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Abstract

Patterns of flammability across the vascular plant phylogeny, with

special emphasis on the genus Dracophyllum

by

Xinglei Cui

Fire has been part of the environment for the entire history of terrestrial plants and is a

common disturbance agent in many ecosystems across the world. Fire has a significant role in

influencing the structure, pattern and function of many ecosystems. Plant flammability, which

is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial

ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution.

However, the factors that have influenced the evolution of flammability remain unclear. The

aim of this thesis is to explore the evolutionary patterns of plant flammability and examine the

potential factors that have influenced its evolution. To do this, I examined evolutionary

patterns of shoot-level flammability at a range of taxonomic levels, including across the

Tracheophyta (194 vascular plant species), within a single genus (21 Dracophyllum species),

and within a single species (eight populations of Dracophyllum rosmarinifolium). I also

explored the potential factors that have influenced variation in flammability across different

taxonomic groups.

Firstly, I examined evolutionary patterns of flammability across the Tracheophyta

(vascular plants). I measured shoot-level flammability of 194 vascular plant species and

related these to phylogeny, the fire-proneness of the species’ natural habitat and species’

growth form. I found phylogeny, fire-proneness of habitat and growth form were important

predictors of the shoot flammability of vascular plant species. Shoot flammability was

generally correlated with phylogenetic relatedness, although some closely related species in

some families, such as Dracophyllum species (Ericaceae), varied in their flammability.

Species in fire-prone ecosystems tend to have higher flammability than species from non-fire-

prone ecosystems, suggesting that fire may play an important role in the evolution of plant
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flammability. Growth form also influenced flammability: forbs were less flammable than

grasses, trees and shrubs, while grasses had higher biomass consumption by fire than other

groups. The results suggested that shoot flammability of plants was largely correlated with

phylogenetic relatedness and high flammability may result in parallel evolution driven by

environmental factors, such as fire regime.

Secondly, I examined evolutionary patterns of flammability within a single genus. In

the first objective, I found flammability varied widely across Dracophyllum genus. So in the

second objective, I explored the phylogenetic patterns of variation in shoot-level flammability

across 21 Dracophyllum (Ericaceae) species. I found species in the subgenus Oreothamnus

had higher flammability and smaller leaves than those in the subgenus Dracophyllum. Shoot

flammability (ignitability, combustibility and consumability) and leaf length showed

phylogenetic conservatism across genus Dracophyllum, but exhibited lability among some

closely related species, such as D. menziesii and D. fiordense, perhaps due to occupying

different habitats. Shoot flammability of Dracophyllum species was negatively correlated with

leaf length and shoot moisture content, but had no relationship with the geographic

distribution of Dracophyllum species. In conclusion, I found that shoot-level flammability

varied widely in the genus Dracophyllum, but showed phylogenetic conservatism. The higher

flammability of the subgenus Oreothamnus may be an incidental or emergent property due to

the evolution of flammability-related traits, such as smaller leaves, which were selected for

other functions that may have facilitated drought and frost tolerance during the Pleistocene

and incidentally changed flammability.

Finally, I examined evolutionary patterns of flammability within a single species D.

rosmarinifolium. D. rosmarinifolium is an extremely polymorphic species. There is

considerable variation in the size of the lamina across D. rosmarinifolium populations. In this

objective, I measured shoot-level flammability of 62 D. rosmarinifolium individuals from

eight populations across the South Island of New Zealand. To explore the potential factors

that influenced the intraspecific variation in flammability, I examined the relationship

between flammability and a suite of climatic and geographic variables, including latitude,

mean annual air temperature and mean annual precipitation of the sample locations, and

elevation. I found all flammability components varied significantly across populations.

Populations at higher elevations had higher combustibility. My results suggest that elevation

appear to have influenced the intraspecific variability of flammability within D.

rosmarinifolium, suggesting that shoot flammability may be influenced by habitat

environment in the largely fire-free environment of New Zealand.
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In this study, I demonstrated that flammability has a strong phylogenetic component,

which is consistent with the idea that flammability having evolved and been selected for.

However, I also found evidence for high flammability having arisen in the absence of

selective pressure by fire. These results suggest that flammability has likely both emerged and

been selected for; it depends on the context and whether a species or population occurs in a

non-fire-prone or fire-prone habitat.

Keywords: Dracophyllum; evolution; evolutionary patterns; fire; fire ecology; macro-

evolutionary; micro-evolutionary; New Zealand; phylogeny; phylogenetic conserved;

phylogenetic signal; shoot-level flammability; vascular plants
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Chapter 1

Introduction

1.1 Global Fire History

Fire is a widespread process in the earth system that can influence global ecosystem

patterns and processes, including vegetation distribution and structure, the carbon cycle, and

climate (Bond and Keeley 2005, Bowman et al. 2009). To produce fire, three necessary

conditions must be met: oxygen, fuel and an ignition source (Pausas and Keeley 2009).

Ignition sources, such as lightning strikes and volcanoes, probably have existed throughout

the history of Earth. Oxygen levels increased with the appearance of photosynthetic

organisms and by the beginning of the Paleozoic Era (540 million years ago - MYA), the

oxygen level in the atmosphere was sufficient to support fire (Pausas and Keeley 2009). The

last condition, fuel, was not met until the appearance of terrestrial plants, at least 420 MYA

(Wellman et al. 2003, Morris et al. 2018). With the arrival of terrestrial plants, fire appeared

on earth (Glasspool et al. 2004).

The evidence for the earliest wildfire comes from rare fossils dated in the Silurian,

representing the charred remains of low-growing vegetation burnt during a low-temperature

fire (Glasspool et al. 2004). The subsequent fire history on Earth is marked by periods of

alternating high and low activity, which seemed to be significantly controlled by atmospheric

oxygen levels (Scott and Glasspool 2006). In recent decades, fire regimes have been altered

quickly as a result of significant shifts in the human population and land management (Pausas

and Keeley 2009). In the future, fires are expected to become more intense and frequent

because of the rising temperatures, stronger winds, and more frequent droughts in many parts

of the world associated with anthropogenic climate change (Williams et al. 2013, IPCC

Climate Change 2014, Enright et al. 2015).

From the onset, fire has had both geological and biological impacts (Judson 2017).

Many terrestrial ecosystems on earth are fire-prone, such that their composition and structure

are largely determined by their fire regimes (Bond et al. 2005, Pausas and Ribeiro 2013, He et

al. 2019). Fire drives the evolution of plant traits (Bond and Keeley 2005, Keeley et al. 2011,

He and Lamont 2017), affects soils, air quality and climate (Knicker 2007, Langmann et al.
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2009), and promotes biodiversity (Simon et al. 2009, Rundel et al. 2016, Kelly and Brotons

2017, He et al. 2019).

1.2 New Zealand Fire History

Most ecosystems in New Zealand experienced low fire frequencies prior to human

arrival, primarily due to the limited ignition sources (Perry et al. 2014, Kitzberger et al. 2016).

Most of the pre-Polynesian landscape of New Zealand was covered in temperate rainforest

(Ogden et al. 1998, Wiser et al. 2011, Allen et al. 2013). Fire adaptations are generally absent

in the flora of New Zealand and most New Zealand woody species neither resprout from

lignotubers or epicormic buds, nor benefit from post-fire seedling establishment (Ogden et al.

1998). The few indigenous species with distinctive fire adaptations (e.g., serotiny in

Leptospermum scoparium, resprouting in Discaria toumatou, Pteridium esculentum and

Cordyline spp.), are all closely related to eastern Australian species or are native to Australia,

and have a history in New Zealand no earlier than the Pliocene (5-2 MYA) (Mildenhall 1980,

Walsh and Coates 1997, McGlone et al. 2005, Stephens et al. 2005, De Lange et al. 2010).

As Keeley et al. (2011) emphasise, plants are not adapted to fire, but to fire regimes.

Long and unpredictable fire intervals during most of New Zealand’s recent ecological history

and the general absence of fire adaptations in the flora (Perry et al. 2014), coupled with the

loss of fire-adapted traits in some taxa (McGlone 2006, Battersby et al. 2017b), suggest that

the evolution of New Zealand’s indigenous species was not influenced by fire (Lawes et al.

2014). Therefore, the New Zealand flora provides an opportunity to examine the evolution of

plant traits in the absence of selective pressure fire.

1.3 Genus Dracophyllum

Dracophyllum, commonly called dragon leaf because of its distinctive spiky growth

form (Figure 1-1), is a plant genus of the family Ericaceae. Dracophyllum has 51 polymorphic

species that are widely distributed in Australia, New Zealand, and nearby oceanic islands. The

genus is traditionally divided into three subgenera: Dracophyllum, Cordophyllum, and

Oreothamnus (Oliver 1952). Twenty-nine species have been recognised in subgenus

Oreothamnus, all of which are endemic to New Zealand, with the exception of D. minimum,

which is found in Tasmania. Seven of 21 species from subgenus Dracophyllum are endemic

to New Zealand, while other species in the subgenus occur in New Caledonia (8 spp.),

mainland Australia (4 spp.), Lord Howe Island (1 spp.) and Tasmania (1 spp.). The subgenus
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Cordophyllum is monospecific, containing D. involucratum, which is endemic to New

Caledonia (Venter 2009). The subgenus Cordophyllum has only one species, D. involucratum,

which is endemic to New Caledonia (Venter 2009). All Dracophyllum species are endemic at

the national level (Venter 2009).

The genus Dracophyllum reaches its greatest level of species richness and

morphological diversity in New Zealand with 35 species, ranging from low-growing cushion

plants to trees up to 14 m tall (Figure 1-1) (Wagstaff et al. 2010). Of the 35 Dracophyllum

species found in New Zealand, eight species occur only on the North Island, 21 species are

found solely on the South Island, three species occur on both main islands, and three species

grow on nearby small islands (Venter 2009). The high level of diversification in this genus

makes it a useful tool for evolutionary research.

Except the high level of diversification in this genus, some Dracophyllum species

exhibit wide morphological differences within species. For example, Dracophyllum

rosmarinifolium is an extremely polymorphic species and occurs in different habitats across

New Zealand: mountain gullies, mountain slopes ranging from 0°–80°, ridges, bluffs, plateaus

and valley floors from 152-2100 m altitude (Venter 2009). Dracophyllum rosmarinifolium

has considerable variation of morphological characters, such as leaf length, branching habit

and height, across populations (Venter 2009). These polymorphic characteristics and diverse

habitats make D. rosmarinifolium a good subject for micro-evolutionary study.

All of these features (such as high level of polymorphism in Dracophyllum, extremely

polymorphic species) mean that Dracophyllum is a useful model taxon in which to explore the

evolutionary patterns of plant traits.
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Figure 1-1 Morphological variation among Dracophyllum species. a, D. rosmarinifolium; b, D.
marmoricola; c, D. kirkii; d, D. recurvum; e, D. menziesii; f, D. filifolium; g, D. longifolium; h, D.

latifolium; i, D. fiordense; j, D. traversii. Photos: Xinglei Cui.
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1.4 The evolution of flammability

We live in a flammable world, and all plants can burn under the right conditions

(Pausas and Keeley 2009, Pausas and Ribeiro 2013). Fire has influenced the evolution of

plants, and plants have influenced fire characteristics since around 420 MYA (Bond et al.

2005, Keeley et al. 2011, Schwilk and Caprio 2011). Flammability is one of the main plant

traits potentially influenced by the interaction between plants and fire. Flammability varies

among and even within species (Pausas et al. 2012, Pausas et al. 2016, Wyse et al. 2016,

Battersby 2017, Padullés Cubino et al. 2018), but whether flammability has evolved as a

specific trait or not continues to be debated (Mutch 1970, Snyder 1984, Bond and Midgley

1995, Schwilk and Kerr 2002, Gagnon et al. 2010, Midgley 2013, Bowman et al. 2014,

Archibald et al. 2018). While a growing number of researchers support the idea that fire has

selected some plant species to become more flammable (Mutch 1970, Bond and Midgley

1995, Pausas et al. 2012, Pausas et al. 2017, Archibald et al. 2018), or in some cases less

flammable (Simon et al. 2009, Pausas et al. 2017); others have argued that flammability has

not evolved in response to fire, but occurs as an exaptation, where increased flammability was

an incidental or secondary result of selection for other traits, such as water-use efficiency or

nutrient retention, that increased individual fitness (Gould and Vrba 1982, Snyder 1984,

Midgley 2013).

The idea that flammability (or non-flammability) might be acted on by natural

selection has been hotly contested in the literature and there is a suite of theoretical, modelling,

and empirical studies exploring this idea (Archibald et al. 2018). The first hypothesis about

plant flammability evolution was proposed by (Mutch 1970), who suggested that fire-

dependent plant communities burnt more readily than non-fire-dependent communities

because natural selection had favoured the development of characteristics that make fire-

dependent communities more flammable. The Mutch hypothesis was subsequently criticised

for being group-selectionist. Snyder (1984) considered it unlikely that increased flammability

can increase the fitness of plants and suggested that many characteristics of species that

increased their flammability were merely incidental or secondary results of selection for other

traits that increased individual fitness. Later, the “kill thy neighbour” hypothesis was

proposed by (Bond and Midgley 1995), which suggested that flammability may enhance

inclusive fitness if the resulting fires kill neighbouring less-flammable individuals and create

space for the offspring of the flammable individual to recruit. This hypothesis applies quite

narrowly to species for which recruitment is fire-stimulated, with soil or canopy-stored seed
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banks. Another hypothesis supporting the idea that flammability is selected by fire is the

“pyrogenicity as protection” hypothesis, which proposed that pyrogenic tissues that burn

rapidly could reduce risk to a plant’s below-ground organs and nearby propagules during fires

and, therefore be favored by natural selection (Gagnon et al. 2010). Midgley (2013) criticised

these two explanations as being contradictory, and proposed that flammability has emerged

and has no selective advantage. Pausas et al. (2017) proposed three plant flammability

strategies as ‘hot-flammable’, ‘fast-flammable’ and ‘non-flammable’ that confer fitness

benefits to plants living under recurrent fires.

To assess the evolution of plant flammability, macro- and micro-evolutionary

approaches can be used. Macro-evolutionary approaches use a dated phylogeny to trace the

evolution of flammability-related traits over long time scales (millions of years), and can be

used to explore the factors that have influenced the evolution of plant traits (Pausas and

Schwilk 2012).

Several macro-evolutionary studies have suggested that fire can be an important

selective force on plant traits (He et al. 2011, He et al. 2012, Pausas 2015). For example, (He

et al. 2012) provided compelling evidence that fire has influenced the evolution of five fire-

adaptive traits (bark thickness, serotiny, branch shedding, grass stage and resprouting capacity)

in Pinus. Likewise, fire may have been a selective force in the origin of Banksia by favouring

traits, such as dead floret retention, consistent with adaptation to an increasingly fire-prone

environment (He et al. 2011).

Fire may not be the only factor that has influenced the flammability of plants (Midgley

2013). Flammability of plants may be an emergent property determined by the local

environment, rather than a trait selected for by fire (Midgley 2013). One potential method to

test this would be to compare flammability across a clade of species that evolved in the

relative absence of fire, and use a macro-evolutionary approach to examine the influence on

flammability of factors other than fire. It would also be useful to use quantitative measures of

flammability rather than the qualitative measures (e.g. presence/absence of branch shedding

in Pinus, or retention of dead florets in Banksia) used in previous macro-evolutionary studies

(He et al. 2011, He et al. 2012). Qualitative approaches limit the scope of available

comparative phylogenetic analyses, and preclude estimation of phylogenetic signal.

Furthermore, quantitative measures of flammability properly reflect that flammability is a

continuous rather than binary compound trait.
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A micro-evolutionary approach, involving investigation of variation in traits within

species or populations, is also useful for examining potential factors for the evolution of plant

traits. Few micro-evolutionary studies that examined potential factors for the evolution of

flammability or fire-related traits have been reported. For example, Pausas et al. (2012) used a

micro-evolutionary approach to show that individuals of the Mediterranean shrub species

Ulex parviflorus (Mediterranean gorse, Fabaceae), from localities with a history of high fire

frequency, were more flammable than those growing in sites with no recent fires. These

findings suggest that the flammability of U. parviflorus has increased due to recurrent fires

(Pausas et al. 2012, Moreira et al. 2014). A study on bark thickness of pines suggested that

frequent anthropogenic fires could be a powerful selection force for thick bark (Stephens and

Libby 2006), although thick bark has also been found among species not exposed to frequent

fires (Lawes et al. 2014, Richardson et al. 2015). Micro-evolutionary studies of plant

flammability are still rare, and most of them have attempted to relate flammability or

flammability-related traits to fire regimes in fire-prone regions.

1.5 Phylogenetic signal

Closely related species tend to exhibit similarities in traits, including morphological,

behavioural, life-history and ecological characteristics (Harvey and Pagel 1991, Kamilar and

Cooper 2013). The strength of the correlation between species trait variation and phylogenetic

relatedness can be quantified by estimating their phylogenetic signal (Felsenstein 1985,

Münkemüller et al. 2012). A strong phylogenetic signal indicates that closely related species

have similar values of a given trait, while trait similarity decreases with phylogenetic distance

(Losos 2008). Conversely, a trait that exhibits a weak phylogenetic signal suggests that it

varies randomly across the phylogeny, implying the trait is not passed down from ancestors

(Kamilar and Muldoon 2010). Phylogenetic signal has been used in a range of ecological and

evolutionary research areas (Pagel 1999, Blomberg et al. 2003, Münkemüller et al. 2012),

however estimating the phylogenetic signal of plant flammability has never been reported.

Various methods have been developed for quantifying phylogenetic signal (Pagel

1999, Blomberg et al. 2003, Münkemüller et al. 2012). The two most commonly used metrics

for continuous characters are Blomberg’s K (Blomberg et al. 2003) and Pagel’s λ (Pagel

1999). Blomberg’s K varies continuously from zero, indicating that there is no phylogenetic

signal in the trait (i.e. that the trait has evolved independently of phylogeny and thus close

relatives are not more similar on average than distant relatives), to infinity. K = 1 indicates
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that there is strong phylogenetic signal and the trait has evolved according to the Brownian

motion model of evolution, while K > 1 indicates that close relatives are more similar than

expected under a Brownian motion model of trait evolution (Blomberg et al. 2003, Kamilar

and Cooper 2013). Pagel’s λ varies continuously from zero to unity. λ = 0 indicates that there

is no phylogenetic signal in the trait (i.e. that the trait has evolved independently of phylogeny

and thus close relatives are not more similar on average than distant relatives). Where λ = 1

indicates that there is a strong phylogenetic signal, and the trait has evolved according to the

Brownian motion model of evolution. Intermediate values of λ indicate that although there is

phylogenetic signal in the trait, it has evolved according to a process other than pure

Brownian motion (Pagel 1999, Kamilar and Cooper 2013). Molina-Venegas and Rodríguez

(2017) found that Pagel’s λ was strongly robust to either polytomies and pseudo-branch

lengths, and hence may be a more appropriate alternative over Blomberg’s K to measure and

test phylogenetic signal in most ecologically relevant traits when phylogenetic information is

incomplete. Thus, in my study, Pagel’s λ was used for assessing the phylogenetic signal in

shoot-level flammability.

