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This study was interested in investigating the existence of a
shared psychological mechanism for the processing of
expectations across domains. The literature on music and
language shows that violations of expectations produce similar
neural responses and violating the expectation in one domain
may influence the processing of stimuli in the other domain.
Like music and language, our social world is governed by a
system of inherent rules or norms, such as fairness. The study
therefore aimed to draw a parallel to the social domain and
investigate whether a manipulation of melodic expectation can
influence the processing of higher-level expectations of fairness.
Specifically, we aimed to investigate whether the presence of an
unexpected melody enhances or reduces participants’
sensitivity to the violations of fairness and the behavioural
reactions associated with these. We embedded a manipulation
of melodic expectation within a social decision-making
paradigm, whereby musically expected and unexpected stimuli
will be simultaneously presented with fair and unfair divisions
in a third-party altruistic punishment game. Behavioural and
electroencephalographic responses were recorded. Results from
the pre-planned analyses show that participants are less likely
to punish when melodies are more unexpected and that
violations of fairness norms elicit medial frontal negativity
(MFN)-life effects. Because no significant interactions between
melodic expectancy and fairness of the division were found,
results fail to provide evidence of a shared mechanism for the
processing of expectations. Exploratory analyses show two
additional effects: (i) unfair divisions elicit an early attentional
component (P2), probably associated with stimulus saliency,
and (ii) mid-value divisions elicit a late MFN-like
component, probably reflecting stimulus ambiguity. Future
studies could build on these results to further investigate the
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effect of the cross-domain influence of music on the processing of social stimuli on these early and

late components.
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1. Introduction
The role that expectation and prediction play across all areas of cognition has been widely investigated,
from perception and action to decision-making [1–3]. One way of studying expectations is by
investigating systems that are highly structured and therefore governed by a system of rules. An
example of one such system is music, which involves the combination of units into higher-order
structures (e.g. notes into melodies) that evolve over time according to certain rules (e.g. harmony) [4].
Knowledge of these rules is fundamental for our understanding of these systems and informs our
expectations. For example, we implicitly learn the rules of music through repeated exposure to
musical stimuli [5], and priming studies show that we have strong expectations about incoming
musical stimuli [6]. There has been an increasing interest in the study of expectations using music
[7–9], and how it may apply to other domains. For example, in a similar way to music, language is
governed by a system of rules (grammar) that allows for the combination of smaller elements into
structures that unfold over time (words into sentences). Interestingly, studies have shown that
violating expectations in music can influence the way we process expectations in language. For
example, musical context can influence the processing of language stimuli whereby participants are
faster in processing phonemes when these were sung on a syntactically expected compared to a less
syntactically expected music chord [10]. This priming effect of the musical context occurs quite
automatically and regardless of musical expertise, and has been reported with more complex
linguistic computations. For example, participants show a stronger semantic priming (faster responses
for semantically related versus unrelated targets) when words are presented with expected compared
to unexpected musical chords [11]. Related to this, violations of structure in music and language
produce similar neural responses. More specifically, event-related potential (ERP) studies show early
anterior negativities in the electroencephalographic signal (EEG) in both domains: N1 and early right
anterior negativity components are elicited following violations of expectations in music, (early) left
anterior negativity components following violations of language syntax [8,12,13]. Interestingly, the
simultaneous presentation of structural violations in the two domains results in an interaction: the
amplitude of the LAN is significantly reduced when presented simultaneously with unexpected music
stimuli [14,15]. Similarly, the behavioural literature shows that language expectancy effects (faster
processing for expected versus unexpected sentences) are reduced when presented with an
unexpected musical sequence [16]. Therefore, the literature shows that when rules that inform our
expectations of these structures are violated in both music and language, we observe similar
responses. Additionally, when violations occur concurrently in the two domains, interactions are
observed. These two patterns of results have been taken to support the hypothesis that music and
language may share access to a common, but limited, pool of resources, probably specific to the
processing of structural information from which expectations are derived [17,18].

The above investigation of structural expectations in music and language offers a useful framework to
investigate the role of expectations more generally within the cognitive system. Besides these two
domains, other systems are inherently governed by rules that inform our expectations. For example,
social systems are characterized by social norms, defined by the Stanford Encyclopaedia of Philosophy
as ‘the informal rules that govern behaviour in groups and society, [… and] the unplanned result of
individuals’ interaction’ [19]. Social norms are derived from exposure to the social environment and
social behaviours around us, which informs our expectations and guides social decision-making [19].
When social norms, such as fairness or trust and reciprocity, are violated, people often react against
these violations in an attempt to re-establish a social equilibrium [20,21]. In general terms, we can
draw a parallel between expectations in music and the social domain in that they are both governed
by rules that are derived from exposure to the environment and inform our expectations, ultimately
guiding our behaviour. One notable difference, however, is that the expectations in music are based
on a system of rules that governs the way units are meaningfully combined into structures as they
unfold over time (e.g. notes into melodies) [4]. This is not the case for expectations derived from
social norms. Having said so, both systems are similar in that knowledge about the rules and norms
in the two domains allows for the formation of expectations about what is to follow given a certain
preceding context. In music, the listener may expect a certain note following a given melodic context;
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in the same way, an observer may expect a specific behaviour given a certain social scenario

(e.g. reciprocate trust or re-establish fair outcomes). Given the above, the present study aims to
investigate whether violating expectations in music will influence the processing of expectation in the
social domain. This investigation will shed light on the domain-generality of the expectancy
mechanism, offering an insight into whether there is a shared mechanism of detecting deviations from
expectancy both in lower-level cognitive domains (music), and in higher-level domains (social
decision-making). Moreover, it will further our understanding on how low-order cognitive processes
such as those involved in music perception may influence complex high-order processes such as social
decision-making [22].

The interdisciplinary investigation of social norms employs neurocognitive methodology and
paradigms borrowed from Game Theory, such as the Ultimatum Game [20], a widely employed
paradigm to investigate fairness perception. Findings using this task show that people typically opt
for fair divisions of resources, even when this goes against their self-interest. In the Ultimatum Game,
for example, people prefer to reject unfair deals rather than accept a certain sum of money, indicating
that the willingness to react to unfairness, i.e. the unexpected outcome, is stronger than monetary
incentives (what Fehr & Schmidt define inequality aversion [23]). Interestingly, if expectations are
manipulated beforehand by saying that, on average, proposers tend to be unfair (or fair), the chances
of rejecting unfairness diminish (or increase) [24]. These findings not only show that manipulating
expectations leads to behavioural change, but also suggest that there is a default expectation, and it is
related to equality (50/50 share): when there is no other reason to expect otherwise (e.g. merit or
need), people, on average, identify fairness with equality and thus expect an equal allocation of
resources [25,26]. The more the allocation deviates from the expected equal outcome, the stronger the
reaction becomes, both behaviourally and neurally: specifically, the anterior insula (AIns) and the
anterior cingulate cortex (ACC) track the gradient of this deviation from the expected equal outcome
[3,27,28], irrespective of the personal advantage or disadvantage for the participant [27,28]. Reaction
times (RTs) findings support the idea that deciding upon unfair offers requires more deliberation,
with people being slower when accepting or rejecting unfair compared to fair offers in an Ultimatum
Game [29,30]. It is worth noting, however, that some studies find that the difference in RTs is
maximum when comparing fair to mid-value unfair offers (e.g. £3 out of £10) [31], suggesting that the
cognitive effort is highest when the offer is ambiguous, i.e. not extremely unfair.

