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Classification of rigid irregular G2-connections

Konstantin Jakob

Abstract

Using the Katz–Arinkin algorithm we give a classification of irreducible rigid irregular
connections on a punctured P1

C having differential Galois group G2, the exceptional simple
algebraic group, and slopes having numerator 1. In addition to hypergeometric systems and
their Kummer pullbacks we construct families of G2-connections which are not of these types.

1. Introduction

Rigid local systems are local systems which are determined up to isomorphism by the conjugacy
classes of their local monodromies. Classically they arise as solution sheaves of certain regular
singular differential equations, for example, the Gaussian hypergeometric equation. In his book
[8] Katz explains how to study rigid local systems using middle convolution. He proves that
any irreducible rigid local system can be obtained from a local system of rank 1 by iterating
middle convolution and twists with other local systems of rank 1. This provides a tool for the
construction of rigid local systems.

Using this machinery Dettweiler and Reiter classified rigid local systems with monodromy
group of type G2 in [4] where G2 is the simple exceptional algebraic group. It can be thought
of as a subgroup of SO(7) stabilizing the Dickson alternating trilinear form. As a consequence
they proved that there is a family of motives for motivated cycles with G2 as motivic Galois
group answering a question raised by Serre. Other applications of rigid local systems include
realizations of certain finite groups as Galois groups over Q in the framework of the inverse
Galois problem, see, for example, [3].

In [1] Arinkin provides a generalization of Katz’ existence algorithm to rigid connections
with irregular singularities. In this case, a connection is called rigid if it is determined up
to isomorphism by the restrictions to formal punctured discs around the singularities. This
reduces to the classical notion if all singularities are regular singular. Let C[z]〈∂z〉 be the Weyl
algebra in one variable and denote by

F : C[τ ]〈∂τ 〉 → C[z]〈∂z〉
the map defined by F (τ) = −∂z and F (∂τ ) = z. The Fourier–Laplace transform F (M) of a
holonomic left C[z]〈∂z〉-module M is then defined to be its pullback along the map F , that is,
it has the same underlying C-vector space but C[τ ]〈∂τ 〉 acts through the map F .

Using this additional operation, Arinkin proves that given an irreducible rigid system of rank
greater than 1, there is a sequence of twists, coordinate changes and Fourier transforms such
that the resulting system has lower rank. Combining this with a result of Bloch and Esnault in
[2] on the rigidity of the Fourier transform of a rigid connection yields the desired algorithm.
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In this article, we provide an extension of the result of Dettweiler and Reiter to a class of
irregular singular connections of type G2. One of the most important concepts for us are
the slopes of an irregular singular connection. These are rational numbers measuring the
irregularity. In particular, a singularity is regular singular if all the slopes at this singularity
vanish. The slopes of a singularity are obtained through the Newton polygon of a differential
operator. The main result of this article is a classification of all rigid irregular connections with
slopes having numerator 1 and with differential Galois group of type G2.

There are two main reasons for assuming the shape of the slopes. Since twists with a rank
1 connection preserve rigidity, the slopes of rigid systems are a priori unbounded. Still, most
known examples of rigid connections of type G2 and of connections of similar type have slopes
of the desired shape. This includes, for example, the Frenkel–Gross connection from [5, Section
5] and generalized hypergeometric modules as studied in [7, Chapter 3].

The second reason is of a technical nature. In contrast to the regular singular case, the
structure of a connection at an irregular singular point is much more complicated. At a regular
singular point the behaviour of a connection is basically given by the monodromy matrix
obtained by analytic continuation of solutions close to this point, that is, the datum describing
the singularity is essentially the conjugacy class of a complex invertible matrix. In contrast,
at an irregular singular point one considers the restriction of a connection E to a formal
neighbourhood of the point. In this way, one obtains a differential module over C((t)) (or a
C((t))-connection). By a classical result of Levelt–Turrittin, any C((t))-connection decomposes
into finitely many so called elementary modules

El(ρ, ϕ,R) = ρ+(E ϕ ⊗R),
where ρ is a ramification of some degree p, E ϕ = (C((t)), d + dϕ) for some ϕ ∈ C((t)) and some
regular connection R. To completely describe the structure of a connection at an irregular
point, we therefore have to keep track of much more data. The assumption on the slopes is a
way to limit the complexity of this.

The classification in particular contains the construction of previously not know rigid
irreducible connections of type G2 which are neither hypergeometric nor a pullback of these.
One of the key points in the construction is to understand how the formal structure of rigid
connections at irregular singularities behaves with Fourier transform. For this we rely heavily
on the formal stationary phase formula of López (cf. [10]) and explicit computations of the
local Fourier transform of elementary modules by Sabbah in [12]. This allows us to explicitly
compute the Levelt–Turrittin decomposition after Fourier transform.

To state our main result we will use the following notation. We will write El(p, α,A) for the
elementary module ρp,+(E

α
u ⊗R) where R is the connection on Spec C((u)) with monodromy

A and ρp(u) = up. By λJ(n) we denote a Jordan block of length n with eigenvalue λ ∈ C and
we will omit J(1).

Theorem 1.1. Let α1, α2, λ, x, y, z ∈ C∗ such that λ2 �= 1, α1 �= ±α2, z
4 �= 1 and such that

x, y, xy and their inverses are pairwise different and let ε be a primitive third root of unity.
Every formal type occurring in the following list is exhibited by a unique (up to isomorphism)
irreducible rigid connection of rank 7 on Gm with differential Galois group G2.

0 ∞

(J(3),J(3), 1)
El(2, α1, (λ, λ−1))

⊕El(2, 2α1, 1) ⊕ (−1)

(−J(2),−J(2), E3)
El(2, α1, (λ, λ−1))

⊕El(2, 2α1, 1) ⊕ (−1)

(xE2, x−1E2, E3)
El(2, α1, (λ, λ−1))

⊕El(2, 2α1, 1) ⊕ (−1)
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0 ∞

(J(3),J(2),J(2))
El(2, α1, 1) ⊕ El(2, α2, 1)

⊕El(2, α1 + α2, 1) ⊕ (−1)

(iE2,−iE2,−E2, 1)
El(3, α1, 1)

⊕El(3,−α1, 1) ⊕ (1)

J(7) El(6, α1, 1) ⊕ (−1)

(εJ(3), ε−1J(3), 1) El(6, α1, 1) ⊕ (−1)

(zJ(2), z−1J(2), z2, z−2, 1) El(6, α1, 1) ⊕ (−1)

(xJ(2), x−1J(2),J(3)) El(6, α1, 1) ⊕ (−1)

(x, y, xy, (xy)−1, y−1, x−1, 1) El(6, α1, 1) ⊕ (−1)

Conversely, the above list exhausts all possible formal types of irreducible rigid irregular
G2-connections on open subsets of P1 with slopes having numerator 1.

This provides a classification of irreducible rigid connections with differential Galois group G2

with slopes of the desired shape, in particular providing the aforementioned non-hypergeometric
examples of such systems. We will discuss which systems arise as pullbacks in the final section
after proving the main theorem.

This article is organized as follows. In Section 2 we briefly review the Tannakian formalism for
connections on a curve and for connections over C((t)), providing tools to classify connections
with prescribed differential Galois group and to compute some invariants of such connections.
In particular we introduce the upper numbering filtration on the local differential Galois group
which is used to study irregular C((t))-connections.

In Section 3 we recall the definition of rigidity and of the index of rigidity and recall the refined
Levelt–Turrittin decomposition of C((t))-connections. From this we give invariants classifying
the formal type of a connection and explain how to obtain restrictions on the formal type of a
rigid connection.

