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Abstract: Sensors can monitor physical attributes and record multimodal data in order to
provide feedback. The application calligraphy trainer, exploits these affordances in the context
of handwriting learning. It records the expert’s handwriting performance to compute an expert
model. The application then uses the expert model to provide guidance and feedback to the learners.
However, new learners can be overwhelmed by the feedback as handwriting learning is a tedious
task. This paper presents the pilot study done with the calligraphy trainer to evaluate the mental
effort induced by various types of feedback provided by the application. Ten participants, five in the
control group and five in the treatment group, who were Ph.D. students in the technology-enhanced
learning domain, took part in the study. The participants used the application to learn three characters
from the Devanagari script. The results show higher mental effort in the treatment group when all
types of feedback are provided simultaneously. The mental efforts for individual feedback were
similar to the control group. In conclusion, the feedback provided by the calligraphy trainer does not
impose high mental effort and, therefore, the design considerations of the calligraphy trainer can be
insightful for multimodal feedback designers.
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1. Introduction

Several authors, including Di Mitriv et al. [1] and Specht et al. [2] have elaborated on the reasons
why sensors and multi-modality in learning are drawing so much attention. Using multi-modal data
for training can have a significant impact on how learners learn [3]. Multi-modality refers to the
communication and interaction practices in terms of multiple modes such as the textual, spatial and
visual modes, where the use of several modes creates a single artifact or a message. Sensors can
unobtrusively measure observable properties, which is ideal for capturing expert’s performance as
multi-modal data. Sensors can also monitor learner behavior to provide feedback for effective learning
using the captured expert performance and consequently, are capable of supporting deliberate practice.
Deliberate practice is crucial in tedious tasks such as handwriting where a high amount of repetition
is required to improve, and therefore, the practice should focus on improving a particular aspect of
task [4]. However, practicing deliberately also requires additional mental effort because the learner
needs to be conscious of his/her performance [5]. Thus, continuous real-time feedback, along with
summative feedback, is needed to practice deliberately [4] and therefore, instructional designers need
to take into consideration any additional mental effort that their instructional design may impose.

Handwriting is a complex perceptual-motor skill that requires many hours of practice to master [6].
Perceptual motor skills, such as hand-eye coordination, are abilities which enables interaction with the
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environment by combining motor skills and human senses. Performance in such skills requires constant
feedback from the environment which is collected from the human senses. Similarly, handwriting
learning depends on how efficiently feedback is processed by the learner [7]. This requires consistent
practice for a long time. However, merely practicing does not account for improved performance.
Practice should be deliberate, i.e., aimed at improving the skill [8], but learners do not engage in
deliberate practice spontaneously [9]. Experts as mentors support the deliberate practice by providing
constant feedback and guidance, which requires one-to-one settings [10]. However, experts are scarce,
and they cannot provide enough attention to each learner.

Additionally, the expert only has access to the final static image of the handwriting to provide
feedback which ignores informative and dynamic aspects of handwriting, such as pressure and
tilt of the pen [11]. Therefore, it is difficult for the experts to provide the informative feedback
required for deliberate practice. Sensors can be used to support the deliberate practice in learners by
capturing an expert’s performance as multi-modal data, which can then be used to provide continuous
informative feedback and guidance.

The application “calligraphy trainer” for handwriting practice was built to support deliberate
practice in novice calligraphy learners. It was built using the “Instructional design for Augmented
Reality” (ID4AR) framework from Limbu et al. [12], which uses multi-modal data from experts to
provide guidance and feedback. The application is designed to complement and support the expert
rather than replace him/her. It uses various sensors to record an expert’s performance, which can
be used for practice. This allows experts to rapidly create learning content and spend less time on
guiding and providing feedback.

A detailed account of the primary and supplementary feedback that a learner receives while
practicing handwriting is given by Loup-Escande et al. [13]. Primary feedback is naturally present
in writing, namely: visual and proprioceptive feedback from the hand, which provides the sense of
the hand’s motion or position. The processing of primary feedback in handwriting occurs naturally
and imposes intrinsic load on the learner. Therefore, this intrinsic load is inherent to the learning
task. However, Danna and Velay [7] argue that practicing with supplementary feedback will enhance
handwriting learning in comparison to receiving only primary feedback. The authors also acknowledge
that adding supplementary feedback can increase the mental effort required for practice. For example,
adding supplementary real-time visual information to handwriting learning, where vision is already
used to process primary feedback, can increase the mental effort for the learner.