Electrophysiological evidence has shown that receiving unfair offers in the Ultimatum Game elicits a
medial frontal negativity (MFN) in the EEG [31,32], which is modulated by participants concerns for
fairness [32]. These results (i.e. frontal negativity associated with unfairness) have been replicated
using a third-party Dictator Game with altruistic punishment, in which participants were given the
chance to punish someone who behaved unfairly [33]. Moreover, in line with the neuroimaging
literature cited above [3,27,28], some studies found that MFN is also elicited by advantageous
inequality, supporting the idea that this EEG component represents fairness sensitivity rather than
self-centred valence [34,35]. Importantly, this negative EEG component originates in the ACC [36],
which is, as explained above, a key brain area in signalling unfairness and expectation violation.

Following these considerations and the observations of distinct behavioural and neural responses to
the violation of expectations in each domain, the current study asks whether the presence of unexpected
music will influence the way unexpected (i.e. unfair) social stimuli are processed. To do so, we propose to
embed a manipulation of melodic expectation within a social decision-making paradigm, whereby
musically expected and unexpected stimuli will be simultaneously presented with fair and unfair
divisions in the social domain. We will use a computerized one-shot multi-trial third-party
punishment paradigm, similar to [26]: participants will observe two players equally sharing a sum of
money until one (offender) steals from the other (victim). Participants will have the chance to use
some of their own monetary endowment, received before the experiment, to punish the offender. We
will measure both behavioural and EEG responses in the third-party punishment task by measuring:
(i) the rate of punishment; (ii) the amount spent to punish; (iii) the RTs of the choice (punishment or
no punishment); and (iv) the amplitude of the MFN.

If violations of expectations in music influence the processing of fairness in the social domain, we
expect that both behavioural and EEG responses will change as a function of unfairness and melodic
expectancy, which will either enhance or reduce sensitivity to unfairness, as follows.

(i) If detecting a violation of expectation in music enhances the sensitivity to unfairness, we should
observe an increase in punishing choices and amount spent, faster RTs and a bigger MFN
amplitude in response to unfairness when exposed to unexpected compared to expected music.
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This result would suggest the existence of a shared expectancy mechanism whose activation in one

domain facilitates the expectancy process in a second domain (priming).
(ii) If processing unexpected stimuli in one domain (music) reduces the sensitivity to unexpected

stimuli in the other domain (i.e. unfairness in the social domain), we should observe a decrease
in punishing choices and amount spent, longer RTs and a smaller MFN amplitude in response
to unfairness when exposed to unexpected compared to expected music. This result would
suggest the existence of a shared, but limited, pool of expectancy resources, whose depletion in
one domain reduces the availability in a second domain (resource competition).

2. Methods
2.1. Participants
Based on power calculations detailed below, 60 participants were planned to be recruited for this study.

The size of the interaction between music and decision-making is our effect of interest. The effect size
observed in similar paradigms, conditions and populations and using similar statistical tests is in the
range of h2

p ¼ 0:20� 0:26 [15,37]. Nevertheless, a more conservative medium size effect was chosen to
calculate our sample. A power analysis run in G�Power [38] using a medium effect size ðh2

p ¼ 0:06Þ
shows that 60 participants are needed to reach a power of 0.80 when running a repeated measure
design. Considering that the estimated effect size is lower than the one suggested in the literature for
similar paradigms, we are confident that our chosen sample size is adequate to address the
experimental question.

In total, 67 participants were recruited because seven participants had to be removed for a variety of
reasons: there were EEG recording errors for participants 2, 3, 21, 49 and 58, whose data had missing
trials; the EEG data for participant 7 was accidentally not saved on disc; participant 63 had
incomplete behavioural data recording. In total, we retained the data for 60 participants, as initially
planned. Participants mean age was 25.6 (s.d. = 8.6), with 13 males. Participants were recruited at
London South Bank University among students and staff using flyers distributed on campus and via
the Research Participation Scheme system within the Division of Psychology. Exclusion criteria
included: participants with neurological problems, minors, previous head injuries, self-reported
hearing problems, extremely irritable skin. Left-handed people and musicians were excluded in line
with previous research in the music-language literature. Participants were compensated £10 or 12
research participation credits for their time, plus £5, which they were given to take part in the game
and could keep at the end of the study.

The study has been approved by the Ethics Committee of the School of Applied Sciences at London
South Bank University.

2.2. Design
Four general linear mixed models were used to analyse how the melodic expectancy (information content)
and fairness of the division predict the behavioural and neural responses in each trial per each participant: a
generalized linear mixed model was used to predict the choice (categorical data), while three linear
mixed models were used to predict the amount, the RTs and the MFN amplitude (continuous data).
A covariate considering participants’ initial fairness expectation was added to the models.

2.3. Materials

2.3.1. Decision task and stimuli

A computerized one-shot multi-trial third-party punishment paradigm, based on [39,40], was employed
(see appendix A for full instructions). Three players (A, B and C) start each trial with 200 chips each
(monetary-equivalent units, 1 chip = 1 cent; 200 chips = £2). Then, player A (offender) may or may not
steal chips away from player B (victim). Player A can take 0, 25, 50, 75 or 100 chips from
player B. Participants are always assigned the role of player C (observer), who witnesses A’s actions.
After seeing player A’s decision, participants must decide whether or not to intervene by spending up
to 100 chips (£1) of their own monetary endowment (200 chips), received at the beginning of each
trial, to punish the offender by reducing their final pay-off. If participants decide to punish, they are
required to indicate how much they want to spend (from 10 to 100 chips) to implement punishment.
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For each 10 chips spent by the participant, A will lose 30 chips. Participants can also decide not to

intervene and walk away with 200 chips. Importantly, participants can never gain more chips than
what they initially have; they can only spend to make player A poorer. Participants are told that one
trial will be selected at the end to determine each player’s final pay-off. Participants will witness
several pairs of offenders and victims (150), with an equal allocation of trials for each of the five
divisions (0, 25, 75, 50 and 100), where the offenders can steal up to half of the victims’ endowment,
as specified above. Participants are required to indicate their response (take, i.e. punish, or leave, i.e.
not intervene) by pressing the corresponding button on the keyboard. The words ‘punishment’,
‘offender’, ‘victim’, ‘steal’ will never be mentioned in order to avoid biasing participants. A small
amount of deception is involved: participants are told that A–B couples are people who played before,
and that current decisions will actually influence the final pay-off of all the players involved. In
reality, the divisions are pre-programmed, and the participant’s final payment is fixed. The deception
is necessary in order to control for the amount of trials per condition seen by each participant; to
make up for this deception, participants will be debriefed, and the final fixed payment will always be
higher than what they would expect if an actual random trial had been selected (fixed: £5; random
trial: max £2).