1.6 Shoot-level flammability measurement

Plant flammability is a compound plant functional trait controlled by chemical and

structural traits (Pérez-Harguindeguy et al. 2013). It is usually quantified by considering four

main components: ignitability, combustibility, sustainability and consumability (Anderson

1970, Martin et al. 1993). In previous research, most flammability measurements focused on

small plant fragments, such as leaves, small twigs, or litter, which do not reflect whole-plant

flammability (Behm et al. 2004, Scarff and Westoby 2006, Cornwell et al. 2015, Pausas et al.

2016). The flammability of small fragments characterises the flammability of the chosen plant

tissues, but does not necessarily scale up well to that of whole shoots or entire plants (Schwilk

2003, Jaureguiberry et al. 2011, Schwilk 2015). With the increasing occurrence of crown fires

worldwide, there is an urgent need to better characterise the flammability of canopy fuels

(Mitsopoulos and Dimitrakopoulos 2007). However, few flammability experiments have been

performed on whole plants, especially for tree, and large-scale facilities that allow whole

plants to be tested are expensive to operate and impractical in many situations. In their

handbook of plant trait measurements, Pérez-Harguindeguy et al. (2013) advocated a shoot-

level approach as a standardised method of assessing plant flammability. This method

preserves much of the architecture of the plant, particularly the fine fuels, and has recently

been suggested as a suitable way to measure the flammability of samples from the plant
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canopy for a wide range of species (Jaureguiberry et al. 2011, Pérez-Harguindeguy et al. 2013,

Schwilk 2015). Additionally, the shoot-level approach has been found to be strongly

correlated with expert opinions based on observation of plant flammability in the field (Wyse

et al. 2016).

In this study, I used shoot-level flammability to assess the flammability of plant

species. The measurement of shoot-level flammability largely followed the methods (Figure

1-2) described by Jaureguiberry et al. (2011) and Wyse et al. (2016).

Figure 1-2 The device used to measure the shoot flammability of plants.

1.7 Research objectives and thesis outline

The aim of this thesis is to better understand the evolutionary patterns of plant

flammability and explore the potential factors that have influenced the occurrence of high or

low flammability in different taxa and at different taxonomic scales. To do this, I examined

evolutionary patterns of shoot-level flammability at a range of taxonomic levels, including

across the Tracheophyta (194 vascular plant species), within a single genus (21 Dracophyllum

species), and within a single species (eight populations in Dracophyllum rosmarinifolium). I
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also explored the potential factors that have influenced the flammability variation across

different taxonomic groups.

This thesis consists of a general introduction, three data chapters, a general discussion

and a conclusion. The data chapters are presented as stand-alone manuscripts for publication

in different international journals. Their contents are summarised below. Because of this

format, there are some duplications among the different data chapters and the format of the

data chapters also differs as they were written for different international journals. Each of

these chapters has a very distinct aim and study approach.

Hypothesis 1: Shoot flammability of vascular plants is phylogenetically-conserved and related

to habitat fire-proneness and growth form

I examined evolutionary patterns of flammability across the Tracheophyta (vascular

plants). I measured shoot-level flammability of 194 vascular plant species and related these

flammability data to phylogeny, the fire-proneness of the species’ habitat and species’ growth

form. First, I calculated the phylogenetic signal of flammability across the phylogeny to

explore the evolutionary patterns of flammability. Second, I compared the flammability of

species between fire-prone and non-fire-prone habitats, to examine how fire-proneness of

habitat would affect plant flammability. Third, I classified all 194 species into four possible

growth forms: trees, shrubs, grass or forbs, and examined the variation of flammability across

the growth forms.

Hypothesis 2: Shoot-level flammability across the Dracophyllum (Ericaceae) phylogeny:

evidence for flammability being an emergent property in a land with little fire

I examined evolutionary patterns of flammability within a single genus. I measured

shoot-level flammability of 21 species of Dracophyllum (Ericaceae). Using a macro-

evolutionary approach, I explored the phylogenetic patterns of variation in shoot-level

flammability. I also examined whether leaf size, a trait that varies considerably across

Dracophyllum, and leaf moisture content, an important trait that drives flammability, were

correlated with shoot flammability. To evaluate whether shoot flammability of Dracophyllum

species was affected by their geographic and climatic conditions, I related the latitudinal

range, mean latitude, mean elevation and climate conditions to shoot flammability for each

species.
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Hypothesis 3: Habitat influences intraspecific variation in shoot flammability

I examined evolutionary patterns of flammability within a single species. I assessed

the intraspecific variation in flammability across eight D. rosmarinifolium populations

growing in a range of environments to explore which factors have affected the intraspecific

variation in flammability of this species. The potential factors that were investigated included

elevation, latitude, mean annual air temperature and mean annual precipitation at the sample

locations.
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2.1 Abstract:

Terrestrial plants and fire have interacted for at least 420 million years. Whether

recurrent fire drives plants to evolve higher or lower flammability and what the evolutionary

pattern of plant flammability is remain unclear. Here, we showed that phylogeny, fire-

proneness of habitat and growth form were important predictors of the shoot flammability of

194 indigenous and introduced vascular plant species (Tracheophyta) from New Zealand. The

phylogenetic signal of the flammability components and the variation in flammability among

phylogenetic groups (families and higher taxonomic level clades) demonstrated that shoot

flammability is phylogenetically conserved. Some closely related species, such as in

Dracophyllum (Ericaceae), vary in their flammability, indicating that flammability exhibits

evolutionary flexibility. Species in fire-prone ecosystems tend to be more flammable than

species from non-fire-prone ecosystems, suggesting that fire may play an important role in the

evolution of plant flammability. Growth form also influenced flammability: forbs were less

flammable than grasses, trees and shrubs, while grasses had higher biomass consumption by

fire than other groups. The results showed that shoot flammability of plants was largely

correlated with phylogenetic relatedness and high flammability may result in parallel

evolution driven by environmental factors, such as fire regime.

Keywords: evolution; fire; growth form; phylogeny; phylogenetic signal; shoot flammability;

vascular plants
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2.2 Results and discussion

Fire has affected the distribution and evolution of terrestrial plants globally for at least

420 million years (Bond and Keeley 2005, Bond et al. 2005, Bowman et al. 2009, He and

Lamont 2017, Scott 2018, He et al. 2019) and many species have developed adaptations to

persist in the face of this disturbance (Keeley et al. 2011, He and Lamont 2017). While a

growing number of researchers support the idea that fire has selected some plant species to

become more flammable (Mutch 1970, Bond and Midgley 1995, Pausas et al. 2012, Pausas et

al. 2017, Archibald et al. 2018), or in some cases less flammable (Simon et al. 2009, Pausas

et al. 2017), others have argued that flammability has not evolved in response to fire, but is a

result of exaptations, where traits fulfilling other functions also influence flammability

(Midgley 2013). Although there is evidence in some taxa that plant flammability has evolved

in response to changes in fire regimes (He et al. 2011, Pausas et al. 2012, Moreira et al. 2014),

broad-scale phylogenetic patterns in plant flammability remain unclear. Better understanding

of the evolution of flammability would facilitate our understanding of the long-term

interactions between fire and plants, and may help prepare us for a warmer world, where fire

risk may be higher in many regions (Doerr and Santín 2016). One method to decipher the

evolutionary patterns of plant flammability is to evaluate variation in flammability with

phylogenetic approaches, but few such studies have been reported. These previous studies

have mostly focused on specific genera (Engber and Varner 2012) and used qualitative rather

than quantitative measures of flammability (He et al. 2011, He et al. 2012).

We burned 70 cm-long shoots of 194 species (120 indigenous to New Zealand and 74

exotic species introduced from other parts of the world) from across the Tracheophyta

(vascular plants) (Appendix A). We measured four flammability components: ignition

frequency (ignitability), burning time (sustainability), maximum temperature (combustibility)

and percentage of burnt biomass (consumability) and related these to phylogeny, the fire-

proneness of the species’ habitat and species’ growth form. The selected species showed a

wide range of shoot flammability attributes: 23 species did not ignite on our device (ignition

frequency of zero), while 82 species ignited in 100% of samples. Mean consumed biomass

per species ranged from 0% to 94%, the mean maximum temperature for each species was up

to 771.5 ± 23.0 °C (mean ± one SE), and mean burning times ranged from 0 to 240 s

(Appendix A). Combustibility, consumability and ignitability were strongly positively

correlated, while sustainability had a weaker correlation with ignitability and consumability

(Figure 2-1).
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Figure 2-1 Correlations among flammability components (ignition frequency, burning time, maximum
temperature and burnt biomass). ***: P ≤ 0.001

The integration of flammability data with the phylogeny showed that closely related

species tend to have similar flammability (Figure 2-2), although flammability varied

considerably among some closely related species, e.g., Dracophyllum (Ericaceae) species. To

evaluate to what extent the related species tend to have similar flammability components, we

calculated the phylogenetic signal (Pagel 1999) of each flammability component. We used

Pagel’s lambda (Pagel 1999) (the value usually varies between 0 [phylogenetic independence]

and 1, where species’ traits co-vary in direct proportion to their shared evolutionary history

(Freckleton et al. 2002)) because it is more appropriate than alternatives, such as Blomberg’s

K (Blomberg et al. 2003), for testing ecologically relevant traits (Molina-Venegas and

Rodríguez 2017) and situations where phylogenetic data are incomplete. Pagel’s λ was

statistically significant for all flammability components (Table 2-1), confirming that

flammability is a phylogenetic trait across the broad range of vascular plant taxa we

considered, and demonstrating the usefulness of phylogeny in predicting the flammability

characteristics of vascular plant species. The phylogenetic pattern of flammability was

consistent even considering possible biases due to unbalanced data regarding habitat and

growth form (Supplementary Information section I), although adding more species from

different regions of the world may potentially change the phylogenetic signal of flammability.

Although it seems likely that species inherited the flammability of their ancestors, the value of

the phylogenetic signals (Table 2-1) indicated that flammability exhibits evolutionary
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flexibility. For example, the wide variation in flammability among Poaceae (Poales) and

Raoulia (Asteraceae) species (Figure 2-2, Appendix A). The variation among closely related

species suggested that factors other than phylogeny may influence flammability. In addition,

highly flammable species occur in almost any phylogenetic clade across the selected species

(Figure 2-2, Appendix A), indicating that high flammability may be a result of parallel

evolution driven by environmental factors.

Figure 2-2 Evolution of shoot flammability across the vascular plant phylogeny. The phylogenetic tree
(n = 194 species) was derived from Open Tree of Life (Hinchliff et al. 2015). Cells from the inside to
the outside of the phylogeny are the first axis value of PCA (PC1), ignition frequency (IF), maximum

temperature (MT), burning time (BT) and burnt biomass (BB). The values of the flammability
components increase with the intensity of the color from white to red. Color of branches indicates
different clades. Regular typeface denotes names of families; bold typeface denotes names of higher

taxonomic level clades (order). See Appendix A for species codes.
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Table 2-1 Results of the phylogenetic tests for flammability components across selected indigenous
and introduced New Zealand vascular plants species by using Pagel’s λ values (n = 190 species). P

values give the significance of Pagel’s λ.

Flammability components Pagel’s λ

λ value p

Ignition frequency 0.74 <0.001

Burning time 0.27 0.005

Maximum temperature 0.51 <0.001

Burnt biomass 0.48 <0.001

To further explore the variation in flammability among phylogenetic clades, we

partitioned the species into different phylogenetic groups at different taxonomic levels

(families, and higher taxonomic levels clades), each with at least five species. Typically, the

families Ericaceae, Myrtaceae, Pinaceae, and Poaceae had high flammability, while

Asteraceae had low flammability (Figure 2-3a). At higher taxonomic levels, Ericales, Pinales,

Poales and Myrtales had high flammability, largely reflecting the family-level patterns, while

Asparagales had low flammability (Figure 2-3b). Among even broader clades, Pinophyta

(conifers) had high flammability, while the Lilioid monocots clade generally included low

flammablility species (Figure 2-3c). Although only a few phylogenetic clades, with limited

replication (5 ≤ n ≤ 40), were analyzed, the flammability variation among phylogenetic clades

found here showed it is not randomly distributed across the Tracheophyta, but is influenced

by phylogeny.
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Figure 2-3 Variation in PCo 1 among phylogenetic groups. a, family level (n = 90); b and c, higher taxonomic levels (n = 159 and n = 189). Colour indicates
different flammability syndrome. Centre lines show the medians. Box limits indicate the 25th and 75th percentiles. Whiskers indicate the 5th and 95th

percentiles. The phylogenetic groups were classified with inference of Angiosperm Phylogeny Group classification (The Angiosperm Phylogeny Group et al.
2016).
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Hypotheses regarding the evolution of flammability were first proposed by Mutch in

1970 (Mutch 1970), who suggested that fire-dependent plant communities burn more readily

than non-fire-dependent communities because natural selection has favoured the development

of characteristics that make fire-dependent communities more flammable (Mutch 1970).

Nearly 50 years later, the hypothesis that evolution favours increased flammability in some

ecosystems remains controversial (Snyder 1984, Bond and Midgley 1995, Midgley 2013,

Bowman et al. 2014, Archibald et al. 2018). Pausas et al. (Pausas et al. 2017) suggested that

one limitation of research considering the evolution of flammability is the concept of

flammability itself. They proposed that species in fire-prone ecosystems can be classified into

three flammability strategies: hot-flammable (high heat release), fast-flammable (high flame

spread rate) and low-flammability (low ignitability) strategies, and suggested that species in

such environments would benefit from acquiring one of these strategies (Pausas et al. 2017).

Several empirical studies have shown that in fire-prone ecosystems, species can exhibit either

low(Simon et al. 2009) or high flammability(Pausas et al. 2012) (in the latter case, either hot

or fast flammability), which could be associated with post-fire regeneration strategies of

some species, such as post-fire seeders (Pausas et al. 2017). We classified the 194 species

into three groups using model-based clustering based on the four components of flammability

that we measured (Supplementary Information section II, Figure 2-4). Because the

flammability strategies pre-supposed an evolutionary approach to fire, we termed the groups

as flammability syndromes. The group with the lowest value of flammability attributes was

identified as ‘low-flammability’. The group with the highest maximum temperature was

considered to be ‘hot-flammability’. The group with a much shorter burning time than the

‘hot-flammability’ group was named as ‘fast-flammability’. We also categorized the species

as originating from fire-prone or non-fire-prone habitats (see methods for details). We found

that species provenance from fire-prone habitats tend to have higher flammability than

species from non-fire-prone habitats (Figure 2-5). Fifty-one of 59 species in fire-prone

ecosystems were classified into fast-flammability and hot-flammability syndromes

(Appendix A), indicating that the prevalent flammability syndrome of species in these

ecosystems involves being either fast or hot flammable. Few species (30 of 127) from non-

fire-prone habitats were classified into hot-flammability (Appendix A), suggesting that high

heat release has few evolutionary advantages in such environments. These results reaffirm the

value of the low-fast-hot-flammable framework in the consideration of plant flammability

from an evolutionary perspective. However, it should be noted that in our study there were

some species in each flammability syndrome that had flammability traits more similar to
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species in a different flammability syndrome than their own. Hence, flammability should be

treated as a continuous trait, and the flammability syndrome as a spectrum rather than a

collection of discrete groups.

Figure 2-4 PCoA of the mean values per species for the four recorded flammability components
(ignition frequency, burning time, maximum temperature and burnt biomass). Points indicate the
species (n = 194). Color of points indicates the flammability syndromes, which were classified by

using model-based clustering. Overlapping points were ‘jittered’ to better represent them on the figure.

Another potential influence on flammability is growth form (physiognomy). It is widely

acknowledged that flammability varies among species (Wyse et al. 2016), but variation in

flammability across growth forms is less widely reported (Santacruz-García et al. 2019).

Here we classified all 194 species into four possible growth forms: trees, shrubs, grass or
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forbs based on the descriptions from New Zealand Plant Conservation Network

(http://www.nzpcn.org.nz). Although flammability varied within growth forms, it also varied

significantly among growth forms (Figure 2-5). Forbs were consistently the least flammable

growth form, having significantly lower values for all flammability components. Grasses had

significantly higher consumability (burnt biomass) than other growth forms, but otherwise

generally showed similar levels of flammability to trees and shrubs. The evolution of growth

forms since the early diversification of terrestrial plants is a complex history of innovation,

complexification, simplification, conservatism, radiation and extinction (Rowe and Speck

2005). Plant growth form is largely determined genetically, but it can be modified by

environmental and biotic factors (Rowe and Speck 2005), thus influencing flammability.

http://www.nzpcn.org.nz
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Figure 2-5 Variation in flammability components among plant growth forms (n = 194 species) and habitats (n = 186 species). Colour of points indicates the
flammability syndrome. Light blue: low flammability; yellow: fast flammability; red: hot flammability. Centre lines show the medians. Box limits indicate the
25th and 75th percentiles. Whiskers indicate the 5th and 95th percentiles. Statistical differences were analysed using one-way analysis of variance. NS: P > 0.05,

**: P ≤ 0.01, ***: P ≤ 0.001
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We assessed the shoot flammability of 194 vascular plants and explored evolutionary

patterns of flammability via a phylogenetic approach. Our analyses showed that there is a

significant phylogenetic signal of shoot flammability across selected vascular plants (Table

2-1), indicating that closely related taxa tend to have similar flammability and that the shoot

flammability of indigenous and introduced New Zealand vascular plants was

phylogenetically conserved. That flammability has a phylogenetic component is consistent

with the idea that flammability is an emergent trait that can be selected for. However, we

cannot rule out flammability being comprised of some exaptations, since the physical and

biological conditions in which species live were not considered in this work. The significant

variation in flammability among habitats with differing prevalence of fire proneness suggests

that fire regimes played an important role in the evolution of flammability traits and indicated

that fire-prone plant communities are likely to burn more readily than non-fire-prone

communities. Finally, growth form also influenced flammability. That phylogeny, fire

proneness of habitat and growth form all influence on the flammability of a wide range of

indigenous and introduced New Zealand vascular plant species, suggest that shoot

flammability can be relatively predicted from taxonomic relatedness, habitat fire regime and

growth form. The results may allow fire managers and ecologists to estimate flammability for

a wide range of vascular plant species based on these characteristics, thus expanding our

knowledge of how well plants burn at the species level. However, given the wide variability

in flammability within each of these predictors, fire managers still need to observe the

behaviour and outcomes of fires in specific contexts.

2.3 Methods

2.3.1 Samples collection and measurement of shoot-level flammability

Samples of 194 plant species (120 indigenous to New Zealand and 64 exotic species

introduced from other parts of the world) were collected across a broad range of habitats in

New Zealand. Nomenclature of species was standardized across the dataset and updated

where necessary by querying species names against the New Zealand Plant Conservation

Network (http://www.nzpcn.org.nz).

For most species, samples were 70 cm-long, sun-exposed terminal branches from

healthy, reproductively mature plants. For small plants (like low grasses and forbs), whole

plants were collected in order to preserve the plant’s architecture (the roots were removed

http://www.nzpcn.org.nz
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prior to burning). In cases where grasses and forbs were taller than 70 cm, the lower 70 cm

was sampled and material above that length trimmed and removed. For lianas, a 70 cm shoot

was cut from a mature, leafy, terminal branch. For ferns, a section of or a whole single frond

up to 70 cm was collected. Shoot samples were collected from each of at least six separate

healthy individual plants and kept in separate sealed plastic bags in order to preserve the

plant’s architecture. The samples were kept in cool places when collecting and then stored at

4-8 °C as soon as possible. Further details on collection protocols are provided by (Wyse et

al. 2016) and (Padullés Cubino et al. 2018).