Similarly, using haptic devices to provide additional feedback might result in an additional mental
effort, as proprioceptive feedback naturally exists in handwriting learning. Loup-Escande et al. [13]
examined Danna and Velay’s [7] suggestion to augment the strokes with supplementary information
to provide additional visual feedback and found that such type of interventions does lead to
additional mental effort. Similar phenomena can be observed with supplementing haptic feedback
in a proprioceptive task. However, they did not explore the mental efforts imposed by auditory
feedback. The auditory modality is not naturally found in handwriting, and it can be used to provide
supplementary feedback without additional mental effort [14]. However, auditory feedback has
received little attention, mainly because of the difficulties inherent in providing easily understandable
auditory feedback [15]. Baur et al. [16] reported significant improvements in the writing performance of
people with Writer’s cramp when the grip force was translated into auditory feedback. The calligraphy
trainer implements the suggestions of Danna and Velay [7] and Loup-Escande et al. [13] by augmenting
supplementary visual and auditory feedback. Therefore, this study aims to evaluate the mental effort
imposed by the calligraphy trainer and the types of feedback provided by the application. As such, we
examine the following research questions, using the calligraphy trainer.
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• Is the System Usability Scale (SUS) score of the prototype at an acceptable level (above 68) [17]?
If not, does it co-relate of mental effort?

• Is the mental effort imposed on the treatment group by the feedback mechanism including
auditory feedback significantly higher/lower than the control group’s mental effort?

2. Background

2.1. Use Case Description

Handwriting relies on fine motor movements of the hand to create unique styles of writing.
The fundamental aspect of handwriting is to control the pressure applied to manipulate the thickness
of the strokes and to glide the pen in the correct path. Common mistakes found in beginners include
quickly forgetting to remind themselves to maintain the basic factors such as grip force, posture, and
angle of the pen [18]. Besides, they quickly lose patience, which leads to quickly drawn strokes rather
than slow, steady ones. Therefore, constant feedback from the expert is crucial to ensure deliberate
practice as beginners are unable to monitor themselves. The calligraphy trainer used in this study
is built using the ID4AR framework which provides continuous feedback to the learners in order to
assist them to practice deliberately. The framework is briefly introduced in the following section.

2.2. ID4AR Framework

The ID4AR framework proposed by Limbu et al. [12] supports instructional designers to
design multi-modal systems with augmented reality and sensors for supporting deliberate practice.
The framework exploits sensors’ capabilities to record performance data for training. It is designed to
be domain-independent [19] and is built in close collaboration with experts in three different domains.
The framework’s motivation to capture expert model independent of domain-specific implementations
was evaluated in Limbu et al. [19]. To do this, the “WEKIT” application, built using the ID4AR
framework, was used. Before evaluating the framework itself, this application was evaluated in terms
of having met the framework requirements, by the experts from the three domains, including experts
who helped design the framework [20]. Then, the ID4AR framework was evaluated by capturing
an expert model with the help of an expert who was familiar with the application. This model,
which underwent no further post-processing, was then used by the other experts and rated to meet
the training requirements. Results in Limbu et al. [19] showed that the framework can be used across
various domains. Below, we provide details on how “calligraphy trainer” was designed using the
ID4AR framework.

2.3. Prototype Description

To implement the ID4AR framework, the calligraphy trainer implements Instructional design
methods (IDMs) from each component of the model depending on the identified attributes of
calligraphy (see Table 1). Attributes are characteristics of writers or the process of writing that
influences the outcome of handwriting. Two categories of attributes were identified, which are 1.
Non-expert based, and 2. expert-based. Non-expert rules are fundamental, universal rules of thumbs
that do not require experts to generate feedback and are prioritized when generating feedback. On the
other hand, feedback based on an expert’s data are parameters that are recorded from the expert
using sensors. These parameters are influenced by the context of practice, e.g., the style and the
character which the expert demonstrates during recording. The types of IDMs implemented for each
of the attributes are detailed in Table 2. The IDM Augmented paths for “learning task” displays the
character which the expert recorded. Learners trace over these for practice. The IDM Haptic feedback,
Object enrichment and Auditory feedback are implemented to provide feedback on procedural information
while the IDM Animation provides supportive information such as speed and path, on the learning
task. Summative feedback is provided by collecting, visualizing, and comparing learner’s data with the



Sensors 2019, 19, 3244 4 of 17

expert’s data by using the Visual inspection tool [21]. More details on the implementation of these
IDMs are provided in the following sections.

Table 1. Types of expert attributes identified.

Non-Expert Based Expert Based

1. Force used to grip the pen 1. Pressure used to create the strokes
2. Angle at which the pen is held 2. Similarity of the stroke structure
3. Body posture 3. Speed of writing

Table 2. Mapping of attributes with IDMs in Calligraphy Trainer.