In Section 4 we recall the operations needed for the Katz–Arinkin algorithm and discuss the
principle of stationary phase.

Section 5 is dedicated to the study of the local and global structure of rigid irregular
irreducible connections with differential Galois group G2. This provides a rough classification
of these connections, in particular yielding the result that any such connection has at most two
singularities and can therefore be seen as a connection on Gm. Finally, we conclude the proof
of Theorem 1.1 in Section 6.

2. Tannakian formalism for connections

Let X be a smooth connected complex curve and denote by D.E.(X) the category of connections
on X as in [6, 1.1]. By a connection we mean a locally free OX -module E of finite rank equipped
with a connection map

∇ : E → E ⊗ Ω1
X/C.

Let X be the smooth compactification of X and for any x ∈ X −X let t be a local coordinate
at x. The completion of the local ring of X at x can be identified non-canonically with
C((t)). We define Ψx(E ) = C((t)) ⊗ E to be the restriction of E to the formal punctured disk
around x.

Any Ψx(E ) obtained in this way is a C((t))-connection, by which we mean a finite-dimensional
C((t))-vector space admitting an action of the differential operator ring C((t))〈∂t〉. Its dimension
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will be called the rank of the connection. The category of C((t))-connections is denoted by
D.E.(C((t))).

By [13, Proposition 2.9] any C((t))-connection E is isomorphic to a connection of the form

C((t))〈∂t〉/(L)

for some operator L ∈ C((t))〈∂t〉, where (L) denotes the left-ideal generated by L. To L we can
associate its Newton polygon N(L) and the slopes of E are given by the slopes of the boundary
of N(L). These are independent of the choice of L. We call a C((t))-connection regular singular
if all its slopes are zero. Any C((t))-connection E can be decomposed as

E =
⊕

y∈Q�0

E(y),

where only finitely many E(y) are non-zero and where rk(E(y)) · y ∈ Z�0. The non-zero y are
precisely the slopes of E. We define the irregularity of E to be

irr(E) :=
∑

y · rk(E(y)).

It is always a non-negative integer.
Let E be a connection on a smooth connected curve X with smooth compactification X

as before. We say that E is regular singular if the formal type Ψx(E ) at every singularity
x ∈ X −X is regular singular.

By [6, Section 1.1] the category D.E.(X) is a neutral Tannakian category. Therefore there is
a pro-algebraic group πdiff

1 (X,x) such that we have an equivalence of categories

D.E.(X) → RepC(πdiff
1 (X,x)).

Given a connection E denote by ρE : πdiff
1 (X,x) → GL(ωx(E )) the associated representation.

The image of ρ is isomorphic to the differential Galois group Gdiff(E ) of E .
Let G be a connected reductive group over C. We will call algebraic homomorphisms

πdiff
1 (X,x) → G(C) G-connections on X. Given a connection E we can also consider it as

a Gdiff(E )-connection through the factorization

In the local setting there are similar notions. Let K = C((t)) and consider the category
D.E.(K) of K-connections. By [6, II. 2.4] there is as before a pro-algebraic group Idiff and an
equivalence

DE(K) → RepC(Idiff)

coming from Tannakian formalism.
Again if ρE is the representation associated to E its image imρE = Gloc(E) can be identified

with the differential Galois group of E considered as a differential module over K. Under the
equivalence of D.E.(K) and RepC(Idiff), horizontal sections correspond to invariant vectors.
Hence we will sometimes abuse notation and write EIdiff instead of Soln(E).

In addition, by [6, II. 2.5] there is a decreasing filtration I
(y)
diff indexed by y ∈ R>0 (called

upper numbering filtration) on Idiff with the property that for any connection E with slopes
less than y the kernel of its associated representation ρE : Idiff → GL(ω(E)) contains I

(y)
diff.

Let X be a smooth proper complex connected curve, Σ a finite set of closed points of X and
U = X − Σ. In this situation, by [6, II, 2.7] we can consider Gloc(Ψx(E )) as a closed subgroup
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of Gdiff(E ). This will allow us to deduce information about the differential Galois group of a
connection from its formal type at the singularities.

3. Rigid connections and local data

Let X = P1, U a non-empty open subset of X and E ∈ D.E.(U). We call the collection of
isomorphism classes

{[Ψx(E )]}x∈X−U

the formal type of E , cf. [1, 2.1]. We call a connection E rigid if it is determined up to
isomorphism by its formal type.

Fortunately there is a way to describe the structure of C((t))-connections in a very explicit
way, allowing for a classification of formal types. We introduce the following notation.
For any formal Laurent series ϕ ∈ C((u)), non-zero ramification ρ ∈ uC[[u]] and regular
C((u))-connection R we define

El(ρ, ϕ,R) := ρ+(E ϕ ⊗R),

where ρ+ denotes the push-forward connection and E ϕ is the connection

(C((u)), d + dϕ),

that is, it has an exponential solution e−ϕ. Denote by p the order of the ramification of ρ, by
q the order of the pole of ϕ and by r the rank of R. The connection El(ρ, ϕ,R) has a single
slope q/p, its rank is pr and its irregularity is qr.

Theorem 3.1 (Refined Levelt–Turrittin decomposition [12, Section 3]). Let E be a
C((t))-connection. There is a finite subset Φ ⊂ C((u)) such that

E ∼=
⊕
ϕ∈Φ

El(ρϕ, ϕ,Rϕ),

where ρϕ ∈ uC((u)) \ {0} and Rϕ is a regular C((u))-connection. Denote by p(ϕ) the order
of ρϕ. The decomposition is called minimal if no ρ1, ρ2 and ϕ1 exist such that ρϕ = ρ1 ◦ ρ2

and ϕ = ϕ1 ◦ ρ2 and if for ϕ,ψ ∈ Φ with p(ϕ) = p(ψ) there is no pth root of unity ζ such
that ϕ = ψ ◦ μζ where μζ denotes multiplication by ζ. In this case the above decomposition
is unique.

Therefore, to specify a connection E over C((t)) it is enough to give the finite set Φ, the
ramification maps ρϕ for all ϕ ∈ Φ and the monodromy of the connection Rϕ. The latter can
be given as a matrix in Jordan canonical form and we will use the notation λJ(n) for a Jordan
block of length n with eigenvalue λ ∈ C. For a general monodromy matrix we will write

(λ1J(n1), . . . , λkJ(nk)).

There is a criterion to identify rigid irreducible connections due to Katz in the case of regular
singularities with a generalization by Bloch and Esnault in the case of irregular singularities.

Proposition 3.2 [2, Theorems 4.7 and 4.10]. Let E be an irreducible connection on j :
U ↪→ P1. Denote by j!∗ the middle extension functor, cf. [7, Section 2.9]. The connection E is
rigid if and only if

χ(P1, j!∗(E nd(E ))) = 2,

where χ denotes the Euler-de Rham characteristic.
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For this reason, we set rig (E ) = χ(P1, j!∗(E nd(E )) and call it the index of rigidity. Whenever
rig (E ) = 2 we say that E is cohomologically rigid. The index of rigidity can be computed using
local information only.

Proposition 3.3 [7, Theorem 2.9.9]. Let E be an irreducible connection on the open subset
j : U ↪→ P1 and let P1 − U = {x1, . . . , xr}. The index of rigidity of E is given as

rig (E ) = (2 − r)rk(E )2 −
r∑

i=1

irrxi
(E nd(E )) +

r∑
i=1

dimC Solnxi
(E nd(E )),

where Solnxi
(E nd(E )) is the space of horizontal sections of Ψxi

(E nd(E )) = C((t)) ⊗ E nd(E ).