Measurement of shoot flammability followed the methods of (Wyse et al. 2016) and

(Jaureguiberry et al. 2011). Our device (Figure 1-2) was built following the specifications of

(Jaureguiberry et al. 2011) and adjusted to meet NZ safety standards. Before burning, all the

shoot samples were air-dried at room temperature for 24 h to enable a wider range of species

to be ignited by the blowtorch. Then plant samples were preheated for 2 minutes by the

burners (150 °C) in the device. After the preheating, the blowtorch was turned on for 10 s to

ignite the samples. In this study, ignition frequency (i.e., the percentage of samples that

sustained fire after the blowtorched was turned off) was recorded as a parameter to represent

ignitibility. The maximum temperature was recorded to represent combustibility. An infrared

laser thermometer (Fluke 572; Fluke Corp., Everett, WA, USA) was used to record the

maximum temperature of the burning sample after the blowtorch was turned off. Samples

that failed to be ignited were given a value of 150 °C as the temperature of the grill of the

device. Sustainability was measured as how long the sample burns after turning off the

blowtorch. Finally, the consumability was recorded as a percentage of burnt biomass after the

flame goes out, calculated by visual observation by at least two observers. Samples that did

not burn without the blowtorch were assigned zeros for sustainability and consumability.

2.3.2 Data collection

The fire-proneness of species’ habitats were assigned depending on the description of

habitat type of each species’ biogeographic origin from numerous sources. Species were

designated as coming from a fire-prone habitat if they are found in ecosystems that are likely

to have recurrent fires, such as grasslands, savanna, or shrublands, or certain forest types,

such as eucalypt forests in Australia and pine forests in the northern hemisphere. Species

found predominantly in rainforest or closed forest, where fire is unlikely to be a recurrent

disturbance and/or a selective pressure, were considered as originating from non-fire-prone
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habitats. Cultivated varieties (cultivars) of plants that now occur primarily in gardens were

allocated a fire-prone status based on the habitat of the parent species, as we assumed that the

fire-prone status of the habitat of cultivated species is the same as that of their parental

species. Species in the Pinaceae were all classified from fire-prone habitat (He et al. 2012).

While this is a simplification of global fire regimes, there are no clear alternative means of

categorizing fire regimes of native habitats for such a large number of species.

All species were also classified into four growth forms: trees, shrubs, grass or forbs

based on the descriptions from New Zealand Plant Conservation Network

(http://www.nzpcn.org.nz). Ferns were classified into shrubs or trees depending on the

description. All vines were classified into shrubs.

2.3.3 Testing for phylogenetic signal

In order to evaluate the phylogenetic signal of flammability components, a dated

phylogeny for 190 species was obtained from a previously published phylogeny (Slik et al.

2018) using Phylomatic software (Webb and Donoghue 2005, Slik et al. 2018). Branch

lengths were estimated using the BLADJ algorithm based on fossil calibrations of vascular

plants (Webb et al. 2008, Gastauer and Meira-Neto 2016). The multi2di function was used to

resolve the polytomies within the phylogeny (Paradis et al. 2004). Another phylogeny for all

the 196 species was constructed with the Open Tree of Life using the R package rotl

(Hinchliff et al. 2015, Michonneau et al. 2016). The second phylogeny was used for the

visualization of the flammability changes across the phylogeny (Figure 2-2).

We evaluated the phylogenetic signal by using the R package Picante (Kembel et al.

2010) and Phytools (Revell 2012) to calculate Pagel's λ (Pagel 1999). This index uses

Brownian models and includes branch-length distances to test for phylogenetic signals

against random patterns.

2.3.4 Statistical analysis

All statistical analyses were performed using R 3.5.0 (R Core Team 2018). Principal

coordinates analysis (PCoA) was performed using the R packages Vegan 2.5-6 and Labdsv

2.0-1. The relationship among the flammability components was analyzed using the R

package PerformanceAnalytics (Peterson et al. 2018). Flammability syndromes were

classified with the four flammability components by using model-based clustering. Model-

based clustering was performed using the R package Mclust 5.4.5. One-way ANOVA and

http://www.nzpcn.org.nz
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Tukey’s test were used to analyze the variation of flammability among growth forms, habitats

and phylogenetic groups.

2.4 Supplementary Information

2.4.1 Supplementary Information section I:

One aim of this study is to test the degree to which flammability, as an “emergent trait”

resulting from a variety of functional traits, is phylogenetically conserved. Phylogeny may be

related to habitat as well as growth form. To further clarify the phylogenetic patterns of

flammability and avoid the potential bias in assessing the phylogenetic patterns due to the

habitat-phylogeny and growth form-phylogeny relationships, we extracted and reanalysed a

subset of the data that was stratified by phylogeny. This subset contained 151 randomly-

selected species stratified by genus, whereby any ‘replicate’ species within each genus had

different combinations of habitat fire-proneness and growth form. Phylogenetic signal, as

measured by Pagel’s lambda, was significant for three of the four flammability components,

while burning time was not significant (Table 2-2; Figure 2-6). This result shows that, as an

emergent trait, flammability is phylogenetically conserved over and above any correlation

with habitat or growth form.

Table 2-2 Results of the phylogenetic tests for flammability components across balanced subset of
data (n = 151) by using Pagel’s λ values. P values give the significance of Pagel’s λ.

Flammability components Blomberg’s K
K value p

Ignition frequency 0.65 <0.001
Burning time <0.001 1
Maximum temperature 0.51 <0.001
Burnt biomass 0.46 <0.001

We also calculated the phylogenetic signal of flammability traits separately across the

indigenous species and introduced species, as well as for all species (Table 2-3). Across New

Zealand indigenous species, only burnt biomass was phylogenetically conserved. Across

introduced species, three flammability variables were phylogenetically conserved (all except

burnt biomass). When a more globally relevant dataset is considered (all species), we find

phylogenetic conservation across all components of flammability. We contend that this

makes our findings applicable beyond New Zealand ecosystems, as it suggests that the
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species introduced to New Zealand are driving phylogenetic patterns in several of the

flammability variables.

Table 2-3 The phylogenetic signal of flammability traits across the indigenous species (n = 116) and
introduced species (n = 74) separately as well as for all species (n = 190). P values give the

significance of Pagel’s λ.

Species
Flammability components

Ignition frequency Maximum
temperature Burning time Burnt biomass

Indigenous species λ = 0.19, P = 0.31 λ = 0.21, P = 0.10 λ = 0.13, P = 0.18 λ = 0.39, P < 0.001
Exotic species λ = 0.99, P < 0.001 λ = 0.76, P < 0.001 λ = 0.28, P = 0.002 λ < 0.001, P = 1
All species λ = 0.74, P < 0.001 λ = 0.51, P < 0.001 λ = 0.27, P = 0.005 λ = 0.48, P < 0.001

Figure 2-6 The subset of species across phylogeny. Species with red colour and strikethrough were
excluded from the subset date (n = 43). In the subset (n = 151), species that are retained are those
from each genus that do not have same designations for habitat fire-proneness and growth form.
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2.4.2 Supplementary Information section II:

Pausas et al.(2017) described three flammability strategies shown by species growing in

fire-prone environments: hot-flammable, fast-flammable and low-flammable. Using

quantitative measures of flammability we assigned each of our 194 species to one of these

categories (flammability syndromes in our study). In order to show these flammability

syndromes present across the 194 species, we performed Principal Coordinates Analysis

(PCoA) (Figure 2-4).

It should be noted that the flammability variables that we measured differ from those of

Pausas et al., Prior et al. and Schwilk et al.(Schwilk 2015, Pausas et al. 2017, Prior et al.

2018). They identified two axes of variation in flammability: 1) heat release and 2) flame

spread rate, whereas as our approach was derived from the PCA results with the four

flammability variables: ignition frequency, burning time, maximum temperature and burnt

biomass.
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3.1 Abstract:

Whether flammability is selected for or has incidentally emerged, remain unclear.

Phylogenetic analysis of interspecific variation in flammability in a land that has experienced

little fire can provide insights into the evolution of plant flammability.

We measured four components of flammability (ignitibility, sustainability,

combustibility and consumability) to assess the shoot-level flammability of 21 species of

Dracophyllum (Ericaceae). Using a macro-evolutionary approach, we explored phylogenetic

patterns of variation in shoot-level flammability.

Shoot-level flammability varied widely in Dracophyllum. Species in the subgenus

Oreothamnus, which diverged from subgenus Dracophyllum during the Pleistocene, had

higher flammability and smaller leaves than those in the subgenus Dracophyllum. Shoot

flammability (ignitability, combustibility and consumability) and leaf length showed

phylogenetic conservatism across genus Dracophyllum, but also exhibited lability among

some closely related species, such as D. menziesii and D. fiordense, perhaps due to occupying

different habitats. Shoot flammability of Dracophyllum species was negatively correlated

with leaf length and shoot moisture content, while had no relationship with the distribution of

Dracophyllum species.

Shoot-level flammability varied widely in the genus Dracophyllum, but showed

phylogenetical conservatism. The higher flammability in the subgenus Oreothamnus may be

an incidental or emergent property due to the evolution of flammability-related traits, such as

smaller leaves, which were selected for other functions that may have facilitated drought and

frost tolerance during the Pleistocene, and incidentally changed flammability.

Key words: Dracophyllum, evolution, fire, flammability, phylogenetic signal, phylogeny
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3.2 Introduction

Terrestrial plants evolved around 420 million years ago (Wellman et al., 2003). These

early plants provided fuel and increased oxygen in the atmosphere to support fire (Glasspool

et al., 2004; Pausas & Keeley, 2009). Fire has influenced the evolution of plants, and plants

have influenced fire behaviour (Bond et al., 2005; Keeley et al., 2011; Schwilk & Caprio,

2011). Plant flammability is a compound trait emerging from the chemical and physical

characteristics of a plant (Schwilk, 2015; Pausas et al., 2017). Different plant species and

individuals of the same species growing in different habitats vary in their flammability

(Pausas et al., 2012; Murray et al., 2013; Wyse et al., 2016; Krix & Murray, 2018).

Investigating the evolution of plant flammability can help us better understand the interaction

between fire and plants, and allow us to better prepare for a warmer world, where fire risk

may be higher in many regions (Doerr & Santín, 2016). However, the evolutionary

mechanisms determining flammability, and whether flammability is selected for or has

incidentally emerged, remain unclear (Mutch, 1970; Snyder, 1984; Bond & Midgley, 1995;

Midgley, 2013; Bowman et al., 2014).

Macro- and micro-evolutionary approaches have been used to assess the evolution of

plant flammability. The macro-evolutionary approach uses a dated phylogeny to trace the

evolution of flammability-related traits over extended temporal scales (millions of years)

(Pausas & Schwilk, 2012). The micro-evolutionary approach involves investigating variation

in traits, such as branch shedding, within species or populations (Pausas, 2015). Several

macro-evolutionary studies have suggested that fire can be an important selective force on

plant fire-related traits (Crisp et al., 2011; He et al., 2011; He et al., 2012; Pausas, 2015). For

example, (He et al., 2012) provided compelling evidence that fire has influenced the

evolution of five fire-adaptive traits (bark thickness, serotiny, branch shedding, grass stage

and resprouting capacity) in Pinus. Likewise, fire may have played a role in the origin of

Banksia and the evolution of some traits, such as dead floret retention (He et al., 2011).

However, previous macro-evolutionary studies (He et al., 2011; He et al., 2012) have used

qualitative traits (e.g., branch shedding/branch retention) rather than quantitative measures of

flammability, which reduces the scope of available comparative phylogenetic analyses, such

as estimation of phylogenetic signal. Phylogenetic signal is used to evaluate the correlation

between species trait variation and phylogenetic relatedness, and has been used in a range of

ecological and evolutionary research areas (Felsenstein, 1985; Pagel, 1999; Blomberg et al.,

2003; Münkemüller et al., 2012). A strong phylogenetic signal indicates that closely related
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species have similar trait values, while trait similarity decreases with phylogenetic distance

(Losos, 2008). Conversely, a weak phylogenetic signal suggests that a trait varies randomly

across the phylogeny, implying that the trait is not passed down from ancestors (Kamilar &

Muldoon, 2010). However, phylogenetic signal has rarely been used in studies of the

evolution of plant flammability (but see Cui et al., 2020). Flammability can be quantified by

four flammability variables: ignitability (how easily a plant ignites), sustainability (the length

of time a plant sustains flames), combustibility (the intensity at which a plant burns), and

consumability (the percentage of biomass consumed by fire) (Anderson, 1970; Martin et al.,

1993). Estimating phylogenetic signal in these flammability variables will provide insights

into the evolution of flammability. Furthermore, quantitative measures of flammability

appropriately represent flammability as a continuous rather than binary trait.

New Zealand is an archetypal isolated oceanic ecosystem (McGlone et al., 2016). Most

ecosystems in New Zealand experienced low fire frequencies prior to human arrival,

primarily due to limited ignition sources (Perry et al., 2014; Kitzberger et al., 2016). Few of

New Zealand’s indigenous woody species show adaptation to fire (Perry et al., 2014). The

indigenous species with distinctive fire adaptations (e.g., serotiny in Leptospermum

scoparium, resprouting in Discaria toumatou, Pteridium esculentum and Cordyline spp.), are

closely related to eastern Australian species and have a history in New Zealand no earlier

than the Pliocene (Mildenhall, 1980; Walsh & Coates, 1997; McGlone et al., 2005; Stephens

et al., 2005; De Lange et al., 2010). As Keeley et al. (2011) emphasise, species are not

adapted to fire but to fire regimes. Long and variable fire intervals during most of New

Zealand’s ecological history (Perry et al., 2014), coupled with the loss of fire-adapted traits in

some taxa (McGlone, 2006; Battersby et al., 2017), suggest that the evolution of New

Zealand’s indigenous species was not influenced by fire (Lawes et al., 2014). Whether

flammability is selected by fire or emerges incidentally has been widely debated (Mutch,

1970; Snyder, 1984; Bond & Midgley, 1995; Midgley, 2013; Bowman et al., 2014). However,

most previous studies of the evolution of flammability have focused on species in fire-prone

ecosystems (Pausas et al., 2012; Archibald et al., 2018). No study has used a macro-

evolutionary approach on a clade of species that evolved in the relative absence of fire, to

evaluate the influence of factors other than fire on the evolution of flammability. Therefore,

the New Zealand flora provides an opportunity to explore whether flammability is an

incidental or emergent property (i.e. is not a specific fire adaptation) (Mason et al., 2016).
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In this study, we measured the shoot flammability of 21 Dracophyllum species (six in

the subgenus Dracophyllum and 15 in the subgenus Orethamnus) from New Zealand. With

reference to published Dracophyllum phylogenies (Venter, 2009; Wagstaff et al., 2010), we

explored evolutionary patterns in shoot flammability across the genus. We also explored

whether the flammability variation among the Dracophyllum genus is selected for or

incidentally emerged.

3.3 Materials and methods

3.3.1 Sample collection

The genus Dracophyllum Labili. (Ericaceae) contains 51 polymorphic species, divided

into three subgenera Dracophyllum, Oreothamnus, and Cordophyllum (Table 2-1) (Oliver,

1952; Venter, 2009). Dracophyllum reaches its greatest level of species richness and

morphological diversity in New Zealand with 35 species, ranging from low-growing cushion

plants to small trees up to 14 m tall (Figure 1-1) (Wagstaff et al., 2010). Of the 35

Dracophyllum species native to New Zealand, eight are restricted to the North Island, 21

occur only on the South Island, three can be found on both main islands, and three grow on

nearby offshore islands (Venter, 2009). The high level of polymorphism in this genus makes

it a useful model for evolutionary research.

Table 3-1 The geographic distribution of Dracophyllum species.

Genus Subgenera Distribution

Dracophyllum

(51 species)

Dracophyllum (21 spp.)

New Zealand (7 spp.), New Caledonia (8

spp.), mainland Australia (4 spp.), Lord

Howe Island (1 sp.), Tasmania (1 sp.)

Oreothamnus (29 spp.) New Zealand (28 spp.), Tasmania (1 sp.)

Cordophyllum (1 sp.) New Caledonia (1 sp.)

All shoot samples from the 21 Dracophyllum species were collected during one

summer/autumn season (November 2018 to April 2019) from public conservation lands in

New Zealand under permit from the Department of Conservation. The collection sites were

selected using information from Venter (2009), iNaturalist (https://inaturalist.nz/) and the

Allan Herbarium. Healthy terminal shoots of 70 cm length were collected from healthy

individuals, preserving branch architecture, and kept in separate sealed plastic bags to prevent



34

moisture loss. For Dracophyllum species with branches shorter than 70 cm, such as D.

densum, whole plants above the roots were collected. We sampled at least seven individuals

of each species. Shoot samples were kept cool when collecting and then stored at 4-8 °C as

soon as possible. All shoot samples were burned within one week of collection.

3.3.2 Flammability measurement

Shoot flammability was measured for each sample following the methods described

by Jaureguiberry et al. (2011) and Wyse et al. (2016), using the same device as Wyse et al.

(2016). The samples for flammability measurement were 70 cm-long shoot samples. For each

species, at least seven samples were collected, each from a different individual plant. Prior to

burning, all shoot samples were air-dried at room temperature for 24 h to match the sample

moisture content to the ignition source (following Wyse et al. 2016, 2018). For the

flammability measurements, samples were first placed on our device for preheating for two

minutes at 150 °C. Then, a blowtorch was turned on for 10 s to ignite the samples.

Ignitability was represented by an ignition score (Padullés Cubino et al., 2018; Wyse et al.,

2018). Ignitability was recorded first as time to ignition (between 0 and 10 s), which was then

converted to an ignition score by subtracting the time to ignition from 10, e.g. a sample that

took 1 s (i.e. rapid ignition) to ignite had an ignition score of 9. Samples that did not ignite

after 10 s were given a zero value. The maximum temperature of flames during burning was

measured using an infrared laser thermometer (Fluke 572; Fluke Corp., Everett, WA, USA)

to represent combustibility. Samples that failed to ignite were given a value of 150 °C,

representing the grill temperature (Padullés Cubino et al., 2018; Wyse et al., 2018).

Sustainability was measured as the period of time that a sample burned (i.e., had flaming

combustion) after the blowtorch was turned off. Consumability was measured as the mean

value of the percentage of burnt biomass after flaming combustion ceased, assessed by visual

observation by at least two observers. Samples that did not sustain flaming combustion after

the blowtorch was turned off were assigned scores of zero for sustainability and

consumability.

3.3.3 Other Data collection

We obtained the GPS coordinates of observations (until May 2019) for each

Dracophyllum species from iNaturalist (https://inaturalist.nz/) (the observation locations that

are obscured were excluded). For four species without accurate observation information on

iNaturalist (the location of observations are obscured), observation records by Venter (2009)



35

were used. The elevation of all observation records was estimated from the New Zealand

national digital elevation model (25 m resolution, downloaded from https://lris.scinfo.org.nz/).