Attributes IDMs Implementation

Learning Task

Alphabets Structure Augmented Paths
Displayed on tablet for tracing or imitating,
color of the stroke changes when the color
stroke is out of bounds

Procedural Information

Force used to grip
the pen Haptic feedback Vibrate myo when the grip is too tight or

the angle is beyond the threshold

Pressure used to
create the strokes Object enrichment

Stroke thickness is directly proportional to
the pressure, The stroke darkness/lightness
is also directly proportional to the pressure

Supportive information

Speed of writing,
alphabet structure Animation animation depicting the speed and the path

in which the alphabet was written

Part task practice

Over all performance Summative feedback Summative results produced by comparing
with the expert recording

2.3.1. Hardware Description

The hardware setup consists of a MicrosoftTMSurface Pro Tablet, the Surface Pen and
a MyoTMArmband. The Surface Pen and the MyoTMarmband both act as an input device and feedback
systems. The MyoTMarmband consists of EMG sensors (electromyography) that reads muscle activity
and also reads hand gestures and orientation with the embedded accelerometer and gyroscope. It also
includes a vibration motor to provide haptic feedback. The capacitive Surface Pen and the digitizer
on the Surface tablet act as the main canvas for the learner to practice handwriting. The pen and
the digitizer together can read the pressure applied while creating the stroke and the angle at which
the pen is held, normal to the digitizer surface. The tablet also runs the multi-modal Learning Hub
application [3], which synchronizes sensor data and acts as a gateway for sensors to communicate as
well. The calligraphy trainer records performance data with these sensors and also, provides the users
with real-time feedback during practice using the captured expert’s data. Figure 1 depicts whole setup
used in the study.
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Figure 1. System Model for supporting the framework.

2.3.2. Software Description

The system consists of two main components: the recorder to record the expert’s performance and
player for training learners based on the expert’s performance (see Figure 2). The recorder records all
the data needed for the learner to perform the task. In the recorder, values for identified attributes of
calligraphy are captured from the experts (see Table 1). A separate process that collects data from the
MyoTMarmband runs separately in the background from the main application, which is the calligraphy
trainer. The multi-modal learning hub [3] is used to collect synchronized data from the MyoTMarmband
and the stylus pen. The player loads the data for practice. It provides guidance and feedback using
the recorded data by comparing learner’s current attribute values to the expert’s values in real-time.
It also stores learner’s performance for summative feedback, which can be used both by the learner
and the expert for reflection.

Figure 2. System Model for supporting the framework.
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2.3.3. Calligraphy Trainer

The calligraphy trainer supports two different roles, for the experts and for the learners.
The calligraphy trainer allows experts to draw strokes which are saved as data into an Ink Serialized
Format (ISF) file and the sensor data that is stored as json files. On the other hand, the learners can load
the data that was saved by the expert to practice. As shown in Figure 2, non-expert based attributes are
hard-coded into the feedback engine. For the expert based attributes, the application provides feedback
by referencing the expert’s data as the learner practices. Feedback is provided for three expert based
attributes that the learner can choose to turn on or off (see Table 2). The supplementary feedback for
the pressure applied is given by varying the saturation of the color (see Figure 3). When the pressure
is above the expert’s pressure, the color gets darker, and when the pressure is below the expert’s
pressure, the color starts to get lighter. However, the primary feedback for pressure which is given as
the thickness of the stroke, is always present. Similarly, feedback on the stroke structure is given by
changing the color. When the learner’s stroke goes out of bounds from the expert’s stroke, the color of
the stroke changes to red (see Figure 4). The feedback on the speed of the stroke is auditory. Learners
hear a buzzing sound when they are over the speed of the expert. No auditory feedback is given when
the learners are below the expert’s speed. Only one non-expert based attribute is implemented for
feedback. Feedback for the force used to grip the pen is implemented using MyoTM, which provides
haptic feedback when the user holds the pen too tightly.

Figure 3. Pressure feedback with saturation.

Figure 4. Stroke feedback with color.
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In addition to the feedback, guidance on the process to write the character was provided using
the IDM “Augmented Paths” by displaying the character drawn by the expert as a semi-transparent
image. Further supportive information on the character’s speed and the sequence was provided
using an animation. The semi-transparent character was overlapped with a running animation which
played according to how the expert drew the character. This guided learners on how the pen is moved,
which is of more importance than the shape of the character itself [22,23]. The IDM summative feedback
was provided by the expert with the help of the recorded data using the Visual Inspection tool [1]
(see Figure 5). The application records temporal data with all the sensors which can be loaded in the
Visual Inspection tool along with a video recording of the performance.

Figure 5. Visual Inspection tool for providing summative feedback.

