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ABSTRACT
Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates
remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate
Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using
N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed
sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative
units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a∼15% lower
EF in 1961–1989 and a∼67% larger EF for paddy rice over the full period. Associated emissions (0.82±
0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3
estimates.The use of survey-based gridded N-input data contributes 58% of this emission reduction, the
rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O
emissions from site-level observations to global croplands provides a new benchmark for constraining
IPCC Tier 1 and 3 methods.The detailed spatial distribution of emission data is expected to inform
advancement towards more realistic and effective mitigation pathways.

Keywords: nitrous oxide, agricultural soils, flux upscaling, emission factor, emission inventories, temporal
trend

INTRODUCTION
Croplands are the largest anthropogenic source of
atmospheric nitrous oxide (N2O) [1,2]. Over the
last century, this source increased with N-fertilizer
uses, accounting for 80%of the global increase in ter-
restrial N2O emissions [3]. Nevertheless, the quan-
tifications of cropland-N2Oemissions and of the un-
derlying emission factors (EFs; defined as N2O–N
emission per unit of fertilizers N applied) remain
highly uncertain [4], primarily attributable to high
spatiotemporal variability [5] and complex biotic
and abiotic factors [1] that control soilN2Oproduc-
tion. Global cropland-N2O emissions for the most
recent decade estimated by various bottom-up ap-
proaches [3,6,7] ranged from 1.5 to 5.0 Tg N yr–1.

The use of EFs multiplied by activity data (i.e.
N-fertilizers applied) is the most common bottom-

up approach, corresponding to the Tier 1 IPCC
methodology. This pragmatic approach is used in
research studies and for compilation of national
greenhouse gas emission inventories [6–8]. Tier 1
methods that assume temporally or regionally con-
stant EFs provide a first-order approximation, which
needs to be complemented by more detailed ap-
proaches to reduce estimation uncertainty at finer
scales [3,9]. A global synthesis of site-level observa-
tions suggests that the response of N2O emissions
to increasing N-application rates [10] is non-linear
(implying non-constant EFs) and strongly depends
on changing environmental conditions [11–14]. Ev-
idence for non-linear characteristics of EFs has re-
cently been confirmed regionally as well [15].

Tier 3 methods, such as process-based models,
are arguably more realistic than the Tier 1 approach
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Figure 1. Temporal variability of cropland-N2O emissions globally and across 18 regions. Eighteen regions are divided consistently with the NMIP [3],
including the United States (USA), Canada (CAN), Central America (CAM), Northern South America (NSA), Brazil (BRA), Southwest South America (SSA),
Europe (EU), Northern Africa (NAF), Equatorial Africa (EQAF), Southern Africa (SAF), Russia (RUS), Central Asia (CAS), Middle East (MIDE), China (CHN),
Korea and Japan (KAJ), South Asia (SAS), Southeast Asia (SEAS) and Oceania (OCE); solid and dashed lines indicate the EFs of our estimate and IPCC
Tier 1 default; black lines indicate 10-year moving average values.

because they improve the bio-physical representa-
tion of processes involved N2O production [16,17].
However, their parameters are generally calibrated
at a limited number of observation sites [4,18,19].
Another common source of systematic error asso-
ciated with Tier 3 methods comes in part from un-
certain gridded N-input data [20,21]. Because high-
resolution, crop-specific data of N inputs are not
available at regional or global scales from ground ob-
servations, a disaggregation of national-scale data is
usually performed [20–23]. These weaknesses lead
to large uncertainties not only in estimating emis-
sions over time and space, but also in identifying un-
derlying drivers.

To fill the gap between the simple (Tier 1) and
complex (Tier 3) methods, we provide an empir-
ical upscaling of site-level observations to quantify
global cropland-N2Oemissions.Our upscaling algo-
rithm, a spatially referenced non-linear model [24]
(SRNM), simulates N2O emissions incorporating
the non-linear characteristics of EF and its envi-
ronmental controls (see Methods). The principle
is to train an algorithm to reproduce in situ mea-
surements of EF at multiple sites using predictors
such as climate, soil and N inputs, then produce
maps of N2O fluxes from gridded fields of those
predictors [24–27]. This approach is independent
of theoretical-model assumptions (except for the
choice of predictors) [28], but its performance de-
pends on the density and representativeness of site-
level observations and on the quality of gridded pre-
dictor data (e.g. N inputs). To broaden the range of
environmental and management-related conditions

[5,29], we aggregate 1206 chamber-based observa-
tions of EF from 28 countries. Second, we develop
a specific reconstruction of gridded N inputs disag-
gregated from sub-national surveys covering 15593
administrative units (see Methods).