It is important to note that, because no reason is given for deviating from the equal allocation, in this
case fairness is identified with equality. Previous findings show that people are willing to react to
unfairness by spending their own money to punish offenders, even when they are not directly involved
in the unfair deal [40–43]. Moreover, the willingness to punish, and the amount spent to punish increase
with the increase of unfairness. In the context of the present study, the willingness to punish the
offender is considered a behavioural measure of sensitivity to unfairness, i.e. sensitivity to violations of
social expectations; the amount spent to punish is considered a measure of the intensity of this
sensitivity [40]. A third-party paradigm has been preferred to a first-party task, where people are
directly involved in the unfair situation, because the third-party paradigm allows disentanglement of
the reactions elicited by the direct personal involvement from those elicited by unfairness itself [43].

As suggested by [44], beliefs about the descriptive norm will be assessed at the beginning of the task.
Specifically, participants’ expectation of the typical behaviour of player A will be recorded by presenting
the following question: ‘Player A is fully aware of the rules of the game and knows about your role as
player C (observer). How much do you think A will take from B? Select one of the following options:
0, 25, 50, 75, 100’. This information will be used in the analyses to control for participants’ actual
expectations of fairness.

2.3.2. Music stimuli

The musical stimuli used in this study are isochronous five-note melodic phrases that end with either an
expected or unexpected note, and have been previously used in [15]. The melodic stimuli were created
using a computational model developed by Pearce [45,46], which is a variable-order n-gram model
which estimates the probability of the pitch of a note, given the preceding notes in the melody. The
expectedness of the final notes may be expressed in units of information content, which may be
thought of as the degree of unexpectedness of the note given a certain preceding context [47]. High-
probability notes have low information content and are expected, while low-probability notes have
high information content and are unexpected. The average information content for the unexpected
notes was higher (11.85) than for the expected notes (1.84) The model parameters used here are
exactly the same as those used in [7] and the model has been shown to predict listeners’ melodic
expectations such that high-probability notes are perceived as expected and low-probability ones as
unexpected [7,8].

Each of the five-note melodies was paired with five words visually presented on screen. Each note
was simultaneously presented with a word, with the final (fifth) note being either expected or
unexpected. The five words were: word 1: ‘A’ word 2: ‘takes’ word 3: ‘from’ word 4: ‘B’, word 5:
number indicating how much A takes from B. This number can be: 0, 25, 50, 75 and 100, with 0 being
fair divisions and the rest being unfair (figure 1a). The participant was instructed to press one of two
buttons depending on whether they want to punish A, or leave (i.e. not intervene). When punishment
is selected, the participant is asked to indicate how much they want to spend to implement their
choice (i.e. how much they want to punish; figure 1b). There were 15 trials per unfairness condition
(0, 25, 50, 75 and 100), paired once with expected and once with unexpected melodies (a total of 30
trials per division). This pairing of melodies with each fairness division took into account the
information content of the melodies to ensure that there was no difference in melodic expectation
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Figure 1. Illustration of the experimental paradigm. (a) Five-note melodies presented in synch with five words for the third-party
punishment game. Each final note is either expected or unexpected and can be paired with either a fair division (a), or an unfair
division (from b to e). (b) Example of a trial where the participant chooses to punish unfairness. As soon as participants see the
division, they are asked to decide whether they want to punish (TAKE) or not react (LEAVE). If participants choose to punish, they
will be asked to indicate the amount they want to spend on the punishment. The presentation of the division (highlighted in red)
indicates the time window of interest for the analysis.
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across divisions. This was also confirmed statistically ( p = 0.932). A total of 150 trials was administered.
All trials were fully randomized.

The presentation time for each of the first four word-notes was 600 ms, and the final note-word
presentation was 1200 ms. Within each trial, words and notes were presented simultaneously with no
breaks between them. Each trial started with a fixation cross, which stayed on screen for 600 ms.
Words were presented at the centre of the screen, one word after the other, and no blank screen was
presented between two words. Stimuli were presented on black background, and letters in white. The
font used for the words was Arial with font size 40. Melodies were presented via earphones and the
volume was kept constant across participants and for the duration of the experiment. E-prime
E-studio 3 was used to present the stimuli.
2.4. Procedure
Participants were emailed the information about the study in advance to inform them about the
procedure of the experiment and the EEG preparation. On the day of the testing, participants were
welcomed in the lobby and taken to the Psychology laboratories area. Once there, they were asked to
read the information again and given an opportunity to provide informed consent. After that, the
EEG recording preparation began. The ActiveTwo BioSemi system (BioSemi B.V., Amsterdam, The
Netherlands) was used to record continuous EEG signals from 64 electrodes using the 10/20 system.
Electrodes were placed on the participant’s scalp surface using an elastic electrode cap and four
electrodes were placed on the participant’s face to monitor eye movements: one above and one below
the left eye, one on each temple. The ground electrode during acquisition was Biosemi’s own
Common Mode Sense active electrode and the Driven Right Leg passive electrode. Depending on the
quality of the signal, this procedure took about 20 min. The participant was then asked to sit in front
of a computer screen and to relax, without moving, for 2 min (1 min with eyes closed and 1 min with
eyes open). Following this, participants were asked to read the instructions (appendix A) for the
decision-making task, which took around 10 min. After reading the instructions, participant’s initial
expectation of fairness was assessed as indicated above. Finally, five practice trials were administered
to allow familiarization with the task, after which participants could begin with the experimental task.
The task lasted a maximum of 30 min. Breaks were given every 30 trials. Upon completion (or
interruption, should the participant choose to end the experiment), the cap and electrodes were
removed, and participants were given a written debrief and compensation.
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2.5. Data cleaning

Data from each participant were cleaned following the pre-registered protocol, which is reproduced as
follows:

(i) for each participant, any trial with an RT that is larger or smaller than two standard deviations
from the participant’s average will be excluded, as well as any null responses;

(ii) EEG data will be pre-processed as indicated below. EEG data associated with the removed
behavioural data above will also be removed; and

(iii) the data for any participant who does not complete the study will not be used. Any rejected
participant will be replaced in accordance with the sampling plan.

