
Performance Optimizations and
Operator Semantics for Streaming

Data Flow Programs

Dissertation
zur Erlangung des akademischen Grades

Dr. rer. nat.
im Fach Informatik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät
der Humboldt-Universität zu Berlin

von
Dipl.-Inf. Matthias J. Sax

Präsidentin der Humboldt-Universität zu Berlin
Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät
Prof. Dr. Elmar Kulke

Gutachter
1. Prof. Johann-Christoph Freytag, Ph. D.
2. Prof. Dr. Odej Kao
3. Prof. Dr. Daniela Nicklas

Tag der Verteidigung: 28. Februar 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/328276741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Internet native companies are able to collect more data and require insights
from it faster than ever before. This trend to online processing of giant data
sets has not stopped at Internet giants, but nowadays affects data driven re-
search and almost all businesses from finance and retail to classic manufactur-
ers. Relational database management systems do not meet the requirements for
processing the often unstructured data sets with reasonable performance. The
database research community started to address these trends in the early 2000s.
Two new research directions have attracted major interest since: large-scale
non-relational data processing as well as low-latency data stream processing.

Large-scale non-relational data processing was pioneered by Google with
their Google File System (GFS) and the MapReduce processing framework,
and is commonly known as “Big Data” processing. While “Big Data” is char-
acterized by the 4 Vs volume, variety, velocity, and veracity, in the beginning
industry mainly focused on the challenge to handle large data sets. In parallel,
low latency data stream processing was mainly driven by the research com-
munity developing prototype systems such as Aurora/Borealis, STREAM, and
TelegraphCQ. Stream processing faced fundamental questions about semantics,
incomplete data, and reasoning about time. The first generation of stream pro-
cessing systems was not able to process high volume data streams, which made
data stream processing a niche in its early years of development.

The MapReduce paradigm inspired a second generation of stream processing
systems. The second generation embraces a distributed architecture, scalability,
and exploits data parallelism. While these systems have gained more and more
attention in the industry, there are still major challenges to operate them at
large scale. Provisioning and performance tuning of queries needs to be carried
out by experts, and is a manual, time consuming, and error prone process.
Furthermore, there is still no agreement in research or in the industry for the
semantics of continuous data stream processing, i. e., its data or operational
model. Different systems offer different semantics and often lack deterministic
query execution.

The goal of this thesis is two-fold. First, to investigate runtime character-
istics of large scale data-parallel distributed streaming systems independent of
their actual query semantics. And second, to propose the Dual Streaming Model
to express semantics of continuous queries over data streams and tables.

Our goal is to improve the understanding of system and query runtime be-
havior with the aim to provision queries automatically. We introduce a cost
model for streaming data flow programs taking into account the two techniques
of record batching and data parallelization. Additionally, we introduce opti-
mization algorithms that leverage our model for cost-based query provisioning.

The proposed Dual Streaming Model expresses the result of a streaming
operator as a stream of successive updates to a result table, inducing a dual-
ity between streams and tables. A key challenge in distributed data stream
processing is the inconsistency of the logical and the physical order of records
within a data stream. Existing systems either ignore these inconsistencies or
handle them by means of data buffering and reordering techniques, thereby in-
troducing non-determinism or compromising processing latency. In our model,
inconsistencies of logical and physical order are handled within the model itself,
which allows for deterministic semantics as well as low latency query execution.

Zusammenfassung

Internetunternehmen sammeln mehr Daten als je zuvor und müssen auf diese
Informationen zeitnah reagieren. Dieser Trend, riesige Datenmengen sofort nach
der Erfassung zu verarbeiten, geht heute über Internetunternehmen hinaus und
revolutioniert datengetriebene Forschung und fast sämtliche Wirtschaftszweige
– vom Finanzsektor über das Gesundheitswesen und industrielle Produktion
bis hin zu Medienunternehmen. Relationale Datenbankmanagementsysteme
eignen sich nicht für die latenzfreie Verarbeitung dieser oft unstrukturierten
Daten. Um diesen Anforderungen zu begegnen, haben sich in der Daten-
bankforschung seit dem Anfang der 2000er Jahre zwei neue Forschungsrichtun-
gen etabliert: skalierbare Verarbeitung unstrukturierter Daten und latenzfreie
Datenstromverarbeitung.

Skalierbare Verarbeitung unstrukturierter Daten, auch bekannt unter dem
Begriff “Big Data“-Verarbeitung, wurde zunächst von Google mit dem “Google
File System” (GFS) und “MapReduce” eingeführt. “Big Data” Datenverar-
beitung, die mit den 4 Vs, “volume” (Volumen), “variety” (Vielfalt), “veloc-
ity” (Geschwindigkeit) und “veracity” (Richtigkeit) charakterisiert wird, hat in
der Industrie schnell Einzug erhalten, wobei der Fokus auf der Verarbeitung
riesiger Datenmengen lag. Zur selben Zeit wurden in der Forschung erste pro-
totypische Systeme zur latenzfreien Datenstromverarbeitung entwickelt (z. B.
Aurora/Borealis, STREAM und TelegraphCQ). Dabei wurden grundlegende
Fragen zu Verarbeitungssemantiken, dem Umgang mit unvollständigen Daten
und die Bedeutung der Zeitdimension addressiert. Die erste Generation von
Datenstromverarbeitungssystemen war nicht in der Lage hochfrequente Daten-
ströme zu verarbeiten und erhielten keinen breiten Einzug in die Industrie.

Basierend auf dem MapReduce Datenverarbeitungsparadigma wurde eine
zweite Generation von Datenstromverarbeitunssystemen entwickelt. Die zweite
Generation setzt auf eine verteilte Architektur, Skalierbarkeit und datenparal-
lele Verarbeitung. Obwohl diese Systeme in der Industrie vermehrt zum Einsatz
kommen, gibt es immer noch große Herausforderungen im praktischen Einsatz.
Kapazitätsmanagement und Anfrageoptimierung werden manuell von Experten
durchgeführt und sind fehleranfällig und zeitaufwending. Des Weiteren gibt es
weder in der Forschung noch in der Indutrie einen standardisierten Ansatz für
die Semantik von Datenstromverarbeitung, also kein einheitliches Daten- oder
Operatormodell. Die Verarbeitungssemantik unterscheidet sich von System zu
System, und die Anfrageergebnisse sind häufig nicht-deterministisch.

Diese Dissertation verfolgt zwei Hauptziele: Zuerst wird das Laufzeitver-
halten von hochskalierbaren datenparallelen Datenstromverarbeitungssystemen
untersucht. Im zweiten Hauptteil wird das Dual Streaming Model eingeführt,
das eine Semantik zur gleichzeitigen Verarbeitung von Datenströmen und Ta-
bellen beschreibt.

Das Ziel unserer Untersuchung ist ein besseres Verständnis über das Lauf-
zeitverhalten dieser Systeme zu erhalten und dieses Wissen zu nutzen um An-
fragen automatisch ausreichende Rechenkapazität zuzuweisen. Dazu wird ein
Kostenmodell für Datenstromanfragen eingeführt, das Datengruppierung und
Datenparallelität einbezieht. Aufbauend zu diesem Kostenmodell, stellt diese
Dissertation verschiedene Optimierungsalgorithmen vor, um Datenstromanfra-
gen automatisiert und kosteneffizient auszuführen.

Das vorgestellte Datenstromverarbeitungsmodell beschreibt das Ergebnis
eines Operators als kontinuierlichen Strom von Veränderugen auf einer Ergeb-
nistabelle, und induziert damit eine Dualität zwischen Datenströmen und Ta-
bellen. Dabei besteht eine Hauptschwierigkeit im Umgang mit der Diskrepanz
der physikalischen und logischen Ordnung von Datenelementen innerhalb eines

Datenstroms. Bestehende Systeme ignorieren diese Diskrepanz häufig oder
lösen dieses Problem durch Datenpufferung und Umordnen von Datenelemen-
ten, was zu Nicht-Determinismus oder erhöhter Verarbeitungslatenz führt. Un-
ser Modell behandelt die beschriebenen Diskrepanz als Teil des Modells und
erreicht damit eine deterministische Semantik und eine minimale Verarbeitungs-
latenz.

Acknowledgments

First and foremost, I thank my advisor Prof. Johann-Christoph Freytag, Ph. D.,
for his many years of support. He became my primary mentor during my time as
Diplom student and supported me ever since. For example, he helped me to land
multiple internships in the US. After he sparked my interest in data management,
data structures and algorithms, and conceptual thinking, he also encourage me to
start a Ph. D. I always appreciated his high level of trust and freedom that allowed
me to discover and pursue my personal research interests. Thank you Christoph!

I thank Prof. Dr. Odej Kao and Prof. Dr. Daniela Nicklas to take time out of
their busy schedules to serve as my reviewers and I also thank all other members on
the committee.

During my studies, I worked with many great people at the DBIS research group,
the Stratosphere project, as well as the METRIK graduate school. Special thanks
goes to Dr. Kostas Tzoumas, Dr. Malu Castellanos, and Prof. Dr. Matthias Weidlich
for teaching me in the art of writing. I am grateful to Mathias Peters, Jörg Bach-
mann, Fabian Fier, Dr. Bruno Cadonna, and all other members of the DBIS research
group for many fun hours discussing research and beyond. Thanks to all colleagues
from the Stratosphere project, in particular Dr. Fabian Hüske, Dr. Stephan Ewen,
Dr. Daniel Warneke, Dr. Astrid Rheinländer, and Dr. Arvid Heise. I learned a lot
about computer science and programming from all of you. Also a big thank you to
my colleagues at Confluent for their mental support and to my proof readers of this
thesis: Arjun, Bruno, Ewen, Jesus, John, Konstantine, and Michael.