As part of the global N2O budget assessment
from the Global Carbon Project and the Interna-
tionalNitrogen Initiative [3], we present a new anal-
ysis of the global distribution and trends of cropland-
N2O emissions in 1961–2014. We first present the
spatial patterns of EFs at 5-arc-minute resolution for
both upland crops and paddy rice and associated
emissions results. Using sensitivity simulations (see
Methods),we thenattributedifferencesbetweenour
estimates and IPCC Tier 1 and 3 global invento-
ries. For this analysis, we only consider direct N2O
emissions from croplands where synthetic fertiliz-
ers, livestock manure and crop residues are added.
Emissions fromglobal permanentmeadows andpas-
tures are not considered because of a lack of site
observations.

RESULTS
Model performance
Evaluated by cross-validation with EF data from 180
globally distributed chamber-based N2O flux obser-
vation sites (Supplementary Fig. 1a), our SRNM
model outputs performed well, resulting in an ad-
justed coefficientof determination (R2

adj) of 0.65 for
upland crops (n = 1052, slope = 0.92, P <0.001,
Supplementary Fig. 1b) and 0.87 for paddy rice
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Figure 2. Spatial patterns of cropland-N2O EFs controlled by the changes in N inputs and environmental conditions. (a) and (e) Mean values and temporal
trends of EFs in the period 1961–2014, respectively. (b) and (f) The effect of environmental changes on the mean and slope of EFs, respectively. (c) and
(g) The effect of N-input changes on the mean and slope of EFs, respectively. (d) and (h) Dominant factor of the mean and slope of EFs, respectively,
defined as the driving factor that contributes the most to the values of the mean and slope of EFs in each cropland grid cell.

(n = 154, slope = 0.91, P <0.001, Supplementary
Fig. 1c). Our model also reproduced fairly well the
long-term inter-annual variability ofEFs and the sen-
sitivity of EFs to environmental changes (R2

adj =
0.38-0.65, Supplementary Fig. 2). However, our EF

estimates were the least well constrained for upland
crops in Equatorial Africa, Southern Africa, Russia
and Brazil, given the fact that the observations were
relatively rare in these regions (<10% of the total,
Supplementary Fig. 1d).
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Figure 3. Estimates of global cropland-N2O emissions in 1961-2014. We normalize the
FAOSTAT and GAINS by removing the contribution from synthetic fertilizers applied to
pasture, the EDGAR version 4.3.2 by excluding the contributions from synthetic fertil-
izers applied to pasture and soil mineralization and the NMIP by excluding the con-
tribution from ‘background’ emissions. The box plots (mean, one standard deviation
and minimum-to-maximum range) are given for the period 1961-2014 for prominent
datasets (colors) and for our estimates in different periods (1961-2014: black, 1970-
2012: gray, 1990-2015 in 5-yr increments: light gray). The proportion value indicates
the emission difference in means between our estimates and prominent datasets, com-
puted as the difference divided by the estimates of prominent datasets.

Emission factors
Based on our validated SRNM, reconstructed grid-
ded N inputs, and climate and edaphic factors, our
estimate suggests that global cropland-N2O EF for
upland crops increased from 0.80 ± 0.06% in the
1960s (σ is the standard deviation of EFs occurring
over a decade) to 1.05 ± 0.04% in the last decade
(2005–14; Fig. 1). However, EFs for paddy rice re-
mained relatively stable at between 0.46 and 0.53%
over the past six decades. The SRNM model con-
firms IPCCTier 1 default for upland crops in 1990–
2014, but gives a lower EF before that and a larger
EF for paddy rice by approximately two-thirds over
the full period 1961–2014.

The substantial regional differences were further
identified for both crop systems (Fig. 1). For upland
crops,China (CHN), Southeast Asia (SEAS), South
Asia (SAS) andNorth Africa (NAF) had double the
growth rate in EFs than observed for the global av-
erage. Equatorial Africa, in contrast, had decreasing
EFs over the past six decades. The other regions in-
cluding the USA and EU had relatively constant EFs
over the full period. Although most of the regions
showed upland-crop EFs close to the IPCC Tier 1
default after 1990, marginal crop-producing regions
had substantially smaller EFs, as much as two-thirds
less than the default. For paddy rice, EFs in China,
Korea and Japan (KAJ) and North Africa were very

close to the IPCCTier 1 default, but EFs in SAS and
SEAS ranged fromhalf to two times larger values, re-
spectively.