2.5.1. Electroencephalograpic data pre-processing

Prior to data analysis, the data were pre-processed using the standardized PREP pipeline [48]. The data
epochs representing single experimental trials were extracted around the onset of the division (−1000 ms
to 2000 ms, with t = 0 as the onset of the last note/word). Correction of artefacts were automated using
MARA in EEGLAB [49,50]. The recommended rejection of independent components in MARA were
checked against the guidelines provided by Pion-Tonachini et al. [51] and Chaumon et al. [52] to
increase reproducibility and objectivity. The discarded independent components were recorded and
saved in the data structure for each participant. Finally, the EEG data were re-segmented from
−200 ms to 500 ms around the onset of the division. The EEG data were baseline corrected to 200 ms
pre-stimulus period.
2.5.2. Data analysis

The data analysis followed the pre-registered stage 1 analysis protocol and is reported below.
Four separate linear mixed models were run to test the hypothesis of an interaction between the

predictors melodic expectancy (information content) and fairness of the division on four dependent
variables: the choice of punishment, the amount spent to punish, the RTs and the amplitude of MFN.
A covariate considering participants’ initial fairness expectation was added to the models. The R
package lm4 [53] was used to run the analysis; glmer function was applied to categorical data
(choice), while the lmer function was used for continuous data (amount, RTs and MFN amplitude).

For the fourth dependent variable (MFN signal), cluster-based permutation tests [54] were run.
Cluster-based permutation tests are robust against the multiple comparison problem and allow us to
identify the time-electrode cluster of interest without relying on pre-defined time windows and
electrodes and/or visual inspection, which could lead to a bias in the statistical analysis. Cluster-
based permutation tests were used to compare fair (0) versus unfair (100 division) trials over the post-
stimulus (onset of the division) time window of 0–500 ms at frontal electrodes (AF3, F1, F3, F5, FC5,
FC3, FC1, AF4, AFz, Fz, F2, F4, F6, FC6, FC4, FC2, FCz, Cz, C5, C6, C1, C2, C3, C4, Cz). This is
based on the expectation that the MFN is frontally distributed and occurs in this time window, as
identified in previous studies [30,33–36]. Following identification of the time-electrode cluster showing
the maximum signal difference, signal for each trial was entered in the linear mixed effect model.
2.5.3. Pre-registered hypotheses

Our hypothesis of an underlying shared neurocognitive mechanism betweenmusic and social decision-making
will be fully supported if an interaction is shown in both EEG data and behavioural data. This would suggest a
common underlying network for processing expectation across domains. Depending on the direction of the
interaction, expectation in music either enhances or reduces the sensitivity to fairness and this interaction
not only affects the EEG data but also affects the behaviour in response to fairness violations.

Our hypothesis will be partially supported if either of the following outcomes are observed:

(i) an interaction is only observed in the EEG data. This would suggest that the two processes share at
least an underlying neural mechanism, but this interaction is not reflected in the behavioural
dependent variables considered; or

(ii) an interaction is only observed in the behavioural data. This may suggest that, despite a cognitive
modulation of the behavioural outcome, the neural interaction is not observed in the event-related
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data of interest and instead other components (e.g. induced activity in the time-frequency power

spectrum [45]) may need to be explored.

The current analysis will not provide sufficient information to support our hypothesis if the results show
an interaction in the EEG and behavioural data, but the pattern observed is in opposite directions
(a reduced EEG signal with an enhanced rate of punishment, or vice-versa). This may suggest that an
underlying shared mechanism exists, but a third neurocognitive mechanism may play a role. It may
be that the neural interaction does not directly map onto behaviour and further studies will need to
address this.

Before testing our hypothesis, we ran several pre-registered analyses to test outcome-neutral
conditions.

To confirm the quality of the EEG data, we expect:

(i) an N1 component locked to the onset of the final note;
(ii) an MFN component locked to the onset of the division.

To ensure that the data are suitable to test our hypothesis, we expect:

(i) the rate of punishment for unfair divisions and the amount spent to punish to be significantly
higher than rate of punishment and amount spent for fair divisions;

(ii) a larger N1 for unexpected versus expected notes;
(iii) a difference in the MFN between unfair versus fair divisions, with a larger MFN for unfair divisions.

3. Results
3.1. Planned pre-registered analyses
Behavioural and EEG data were cleaned and pre-processed as indicated in the Methods section and
following the approved stage 1 protocol (available on the Open Science Framework [55] at osf.io/
kwbfp). The data and code used for the analyses are available on Dryad [56] (https://dx.doi.org/10.
5061/dryad.kd51c5b3r).

Four separate linear mixed models were run on our four dependent variables: (i) choice (punish or
leave), (ii) RTs, (iii) amount (money spent to punish), and (iv) MFN amplitude.

The continuous predictors for the model were melodic expectancy, operationalized in terms of
information content (the higher the information content, the more unexpected the melody) and
fairness of the division (fairness from here on), operationalized in terms of money taken from the victim
(the higher the value of the division, the higher the unfairness); even if fairness of the division had
only five categories, we treated the variable as continuous since it is numerical and the distance
between the categories is equal. Participants’ initial fairness expectation, operationalized in terms of
expected money taken from the victim, was added as a covariate.

For each dependent variable, we considered four models, varying the random effects: one model
included only random intercepts for the between-subject predictors (participants and block); the
second model included the by-participant random slopes for the within-subject predictors (melodic
expectancy and fairness); the third and the forth models included the by-participant random slope for
melodic expectancy and fairness, respectively. Because the variance for the random effect of block was 0,
the models had an issue of singularity; for this reason, the random effect of block was dropped, and
the singularity issue was solved. Based on the Akaike information criterion (AIC) index, the best
model was the second one, including both by-participant random slopes, for all the dependent
variables; an ANOVA comparison showed that this second model was significantly better than the
others for choice and amount, although it did not differ from the third model (by-participants slope
for fairness) for RTs and MFN. In order to test for both the main effects and interaction (melodic
expectancy × fairness), the predictor variables were scaled using the scale function in R.
3.1.1. N1 component

We first checked the quality of the data to ensure that participants processed the final note of the
melodies. A clear N1 component was elicited in response to the final note, as visible in figure 2. To
ensure that participants distinguished between expected and unexpected notes, we statistically

https://dx.doi.org/10.5061/dryad.kd51c5b3r
https://dx.doi.org/10.5061/dryad.kd51c5b3r
https://dx.doi.org/10.5061/dryad.kd51c5b3r
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compared the N1 component for expected and unexpected notes. Cluster-based permutation tests were
carried out at selected frontocentral electrodes over the entire post-stimulus time window (0–500 ms). All
trials were locked to the onset of the final note (t = 0). A significant negative cluster was found in the time
window between 104 ms and 157 ms ( p = 0.007) reflecting a decrease in the average EEG signal for
unexpected versus expected notes (figure 2). This confirms the presence of a larger N1 elicited for
unexpected compared to expected notes. This confirms that our data were suitable to test our hypotheses.
3.1.2. Choice