Recall that Solnxi
(E nd(E )) can be regarded as the space of invariants of the

Idiff-representation associated to Ψxi
(E nd(E )). In the following we will see how to compute

all local invariants appearing in the above formula provided we know the Levelt–Turrittin
decomposition of the formal types at all points. Let E be a C((t))-connection with minimal
Levelt–Turrittin decomposition

E =
⊕
i

El(ρi, ϕi, Ri).

Its endomorphism connection is then given by

E ⊗ E∗ =
⊕
i,j

Hom(El(ρi, ϕi, Ri),El(ρj , ϕj , Rj)).

As the irregularity of E ⊗ E∗ = End(E) is given as sum over the slopes, it can
be computed by combining this decomposition with [12, Proposition 3.8]. Note that
dim Soln(E) = dim Soln(Ereg) as any connection which is purely irregular has no horizontal
sections over C((t)) (otherwise it would contain the trivial connection). If E has minimal
Levelt–Turrittin decomposition E =

⊕
i El(ρi, ϕi, Ri), Sabbah shows in [12, 3.13] that

End(E)reg =
⊕
i

ρi,+End(Ri). (1)

A regular C((u))-connection R is completely determined by its nearby cycles (ψuR, T ) with
monodromy T . Its push-forward along any ρ ∈ uC[[u]] of degree p corresponds to the pair
(ψuR⊗ Cp, ρ+T ) with ρ+T given by the Kronecker product T 1/p ⊗ Pp. Here T 1/p is a pth root
of T and Pp is the cyclic permutation matrix on Cp. This is the formal monodromy of the
push-forward connection. Let Vρ+R be the Idiff-representation associated to ρ+R. We have

dim Soln(ρ+R) = dimV Idiff
ρ+R = dim ker(ρ+T − id) = dim ker(T − id).

In particular

dim Soln(ρ+End(R)) = dim ker(ρ+Ad(T ) − id)

= dim ker(Ad(T ) − id)

= dim Z(T ), (Z)

where Z(T ) is the centralizer of T . Combining this with Formula 1 allows us to compute
dim Soln(E) for any connection E provided we know its Levelt–Turrittin decomposition. In
particular, the condition that a connection E is rigid provides us with restrictions on the
irregularity and the centralizer dimensions of the monodromies of regular connections appearing
in the Levelt–Turrittin decomposition.



CLASSIFICATION OF RIGID IRREGULAR G2-CONNECTIONS 837

4. The Katz–Arinkin algorithm for rigid connections

We recall the various operations involved in the Arinkin algorithm as defined in [1]. Let
Dz = C[z]〈∂z〉 be the Weyl algebra in one variable and M a finitely generated left Dz-module.

The Fourier isomorphism is the map

F : Dτ → Dz

τ �→ ∂z

∂τ �→ −z.

From now on we will always denote the Fourier coordinate by τ in the global setting. We will
also use a subscript to indicate the coordinate on A1. Let M be a finitely generated Dz-module
on A1

z. The Fourier transform of M is

F (M) = F ∗(M).

Denote by F∨ : Dz → Dτ the same map as above with the roles of z and τ reversed and let
F∨ = (F∨)∗.

The functor F defines an auto-equivalence

F : Hol(A1
z) → Hol(A1

τ )

of the category of holonomic Dz-modules on A1. We have F∨ ◦ F = ε∗ where ε is the
automorphism of Dz defined by ε(z) = −z and ε(∂z) = −∂z.

Using the Fourier transform we define the middle convolution as follows. For any χ ∈ C∗ let
Kχ be the connection on Gm associated to the character π1(Gm, 1) → C× defined by γ �→ χ
where γ is a generator of the fundamental group. We call Kχ a Kummer sheaf. Explicitly, Kχ

can be given as the trivial line bundle OGm
equipped with the connection d + αd/dz for any

α ∈ C such that exp(−2πiα) = χ.
Let i : Gm ↪→ A1 be the inclusion. The middle convolution of a holonomic module M with

the Kummer sheaf Kχ is defined as

MCχ(M) := F−1(i!∗(F (M) ⊗ Kχ−1)),

where F−1 denotes the inverse Fourier transform and i!∗ is the minimal extension. Note that
F (Kχ) = Kχ−1 .

Given a connection E on an open subset j : U ↪→ A1 we can apply the Fourier transform or
the middle convolution to its minimal extension j!∗E . We end up with a holonomic module on
A1 which we can restrict in both cases to the complement of its singularities. This restriction
is again a connection on some open subset of A1 and we denote it by F (E ) for the Fourier
transform and MCχ(E ) for middle convolution. Whenever E is defined on an open subset
U ⊂ P1 we can shrink U such that ∞ /∈ U and apply the above construction.

The Katz–Arinkin algorithm is given in the following theorem. It was proven in the case of
regular singularities by Katz in [8] and in the case of irregular singularities by Arinkin in [1]
(and presented in a letter by Deligne to Katz).

Theorem 4.1. Let E be an irreducible connection on an open subset U ⊂ P1 and consider
the following operations:

(i) twisting with a connection of rank 1;
(ii) change of coordinate by a Möbius transformation;
(iii) Fourier transform and
(iv) middle convolution.
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The connection E is rigid if and only if it can be reduced to a regular singular connection of
rank 1 using a finite sequence of the above operations.

The behaviour of the formal type of a connection under Fourier transform is governed by
local Fourier transforms (as defined by Bloch and Esnault in [2, Section 3]) and the principle
of stationary phase. Let E be a C((t))-connection. The local Fourier transform of E from zero
to infinity is obtained in the following way. Due to [6, Section 2.4] there is an extension of E
to a connection ME on Gm which has a regular singularity at infinity and whose formal type
at zero is E. We define

F (0,∞)(E) := F (ME) ⊗C[τ ] C((θ)),

where τ is the Fourier transform coordinate and θ = τ−1. In a similar fashion define for s ∈ C∗

transforms

F (s,∞)(E) = E s/θ ⊗ F (0,∞)(E),

where E s/θ denotes as before the rank 1 connection with solution es/θ. Recall that there also
is a transform F (∞,∞) which is of no interest to us, as it only applies to connections of slope
larger than 1. For details on this transform we refer to [2, Section 3].

There are also transforms F (∞,s) which are inverse to F (s,∞), see [12, Section 1]. For the
local Fourier transforms Sabbah computed explicitly how the elementary modules introduced
in the first section behave. The most important tool for controlling the formal type under
Fourier transform is the formal stationary phase formula of López.

Theorem 4.2 [10, Section 1]. Let M be a holonomic D-module on A1 with finite
singularities Σ. There is an isomorphism

Ψ∞(F (M)) ∼=
⊕

s∈Σ∪{∞}
F (s,∞)(M).

Let M be a holonomic C[[t]]〈∂t〉-module and choose an extension M as before. The
formal type at infinity of the Fourier transform of this module is the local Fourier transform
F (0,∞)(M). By [Sabbah, 5.7], the local Fourier transform F (0,∞)(M) of a regular holonomic
C[[t]]〈∂t〉-module M is the connection associated to the space of vanishing cycles (φtM,T ),
where T = id + can ◦ var.

Theorem 4.3 [12, Section 5]. Let El(ρ, ϕ,R) be any elementary C((t))-module with irregular
connection. Recall that

El(ρ, ϕ,R) = ρ+(E ϕ ⊗R)

and that q = q(ϕ) is the order of the pole of ϕ which is positive by assumption. Denote by ′ the

formal derivative and let ρ̂ = ρ′

ϕ′ , ϕ̂ = ϕ− ρ
ρ′ϕ

′, Lq the regular singular rank 1 connection with

monodromy (−1)q and R̂ = R⊗ Lq. The local Fourier transform of the elementary module is
then given by

F (0,∞)El(ρ, ϕ,R) = El(ρ̂, ϕ̂, R̂).