Finally, I thank my wife Marie for her unlimited support on my “crazy” ideas
like starting a Ph. D. or to move to the US. I am looking forward to our future
adventures!

Contents

Contents i

List of Figures iii

List of Tables v

I Data Stream Processing 1

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 4
1.3 Outline . 6

2 Fundamentals 7
2.1 From Batch Processing to Stream Processing 8

2.1.1 Properties of Stream Processing Systems and Batch Process-
ing Systems . 11

2.1.2 Cost Model Considerations 13
2.2 Principles of Distributed Data Processing 13

2.2.1 Parallelism . 13
2.2.2 Data Partitioning . 15
2.2.3 Scaling . 16
2.2.4 System Architecture . 17

2.3 Scalable Stream Processing Systems 19
2.3.1 Data and Programming Model 19
2.3.2 Program Execution . 20

2.4 Data Streaming Model . 23
2.4.1 Records, Streams, and Tables 24
2.4.2 Stream Operations . 26
2.4.3 Table Operations . 28
2.4.4 Order and Time . 29

2.5 Related Work . 30

II Cost-based Streaming Data Flow Optimization 35

3 Streaming Data Flow Cost Model 37
3.1 Data Flow Capacity . 38

i

3.2 Processing Costs . 41
3.2.1 Improvements of Throughput with Batching 42
3.2.2 Operator Dependencies . 45

3.3 Network Costs . 48
3.3.1 Input Network Capacity . 49
3.3.2 Output Network Capacity . 51

3.4 Batching Layer . 52
3.5 Related Work . 60
3.6 Summary . 61

4 Data Flow Optimization 63
4.1 Bottleneck Detection and Throughput Prediction 65

4.1.1 Bottleneck Detection . 65
4.1.2 Throughput Prediction . 68

4.2 Minimizing Resource Consumption 72
4.2.1 Minimizing Parallelism . 73
4.2.2 Batch Size Computation . 75
4.2.3 Algorithm Resource Optimizer 77

4.3 Evaluation . 80
4.3.1 Throughput . 81
4.3.2 Data Flow Optimization . 86

4.4 Related Work . 90
4.5 Summary . 91

III Data Streaming Model 93

5 The Dual Streaming Model 95
5.1 Streams and Tables . 96
5.2 Stream Processing Operators . 102

5.2.1 Record Stream Transformations 103
5.2.2 Record Stream Aggregation 107
5.2.3 Record Stream Joins . 115
5.2.4 Table Operators . 125

5.3 Model Trade-offs . 128
5.3.1 Processing Latency . 129
5.3.2 Design Space . 132
5.3.3 Data Retention . 133

5.4 Related Work . 134
5.5 Summary . 138

IV Discussion 141

6 Conclusion 143

Bibliography 145

ii

List of Figures

2.1 Types of parallelism. 14
2.2 System architectures following DeWitt and Gray [DG92]. 17
2.3 Example data flow program with six nodes. 20
2.4 Execution graph from Example 2. 22
2.5 Example stream with five records. 25

3.1 Data flow program with three nodes having multiple data flow capac-
ities C1(D) and C2(D). 39

3.2 Data exchange via a queue between tasks of two operators. 41
3.3 Data exchange via queues and network between tasks of two operators. 41
3.4 Data flow program with two producers (p1 and p2) configured with

different output batch size and single consumer c. 46
3.5 Data flow program with two producers (p1 and p2) with different out-

put data rates and different output record sizes and a single consumer
c. 49

3.6 Producer task p with single output buffer and two consumer tasks (c1
and c2) connected via random or broadcast connection pattern. . . . 54

3.7 Producer task p with two output buffers and two consumer tasks (c1
and c2) connected via hash- or range-partitioning connection pattern. 55

3.8 Producer task p with distinct output buffers and two consumers with
different degree of parallelism, connected via hash- or range-partition-
ing connection pattern. 56

3.9 Matrix of 6 buffers for two logical consumers A and B with dop(A) = 2
and dop(B) = 3. 59

3.10 Producer task p with shared output buffers and two consumers with
different degree of parallelism, connected via hash- or range-partition-
ing connection pattern. 60

4.1 Execution graph with parallelism and output batch sizes from Exam-
ple 8. 64

4.2 Operator levels of the data flow program from Example 1. 66
4.3 Back pressure from consumer c to producers p1 and p2. 70
4.4 Back pressure from consumers c1 and c2 to producer p. 70
4.5 Spout/bolt throughput for bout = 1 and different workloads. 81
4.6 Spout/bolt throughput for different batch sizes and workloads. . . . 82
4.7 Bursty bolt throughput for spout output batch size bout = 10000 and

a workload of 1000 s−1. 83

iii

4.8 Predicted capacity and observerd throughput for different batch sizes
and a workload of 1 000 000 s−1. 84

4.9 Bolt throughput for different combinations of spout output data rates
and spout output batch sizes. 86

4.10 Modified Linear Road data flow program. 87
4.11 Operator throughput for different dop configurations of the parse op-

erator with batching disabled. 88
4.12 Operator throughput for different dop configurations of the agg oper-

ator with batching disabled. 88
4.13 Operator throughput for different dop configurations of the parse op-

erator with batching. 89
4.14 Operator throughput for different dop configurations of the agg oper-

ator with batching. 89

5.1 Data stream types and their relationship. 98
5.2 Duality of streams and tables. 103
5.3 Transformations between record streams, changelog streams, and tables.104
5.4 Stream-stream join example. 117
5.5 Stream-table join example. 120
5.6 Stream-stream left- and right-outer join example with eager emitting. 122
5.7 Stream-stream join example for unordered input streams with ω = 6. 124
5.8 Table-table join example. 128
5.9 Trade-offs of data stream processing models. 129
5.10 Windowed aggregations with watermarks. 130
5.11 Continuous windowed aggregation. 131
5.12 Processing latency in the watermark model. 132
5.13 Design space of the Dual Streaming Model. 134

iv

List of Tables

2.1 Properties of Batch, Continuous, Stream, and Micro-batch Processing 11
2.2 Used Terminology and Synonyms as used in Related Work 24

3.1 Cost Model Parameters . 53

4.1 Effective Input Batch Sizes Based on Equation 3.21 85
4.2 Linear Road Meta Data . 87
4.3 Optimized configuration w/ and w/o batching. 87

5.1 Formal Notation . 97

v

Part I

Data Stream Processing

1

Chapter 1

Introduction

Contents
1.1 Motivation . 3
1.2 Contributions . 4
1.3 Outline . 6

1.1 Motivation

In the last decade, data processing became increasingly important in research and
industry because new technologies like modern mobile phones, sensors, and telecom-
munication systems (e. g., 5G standard) allow to generate, transmit, and store more
and more data. For example, CERN stores about 350 PB in their data centers
and their “Accelerator Logging Service” produces data streams of about 50 TB per
week [CER17]. Furthermore, the advent of the Internet of Things (IoT) increases
the need of real-time monitoring. The estimated number of connected IoT sensors
by 2025 is projected to be around 80 billion [Cla15].

Additionally, for many business use cases it is paramount to analyze data in an
online fashion to gain insight with low latency (often called “real-time processing”).
Online trading is one example for which new information is highly valuable, while
the value of information declines quickly over time. Another example is online fraud
detection [BH02]: analyzing credit card transactions and deciding if a transaction
is fraud before it is approved may reduce financial damage significantly. However,
it requires that this decision can be made in the order of hundreds of milli-seconds.
Less critical applications have an increasing demand to low latency data processing,
too. For example, an airline offering a mileage-base status program wants to update
a customer profile directly after a flight is completed, instead of hours or even days
later.

In the past, there were three different types of systems that tackle different de-
mands with regard to large-scale or low-latency data processing: (1) large-scale
batch processing systems, (2) messaging, pub/sub systems, and (3) centralized
stream processing system. However, none of those systems is able to address all
of the aforementioned challenges. Inspired by the MapReduce paradigm, a new
class of distributed, large-scale data stream processing systems emerged in recent

3

4 CHAPTER 1. INTRODUCTION

years with the goal to make large-scale data stream processing feasible. Those sys-
tems exploit data-parallelism and aim to process large volume data streams with
low latency.

While first prototype systems were developed and used successfully by tech-
nology-savvy companies like Google or Yahoo!, data stream processing is not main-
stream yet, because those systems are still very hard to deploy, maintain, and pro-
gram. The most important question for application developers using those systems
is, how much compute resources they need for a certain stream processing workload.
This question is hard to answer even for software engineers at technology giants like
Facebook: “However, guessing the right amount of parallelism before deployment is
a black art.” [CWI+16]. Another demand in industry is a standardized stream pro-
cessing model similar to SQL for relational database system. While many models
have been suggested in the past, none of them seems to fit all (or at least a majority)
of use cases. The goals of this thesis are to (1) contribute to the understanding of
the performance of distributed stream processing systems, (2) simplifying the de-
ployment of stream processing programs, and (3) to unify existing stream processing
models to enlarge the design space for stream processing applications.

1.2 Contributions

In this thesis, we first investigate the runtime behavior of distributed data-parallel
stream processing systems, that execute continuous streaming programs and are
expressed as data flows. To run a data flow program, users need to specify a config-
uration that is used to deploy the data flow program into the system. The program
and system configuration need to be tuned manually to allow for an efficient and
cost effective execution.

We introduce a rate-based cost model (Chapter 3) that describes CPU and net-
work costs for the execution of data flow programs. Rate-based cost models are
not new, however, they are mostly used to address classic query optimization prob-
lems. Similar to relational database optimization, continuous streaming queries can
be rewritten to reduce execution costs. Operator reordering is often limited com-
pared to relational queries, however, physical optimizations like choosing the best
join algorithm apply in the same way.