Large spatial contrasts of EFs averaged over
the period 1961–2014 are apparent in Fig. 2a,
attributable primarily to differences in local en-
vironmental conditions across 77% of the global
cropland area (Fig. 2b–d). This result differs from
previous non-linear models [10,26,30] where
spatial differences in EFs depend primarily on
N-application rates. The importance of environ-
mental controls on the non-linear characteristics of
EFs was confirmed by the recent global synthesis
[10] that defined the EF as EF0 + �EF × N rate,
where EF0 is a baseline of the EF associated with
climate and edaphic factors [24] and �EF × N
the fertilizer-induced increment of an EF. For most
of crop and fertilizer types, EF0 was found to be
a more important component than �EF × N
for N-application rates below 160 kg N ha–1 (i.e.
approximately twice the global average; Supplemen-
tary Table 1). In contrast to the drivers of spatial
gradients, a global increase in EF (0.07 ± 0.22 %
decade–1) was mainly controlled by the growth in
N-application rates covering 57% of global cropland
area (Fig. 2e–h). The sensitivity of the global mean
EF to increasing N addition was estimated as 0.27–
0.58% per 100 kg N ha–1 (μ – σ ,μ + σ ) for upland
crops and 0.01–0.07% per 100 kg N ha–1 for paddy
rice during 1961–2014, which is comparable to
several recent studies (–0.45–0.79 and–0.02–0.20%
per 100 kg N ha–1, respectively) [10,14,31].

Emission differences with Tier 1 methods
We estimated a persistent increase in global
cropland-N2O emissions with a trend of 21.5 Gg
N yr–2 over the past six decades (Fig. 3). Emission
hotspots were located in western Europe and
eastern USA in the 1960s, but shifted to eastern
China, northern South Asia and southern Brazil in
the most recent decade (Supplementary Fig. 3).
Our estimate of global cropland-N2O emissions was
0.82± 0.34 Tg N yr–1 averaged during 1961–2014,
with half of the emissions occurring over ∼10% of
the global cropland area (Supplementary Fig. 4).
This new estimate differs with the published global
inventories that rely largely on the IPCC Tier 1
method, despite using normalized approaches to
compare estimates limited to direct N2O emissions
from croplands over the same periods (seeMethods
and Supplementary Fig. 5). For example, our
estimates were about one-quarter lower than the
Food and Agriculture Organization (FAOSTAT,
–24% in 1961–2014) [6], the Emissions Database
for Global Atmospheric Research (EDGAR version
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Figure 4. Results of scenario simulations and the attribution of emission differences
globally. (a) Global cropland-N2O emissions of five simulations for different periods;
the difference ratio is calculated as the difference between S0 and other simulations
divided by S0; the scenarios S0-S4 are defined in Methods. (b) Difference between S0
and S4 due to the effects of different EFs and N inputs, i.e. the more detailed the spatial
resolution of the N inputs (S0-S1), the lower the EFs (S1-S2), the lower the N inputs for
croplands (S2-S3) and the revised allocation of N inputs by crop (S3-S4). The combined
effects of the N inputs and the emission difference between S0 and S4 are colored as
dark yellow and red in (b), respectively.

4.3.2, –23% in 1970–2012) [7] and the Greenhouse
Gas and Air Pollution Interactions and Synergies
(GAINS, –25% in 1990–2015) [8] (Fig. 3).

To understand the emission differences with
IPCCTier 1 global inventories, we conducted sensi-
tivity tests with the SRNMmodel to isolate the con-
tributions of different EFs and N inputs (Fig. 4 with
the details in Methods). Globally, our estimate of
cropland-N2O emissions (S0) ranged from 0.33 Tg
N yr–1 in the 1960s to 1.17 Tg N yr–1 in the 2000s.
Low-resolution cropland N inputs aggregated from
our sub-national statistics (S1) resulted in smaller
emissions than S0 by –3 to –17% (Fig. 4a). When
using IPCC Tier 1 constant EF (S2), these under-
estimations were, however, totally or partially offset.
Theuse of constant EF andFAOSTATnational data
of N inputs by crop (S3) led to higher emissions
than S0 by 8–60%. Such upward influence was am-
plified when not allocating N inputs by crop (S4, i.e.
the normalized estimate of FAOSTAT), resulting in
larger emissions of 17–64%. Therefore, for the full
period 1961–2014, the smaller N inputs compared

to those mainly employed by FAOSTAT, EDGAR
andGAINS explained 82%of the reduced emissions
(i.e. S0–S4; Fig. 4b), followed by the effects of the
lower EFs for upland crops (42%) and the revised al-
location ofN inputs by crop (18%), whichwere nev-
ertheless offset by the higher spatial resolution of N
inputs (–42%). More specifically, before the 1990s,
the misfit with IPCC Tier 1 global inventories was
dominated by the downward influence from N in-
puts used in this study but, after that, the misfit was
attributable to the lower EFs for upland crops de-
rived from the SRNM (Fig. 4b).