In particular, we also have explicit descriptions

F (s,∞)El(ρ, ϕ,R) ∼= El(ρ̂, ϕ̂ + s/(θ ◦ ρ̂), R̂)

F (s,∞)(M) ∼= El(id, s/θ,F (0,∞)M)

for M a regular C[[t]]〈∂t〉-module.
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Under twists with regular connections of rank 1, elementary modules behave in the following
way. Denote by (λ) the regular C((t))-connection with monodromy λ ∈ C∗. The following lemma
follows directly from the projection formula.

Lemma 4.4. Let λ ∈ C∗, ρ(u) = ur and El(ρ, ϕ,R) be an elementary module. We have

El(ρ, ϕ,R) ⊗ (λ) ∼= El(ρ, ϕ,R⊗ (λr)).

This in turn allows us to compute the change of elementary modules under middle
convolution which we compute in terms of Fourier transforms and twist.

5. On connections of type G2

In this section we will restrict ourselves to irreducible rigid connections E on non-empty open
subsets of P1 of rank 7 with differential Galois group Gdiff(E ) = G2 (where we fix the embedding
G2 ⊂ SO(7) ⊂ GL7) and all of whose slopes have numerator 1. As connections with regular
singularities of this type have already been classified by Dettweiler and Reiter, we will from
now on assume that every irreducible rigid G2-connection has at least one irregular singularity.
We give a first approximation to the classification theorem of Section 1.1.

We will use the following notations. By ρp we always denote the ramification ρp(u) = up, Rk

is a regular C((u))-connection of rank k and ϕq is a rational function of pole order q at zero.
A regular connection R on the formal disc Spec C((u)) is determined by its monodromy which
can be given as a single matrix in Jordan canonical form. Let A be a complex n× n-matrix
and R the connection with monodromy A. We sometimes write

El(ρp, ϕq, A)

for the elementary module ρp,+(E ϕ ⊗R). Recall that by λJ(n) we denote a Jordan block of
length n with eigenvalue λ ∈ C∗, in particular J(n) is a unipotent Jordan block of length n.
Additionally, En is the identity matrix of length n. We will write

(λ1J(n1), . . . , λkJ(nk))

for a complex matrix in Jordan canonical form with eigenvalues λ1, . . . , λk and we will
omit J(1).

5.1. Local structure

Recall that we assume that all slopes of the irreducible rigid G2-connections have numerator
1. Additionally, a strong condition on the formal types is given by the self-duality which they
have to satisfy.

Lemma 5.1. Let E be an irreducible rigid G2-connection. The regular part of the formal
type at any singularity x of E is of dimension 1, 3 or 7.

Proof. Let x be any singularity of E . Denote by E the formal type of E at x and write
E = Ereg ⊕ Eirr. This corresponds to a representation ρ = ρreg ⊕ ρirr of the local differential
Galois group I at x. First note that this representation has to be self-dual. We will show
that purely irregular C((t))-connections of odd dimension are never self-dual. Let E be such a
connection and write

E =
⊕

El(pi, ϕi, Ri)
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for its minimal Levelt–Turrittin decomposition in which all the ϕi are not in C[[t]]. For the
dimension of E to be odd, at least one of the elementary connections has to be odd-dimensional,
write El(p, ϕ,R) for that one. Its dual cannot appear in the above decomposition, as the
dimension would not be odd in that case. So it suffices to prove that El(p, ϕ,R) itself is
not self-dual. By [12, Remark 3.9] the dual of El(p, ϕ,R) is El(p,−ϕ,R∗). Thus a necessary
condition for self-duality is

ϕ ◦ μζp ≡ −ϕ mod C[[u]].

Write ϕ(u) =
∑

i�−k aiu
i for some k ∈ Z�0. The above condition translates to

∑
i�−k

aiζ
i
p + ui

∑
i�−k

+aiu
i ∈ C[[u]].

Since ϕ is supposed to be not contained in C[[u]] there is an index j < 0 such that aj �= 0. In
this case we find that ajζ

j
p + aj = 0, that is, ζjp = −1. This can only hold if p is even and in

this case the dimension of El(p, ϕ,R) could not be odd. Therefore the dimension of the regular
part of E has to be odd.

Denote as before by I(x) the upper numbering filtration on I = Idiff and let n = dimEreg.
The smallest possible non-zero slope of E is 1/6. Since ker(ρreg) contains I(1/6) we find

ρ|I(1/6) = 1n ⊕ ρirr|I(1/6) ,

where 1 denotes the trivial representation of rank 1.
In the case n = 5, the image of ρ therefore contains elements of the form (E5, A) where A is

a non-trivial 2 × 2-matrix. By [4, Table 1] such elements do not occur in G2(C). �

The following proposition is a special case of Katz’s Main D.E. Theorem [7, 2.8.1].

Proposition 5.2. Let E be an irreducible rigid connection on U ⊂ P1 of rank 7 with
differential Galois group G2. If at some point x ∈ P1 − U the highest slope of E is a/b with
a > 0 and if it occurs with multiplicity b, then b = 6.

We will later see that the rigid G2-connections we consider necessarily have exactly two
singularities which we can choose to be zero and infinity. By [7, Theorem 3.7.1], any system
satisfying the conditions of the above proposition will then necessarily be hypergeometric.

One of the main ingredients in the proof of Katz’s Main D.E. Theorem is the use of
representation theory through Tannakian formalism as presented in the previous section.
Applying the above Proposition (and self-duality) yields the possibilities listed in Table 1 for
the non-zero slopes and the respective dimensions in the slope decomposition of any irregular
formal type of a rigid G2-connection as considered above.

For an elementary module El(up, ϕ,R) with ϕ ∈ C((u)) we would like to describe the possible
ϕ more concretely. We have the following lemma.

Lemma 5.3. The pole order of any ϕ ∈ C((u)) appearing in the Levelt–Turrittin decompo-
sition into elementary modules of the formal type of a rigid irreducible connection of type G2

with slopes of numerator 1 can only be 1 or 2.

Proof. Suppose El(up, ϕ,R) appears in the formal type of such a system. Because the slopes
all have numerator 1, we have the following possibilities for p and q apart from q = 1.



CLASSIFICATION OF RIGID IRREGULAR G2-CONNECTIONS 841

Table 1. Possible slope decompositions.

Slopes Dimensions

1 4
1 6

1
2
, 1 2, 2

1
2
, 1 2, 4

1
2
, 1 4, 2
1
2

4

1
2

6

1
3

6

1
4
, 1 4, 2

1
6

6

q p

2 2, 4, 6
3 3, 6
4 4
6 6

Note that in the cases (q, p) = (6, 6), (q, p) = (4, 4) and (q, p) = (2, 6), the module El(up, ϕ,R)
cannot be self-dual. Indeed that would mean that ϕ(ζu) = −ϕ(u) for some ζ with ζp = 1. Write
v = u−1. If aq denotes the coefficient of vq then the above condition means that

aq(ζu)q = −aqu
q,

that is, ζq = −1. This is a contradiction in these cases. The formal type of a connection of type
G2 has to be self-dual and therefore in the case that q is even, the dual of El(ρ, ϕ,R) also has
to appear in the formal type. If p = 4 or p = 6 this contradicts the fact that the rank of the
connection is 7. We are therefore left with the following cases.

q p

2 2, 4
3 3, 6

We analyse these cases separately. Suppose first we are in the case that q = 3 and p = 6.
Then El(u6, ϕ,R) is at least six-dimensional, so dimR = 1 and the module has to be self-dual
already. The isomorphism class of El(up, ϕ,R) depends only on the class of ϕ mod C[[u]], hence
we think of ϕ as a polynomial in v = 1/u vanishing at v = 0. We can then write

ϕ(v) = a3v
3 + a2v

2 + a1v

and self-duality implies that there is a 6-th root of unity ζ such that

a3ζ
3v3 = −a3v

3.