A generalized linear mixed model (binomial outcome variable) showed a significant effect of fairness (est. =
2.34, s.e. = 0.42, z8530 = 5.63 value, p < 0.001), which was expected, and taken as a measure of data quality
assurance, and a significant effect of melodic expectancy (est. =−0.1, s.e. = 0.05, z8530 =−1.91, p = 0.05) on
the choice; this indicates that, with a probability of 91%, participants were more likely to punish when
the unfairness increased, and, with a probability of 48%, less likely to punish when the melodies were
more unexpected. Nevertheless, we note that the latter effect is quite small, and the p-value increases
(p = 0.07) when only main effects are considered; therefore, we will interpret this result taking this into
account. No significant interaction effect was found (p = 0.27). Participants’ initial fairness expectation
(covariate) was not significant (est. = 0.46, s.e. = 0.24, z8530 = 1.91, p = 0.06). The magnitude (probability)
and the significance of these fixed effects are plotted in figure 3a (sjplot R package [57]).
3.1.3. Reaction times

A general linear mixed model (continuous outcome variable) did not show any significant linear effect of
the predictors of interest (all p-values > 0.2). The standard estimates of these fixed effects are plotted in
figure 4.
3.1.4. Amount

A general linear mixed model (continuous outcome variable) showed a significant linear effect of fairness
(est. = 12.52, s.e. = 1.75, t59 = 7.14, p < 0.001), indicating that, as expected, the money that participants spent
to punish increased with more unfair divisions. No other effect was significant (all p-values > 0.1). These
fixed effects, along with their standard estimates and significance are plotted in figure 5.
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3.1.5. Medial frontal negativity

As specified in the Methods section, we used a data-driven approach to investigate whether unfair (100)
divisions elicited a larger negativity compared to fair (0) divisions. Cluster-based permutation tests were
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used to compare trials presented on unfair (100) and fair (0) divisions, averaged across melodic
expectancy. The analysis was carried at all frontocentral electrodes (AF3, F1, F3, F5, FC5, FC3, FC1,
AF4, AFz, Fz, F2, F4, F6, FC6, FC4, FC2, FCz, Cz, C5, C6, C1, C2, C3, C4, Cz) over the entire
post-stimulus time window (0–500 ms). All trials were locked to the onset of the final note (t = 0). A
significant negative cluster was observed at 234–268 ms over left frontocentral electrodes ( p = 0.01),
indicating a larger negative deflection for unfair versus fair divisions. A similar but not significant
( p = 0.06) negative cluster was also observed at 287–299 ms over the same electrodes. This effect,
illustrated in figure 6a, confirms a decrease in the EEG amplitude for unfair (100) versus fair (0)
divisions, in line with the MFN component, which was expected and taken as a measure of data
quality assurance. From visual inspection, the two significant clusters appear to be part of the same
effect and were therefore combined into one cluster for subsequent single-trial analyses (time: 234–
299 ms; significant electrodes in figure 6b).

In order to test for the interaction between fairness and melodic expectancy, we carried out a single-
trial analysis. The EEG amplitude (µV) was extracted and averaged at each trial at the significant time-
electrode MFN cluster. The average amplitude of this MFN cluster was then fed into a general linear
mixed model, revealing a significant linear effect of fairness of the division (est. =−0.16, s.e. = 0.06,
t58.94 =−2.7, p = 0.009), indicating that there was a larger decrease in the EEG amplitude (negativity)
for the MFN cluster as unfairness increased. No other effects were significant (all p-values > 0.3). The
standard estimates and significance of these fixed effects are plotted in figure 6c.

We also performed a more traditional ERP analysis on the current data, which was not included in
our pre-registered analysis plan. The inherently high trial-by-trial variability and high signal-to-noise
ratio (SNR) in the EEG signal could have made it difficult to detect the signal of interest using a
single-trial analysis without further processing [58–60]. Therefore, we have used the most common
and traditional method to increase the SNR, which is by averaging across trials and obtaining the ERP
response. We averaged the EEG signal across trials to obtain the ERP response for each condition at
the significant MFN cluster reported above. In order to carry out a factorial analysis, we referred back
to the initial classification of the melodies as done in [11] into either expected or unexpected (see
Methods for details). A 2 × 5 repeated measures ANOVA was performed in SPSS with factors melodic
expectancy (expected, unexpected) and fairness (0, 25, 50, 75, 100) on the mean ERP amplitude (µV).
The Greenhouse Geisser correction was used because Mauchly’s test indicates a violation of sphericity
for the effect of fairness and for the interaction (fairness: x29 ¼ 43:02, p < 0.001; interaction: x29 ¼ 54:79,
p < 0.001). This analysis confirmed a significant effect of fairness (F2.99,176.36 = 3.37, p = 0.02, h2

p ¼ 0:054),
but no significant effect of melodic expectancy (F1,59 = 2.30, p = 0.135, h2

p ¼ 0:037) and no significant
interaction (F2.59,152.85 = 0.475, p = 0.67, h2

p ¼ 0:008). The effects are plotted in figure 6d. We also note
that in cases where there is a serious violation of sphericity, multivariate tests are recommended,
and specifically Pillai’s Trace could be considered as it is robust to violations of sphericity [61].
Therefore, for completeness, we report here the results of Pillai’s Trace for the effect of fairness
(F4,56 = 2.95, p = 0.028, h2

p ¼ 0:178) and for the interaction (F4,56 = 0.41, p = 0.80, h2
p ¼ 0:028).
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3.2. Exploratory analyses
Based on the literature, we decided to further zoom in on the MFN effect by specifically looking at mid-
value divisions (25, 50, 75). These have been shown to ‘stand out’ compared to fair and unfair divisions.
For example, participants are slower in reacting to mid-value divisions [29,31], and a larger and delayed
negativity (N350) has been observed for mid-value offers compared to fair and extremely unfair offers in
an Ultimatum Game [31]. These results have been thought to reflect the increased difficulty of processing
a more ambiguous stimulus. Therefore, our study extended the initially planned investigation to test
whether mid-value divisions were processed differently from fair and extremely unfair offers in both
EEG and behavioural data. Also, we extended this investigation to the interaction effect, namely, to
explore whether melodic expectancy influences more ambiguous violations of fairness represented by
mid-value divisions.

3.2.1. Mid-value divisions: reaction times

We first tested RTs by fitting a second model considering fairness as a 5-level factor, with division = 0
(fair division) as reference. This analysis showed that, compared to when the division was 0 (M =
1301.83; s.e. = 52.73), there was a difference in RTs when the division was 25 (M = 1358.88; s.e. = 56.39;
est. = 57.94, s.e. = 15.81, t2344.63 = 3.66, p < 0.001), 50 (M = 1376.22; s.e. = 52.02; est. = 75.43, s.e. = 17.96,
t305.32 = 4.2, p < 0.001) and 75 (M = 1347.31; s.e. = 49.76; est. = 46.89, s.e. = 21, t114.59 = 2.23, p = 0.03). No
difference was found for unfair divisions (M = 1307.21; s.e. = 47.58; p = 0.8). This means that, compared
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to fair divisions, participants were slower when deciding for mid-value divisions, but not for unfair,

suggesting that mid-value divisions, especially 50, are more difficult. However, no interaction with
melodic expectancy was found (figure 4).