3. Methods

In order to evaluate our research questions considering the mental effort of participants evoked
by different types of feedback, we designed a formative study. While learners had to write characters
based on the given expert model they received, either real-time feedback in multiple modalities or
they did not receive feedback. Additionally, we measured the usability of the system to avoid an effect
of usability issues on the participant’s mental effort.

3.1. Participants

The study was conducted with ten randomly selected Ph.D. students working in the educational
science and technology department at the Open University of The Netherlands. Out of the
10 participants, six were female, and 4 were male. All the participants were right-handed. None of
the participants had any experience writing the script used in the study. Participation was
completely voluntary.
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3.2. Apparatus

The apparatus for the study consisted of the calligraphy trainer, which is the main application
for the users. It runs on the surface tablet and provides data for stoke pressure and angle, with
the help of the pen. It also displays the ink stroke and provides visual and auditory feedback on
the tablet. The experts can record data, and the learners can practice with the help of the recorded
data using the calligraphy trainer. It also guides learners on how to draw the character using the
expert’s data. The MyoTMarmband is used to provide haptic feedback to the learner. The armband
uses an electromyogram to detect the tension in muscles, which co-relates to how hard the learner is
gripping the pen.

Additionally, the application for recording the reaction time of the participants with a USB switch
was also used. It recorded the time participants took to react to the auditory stimuli of the secondary
task in milliseconds. The eye tracker glasses from SMITM were used during the study to collect
eye-tracking data. The eye-tracking data was used to measure the mental effort using the pupil dilation
and can also help gain further insights into the software usability if needed.

3.3. Procedure

Before beginning, participants were informed about the study and were asked to sign the informed
consent. Then, the participants were briefed on the task they needed to perform. In this briefing,
they were informed that they were expected to replicate an expert’s writing. During this step, the
participants in the treatment group were also briefed on the type of feedback they will be receiving.
After this, the sensors were calibrated, and the participants were allowed to freely practice using the
stylus until they felt comfortable using it (in a different drawing application). When the participants
said they were ready, the study began by loading the first character. Participants in both groups
performed four iterations for each character. The treatment group received feedback during this while
the control group did not. Participants in both groups were asked to fill in the questionnaire for the
mental effort (see Mental effort in Materials and measures) at the end of each iteration, therefore,
12 times during the whole study. The participants in both groups also performed the secondary task
during the study. At the end of the study, participants were asked to fill in the SUS questionnaire.
They were given opportunities for open comments on the calligraphy trainer and were thanked for
their participation.

3.4. Materials and Measures

3.4.1. Usability

The System Usability Scale (SUS) was used to measure the usability of the application. SUS
is an industry-standard tool for measuring system usability, which refers to the ease of use of
an application. It consists of a 10 item questionnaire with five response options for participants,
ranging from “strongly agree” to “strongly disagree”. The SUS scores calculated from individual
questionnaires represent the system usability. Scores for individual items on the SUS are not meaningful
on their own. SUS yields a single number between 0 to 100, which represents a composite measure of
the overall usability of the application. The acceptable SUS score is about 70. SUS is an easy scale to
administer and can be used on small sample sizes with reliable results. It can effectively differentiate
between usable and unusable systems [24]. While SUS is not a diagnostic tool, further usability analysis
can be done with eye-tracking data if required. Our aim behind using the SUS was only to confirm
that the obtained results on mental effort were not influenced by usability issues of the application.

3.4.2. Mental Effort

Beginner calligraphers need to continually monitor themselves to practice deliberately, for which
constant feedback from the expert is crucial. Monitoring their performance while practicing is
cognitively demanding. Therefore, the application should not levy extraneous mental effort, which is
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a negative load caused by ineffective instruction [25]. To keep the mental effort to a minimum during
practice, we adopted Danna and Velay’s [7] proposed solutions for adding supplementary visual
feedback. They suggested that the kinetic variables of the movement should be represented in the
stroke itself, and summative feedback should be introduced after, and not during, the execution of
the gesture. The calligraphy trainer provides feedback for the kinetic variables such as speed and
pressure during the execution of the stroke. No complex feedback is provided and the learning task
is simply to reproduce the stroke. Contrary to Frenoy et al.’s [26] implementation of the system, the
calligraphy trainer relies on the expert and the expert’s data for providing feedback. While summative
feedback is provided at the end of the practice session, this was not relevant for this study.

The mental effort was measured using dual-task methodology [25]. Dual-task methodology
requires participants to perform a secondary task in parallel to the primary task. The secondary task in
this study required the participants to react to auditory stimuli (a gong sound) by pressing a switch as
soon as they could with their non-dominant hand. The stimuli were presented at random intervals
between two to six seconds. The time required by the participants to react was recorded. Lower
reaction time denotes lower mental effort due to free working memory available for processing the
secondary task.

