

Policy options for sustainability in potato value chains in Bihar: a system dynamics approach

Karl M. Rich, Ph.D., Associate Professor, Lincoln University Kanar Dizyee, Ph.D. candidate, University of New England

Presentation for NZAE, 30 June 2016

Outline

- Motivation
- Overview of the sector
- Methodology
- Preliminary results
- Implications

Motivation

 Climate change – an important risk factor for food security in India in general, Bihar in particular (4-7 C increase by 2100)

 Potential to undo recent positive gains made in state on governance, enabling environment, etc.

Motivation

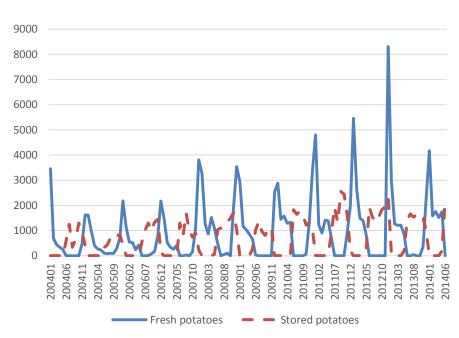
 An important mitigation strategy – linking farmers to formal markets

 But what are the "best" mechanisms and to what extent does climate change influence?

Case study: potatoes in Bihar

Overview of the sector

- Bihar: 15% of India's potato production (4th nationally)
- Important role in food security and livelihoods (esp. off-farm employment)
- Steady rise in production (5.7m tons in 2005/06 to 6.5m tons 2013/14), driven mostly by yield gains.
- Highly seasonal storage plays an increasing role (just over 1m tons of potato storage capacity in the state)
- Highly vulnerable to climate change projected state-wide yield reduction of over 20% by 2080.