Because q = 3, a3 �= 0 and we get that ζ3 = −1. We have a2ζ
2v2 = −a2v

2 implying that a2 = 0.
Therefore ϕ is of the form

ϕ(v) = a3v
3 + a1v.
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In order to rule out this case we will need the exponential torus of an elementary module.
Consider the module E = El(σp, ψ, L). Because of [12, Lemma 2.4] the exponential torus of E
is the subgroup T of (C∗)p = {(t1, . . . , tp)} defined by

∏
tνi
i = 1, νi ∈ Z for any relation of the

form ∏
exp(ψ ◦ μζi

p
)νi = 1

satisfied by the ψ ◦ μζi
p
, see, for example, [14, Section 11.22]. The exponential torus can be

considered as a subgroup of the local differential Galois group of E, that is, T ⊂ G2 is a
necessary condition for Gloc(E) ⊂ G2.

We claim that the torus attached to El(ρ, ϕ,R) for ϕ(v) = a3v
3 + a1v is three-dimensional.

As the rank of G2 is 2, this means that no elementary module of this form can appear in any
formal type.

If a1 = 0, by [12, Remark 2.8] we have

El(u6, a3u
−3, R) ∼= El(u2, a3u

−1, (u3)∗R)

hence actually q = 1 in this case. We can therefore assume that a1 �= 0. Let ζ6 be a primitive
sixth root of unity. We have to compute all relations of the form

5∑
i=0

ki(a3ζ
−3i
6 u−3 + a1ζ

−i
6 u−1) = 0, ki ∈ Z.

Equivalently, we find all relations

0 =
5∑

i=0

ki(a1ζ
−i
6 u2 + a3ζ

−3i
6 ) =

5∑
i=0

ki(a1ζ
−i
6 u2 + (−1)ia3).

First note that

(a1ζ
−i
6 u2 + a3ζ

−3i
6 ) + (a1ζ

−(i+3)
6 u2 + a3ζ

−3(i+3)
6 ) = 0

for i = 0, 1, 2. Therefore, any element in the exponential torus is of the form

(x, y, z, x−1, y−1, z−1).

It therefore suffices to prove that there are no further relations between the first three
summands. Suppose there is a relation

0 = k(a1u
2 + a3) + l(−a1ζ

2
6u

2 − a3) + m(−a1ζ6u
2 + a3)

with k, l,m ∈ Z. We find that k = l −m and as a1 �= 0 we conclude

0 = l −m− ζ2
6 l − ζ6m = l −m + ζ2

6m− ζ6m− ζ2
6 l − ζ2

6m

= (ζ2
6 − ζ6)m + l −m− (l + m)ζ2

6

= l − 2m− (l + m)ζ2
6 ,

using that ζ2
6 − ζ6 = −1. Therefore l = −m and −3m = 0, that is, m = 0. Finally, the

exponential torus is given as

T = {(x, y, z, x−1, y−1, z−1)} ∈ (C∗)6

which is three-dimensional. Therefore a module of the above shape cannot appear in the
formal type.

The case q = 3 and p = 3 works similarly. �
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Table 2. Local invariants.

Slopes Dimensions dim Soln(End) irr(End)

1 4 5, 7, 9, 11, 13, 17 32, 36
1 6 7, 9, 11, 13, 15, 19 30, 38, 42
1
2
, 1 2, 2 7, 9, 11, 13, 15 29

1
2
, 1 2, 4 4, 6, 10 37, 39

1
2
, 1 4, 2 5, 7 30, 32

1
2

4 5, 7, 9, 11, 13 16, 18

1
2

6 4, 6, 10 15, 19, 21

1
3

6 3 12, 14

1
4
, 1 4, 2 4 27

1
6

6 2 7

We see that only the case p = 2 and q = 2 needs to be considered. The possible combinations
of elementary modules in this case are either

El(ρ2, ϕ2, R1) ⊕ El(ρ2,−ϕ2, R
∗
1) ⊕R3, (S1)

where ϕ2 has a pole of order 2 or

El(ρ2, ϕ2, R1) ⊕ El(ρ2,−ϕ2, R
∗
1) ⊕ El(ρ2, ϕ1, R

′
1) ⊕R′′

1 , (S2)

where ϕ1 has a pole of order 1.
We can compute the irregularity and the dimension of the solution space in these

cases through the use of [12, Proposition 3.8] and Formula 1. Using the formula
dim Soln(ρ+End(R)) = dim Z(T ) from the end of Section 2 we find that in the first case the
dimension of the local solution space is one of {5, 7, 11} and using the formulae of Section 3 we
find that the irregularity is 20. In the second case we find that the dimension of the solution
space is 4 and the irregularity is 39. Apart from these two special cases all elementary modules
appearing are of the form

El
(
ρp,

α

u
,Rk

)
with α ∈ C. In this setting we can compute the dimension of the local solution space and
its irregularity in the same way as we did for the two cases above. The resulting possible
combinations for the local invariants at irregular singularities are listed in Table 2.

5.2. Global structure

Recall that the connection E is rigid if and only if rig (E ) = 2, where

rig (E ) = χ(P1, j!∗(E nd(E )))

is the index of rigidity. If we denote by x1, . . . , xr the singularities of E , the index of rigidity is
given by

rig (E ) = (2 − r)49 −
r∑

i=1

irrxi
(E nd(E )) +

r∑
i=1

dimC Solnxi
(E nd(E )).

Lemma 5.4. Let E be an irreducible rigid G2-connection on U ⊂ P1 with singularities
x1, . . . , xr of slopes having numerator 1. Then 2 � r � 4.
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Proof. By [4, Table 1] and by Table 2 we find that in any case

dimC Solnxi
(E nd(E )) � 29.

As E is rigid, we have

2 = (2 − r)49 −
r∑

i=1

irrxi
(E nd(E )) +

r∑
i=1

dimC Solnxi
(E nd(E )).

Therefore we get

2 + (r − 2)49 +
r∑

i=1

irrxi
(E nd(E )) � 29r

and as irrxi
(E nd(E )) � 0 we conclude 20r − 96 � 0. This cannot hold for r � 5. If r = 1, the

first equality above shows irrx1 � 47 which again cannot hold by the Table 2. �

Let E be an irreducible rigid G2-connection with singularities x1, . . . , xr where due to the
above lemma r ∈ {2, 3, 4}. We define R(E ) to be the tuple

(s1, . . . , sr, z1, . . . , zr) ∈ Z2r
�0

with si = irrxi
(E nd(E )) and zi = dimC Solnxi

(E nd(E )). The necessary condition on R(E ) for
E to be rigid is

2 = (2 − r)49 −
r∑

i=1

si +
r∑

i=1

zi.