Most existing cost models are based on centralized systems and do not apply
to distributed systems. Furthermore, the optimization goal is usually to reduce
execution cost at a logical and algorithmic level. In contrast, the goal of our cost
model is to express the runtime costs at the system level. To this extend, we consider
data parallel execution as well as record batching. Record batching is a system level
optimization that reduces runtime overhead independent of query semantics and
operator implementations (i. e., the algorithms used). Based on our cost model, we
present various algorithms (Chapter 4), that are able to detects bottlenecks in a data
flow program, predict data flow throughput, and compute an optimized configuration
that avoids bottlenecks and minimizes latency.

In the second part of this thesis, we present the Dual Streaming Model (Chap-
ter 5), that defines novel stream processing semantics with the goal to unify the
benefits of existing approaches. The Dual Streaming Model unifies the concepts of
data streams an relational tables in a holistic model, inducing a duality between

1.2. CONTRIBUTIONS 5

streams and tables. Relational tables are used to model the state of stream pro-
cessing operators explicitly as first class citizen, in contrast to most existing models,
that treat operator state as an internal implementation detail. Furthermore, the
Dual Streaming Model makes explicit the inconsistency of the logical and physical
order of records in a data stream, and handles this inconsistency within the model.
Modeling operator state and record ordering explicitly, opens up the design space
between processing latency, processing cost, and result correctness/completeness.
Capturing those trade-offs within the model, (1) allows users to reason about query
semantics, (2) emphasizes the temporal query semantics that are often neglected by
other systems, and (3) allows users to pick different execution trade-offs for the same
query without rewriting their program.

Parts of this thesis have been published in the following papers:

• Matthias J. Sax, Malu Castellanos, Qiming Chen, and Meichun Hsu. Perfor-
mance Optimization for Distributed Intra-Node-Parallel Streaming Systems.
In 29th International Conference on Data Engineering Workshops (ICDEW
’13), pages 62–69, 2013.

• Matthias J. Sax, Malu Castellanos, Qiming Chen, and Meichun Hsu. Ae-
olus: An Optimizer for Distributed Intra-Node-Parallel Streaming Systems.
(Demo) In 29th International Conference on Data Engineering (ICDE ’13),
pages 1280–1283, 2013.

• Matthias J. Sax and Malu Castellanos. Building a Transparent Batching
Layer for Storm. HPL Technical Report. Hewlett-Packard Laboratories, HPL-
2013-96, 2013.

• Matthias J. Sax, Guozhang Wang, Matthias Weidlich, Johann-Christoph
Freytag. Streams and Tables: Two Sides of the Same Coin. In Proceedings of
the International Workshop on Real-Time Business Intelligence and Analytics
(BIRTE ’18), pages 1–10, 2018.

Other publications:

• Fabian Hueske, Mathias Peters, Matthias J. Sax, Astrid Rheinländer, Rico
Bergmann, Aljoscha Krettek, and Kostas Tzoumas. Opening the Black Boxes
in Data Flow Optimization. In Proceedings of the VLDB Endowment, 5(11),
pages 1256–1267, 2012.

• Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph
Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser,
Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer,
Matthias J. Sax, Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and
Daniel Warneke. The Stratosphere Platform for Big Data Analytics. The
VLDB Journal, 23(6), pages 939–964, 2014.

• Matthias J. Sax. Apache Kafka. Book chapter in Encyclopedia of Big Data
Technologies, pages 1–8, 2019. Editors Sherif Sakr and Albert Zomaya. ISBN
978-3-319-63962-8.

6 CHAPTER 1. INTRODUCTION

1.3 Outline
The remainder of this thesis is structured as follows:

Part I – Data Stream Processing

Chapter 1: This chapter motivates the research questions addressed in this thesis.
It lays out the contributions and related publications and outlines the thesis
structure.

Chapter 2: We first contrast batch and stream processing to point out additional
challenges in data stream processing. Additionally, we discuss principles of scal-
able, distributed data processing, followed by an introduction to the data and
execution model of state-of-the-art distributed data-parallel stream processing
systems. We formally describe our data model including streams and tables,
and discuss order and time aspects. This chapter also contains related work to
set the context for the core chapters of this thesis.

Part II – Cost-based Streaming Data Flow Optimization
Chapter 3: We introduce a cost model for data parallel streaming systems that

considers CPU and network consumption. The cost model centers around the
cost of a single operator in the data flow graph taking batching into account.
We discuss how batching may increase operator throughput and describe inter
operator dependencies. We discuss different batching approaches for data stream
processing systems, including their advantages and disadvantages.

Chapter 4: This chapter builds on Chapter 3 and introduces several optimization
algorithms exploiting our data flow cost model. We provide a holistic view of the
overall cost with regard to the structure of the program, i. e., connections between
operators. Given a configuration (parallelism and batch sizes), we show how our
cost model can be used to detect bottlenecks in a data flow program. Addition-
ally, we use our cost model to compute an optimal configuration for a target
input data rate. We experimentally evaluate our cost model and algorithms
considering the impact of batching on throughput and required parallelism.

Part III – Data Streaming Model

Chapter 5: The second part of this thesis proposes a novel stream processing model,
combining streams and tables, and putting forward temporal processing seman-
tics. The goal of our processing model is to decouple the processing latency from
properties of the input streams, and to open the design space of stream process-
ing applications by generalizing known concepts. Our model makes the trade-off
between processing cost, processing latency, and result correctness/completeness
explicit to the user and allows them to configure the system based on the appli-
cation requirements.

Part IV – Discussion

Chapter 6: We conclude this thesis with a summary and final discussion of our
contributions.

Chapter 2

Fundamentals: Distributed
Parallel Data Flow Programs

Contents
2.1 From Batch Processing to Stream Processing 8

2.1.1 Properties of Stream Processing Systems and Batch Pro-
cessing Systems . 11

2.1.2 Cost Model Considerations 13
2.2 Principles of Distributed Data Processing 13

2.2.1 Parallelism . 13
2.2.2 Data Partitioning . 15
2.2.3 Scaling . 16
2.2.4 System Architecture . 17

2.3 Scalable Stream Processing Systems 19
2.3.1 Data and Programming Model 19
2.3.2 Program Execution . 20

2.4 Data Streaming Model . 23
2.4.1 Records, Streams, and Tables 24
2.4.2 Stream Operations . 26
2.4.3 Table Operations . 28
2.4.4 Order and Time . 29

2.5 Related Work . 30

Distributed data stream processing has gained a lot of interest in research and
industry over the last decade due to the demand for low latency online processing
of high volume data streams [CCA+10, NRNK10, GJPPMV10, LLP+12, TTS+14,
ABC+15, CEF+17]. An often cited use case of distributed data stream processing
is fraud detection and prevention [BH02]. For this use case, the earlier fraud is
detected, the higher the business value. For example, low latency data stream pro-
cessing allows for online monitoring of financial transactions like credit card usage.
Monitoring transactions while they occur allows to not only detect, but even prevent
fraud by declining a transaction immediately. Furthermore, new technologies like

7

8 CHAPTER 2. FUNDAMENTALS

the “Internet of Things” (IoT) [Cla15] generate large amounts of online data that
needs to be processed with low latency.

The development of scalable stream processing system was inspired by Google’s
distributed file system GFS (Google File System) [GGL03] and Google’s MapRe-
duce framework [DG04, Dea06, DG08] that introduces a novel programming and
execution model for scalable batch processing systems. MapReduce and similar sys-
tems [IBY+07, YDHP07, BEH+10, BCG+11, ZCD+12] are tailored to large scale
batch processing. However, they are not well suited for low latency continuous
stream processing leading to the development of scalable stream processing sys-
tems [NRNK10, GJPPMV10, LLP+12, TTS+14].

In this chapter, we first give a conceptual introduction to stream processing and
contrast it to batch processing (Section 2.1). Afterwards (Section 2.2) we discuss
the basic principles like parallelism, scaling, and system architectures that are rele-
vant for scalable stream processing systems. In Section 2.3, we give an overview of
state-of-the-art scalable stream processing systems and introduce basic terms and
definitions that we use in Chapter 3 and Chapter 4 to describe our cost model and
optimization algorithms. The first sections in this chapter discuss stream processing
in general, focus on low level system properties, and treat operators as black boxes.
In contrast, Section 2.4 introduces a semantic model for streams and tables that is
the foundation of the stream processing operator semantics defined in Chapter 5.
Finally, related work is discussed in Section 2.5.

Preliminary Definitions

We distinguish between the set of natural numbers without zero and the set of
natural numbers including zero. We denote the former with N and the later with
N0.

• N = {1, 2, 3, . . . }

• N0 = {0, 1, 2, 3, . . . }

We also use the term data items to describe an atomic unit of data that is
processed at once if the actual data representation is not relevant for the discussion.
For example a data item could be a tuple/record, object, document, or some other
unit.

2.1 From Batch Processing to Stream Processing

In this section, we contrast stream processing and batch processing in general
[BBD+02, GO03a, ScZ05]. Both processing techniques have very different data
models which impacts the properties of their available operators and runtime mod-
els. Additionally to stream and batch processing, we briefly describe micro-batching
[ZDL+13, DZSS14]. We do not consider micro-batching in this thesis, but we con-
trast it to batching and stream processing to clearly distinguish between those tech-
niques.

2.1. FROM BATCH PROCESSING TO STREAM PROCESSING 9

Batch Processing: In batch processing, data is modeled as a finite unordered
collection of data items, e. g., as a set of tuples in the relational model. The finite
input data is completely available when data processing starts. Thus, it is possible
to access data items multiple times or to rearrange the data layout (e. g., sorting or
creating indices). A batch processing program, like a relational query or a MapRe-
duce job [DG04, Dea06, DG08], terminates when all data is processed and produces
a finite result. Semantically, the input represents immutable facts from a specific
point in time called a snapshot. Hence, it is not possible to modify the input data
during processing.