The participants also wore an eye tracker during the study. The eye tracker records various
types of data, such as gaze positions, pupil dilation, saccade rate, fixations, and blink rates. Data
types such as pupil dilation, saccade rate, and blink rates are co-related to the mental effort [27].
Additionally, Paas et al.’s [28] subjective rating scale for mental effort (will be referred to as mental
effort questionnaire) was also used to complement the collected data on mental effort. Participants
filled in the questionnaire after each iteration for all characters by selecting a response between 1
(very, very low mental effort) to 9(very, very high mental effort).

3.5. Design

Participants were randomly assigned to the treatment and the control group. In the control
group, the participants used the same setup, but the feedback was not given. Participants in both
the group practiced each character, “Ne”, “Pa” and “Li” in the presented order, in four iterations
with each iteration requiring the participants to write the character ten times. All the participants
reacted to the secondary task during the whole duration of the study and responded to the mental
effort questionnaire at the end of each iteration. The treatment group followed the same procedure but
received feedback on the kinetic variables. For each character, the first three iterations were performed
with feedback on one kinetic variable while the last iteration was performed with feedback on all
three of them. However, the order of the first three iterations for individual participants was assigned
following the Latin square design to ensure that all participants did not go through the same sequence
of kinetic variables.

4. Results

4.1. SUS Scores

A paper-based SUS questionnaire was administered at the end of the study for the participants in
both groups. The SUS score for the Control group (78) and the treatment group (87.5) is at an acceptable
range (see Table 3). Both groups had an equal number of participants (N = 5). We conducted the
Shapiro-wilk test on the SUS items, which showed that none of them were normally distributed. There
is statistically no significant difference in SUS scores based on the group, F (7, 2) = 16.943, p = 0.057.
The SUS score for both groups together (82.75) is at an acceptable range as well.
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Table 3. SUS scores.

Groups Average SUS Score

Control Group 78

Treatment Group 87.5

Combined 82.75

4.2. Mental Effort

4.2.1. Self Reported Mental Effort

Self-reported questionnaires were used to collect the response on the mental effort required
during each iteration. The mean response for both the control and treatment group according to the
type of feedback is presented in Figure 6. We conducted the Shapiro-wilk test, which showed that
control group iteration Ne_Pressure, Ne_all, Pa_pressure, Pa_stroke, and Pa_all were not normally
distributed. While in the treatment group, iterations Ne_All and Pa_stroke were not normally
distributed. A Manova was conducted to compare the mental effort between the control and the
treatment group. There was no significant difference in the self-reported mental effort for all the
iterations between the control and treatment group (see Figure 6).

Figure 6. Mean of Self-reported mental effort between two groups.

There is statistically no significant difference between the groups for the reported mental effort in
Pressure: F (3,4) = 1.436, p = 0.357, Speed: F (3,4) = 0.987, p = 0.996 and Stroke: F (3,4) = 0.017, p = 0.730.
There is also statistically no significant difference between the groups for reported mental effort in
combined feedback scores F (3,4) = 0.017, p = 0.514. There is little to no evidence that the self report
data provides for effect of the treatment on the mental effort of the user.

4.2.2. Reaction Time on Secondary Task

The secondary task logged the participant’s reaction time in milliseconds (see Mental effort in the
Methods section). Any data point lower than 250 ms and more than 3750 ms was removed to account
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for accidental presses. Then, the reaction time was transformed into Log10. The mean reaction time for
all the iterations between the control and treatment group is presented in Figure 7.

Figure 7. Mean of Reaction time between two groups [in Seconds].

We conducted the Shapiro-wilk test, which showed that in control group sessions, Ne_Speed,
Ne_Pressure, Ne_All, Pa_Stroke, Pa_Speed, Pa_All, Li_Stroke, Li_Pressure, and Li_All were not
normally distributed. While in the treatment group sessions, Ne_Stroke, Ne_Pressure, Ne_All,
Li_Stroke, Li_Speed, Li_Pressure, and Li_All were not normally distributed. There is statistically
no significant difference between the two groups in reaction time for Pressure: F (3,70) = 1.908,
p = 0.136, Speed: F (3,87) = 1.439, p = 0.237 based on the group. However, there is a statistically
significant difference between the two groups in reaction time for Stroke: F (3,89) = 7.672, p = 0.000,
scores based on the group. The effect for the group yielded an F ratio of F (1,91) = 22.848, p = 0.000 for
character “Ne” and an F ratio of F (1,91) = 5.485, p = 0.021 for “Li” indicating significant difference
between control and the treatment group for character Ne and Li for the Stroke feedback while there
was no significant difference between the groups in character “Pa”. There was also statistically no
significant difference in reported reaction time for combined feedback scores based on the group,
F (3,95) = 2.653, p = 0.051.