Individual geographical references of each species were used to obtain climatic information

(annual mean air temperature and annual mean precipitation) from the WorldClim database

(30 seconds (~1 km2), https://www.worldclim.org/). The climate data were obtained by using

the R package DISMO (version 1.1-4) (Hijmans et al., 2017). To characterise the climatic

and geographic conditions across each species distribution, the mean values for mean annual

air temperature, mean annual precipitation, elevation, and latitude from across the recorded

distribution for each species were calculated. The latitudinal range of observations was used

as an indicator of the overall latitudinal range size for each species.

The midpoint of the range of values of adult leaf length was taken from Venter (2009)

and used as the species measure of leaf length. To calculate the moisture content, a sub-

sample of twigs and leaves was taken from each sample and weighed to determine their fresh

mass (FM). These sub-samples were oven-dried at 65 °C for 48 h and weighed for dry mass

(DM). Moisture content (MC; %) of the sub-samples was calculated as:

MC = (FM – DM)/DM × 100%

3.3.4 Testing for phylogenetic signal

A phylogeny for the 21 Dracophyllum species was obtained from a maximum

parsimony tree for visualizing the flammability variation across the 21 Dracophyllum species

() (Venter, 2009). However, this phylogeny does not have branch length and cannot be used

to calculate phylogenetic signal. A branch-length phylogeny was constructed with the

chloroplast-encoded genes rbcL and matK using MEGA 7 software () (Kumar et al., 2016).

The chloroplast-encoded genes rbcL and matK were obtained for 14 Dracophyllum species

from (Wagstaff et al., 2010). We used the R packages Picante (version 1.8) (Kembel et al.,

2010) and Phytools (version 0.6-99) (Revell, 2012) to calculate the phylogenetic signal,

Pagel’s λ (Pagel, 1999), which is is more appropriate than alternatives, such as Blomberg’s K

(Blomberg et al., 2003), for testing ecologically relevant traits (Molina-Venegas & Rodríguez,

2017). Pagel’s λ varies continuously from zero to unity. A value of λ = 0 indicates no

phylogenetic signal in the trait, i.e. that the trait has evolved independently of phylogeny and

thus close relatives are not more similar on average than distant relatives; λ = 1 indicates a

strong phylogenetic signal, and that the trait has evolved according to the Brownian motion

model of evolution. Intermediate values of λ indicate that although there is a phylogenetic

https://www.worldclim.org/
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signal in the trait, it has evolved according to a process other than pure Brownian motion

(Kamilar & Cooper, 2013).

3.3.5 Statistical analysis

All statistical analyses were conducted with R 3.5.0 (R Core Team, 2018). Principal

component analysis (PCA) of the four flammability components was performed to evaluate

the shoot flammability for every species using the princomp function in R. The value of the

first PCA component was positively correlated with all flammability components, and was

used as an aggregate index of shoot flammability (Wyse et al., 2016). All flammability

components were compared across species using one-way ANOVA. The proportion of

variation across/within populations were calculated by dividing the sum of squares

across/within populations by the sum of squares total using ANOVA. Leaf length, shoot

moisture and environmental conditions were compared with shoot flammability for each

species by using generalised linear regression. Associations among the index of shoot

flammability (PC1), leaf length and shoot moisture content were evaluated with partial

correlation analyses (using the Pearson method), controlling for leaf length or shoot moisture

content, using the R package ppcor (version 1.1) (Kim, 2015).

3.4 Results

3.4.1 Shoot flammability varies among Dracophyllum species

We collected 251 samples from 21 Dracophyllum species across the two main islands of

New Zealand, at elevations ranging from 80 m to 1260 m above sea level (Table 3-2, Figure

3-1). These species range from low-growing sprawling shrubs (e.g., D. densum, D. kirkii) to

small trees up to 14 m in height (D. elegantissimum). The proportion of variance in all shoot

flammability traits other than burning time (sustainability) was higher between species

(ignition score: 92.9%; maximum temperature: 51.4%; burning time: 44.0%; burnt biomass:

66.6%) than within species (ignition score: 7.1%; maximum temperature: 48.6%; burning

time: 56.0%; burnt biomass: 33.4%). The four shoot flammability components were

positively correlated (Table 3-3) and varied significantly across the Dracophyllum species

(ANOVA, ignition score: F20,230 = 150.50, P < 0.001; maximum temperature: F20,230 = 12.15,

P < 0.001; burning time: F20,230 = 9.03, P < 0.001; burnt biomass: F20,230 = 22.91, P < 0.001).

Some species (e.g. D. sinclairii and D. trimorphus) on average ignited within 1 s (ignition
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score > 9), while some species (e.g. D. fiordense and D. traversii) took longer than 8 s to

ignite (ignition score < 2). Mean burnt biomass per species ranged from 5.0% for D.

fiordense, to 90.0% in D. trimorphum. The mean maximum temperature of D. densum

reached 771.5 ± 23.0 °C (Mean ± one SE), while the mean maximum temperature of D.

fiordense was only 277.7 ± 61.7 °C. Mean burning time varied from 6.7 ± 4.2 s (D. fiordense),

to 157.6 ± 18.2 s (D. pronum). Dracophyllum fiordense was the least flammable of the 21

Dracophyllum species, with the lowest values for all four flammability components.

Dracophyllum traversii and D. elegantissimum also showed low flammability, requiring

more than 6 s to ignite and with burnt biomass less than 15%. The two most flammable

species were D. densum and D. pronum, with both sustaining a flame for more than two

minutes (Table 3-4).

A PCA was performed using the mean values of the four flammability components of

each species to assess overall shoot flammability across the 21 Dracophyllum species. The

values of the first two axes of the PCA explained 78.6% and 12.3% of the variation,

respectively (Figure 3-2). The loadings of the four flammability components on the first axis

were 0.491 (ignition score), 0.514 (maximum temperature), 0.448 (burning time) and 0.541

(burnt biomass). This index of shoot flammability (i.e. PC1) ranged from -4.50 to 2.45 and

was positively correlated with all flammability components. According to this index of shoot

flammability, D. densum, D. pronum, and D. marmoricola were the most flammable

Dracophyllum species, while D. fiordense, D. traversii and D. elegantissimum were the least.

The index of shoot flammability differed between the two subgenera, with species in

subgenus Dracophyllum significantly less flammable than those in Oreothamnus (Figure 3-2).

Another PCA was performed using the flammability components of all individual samples

and the results were similar (Figure 3-3).
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Figure 3-1 Public conservation lands where we collected Dracophyllum species.
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Table 3-2 DOC public conservation lands where we collected Dracophyllum species

DOC public conservation land Dracophyllum species
Korowai/Torlesse Tussocklands Park D. pronum; D. acerosum; D. rosmarinifolium
Arthur's Pass National Park D. longifolium; D. traversii
Conservation Area - Charleston D. townsonii; D. elegantissima; D. longifolium
Conservation Area - Mount Rochfort D. densum; D. plaustris; D. oliveri; D. rosmarinifolium
Lewis Pass Scenic Reserve D. rosmarinifolium
Kahurangi National Park D. filifolium; D. Rosmarinifolium; D. Marmoricola; D. Ophioliticus
Puponga Farm Park D. trimorphum
Mount Cook National Park D. rosmarinifolium; D. longifolium; D. kirkii
Westland/Tai Poutini National Park D. fiordense; D. rosmarinifolium; D. longifolium
Fiordland national park D. menziesii; D. rosmarinifolium; D. longifolium
Tongariro National Park D. subulatum; D. recurvum
Coromandel Forest Park D. sinclairii; D. latifolium

Table 3-3 Pearson’s correlation coefficient among four flammability variables, n = 251, ***: P <
0.001, **: P < 0.01, *: P < 0.05, ns: P >0.05. p values were adjusted with Bonferroni correction.

Flammability variables Maximum
temperature (°C)

Burning time (s) Burnt biomass
(%)

Ignition score 0.50*** 0.35*** 0.68***
Maximum temperature (°C) 0.53*** 0.76***
Burning time (s) 0.58***
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Table 3-4 The data we collected for Dracophyllum species.

The flammability traits (mean value±SE), leaf length, shoot moisture content (mean value±SE), geographic (mean value±SE), climatic conditions, distribution information
and subgenus information.

Species N Mean
ignition
score

Mean
maximum
temperature

(°C)

Mean
burning
time (s)

Mean burnt
biomass
(%)

PCA
component

1

Leaf length
(mm)

Mean shoot
moisture

content (%)

Altitude
(m)

Latitude (°) Latitude
range (°)

Mean
annual air
temperature

(°C)

Mean
annual
rainfall
(mm)

Subgenera Distribution

D. menzisii 8 6.1±0.3 694.0±23.5 41.1±6.1 69.4±2.7 0.052 155 46±0.5 949.05 -45.00 3.84 5.68 2541.05 DracophyllumSouth island
D. fiordense 7 0.7±0.4 277.7±61.6 6.7±4.2 5.0±3.5 -4.4987 550 52±1.3 1033.80 -44.46 1.50 6.00 3203.80 DracophyllumSouth island

D. elegantissimum 8 3.6±0.5 557.0±45.7 29.3±4.6 12.8±2.0 -2.3513 665 50±0.9 488.57 -41.47 1.45 10.42 2686.35 DracophyllumSouth island
D. latifolium 8 5.1±0.4 657.0±25.4 56.0±11.4 51.9±4.6 -0.4591 422.5 42±1.3 317.98 -36.75 4.30 13.85 1786.36 DracophyllumNorth island
D. townsonii 8 7.5±0.2 599.3±45.3 38.8±11.8 46.9±5.7 -0.5641 215 46±1.9 617.77 -41.92 1.72 9.82 3267.08 DracophyllumSouth island
D. traversii 7 1.1±0.5 295.8±63.4 20.1±10.7 10.0±3.8 -4.0606 195 47±1.0 900.61 -41.19 8.58 8.65 2894.30 Dracophyllum Both

D. rosmarinifolium 6 8.2±0.1 619.8±15.4 70.9±4.8 70.2±2.8 0.5811 24.25 44±0.5 1103.77 -43.21 5.47 7.13 2129.99 Oreothamnus Both
D. oliveri 7 8.9±0.1 658.1±40.3 39.9±7.2 64.3±6.7 0.3402 62.5 39±1.3 542.20 -43.25 4.36 9.40 2810.20 Oreothamnus South island
D. sinclairii 8 9.3±0.1 607.9±27.3 51.0±4.4 74.4±2.0 0.5685 66 42±2.4 97.67 -36.65 2.54 14.97 1367.71 Oreothamnus North island
D. longifolium 4 8.4±0.1 559.8±15.4 59.8±5.2 56.0±2.3 -0.0797 90 45±0.8 599.57 -44.47 11.77 8.09 2067.24 Oreothamnus Both
D. trimorphus 1 9.2±20.5 702.5±7.6 65.4±1.3 90.0±0.1 1.4653 32 30±1.4 70.00 -40.53 0.06 12.90 2286.50 Oreothamnus South island
D. filifolium 8 8.3±0.1 638.6±39.2 62.0±10.3 63.1±3.7 0.3992 95 40±1.2 711.93 -39.92 4.85 10.02 2298.34 Oreothamnus Both

D. marmoricola 8 8.9±0.1 698.1±32.5 87.0±10.8 89.4±1.5 1.6578 18.8 36±1.3 1504.20 -41.14 0.04 6.86 2660.20 Oreothamnus South island
D. pronum 7 8.1±0.1 696.1±31.3 157.6±18.2 79.3±4.3 2.2263 6.75 44±0.8 1275.37 -43.37 4.17 6.10 2160.32 Oreothamnus South island
D. densum 8 9.0±0.1 771.5±23.0 129.8±22.6 85.0±6.8 2.4479 14 27±0.9 984.00 -41.86 0.59 8.70 3411.00 Oreothamnus South island
D. kirkii 8 8.9±0.1 638.0±38.1 89.9±9.5 65.6±4.9 0.9548 30 43±1.3 1043.12 -43.26 3.79 6.04 3234.06 Oreothamnus South island

D. subulatum 8 8.9±0.1 695.5±27.3 75.9±4.1 88.1±2.3 1.4848 31.5 38±1.5 796.37 -38.89 1.17 9.71 2152.42 Oreothamnus North island
D. palustris 7 8.8±0.1 761.7±33.6 53.7±4.9 85.7±2.3 1.3728 20.5 38±1.2 606.14 -42.73 1.94 9.56 3128.00 Oreothamnus South island
D. acerosum 7 8.0±0.2 544.1±35.1 51.7±5.7 59.3±4.4 -0.2459 110 44±0.5 791.81 -43.47 1.40 8.66 1380.85 Oreothamnus South island
D. ophioliticus 8 8.9±0.1 438.8±20.4 36.0±8.7 38.1±3.9 -1.1621 35.5 44±1.2 854.25 -41.12 0.04 8.30 2359.25 Oreothamnus South island
D. recurvum 8 9.1±0.1 513.5±26.4 48.9±6.6 62.5±4.8 -0.1294 22.5 41±1.5 1261.70 -39.40 0.93 7.77 2646.96 Oreothamnus North island
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Figure 3-2 Difference in PCA component 1 between subgenera Dracophyllum and Oreothamnus (a); PCA of flammability variables (b). Blue points indicate
species in the subgenus Dracophyllum, red triangles indicate species in the subgenus Oreothamnus. In the box plots, the boundary of the box closest to zero
indicates the 25th percentile, a black line within the box marks the median, and the boundary of the box farthest from zero indicates the 75th percentile.

Whiskers left and right of the box indicate the 5th and 95th percentiles. ***: P<0.001 (ANOVA).
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Figure 3-3 The variation of PCA component 1 between subgenera Dracophyllum and Oreothamnus (a); PCA of flammability components of all individual
samples (b). Blue points indicate species in the subgenus Dracophyllum, red triangles indicate species in the subgenus Oreothamnus. In the box plots, the

boundary of the box closest to zero indicates the 25th percentile, a black line within the box marks the median, and the boundary of the box farthest from zero
indicates the 75th percentile. Whiskers left and right of the box indicate the 5th and 95th percentiles. ***: P<0.001 (ANOVA).
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3.4.2 Shoot flammability across Dracophyllum shows phylogenetic conservatism

Although shoot-level flammability varied significantly across Dracophyllum species

(ANOVA, PC1: F20,230 = 29.3, P < 0.001), integrating the flammability data and phylogenetic

data showed that closely-related species tended to have similar flammability (Figure 3-5). We

divided the 21 species into six identified clades (Figure 3-5) based on their phylogenetic

relatedness. Variation in flammability variables, except maximum temperature, was higher

among clades (index of flammability: 65.9%, ignition score: 70.9%, burning time: 76.0%,

maximum temperature: 44.5%, burnt biomass: 62.3%) than among species (index of

flammability: 34.1%, ignition score: 29.1%, burning time: 24.0%, maximum temperature:

55.5%, burnt biomass: 37.7%). The phylogenetic signal across a subset of 14 of the 21

Dracophyllum species (Figure 3-4) showed that flammability components, except burning

time, were highly phylogenetically conserved, and the index of shoot flammability showed

significant phylogenetic signal (Table 3-5). Although shoot flammability showed

phylogenetic conservatism, it exhibits obvious lability between some closely related species;

for example, D. menzisii and D. fiordense are closely related, but their shoot flammability

differs significantly (ANOVA, P < 0.001 for all flammability components, Figure 3-5).

Figure 3-4 Molecular phylogeny of 14 Dracophyllum species. The molecular phylogeny was
constructed by the maximum likelihood method with matK and rbcL sequences (Wagstaff et al. 2010).



44

Table 3-5 Phylogenetic signal of shoot flammability variables, leaf length and shoot moisture content
across 14 Dracophyllum species (Figure 3-5). Bold denotes significant (P < 0.05).

Flammability components
Pagel’s λ

λ value p
Ignition score 0.994 <0.001

Maximum temperature 0.923 0.031

Burning time 0.344 0.092

Burnt biomass 0.910 0.027

PC1 0.914 0.010

Shoot moisture content 0.260 0.241

Leaf length 0.987 <0.001
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Figure 3-5 The integration of phylogeny of the genus Dracophyllum, shoot flammability data, leaf length and shoot moisture content. The phylogeny and
drawings were obtained from (Venter 2009). Color of branches in phylogeny indicates subgenera. Green data bars indicate the mean value of shoot

flammability traits, leaf length and shoot moisture content. Color of data bars in the right section of the figure indicates positive (brown - high flammability)
or negative (blue - low flammability) values in the index of shoot flammability. The drawings are underlined species D. rosmarinifolium, D. subulatum, D.

ophioliticum, D. densum, D. oliveri and D. fiordense from top to bottom.
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3.4.3 Shoot flammability of Dracophyllum species decreases with leaf size and shoot
moisture content

Leaf size varied across Dracophyllum species and discriminated the sub-genera with

Dracophyllum having longer leaves than Oreothamnus. Shoot flammability of Dracophyllum

species was negatively associated with leaf length (R2 = 0.525, P < 0.001, Figure 3-6); that is,

species with longer leaves were less flammable. Ignition score and burnt biomass were

negatively related to leaf length, while maximum temperature and burning time were less

strongly related (Table 3-6). Shoot moisture content was significantly negatively correlated

with shoot flammability (R2 = 0.536 and P < 0.001 for PC1, Figure 3-6, Table 3-6). Partial

correlation analysis showed that shoot flammability (PC1) is significantly correlated with

shoot moisture content (r = -0.53, P = 0.016) and leaf length (r = -0.55, P = 0.013), after

controlling for leaf length and shoot moisture content, respectively. The phylogenetic signal

of leaf length and shoot moisture content showed that leaf length was highly phylogenetically

conserved, while shoot moisture content was not phylogenetically conserved (Table 3-5).

Table 3-6 Leaf length and shoot moisture content in relation to flammability components across 21
Dracophyllum species. Bold denotes significant (P < 0.05).

Leaf length Shoot moisture

content

PC1 R2=0.525, P<0.001 R2=0.536, P<0.001

Ignition score R2=0.647, P<0.001 R2=0.393, P=0.002

Maximum temperature R2=0.209, P=0.037 R2=0.446, P<0.001

Burning time R2=0.283, P=0.013 R2=0.277, P=0.014

Burnt biomass R2=0.590, P<0.001 R2=0.575, P<0.001



47

Figure 3-6 The relationship between the index of shoot flammability (PC1) and moisture content (a), and leaf length (b). The shaded area indicates the range
of the 95% confidence intervals. Blue points indicate subgenus Dracophyllum species, red triangles indicate subgenus Oreothamnus species.



48

3.4.4 Shoot flammability of Dracophyllum species has no relationship with their
distribution

The latitudinal range of Dracophyllum species had no relationship with their shoot

flammability (Table 3-7). Of the 21 Dracophyllum species, four species occurred only in the

North Island and 13 species only in the South Island (Table 3-4). Shoot-level flammability of

Dracophyllum species did not differ between the two main islands of New Zealand (Figure

3-7). Geographic and climatic conditions (latitude, elevation, mean annual air temperature

and mean annual rainfall) were not correlated with shoot-level flammability (Table 3-7,

Figure 3-8).

Table 3-7 The relationship between flammability components and environmental conditions.