Before we explain the differences between batch and stream processing, we in-
troduce continuous queries in the next paragraph.

Continuous Queries: In batch processing, queries are actively issued by the user
in an ad-hoc fashion, process an immutable snapshot of data, and finish process-
ing after a finite amount of time. Carney et al. describe this approach as the
Human-Active, DBMS-Passive1 (HADP) model [CcC+02] and contrast it to the
DBMS-Active, Human-Passive (DAHP) model that they suggest for monitoring ap-
plications. In the DAHP model, the query input is not immutable but may change
over time and the system updates the result accordingly. Hence, a query is deployed2

into a system and runs forever if not terminated explicitly by the user.
DAHP queries are also called continuous queries [TGNO92, BBD+02]. Terry

et al. describe continuous queries as follows:

“The results of a continuous query is the set of data that would be returned if
the query were executed at every instant in time.” [TGNO92] (c. f. [GNOT92])

Hence, a continuous query is not evaluated over a single snapshot of input data
but over every snapshot. Continuous queries may be re-evaluated from scratch
for each snapshot to replace the previous computed result with the new result.
However, this is a compute intensive and inefficient approach. Depending on the
query semantics, it may be possible to evaluate a continuous query incrementally
and compute a delta between two consecutive snapshots that are used to update the
query result [TGNO92, LPBZ96, LPT99].

Stream Processing: In stream processing, data is modeled as an unbounded
ordered collection of data items, i. e., a potentially infinite sequence, called a data
stream [BBD+02]. The data items in a data stream are immutable facts and only
new data can be appended to the stream.3 Hence, a data stream captures events
over time in contrast to the snapshot model in batch processing. The potentially
infinite input is not necessarily available when data processing starts and new input
data may be added at any point in time. Because input data is infinite, it can be
read only once using a linear scan. Parts of the input data may be buffered, but
available space is limited to an arbitrarily large, but finite amount.

1DBMS stands for “Data Base Management System”.
2We use the term deployed for DAHP queries to distinguish them for HADP queries.
3Some models also allow retraction and in-place updates [AAB+05].

10 CHAPTER 2. FUNDAMENTALS

Definition 1 (Stream Processing Program). A stream processing program is a
special form of a continuous query (c. f. paragraph “Continuous Queries” above)
that takes an infinite data stream as input and produces a potentially infinite result.

All “updates” to the query input are appends to the data stream each triggering
an update to the computed result. If all currently available input data is processed,
a stream processing program waits until new data becomes available for processing.
Because the input is potentially infinite, stream processing systems can only execute
continuous queries that can be computed incrementally.

Micro-batching: Micro-batching [ZDL+13, DZSS14] is a stream processing ap-
proach based on batch processing that mimics stream processing. In micro-batching,
the potentially infinite input stream is split into finite batches and a batch processing
program is triggered for each input batch. Batches are kept as small as possible to
achieve low processing latency. Systems like Spark Streaming [ZDL+13] define batch
sizes based on system wall-clock time and may start to process a new micro-batch
in one-second intervals.

Smaller batch sizes are difficult to achieve, especially in a distributed system
like Spark, because smaller batches increase the processing overhead. Processing a
micro-batch must be finished before the next micro-batch is ready for processing.
However, triggering a batch processing job for each micro-batch includes a certain
startup/deployment overhead [ADT+18]. Thus, if the batch size is too small, this
deployment overhead dominates the execution time resulting in decreased system
throughput. Since there is a minimum batch size that allows for efficient process-
ing, there is also a minimum processing latency, due to the linear relationship be-
tween both. In practice, the deployment overhead forbids processing latencies below
500 ms [VPO+17]. Some use cases require lower processing latencies and hence,
micro-batching can only be use for a fraction of streaming applications.

The micro-batching execution model is an infinite collect-deploy-process loop.
First, the data for one micro-batch is collected, and second, a batch processing job
is deployed to process this micro-batch of data. Because micro-batches are accumu-
lated based on system wall-clock time, processing is inherently non-deterministic.
Additionally, micro-batching provides different semantics compared to stream pro-
cessing. For example, window-processing is based on full micro-batches and data
from a single micro-batch cannot be divided into two different windows. We do not
consider micro-batching in this thesis and point out that record batching in stream
processing—as discussed in the next paragraph—is not related to micro-batching.

Record Batching in Stream Processing Systems: Record batching in stream
processing systems is a buffering technique that allows for an efficient execution of
streaming programs [CcC+02, LWK12]. In contrast to micro-batching or batch pro-
cessing, record batching is not part of the processing model but an implementation
detail and is a well established technique in many different systems. For example,
Aurora [CcC+02, CcR+03] uses a record batching technique called train scheduling
to “describe the batching of multiple tuples as input to a single box”4. The Nephele

4A “box” in Aurora represent an operator.

2.1. FROM BATCH PROCESSING TO STREAM PROCESSING 11

Table 2.1: Properties of Batch, Continuous, Stream, and Micro-batch Processing

batch continuous streaming micro-batch
input size finite finite+updates infinite infinite (split into

or infinite finite batches)
output size finite finite+updates infinite infinite

or infinite
evaluation holistic holistic or incremental incremental

incremental
latency high very low very low low

to high
query runtime finite infinite infinite infinite
ordered input no maybe yes yes
deterministic yes yes yes no

(not always)

system [LWK12] uses buffering in the network layer to increase the system through-
put as record batching technique. In this thesis, we use the term batching in this
sense and use batching as optimization technique to increase system performance.
We refer to Chapter 3, for a detailed discussion of our used batching techniques.

Table 2.1 summaries the discussed properties of batch processing, continuous
queries, stream processing, and micro-batching. We have seen that batch and stream
processing are built on different assumptions. Based on these assumptions we de-
scribe corresponding implications that are relevant for this thesis in the next section.
Those implications build the foundation of our streaming data flow cost model that
we introduce in Chapter 3.

2.1.1 Properties of Stream Processing Systems and Batch Process-
ing Systems

The main difference between batch and stream processing is finite and infinite input
data. This difference has implications on operator properties, memory requirements,
as well as performance metrics. We discuss those implications in the following para-
graphs.

Blocking vs. Non-Blocking Operators: A blocking operator is an operator
that cannot produce any output data until it has processed all the input data
[BBD+02, LWZ04]. Shanmugasundaram et al. [STD+00] relax the definition of
blocking operators and allow blocking operators to output partial results early, i. e.,
before all input data is processed. However, Shanmugasundaram’s definition still
states that a blocking operator needs to process the complete input before it can
emit the complete result. For example, an outer-join may emit the partial inner-join
result early, i. e., before all input data is consumed. It still must process the whole
input before it can output the records that did not join.

Both definitions imply that blocking operators cannot be used in stream pro-
cessing because the input is potentially infinite, and thus, a blocking operator can

12 CHAPTER 2. FUNDAMENTALS

never generate the complete (or even any) output. It is important to note that some
operators may have different implementations that may be blocking or non-blocking.
Therefore, an operator is considered non-blocking if at least one non-blocking imple-
mentation exists. For example, an inner-join can be implemented as a sort-merge-
join that is a blocking implementation. As an alternative, it can be implemented as a
symmetric hash-join [AA91] that is non-blocking. Therefore, inner-join is considered
a non-blocking operator.

Memory requirements: In batch processing the input is finite, and thus, op-
erators naturally require finite memory only. However, for some batch processing
operators, memory requirements grow with the input data set size. For example, an
inner-equi-hash-join builds up a hash-table for one input with a hash-table size that
is linear to the input data set. Thus, those operators cannot be applied to an infinite
input data stream as this would result in unbounded memory usage. Nevertheless,
some operators (like joins) are conceptually useful for data streams, too. Therefore,
different techniques were suggested to provide “streaming versions” of those opera-
tors [BBD+02]. Those techniques bound the space requirements of batch processing
operators on input data streams to make the operators applicable to data stream
processing. The available techniques can be categorized into (1) result approxi-
mation techniques [DGGR02, JMR05] and (2) operator re-definitions to provide a
streaming version of an operator. The most common operator re-definition is win-
dowing [GO03b, LMT+05]. Windowing limits the “scope” of an operator to finite
subsets of the infinite input data stream. Using our example of an inner-equi-join, a
windowed inner-equi-join is basically a band-join with an additional join condition
that is implicitly defined by the join window.

Most stream processing systems use windowing to limit memory consumption
because it is easy for users to reason about the well-defined expected result. It is
important to note that even if windowing limits the result, this limitation is part of
the operator definition, and thus, there is a notion of result completeness. Result
approximation on the other hand is less common in practice. Partly because the
result may be non-deterministic, hard to predict, or the result completeness cannot
be guaranteed.

Execution Time, Throughput, and Latency: In batch processing, programs
terminate after all input data is processed. Performance of a batch processing system
is usually measured as execution time, i. e., the time it takes for the program to
finish processing. In stream processing, programs run forever, and thus, execution
time is naturally infinite and hence not useful to measure the performance of a
stream processing system. Instead, throughput and latency are used to compare
performance. Throughput is the amount of input data (i. e., number of data items)
per time unit a system can process, and latency is the amount of time it takes until
new input data is reflected in the output (i. e., the time it takes to process a single
data item) [CcC+02]. While throughput is usually measured as an average number,
latency is measured as mean, percentile, or even maximum processing time per data
item.

2.2. PRINCIPLES OF DISTRIBUTED DATA PROCESSING 13

The discussed implications of operator properties, memory requirements, and
performance metrics impact the cost model of this thesis. In particular the notion
of throughput and latency. We describe this impact in the next section.