This condition provides the following list of possible invariants in the cases r = 2 and r = 3.
Additionally, one finds that no cases with r = 4 appear.

r = 3

(0, 0, 16, 25, 29, 13)
(0, 0, 16, 29, 29, 9)
(0, 0, 18, 29, 29, 11)

r = 2

(0, 7, 7, 2) (0, 18, 13, 7) (0, 30, 25, 7)
(0, 14, 13, 3) (0, 19, 11, 10) (0, 32, 25, 9)
(0, 15, 7, 10) (0, 19, 17, 4) (0, 32, 29, 5)
(0, 15, 11, 6) (0, 21, 13, 10) (0, 36, 25, 13)
(0, 15, 13, 4) (0, 21, 17, 6) (0, 36, 29, 9)
(0, 16, 7, 11) (0, 21, 19, 4) (0, 37, 29, 10)
(0, 16, 9, 9) (0, 27, 25, 4) (0, 38, 25, 15)
(0, 16, 11, 7) (0, 30, 13, 19) (0, 38, 29, 11)
(0, 16, 13, 5) (0, 30, 17, 15) (0, 42, 29, 15)
(0, 18, 9, 11) (0, 30, 19, 13)

Note that the two special cases (S1) and (S2) with q = 2 do not appear. We can therefore
classify the appearing elementary modules El(ρp, ϕ,R) by their ramification degree p, the
coefficient α of ϕ = α

u and the monodromy of R. Now we can actually deal with the case r = 3
by a case-by-case analysis using the Katz–Arinkin algorithm.

(0, 0, 16, 25, 29, 13): According to Table 2, the formal type at the irregular singularity has a
four-dimensional part of slope 1/2 and a three-dimensional regular part. In this case, the only
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possibility for the formal type is

El(ρ2, α/u,±E2) ⊕ (±E3).

Since G2 ⊂ SO(7) this formal type has to have a trivial determinant. By [12, Proposition 2.9],
the regular part has to be (E3). Assume there exists a connection E on P1 − {0, 1,∞} with
the above formal type at ∞ and local monodromy (−E4, E3) and (J(2),J(2), E3) at 0 and 1,
respectively. The formal type at infinity of the Fourier transform of this connection will be of
the form

(−E4) ⊕ E
1
u ⊕ E

1
u ,

hence the Fourier transform has rank 6. The formal type at 0 will be of the form

El(ρ1, α̂/u,±E2) ⊕ J(2)3

which has rank 8. This is a contradiction in both cases and we can exclude this case. A similar
analysis rules out the remaining two cases.

We can therefore focus on the case r = 2. A more thorough analysis of the shape of the
elementary modules in question (applying the various criteria used up until now) shows that
actually there are cases in which the irregularity s2 does not occur with the local solution
dimension z2. After ruling these out we are left with the following list of tuples R(E ).

r = 2

(0, 7, 7, 2) (0, 16, 13, 5) (0, 32, 25, 9)
(0, 14, 13, 3) (0, 18, 9, 11) (0, 32, 29, 5)
(0, 15, 7, 10) (0, 18, 13, 7) (0, 36, 25, 13)
(0, 15, 11, 6) (0, 19, 17, 4) (0, 36, 29, 9)
(0, 15, 13, 4) (0, 21, 19, 4) (0, 37, 29, 10)
(0, 16, 7, 11) (0, 27, 25, 4) (0, 38, 29, 11)
(0, 16, 9, 9) (0, 30, 13, 19)
(0, 16, 11, 7) (0, 30, 25, 7)

We would like to rule out further cases by computing the formal monodromy of the irregular
formal type. For its definition in the general setting we refer to [11, Section 1]. We will describe
how to compute the formal monodromy of an elementary connection El(ρ, ϕ,R) where ρ has
degree p and R is a regular connection. We can choose a connection R1/p such that ρ+R1/p ∼= R
(this boils down to choosing a pth root of the monodromy associated to R). Now

El(ρ, ϕ,R) = ρ+(E ϕ ⊗ ρ+R1/p) ∼= ρ+E ϕ ⊗R1/p

by the projection formula. Therefore by [12, Lemma 2.4], 5, the differential equation associated
to this elementary module has a formal solution of the form

Y (t) = xLeQ(t),

where x = tp, Q(t) = diag(ϕ(t), ϕ(ζpt), . . . , ϕ(ζp−1
p t)) for a primitive pth root of unity ζp and

L ∈ Matn(C). The formal monodromy A is defined such that Y A is the solution obtained by
formal counter-clockwise continuation of Y around 0, see [13, Chapter 3].

In the special case that ϕ(t) = α/t and R is of rank 1 and corresponds to the monodromy
λ, the formal monodromy is given as follows. Let λ1/p be a pth root of λ and choose μ such
that exp(2πiμ) = λ1/p. The formal solution from above takes the form

Y (t) = xμeQ(t)

and the action of the formal monodromy sends Y (t) to λ1/pxμeQ̃(t), where

Q̃(t) = diag(ϕ(ζpt), ϕ(ζ2
p t), . . . , ϕ(ζp−1

p t), ϕ(t)).
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Therefore in addition to multiplication by λ1/p the formal monodromy permutes the basis of
the solution space, that is, A = λ1/pPp, where Pp denotes as before the cyclic permutation
matrix. We will compute one example to show how to apply this discussion.

(0, 16, 9, 9). The formal type at the irregular singularity has to be of the form

El(ρ2, α,R) ⊕ (J(2), 1)

or of the form

El(ρ2, α,R) ⊕ (−E2, 1),

where the connection R corresponds to either E2 or −E2. In the first case we find that by
the above discussion the formal monodromy is of the form (E2,−E2,J(2), 1) or of the form
(iE2,−iE2,J(2), 1) both of which do not lie in G2(C). In the second case suppose that there
exists a connection E on Gm with the above formal type at ∞. The possibilities for the
monodromy at 0 are (−J(3),J(3),−1), (iJ(2),−iJ(2),−E2, 1) or (x,−1, ,−x, 1,−x−1,−1, x−1)
where x4 �= 1. In all these cases we compute

rk(F (E ⊗ L )) = 5,

where L is the rank 1 system with monodromy −1 at 0 and ∞. But the formal type at 0 of
F (E ⊗ L ) would be of rank 7. Therefore this case cannot occur.

All cases apart from the ones in the following list can be excluded by a combination of all
the criteria we’ve used so far. We obtain constraints on the formal type at ∞ and can apply
the Katz–Arinkin algorithm to obtain contradictions.

r = 2

(0, 7, 7, 2)
(0, 14, 13, 3)
(0, 19, 17, 4)
(0, 21, 19, 4)

Note that it might not suffice to simply apply one operation and compute the rank. We give
an example of a case in which the computations are more complicated.

(0, 38, 29, 11). The monodromy at 0 is (J(2),J(2), E3) and the formal type at ∞ has to be
of the form

El(ρ1, α, λE2) ⊕ El(ρ1,−α, λ−1E2) ⊕ El(ρ1, 2α, μ) ⊕ El(ρ1,−2α, μ−1) ⊕ (1).

Suppose there exists an irreducible connection E on Gm with this formal type. We will
apply Fourier transforms, twists and middle convolution to the connection E to arrive at
a contradiction.

Recall that F denotes the Fourier transform of connections and that MCχ is the middle
convolution with respect to the Kummer sheaf Kχ. Let α1, . . . , αr ∈ C∗ such that α1 · · · · · αr =
1. We denote by L(α1,...,αr+1) the rank 1 connection on P1 − {x1, . . . , xr} with monodromy αi

at xi. For ease of notation we will write (α1, . . . , αr) ⊗− for the twist L(α1,...,αr+1) ⊗−.
We compute the change of local data in the following scheme in which we write the operation

used in the first column and the formal type at the singularities in the other columns.
The way the data change is given by the explicit stationary phase formula 4.3 and Lemma 4.4.