Emission differences are striking at the grid cell
(Fig. 5a). For example, our estimate gives two times
less cropland-N2O emissions in northern China,
eastern Europe and part of central Asia (Fig. 5b). In
contrast, our estimate is more than 30% larger than
S4 over the top cereal-producing areas in southeast
USA, eastern China and western Europe (Fig. 5b).
The updated EF contributes the most to emission
differences over 55% of the global cropland area
(Fig. 5c and d), mainly in under-fertilized areas
and the largely acidic or alkaline soils, primarily
due to the non-linear characteristics of EF and its
environmental controls. The revised historical N
inputs (the combined effects of different quantity,
distribution and allocation) dominated the rest of
the croplands, particularly in Asia (Fig. 5c and d).
The detailed attribution of emission differences at
the gridded scale can be found in Supplementary
Text 1 and Supplementary Fig. 6.

Emission differences with Tier 3 methods
We also find emission differences between our
estimate and Tier 3 modeling results from the
N2O Model Inter-comparison Project (NMIP) [3]
(Supplementary Fig. 5). In addition to uncertainties
arising from model structure and parameters,
another obvious reason for these differences is the
scope of modeling results that represent the total
N2O emissions from global croplands. Emission
differenceswithTier 3methodsmay be explained by
‘background’ anthropogenic emissions [9], defined
as the emissions in the absence of new fertilizer addi-
tions, including soil mineralization, atmospheric de-
position on croplands derived from all sources of N
as NH3 and NOx, and residual N accumulated from
previous growing seasons.Thus, we estimated global
‘background’ anthropogenic emissions based on the
N2O fluxes under unfertilized condition and FAO’s
cropland-area data (seeMethods), although this ap-
proach contains large uncertainties.N2Ofluxeswere
estimated by the upscaling models against 469 ob-
servations for upland crops and 67 observations for
paddy rice from the zero-N control sites (Adjusted
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Figure 5. Spatial patterns of dominant drivers of the difference in cropland-N2O emissions. (a) Spatial distribution of the emission difference between
S0 and S4 over the period 1961–2014. (b) Relative difference computed as the emission difference divided by S0. (c) Dominant factor of emission
difference, defined as the driving factor that contributes the most to the difference in cropland-N2O emissions in each cropland grid cell. The driving
factors include the updated EFs and the improved N inputs. A prefix ‘+’ of the driving factors indicates a positive effect on the emission difference,
whereas ‘−’ indicates a negative effect. (d) Fractional area of croplands in latitude bands (90◦N-60◦S) attributed to different factors. The fraction of
the cropland area (%) that is dominantly driven by each factor is labeled on top of the bar; ‘+’ and ‘−’ have the same meaning as in (c).

R2 = 0.85 and 0.93, respectively, Supplementary
Fig. 7). The estimate of historical ‘background’
anthropogenic emission is 1.52± 0.16 TgN yr–1 (σ
is the standard deviation representing inter-annual
variability of EF) and falls within the range of previ-
ous studies (1.41–1.61 Tg N yr–1) [10,32] over the
same period (Supplementary Fig. 7c).When remov-
ing this term, our estimate was generally consistent
with NMIP results (0.82 ± 0.34 in our study; 0.75
± 0.53 TgN yr–1 in NMIP). In addition, large emis-
sion differences between our estimate and NMIP
results can be found in southeast USA and most of
India (Supplementary Fig. 3 vs. Fig. 4 of Tian et al.
[3] or Fig. 6 of Tian et al. [4]), possibly due to the
different N-input data used or different sensitivity of
N2Oflux toN inputs and environmental conditions.

DISCUSSION
These data-driven results highlight the need for ac-
curate estimates of global cropland-N2O emissions

using observation-based non-linear EF and survey-
based gridded N-input data. Hence, flux-upscaling
models could act as a complementary approach
for simple methods to estimate emissions (Tier 1
in IPCC) and for complex biogeochemical model-
ing with incomplete calibration (Tier 3 in IPCC).
The detailed spatial resolution of our emission data
will inform climate-mitigation-policy development
and advancement towards a more accurate global
N2O budget. For this reason, our analysis (i) dis-
tinguishes between the twomajor cropping systems,
(ii) utilizes globally distributed cropland-N2O ob-
servations to constrain flux upscaling models and
(iii) reconstructs the gridded N-input dataset of all
fertilizer types where synthetic fertilizers data have
been disaggregated from sub-national surveys.