Flammability
components Altitude (m) Latitudinal

range (°) Latitude (°)

Mean annual
air
temperature
(°C)

Mean annual
rainfall (mm)

Ignition score P = 0.860 P = 0.320 P = 0.524 P = 0.600 P = 0.326

Burning time P = 0.102 P = 0.325 P = 0.928 P = 0.439 P = 0.861

Maximum
temperature

P = 0.745 P = 0.366 P = 0.660 P = 0.424 P = 0.793

Burnt biomass P = 0.787 P = 0.790 P = 0.547 P = 0.664 P = 0.391
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Figure 3-7 Variation in flammability components between North Island and South Island Dracophyllum species. In the box plots, the boundary of the box
closest to zero indicates the 25th percentile, a black line within the box marks the median, and the boundary of the box farthest from zero indicates the 75th
percentile. Whiskers up and down of the box indicate the 5th and 95th percentiles. Species that were distributed on both islands were not included in the

analysis. Blue points indicate subgenus Dracophyllum species, red triangles indicate subgenus Oreothamnus species. NS: P>0.05 (ANOVA).
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Figure 3-8 Flammability components in relation to environmental conditions. Blue points indicate subgenus Dracophyllum species, red triangles indicate
subgenus Oreothammnus species.
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3.5 Discussion

Plant flammability can vary widely across species (Engber & Varner, 2012; Fuentes-

Ramirez et al., 2016; Simpson et al., 2016; Wyse et al., 2016; Padullés Cubino et al., 2018).

However, how the components of flammability vary between closely related species and

whether such species have similar flammability, especially at the shoot-level, has rarely been

reported (Engber & Varner, 2012; Cornwell et al., 2015). Based on quantitative measures of

shoot flammability from many species of a highly polymorphic genus (Dracophyllum), we

demonstrated that flammability can vary widely at the genus level. For example, some

Dracophyllum species, such as D. trimorphum, had on average 90% of their biomass

consumed by fire in our device, while individuals of some other species (e.g. D. fiordense)

could not be ignited. The existence of high flammability among Dracophyllum species

confirms that high flammability species can occur in communities that rarely experience fire

(Bowman et al., 2014; Calitz et al., 2015; Wyse et al., 2016; Cui et al., 2020). Despite the

wide variation in the genus, shoot flammability was generally more similar in close relatives

than distant relatives. Thus, although flammability is a compound trait affected by many

functional traits, it retains phylogenetically conserved patterns. Phylogenetic analysis of the

shoot flammability of 194 vascular plant species (from 72 families) showed a statistically

significant phylogenetic signal in shoot flammability across the Trachaeophyta (Cui et al.,

2020), indicating that flammability was phylogenetically conserved at higher taxonomic

levels.

The phylogenetic component of shoot flammability is consistent with the notion that

flammability, as an emergent trait, may be selected for. However, a more likely explanation

for the patterns of flammability seen in New Zealand Dracophyllum is that flammability is an

incidental or emergent property, and it is environmentally determined (Snyder, 1984, Midgley,

2013). The variation in flammability between the closely related species D. menzisii and D.

fiordense provided evidence for flammability being affected by the environment.

Dracophyllum menzisii, which mainly grows on mountain slopes, has never been recorded in

forest communities and is the only true grassland species in the genus; while D. fiordense

usually occurs in high rainfall areas and receives additional moisture from mist (Venter, 2009).

The difference in flammability between these two closely related species may be a result of

adaptation to different environments, indicating that flammability is environmentally

determined in this case.
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The subgenus Oreothamnus diverged from subgenus Dracophyllum in the Pleistocene

approximately 1-2 MYA and evolved to be more flammable (Gibbard & Van Kolfschoten,

2004; Wagstaff et al., 2010). Fire in most regions of New Zealand is believed to have been

infrequent prior to human settlement, although charcoal is found in New Zealand sediments of

all ages (Ogden et al., 1998; Perry et al., 2014). This low fire frequency suggests that fire was

not a selective force during the divergence of low/high flammability subgenera in

Dracophyllum. A more likely selective force than fire during this period may have been the

shifts in climate associated with glacial-interglacial periods. The repeated climatic changes

and glaciation during the Pleistocene are believed to have shaped the New Zealand flora

(Wardle, 1988; Winkworth et al., 2005; Heenan & McGlone, 2013; Millar et al., 2017). The

cold and dry climate of glacial periods may have influenced the origin and evolution of

Oreothamnus species, and selected for certain traits, such as smaller leaves, that facilitated

frost and drought tolerance (Lusk et al., 2016; Reichgelt et al., 2017), and that incidentally

increased flammability. Consequently, we conclude that high shoot-level flammability in

Oreothamnus is an incidental or emergent property associated with leaf-form as selected

through the glacial cycles of the Pleistocene. This result indicates that flammability could be

an incidental property, at least in ecosystems with little fire.

Linking functional traits to flammability can facilitate the prediction of flammability

across species (Alam et al., 2019). Different plant traits may influence different aspects of

flammability, and traits important for crown fire behavior will differ from those important for

surface fires (Schwilk & Caprio, 2011). Many studies exploring the influence of traits on

flammability have considered the flammability of small plant components, mostly leaves and

small twigs (Alessio et al., 2008; De Lillis et al., 2009; Engber & Varner, 2012; Murray et al.,

2013; Grootemaat et al., 2015; Pausas et al., 2016; Simpson et al., 2016). The flammability of

these small components may not adequately represent the flammability of an entire plant.

Shoot level flammability is likely to be a better surrogate for whole plant flammability than

flammability of small fragments, although it does not fully capture the influence of plant

architecture, especially for tall trees. For example, branch shedding can be important in

lessening flammability of conifers, but is not captured by shoot flammability. Moisture

content is generally accepted to be a strong determinant of fuel flammability

(Dimitrakopoulos & Papaioannou, 2001; Ganteaume et al., 2010; Grootemaat et al., 2015).

Leaf size affects litter flammability (Schwilk & Caprio, 2011; Cornwell et al., 2015), but how

leaf size influences canopy fires has not been adequately studied. That shoot-level

flammability of Dracophyllum species was negatively correlated with leaf size and shoot

moisture content, suggests that shoot moisture content and leaf size can predict the shoot
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flammability of unmeasured Dracophyllum species. However, whether leaf size is negatively

correlated with shoot flammability at higher taxonomic levels or across species in other

genera is unclear. For example, Padullés Cubino et al., (2018) found leaf length to be

positively related to shoot flammability in species from tussock grasslands, while Alam et al.,

(2020) found no correlation between leaf length and shoot flammability in an analysis of 43

tree and shrub species.

We have demonstrated that shoot-level flammability of 21 Dracophyllum species varied

widely and was negatively correlated with leaf size and shoot moisture content. Shoot-level

flammability showed phylogenetic conservatism across the Dracophyllum phylogeny, but also

occasional lability between some closely related species, perhaps due to differing habitats.

Subgenus Oreothamnus, which arose (1-2 MA) in the Pleistocene and may have evolved in

the absence of fire, exhibited high flammability, suggesting that the climate of the Pleistocene

may have favoured and selected for characteristics, such as smaller leaves, that were suited to

other functions (e.g. drought and frost tolerance) and incidentally increased shoot-level

flammability. Our study has provided evidence that, at least in relatively fire-free

environments, high flammability could be an incidental or emergent property that is

comprised of traits that arose in response to selective forces independent of fire. However,

other studies have suggested that flammability can evolve in fire-prone habitats (Pausas et al.

2012, Moreira et al. 2014, Cui et al. 2020), emphasising the importance of considering fire

regimes when examining the evolution of plant flammability.
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4.1 Abstract:

Flammability is a compound trait that varies significantly across natural populations

within species. Investigating the causes of intraspecific variation in flammability can provide

insights into the evolution of plant flammability.

We measured four flammability variables, representing ignitibility (time to ignition),

sustainability (total burning time), combustibility (maximum temperature during burning) and

consumability (percentage of biomass consumed by fire) to assess the shoot-level

flammability of 62 individuals from eight populations of Dracophyllum rosmarinifolium (G.

Forst.) (Ericaceae), a polymorphic species distributed throughout New Zealand. To explore

the potential factors that influenced the intraspecific variation in flammability, we examined

the relationship between flammability and a suite of climatic and geographic variables,

namely elevation, latitude, mean annual air temperature and mean annual precipitation of the

sample locations.

All flammability components and moisture content varied significantly across the

eight populations. Populations at higher elevations had higher combustibility and populations

at lower latitude had higher ignitibility. Mean annual air temperature and mean annual

precipitation of the sample locations didn’t related to flammability components. Shoot

moisture content was not related to environmental variables.

Elevation appears to have influenced the intraspecific variability of flammability

within D. rosmarinifolium, suggesting that shoot flammability may be influenced by habitat

environment in the largely fire-free environment of New Zealand.

Key words: flammability; Dracophyllum; New Zealand; evolution; elevation; latitude
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4.2 Introduction

Plant flammability is an important determinant of fire behavior in terrestrial

ecosystems and plays a fundamental role in ecosystem dynamics and species evolution

(Belcher et al. 2010; Bond and Scott 2010; Pausas et al. 2012; Belcher and Hudspith 2017).

Exploring the factors that have influenced plant flammability can help us predict changes in

wildfire hazard and behaviour in a given ecosystem, and provide insights into the evolution of

plant flammability. A micro-evolutionary approach, involving investigation of variation in

traits within species or populations, is useful for identifying the factors that may have

influenced the evolution of plant traits (Merilä et al. 2001; Pausas 2015). Several micro-

evolutionary studies have examined potential factors in the evolution of flammability or fire-

related traits (Pausas et al. 2012; Pausas et al. 2016; Battersby et al. 2017). Pausas et al. (2012)

showed that individuals of the Mediterranean shrub species Ulex parviflorus (Mediterranean

gorse, Fabaceae) from sites with a history of frequent fire were more flammable than those

growing in sites without recurrent fire. These findings suggest that the flammability of U.

parviflorus has increased due to recurrent fires (Pausas et al. 2012; Moreira et al. 2014). A

study on bark thickness of pines suggested that frequent anthropogenic fires could be a

powerful selection force for thick bark (Stephens and Libby 2006), although thick bark has

been observed in species not exposed to frequent fires (Lawes et al. 2014; Richardson et al.

2015). In Leptospermum scoparium (mānuka, Myrtaceae), serotinous populations were rarely

found at sites with no history of fire and serotiny was generally stronger (proportion of closed

capsules) in populations where the landscape had experienced some fire; however, no

association was found between shoot-level flammability and Holocene site fire history, nor

flammability and serotiny (Battersby et al. 2017).

Micro-evolutionary studies of plant flammability remain rare, and most of them have

attempted to relate flammability or flammability-related traits to fire regimes in fire-prone

regions (Stephens and Libby 2006; Pausas et al. 2012; Moreira et al. 2014). Although the

hypothesis that flammability is selected by fire has received support (Archibald et al. 2018;

Cui et al., 2020), there is still the possibility that flammability is a result of exaptations,

whereby increased flammability is an incidental or secondary result of selection for traits,

such as water-use efficiency or nutrient retention, that increased individual fitness (Gould and

Vrba 1982; Snyder 1984; Midgley 2013), especially in non-fire-prone ecosystems ((Mason et

al. 2016). New Zealand has a history of low fire frequency prior to human arrival (Perry et al.

2014; Kitzberger et al. 2016), and most ecosystems in New Zealand are unlikely to have been

influenced by fire before human arrival (Ogden et al. 1998; Lawes et al. 2014; Perry et al.
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2014). Therefore, the New Zealand flora provides an opportunity to better examine the

influence of environmental factors on plant flammability and, investigate whether

flammability could have been affected by exaptations in the absence of selective pressure

from fire.

Dracophyllum Labili. (Ericaceae) is found in Australia, New Zealand and nearby

oceanic islands, and reaches its highest species richness and morphological diversity in New

Zealand, ranging from low-growing subshrubs to trees (Venter 2009; Wagstaff et al. 2010).

Dracophyllum rosmarinifolium is an extremely polymorphic species and occurs in different

habitats across New Zealand: mountain gullies, mountain slopes ranging from 0°–80° in

steepness, ridges, bluffs, plateaus and valley floors from 152–2100 m elevation (Venter 2009).

Widespread species are often specialized to particular local environmental conditions (Joshi et

al. 2001). It is unclear whether D. rosmarinifolium has adapted to local habitats, but it shows

considerable variation in morphological characters, such as leaf length, branching habit and

height, across populations (Venter 2009). These polymorphic characteristics and its

occurrence in diverse habitats make D. rosmarinifolium a good model for micro-evolutionary

study.

In this study we collected and measured the shoot flammability of 62 D.

rosmarinifolium individuals from eight populations. We examined the variation of

flammability among populations and sought to identify the geographic and environmental

factors (elevation, latitude, mean annual air temperature and mean annual precipitation of the

sample locations) correlated with intraspecific variation in plant flammability.

4.3 Materials and methods

4.3.1 Sample collection

Eight sites were selected for sample collection (Figure 4-1), using the information on

species distributions from (Venter 2009), iNaturalist (https://inaturalist.nz/) and the Allan

Herbarium. The eight collections sites spanned a large proportion of the latitudinal range of D.

rosmarinifolium in the South Island, New Zealand and are believed to have an historical low

fire frequency, as fire frequencies were low across most of New Zealand prior to human

settlement, with the exception of some wetland systems in the North Island (Ogden et al.

1998; Rogers et al. 2007; Perry et al. 2014). Eight samples of D. rosmarinifolium were

collected from each site (except for two of the sites, where seven samples were collected).

Healthy terminal shoots of 70 cm length were cut from healthy individuals, preserving branch

architecture, and kept in separate sealed plastic bags to prevent moisture loss. The shoot
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samples were kept cool when collecting and then stored at 4-8 °C on the same day. All

samples were collected over one summer (2018-2019) to eliminate the influence of seasonal

and annual variability, and were burned within one week of collection.

4.3.2 Flammability measurement

Shoot flammability was measured for each sample following the methods described

by Jaureguiberry et al. (2011) and Wyse et al. (2016), using the same device as Wyse et al.

(2016). Prior to burning, all shoot samples were air-dried at room temperature for 24 h to

match the sample moisture content to the ignition source (Wyse et al. 2016, 2018). For the

flammability measurements, samples were first placed on our device for preheating for two

minutes at 150 °C. Then, a blowtorch was turned on for 10 s to ignite the samples. Ignitability

was represented by an ignition score (Padullés Cubino et al. 2018). Ignitability was recorded

first as time to ignition (between 0 and 10 s), which was converted to an ignition score by

subtracting the time to ignition from 10, e.g. a sample that took 1 s to ignite (i.e. rapid ignition)

had an ignition score of 9. Samples that did not ignite after 10 s were given a zero value. The

maximum temperature of flames during burning was recorded using an infrared laser

thermometer (Fluke 572; Fluke Corp., Everett, WA, USA) to represent combustibility.

Samples that failed to ignite were given a value of 150 °C, representing their grill temperature

(Padullés Cubino et al. 2018). Sustainability was measured as the period of time that a sample

burned for (had flaming combustion) after the blowtorch was turned off. Consumability was

recorded as the mean value of the percentage of burnt biomass after flaming combustion

ceased, assessed by visual observation by at least two observers. Samples that did not sustain

a flame after the blowtorch was turned off were assigned zero for sustainability and

consumability.

4.3.3 Data collection

GPS coordinates and the elevation of the collection sites were recorded during

collection. Interpolated climate data (annual mean air temperature and mean annual

precipitation) for each collection site were obtained using a spline model (Hutchinson 1991,

Wratt et al. 2006). To calculate the sample’s moisture content of, a sub-sample of twigs and

leaves was taken from each sample and weighed to determine their fresh mass (FM). These

sub-samples were then oven-dried at 65 °C for 48 h and weighed for dry mass (DM).

Moisture content (MC; %) of the sub-samples was calculated as:

MC = (FM – DM)/DM × 100%
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4.3.4 Statistical analysis

Principal components analysis (PCA) of the four flammability components was

performed to evaluate the shoot flammability for every sample using the princomp function in

R. The flammability components, PC1, and PC2, were compared across the eight populations

using one-factor ANOVA and Tukey’s test. Environmental conditions (latitude, elevation,

mean annual air temperature and mean annual rainfall) were used for regression analysis with

flammability variables of each sample using generalised linear regression. All statistical

analyses were conducted in R 3.5.0 (R Core Team 2018).

4.4 Results

4.4.1 Shoot flammability varies significantly across D. rosmarinifolium populations

We collected 62 shoot samples in total across the eight sites, ranging from 840 m to

1310 m in elevation and from -41.1977 ° to -44.8137 ° in latitude (Figure 4-1, Table 4-1). All

the samples ignited successfully on our device during the flammability measurements. The

proportion of variance in shoot moisture content and all the shoot flammability traits, except

burning time, was higher among populations (shoot moisture content: 64.6%, ignition score:

60.1%; maximum temperature: 70.9%; burning time: 44.7%; burnt biomass: 87.5%) than

within populations (shoot moisture content: 35.4%, ignition score: 39.9%; maximum

temperature: 29.1%; burning time: 55.3%; burnt biomass: 22.5%). All flammability

components and shoot moisture content varied significantly across the populations (Figure

4-2, ANOVA: P<0.001). Individuals from Homer Tunnel had the lowest mean value of

ignition score (7.31±0.09), maximum temperature (439.50±29.34 °C), and burnt biomass

(33.75±4.51 %). The Lewis Pass population had the shortest burning time (23.14±3.89 s). The

maximum temperature and burnt biomass of Homer Tunnel and Lewis Pass were both

significantly lower than other populations (Figure 4-2). The Lewis Pass individuals had low

values for burning time (23.14±3.89 s), maximum temperature (456.00±31.86 °C) and burnt

biomass (36.43±2.37 %), and had a high value in ignition score (8.71±0.10). Samples from

Mt Arthur were the most flammable with the highest mean value of ignition score (8.81±0.09),

maximum temperature (724.38±30.56 °C), and burnt biomass (88.75±1.57 %). The longest

burning time occurred in the Alex Knob population, with a mean value of 93.88 ±18.12 s.
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Shoot moisture content is positively correlated with burning time, while not significantly

correlated with other flammability components (Table 4-2).

Figure 4-1 Map of New Zealand displaying collection sites in this study. Blue points indicate the
collection sites. Orange points indicate the observations (until May 2019 on iNaturalist) of D.

rosmarinifolium, showing the range of D. rosmarinifolium.
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Table 4-1 Mean flammability scores, location details, elevation and interpolated climate data for collection sites of D. rosmarinifolium.