3.2.2. Mid-value divisions: late medial frontal negativity

In line with our data-driven approach used in the pre-registered analysis, we first investigated whether
mid-value divisions (50) significantly differed from fair (0) and unfair (100) divisions. Therefore, separate
cluster-based permutation tests were carried out to compare mid-value (50) versus unfair (100) divisions,
and mid-value (50) versus fair (0) divisions. These tests were carried out for all frontocentral electrodes
(figure 1) over the entire post-stimulus time window (0–500 ms), locked to the onset of the division (t = 0).
When comparing mid-value and fair divisions, cluster-based permutation tests revealed a significant
negative cluster at 227–389 ms at frontocentral electrodes ( p < 0.001) (figure 7b), indicating a decrease
in EEG amplitude for mid-value versus fair divisions. When comparing mid-value and unfair
divisions, cluster-based permutation tests revealed a negative cluster at 250–383 ms in the same
frontocentral electrodes as above ( p < 0.001) (figure 7c), indicating a decrease in EEG amplitude for
mid-value versus unfair divisions. Altogether, these results confirm the presence of an MFN effect for
mid-value divisions (50) compared to fair (0) and unfair (100) divisions. Because it is spatio-
temporally similar to the MFN reported earlier, but it extends to a later time window (figure 7a), we
will refer to it as the late-MFN effect.

To obtain the signal for the single-trial analysis, the EEG amplitude for each trial was extracted and
averaged at the significant time-electrode cluster that encompasses both late-MFN effects (227–289 ms at
significant electrodes). The average amplitude (µV) of this late-MFN cluster was fed into a linear model
considering fairness as a 5-level factor, with division = 0 (fair division) as reference. This analysis showed
that, compared to when the division was 0 (M = 1.08; s.e. = 0.16), there was a difference in the EEG
amplitude when the division was 25 (M = 0.77; s.e. = 0.12; est. =−0.30, s.e. = 0.13, t6524.32 =−2.29, p =
0.02), 50 (M = 0.75; s.e. = 0.14; est. =−0.32, s.e. = 0.13, t1314.71 =−2.39, p = 0.02) and 75 (M = 0.79; s.e. =
0.17; est. =−0.29, s.e. = 0.13, t301.14 =−2.17, p = 0.03). No difference was found in the EEG amplitude
between unfair (M = 0.96; s.e. = 0.17) and fair divisions (p = 0.4) and no significant interaction between
melodic expectancy and fairness levels was observed (all p-values > 0.1). These effects are plotted in
figure 7d.

Considering the more traditional ERP approach used earlier, we averaged the EEG signal across trials
to obtain the ERP response for each condition at the significant late-MFN cluster reported above. We then
carried out an analogous 2 × 5 repeated measures ANOVA with factors melodic expectancy (expected,
unexpected) and fairness (0, 25, 50, 75, 100) on the mean ERP amplitude. The Greenhouse Geisser
correction was used because Mauchly’s test indicates a violation of sphericity for the effect of fairness
and for the interaction (fairness: x29 ¼ 41:85, p < 0.001; interaction: x29 ¼ 63:62, p < 0.001). This analysis
confirmed the effect of fairness (F3.02,178.32 = 2.63, p = 0.05, h2

p ¼ 0:043; quadratic contrast: F1,59 = 10.53,
p = 0.002, h2

p ¼ 0:151). However, there was neither a significant main effect of melodic expectancy
(F1,59 = 0.45, p = 0.51, h2

p ¼ 0:008) nor a significant interaction (F2.44,143.85 = 1.18, p = 0.316, h2
p ¼ 0:020).

The effects are plotted in figure 7e. As mentioned earlier, multivariate tests are recommended when
there is a serious violation of sphericity, and Pillai’s Trace can be considered. For completeness, in line
with previous results, we also report Pillai’s Trace for the effect of fairness (F4,56 = 3.02, p = 0.025,
h2
p ¼ 0:177) and for the interaction (F4,56 = 2.18, p = 0.083, h2

p ¼ 0:135).

3.2.3. P2 component

Upon visual inspection of figure 6, we observed an increased positivity for trials presented with unfair
compared to fair divisions in the P2 time window. To test whether this difference is significant, we used a
similarly data-driven approach as used for the MFN component. Cluster-based permutation tests were
carried out to compare unfair (100) with fair divisions (0), averaged across melodic expectancy, for the
post-stimulus time window of 0–500 ms, locked to the onset of the division (t = 0). A significant
positive cluster was observed between 137 ms and 215 ms at frontocentral electrodes, p < 0.001
(figure 8a,b). This effect confirms the presence of a P2 component, which is larger for unfair compared
to fair offers.

Given the clear effect of fairness in the P2 time window, we investigated the possibility that melodic
expectancy and fairness of division may interact during this earlier time window. In order to test these
effects, we carried out a single-trial analysis mirroring the analyses used for the earlier effects. The EEG
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amplitude (µV) was first extracted and averaged at each trial at the significant time-electrode P2 cluster.
The average amplitude of this P2 cluster was fed into a general linear mixed model following the earlier
analyses, thus considering the linear fixed effects of fairness and melodic expectancy. This analysis
confirmed a significant linear effect of fairness (est. = 0.21, s.e. = 0.04, t154.11 = 5.1, p < 0.001), indicating
a larger increase (positivity) of the EEG amplitude as unfairness increased, thus confirming the P2
effect. There was also a main effect of melodic expectancy (est. =−0.09, s.e. = 0.04, t494.67 =−2.22, p =
0.03), indicating that an increase in melodic expectancy (i.e. lower information content) predicted an
increase in the EEG amplitude. The interaction between fairness and melodic expectancy was also
significant (est. = 0.08, s.e. = 0.04, t8448.42 = 2, p = 0.04), suggesting that melodic expectancy had an effect
on the EEG amplitude of the P2 cluster for fairer divisions (0, 25), while this effect diminished for
more unfair divisions. These effects are plotted in figure 8c.