Although an estimated systematic reduction
(∼25%) of global cropland-N2O emissions is found
compared to IPCC Tier 1 global inventories, we
acknowledge that actual cropland-N2O emissions
remain poorly quantified. Further work is needed to
determine how much more reliable our estimates
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are than those of widely used inventories based on
the IPCC Tier 1 defaults of EF and FAOSTAT
aggregated data of N inputs. First, we suggest that
data-driven non-linear EFs are more realistic than
IPCC Tier 1 default values, being supported by a
broad observation-based dataset across contrasting
environmental conditions (Supplementary Fig. 8).
The effect of lower EFs on global cropland-N2O
emissions is consistent with the value reported
in Gerber et al. [26] for the year 2000 (–0.08 vs.
–0.11 Tg N yr–1). Yet, our estimate of EFs contains
uncertainties due to the scarcity of observations
in eastern Europe, south Asia, Russia, central Asia
and the Middle East (Supplementary Fig. 1a).
Together, these regions contribute ∼20% of global
cropland-N2O emissions. Another limitation is the
fact that the SRNMmodel does not include specific
cropland-management practices [33–35] (e.g. irri-
gation technology, tillage and straw management)
responsible for cropland-N2O fluxes. Besides, the
quantification of EF depends also on the form of a
non-linear model and the choice of predictors.

Second, our high-resolution, crop-specific data of
N inputs is probably more realistic than FAOSTAT
national data, as it is based on sub-national statis-
tics of synthetic fertilizers (straight and compound)
that contribute∼86% of the global N-fertilizer con-
sumption (Supplementary Fig. 9). However, there
is significant uncertainty on how N inputs are dis-
tributed to different crop types because the sub-
national data compiled did not report this infor-
mation, also in the amount of N in different types,
forms, timing and splitting frequency influenceN2O
fluxes. In addition, other input datasets can have
large sources of uncertainties in cropland-N2Oemis-
sions reported here. For example, the magnitude of
precipitation estimates over global land deviated by
as much as 300 mm yr–1 among the datasets [36],
particularly in complex mountain areas, northern
Africa and some high-latitude regions. Temporally
constant soil-attributes data used in this study may
distort the dynamical evolution of cropland-N2O
emissions.

Comparison with IPCC Tier 3 methods under-
scores the importance of including ‘background’
anthropogenic emissions within a global N2O
budget. In addition to soil mineralization and
indirect emissions from atmospheric deposition
(due to the volatilizations from croplands and non-
cropland sources), the legacy effect of fertilization
is not considered well in the 2006 IPCC guidelines
[3]. However, multiple pieces of evidence from
over-fertilized regions (e.g. the North China Plain)
[37–39] indicate significant N accumulation when
the N-fertilizer application rate reaches the opti-
mum for crop growth, triggering N2O emissions

in subsequent years. To verify this legacy effect,
process-based models could be used in the future
to perform simulations with all N inputs ceased to
zero abruptly and to quantify the dynamics of N2O
emissions afterwards.

In addition, upscaling directN2Oemissions from
site-level observations to global croplands provides
an independent, yet important, dataset towards re-
fining national greenhouse gas emission invento-
ries submitted to the UNFCCC and towards con-
straining process-based models through data-model
integration for the global N2O-budget assessment.
The use of a flux-upscaling model trained by global
cropland-N2O observations increases confidence in
the global and regional estimates, although model-
ing results contain many uncertainties, particularly
related to model structure and input forcings as well
as the missing ‘background’ anthropogenic emis-
sions. Since our direct-emission products imply that
it matters when and where the input of N-fertilizer
occurs, especially the change in such N inputs will
have different influences on cropland-N2O emis-
sions. Hence, model improvements such as those
presented here are essential to adequately optimize
the measures aimed at mitigating N2O emissions.
Efficient emission reductions depend upon tackling
the high-N-input areas with favorable environmen-
tal conditions for N2O production, given the non-
linearity and environmental-mediating effects that
prevail.