Sites N

Flammability scores Environmental conditions

Mean ignition
score

Mean
maximum
temperature

(°C)

Mean burning
time (s)

Mean burnt
biomass (%) Mean PC1 Mean PC2 Latitude

(°)
Longitude

(°)
Elevation

(m)

Mean
annual air
temperature

(°C)

Mean annual
rainfall (mm)

Alex Knob 8 8.4±0.2 680.1±31.3 93.9±18.1 76.3±4.3 1.1±0.5 0.2±0.3 -43.4242 170.1495 1200 6.77 5675
Homer Tunnel 8 7.3±0.1 439.5±29.3 44.5±6.4 33.8±4.5 -2.9±0.3 -1.5±0.2 -44.7638 167.9890 920 4.55 6521

Key Summit 8 7.9±0.3 674.8±16.6 105.0±7.8 86.3±1.3 1.4±0.1 -1.1±0.5 -44.8137 168.1286 910 7.10 4805

Korowai-Torlesse 7 7.9±0.1 677.3±16.8 77.0±10.3 86.4±1.4 0.8±0.2 -0.8±0.2 -43.2915 171.7441 1100 7.32 1236

Lewis Pass 7 8.7±0.1 456.0±31.9 23.1±3.9 36.4±2.4 -2.7±0.3 1.6±0.2 -42.3779 172.4007 840 7.81 2747

Mt Arthur 8 8.8±0.1 724.4±30.6 81.3±7.4 88.8±1.6 1.6±0.2 1.2±0.1 -41.1977 172.7119 1310 6.21 2279

Mt Cook 8 8.3±0.1 618.3±19.0 81.1±16.1 75.6±3.5 0.4±0.4 -0.0±0.2 -43.7142 170.0780 1140 6.97 4927

MT Rochford 8 8.3±0.1 674.5±15.3 55.8±4.8 75.6±2.4 0.2±0.2 0.3±0.2 -41.7786 171.7428 1020 8.58 3539
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Figure 4-2 Variation in flammability components and shoot moisture content across populations. a: ignition score, b: burning time, c: maximum temperature, d:
burnt biomass, e: shoot moisture content. Points indicate the individual samples. Colour of the points indicates the populations. Whiskers indicate the 95% percentile.

Populations with the same letter code are not significantly different, based on Tukey’s multiple comparisons of means (P<0.05).
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A PCA was conducted with the four flammability components of all samples (Figure

4-3a). The values of the first two axes of PCA explained 61.6% and 24.5% of the variation,

respectively. Burning time, maximum temperature and burnt biomass were positively

correlated with each other. The ignition score was independent of other flammability

components (Table 4-2). The scores on the first axis represent an integrated measure of

combustibility, sustainability and consumability, and the second axis describes ignitability.

Multiple comparisons of PC1 and PC2 across populations showed that they varied

significantly (ANOVA: P < 0.001, Figure 4-3). The PC1 scores for the Homer Tunnel and

Lewis Pass populations were significantly lower than for the other six populations, which had

a similar value of PC1. Homer Tunnel population has the lowest value of both PC1 and PC2,

indicating individuals from Homer Tunnel were least flammable. Lewis Pass samples have a

very low value in PC1, however, these individuals also have the highest values in PC2,

showing that these individuals ignited most readily.

Table 4-2 Pearson’s correlation coefficient among four flammability variables. n = 62, NS: P>0.05;
***: P < 0.001. p-values were adjusted with Bonferroni correction.

Flammability variables Maximum
temperature (°C)

Burning time (s) Burnt biomass
(%)

Ignition score 0.24NS 0.029NS 0.24NS

Maximum temperature (°C) 0.58*** 0.87***

Burning time (s) 0.65***
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Figure 4-3 a: Principal components analysis (PCA) of flammability components (ignition score, burning time, maximum temperature and burnt biomass), b: The
variation of PC1 across the populations, c: the variation of PC2 across the populations. Points indicate the individual samples. Colour of the points indicates the

populations. Whiskers indicate the 95% percentile. Populations with the same letter code are not significantly different, based on Tukey’s multiple comparisons of
means (P<0.05).
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4.4.2 The environment of habitat influences shoot flammability

To explore which factors may influence intraspecific variability in flammability of D.

rosmarinifolium, interpolated environmental data (mean annual air temperature and mean

annual rainfall) and geographic conditions (elevation and latitude) of collection sites were

analyzed against the flammability variables.

Elevation was positively correlated with combustibility of D. rosmarinifolium. Higher

elevation populations had higher values in maximum temperature (Figure 4-4). Latitude was

positively correlated with ignitibility; populations at lower latitude had higher ignition score.

Mean annual temperature and mean annual rainfall were not related to shoot flammability.

Shoot moisture content was not related to flammability components and environmental

conditions (Table 4-3).

Table 4-3 The relationship between flammability components and environmental conditions. NS:
P>0.05; *: P<0.05. Bold typeface indicates P values that <0.05.

Flammability
components Elevation (m) Latitude (°) Mean annual air

temperature (°C)
Mean annual
rainfall (mm)

Shoot moisture
content (%)

Ignition score P=0.299NS R2=0.621, P=0.020* P=0.225NS P=0.261NS P=0.743NS

Burning time (s) P=0.167NS P=0.198NS P=0.943NS P=0.799NS P=0.150NS

Maximum
temperature (°C) R2=0.424, P=0.048* P=0.429NS P=0.389NS P=0.411NS P=0.777NS

Burnt biomass (%) P=0.076NS P=0.618NS P=0.424NS P=0.383NS P=0.839NS

Shoot moisture
content (%) P=0.655 NS P=0.205NS P=0.192NS P=0.082NS
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Figure 4-4 Relationship among flammability components, latitude and elevation of habitat. Points indicate populations. Colour indicates the population.
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4.5 Discussion

Micro-evolution can be observed in nature and in the laboratory, while macro-

evolution cannot usually be directly witnessed as it occurs over intervals that far exceed the

human lifespan (Reznick and Ricklefs 2009). Plant populations can change rapidly in

response to altered environmental conditions within dozens of generations (Bone and Farres

2001; Gómez-González et al. 2011; Moreira et al. 2014). Such rapid evolutionary changes

allow us to observe evolution over a short period of time and identify its potential drivers.

Previous micro-evolutionary studies of plant flammability have focused on the influence of

fire regimes (Pausas et al. 2012; Battersby et al. 2017) or fire-related traits (Stephens and

Libby 2006; Hernández-Serrano et al. 2013). However, flammability may be an emergent

property determined by local environments, rather than a trait directly selected for by fire

(Snyder 1984; Midgley 2013). The influence of environmental conditions, rather than fire, on

plant flammability has been rarely reported. Here we conducted our experiments in New

Zealand, where fire was unlikely to have strongly influenced the evolution of plants (Ogden et

al. 1998; Lawes et al. 2014; Perry et al. 2014), to better examine how environmental factors

could influence plant flammability. We found that shoot flammability of D. rosmarinifolium

increased with elevation and decreased with latitude. Our findings indicate that the

environment of habitat has influenced the flammability of D. rosmarinifolium, suggesting that,

at least in non-fire prone environments, flammability can be an emerged property that could

be a result of exaptations (Gould and Vrba 1982; Snyder 1984).

Elevational and latitudinal gradients are commonly examined in ecological and

evolutionary studies (Körner 2007; Swenson and Enquist 2007). A change in elevation is

usually accompanied by changes in a range of environmental variables, including atmospheric

pressure, air temperature and solar radiation (Blumthaler et al. 1997; Körner 2007). The

changes in environmental conditions with elevation can cause genetic and phenotypic changes

within species (Ronghua et al. 1984; von Arx et al. 2006; Giordano et al. 2007; Swenson and

Enquist 2007; Gonzalo-Turpin and Hazard 2009; Scheepens et al. 2010; Montesinos-Navarro

et al. 2011). For example, Festuca eskia Ramond (Poaceae), a perennial alpine grass common

in the Pyrenean Mountains, was found to be adapted to local climate and has a reduced plant

stature with increasing elevation (Gonzalo-Turpin and Hazard 2009). In D. rosmarinifolium,

combustibility increased with elevation; shoot moisture content, however, did not change with

elevation (Table 4-3). Increased elevation may affect flammability-enhancing plant traits
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other than moisture content, such as leaf characteristics or plant architecture (DeLucia and

Berlyn 1984; Schwilk 2003; Ma et al. 2010; Alam et al. 2019). Temperature decreases with

increasing elevation, which would act to cause the decrease in plant flammability. However,

we observed flammability to increase with elevation, suggesting that other environmental

factors, such as solar radiation, which also change with elevation (Körner 2007), play more

important roles than air temperature in influencing plant flammability-related traits.

Latitude also predicts intraspecific variability of flammability in D. rosmarinifolium.

Latitude is an important determinant of local environmental conditions that can lead to the

evolution of different local varieties within a given species (Winn & Gross 1993; Li et al.

1998; Hultgren et al. 2018). Latitude captures a complex environmental gradient, along which

temperature, solar radiation and soil conditions can all vary (Li et al. 1998). Trait variation

among plant populations along latitudinal gradients has been extensively investigated (Li et al.

1998; Oleksyn et al. 2003; Santamaría et al. 2003; Kollmann & Bañuelos 2004; Molina-

Montenegro & Naya 2012). Our results demonstrated that ignitability increased with a

decrease in latitude, that is, more northern individuals in our southern hemisphere study were

more easily ignited.

Temperature and precipitation have been suggested to be major climatic determinants

of plant traits (Woodward and Williams 1987; Choat et al. 2007; Franks et al. 2007; Sandel et

al. 2010; Moles et al. 2014). Many functional traits of plant are correlated with temperature,

including leaf nutrient content (Reich and Oleksyn 2004), specific leaf area (Rosbakh et al.

2015) and wood density (Swenson and Enquist 2007), while mean annual precipitation is

correlated with traits, such as plant hydraulics (Choat et al. 2007) and leaf venation (Sack and

Scoffoni 2013). However, our study showed that mean annual temperature and mean anuual

precipitation of habitat were not related with flammability components of D. rosmarinifolium

individuals.

Intraspecific variation of shoot-level flammability among D. rosmarinifolium

populations suggested that flammability is influenced by local environmental conditions. Our

results are consistent with plant flammability being an emergent property that may be

determined by environment (Snyder 1984; Midgley 2013). However, these conclusions

should be interpreted as a hypothesis, as we are uncertain whether the variation in

flammability is heritable or a result of phenotypic plasticity (e.g. whether there is a genetic

difference across the populations) (Schlichting 1986; Sultan 1987, 1995). Further studies,

such as reciprocal transplant experiments and genetic studies, are needed to explore whether
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the flammability variability is inheritable. In addition, more flammability-related traits should

be measured to help ascertain why flammability differs among populations.

4.6 Conclusion

Dracophyllum rosmarinifolium individuals from populations at higher elevations and

lower latitudes tend to be more flammable. Our findings suggest that the environment of

habitat has influenced the intraspecific variability of flammability within D. rosmarinifolium,

and that shoot flammability may be an emergent property that is comprised of exaptations in

the largely fire-free environment of New Zealand.
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Chapter 5

General discussion

Fire has influenced the evolution of land plants, and land plants have influenced fire

characteristics since their appearance on earth around 420 MYA (Bond and Keeley 2005,

Keeley et al. 2011, Schwilk and Caprio 2011). To improve our knowledge of the long-term

interactions between fire and plants, I explored the phylogenetic patterns and evolution of

plant flammability, as well as examined the potential factors that influence the occurrence of

high or low flammability in different taxa and at different taxonomic scales. I have found that

differences in flammability can arise even in the virtual absence of fire; however, highly

flammable plants were much more likely to occur in fire-prone environments. Flammability

of plants may have been the result of selection by fire regimes as well as emerging

incidentally in the absence of fire as a selective force.

5.1 The phylogenetic patterns of shoot-level flammability of plants

Plant flammability varies widely across species (Engber and Varner 2012, Fuentes-

Ramirez et al. 2016, Simpson et al. 2016, Wyse et al. 2016, Padullés Cubino et al. 2018).

However, variation in flammability across closely related species, and whether such species

have similar flammability, especially at the shoot-level, has rarely been reported (Engber and

Varner 2012, Cornwell et al. 2015). An understanding of broad-scale phylogenetic patterns in

plant flammability would enhance our knowledge of the evolution of flammability and why

certain species are more flammable than others, thus helping us prepare for a warmer world

(Moritz et al. 2014, Doerr and Santín 2016). Previous studies (He et al. 2011, He et al. 2012)

have mostly used qualitative rather than quantitative measures of flammability, which reduces

the scope of available comparative phylogenetic analyses, such as estimating phylogenetic

signal. Furthermore, quantitative measures of flammability appropriately represent

flammability as a continuous rather than binary trait. Cornwell et al. (2015) and Engber &

Varner (2012) quantitatively compared litter flammability across 39 gymnosperm and 18 oaks

species, respectively, but litter flammability is unlikely to reflect the flammability of canopy

fuels (Schwilk 2015; Alam et al. 2019).

In this study, I demonstrated that shoot-level flammability of plant species is

phylogenetically conserved. All flammability components had statistically significant

phylogenetic signals, indicating that closely related taxa tend to have similar flammability.
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Shoot flammability was generally conserved at family and higher taxonomic levels across 194

vascular plant species. In addition, I investigated phylogenetic patterns in flammability across

the genus Dracophyllum, a group of New Zealand shrubs and trees in the family Ericaceae.

Shoot flammability was also phylogenetically conserved in Dracophyllum. Together, these

results indicated that although shoot-level flammability of plants is a compound trait that is

affected by many characteristics (Schwilk 2003, Alam et al. 2019), it still retains phylogenetic

patterns at the genus and higher taxonomic levels, indicating species likely inherit the

flammability of their direct ancestors. The strong phylogenetic component of shoot

flammability across vascular plants is consistent with that flammability of plants may be a

trait that can be selected for.

While flammability is phylogenetically conserved, I found flammability exhibited

evolutionary flexibility among some closely related species. For example, species in the

Poaceae (Poales) vary considerably in their flammability. At the genus level, evolutionary

flexibility also existed among some closely related species, such as D. menziesii and D.

fiordense in the Dracophyllum genus, which grow in different habitats. The evolutionary

flexibility of shoot flammability indicated that factors other than phylogeny, such as abiotic

environment, may influence evolutionary patterns in flammability.

5.2 The evolution of plant flammability

Better understanding the evolution of flammability would facilitate our understanding

of the long-term interactions between fire and plants, and may help prepare us for a warmer

world (Moritz et al. 2014, Doerr and Santín 2016). However, whether flammability of plants

is selected for by fire or emerges incidentally continues to be debated (Mutch 1970, Snyder

1984, Bond and Midgley 1995, Midgley 2013, Bowman et al. 2014).

As I explained above, I showed that flammability is phylogenetically conserved,

which is consistent with flammability being a trait that can be selected for. In Chapter 2, I

categorised the 194 species as coming from fire-prone or non-fire-prone habitats depending

on the description of each species from numerous sources and, showed that species from fire-

prone habitats tend to have higher flammability than non-fire-prone habitats. Most species

with a hot-flammability syndrome are from fire-prone habitats, indicating that the preferred

flammability syndrome of species in fire-prone ecosystems involves being high flammable. In

low-fire-prone ecosystems, species have significantly lower flammability than those from

fire-prone habitats, suggesting that high heat release has few evolutionary advantages in such
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environments. Together these findings suggest that fire regimes of the source habitat played

an important role in the evolution of flammability and that fire-prone plant communities are

likely to burn more readily than non-fire-prone communities. In addition, these results provide

macro-evolutionary support for the micro-evolutionary studies, which suggested that fire

enhances the plant flammability (Pausas et al. 2012, Moreira et al. 2014).

Flammability of plants could also emerge as an incidental property and have no

selective advantage (Midgley 2013). Many characteristics of species that increase their

flammability may be merely incidental or secondary results of selection for these traits, such

as water-use efficiency and nutrient retention, that increased individual fitness (Snyder 1984).

The hypothesis that flammability is a result of exaptation has received little support, with

most of the studies conducted in fire-prone ecosystems (Archibald et al. 2018). Most

ecosystems in New Zealand experienced low fire frequencies prior to human arrival; therefore,

its flora provides an opportunity to explore whether flammability is a result of exaptations (i.e.

is not a specific fire adaptation) (Ogden et al. 1998, Lawes et al. 2014, Perry et al. 2014,

Mason et al. 2016). In Chapters 3 and 4, I provided evidence that flammability has emerged

incidentally in New Zealand. Given that Dracophyllum species in the subgenus Oreothamnus

evolved during the Pleistocene (Wagstaff et al. 2010) and I found that they had significantly

higher flammability than those in the subgenus Dracophyllum, the high flammability in the

subgenus Oreothamnus is an incidental property to the climatic conditions associated with

repeated climate changes and glaciations during the Pleistocene. The cold and dry climate of

glacial periods may have selected for traits, such as smaller leaves, that facilitated frost and

drought tolerance (Lusk et al. 2016, Reichgelt et al. 2017), and incidentally increased shoot-

level flammability.

The micro-evolutionary evidence for flammability being an emergent property is the

intraspecific variability within D. rosmarinifolium. Environmental factors were correlated

with shoot-level flammability of D. rosmarinifolium species, suggesting that shoot

flammability may be an emergent or incidental in the largely fire-free environment of New

Zealand, although it is unclear whether the variation in flammability is heritable or due to

phenotypic plasticity.

In conclusion, my findings suggest that flammability has likely both emerged and

been selected for, depending on the context and the fire regime of the source habitat (non-fire-

prone or fire-prone habitat).
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5.3 Recommendations for further research

The use of shoot flammability measurements to examine evolutionary patterns in

flammability is still in its infancy, but the research forming this thesis shows the promise it

holds. Recommendations for further research are provided below.

For the first project (Chapter 2), we compared shoot flammability across 194 vascular

plant species and explored the evolutionary pattern of shoot flammability across the

phylogeny. Such a large set of quantitative data relating to species flammability has not, to

our knowledge, been reported before. Through this project, we found shoot flammability can

be predicted from taxonomic relatedness, habitat fire regime and growth form. However, most

of the species we used (120 of 194) are indigenous to New Zealand, a largely fire-free island,

until recent human settlement. The sampling of more species from fire-prone ecosystems is

needed to better understand the evolutionary patterns of plant flammability. In addition,

species from many phylogenetic groups are absent from our data. For example, the 194

species were from 72 families, only 17% of all families in the APG IV system (The

Angiosperm Phylogeny Group et al. 2016). More species from a wider range of clades are

needed in further to improve taxonomic diversity, in order to better understand the

evolutionary patterns of flammability.

For the second project (Chapter 3), we measured the shoot flammability of 21

Dracophyllum species. With reference to existing phylogenies, the flammability data provided

some information on the evolutionary patterns of shoot flammability within the genus. But the

species we measured only account for around 40% of Dracophyllum species; many species,

especially those that grow outside of New Zealand, were not measured for flammability. In

addition, molecular studies are needed to construct a better phylogeny for this group. We

could only obtain sequence data for genes matK and rbcL from 14 Dracophyllum species.

More species and a better phylogeny are needed to better understand the evolutionary patterns

of flammability in the genus, although it is unlikely to change the main findings from my

study, as I concentrated on the broad sub-generic difference in flammability.

For the third project (Chapter 4), the significant variation in shoot flammability among

D. rosmarinifolium suggested that climatic and geographic factors have influenced the

intraspecific variability of flammability in D. rosmarinifolium, and that shoot flammability

may be a result of exaptation. However, it is not clear whether the variation in flammability is

heritable or due to phenotypic plasticity (i.e. whether there is a genetic difference across the
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populations). Further studies, such as reciprocal transplant experiments and genetic analyses,

are required to explore whether the flammability variability is heritable. In addition to the

environmental conditions included in this study (elevation, latitude, mean annual temperature

and mean rainfall), more environmental factors (e.g. soil type and fertility, solar radiation)

should be examined to better understand how climate and geography influence the evolution

of plant flammability. The collection locations were only on the South Island of New Zealand,

more collection locations, especially on the North Island, should be included to span a wider

range of habitats. In addition, some flammability-related traits should be measured to help

ascertain why flammability differs among populations.