2.1.2 Cost Model Considerations

In this thesis, we introduce a cost model for the execution cost of continuous queries
over data streams (Chapter 3). Our cost model is based on the properties of stream
processing as introduced in Section 2.1.1. In the following, we discuss the impact of
those properties on our cost model and contrast it to cost models in batch processing.

In batch processing systems (like relational database systems), cost models esti-
mate the execution cost of a query as the overall cost to compute the query result.
The goal of those cost models is to rank different execution plans that are gener-
ated via logical and/or physical optimization techniques. However, those models are
not applicable to stream processing systems, because queries run forever and costs
would be estimated as infinite. Furthermore, compared to batch processing, logical
and physical optimization is limited in data stream processing due to the continuous
execution property, different operator semantics, and infinite input data.

In this thesis, the optimization goal is to find a configuration5 for a given stream-
ing program, that provisions the corresponding query execution plan based on the
data rates of the input data streams. We model costs as “time units“ to process or
transfer records and introduce the concept of capacity as “amount of work by time
unit” [CcC+02] (c. f. Chapter 3). Hence, our cost model is throughput-based [VN02]
and there is no notion of overall query cost. Furthermore, we apply our cost model
to distributed and scalable data stream processing systems. We cover general princi-
ples of distributed data processing in the next section and introduce scalable stream
processing systems in Section 2.3.

2.2 Principles of Distributed Data Processing

Scalable data processing is a well understood topic and state-of-the-art scalable
stream processing systems leverage the same concepts as scalable batch processing
systems or parallel relational database systems. Understanding concepts like dif-
ferent levels of parallelism (Section 2.2.1), scaling techniques (Section 2.2.3), and
system architectures (Section 2.2.4) is a requirement to design a processing cost
model for continuous streaming queries.

2.2.1 Parallelism

In order to scale data processing systems (Section 2.2.3) multiple different types of
parallelism can be exploited: pipeline parallelism, operator parallelism, and data
parallelism [DG92]. Those three types of parallelism can be categorized as inter
operator parallelism and intra operator parallelism [OV99]. Inter operator paral-
lelism occurs, if two different operators can be executed in parallel. On the other
hand, intra operator parallelism implies that parallelism can be exploited within a

5We formally define a configuration in Chapter 4.

14 CHAPTER 2. FUNDAMENTALS

A

O1

O2

O3

pipeline
parallelism

A B C

O1 O2 O3

operator
parallelism

A1 A2 A3

O1 O1 O1

data
parallelism

A1 A2 B1 B2

O1 O1

O2 O2

O3 O3

O4 O4

hybrid
parallelism

Figure 2.1: Types of parallelism.

single operator. The three types of parallelism are explained and categorized in de-
tail below and illustrated in Figure 2.1. In Figure 2.1, data sources are depicted as
circles, and different letters indicate different logical data sources, e. g., data sources
A and B. Data sources with the same letter but different indices depict one logical
data source that consists of multiple physical sources, e. g., data source A1 and A2
(c. f. paragraph data parallelism below). Operators are represented by squares and
each operator may be executed in parallel to all other operators. Different indices
indicate different operators, e. g., O1 and O2. If an index is used more than once, it
implies that the same operator is executed multiple times with different input data.

Pipeline Parallelism Pipeline parallelism is possible for non-blocking operators
only. It can be exploited if an upstream operator’s (partial) output can be processed
by a downstream consumer in parallel to the upstream operator. As pipeline paral-
lelism involves two different operators, it belongs to the category of inter operator
parallelism. For example, if there are two consecutive filter operators, the second
filter operator can be executed, even if the first filter operator did not yet process its
complete input. In batch processing, not all operators allow for pipeline parallelism
as some operators are blocking. For example, a sort and a downstream aggregation
operator cannot exploit pipeline parallelism as the blocking sort operator cannot
emit any output data before it has consumed its entire input. In stream processing
all operators must be non-blocking and therefore pipeline parallelism is a native
property of stream processing programs.

Operator Parallelism Operator parallelism occurs, if two operators are inde-
pendent of each other, i. e., each operator can process its input data independent
of any other operator. Thus, operator parallelism is categorized as inter operator
parallelism. In batch processing, operator parallelism allows for a higher degree of
freedom in operator execution order as parallel operators may be executed one af-
ter another (in any order), concurrently, or in parallel. Thus, operator parallelism

2.2. PRINCIPLES OF DISTRIBUTED DATA PROCESSING 15

can be exploited to increase parallelism by executing independent operators in their
own threads. In stream processing, operator parallelism can be exploited, too. For
example, if a program receives two input streams both streams can be processed
independently as long as they are not merged or joined with each other.

Data Parallelism Data parallelism means that the input data can be partitioned
(c. f. Section 2.2.2 below) and each partition of the input data can be processed
independently of all other partitions. The system can start multiple instances of
the same operator and use each operator instance to process one partition. Hence,
in contrast to operator and pipeline parallelism, data parallelism allows for intra
operator parallelism. Data parallelism is the fundamental concept in scalable data
processing and is used in parallel relational databases [DG92] as well as in MapRe-
duce [DG04, Dea06, DG08] and related batch [BEH+10, ZCD+12] and stream pro-
cessing systems [NRNK10, GJPPMV10, LLP+12, TTS+14].

Programs may also combine different categories of parallelism. For this case, we
use the term hybrid parallelism. To exploit parallelism, each operator is executed in
its own thread. In this model, pipeline parallel operators are connected via FIFO
(first-in-first-out) queues [MF02, BBD+02, CcC+02, CcR+03, LLP+12] and the up-
stream operators write their output into the FIFO queues while the downstream
operators reads their input from the FIFO queues. We discuss pipeline parallelism
via FIFO queues in Chapter 3 in more detail.

2.2.2 Data Partitioning

In Section 2.2.1, we explained how data parallelism can be used to increase par-
allelism in data processing systems. However, we did not discuss how input data
is distributed into partitions. Let n be the number of partitions and p0, . . . , pn−1
denote the corresponding partitions. In the following, we explain data partitioning
patterns for assigning records to partitions [DG92].

Random Data Partitioning Random partitioning implies that each record is
stored in a randomly selected partition. Let rand(R) be a function that returns
a random number r between 0 ≤ r ≤ R − 1. For each record, the function is
used to compute a partition pi with i = rand(n). Random partitioning can also be
implemented via a round-robin algorithm instead of using rand(R).

Random data partitioning has the advantage that each partition contains about
the same number of records, i. e., it achieves good load balancing. However, some
operators may require data co-partitioning based on some criteria, and thus, random
partitioning can only be used for a subset of operators.

Hash-based Data Partitioning For many operators it is required that a sin-
gle operator instance processes a certain subset of the data. For example, if the
operator computes an aggregation based on some grouping criteria (similar to a
group-by-aggregation clause in SQL), it is required to store all records of the
same group in the same partition. It is important to note that for this case, multi-
ple groups are combined into one data partition.

16 CHAPTER 2. FUNDAMENTALS

Let h(k) be a hash-function and r.o be the grouping attribute of records r that
defined the co-partitioning requirement. Using hash-based partitioning, each record
is assigned to partition pi with i = h(r.o)%n. While hash-partition allows to co-
locate data, it cannot guarantee good load balancing.

Range-based Data Partitioning Range-based partitioning is similar to hash-
based partitioning and is used if certain subsets of the input data must be processed
together. The difference to hashing is that instead of using a hash-function, the
key-space6 is divided into n ranges, and each range is associated with one partition.
For each input record r, the grouping attribute’s range is computed and the record
is stored in the corresponding partition. If the key distribution of the input data
is known, range-based partitioning may achieve better load balancing than hash-
partitioning if the ranges are chosen accordingly.

Broadcast Data Distribution Broadcasting is the opposite to data partition-
ing. If a broadcast data distribution is used, data is replicated to all partitions.
Broadcasting is a very expensive operation and usually only used for small data
sets. It is only useful if a single operator processes multiple different data sets and
at least one data set is not replicated but partitioned. It is also possible to combine
broadcasting and partitioning into hybrid distribution strategies [SY93].

Which data partitioning strategy is used depends on the semantics of the op-
erators that process the data. For more complex queries, it is often required to
repartition data between consecutive processing steps. We discuss how data distri-
bution strategies are applied in distributed stream processing systems in Section 2.3.

2.2.3 Scaling

The amount of work a computer system can handle per time unit depends on the
system’s hardware and software. A scalable computer system is a system that can
be enlarged to accommodate a growing amount of work per time unit. Scaling is
used if more data needs to be processed, if computation time should be reduced, or
both.

Scaling a system always implies to add additional and/or more powerful hardware
resources to the system. For example, a server may be replaced with a newer model
that has a more powerful CPU (i. e., higher clock speed). However, adding more
hardware resources may not be sufficient to scale a system, because the software
must be scalable, too, i. e., it must be able to utilize all hardware resources. For
example, if more CPU cores are added, those cores can only be utilized if enough
threads are executed. A system running a single threaded program is not scalable
by this means.

In the following, we distinguish between vertical and horizontal scaling:

Vertical Scaling Scaling a system vertically implies that more hardware resources
or more powerful hardware are added to the system. Vertical scaling applies to a

6We use the term key to refer to the grouping criteria. Thus, a key is not a primary/unique key
for the input data in this case.