METHODS
Global cropland-N2O observation dataset
We aggregated cropland-N2O flux observations
from 180 globally distributed sites from online
databases, ongoing observation networks and
peer-reviewed publications (Supplementary Fig. 1).
Cropland mentioned here is defined as the FAO’s
land-use category ‘Arable land and permanent
crops’, with the ‘Arable land’ component including
land used for temporary crops, temporary meadows
and pastures, and temporary fallow. Only chamber-
based observations were included in this dataset.
These data repositories are as follows: the NitroEu-
rope, CarbonEurope, GHG-Europe (EU-FP7),
GRACEnet, TRAGnet, NANORP, China-N2O and
14 meta-analysis datasets [10,32,40–51]. Five types
of data were excluded from our analysis: (i) obser-
vations without a zero-N control for background
N2O emission, (ii) observations from sites that
used controlled-release fertilizers or nitrification
inhibitors, (iii) observations not covering the entire
crop-growing season, (iv) observations made in
a laboratory or greenhouse and (v) observations
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with a minimal sampling frequency of less than one
time per week. Cropland-N2O EFs were estimated
for each non-zero-N-application rate (N) as EF =
(E− E0)/N, where E is the observed N2O flux dur-
ing the observation period due to the application of
N inputs and other unquantified source andE0 is the
N2O flux during the observation period at a zero-N
control site due to other unquantified source. This
yielded a global dataset of cropland-N2O emissions,
N-rate-dependentN2OEFs and fertilization records
from each site (i.e. 1052 estimates for upland crops
from 152 sites and 154 estimates for paddy rice
from 28 sites), along with site-level information on
climate, soils, crop type and relevant experimental
parameters. Total numbers of sites and total mea-
surements in the dataset were more than double
those for previous datasets of N2O EFs (Sup-
plementary Table 2). The extended global N2O-
observation network covered most of the fertilized
croplands, representing a broad range of environ-
mental conditions globally (Supplementary Fig. 1).

For each site in our dataset, the variables were
sorted into four broad categories: N2O-emissions
data, climate data, soil attributes and management-
related or experimental parameters. The definition
and units of each factor can be found in Supple-
mentary Table 3. N2O fluxes at the application
rate and zero-N control within the duration of the
experiment is required. The sum of cumulative
precipitation and irrigation use within the measure-
ment period was taken as a proxy for the variations
in water-filled pore space [52] and the mean daily
air temperature within the measurement period
was used as a proxy for surface-soil temperature,
because of their high correlation [53]. Soil attributes
including soil pH, clay content, bulk density (BD)
and soil organic carbon (SOC) were used to
account for the O2 and available C status [54].
Management-related or experimental parameters
likeN and irrigation-application rates, fertilizer type,
crop type, measurement frequency and duration
were also collected, considering their impacts on
the soil N cycling and transport in the root zone [1].
Missing values of the climate and soil factors at a few
sites (i.e.<12%) were either supplemented directly
by corresponding authors or taken from 1-km
Harmonized World Soil Database (HWSD) v1.2
(http://www.fao.org/soils-portal/soil-survey/soil-
maps-and-databases/harmonized-world-soil-
database-v12/en) and CRU TS v. 3.23 (https://
crudata.uea.ac.uk/cru/data/hrg/), according to
latitude and longitude. Fertilization methods,
irrigation technologies and tillage practices were,
albeit important for determining N2O flux, not
considered due to the lack of such information in
most of current databases or publications.

Flux upscaling model
The SRNM model [24] was applied to simulate
cropland-N2O EFs and associated emissions. N2O
emissions were simulated from N-application rates
using a quadratic relationship, with spatially vari-
able model parameters that depend on climate, soil
properties andmanagement practices (Equation 1).
The original version of the SRNM was calibrated
using field observations from China only [24]. In
this study, we used the global cropland-N2O obser-
vation dataset to train it to create maps of gridded
cropland-N2O EFs and the associated annual emis-
sions at 5-arc-minute resolution from 1961 to 2014.
The gridded EFs and associated emissions are simu-
lated based on the following equations:

EFi j t = αi j (xk)Ni j t + βi j (xk), Ei j t

= E F i j t Ni j t + εi j t , where xk ∈ �i ,∀i,
(1a)

and

αi j ∼ N
(
XT

k λi j k , σ
2
i j k

)
, βi j ∼ N

(
XT

k φi j k , σ
′2
i j k

)
,

(1b)

λi j k ∼ N
(
μi j k, ω

2
i j k

)
, φi j k ∼ N

(
μ′
i j k, ω

′2
i j k

)
,

εi j t ∼ N
(
0, τ 2), (1c)