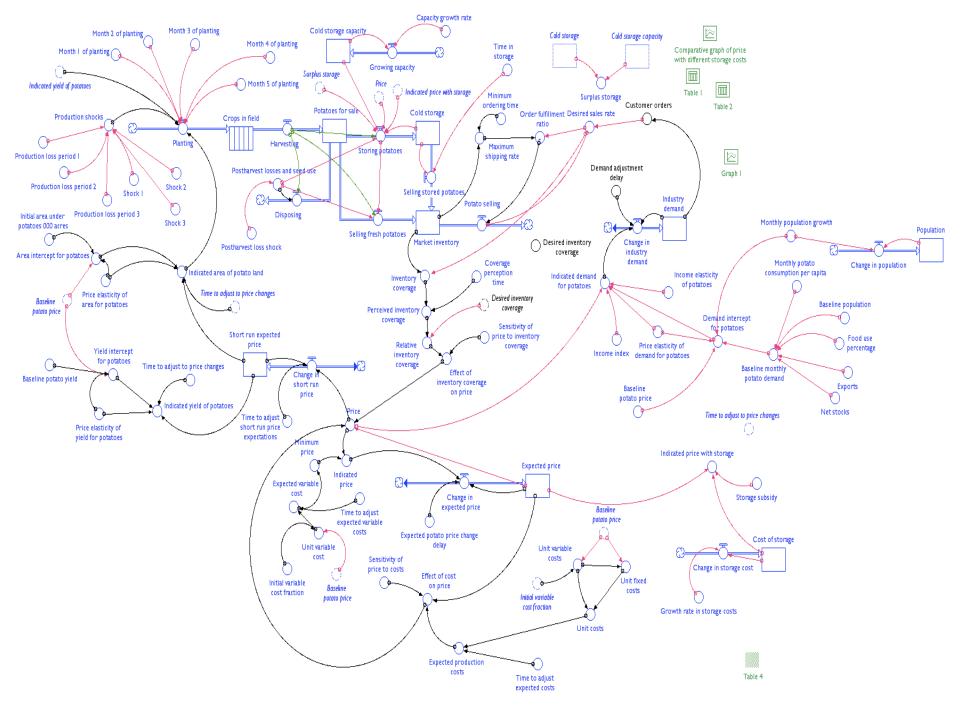

Overview of the sector

Trends in market prices

Fresh potatoes Stored potatoes

Trends in market arrivals

Source: Computed from Agricultural Marketing Board, Government of India



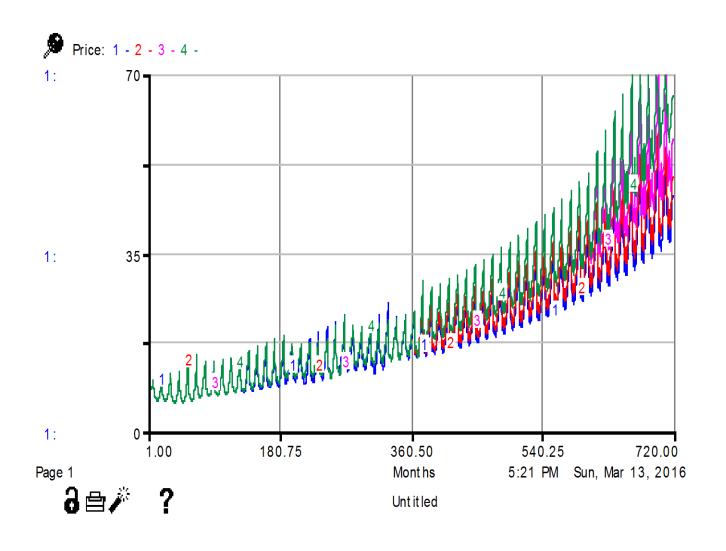
Methodology

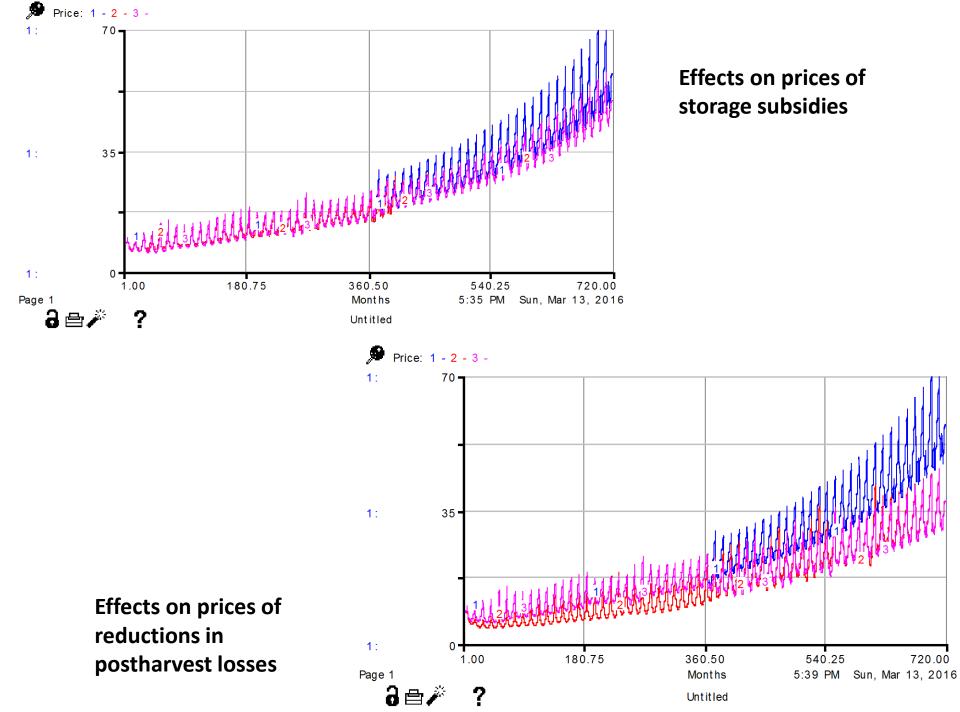
- Use of system dynamics (SD) methodology to model key aspects of potato value chain (Sterman, 2000; McRoberts et al. 2013; Dizyee et al. 2016)
- SD models are simulation approaches that trace the evolution of system behaviour
- Adaptive vs. rational expectations (latter standard approach in storage models e.g. Wright and Williams 1991).