4.2.3. Time Taken

The mean time taken in seconds to complete each iteration by the groups is presented in Figure 8.
The treatment group took a longer duration to complete the task as compared to the task in all iterations
in comparison to the control group.

A Shapiro–Wilk test on the variables showed that all the data for time taken was normally
distributed in both the groups. We conducted a Manova to compare the means between the two
groups. There was a statistically significant difference between the two groups for mean time taken to
complete the task for Pressure: F (3,6) = 6.378, p = 0.027, Speed: F (3,6) = 10.683, p = 0.008 and Stroke:
F (3,6) = 7.628, p = 0.018. The effect for the group yielded an F ratio of F (1,8) = 15.971, p = 0.004 for
character “Pa” and an F ratio of F (1,8) = 24.031, p = 0.001 for “Li” indicating significant difference
between control and the treatment group for character Pa and Li while there was no significant
difference between the groups in character “Ne” while providing pressure feedback. The effect for the
group yielded an F ratio of F (1,8) = 22.800, p = 0.001 for character “Ne”, an F ratio of F (1,8) = 24.61,
p = 0.001 for “Pa” and an F ratio of F (1,8) = 20.147, p = 0.002 for “Li” indicating a significant difference
between control and the treatment group while providing speed feedback. The effect for the group
while providing stroke based feedback yielded an F ratio of F (1,8) = 6.849, p = 0.031 for character
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“Ne”, an F ratio of F (1,8) = 14.025, p = 0.006 for “Pa” and an F ratio of F (1,8) = 25.920, p = 0.001 for “Li”
indicating significant difference between control and the treatment group.

Figure 8. Time taken by the two groups [in Seconds].

There was also a statistically significant difference in time taken for combined feedback scores
based on the group, F (3,6) = 23.178, p = 0.001. The effect for the group while providing stroke based
feedback yielded an F ratio of F (1,8) = 7.204, p = 0.028 for character “Ne”, an F ratio of F (1,8) = 38.501,
p = 0.000 for “Pa” and an F ratio of F (1,8) = 36.200, p = 0.000 for “Li” indicating significant difference
between control and the treatment group for all characters.

4.3. Eye Tracker

The head-mounted eye tracker was used to collect eye-tracking data. We used the pupil dilation
from the eye tracker data for measuring the mental effort. The pupil dilation is found to be directly
proportional to the mental effort [29]. Figure 9 shows a larger pupil diameter in the treatment group,
which signifies greater pupil dilation and thus, more mental effort in the treatment group.

A Kolmogorov–Smirnov test indicates that the pupil dilation for the right eye in all intervention
does not follow a normal distribution. A Manova test showed that based on the group, there was
statistically significant difference in Pupil diameters for Stroke: F (6,26482) = 450.713, p = 0.000, Speed:
F (6,24907) = 1593.861, p = 0.000 and Pressure: F (6,22071) = 2274.819, p = 0.000. There was also
a statistically significant difference in pupil diameters for combined feedback based on the group,
F (6, 22552) = 644.641, p = 0.000. The pupil diameter is provided only for the right eye in Figure 9,
as one eye, is enough to estimate the mental effort.

The effect for the group on the diameter of the right eye pupil, while providing pressure based
feedback, yielded an F ratio of F (1,22076) = 10616.929, p = 0.000 for character “Ne”, an F ratio of
F (1,22076) = 4751.480, p = 0.000 for “Pa” and an F ratio of F (1,22076) = 6295.214, p = 0.000 for “Li”
indicating significant difference between control and the treatment group for all characters. The effect
for the group on the diameter of the right eye pupil, while providing stroke based feedback, yielded
an F ratio of F (1,26487) = 49.061, p = 0.000 for character “Ne”, an F ratio of F (1,26487) = 575.350,
p = 0.000 for “Pa” and an F ratio of F (1,26487) = 707.752, p = 0.000 for “Li” indicating significant
difference between control and the treatment group for all characters. Similarly, the effect for the group
on the diameter of the right eye pupil while providing speed based feedback yielded an F ratio of
F (1,24912) = 7062.894, p = 0.000 for character “Ne”, an F ratio of F (1,24912) = 4382.158, p = 0.000 for
“Pa” and an F ratio of F (1,24192) = 4784.584, p = 0.000 for “Li” indicating significant difference between
control and the treatment group for all characters. The effect for the group on the diameter of the right



Sensors 2019, 19, 3244 13 of 17

eye pupil, while providing all types of feedback, yielded an F ratio of F (1,22557) = 2321.941, p = 0.000
for character “Ne”, an F ratio of F (1,22557) = 1116.390, p = 0.000 for “Pa” and an F ratio of F (1,22557) =
1274.489, p = 0.000 for “Li” indicating significant difference between control and the treatment group
for all characters.