and i denotes the sub-function of EFs (i = 1, 2, . . .
, I) that applies for a sub-domain division �i of six
climate or soil factors, j represents the type of crop
(j= 1–2, 1 for upland crops and 2 for paddy rice), k
is the index of the climate or soil factors (k= 1–6, i.e.
soil pH, clay content, SOC, BD, the sum of cumula-
tive precipitation and irrigation, mean daily air tem-
perature), EFijt and Eijt denote emission factor (kg
N2O-N(kgN)–1 or%) anddirectN2Oemissionflux
(kgN ha–1 yr–1) estimated for crop type j in year t in
the ith type of regions, Nijt is N-application rate (kg
Nha–1 yr–1) andα andβ are the functions ofXk.The
random terms λ and φ are assumed to be indepen-
dent and normally distributed, representing the sen-
sitivity of α and β to Xk. ε is the model error.μ and
μ′ are themean effect ofXk forα andβ , respectively.
σ , σ ′, ω, ω′ andτ are standard deviations. Optimal
sub-domain division, associated parameters mean
values and standard deviations were determined by
using the Bayesian Recursive Regression Tree ver-
sion 2 (BRRT v2) [24,25,27], constrained by the
extended global cropland-N2O-observation dataset.
The detailed methodological approach of the BRRT
v2 is described by Zhou et al. [24].
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Gridded input datasets
The updated SRNM model was driven by many in-
put datasets, including climate, soil properties, N
inputs (e.g. synthetic N-fertilizer, livestock manure
and crop residues applied to cropland), irrigation
uses and the historical distribution of croplands. Cu-
mulative precipitation and mean daily air temper-
ature over the growing season were acquired from
the CRU TS v3.23 climate dataset [55] (0.5-degree
resolution), where the growing season in each grid
cell was identified as the period between the plant-
ing and harvesting dates obtained from Sacks et
al. [56]. The patterns of SOC, clay content, BD
and soil pH were acquired from the HWSD v1.2
[57] (1-km resolution). Both climate and soil prop-
erties were re-gridded at a resolution of 5′ × 5′

using a first-order conservative interpolation [58].
The annual cropland area at 5-arc-minute resolution
from 1961 to 2014 was obtained from the History
Database of the Global Environment (HYDE 3.2.1)
[59]. National cropland irrigation rates over the pe-
riod 1961–2014 were calculated as the ratio of ir-
rigation water use to irrigated area from AQUAS-
TAT (http://www.fao.org/aquastat/) and were re-
sampled into the gridded irrigation maps of HYDE
3.2.1.

High-resolution, crop-specific data of the N-
application rate in 1961–2014 were specifically de-
veloped for this study. For synthetic-fertilizer appli-
cations, we first collected sub-national statistics (i.e.
county, municipal, provincial or state levels) of N-
fertilizer consumption of 15593 administrative units
from local statistical agencies in 38 countries mostly
during the period 1980–2014 (Supplementary
Fig. 9). To expand the temporal coverage of sub-
national statistics, we disaggregated N-fertilizer
consumptions for the period 1961–80 from FAO-
STAT [6] by using the corresponding sub-national
allocations in the 1980s. To harmonize the extended
dataset, we scaled N-fertilizer consumption up or
down based on the ratios between values of the
FAO and our sub-national statistics in the 1980s
(note that the same scalar was applied for each
administrative unit within a country). For the
other 197 countries in the world, the statistics
of N-fertilizer consumption were acquired only
at the national scale from FAOSTAT [6] during
the period 1961–2014. It should be noted that
the N-fertilizer consumption values we collected
represent the amounts of both cropland use and
the other agricultural uses (e.g. pasture for grazing).
Thus we separated synthetic-fertilizer use applied
to croplands for each administrative unit based on
the country-scale crop-wise proportion information
[60,61], assuming the same proportion of cropland

use within a certain country. In addition, a country
without a crop-wise proportion adopted this infor-
mation from the surrounding country. Second, the
5-arc-minute gridded data for manure applied to
croplands for the period 1961–2014 were provided
by Zhang et al. [23] and resampled into 15 790
administrative units. For crop residues applied to
croplands, we downloaded the national data from
FAOSTAT [6] (1961–2014) and disaggregated
them into all administrative units, with the assump-
tion of an equal rate of crop-residue application
within a certain country. It should be noted that the
world has experienced changes in administrative
divisions through aggregation, disaggregation and
name changes, such as the Union of Soviet Socialist
Republics. Thus, we harmonized the temporal evo-
lution of national and sub-national statistics to fit the
latest Global Administrative Unit Layers, based on
the historical trajectories summarized by the FAO
GeoNetwork (http://www.fao.org/geonetwork/).

Combining three types of N inputs, we gener-
ated global maps of cropland N inputs of 15 790
administrative units for the period 1961–2014. To
compute the crop-specificN-application rates,we al-
located N inputs for upland crops and paddy rice
based on the breakdown (or proportion) of total fer-
tilizer use by crops from Rosas [62]. Crop-specific
N-application rates (Nijt) were finally calculated as
croplandN inputs in each of the administrative units
divided by the associated cropland areas that were
obtained from the HYDE 3.2.1. This new dataset
of the N-application rate was finally resampled into
grid maps at 5-arc-minute spatial resolution (Sup-
plementary Fig. 10) following the dynamic cropland
distributions of the HYDE 3.2.1. The assumption of
a maximum combined synthetic + manure + crop
residues N-application rate was 1000 kg N ha–1—
larger than the previous threshold (700 kg N ha–1)
[30] that was only applied for the sum of synthetic
fertilizers and manure.