2.2. PRINCIPLES OF DISTRIBUTED DATA PROCESSING 17

C1 C2
. . . Cn

Interconnect

Main Memory

D1 D2
. . . Dn

shared memory

C1 C2
. . . Cn

M1 M2
. . . Mn

Interconnect

D1 D2
. . . Dn

shared disk

Interconnect

C1 C2
. . . Cn

M1 M2
. . . Mn

D1 D2
. . . Dn

shared nothing

Figure 2.2: System architectures following DeWitt and Gray [DG92].

single server, i. e., it means a more powerful server is used. For example, one may add
more powerful CPU, increase the main memory, or increase disk space to a system
to scale it. Vertical scaling is called scaling up if resources are increased and called
scaling down if resources are decreased. The advantage of vertical scaling is that
it can improve system performance without rewriting the software. For example,
if more main memory is added, all data might fit into memory and swapping data
to disk might not be required anymore. However, vertical scaling is limited by the
maximum capacity of a single server.

Horizontal Scaling Another scaling technique is horizontal scaling. In contrast
to vertical scaling, horizontal scaling does not imply that a more powerful server is
used, but that new servers are added to a compute cluster that forms a single system.
Thus, horizontal scaling applies to distributed systems, while vertical scaling applies
to single server systems.7 Horizontal scaling is called scaling out if resources are
added and called scaling in if resources are removed. The main benefit of horizontal
scaling is that it is unlimited from a hardware perspective. It is always possible to
add another server to the system. In practice, horizontal scaling is limited though,
as cross system communication introduces some overhead that grows with the size
of the overall system. Furthermore, horizontal scaling requires a different software
architecture to be able to exploit the available hardware resources efficiently.

Horizontal scaling is not applicable to all system but depends on the system’s
architecture, as shown in the next section. It is noteworthy that there is a relation-
ship between horizontal scaling and data parallelism (Section 2.2.1) because data
parallelism allows for horizontal scaling. This relationship is exploited by scalable
stream processing systems as discussed in detail in Section 2.3.2.

2.2.4 System Architecture

Modern batch and stream processing systems exploit horizontal scaling and data
parallelism (c. f. Section 2.2.1 and Section 2.2.3) to address the needs of “Big Data”

7A compute cluster may also be scaled vertically, by replacing existing servers within the cluster
with more powerful ones.

18 CHAPTER 2. FUNDAMENTALS

processing as laid out in the introduction of this thesis. To achieve both, they im-
plement a so-called shared nothing system architecture as introduced by DeWitt
and Gray [DG92]. Besides a shared nothing architecture, DeWitt and Gray also
distinguish shared memory and shared disk systems (Figure 2.2). In this section,
we discuss the advantages and disadvantages of those three architectures and ex-
plain why the shared nothing architecture is the dominant pattern in scalable data
processing systems.

Shared Memory Single server systems are so-called shared memory systems.
Those systems can have one or multiple CPUs with one or multiple cores each. All
available cores share the same main memory address space. Because main memory
is shared, data exchange between different threads is cheap, however, it requires
synchronized data access between threads. The disadvantage is that shared memory
systems can only be scaled up vertically; horizontal scaling is not applicable.

Shared Disk In shared disk systems, there are multiple servers with their own
CPU and main memory resources. Thus, there is no global main memory address
space, but each server has its own address space. All servers share a global pool of
disks called a storage area network (SAN). This allows for data exchange between
servers via writing/reading to/from files. Those reads and writes must be synchro-
nized, similar to in-memory data access as in a shared memory architecture. Shared
disk system are loosely coupled compared to shared memory systems and horizontal
scaling is possible to some extent because new servers can be added easily. How-
ever, the required synchronization for disk-based data access limits their horizontal
scalability.

Shared Nothing In this architecture, each server has its own main memory and
disks and all servers are connected via network to each other. Local disks can be
accessed more efficiently compared to a shared disk architecture with SAN. Thus,
shared nothing clusters are easy to scale horizontally as no cross-server synchro-
nization is required: each server has its own local main memory and disk. The
disadvantage is the potentially more expensive data exchange via network. Further-
more, if multiple servers need to access the same data, each server must have its
own copy (c. f. paragraph Broadcast Data Distribution in Section 2.2.2) of the data,
resulting in increased disk usage. In practice, shared nothing architectures are used
for data parallel processing, and thus, sharing data is a limited concern for this case.

Modern scalable stream processing systems implement a shared nothing archi-
tecture [NRNK10, GJPPMV10, LLP+12, LWK12, TTS+14] that is well suited for
cluster and cloud based deployments. Especially in the cloud, horizontal scaling is
simplified as new virtual machines can be added to the cluster easily. As mentioned
in Section 2.2.3, scalable stream processing systems try to exploit data parallelism
to allow for horizontal scaling. Implementing a shared nothing architecture aligns
with this design.

2.3. SCALABLE STREAM PROCESSING SYSTEMS 19

2.3 Scalable Stream Processing Systems
In this section, we discuss state-of-the-art stream processing systems [NRNK10,
GJPPMV10, LLP+12, LWK12, TTS+14] that we study and advance in this thesis.
In Section 2.3.1, we introduce the programming model that is used by most of those
system. Additionally, we discuss the execution model (Section 2.3.2) based on the
scaling and system architecture principles from Section 2.2.3 and Section 2.2.4. We
build on both models (programming and execution model), in the remainder of this
thesis.

2.3.1 Data and Programming Model

In stream processing, data is modeled as a data stream which is an infinite sequence
of data items. There are a large variety of data formats for those data items. Some
models define them as tuples (t, e) [KS09], where t is a timestamp that defines
the logical order of a record within the stream and e is the actual payload to be
processed. Others use a key-value based model [LLP+12, ABB+13, NPP+17]. Most
systems define records similar to relational n-ary tuples with a schema and atomic
or complex data types [ACc+03b, ABW06, Gul12, MMI+13, TTS+14]. We refer to
data items as records ignoring the actual data format in Chapter 3 and Chapter 4.
Furthermore, we do not reason about operator semantics but model operators as
black boxes in both chapters. Operators are called for each input record once, and
may emit an arbitrary number of output records in each call. In Section 2.4 we
cover existing data and programming models in more detail, and we introduce a
novel processing model with well defined operator semantics in Chapter 5.

Data flow programs are a common abstraction in distributed scalable data pro-
cessing systems and used in batch [IBY+07, BEH+10, BCG+11, ZCD+12] as well
as in stream processing systems [AAB+06, NRNK10, LLP+12, Gul12, LWK12,
MMI+13, TTS+14]. Formally and independent of a batch or stream processing
context, we define a data flow program as follows:

Definition 2 (Data Flow Program). A data flow program D = (V, E) is a connected
directed acyclic graph (DAG) consisting of a set of vertices V (called nodes) that
model operators and a set of directed edges E ⊆ V ×V that model data flow between
operators.

Edges in the data flow go from one (upstream) producer node to one or multiple
(downstream) consumer nodes. Source nodes do not have any upstream producers,
i. e., no incoming edges. Sink nodes do not have any downstream consumers, i. e.,
no outgoing edges. All nodes that are neither sources nor sinks are called processing
nodes.

It is also possible to allow for cycles in the data flow program [LLP+12]. However,
those may result in “infinite processing loops” if not programmed carefully. To avoid
this problem, some systems limit the usage of cycles to a restricted set of system
controlled loops [MMI+13, CEF+17].

By default, each consumer receives a full copy of the producer’s output data
(called broadcasting). Thus, during execution it might be required to duplicate the
producer’s output data (i. e., one copy for each consumer). Most systems also allow
to split a data stream into multiple output streams and send each output stream

20 CHAPTER 2. FUNDAMENTALS

v1

v2

v3
v4

v5

v6

Figure 2.3: Example data flow program with six nodes.

to a different consumer. For this case, data duplication is not required. Hybrid
models that allow to send a record into an arbitrary number of output streams are
also possible. There are two special types of nodes: sources and sinks. They are
responsible to connect to other systems. While sources ingest input data for the
computation, sinks publish the computed result.

Example 1. Figure 2.3 shows a data flow program with six operators and is defined
as D = (V, E) with

• V = {vi|1 ≤ i ≤ 6} and

• E = {(v1, v3), (v2, v4), (v3, v4), (v4, v5), (v4, v6)}

It has two sources v1 and v2 and two sinks v5 and v6. Processing node v3 has one
producer (source v1) and one consumer (v4). The second processing node v4 has two
upstream producers (v2 and v3) and two downstream consumers (sinks v5 and v6).

Based on Definition 1 and Definition 2, we define a streaming data flow program
as follows:

Definition 3 (Streaming Data Flow Program). A streaming data flow program
D = (V, E) is a data flow program that models a stream processing program.

All operators of a streaming data flow program must be non-blocking operators,
to allow for a continuous and incremental computation over potentially infinite input
data streams. Hence, we model operators as a function f : r ↦→ {r1, . . . , rn} with
n ∈ N0 that takes a single input record r and emits zero or more output records
r1, . . . , rn. For example, an operator may take a record containing a sentence as
input and emit an output record for each word in the sentence.

In the remainder of this thesis, we always assume streaming data flow programs
even if we often refer to them as data flow programs for simplicity. Similarly, we use
the term “continuous query” to refer to continuous streaming queries.