Figure 9. Pupil diameter [in millimeters].

5. Discussion

This paper presents a formative pilot study to evaluate the calligraphy trainer application
considering the mental effort involved in using the application with different types of provided
feedback. The tool supports deliberate practice in novice calligraphy learners [12] and assists the
experts to create learning content quickly. In addition, it provides feedback and guidance based
on expert data while recording the learners’ performance, which allows reflection by the expert on
the learning process itself. The expert also decides the content along with the type of feedback,
based on the task parameters that the learner needs to train on. This is different from the approach
of Frenoy et al. [26], who developed a model for providing the correct feedback type based on sensor
data. The calligraphy trainer was designed such that the identified learning parameter can be isolated
and trained individually until mastered before practicing more complex scenarios. As such, only the
feedback on a single parameter is provided at a time, unless chosen not to do so by the expert.
The calligraphy trainer application provides two types of supplementary visual feedback, which are
integrated into the stroke of the pen and an auditory feedback. By evaluating the mental effort
required to process the feedback individually and also, when combined, the design of the feedback
can be improved.

During the study, participants were required to load the expert data and write the characters.
The study took 30 min to 1 h, depending on the group because of the necessity for manually segregating
the data into proper sessions to avoid extremely long temporal data. The participant spent most of the
time waiting for the data to be logged and saved as this was done manually by the examiner. Future
versions of the application are expected to handle this automatically in the background. At the end of
the study, the SUS questionnaire was used to evaluate the overall usability of the application. The main
objective of this study was to test the mental effort imposed by the feedback. However, we consider it
essential to confirm that the obtained results were not influenced by usability issues of the application,
which was explored by the first research question. Therefore, to confirm this, participants filled in
a SUS questionnaire at the end of the test. Scores from the SUS show that the application is well over
the acceptance level; therefore, we assume that the usability of the application was not a determinant
factor in the observed results about the mental effort imposed by the feedback.
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To answer the second research question, we measured the mental effort imposed by the type of
feedback with self-reports, dual-task methodology, and pupil dilation from the eye tracker. The results
from the self-reported mental effort show that the treatment group reported higher mental effort
in all three characters when compared to the control group, only when all three types of feedback
were provided simultaneously. Nevertheless, both groups reported the mean mental effort for each
type of feedback to be 5 or higher. This may signify that handwriting learning requires naturally
higher mental effort [6], and instructional designers should design their feedback keeping this in mind.
Similarly, the results from the reaction time show an identical pattern to the self-reported mental
effort. Only the combined feedback had consistently higher mental effort across all three characters.
However, the reaction between the two groups was nearly identical across all interventions. The mean
reaction time was above 3 s in all interventions with 4 s being the maximum. This was higher than
we expected but is in line with the argument that learning handwriting requires a high mental effort.
The individual feedback interventions had mixed results in self-report and reaction time, with some
characters showing higher mental effort in the control group (see Figures 6 and 7). This contradicts
our assumption for individually provided feedback, where we expected the base mental effort to be
similar in both the group. If any deviations, the treatment group was expected to have higher mental
effort due to the requirement for processing the additional supplementary feedback. It should also be
noted that the time taken by the treatment group to finish the task was significantly longer than the
control group. Perceiving and processing supplementary visual feedback requires additional time to
be compatible with the immediate corrections required during handwriting [7]. The time taken may
have had contributed to the results in reaction time in the treatment group.

The results collected from the eye-tracker on pupil dilation show consistently higher mental effort
for the treatment group across all interventions and across all characters in each intervention. This is not
in line with the results from the self-report and the reaction time for individual feedback intervention.
While the mental effort on individually given feedback is inconclusive, the participants in the treatment
group have always reported higher mental effort in all three metrics, namely, self-report, reaction
time and pupil dilation for combined feedback intervention. This supports the calligraphy trainer’s
approach to isolate individual parameters for practice rather than the approach of Frenoy et al. [26] to
have a model decide the feedback to be given. This uncertainty of the feedback the learner is going
to receive next might add overhead costs to process them. On the other hand, the approach used by
the calligraphy trainer reduces the complexity of processing the feedback for practicing by isolating
a single parameter and the feedback on the parameter.