Comparison with previous estimates
We examine the differences with previous emission
datasets globally and by regions, including the
FAOSTAT Emissions Database [6], EDGAR
version 4.3.2 [7], GAINS [8] and NMIP results
for croplands [3] (Supplementary Fig. 5). The
scope, data source and estimation approach of N2O
emissions differ among datasets (Supplementary
Table 4). FAOSTAT and GAINS provided IPCC
Tier 1 estimates of direct N2O emissions from syn-
thetic fertilizers, manure applied to soils and crop
residues applied to soils, based on the activity data
from FAOSTAT [6]. This product used the data of
synthetic fertilizers that include both cropland and
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pasture uses. EDGARprovidedN2Oemissions from
the abovementioned three types of N inputs and
soil mineralization, while keeping a separating focus
on N-fixing crops and paddy rice. This product was
generated using the EFs derived from the CAPRI
modeling system [7] and N inputs from the FAO
with allocation by crop based on IRRI [63]. NMIP
provided the total cropland-N2O emissions that
account for direct N2O emissions and ‘background’
emissions, using an ensemble of process-based
models and different sources of N inputs [4].

To compare with our estimate, FAOSTAT
is corrected by removing the contributions from
synthetic fertilizers applied to pasture; the ratio
of pasture synthetic-fertilizer application was de-
termined based on the country-scale-proportion
information from Heffer et al. [60] and Lassaletta et
al. [61]. Similarly, EDGAR is corrected by removing
the contributions from synthetic fertilizers applied
to pasture and soil mineralization, where soil min-
eralization data were obtained from the FAOSTAT
Emissions Database [6]. NMIP is corrected by
removing the contributions from ‘background’
emissions, which were quantified as the product
of the gridded N2O fluxes under unfertilized con-
ditions and cropland-area data. The details of the
quantification of ‘background’ emissions can be
found in Supplementary Fig. 5.

Attribution of emission differences
Based on the SRNM, we conducted five scenario
simulations (S0–S4) for the period 1961–2014 to
isolate the effects of different EFs and N inputs on
the emissions differences. In simulation S0, global
cropland-N2O emissions were estimated based on
the gridded EFs derived from the SRNM and our
high-resolution, crop-specific N-input data. Simula-
tion S1 was the same as S0 but used low-resolution
N inputs aggregated fromour sub-national statistics.
Simulation S2 used the same N-input data as S1 but
the IPCCTier 1 defaults of EFs. Simulation S3 used
EFs of IPCCTier 1 defaults andN inputs of theFAO
where synthetic fertilizers for pasturewere excluded.
Note that, in 1961–2014, our total N inputs were
on average 12% lower than the FAO that removes
the pasture synthetic-fertilizer application, primarily
due to the reduced amount of synthetic fertilizers ap-
plied (Supplementary Fig. 11). The reduced N in-
puts applied to croplandswere primarily attributable
to the lower synthetic-fertilizer inputs surveyed from
sub-national data. Simulation S4 was the same as S3
but did not allocate N inputs by crop. It should be
noted that S4 is the same as FAOSTAT when ex-
cluding the emissions arising frompasture synthetic-
fertilizer application. Thus, differences among the

five simulations represent the effects of spatial res-
olution of N inputs (S0–S1), the difference in EFs
(S1–S2), the difference in the magnitude of N in-
puts (S2–S3) and the difference in the allocation of
N inputs by crop (S3–S4) on emission differences,
respectively.

Drivers of EF dynamics
To separate the contributions from change in lo-
cal environmental conditions and change in N in-
puts on cropland-N2O EF dynamics (i.e. mean val-
ues and temporal trends), we conducted one addi-
tional simulation S5. In this simulation, only envi-
ronmental conditions (i.e. climate factors, landuses)
varied from 1961 to 2014, while the N-application
rates were fixed at the level of 1961. Thus, S5 rep-
resents the effect of change in environmental con-
ditions and the difference between S0 and S5 repre-
sents the effect of change in N inputs.

Data availability
All computer codes and global cropland N2O-
observation dataset used in this study and global
cropland-N2O emission data produced in this study
can be provided by the corresponding author upon
reasonable request.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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