2.3.2 Program Execution

To execute a data flow program, distributed stream processing system exploit multi-
ple different types of parallelism: pipeline parallelism, operator parallelism, and data
parallelism. While pipeline and operator parallelism are expressed in a streaming
data flow program (Definition 3) already, data parallelism is not represented there.
As discussed in Section 2.2.1, data parallelism can be exploited by partitioning the
input data (Section 2.2.2) and running multiple operator instances in parallel. In
data stream processing, the input stream is split (i. e., partitioned) into multiple
substreams and one operator instance may be executed per substream. Executing

2.3. SCALABLE STREAM PROCESSING SYSTEMS 21

multiple operator instances within a data flow program in parallel requires to trans-
form the program into an execution graph that is a parallelized version of the data
flow program. For this parallelization, each operator gets a degree of parallelism
(dop) assigned that defines how many instances of this operator should run in par-
allel. We call each operator instance a task. Each edge (vi,vj) in D from a producer
vi to a consumer vj is translated into edges from all tasks corresponding to vi to all
tasks corresponding to vj in the execution graph. Formally, we define an execution
graph as follows:

Definition 4 (Execution Graph). Let D = (V, E) be a data flow program as defined
in Definition 3 and

dop : V → N

be a function assigning a degree of parallelism to each node of D. The corresponding
execution graph EG = (T, F) of D and dop is a directed acyclic graph (DAG) with
a set of vertices T (called tasks) and a set of directed edges F ⊆ T × T (called
connections) with

• T = {ti
j |vi ∈ V ∧ j ∈ [1; dop(vi)]}

• F = {(ti
k, tj

l)|(vi, vj) ∈ E ∧ k ∈ [1; dop(vi)] ∧ l ∈ [1; dop(vj)]}

The semantics of an execution graph are similar to the original data flow graph.
Nodes model operators and edges model data flow connections. One important dif-
ference between a data flow graph and an execution graph is, that in general, for each
producer-consumer pair exactly one consumer task receives an output record that
can be emitted by any producer task. This pattern is derived from the underlying
data parallelism concept. All tasks of a consumer perform the same operation and
data parallelism dictates that each record is processed once—i. e., by exactly one
task. Depending on the consumer operator, different data partitioning/distribution
patterns are possible (c. f. Section 2.2.1). We assume that data must be redistributed
between the tasks of each consumer-producer pair in the original data flow program.
Otherwise, the local-forward pattern [GJPPMV10] may be used. The local forward
pattern requires that the number of producer tasks is equal to the number of con-
sumer tasks. Furthermore, not all producer-consumer-task-pairs are connected to
each other, but each producer task is connected to exactly one consumer task. The
local forward pattern has the advantage that producer and consumer tasks can be
co-located on the same physical machine, avoiding an expensive network communi-
cation channel between both. The disadvantage is that local forward pattern might
suffer from imbalanced load. It is important to note that the local forward pattern
allows for operator fusion8 [CcC+02, CcR+03, CRP+10, HSS+14, LWK12, SGH15]
and therefore we do not consider it, but assume that operator fusion was applied
before the data flow graph was translated into the execution graph.

The most common data distribution patterns in stream processing are random,
hash, or range partitioning. For some cases, a broadcast distribution is required.
However, broadcasting does not align with the idea of data parallel processing. In

8Operator fusion is also called combining boxes/operator batching or task chaining in the litera-
ture. We discuss operator fusion in more detail in Section 3.2.1.

22 CHAPTER 2. FUNDAMENTALS

t1
1

t1
2

v1

t2
1

v2

t3
1

t3
2

v3

t4
1

t4
2

t4
3

v4

t5
1

t5
2

v5

t6
1

v6

Figure 2.4: Execution graph from Example 2.

practice, broadcasting is used very rarely in data stream processing and if used, it
is usually only applied to data streams with small data rates.

In the remainder of this thesis, we mostly ignore the concrete distribution pattern
but build upon the observation that each record is processed by exactly one task for
each node, i. e., we ignore the broadcast pattern. Furthermore, we assume a load-
balanced data distribution over all tasks of a node. Example 2 shows the translation
of a data flow program into an execution graph as defined in Definition 4.

Example 2. Given the data flow program D = (V, E) from Example 1 and dop :
V → N as

• dop(v1) = 2, dop(v2) = 1, dop(v3) = 2,
dop(v4) = 3, dop(v5) = 2, dop(v6) = 1

the execution graph from D with respect to dop is defined as EG = (T, F) with

• T = {t1
1, t1

2, t2
1, t3

1, t3
2, t4

1, t4
2, t4

3, t5
1, t5

2, t6
1} and

• F = {(t1
1, t3

1), (t1
1, t3

2),
(t1

2, t3
1), (t1

2, t3
2),

(t2
1, t4

1), (t2
1, t4

2), (t2
1, t4

3),

(t3
1, t4

1), (t3
1, t4

2), (t3
1, t4

3),
(t3

2, t4
1), (t3

2, t4
2), (t3

2, t4
3),

(t4
1, t5

1), (t4
1, t5

2), (t4
1, t6

1),
(t4

2, t5
1), (t4

2, t5
2), (t4

2, t6
1),

(t4
3, t5

1), (t4
3, t5

2), (t4
3, t6

1)}

Figure 2.4 shows the execution graph from Example 2. Each node in the data
flow graph may have a different dop. For example, node v4 has a dop of three, hence,
it is executed with three tasks, t4

1, t4
2, and t4

3. All three tasks are connected to t5
1 and

t5
2 of v5 and to t6

1 of v6, since v5 and v6 are consumers of v4. Furthermore, all three
tasks t4

x are connected to all tasks of nodes v2 and v3, because v4 is a consumer of v2
and v3. As explained above, there are two different data distribution patterns that
overlay with each other: the broadcasting or splitting data flow pattern, as well as
the data parallel execution graph pattern. In our example, most nodes have only

2.4. DATA STREAMING MODEL 23

one consumer, and thus, their tasks are only subject to the data parallel distribution
pattern. However, the tasks t4

x are subject to both patterns, because node v4 has
two downstream consumers. Thus, if any task t4

x emits a record, it will send it to
one task t5

y and to one task t6
z, assuming that the logical distribution pattern is a

broadcast. The broadcast pattern applies to the data flow (logical) representation,
meaning, each output record is sent to all consumer nodes. Broadcast does not imply
sending a record to all tasks. For the execution graph data-parallelism applies and
exactly one task per node receives a record.

In Chapter 3 and Chapter 4, we model the cost of streaming data flow programs
and their execution graphs. One goal is to find an optimal parallelization for a data
flow program, i. e., translation into an execution graph, given the data rates of the
input data streams. In the next section, we introduce fundamental concepts that
we use in Chapter 5 to define our stream processing model.

2.4 Data Streaming Model

The success of relational database technology is built on the relational data
model [Cod70], which provides a strong mathematical foundation and well defined
deterministic operator semantics. This strong foundation allowed SQL to become
a standard query language widely adopted in research and industry. However, in
data stream processing, there is no unique or standardized model of the semantics of
the computation. While formal models exist [SLR95, BBD+02, ACc+03b, ABW06,
BGAH07, JMS+08, KS09, LFQ+16], there is no standardized terminology and there-
fore we introduce the formal notation of our streaming data model in the following
sections. Based on those concepts, we formally define our stream processing model
in Chapter 5.

First, we introduce a formal model for streams and tables inspired by existing
literature [Cod70, SLR95, ABW03, SW04, JMS+08]. Since there is no unique nam-
ing convention in the literature, we introduce the terms we are using and point
out synonyms as used by others (c. f. Table 2.2). We refer to data items as records
in our model. Records are ordered by their unique offset (often called position or
sequence number) in a stream [SLR95, LFQ+16]. Additionally, each record has
a scalar timestamp from the discrete time domain T [SW04, BGAH07] assigned.
Some other models use multiple timestamps [BGAH07, CGB+14] or time inter-
vals [KS09, LFQ+16]. We use scalar timestamps as they are sufficient for the model
we propose. Without loss of generality, we assume T = N0 [ABW03].

There are two common time concepts: processing-time and event-time [SW04,
BGAH07]. Processing-time (also called system-time, server wall-clock time, or
physical-time) is the time when a record is processed. It is used to define seman-
tics for time-based operators if a records does not have an embedded timestamp in
its payload. Event-time (also called application-time, occurrence-time, or external-
time) is the time when a record is created. If event-time shall be used to define
operator semantics, the event-time timestamp must be added to the record to ex-
pose it to the processing system. We assume that a producer (i. e., an external
data source application that pushed record into the processing system) adds the
event-timestamp before appending the record to the data stream. Not all producers

24 CHAPTER 2. FUNDAMENTALS

Table 2.2: Used Terminology and Synonyms as used in Related Work

Used Term Synonym
Record Event, Message, Tuple
Offset Sequence Number, Position
Processing-Time System-Time, Server Wall-clock Time, Physical-Time
Event-Time Application-Time, Occurrence-Time, External-Time
Ingestion-Time Arrival-Time, Internal-Time
Producer Data Source

may have a clock, and thus, may not be able to add a timestamp to a record. For
these cases, event-time can be approximated by the processing system: when data
is ingested into the system, the current system time (i. e., ingestion-time timestamp;
also called arrival-time or internal-time) is added to the record.

Table 2.2 summarizes the terminology and synonyms from the literature. In
the following sections, we define records, streams, and tables as well as time- and
ordering-semantics formally.

2.4.1 Records, Streams, and Tables

Our model comprises two entities, namely streams and tables, which are both com-
posed of records. Following the relational model, records, streams, and tables are
strongly typed with a schema that is defined over a set of domains.

Definition 5 (Schema). A schema is a set of attributes {A1, . . . , An} where each
attribute is a pair of the form ⟨name, type⟩ ∈ String×DAi. The first element of an
attribute is its name that must be unique within the schema. The second element of
an attribute is its domain (or data type).

Definition 5 is a generic schema definition as used in the relational model. For
our stream and table schemas we apply some restrictions:

Definition 6 (Stream Schema). A stream schema S consists of a set of four at-
tributes {O, T, K, V } with two special attributes, the offset O = ⟨offset,N0⟩ and the
timestamp T = ⟨timestamp, T ⟩. The key (K) serves as an identifier and the actual
record payload is encoded in the value (V) with K = ⟨key,DK⟩ and V = ⟨value,DV ⟩.