The ith line is the result of applying the operation in the (i− 1)th line to the system in the
(i− 1)th line. Writing ‘−’ in a column of a singularity means that this point is not singular.
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0 α −α 2α −2α ∞

F (J(2),J(2), E3) − − − −
El(u, α, λE2) ⊕ El(u,−α, λ−1E2)

⊕El(u, 2α, μ) ⊕ El(u,−2α, μ−1) ⊕ (1)

(1, λ−1, λ, 1, μ, μ−1) ⊗ − J(2) λE2 λ−1E2 (μ, 1) (μ−1, 1) E2

MCμ−1 J(2) − − (μ, 1) (1, μ) μ−1E2

μ−1 − − J(2) J(2) μ

In the last row we obtain a contradiction as the rank of the system is 1, but its monodromy
at 2α, respectively, −2α is J(2).

In the next section we will construct irreducible rigid G2-connections in the four cases that
are left which leads to the proof of the classification theorem for irreducible rigid irregular
G2-connections with slopes with numerator 1.

6. Proof of Theorem 1.1

We give the construction for the different cases. When varying the monodromy at zero in the
same case, the construction is essentially the same up to twists with rank 1 systems. We will
use the following notations. Denote by E1,j for j = 1, 2, 3 the first three families, by E2 the
fourth family, by E3 the fifth family and by E4,j for j = 1, . . . , 5 the final five families. Let G
denote any operation on connections. We write G k, k ∈ Z>0, for its k-fold iteration.

Construction of E1,j . Consider the connection

L1,1 := L(λ−1,−λ,λ−1,−λ)

on P1 − {0, 1
4α

2
1, α

2
1,∞} and the Möbius transform φ : P1 → P1, z �→ 1

z . Recall that F denotes
the Fourier transform of connections. Our claim is that

E1,1 := F (φ∗(F ((1,−λ−1, 1,−λ) ⊗ MC−λ(L1,1))))

has the formal type (J(3),J(3), 1) at 0 and

El(2, α1, (λ, λ−1)) ⊕ El(2, 2α1, 1) ⊕ (−1)

at ∞. Similar to before we compute the change of local data under the operations above in the
following scheme.

0 1
4
α2

1 α2
1 ∞

MC−λ λ−1 −λ λ−1 −λ
(1,−λ−1, 1,−λ) ⊗− (−1, 1) (λ2, 1) (−1, 1) −λ−1E2

F (−1, 1) (−λ,−λ−1) (−1, 1) E2

φ∗ (J(2),J(2)) − − El(u,
α2

1
4u

, (−λ,−λ−1))

⊕El(u,
α2

1
u
,−1) ⊕ (−1)

F
El(u,

α2
1

4u
, (−λ,−λ−1))

⊕El(u,
α2

1
u
,−1) ⊕ (−1)

− − (J(2),J(2))

(J(3),J(3), 1) − −
El( 4

α2
1
u2,

α2
1

2u
, (λ, λ−1))

⊕El( 1
α2

1
u2,

2α2
1

u
, 1) ⊕ (−1)

By Proposition [12, Corollary 2.7], the connection

El
(

4
α2

1

u2,
α2

1

2u
, (λ, λ−1)

)
⊕ El

(
1
α2

1

u2,
2α2

1

u
, 1
)
⊕ (−1)

is isomorphic to

El(2, α1, (λ, λ−1)) ⊕ El(2, 2α1, 1) ⊕ (−1).
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This proves existence of the first type of connection. The same type of calculation shows that
the connection

E1,2 := F
(
(−1,−1) ⊗ φ∗(F(

(1, λ−1, 1, λ) ⊗ MCλ

(
L(λ−1,λ,λ−1,λ)

))))
exhibits the second formal type and the connection

E1,3 := F
(
(x, x−1) ⊗ φ∗(F(

(1,−λ−1x−1, 1,−λx) ⊗ MC−λx−1

(
L(λ−1,−λx,λ−1,−λx−1)

))))
exhibits the third formal type.

Construction of E2. For the second formal type at infinity, consider the connection
L2 := L(−1,−1,−1,−1,1) on P1 − {0, 1

4α
2
1,

1
4α

2
2,

1
4 (α1 + α2)2,∞}. The connection

E2 := F (φ∗F (L2)))

has the desired formal type (J(3),J(2),J(2)) at 0 and

El(2, α1, 1) ⊕ El(2, α2, 1) ⊕ El(2, α1 + α2, 1) ⊕ (−1)

at ∞. The computation works the same way as before.
Construction of E3. For the third type consider the connection

L3 := L(−i,−λ,−λ−1,i)

on P1 − {0, 1
27α

3
1,− 1

27α
3
1,∞}. The system

E4 := F (φ∗((−1,−1) ⊗ F ((i,−i) ⊗ φ∗(F ((i, 1, 1,−i) ⊗ MCi(L3))))))

has the required formal type.
Construction of E4,j . For the final type we consider P1 − {0, 1

66α
6
1,∞}. The formal types are

then exhibited (in the order that they appear in the list) by the connections

E4,1 = F
(
(φ∗ ◦ F )5

(
L(−1,−1,1)

))
E4,2 = F

(
(ε, ε−1) ⊗ (φ∗ ◦ F )3

(
(ε−2, ε2) ⊗ (φ∗ ◦ F )2

(
L(−ε,−ε2,1)

)))
,

E4,3 = F ((z−2, z2) ⊗ (φ∗ ◦ F ((z4, z−4) ⊗ (φ∗ ◦ F )

((z, z−1) ⊗ (φ∗ ◦ F )2((z2, z−2) ⊗ (φ∗ ◦ F )(L(−z−1,−z,1)))))

E4,4 = F
(
(φ∗ ◦ F )2

(
(x, x−1) ⊗ (φ∗ ◦ F )2

(
(x−2, x2) ⊗ (φ∗ ◦ F )

(
L(−x,−x−1,1)

))))
,

E4,5 = F ((x, x−1) ⊗ (φ∗ ◦ F )((x−2, x2) ⊗ (φ∗ ◦ F )

((xy−1, x−1y) ⊗ (φ∗ ◦ F )((y−2, y2) ⊗ (φ∗ ◦ F )

((x, x−1) ⊗ (φ∗ ◦ F )(L(−(xy)−1,−(xy)−1,x2y2)))))).

The differential Galois groups. We compute the differential Galois group G of the above
types using an argument of Katz from [7, § 4.1]. Let E1 := E1,1 and E4 := E4,1. The following
proof works the same for all E1,j , j = 1, 2, 3. Note that all formal types are self-dual. Thus for
i = 1, . . . , 4 we have that

Ψx(Ei) ∼= Ψx(E ∗
i )

for x = 0,∞ and by rigidity we get Ei
∼= E ∗

i , that is, all the above systems are globally self-dual.
In addition the determinants are trivial meaning that actually G ⊂ SO(7). We will focus first
on the cases i = 1, 2, 3. Let G0 denote the identity component of G. By the proof of [9, 25.2]
there are now only three possibilities for G0 which are SO(7), G2 or SL(2)/± 1. Since all these
groups are their own normalizers in SO(7) in all cases we find that G = G0. We now only have
to exclude the cases G = SO(7) and G = SL(2)/± 1. First suppose that G = SL(2)/± 1.
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The group SL(2)/± 1 ∼= SO(3) admits a faithful three-dimensional representation

ρ : SO(3) → GL(V ).

Let ρ(Ei) be the connection associated to the representation

πdiff
1 (Gm, 1) → SO(3) → GL(V ).