My thesis suggests that flammability of plants is likely the result of the interaction of

selection and exaptation. In future studies, understanding the evolution of plant flammability

should be considered in the light of identifying the roles of both adaptation and exaptation,

potentially based on the fire regimes of species’ habitats.
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Chapter 6

Conclusion

The main conclusions of this thesis are as follows.

1. Shoot-level flammability of vascular plants was influenced by taxonomic

relatedness, habitat fire regime and growth form. Closely related taxa tend to have similar

flammability and the components of flammability were phylogenetically conserved across

vascular plant species. Fire regimes in the source habitat played an important role in the

evolution of flammability and fire-prone plant communities are likely to burn more readily

than non-fire-prone communities, suggesting that high flammability may result in parallel

evolution driven by environmental factors, such as fire regime. Growth form also influenced

shoot-level flammability: forbs were less flammable than grasses, trees and shrubs, while

grasses had higher biomass consumption by fire than other groups. The strong phylogenetic

component of flammability is consistent with flammability being a trait that can be selected

for, but I cannot rule out flammability being an incidental property.

2. Shoot flammability varied widely across Dracophyllum species, but was highly

phylogenetically conserved across the genus. Subgenus Oreothamnus, which arose (1-2 MA)

in the Pleistocene and may have evolved in the absence of fire, exhibited high flammability,

suggesting that the climate of the Pleistocene may have favoured and selected for

characteristics, such as smaller leaves, that were suited to other functions (e.g. drought and

frost tolerance) and incidentally increased shoot-level flammability. My study has provided

evidence that, at least in relatively fire-free environments, high flammability could be an

incidental or emergent property that is comprised of traits that arose in response to selective

forces independent of fire.

3. Shoot flammability varies at the intraspecific level and is affected by environmental

factors. I found that shoot flammability of D. rosmarinifolium varied significantly across

populations. Individuals from populations at higher elevations and lower latitudes tend to be

more flammable. These results suggest that environmental factors have influenced the

intraspecific variability of flammability within D. rosmarinifolium, and that in the largely fire-

free environment of New Zealand shoot flammability is likely to be an emerged property and

influenced by the environment of habitat.
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In conclusion, I have demonstrated that flammability has a strong phylogenetic

component, which is consistent with flammability being a trait that has evolved and been

selected for. However, I also found evidence for flammability being an emergent property in

New Zealand, where the evolution of plants was not likely influenced by fire. My results

suggest that flammability is likely phylogenetically conserved but with flexibility of selection

responses in local habitats. Plant flammability has likely both been selected for and emerged,

depending on the context and whether a species or population occurs in a fire-prone habitat or

non-fire-prone habitat. My study facilitates the understanding of the evolution of flammability

and can help prepare us for a more warmer world.
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Appendix A
The 194 species we collected and measured for shoot flammability

Species Code

Mean
ignition
frequency
(%)

Mean
maximum
temperature
(±SE) (°C)

Mean
burning
time (±SE)
(s)

Mean
burnt
biomass
(±SE) (%)