The results on mental effort for speed, which was given by the auditory channel was not conclusive
in terms of requiring lower mental effort in comparison to pressure and stroke. The speed feedback
did not have noticeably lower or higher mental effort in the treatment group than the control group.
In contrast to Mayer and Moreno’s [14] suggestion, it is unclear if using auditory modality results in
lower cognitive load in this case. Our implementation of the auditory feedback consisted of a simple
buzz sound when the learner went over the expert’s speed in that particular stroke. The auditory
feedback was kept simple to keep the processing cost of minimal, but this might have resulted in the
break of flow for the learners when suddenly interrupted by the buzzing sound. A similar pattern was
seen in Loup-Escande et al.’s [13] finding that the feedback for speed provided by producing large
circles on top of the stroke resulted in higher mental effort. These circles break the natural flow that the
user is in during the writing process. Auditory modality has also been used to provide feedback on
the grip force by converting the EMG data into sounds to assist learners to control their grip force [16].
In contrast, this study provided feedback on the grip force by haptic means. The haptic feedback
was provided with the MyoTMarmband, but it was not evaluated in this paper and was given to
all the participants in both the group. Proper ways to provide supplementary haptic feedback for
a proprioceptive task, where motor modality is already being used is unclear and lacks research [7],
unlike the visual modality.
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6. Conclusions

This pilot study is a formative study aimed at evaluating the mental effort imposed by the
supplementary feedback provided by different versions of the calligraphy trainer. The calligraphy
trainer leverages on the recent advancement of sensor technology and digitizers, to explore
supplementary real-time feedback on the writing process. The high SUS score enabled us to ensure
that the usability was not a factor in determining the mental effort. Except for self-reports, results from
the reaction time and pupil dilation show that the mental effort in the treatment group is only slightly
higher. The effect of modality was also unclear from the results. The auditory feedback did not result
in a comparatively lower mental effort as was assumed.

Observations from the eye-tracking data show that the learners were fixated on the tip of the pen
during the whole process (see Figures 4 and 10) and, therefore, feedback should be given immediately
after the stroke is generated. Since handwriting learning for a novice is usually a high mental effort
task, the best course of action for designers is to try to minimize the mental effort as much as possible.
Danna and Velay [7] recommend, supplementary feedback should be provided in a different modality.
Only when required, supplementary visual feedback can be provided by augmenting the information
on top of the stroke. Currently, meaningful versatile haptic feedback that can be used to convey
different types of information is lacking. The most common implementation of such feedback is a basic
vibration. The MyoTM armband can alter the duration of vibration, but it is difficult to interpret this
feedback in the context of calligraphy meaningfully. Similarly, audio-based feedback can provide
detailed vocal feedback, but practicing calligraphy requires quick adaptation to the feedback [30].
Therefore, auditory feedback should be designed to be quick and take minimal mental effort to process.

In conclusion, this formative pilot study indicates that calligraphy trainer’s feedback does not
impose excessively high mental effort on the user. However, the base mental effort from the control
group without the feedback was still high. Further study is required to determine if this was the result
of the supplementary haptic feedback given by the armband or an intrinsic load. Similarly, using
auditory feedback did not result in lower mental effort. Even though the reported mental effort was
similar to the other visual feedback, as shown by the pupil dilation and reaction time, the design of the
auditory feedback must be improved to make better use of the modality. Furthermore, new methods
for using other modalities instead of visual mode should be explored to reduce the overall load.

Figure 10. Visual scan path of the participant while writing.

In addition to designing proper feedback to lower the mental effort in the learner, the learning
process itself can be designed to lower the intrinsic mental effort required. The framework from
Limbu et al. [12] recommends isolating the task parameters and practicing them in order of incremental
difficulty. The results of the mental effort clearly show that mental effort is higher when all the task
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parameters are practiced together. Such scenarios should be practiced at the end when all individual
parameters have been mastered. Reducing the intrinsic mental effort in an individual practice session
will allow learners to focus more on the feedback for the parameter being practiced. This will lead to
deliberate practice, which can result if efficient and effective learning.

7. Limitations

The study is limited by the number of participants. While ten participants are considered enough
to study the usability of the application, it is difficult to generalize findings on the mental effort with
just 5 participants in each group. However, this is a formative pilot study and is expected to be
upscaled, which may result in concrete conclusions. The study compares the mean of the types of
feedback to the mean of the iteration in the control group. Doing so does not take into account the
decrease in the mental effort in the control group due to repetitive practice. Besides, the haptic feedback
which was provided to both groups might have affected the outcome of the mental effort. Similarly,
the effect of feedback modalities on the mental effort could not be compared. The study also did not
take into account the learning outcomes between the two groups. Providing feedback can induce
additional mental effort, but they are crucial to learning and therefore, must be taken into account.
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