterinary surgeons for the
- 326 willingness to help provide information for this study.
- 327

328	Author	note
-----	--------	------

329 This paper was presented as a poster at the 19th ECVIM congress, Milan 2019.

330

331 Conflicts of interest

- 332 The authors declared no potential conflicts of interest with respect to the
- 333 research, authorship and/or publication of this article.

334

335 Funding

- 336 The authors received no financial support for the research, authorship, and/or
- 337 publication of this article.

338

339 Ethical approval

340	This work involved the use of non-experimental animals only (including owned
341	or unowned animals and data from prospective or retrospective studies).
342	Established internationally recognised high standards ('best practice') of
343	individual veterinary clinical patient care were followed. Ethical approval from
344	a committee was therefore not necessarily required.
345	Informed consent
346	Informed consent (either verbal or written) was obtained from the owner or
347	legal custodian of all animals described in this work for the procedure(s)
348	undertaken. No animals or humans are identifiable within this publication, and
349	therefore additional informed consent for publication was not required.
350	References
351	1. Sparkes AH, Cannon M, Church DB, et al. ISFM consensus guidelines
352	on the practical management of diabetes mellitus in the cat. J Feline
353	Med Surg. 2007; 9: 289-299
354	2. O'Neill DG, Gostelow R, Orme C, et al. Epidemiology of diabetes
355	mellitus among 193,435 cats attending primary-care veterinary
356	practices in England. J Vet Intern Med. 2016; 30: 964-972.

357	3.	Öhlund M, Egenvall A, Fall T, et al. Environmental risk factors for
358		diabetes mellitus in cats. J Vet Intern Med. 2017; 31: 29-35
359	4.	McCann TM, Simpson KE, Shaw DJ, et al. Feline diabetes mellitus in
360		the UK: the prevalence within an insured cat population and a
361		questionnaire-based putative risk factor analysis. J Feline Med Surg.
362		2007; 9: 289-299
363	5.	Lowe AD, Campbell KL, Graves T. Glucocorticoids in the cat. Vet
364		Dermatol. 2008; 16: 340-347.
365	6.	Suh S and Park MK. Glucocorticoid-induced diabetes mellitus: An
366		important but overlooked problem. Endocrinol Metabol (Seoul). 2017;
367		32:180-189
368	7.	Buse J, Gundersen K, Lukens FD. Steroid diabetes in cats. Diabetes. 1957;
369		6: 428-432
370	8.	Middleton DJ and Watson AD. Glucose intolerance in cats given short-
371		term therapies of prednisolone and megestrol acetate. Am J Vet Res.
372		1985; 46: 2623-2625

373	9.	Lowe A, Graves TK, Campbell KL, et al. A pilot study comparing the
374		diabetogenic effects of dexamethasone and prednisolone in cats. J Am
375		Anim Hosp Assoc. 2009; 45: 215-224.
376	10	. Scott DW, Kirk RW, Bentick-Smith. Some effects of short-term
377		methylprednisolone therapy in normal cats. Cornell vet. 1979; 69: 104-
378		115.
379	11	. Hjelmesaeth J, Hartmann A, Kofstad J, et al. Glucose intolerance after
380		renal transplantation depends upon prednisolone dose and recipient
381		age . Transplantation. 1997; 64: 979-983
382	12	. Perez A, Jansen-Chaparro S, Saigi I, et al. Glucocorticoid-induced
383		hyperglycemia. J diabetes. 2014; 6: 9-20
384	13	. Czock D, Keller F, Rasche FM, et al. Pharmacokinetics and
385		pharmacodynamics of systemically administered glucocorticoids. Clin
386		Pharmacokinet. 2005; 44: 61-98

387	14. Swann JW, Szladovits B, Threlfall AJ, et al. Randomised controlled trial
388	of fractionated and unfractionated prednisolone regimens for dogs
389	with immune-mediated haemolytic anaemia. Vet Rec. 2019; 184: 771
390	15. Lewitt MS, Strage E, Church D. An individual approach to feline
391	diabetes care: A case report and literature review. Acta Vet Scand. 2016;
392	20: 58-63.
393	16. Center SA, Randolph JF, Warner KL, et al. Influence of body condition
394	on plasma prednisolone and prednisone concentrations in clinically
395	healthy cats after single dose administration. Res Vet Sci. 2013; 95: 225-
396	230
397	