Scenarios

- Model run monthly over 60-year time horizon
- Scenarios assess impacts
 of climate change plus
 different mitigation
 strategies associated with
 value chain investments
 (storage, postharvest)

Scenario	Description
Baseline	Status quo
1	Low yield reduction (4.5%) from year 10
2	Scenario 1 + moderate yield reduction (13.8%) from year 30
3	Scenario 2 + high yield reduction (22%) from year 45
4	Scenario 2 + 50% storage cost subsidy from year 0
5	Scenario 2 + 50% storage cost subsidy from time yield shocks start
6	Scenario 2 + 50% reduction in postharvest losses from year 0
7	Scenario 2 + 50% reduction in postharvest losses from time yield shocks start
8	Scenario 2 + low investment in storage (1% p.a.)


Data sources



Parameter (units)	Value	Year	Source(s)
Area ('000 ha)	315	2011/12	Horticulture Statistics Division, Department of Agriculture and Cooperation, http://nhb.gov.in/statistics/area-production-statistics.html
Yield (tons/ha)	19.37	2011/12	Horticulture Statistics Division, Department of Agriculture and Cooperation, http://nhb.gov.in/statistics/area-production-statistics.html
Per capita consumption (kg/month/person)	3.375	2012	NSS 2012 data, averaged between rural and urban consumption
Population (million people)	104.1	2011	http://www.census2011.co.in/census/state/bihar.html
Annual population growth rate (%)	2.3		Computed from http://www.census2011.co.in/census/state/bihar.html , based on growth from 2001-2011.
Net production of potatoes (%)	60	2009	Minten et al. (2011) report 65% of potatoes marketed after losses, seed use, and home consumption; another 8-10% lost downstream
Storage capacity ('000 tons)	1030.4	2013	http://agmarknet.nic.in/binew.htm
Annual growth in storage capacity (%)	3.3		Computed from http://agmarknet.nic.in/binew.htm , annual growth 2009-2013
Price elasticity of area	0		Assumed based on limited growth in area
Price elasticity of yield	0.05		Assumed by the authors
Price elasticity of demand	-0.3		Assumed based on literature review (see text)
Income elasticity of demand	0.3		Assumed based on literature review (see text)
Baseline price (Rs/kg)	8	2012	Horticulture Statistics Division, Department of Agriculture and Cooperation

Preliminary results: climate change on prices

Preliminary results

Coefficient of variation of potato prices over different simulation periods and scenarios

		Scenario number:									
Months	Baseline	1	2	3	4	5	6	7	8		
1-120	25.6%	25.6%	25.6%	25.6%	19.5%	25.6%	22.9%	25.6%	25.6%		
	22.00/	24.60/	24.60/	24.60/	10.00/	24 60/	24 40/	24.60/	22.00/		
121-240	23.0%	21.6%	21.6%	21.6%	18.0%	21.6%	31.4%	21.6%	22.8%		
241-360	19.9%	18.3%	18.3%	18.3%	14.1%	18.3%	24.4%	18.3%	19.2%		
361-480	16.7%	16.9%	18.3%	18.3%	15.2%	13.4%	22.3%	19.6%	18.0%		
301-400	10.776	10.576	10.5/0	10.5/0	13.270	13.470	22.370	19.076	10.070		
481-600	17.0%	17.0%	17.2%	17.2%	13.1%	13.1%	18.1%	18.0%	17.1%		
	47.00/	47.00/	47 60/	40.00/	40.00/	10.00/	45.00/	4.5 70/	47.50/		
601-720	17.2%	17.3%	17.6%	19.8%	13.8%	13.8%	16.9%	16.7%	17.6%		

Implications

 Mitigation options can play a role, but trade-offs between price stability and levels

Cost-effectiveness of options?

 Unintended consequences of cold storage (James and James 2010; Vermuelen et al. 2012).

Acknowledgements

This research was funded in part by the Norwegian Research Council FOODSEC project (#11201242). The authors acknowledge and appreciate comments from SIFO and CUTS International on an earlier draft.