Considering also the more traditional ERP approach, we averaged the EEG signal across trials to
obtain the ERP response for each condition at the significant P2 cluster reported above. We carried
out a 2 × 5 repeated measures ANOVA to investigate the effect of melodic expectancy (expected,
unexpected) and fairness of the division (0, 25, 50, 75, 100) on the mean ERP amplitude. The
Greenhouse Geisser correction was used because Mauchly’s test indicates a violation of sphericity
for the effect of fairness and for the interaction (fairness: x29 ¼ 32:29, p < 0.001; interaction: x29 ¼ 57:70,
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p < 0.001). This analysis confirmed the significant linear effect of fairness (F2.99,176.49 = 16.99, p < 0.001,
h2
p ¼ 0:224), but not the significant interaction between fairness and melodic expectancy (F2.57,151.71 =

1.11, p = 0.342, h2
p ¼ 0:018). No significant main effect of melodic expectancy was found (F1,59 = 1.34,

p = 0.251, h2
p ¼ 0:022). For completeness, Pillai’s Trace results confirm a significant effect of fairness

(F4,56 = 16.07, p < 0.001, h2
p ¼ 0:534) and reveal a significant interaction effect (F4,56 = 2.63, p = 0.044,

h2
p ¼ 0:158). However, given these inconsistent results, we recognize that the interaction effect is not

particularly clear, so we will interpret it accordingly in the discussion. The effects are plotted in figure 8d.
4. Discussion
The aim of this study was to investigate whether a domain-general expectancy mechanism exists and, if so,
whether the activation of this system in one domain would facilitate (priming) or reduce (resource depletion)
expectancy-related processes in another domain. To do so, we created a third-party punishment task in
which participants had to respond to fairness violations (social domain) that were paired with either
expected or unexpected melodies (music domain). We measured participants’ sensitivity to fairness by
looking at willingness to punish the perpetrator of the unfairness, their RTs and the MFN, an EEG
component that has been linked to detecting violations of expectations in the social domain, such as
unfairness. We hypothesized that, if there is a domain-general shared expectancy mechanism between the
music and social domain, both behavioural and neural responses to fairness violations will be influenced
by the simultaneous presentation of melodic expectancy violations. Specifically, we hypothesized that if
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this were the case, this influence would manifest itself in one of two ways: it may increase (priming) or

reduce (resource depletion) participants’ sensitivity to unfairness when violations of fairness norms are
simultaneously presented with unexpected, compared to expected melodies.

4.1. Melodic and fairness perception
The data passed the initial quality checks, confirming that both our fairness and melodic expectancy
manipulations work as expected. We observe a larger N1 for unexpected compared to expected
melodies, and a larger MFN for unfair compared with fair divisions. Also, participants punished
unfair more than fair divisions. This was expected and confirmed that the data were suitable to test
our hypotheses. However, it is worth noting that we observed a rate of around 30% of punishing
choices for fair divisions, which is more than what was observed in other studies [40,42]. It is not
clear what drives these choices: they could be mistakes (pressing the wrong button) or genuine
choices to decrease player A’s pay-off. If the latter is true, these choices could be either the result of a
failure to perceive player A as a different person in each trial (although instructed to do so), or an
actual decision to spend money to decrease A’s pay-off even in the absence of any violations [62,63];
the current design does not allow further speculation on this finding.

4.2. Interaction between melodic and fairness violations
The present study does not provide conclusive results to show a shared cross-domain expectancy
mechanism exists. When looking at the pre-planned variables, i.e. the choice to punish, the amount to
punish, the RTs and the MFN amplitude, the patterns of results do not show a clear significant
interaction between fairness and melodic expectancy. Importantly, the effect size of the interaction was
smaller than we had predicted, both for the behavioural data (choice to punish) and for the EEG signal
(MFN). When estimating our sample size, we considered a medium effect size of h2

p ¼ 0:06 for the
interaction; this estimation considered previous studies using the same melodic stimuli to investigate
interactions with language [15,37], which showed a larger effect size ðh2

p ¼ 0:2Þ, and we presumed that
the social and the music domains share fewer similarities than those shared by music and language.
Nevertheless, the estimate of a medium-sized effect was still too optimistic; in fact, the current effect
size for the interaction is between h2

p ¼ 0:02� 0:05, depending on whether we consider all levels of
fairness or only ‘extreme’ levels, i.e. 0 (fair), 100 (extremely unfair) and 50 (the most ambiguous mid-
value); in any case, these effects are too small to be significantly detected with our current sample size.
It is nevertheless interesting that we find a small significant effect of melodic expectancy on the choice
to punish fairness violations. This shows that participants are less likely to react (punish) as melodies
become more unexpected (as information content increases). Owing to the absence of a significant
interaction and also of any meaningful effects in the pre-planned analyses, we cannot speculate on the
presence of a shared mechanism for the processing of expectations in the two domains.

Some interesting insights are derived from an exploration of mid-value divisions (25, 50, 75). In line
with previous research [29,31], our behavioural and EEG data confirmed that mid-value divisions are
processed differently compared to fair and unfair (100) divisions. Participants were slowest in reacting
to mid-value (50) divisions, which also showed a larger negativity (late MFN), compared to fair (0)
and unfair (100) divisions. This late-MFN component was more pronounced (deeper) and of a longer
duration than the MFN observed for unfair versus fair divisions. Indeed, the EEG data allow us to
refine our understanding of the processes underpinning this effect: the quadratic effect shows how the
amplitude of this negativity may be directly linked to the ambiguity of the violation of fairness: the
negativity is largest at mid-value (50) divisions and gradually reduces as the violation of fairness
becomes less and less ambiguous, i.e. as it approaches the extremes of absolute fairness (0) and
absolute unfairness (100). We believe that the longer processing times and larger negativity reflect the
increased difficulty of processing the degree of unfairness, from most ambiguous to least ambiguous
[31]. From visual inspection of the results, the effect of melodic expectancy varies with different levels
of fairness of the division. However, because the results for the interaction are not statistically
significant, we believe it would not be wise to speculate further.

4.3. Expectancy and saliency of fairness and melodic stimuli (P2)
Previous findings suggest that a positive ERP component (P2), thought to reflect attentional selection, is
often observed together with, or in close proximity of, the negative component (MFN), with which it
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shares the same scalp topography [64]. The current literature on economic decision-making finds this