N Family Order Class Growth
form

Flammability
syndrome Habitat

Acacia dealbata ACAdea 100.0 673.7±32.7 41.7±6.0 86.7±2.5 6 Fabaceae Fabales Rosid I Tree Hot Flammable Fire-prone
Acaena caesiiglauca ACAcae 75.0 433.0±79.6 6.0±2.0 64.4±14.4 8 Rosaceae Rosales Rosid I Forb Hot Flammable Non-fire-prone
Acca sellowaiana ACCsel 100.0 599.9±57.3 49.1±12.9 30.6±6.6 8 Myrtaceae Myrtales Rosid II Tree Hot Flammable Non-fire-prone
Aciphylla aurea ACIaur 100.0 737.0±36.7 231.4±35.656.3±11.5 8 Apiaceae Apiales Asterid II Grass Hot Flammable Fire-prone
Aesculus hippocastanum AEShip 100.0 456.0±49.2 11.0±1.9 20.0±3.4 6 Sapindaceae Sapindales Rosid II Tree Fast Flammable Non-fire-prone
Agapanthus spp. AGApra 7.4 167.7±17.7 4.4±3.8 0.7±0.4 27Amaryllidaceae Asparagales Lilioid monocots Forb Fast Flammable Non-fire-prone
Agathis australis AGAaus 69.2 323.7±45.7 8.8±4.3 10.4±3.5 13Araucariaceae Pinales Pinophyta Tree Fast Flammable Non-fire-prone
Agrostis capillaris AGRcap 25.0 207.1±37.7 2.6±2.2 22.5±14.9 8 Poaceae Poales Commelinids Grass Low Flammable Fire-prone
Agrostis muelleriana AGRmue 12.5 189.5±39.5 0.25±0.25 12.5±12.5 8 Poaceae Poales Commelinids Grass Low Flammable Fire-prone
Alectryon excelsus ALEexc 100.0 551.9±67.3 21.9±4.7 63.8±7.0 8 Sapindaceae Sapindales Rosid II Tree Hot Flammable Non-fire-prone
Ammophila arenaria AMMare 100.0 600.5±35.7 78.6±6.0 88.8±1.8 8 Poaceae Poales Commelinids Grass Hot Flammable Non-fire-prone
Anisotome aromatica ANIaro 0.0 150±0 0±0 0±0 9 Apiaceae Apiales Asterid II Forb Low Flammable Non-fire-prone
Anisotome flexuosa ANIfle 50.0 278.9±51.3 7.8±4.0 45.6±17.4 8 Apiaceae Apiales Asterid II Forb Fast Flammable Non-fire-prone
Anthosachne solandri ANTsol 87.5 465.4±56.1 14.1±6.2 69.4±10.6 8 Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Anthoxanthum odoratum ANTodo 75.0 330.1±49.6 2.4±0.9 56.3±14.0 8 Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Apodasmia similis APOsim 100.0 492.6±32.6 20.6±3.4 32.5±4.5 8 Restionaceae Poales Commelinids Grass Fast Flammable Non-fire-prone
Arbutus unedo ARBune 100.0 648.8±32.5 30.0±5.4 43.3±9.1 6 Ericaceae Ericales Ericales Tree Hot Flammable Fire-prone
Aristotelia fruticosa ARIfru 62.5 200.9±21.0 2.3±0.9 7.9±2.5 8 Elaeocarpaceae Oxalidales Rosid I Shrub Fast Flammable Non-fire-prone
Aristotelia serrata ARIser 42.1 248.2±34.3 2.1±0.8 8.6±3.9 19Elaeocarpaceae Oxalidales Rosid I Tree Fast Flammable Non-fire-prone
Beilschmiedia tarairi BEItar 75.0 458.9±76.4 4.6±1.4 13.6±4.7 8 Lauraceae Laurales Magnoliidae Tree Fast Flammable Non-fire-prone
Beilschmiedia tawa BEItaw 92.9 398.0±39.0 6.4±1.2 27.9±5.6 14Lauraceae Laurales Magnoliidae Tree Fast Flammable Non-fire-prone
Betula pendula BETpen 100.0 490.0±37.7 16.3±2.7 45.8±5.8 6 Betulaceae Fagales Rosid I Tree Hot Flammable Fire-prone
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Blechnum penna-marina BLEpen 25.0 213.8±42.6 0.4±0.3 25.0±16.4 8 Blechnaceae Athyriales Polypodiopsida Shrub Low Flammable Non-fire-prone
Brachyglottis repanda BRArep 100 598.5±13.8 33.0±5.0 50.8±3.8 6 Asteraceae Asterales Asterid II Tree Hot Flammable Non-fire-prone
Brachyscome longiscapa BRAlon 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Non-fire-prone
Bromus hordeaceus BROhor 25.0 185.3±23.4 1.0±0.9 15.0±10.0 8 Poaceae Poales Commelinids Grass Fast Flammable Fire-prone
Callistemon rigidus CALrig 100.0 613.0±32.4 25.1±5.3 38.1±7.7 8 Myrtaceae Myrtales Rosid II Shrub Hot Flammable Non-fire-prone
Camellia sasanqua Setsugekka CAMsas 100.0 458.0±70.9 10.5±2.9 23.8±6.9 4 Theaceae Ericales Ericales Shrub Fast Flammable Non-fire-prone
Carex coriacea CARcor 100.0 666.8±21.3 23.0±3.0 55.0±2.2 6 Cyperaceae Poales Commelinids Grass Hot Flammable Non-fire-prone
Carex wakatipu CARwak 25.0 210.4±39.7 0.3±0.2 25.0±16.4 8 Cyperaceae Poales Commelinids Grass Low Flammable Non-fire-prone
Carmichaelia australis CARaus 100.0 651±93.2 93.2±24.2 64.2±11.9 6 Fabaceae Fabales Rosid I Shrub Hot Flammable Non-fire-prone
Carpodetus serratus CARser 52.0 239.1±26.2 3.9±1.5 6.8±1.7 25Rousseaceae Asterales Asterid II Tree Fast Flammable Non-fire-prone
Celmisia gracilenta CELgra 20.0 204.7±36.8 0.6±0.4 19.0±12.7 10Asteraceae Asterales Asterid II Forb Low Flammable Non-fire-prone
Chamaecytisus palmensis CHApal 100.0 314.8±46.1 19.9±5.9 18.1±1.9 8 Fabaceae Fabales Rosid I Tree Fast Flammable Fire-prone
Chionochloa macra CHImac 100.0 750.8±17.9 175.9±26.278.6±4.6 16Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Chionochloa rigida CHIrig 100.0 729.1±27.8 239.9±36.893.5±2.6 8 Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Choisya ternata CHOter 100.0 446.5±30.7 5.7±1.0 15.8±1.5 6 Rutaceae Sapindales Rosid II Shrub Fast Flammable Fire-prone
Citrus limon CITlim 100.0 372.0±47.5 12.7±5.0 15.0±3.7 6 Rutaceae Sapindales Rosid II Tree Fast Flammable Non-fire-prone
Clivia miniata CLImin 0.0 150±0 0±0 0±0 8 Amaryllidaceae Asparagales Lilioid monocots Forb Low Flammable Non-fire-prone
Coprosma arborea COParb 50.0 248.4±45.0 1.0±0.5 8.8±3.4 8 Rubiaceae Gentianales Asterid I Tree Fast Flammable Non-fire-prone
Coprosma crassifolia COPcra 87.5 220.0±19.0 2.0±0.5 5.6±1.5 8 Rubiaceae Gentianales Asterid I Shrub Fast Flammable Non-fire-prone
Coprosma propinqua COPpro 50.0 213.6±26.4 2.43±1.0 4.3±1.6 14Rubiaceae Gentianales Asterid I Shrub Fast Flammable Non-fire-prone
Coprosma repens COPrep 0.0 150±0 0±0 0±0 8 Rubiaceae Gentianales Asterid I Shrub Low Flammable Non-fire-prone
Coprosma robusta COProb 72.7 383.6±41.0 4.1±1.5 11.6±3.3 22Rubiaceae Gentianales Asterid I Shrub Fast Flammable Non-fire-prone
Cordyline australis CORaus 87.5 284.9±38.0 15.88±5.0 10.0±2.7 8 Asparagaceae Asparagales Lilioid monocots Tree Fast Flammable Non-fire-prone
Coriaria arborea CORarb 100.0 654.3±24.8 18.2±4.0 53.3±8.0 6 Coriariaceae Cucurbitales Rosid I Tree Hot Flammable Non-fire-prone
Corokia buddleioides CORbud 100.0 532.9±18.1 14.0±2.1 66.8±9.1 8 Argophyllaceae Asterales Asterid II Shrub Hot Flammable Non-fire-prone
Corokia cotoneaster CORcot 100.0 250.3±17.3 6.0±11.3 11.3±2.3 8 Argophyllaceae Asterales Asterid II Shrub Fast Flammable Non-fire-prone
Corynocarpus laevigatus CORlae 50.0 235.5±40.5 1.5±0.7 3.8±1.6 8 Corynocarpaceae Cucurbitales Rosid I Tree Fast Flammable Non-fire-prone
Crepis capillaris CREcap 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Unsure
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Crocosmia x crocosmiiflora CROcro 0.0 150±0 0±0 0±0 8 Iridaceae Asparagales Lilioid monocots Forb Low Flammable Non-fire-prone
Cupressus macrocarpa CUPmac 90.9 460.2±45.7 19.7±7.6 18.6±4.3 11Cupressaceae Pinales Pinophyta Tree Fast Flammable Non-fire-prone
Cyathea dealbata CYAdea 87.5 442.3±56.4 10.0±2.3 28.1±5.0 8 Cyatheaceae Cyatheales Polypodiopsida Tree Fast Flammable Non-fire-prone
Cyathea medullaris CYAmed 62.5 388.1±78.9 19.1±8.5 28.8±10.2 8 Cyatheaceae Cyatheales Polypodiopsida Tree Fast Flammable Non-fire-prone
Cytisus scoparius CYTsco 87.5 342.3±45.0 13.3±4.7 31.3±7.9 8 Fabaceae Fabales Rosid I Shrub Fast Flammable Fire-prone
Dacrycarpus dacrydioides DACdac 92.3 492.3±58.1 16.4±4.4 42.3±6.7 13Podocarpaceae Pinales Pinophyta Tree Hot Flammable Non-fire-prone
Dacrydium cupressinum DACcup 100.0 660.4±36.0 36.5±7.5 58.1±9.8 8 Podocarpaceae Pinales Pinophyta Tree Hot Flammable Non-fire-prone
Dactylis glomerata DACglo 83.3 284.2±44.4 5.3±1.7 49.2±10.8 6 Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Deyeuxia avenoides DEYave 100.0 375.9±25.4 8.6±1.7 83.1±3.4 8 Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Dicksonia squarrosa DICsqu 100.0 606.3±24.2 21.5±3.1 55.0±7.7 8 Dicksoniaceae Cyatheales Polypodiopsida Tree Hot Flammable Non-fire-prone
Discaria toumatou DIStou 100.0 455.0±35.9 42.8±11.2 45.6±4.2 23Rhamnaceae Rosales Rosid I Shrub Hot Flammable Fire-prone
Dodonaea viscosa DODvis 90.5 408.6±33.1 9.3±1.7 29.5±4.7 21Sapindaceae Sapindales Rosid II Shrub Fast Flammable Non-fire-prone
Dracophyllum acerosum DRAace 100.0 544.14±35.12 51.71±5.7159.29±4.427 Ericaceae Ericales Ericales Shrub Hot Flammable Fire-prone
Dracophyllum densum DRAden 100.0 771.5±23.0 129.8±22.685.0±6.8 8 Ericaceae Ericales Ericales Shrub Hot Flammable Fire-prone
Dracophyllum pronum DRApro 100.0 696.1±31.3 157.6±18.179.3±4.3 7 Ericaceae Ericales Ericales Shrub Hot Flammable Fire-prone
Dracophyllum filifolium DRAfli 100.0 638.63±39.18 62±10.33 63.13±3.658 Ericaceae Ericales Ericales Tree Hot Flammable Non-fire-prone
Dracophyllum traversii DRAtra 62.5 295.8±63.4 20.1±10.7 10.0±3.8 8 Ericaceae Ericales Ericales Tree Fast Flammable Non-fire-prone
Dysoxylum spectabile DYSspe 37.5 221.5±51.3 3.0±2.5 4.4±3.1 8 Meliaceae Sapindales Rosid II Tree Fast Flammable Non-fire-prone
Epilobium alsinoides EPIals 12.5 188.3±38.3 0.4±0.4 12.5±12.5 8 Onagraceae Myrtales Rosid II Forb Low Flammable Non-fire-prone
Eucalyptus viminalis EUCvim 100.0 599.7±33.3 50.8±7.5 53.3±5.8 30Myrtaceae Myrtales Rosid II Tree Hot Flammable Fire-prone
Euphrasia dyeri EUPdye 25.0 217.4±44.1 0.4±0.3 25.0±16.4 8 Orobanchaceae Lamiales Asterid I Forb Low Flammable Non-fire-prone
Farfugium japonicum FARjap 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Non-fire-prone
Festuca novae-zelandiae FESnov 100.0 580.9±27.0 77.1±4.7 68.9±3.1 8 Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Fraxinus pennsylvanica FRApen 100.0 554.3±38.9 28.3±8.2 47.5±11.4 6 Oleaceae Lamiales Asterid I Tree Hot Flammable Non-fire-prone
Fuchsia excorticata FUXexc 38.5 233.9±41.8 4.4±2.2 8.8±5.2 13Onagraceae Myrtales Rosid II Tree Fast Flammable Non-fire-prone
Fuscospora cliffortioides FUScli 95.2 619.9±29.1 39.8±6.7 46.9±5.5 21Nothofagaceae Fagales Rosid I Tree Hot Flammable Non-fire-prone
Fuscospora fusca FUSfus 80.9 299.9±21.8 8.2±1.5 13.1±1.9 47Nothofagaceae Fagales Rosid I Tree Fast Flammable Non-fire-prone
Gaultheria depressa GAUdep 100.0 571.5±49.9 14.8±3.1 94.4±2.0 8 Ericaceae Ericales Ericales Shrub Hot Flammable Non-fire-prone
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Geniostoma ligustrifolium GENlig 25.0 161.8±11.8 0.6±0.4 2.2±1.5 8 Loganiaceae Gentianales Asterid I Shrub Fast Flammable Non-fire-prone
Geranium microphyllum GERmic 0.0 150±0 0±0 0±0 8 Geraniaceae Gentianales Rosid II Forb Low Flammable Non-fire-prone
Geranium sessiliflorum GERses 25.0 222.5±47.6 0.6±0.5 23.1±15.2 8 Geraniaceae Gentianales Rosid II Forb Low Flammable Non-fire-prone
Geum leiospermum GEUlei 11.1 178.3±28.3 1.0±1.0 11.1±11.1 9 Rosaceae Rosales Rosid I Forb Low Flammable Non-fire-prone
Ginkgo biloba GINbil 100.0 448.8±25.6 5.8±1.4 9.2±2.0 6 Ginkgoaceae Ginkgoales Ginkgoales Tree Fast Flammable Non-fire-prone
Griselinia littoralis GRIlit 63.3 270.6±22.7 4.8±1.0 6.5±2.0 30Griseliniaceae Apiales Asterid II Tree Fast Flammable Non-fire-prone
Hakea sericea HAKser 100.0 584.3±39.0 40.5±9.3 43.1±7.2 8 Proteaceae Proteales Proteales Shrub Hot Flammable Fire-prone
Hebe Wiri Mist HEBalb 100.0 418.6±52.4 15.9±6.1 55.0±9.6 8 Plantaginaceae Lamiales Asterid I Shrub Hot Flammable Non-fire-prone
Hedycarya arborea HEDarb 100.0 279.8±34.0 2.7±0.3 9.2±0.8 6 Monimiaceae Laurales Asterid II Tree Fast Flammable Non-fire-prone
Helichrysum filicaule HELfil 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Non-fire-prone
Hieracium lepidulum HIElep 25.0 206.3±42.5 9.9±8.4 21.9±14.4 8 Asteraceae Asterales Asterid II Forb Fast Flammable Fire-prone
Hieracium pilosella HIEpil 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Fire-prone
Hieracium praealtum HIEpra 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Fire-prone
Hoheria angustifolia HOHang 69.2 285.6±25.5 5.3±1.4 14.9±2.7 26Malvaceae Malvales Rosid II Tree Fast Flammable Non-fire-prone
Hydrocotyle novae-zeelandiae HYDnov 0.0 150±0 0±0 0±0 8 Araliaceae Apiales Asterid II Forb Low Flammable Non-fire-prone
Hypochaeris radicata HYPrad 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Non-fire-prone
Juncus gregiflorus JUNgre 100.0 604.8±31.4 31.2±9.1 25.0±3.2 6 Juncaceae Poales Commelinids Grass Hot Flammable Non-fire-prone
Kelleria dieffenbachii KELdie 25.0 250.3±65.8 1.0±0.7 13.8±9.2 8 Thymelaeaceae Malvales Rosid II Forb Fast Flammable Non-fire-prone
Knightia excelsa KNIexc 100.0 525.1±35.2 25.4±8.8 26.9±8.3 8 Proteaceae Proteales Proteales Tree Hot Flammable Non-fire-prone
Kunzea ericoides KUNeri 96.8 538.6±21.6 22.2±1.8 72.2±4.0 62Myrtaceae Myrtales Rosid II Tree Hot Flammable Fire-prone
Lagenophora cuneata LAGcun 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Fire-prone
Laurus nobilis LAUnob 100.0 463.8±61.1 12.4±3.8 32.0±3.0 5 Lauraceae Laurales Magnoliidae Shrub Fast Flammable Non-fire-prone
Leptinella pectinata LEPpec 0.0 150±0 0±0 0±0 8 Asteraceae Asterales Asterid II Forb Low Flammable Non-fire-prone
Leptospermum scoparium LEPsco 100.0 551.1±22.7 34.9±3.9 70.3±5.0 14Myrtaceae Myrtales Rosid II Shrub Hot Flammable Fire-prone
Leucopogon fasciculatus LEUfas 100.0 345.9±51.8 9.9±2.7 42.8±7.5 9 Ericaceae Ericales Ericales Shrub Hot Flammable Non-fire-prone
Leucopogon fraseri LEUfra 71.4 393.6±66.9 3.0±1.0 71.4±18.4 7 Ericaceae Ericales Ericales Shrub Hot Flammable Fire-prone
Leycesteria formosa LEYfor 100.0 513.5±68.9 17.7±6.0 59.2±8.6 6 Caprifoliaceae Dipsacales Asterid II Shrub Hot Flammable Non-fire-prone
Lophozonia menziesii LOPmen 100.0 694.6±23.8 60.6±9.9 59.9±7.7 14Nothofagaceae Fagales Rosid I Tree Hot Flammable Non-fire-prone
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Lupinus arboreus LUParb 50.0 210.9±55.1 11.3±8.8 4.4±1.8 8 Fabaceae Fabales Rosid I Shrub Fast Flammable Unsure
Luzula pumila LUZpum 87.5 433.5±41.8 4.3±1.1 86.3±12.4 8 Juncaceae Poales Commelinids Forb Hot Flammable Non-fire-prone
Luzula rufa LUZruf 0.0 150±0 0±0 0±0 8 Juncaceae Poales Commelinids Forb Low Flammable Unsure
Lycopodium fastigiatum LYCfas 0.0 150±0 0±0 0±0 8 Lycopodiaceae Lycopodiales Lycopodiophyta Forb Low Flammable Non-fire-prone
Magnolia grandiflora MAGgra 100.0 476.0±45.2 24.5±5.0 12.5±1.1 6 Magnoliaceae Magnoliales Magnoliidae Tree Hot Flammable Non-fire-prone
Malus spp. MALdom100.0 563.5±38.2 20.9±5.9 48.3±7.7 12Rosaceae Rosales Rosid I Tree Hot Flammable Unsure
Maytenus boaria MAYboa 100.0 399.7±26.4 7.3±0.6 26.7±2.8 6 Celastraceae Celastrales Rosid I Tree Fast Flammable Fire-prone
Melicytus crassifolius MELcra 100.0 269.1±16.2 14.9±3.9 12.0±1.8 8 Violaceae Malpighiales Rosid I Shrub Fast Flammable Non-fire-prone
Melicytus ramiflorus MELram 65.2 339.5±42.9 6.4±2.1 17.6±5.0 23Violaceae Malpighiales Rosid I Tree Fast Flammable Non-fire-prone
Metrosideros excelsa METexc 85.7 397.6±43.9 12.5±3.9 13.2±3.0 14Myrtaceae Myrtales Rosid II Tree Fast Flammable Non-fire-prone
Metrosideros fulgens METful 100.0 375.4±61.0 6.4±1.7 16.3±4.6 8 Myrtaceae Myrtales Rosid II Tree Fast Flammable Non-fire-prone
Muehlenbeckia australis MUEaus 61.1 189.3±13.3 2.3±0.6 6.1±1.3 18Polygonaceae CaryophyllalesRosid II Shrub Fast Flammable Non-fire-prone
Myoporum laetum MYOlae 75.0 311.3±37.7 3.2±0.8 7.9±2.0 12Scrophulariaceae Lamiales Asterid I Shrub Fast Flammable Non-fire-prone
Myrsine australis MYRaus 37.5 172.4±22.4 2.1±1.6 5.0±2.7 8 Primulaceae Ericales Ericales Tree Fast Flammable Non-fire-prone
Nematolepis squamea NEMsqu 100.0 358.5±28.2 11.8±2.7 18.3±2.1 6 Rutaceae Sapindales Rosid II Shrub Fast Flammable Non-fire-prone
Nestegis lanceolata NESlan 100.0 508.5±48.6 34.1±9.4 29.4±8.0 8 Oleaceae Lamiales Asterid I Tree Hot Flammable Non-fire-prone
Olea europaeus OLEeur 100.0 456.8±54.0 12.6±1.7 13.1±5.2 8 Oleaceae Lamiales Asterid I Tree Fast Flammable Fire-prone
Olearia furfuracea OLEfur 100.0 553.6±24.6 18.9±2.6 27.5±6.5 8 Asteraceae Asterales Asterid II Tree Fast Flammable Non-fire-prone
Olearia paniculata OLEpan 100.0 557.5±25.6 38.9±8.5 35.0±5.7 12Asteraceae Asterales Asterid II Tree Hot Flammable Non-fire-prone
Olearia traversiorum OLEtra 100.0 394.8±28.1 11.3±2.1 17.1±2.8 12Asteraceae Asterales Asterid II Tree Fast Flammable Non-fire-prone
Ophiopogon Black Dragon OPHpla 12.5 152.9±2.9 0.5±0.5 7.5±7.5 8 Asparagaceae Asparagales Lilioid monocots Grass Fast Flammable Non-fire-prone
Pennantia corymbosa PENcor 61.5 293.9±40.4 3.7±1.5 6.7±2.0 13Pennantiaceae Apiales Asterid II Tree Fast Flammable Non-fire-prone
Phormium cookianum PHOcoo 50.0 246.6±44.7 2.4±1.0 3.1±1.3 8 Asphodelaceae Asparagales Lilioid monocots Forb Fast Flammable Non-fire-prone
Phormium tenax PHOten 25.0 239.5±59.1 2.3±1.7 0.9±0.6 8 Asphodelaceae Asparagales Lilioid monocots Forb Fast Flammable Non-fire-prone
Photinia Red Robin PHOgla 87.5 436.1±55.2 13.6±4.1 13.1±2.3 8 Rosaceae Rosales Rosid I Shrub Fast Flammable Non-fire-prone
Phyllocladus trichomanioides PHYtri 87.5 462.8±64.6 19.3±6.6 31.9±6.3 8 Podocarpaceae Pinales Pinophyta Tree Fast Flammable Non-fire-prone
Phytolacca octandra PHYoct 0.0 150±0 0±0 0±0 6 Phytolaccaceae CaryophyllalesRosid II Forb Low Flammable Non-fire-prone
Pimelea oreophila PIMore 100.0 609.2±39.7 15.8±3.2 69.4±7.6 9 Thymelaeaceae Malvales Rosid II Forb Hot Flammable Fire-prone
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Pinus arizonica PINari 100.0 699.7±20.4 86.0±12.8 42.1±6.5 7 Pinaceae Pinales Pinophyta Tree Hot Flammable Fire-prone
Pinus contorta PINcon 37.5 224.6±45.0 3.6±2.0 5.0±2.7 8 Pinaceae Pinales Pinophyta Tree Fast Flammable Fire-prone
Pinus coulteri PINcou 75.0 552.0±91.8 80.8±30.8 22.5±7.4 8 Pinaceae Pinales Pinophyta Tree Hot Flammable Fire-prone
Pinus nigra PINnig 93.3 534.9±49.1 33.5±6.5 31.3±5.5 15Pinaceae Pinales Pinophyta Tree Hot Flammable Fire-prone
Pinus palustris PINpal 100.0 595.3±124.1 127.8±75.923.8±6.9 4 Pinaceae Pinales Pinophyta Tree Hot Flammable Fire-prone
Pinus Pinea PINpin 100 495.0±72.9 28.0±7.6 15.0±4.3 6 Pinaceae Pinales Pinophyta Tree Hot Flammable Fire-prone
Pinus ponderosa PINpon 100.0 758.3±28.7 188.0±22.563.1±5.9 8 Pinaceae Pinales Pinophyta Tree Hot Flammable Fire-prone
Pinus radiata PINrad 79.5 371.6±27.0 18.6±3.2 18.2±2.6 39Pinaceae Pinales Pinophyta Tree Fast Flammable Fire-prone
Pinus sylvestris PINsyl 100.0 539.8±26.2 38.3±8.1 43.9±8.2 9 Pinaceae Pinales Pinophyta Tree Hot Flammable Fire-prone
Pinus wallachiana PINwal 85.7 536.4±75.7 29.4±8.8 52.1±11.1 7 Pinaceae Pinales Pinophyta Tree Hot Flammable Fire-prone
Piper excelsum PIPexc 0.0 150±0 0±0 0±0 6 Piperaceae Piperales Magnoliidae Tree Low Flammable Non-fire-prone
Pittosporum crassifolium PITcra 100.0 391.0±26.7 7.6±2.2 6.9±0.9 14Pittosporaceae Apiales Asterid II Tree Fast Flammable Non-fire-prone
Pittosporum divaricatum PITdiv 62.5 191.0±17.8 3.8±1.4 6.9±2.2 8 Pittosporaceae Apiales Asterid II Shrub Fast Flammable Non-fire-prone
Pittosporum eugenioides PITeug 85.7 384.6±41.8 4.6±0.8 16.1±2.9 14Pittosporaceae Apiales Asterid II Tree Fast Flammable Non-fire-prone
Pittosporum tenuifolium PITten 88.2 333.0±20.9 6.6±1.7 12.7±1.9 34Pittosporaceae Apiales Asterid II Tree Fast Flammable Non-fire-prone
Plagianthus regius PLAreg 36.4 234.0±26.9 2.2±0.8 6.3±2.1 22Malvaceae Malvales Rosid II Tree Fast Flammable Non-fire-prone
Poa cita POAcit 100.0 618.3±22.5 169.8±33.289.2±3.3 6 Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Poa colensoi POAcol 100.0 490.8±22.9 13.1±4.2 74.4±1.5 8 Poaceae Poales Commelinids Grass Hot Flammable Fire-prone
Podocarpus hallii PODhal 100.0 487.8±58.6 16.9±2.5 13.8±1.6 8 Podocarpaceae Pinales Pinophyta Tree Fast Flammable Non-fire-prone
Podocarpus totara PODtot 100.0 506.9±36.8 20.5±3.7 29.8±4.0 14Podocarpaceae Pinales Pinophyta Tree Fast Flammable Non-fire-prone
Polystichum vestitum POLves 60.0 330.2±75.6 3.8±2.2 11.0±4.6 5 Dryopteridaceae Polypodiales Polypodiopsida Shrub Fast Flammable Non-fire-prone
Pomaderris kumaraho POMkum 100.0 683.4±21.3 21.4±2.0 77.5±8.5 8 Rhamnaceae Rosales Rosid I Shrub Hot Flammable Fire-prone
Populus nigra POPnig 36.8 264.9±28.9 3.3±1.0 14.7±4.1 39Salicaceae Malpighiales Rosid I Tree Fast Flammable Unsure
Populus trichocarpa POPtri 66.7 334.2±70.0 4.5±1.9 5.8±2.4 6 Salicaceae Malpighiales Rosid I Tree Fast Flammable Non-fire-prone
Protea neriifolia PROner 100.0 510.8±22.7 36.3±5.2 16.7±2.1 6 Proteaceae Proteales Proteales Shrub Hot Flammable Fire-prone
Prumnopitys ferruginea PRUfer 87.5 319.1±60.0 10.5±6.4 13.4±4.7 8 Podocarpaceae Pinales Pinophyta Tree Fast Flammable Non-fire-prone
Prumnopitys taxifolia PRUtax 100.0 388.2±50.0 12.7±2.7 18.4±4.5 10Podocarpaceae Pinales Pinophyta Tree Fast Flammable Non-fire-prone
Prunus Kanzan PRUser 91.7 525.5±63.6 20.3±3.5 43.8±7.8 12Rosaceae Rosales Rosid I Tree Fast Flammable Non-fire-prone
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Prunus laurocerasus PRUlau 66.7 232.3±41.6 3.7±1.8 3.3±1.1 6 Rosaceae Rosales Rosid I Tree Hot Flammable Non-fire-prone
Prunus × yedoensis PRUspc 100.0 613.9±30.0 28.3±7.6 53.8±8.4 8 Rosaceae Rosales Rosid I Tree Hot Flammable Unsure
Pseudopanax arboreus PSEarb 33.3 206.7±20.3 2.6±0.9 2.8±0.9 27Araliaceae Apiales Asterid II Tree Fast Flammable Non-fire-prone
Pseudopanax crassifolius PSEcra 22.2 163.4±11.4 0.6±0.4 1.4±0.7 18Araliaceae Apiales Asterid II Tree Fast Flammable Non-fire-prone
Pseudotsuga menziesii PSEmen 87.5 482.4±58.7 20.0±7.9 13.8±3.1 8 Pinaceae Pinales Pinophyta Tree Fast Flammable Fire-prone
Pseudowintera colorata PSEcol 91.7 543.3±42.2 32.3±5.8 43.3±6.3 12Winteraceae Canellales Magnoliidae Shrub Hot Flammable Non-fire-prone
Pteridium esculentum PTEesc 100.0 507.7±22.4 24.9±3.1 28.6±2.3 14DennstaedtiaceaePolypodiales Polypodiopsida Shrub Fast Flammable Fire-prone
Pyrus 'Louise Bonne of Jersey' PYRcom 100.0 632.0±51.9 14.1±4.3 41.4±9.6 7 Rosaceae Rosales Rosid I Tree Hot Flammable Unsure
Quercus ilex QUEile 100.0 460.3±58.9 23.9±6.1 26.7±7.9 6 Fagaceae Fagales Rosid I Tree Fast Flammable Fire-prone
Raoulia grandiflora RAOgra 12.5 173.4±23.4 0.5±0.5 0.6±0.6 8 Asteraceae Asterales Asterid II Forb Fast Flammable Fire-prone
Raoulia subsericea RAOsub 100.0 491.2±23.8 7.4±2.0 80.0±6.3 8 Asteraceae Asterales Asterid II Forb Hot Flammable Fire-prone
Ripogonum scandens RIPsca 50.0 213.5±31.7 1.9±0.8 5.0±2.5 8 Ripogonaceae Liliales Lilioid monocots Shrub Fast Flammable Non-fire-prone
Rosa rubiginosa ROSrub 87.5 193.4±18.1 3.0±1.6 15.0±4.6 8 Rosaceae Rosales Rosid I Shrub Fast Flammable Unsure
Rosmarinus officinalis ROSoff 100.0 208.3±21.7 7.0±3.3 15.0±3.8 7 Lamiaceae Lamiales Asterid I Forb Fast Flammable Fire-prone
Rubus cissoides RUBcis 66.7 349.3±56.3 5.4±2.0 12.2±3.6 9 Rosaceae Rosales Rosid I Shrub Fast Flammable Non-fire-prone
Rubus fruticosus RUBfru 75.0 230.0±32.5 8.6±3.2 23.1±7.4 8 Rosaceae Rosales Rosid I Shrub Fast Flammable Non-fire-prone
Rumex acetosella RUMace 20.0 180.5±20.4 0.4±0.3 20.0±13.3 10Polygonaceae CaryophyllalesRosid II Forb Fast Flammable Fire-prone
Rytidosperma setifolium RYTset 25.0 215.0±42.7 1.1±0.9 23.5±15.4 8 Poaceae Poales Commelinids Grass Low Flammable Fire-prone
Salix fragilis SALfra 100.0 347.1±48.1 16.3±2.7 55.0±8.5 7 Salicaceae Malpighiales Rosid I Tree Hot Flammable Non-fire-prone
Salix matsudana SALmat 100.0 428.8±37.1 7.0±1.8 23.3±4.2 6 Salicaceae Malpighiales Rosid I Tree Fast Flammable Non-fire-prone
Solanum laciniatum SOLlac 0.0 150±0 0±0 0±0 8 Solanaceae Solanales Asterid I Shrub Low Flammable Fire-prone
Sophora microphylla SOPmic 40.0 225.6±47.5 2.3±1.3 10.5±4.9 10Fagaceae Fagales Rosid I Tree Fast Flammable Non-fire-prone
Syzygium smithii SYZsmi 100.0 598.8±30.6 16.8±1.1 23.1±2.1 8 Myrtaceae Myrtales Rosid II Tree Fast Flammable Non-fire-prone
Trachelospermum jasminoides TRAjas 33.3 227.7±59.9 2.2±1.5 5.8±3.8 6 Apocynaceae Gentianales Asterid I Shrub Fast Flammable Non-fire-prone
Trifolium arvense TRIarv 0.0 150±0 0±0 0±0 8 Fabaceae Fabales Rosid I Forb Low Flammable Fire-prone
Trifolium repens TRIrep 12.5 187.0±37.0 0.5±0.5 12.5±12.5 8 Fabaceae Fabales Rosid I Forb Low Flammable Non-fire-prone
Ulex europaeus ULEeur 100.0 704.8±30.3 65.1±7.3 83.8±4.8 8 Fabaceae Fabales Rosid I Shrub Hot Flammable Fire-prone
Vibranum tinus VIBtin 100.0 626.2±10.1 18.0±4.8 30.0±3.7 6 Adoxaceae Dipsacales Asterid II Shrub Fast Flammable Fire-prone
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Viola cunninghamii VIOcun 0.0 150±0 0±0 0±0 8 Violaceae Malpighiales Rosid I Forb Low Flammable Non-fire-prone
Vitex lucens VITluc 87.5 442.6±49.7 8.5±4.4 12.2±3.0 8 Lamiaceae Lamiales Asterid I Tree Fast Flammable Non-fire-prone
Wahlenbergia albomarginata WAHalb 0.0 150±0 0±0 0±0 8 Campanulaceae Asterales Asterid II Forb Low Flammable Non-fire-prone
Weinmania racemosa WEIrac 100.0 548.5±33.1 9.1±2.6 16.9±4.0 8 Cunoniaceae Oxalidales Rosid I Tree Fast Flammable Non-fire-prone
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