The connection ρ(Ei) is a three-dimensional irreducible connection with slopes � 1/2 at ∞
and which is regular singular at 0. We have irr(ρ(Ei)) � 3/2 and so either irr∞(ρ(Ei)) = 0 or
irr∞(ρ(Ei))) = 1. In the first case we have

rig (ρ(Ei)) = dim(E nd(ρ(Ei))I0) + dim(E nd(ρ(Ei))I∞) � 6

which is a contradiction (recall that for any irreducible connection E on some open subset U
of P1 we always have rig (E ) � 2).

In the second case, the formal type at ∞ of ρ(Ei) has to be of the form

El(2, α, 1) ⊕ (−1)

and we compute

rig (ρ(Ei)) = dim End(ρ(Ei))I0 + 2 − 1 � 4

which again yields a contradiction.
Now we are left with the cases G = SO(7) and G = G2. Recall that the third exterior power

of the standard representation of SO(7) is irreducible, so it suffices to prove that G has a non-
zero invariant in the third exterior power of its seven-dimensional standard representation.
This corresponds to the alternating Dickson trilinear form which is stabilized by G2. In our
case this amounts to finding horizontal sections of Λ3Ei for i = 1, 2, 3, that is, we have to show
that H0(Gm,Λ3Ei) �= 0 or equivalently by duality that H2

c (Gm,Λ3Ei) �= 0. For this it suffices
to prove that

χ(P1, j!∗Λ3Ei) > 0.

Recall that

χ(P1, j!∗Λ3Ei) = dim(Λ3Ei)I0 + dim(Λ3Ei)I∞ − irr∞(Λ3Ei)

as 0 is a regular singularity. These invariants can be computed using Sabbah’s formula for the
determinant of elementary connections in [12, Proposition 2.9]. For i = 1, we have

Λ3(El(2, α1, λ) ⊕ El(2, α1, λ
−1) ⊕ (El(2, 2α1, 1) ⊕ (−1))

= (El(2, α1, λ) ⊗ det El(2, α1, λ
−1)) ⊕ (det El(2, α1, λ) ⊗ El(2, α1, λ

−1))

⊕ (det El(2, α1, λ
−1) ⊕ (El(2, α1, λ) ⊗ El(2, α1, λ

−1)) ⊕ detEl(2, α1, λ))

⊗ ((−1) ⊕ El(2, 2α1, 1))

⊕ (El(2, α1, λ
−1) ⊕ El(2, α1, λ)) ⊗ ((El(2, 2α1, 1) ⊗ (−1)) ⊕ det(El(2, 2α1, 1))

⊕ (det El(2, 2α1, 1) ⊗ (−1)).

As the slopes in our case are of the form 1/p with p > 1 all occurring determinant connections
are regular. Therefore the irregularity of this connection is 13. Since

det El(2, 2α1, 1) ⊗ (−1) ∼= (−1) ⊗ (−1) ∼= (1)

by [12, Proposition 2.9] we also have dim(Λ3E1)I∞ � 1. Finally we find that

χ(P1, j!∗Λ3E1) = 13 + dim(Λ3E1)I∞ − 13 � 1.
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The second and thirds cases are completely analogous and we have

χ(P1, j!∗Λ3E2) = 13 + 4 − 15 = 2

and

χ(P1, j!∗Λ3E3) = 9 + dim(Λ3E3)I∞ − irr∞(Λ3E3) � 9 + 2 − 10 = 1.

Therefore for i = 1, 2 we have Gdiff(Ei) = G2.
For the systems with formal type El(6, α1, 1) ⊕ (−1) at ∞ note that the systems in question

have Euler characteristic −1 on Gm and therefore are hypergeometric by [7, Theorem 3.7.1].
By [7, 4.1] all these systems have differential Galois group G2.

The above list exhausts all cases. Let E be an irreducible irregular rigid G2-connection, that
is, at some singularity the irregularity of E is positive. By the rough classification of Section 5,
the only possibilities for R(E ) are

(0, 7, 7, 2),

(0, 14, 13, 3),

(0, 19, 17, 4) or

(0, 21, 19, 4).

Applying the same techniques as before, the only formal types left are those appearing in the
above list together with one additional formal type which is given by the following table (here
ε denotes a primitive third root of unity).

0 ∞

(εE3, ε−1E3, 1)
El(2, α1, 1) ⊕ El(2, α2, 1)

⊕El(2, α1 + α2, 1) ⊕ (−1)

The connection

E := F ((ε, ε−1) ⊗ φ∗(F ((ε−1, 1, 1, 1, ε) ⊗ MCε−1(L5))))

constructed from the rank 1 sheaf L5 := L(−ε,−1,−1,−1,ε−1) on

P1 −
{

0,
1
4
α2

1,
1
4
α2

2,
1
4
(α1 + α2)2,∞

}
has the above formal type. We will prove by contradiction that Gdiff(E ) is not contained in G2.
Therefore suppose the contrary, that is, Gdiff(E ) ⊂ G2. As we have seen before, the morphism

πdiff
1 (Gm, 1) → GL7(C)

corresponding to E factors through G2(C). Denote by Ad the adjoint representation Ad : G2 →
g2. As E is rigid and irreducible by construction, we find that

H1(P1, j!∗Ad(E )) = 0

by [5, Section 7]. We therefore have

0 = dimH1(P1, j!∗Ad(E )) = irr∞(Ad(E )) − dim Ad(E )I∞ − dim Ad(E )I0

and the same for the connection E2 we have constructed above. As the formal type at ∞ of E
and E2 coincides, we find that

irr∞(Ad(E )) − dim Ad(E )I∞ = irr∞(Ad(E2)) − dim Ad(E2)I∞
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and in particular a necessary condition for both connections to have differential Galois group
G2 is

dim Ad(E )I0 = dim Ad(E2)I0 .

These invariants are precisely the centralizer dimension of the local monodromy at 0 of the
connections in question. By [4, Table 1], dim Ad(E2)I0 = 6 and dim Ad(E )I0 = 8 which yields
a contradiction. Hence Gdiff(E ) is not contained in G2, concluding the proof.

Remark. Let E4,5 be the final system in the theorem with x = ζ8 a primitive 8-th root of
unity and y = ζ2

8 and denote by [q] : Gm → Gm the morphism given by z �→ zq. In this setting
we find that

E3
∼= [2]∗E4,5.

To see this we compute the pullback of the formal types. At the regular singularity, the pullback
of the connection with monodromy (ζ8, ζ2

8 , ζ
3
8 , ζ

5
8 , ζ

6
8 , ζ

7
8 , 1) has monodromy (iE2,−iE2,−E2, 1).

The pullback of El(6, α1, 1) ⊕ (−1) is given due to [12, 2.5 and 2.6] as

El(3, α, 1) ⊕ El(3, ζ5
6α, 1) ⊕ (1) ∼= El(3, α, 1) ⊕ El(3,−α, 1) ⊕ (1),

since ζ5
6α = −ζ2

3α and we can multiply by ζ3 to get −α. By rigidity we get the desired
isomorphism E3

∼= [2]∗E4,5.
A similar analysis shows that systems in the second family E2 with formal type

El(2,−α1, 1) ⊕ El(2, ζ5
6α1, 1) ⊕ El(2, ζ4

6 , 1) ⊕ (−1)

at ∞ are pullbacks of the system E4,4, the second to last system of the theorem, with x = ζ3
under the map [3] : Gm → Gm. Of course not every system in the family E2 is of this form and
if they are not, they cannot be pullbacks of hypergeometrics (these would have to appear in
the above list).
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