component to be related to expectancy of the outcome [65,66]. Other studies specifically investigating
fairness in economic games also seems to find a P2-like component paired with the MFN, although it
is not always discussed as such [31,67]. In the current set of results, we observed an increased
positivity as unfairness increased, and this was reflected in both the single-trial analyses and the ERP
analyses, indicating the robustness of this effect. This is in line with the interpretation that unfairness
represents the unexpected outcome. Interestingly, our single-trial analysis also showed a significant
effect of melodic expectancy and a significant interaction. These show that the P2 amplitude increased
as information content decreased (i.e. as melodies were more expected), and that this effect was
reduced for more unfair divisions. Upon visual inspection of the results, both the effect of melodic
expectancy and the interaction seem to be driven by the fair (0) and ‘mildly’ unfair (25) divisions.
Indeed, the P2 amplitude for more unfair divisions (50, 75, 100) does not seem to be influenced by
changes in melodic expectancy. It is important to note that, however, we did not find a statistical
difference in the P2 time window between expected and unexpected melodies when using our data-
driven approach. This was also the case when using a traditional ERP analysis, which also did not
reveal a significant interaction, despite the added benefit of the increased SNR. It is possible that our
single-trial analysis was more sensitive to these P2 effects than the more traditional ERP analysis, but
because of these discrepancies we must be cautious in how we interpret these results. Additionally,
when looking at the effect of melodic expectancy, a previous study using the same stimuli did not
observe a P2 difference between expected and unexpected melodies [17], and to our knowledge,
previous studies have not consistently reported P2 effects for melodic expectancy violations (though
see [68]). We find it interesting that the effects seen in the single-trial analyses are driven by the fair
(0) and mildly unfair (25) divisions, with the mildly unfair (25) division clearly standing out both in
comparison to the other divisions and in being the most affected by the change in melodic
expectancy; however, because of these inconclusive results, we do not think it is appropriate to
provide further speculation. The only clear result is the effect of fairness on the P2 amplitude, which,
in previous literature, was interpreted as an effect driven by the expectancy of the stimuli (i.e. larger
P2 for unexpected outcomes). However, because there is no effect of melodic expectancy on the P2
amplitude, the fairness effect must be related to saliency rather than just expectancy, meaning that
unfair divisions are not only an unexpected outcome, but are also more salient and, therefore, worthy
of attentional resources. This seems also in line with the previous literature on economic games where
P2 is larger for outcomes that affect the participants rather than other players [69,70].

To conclude, the current study does not show clear evidence in support of the existence of a domain-
general expectancy mechanism. Unfortunately, the estimation of the size of this effect was slightly too
optimistic, hence our sample size failed to detect a clear significant effect. However, we believe this
study has provided some useful insights for future research in the area. For example, we believe that
mid-value divisions, and more generally ambiguous stimuli, are worthy of investigation in the context
of the processing of expectations, particularly in the domain of social norms. Future investigations
into cross-domain interactions could investigate more closely the different processes that might be
affected with manipulations of the kind used in this study; it would be particularly interesting to
disentangle the role played by early processes of attention allocation (e.g. P2) from later ones, such as
those underpinning the MFN.
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Appendix A. Chip Division Game Instructions

The Chip Division Game is a game in which players make decisions about the distribution of chips,
which corresponds to real money (100 chips = £1). You will be given 200 chips (£2) to play with for
each trial of this game. At the end of the game, one trial will be randomly selected to determine your
payment, that will depend on your choice on that trial.

In this game, there are three players, A, B and C. You have been randomly assigned to play in the role
of C. All of the players start each trial with 200 chips (£2).

A andBplayed before, in previous experimental sessions, sowhat you are about to see are outcomes from
previously takendecisions. Thismeans that, althoughyour choice canmodify the finalmonetaryoutcome for
all the players, it cannot modify the choices of the players, because these have already been made.

A.1. Previous sessions
Players came to the laboratory and were divided in pairs. They then received 200 chips as an initial
endowment. One player was randomly assigned to the role of player A and was given the chance to
take chips away from player B; player B could do nothing but accept the decision of player A. Player
A could decide to take 0, 25, 50, 75 or 100 chips out of the 200 chips of player B.

(i) If player A decided to take no chips (0), then both player A and player B would end the session
with an equal amount of chips/money (200 each); and

(ii) If player A decided to take 25 chips, then player A would end the session with 225 chips, and
player B with 175 chips; if A decided to take 50, then A would end with 250 and B with 150; etc.
A.2. Current session (your session)
You will be presented with many trials: each trial corresponds to the decision of one pair of players (i.e.
how many chips player A has taken from player B). Every trial represents a different pair. Each pair of
players made only one decision, and you will never encounter the same pair twice.

In each trial, you can choose to do nothing and walk away (by pressing Leave, the right arrow key), or
you can decide to spend some of your own chips (200 chips = £2) to take some money away from A (by
pressing Take, the left arrow key). If you choose to spend money to take from A, for every chip that you
spend, A is going to lose 3. So, if you decide to spend 10, A is going to lose 30; if you decide to spend 20,
A is going to lose 60; etc. The minimum number of chips that you can spend in each trial is 10 and the
maximum is 100, with increments of 10 chips (see picture below). This also means that player A can lose a
maximum of 300 (100 × 3) chips, and this will cost you a maximum of 100 chips.

Note that the money that is taken away from A returns into the experimental pot, as none of the
players will get it.

Figure 9 is an example of how a trial looks like. Each black square represents a different screen.
Each screen will appear for a very short amount of time. The last screen (with A’s choice) will last for

1 s. You will need to respond by pressing Take (left arrow) or Leave (right arrow). Make sure you press
the button that you intend to (in other words, be accurate), but also do not think too much and try to
respond as fast as possible.

If you select ‘Leave’ the following screen will be displayed:
and no further response will be required.
If you select ‘Take’ the following screen will be displayed:



A
take leave

B
take leave

0
take leave

take

takes

leave

take

from

leave

Figure 9. In this example trial, A decided to take 0 (no chips) from B, so they both ended the game with 200 chips each.
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You will need to use the mouse to click one of the options (10, 20, 30, etc.). You will only have few
seconds to decide.
A.3. Examples
(i) If A takes 0 (no chips) from B, then both A and B have 200 chips. If you decide to Take from A and

you spend 10, then you finish with 190 chips (200− 10), player A loses 30 (10 × 3) and finishes with
170 chips (200− 30), and player B finishes with 200 chips. If you decide to Leave, then you all finish
with 200 chips.

(ii) If A takes 50 chips from B, then A has 250 chips and B has 150 chips. If you decide to Take from A,
and you spend 30, then you finish with 170 chips (200− 30), player A loses 90 (30 × 3) and finishes
with 160 chips (250− 90), and player B finishes with 150 chips. If you decide to Leave, then you
finish with 200 chips, A finishes with 250 chips and B finishes with 150 chips.

At the end of the game, a random trial will be selected. If, in that trial, you spent 20 chips to Take from
A, then you are going to get £1.80 (180 chips) as your additional payment. If in that trial you decided to
Leave, you are going to get £2 (200 chips). Players A and B will also receive their payment according to
your choice in that trial.

IMPORTANT: this is not a maths test. Don’t worry if you can’t make quick and accurate calculations!
Nobody can! And that is not the scope of the study. Just go with your guts, and you’ll be fine! There are
no right or wrong answers!

Before starting the game, imaging a random pair of players in the laboratory. One player has just been
selected to be player A and is told that he/she can take chips from B, if he/she want to. Please indicate
how much you expect player A to take from player B.

Circle one answer: 0 (no chips) 25 50 75 100

Shortly, you will do a few practice trials. The practice trials are used only to make you familiar with
the stimuli, and are not be part of the pool of real trials from which your final payment will be selected.

Do you have any questions?
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