Similarly, a table schema is defined as follows:

Definition 7 (Table Schema). A table schema T consists of a set of three attributes
{T, K, V } with one special attribute, the timestamp T = ⟨timestamp, T ⟩. The key
(K) serves as a unique identifier and the actual record payload is encoded in the
value (V) with K = ⟨key,DK⟩ and V = ⟨value,DV ⟩.

It is important to note that both schema definitions are similar, with the differ-
ence that there is no offset attribute in a table schema.9 Finally, we denote a record
schema as R = {T, K, V }.

9It is important to note that the key-value-pair data model for the record payload may easily
be extended to a n-ary tuple based model with a “payload” schema {A1, . . . , An} and a set of
key-attributes K = {K1, . . . , Kn} ⊆ {A1, . . . , An}.

2.4. DATA STREAMING MODEL 25

record record record record record
1st 2nd 3rd 4th 5th

0
5
A
7.2

1
6
B

14.7

2
6
A
8.9

3
3
B

12.1

4
8
B

16.7

Offset:
Timestamp:
Key:
Value:

Process stream

Append
to stream

Figure 2.5: Example stream with five records.

Definition 8 (Schema Compatibility). A record schema R, a stream schema S, and
a table schema T are compatible to each other, iff:

R = S\O = T (2.1)

Records with schema R have the following properties:

Definition 9 (Record). A record r with schema R is a triple of the form r = ⟨t, k, v⟩,
with JRK = T × DK × DV being the domain of all records with schema R, i. e.,
∀r : r ∈ JRK. We denote the record’s timestamp, key, an value as r.t, r.k, and r.v.

Following Definition 9, stream records and table records are defined analogously
based on stream and table schemas. We denote a stream record’s offset attribute as
r.o. If it is clear from the context, we simple use the term record instead of stream
or table record in the remainder of this thesis.

Using the definition of schemas and records from above we define streams and
tables as follows:

Definition 10 (Stream). A stream S with schema S (denoted by S[S]) is an append-
only sequence of immutable records r ∈ JSK. We use SJSK to denote the domain of
all streams with schema S. Each record of a stream has a unique offset that is its
position within the sequence. Offsets start at zero and are incremented by one for
each appended record. We denote a stream with records r0, r1, r2 ∈ JSK as:

S[S] = (r0, r1, r2) (2.2)

The index n of a record rn indicates the record offset in S, i. e., rn.o = n. Thus,
given a record ro as ⟨o, t, k, v⟩, we simplify the notation to ro = ⟨t, k, v⟩ omitting the
redundant offset attribute. We allow multiple records within a stream to have the
same timestamp, but require that the number of records with the same timestamp
is finite (even if it can be arbitrarily large).

An example stream is depicted in Figure 2.5. The respective stream consists of
five records, with DK = {A, B} as the domain of keys and DV = Q as the domain
of values. For instance, the second record in the stream is given as ⟨1, 6, B, 14.7⟩.
It is important to note that records are enumerated by their offsets and that new
records are appended to the stream on the right hand side with increasing offsets
(c. f. Definition 12 of app operator below).

The second entity in our model are tables, and we define them as follows:

26 CHAPTER 2. FUNDAMENTALS

Definition 11 (Table). A table T with schema T (denoted by T [T]) is a set of
records r ∈ JTK. We use T JTK to denote the domain of all tables with schema T. We
denote a table with records r0, r1, r2 ∈ JTK as:

T [T] = {r0, r1, r2} (2.3)

Similar to the relational model, the key attribute has primary key semantics, i. e.,
must be unique over all records in T :

∀r ∈ T, ∀r̄ ∈ T : (r.k = r̄.k =⇒ r = r̄)

Our table definition is the same as in the relational model. Therefore, we use
standard relational algebra notation in the remainder of this thesis.

The definitions of records, streams, and tables from above all include a timestamp
attribute to support event-time semantics. As noted in previous work [SW04] event-
time support is a key feature to support deterministic semantics with a mathematical
foundation. We assume that the associated event timestamp is embedded into each
record by the producer. To this end, our streaming model also defines our storage
and processing model. Data stream records are stored in offset order and a stream
processor uses a single linear scan over the streams to process the data. When
reaching the end of a stream, processing pauses (but does not terminate) until new
data is appended to the stream. This assumption is important because it implies that
records are processed in offset order in our model. We discuss details about order
and time in Section 2.4.4. In the next sections, we introduce auxiliary operations on
streams (Section 2.4.2) and tables (Section 2.4.3) that we use to define our operator
semantics in Chapter 5.

2.4.2 Stream Operations

We introduce basic stream operations in this section that we use to define the se-
mantics of our processing operators in Chapter 5. These operations are not part of
our model itself, but auxiliary operators that simplify the definition of the actual
operators.

If a new stream is created, it is the empty sequence denoted by S[S] = (). New
records are written into a stream by appending them to the end of the sequence.
We define the append operator app for streams and records as follows:

Definition 12 (Append Record Operator). Given a stream S[S] = (r0, . . . , rn) and
a record r with compatible schema R, app : SJSK × JRK → SJSK appends r to S[S]
as:

app(S, r) : S = (r0, . . . , rn, rn+1) (2.4)
with

rn+1 = ⟨n + 1, r.t, r.k, r.v⟩

It is important to note that app modifies the provided input data stream. Fur-
thermore, the input record has no offset attribute and the offset is assigned by app.

The length operator length returns the number of records in a stream. If a
stream is infinite, length returns ∞.

2.4. DATA STREAMING MODEL 27

Definition 13 (Length Operator). Given a stream S with schema S, length :
SJSK→ N0 ∪ {∞} returns the number of records contained in S.

length(S) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if S = ()
∞ S is infinite
max{r.o|∀r ∈ S}+ 1 otherwise

(2.5)

We denote length(S) shortly as |S|.
The first operator fst returns the first record of a stream.

Definition 14 (First Operator). Given a stream S with schema S, fst : SJSK→ JSK
returns the record with offset zero in S.

fst(S) = r0 (2.6)

with
r0 ∈ S

The fst operator is not defined for the empty sequence and it is invalid to call
fst(()).

The prefix operator pre returns the first n records of a stream. It is important
to note that fst is not a special case of pre with n = 1 as it returns a single record
while pre would return a sequence with one record.
Definition 15 (Prefix Operator). Given a stream S with schema S and a number
n ∈ N0, pre : SJSK × N0 → SJSK returns a finite substream of S with n records
starting at offset zero in S.

pre(S, n) = (r0, . . . , rn−1) (2.7)

with
∀ri ∈ pre(S, n) : ri ∈ S

If n is zero, pre returns the empty sequence. The result of pre is shorter than n
if n > length(S). In particular, if n ≥ length(S) then pre(S, n) = S.

The suffix operator sfx returns the tail of a stream starting at a specified offset.
It is important to note that sfx returns an infinite stream if the input stream is
infinite. Furthermore, in our model all streams are append-only sequences and start
with offset zero. Thus, the result streams also starts with offset zero—it is a new
stream, i. e., a partial copy of the input stream.
Definition 16 (Suffix Operator). Given a stream S with schema S and a number
n ∈ N0, sfx : SJSK× N0 → SJSK returns a substream of S beginning at offset n.

sfx(S, n) = (r̄0, . . . , r̄length(S)−n−1) (2.8)

with
∀r̄ ∈ sfx(S, n) : (r̄ = ⟨o, t, k, v⟩ ∧

∃r ∈ S : r = ⟨o + n, t, k, v⟩)
It is important to note that if n ≥ length(S), the result of sfx is the empty

sequence.

28 CHAPTER 2. FUNDAMENTALS

Similar to appending a record to a stream (Definition 12) we define an append
stream operator app that concatenates two streams. We denote both append oper-
ators as app as it is clear from the context which one is used.

Definition 17 (Append Stream Operator). Given a finite stream S1 and a poten-
tially infinite stream S2 both with the same schema S, app : SJSK × SJSK → SJSK
returns a stream of records that is the concatenation of both input streams.

app(S1, S2) = (r̄0, . . . , r̄n−1, r̄n, . . . , r̄n+m−1) (2.9)

with

n = length(S1) ∧
m = length(S2) ∧

∀r̄ ∈ app(S1, S2) : (r̄ = ⟨o, t, k, v⟩ ∧
(o < n =⇒ ∃r ∈ S1 : r̄ = r) ∧
(o ≥ n =⇒ ∃r ∈ S2 : r = ⟨o− n, t, k, v⟩))

In this section, we defined auxiliary operators on streams. In the next section,
we define similar operators on tables.

2.4.3 Table Operations

We introduce basic table operations in this section that we use to define the semantics
of our processing operators in Chapter 5. Those operations are not part of our model
itself, but auxiliary operators that simplify the definition of the actual operators.

The lookup operator lookup takes a table and a primary key as input and returns
the corresponding record from the table.

Definition 18 (Lookup Operator). Given a table T with schema T and a lookup
key k ∈ DK , lookup : T JTK× DK → JTK× {⊥} is defined as:

lookup(T, k) =
{︄

r if ∃r ∈ T : r.k = k

⊥ otherwise
(2.10)

We denote lookup(T, k) also as T.lookup(k)

It is important to note that lookup is not the same as the relational selection
operator because it returns a record instead of a set of records.

The insert operator insert takes a table and a record as input and returns a
modified table containing the input record.

Definition 19 (Insert Operator). Given a table T with schema T and a record r
with compatible schema R, insert : T JTK× JRK→ T JTK is defined as:

insert(T, r) : T = T\{r̄ ∈ T |r̄.k = r.k} ∪ {r} (2.11)

We denote insert(T, r) also as T.insert(r)

It is important to note that insert modifies the provided input table. Further-
more, it preserves primary key semantics by removing a potentially existing record
with the same key as the new record from the table first.

2.4. DATA STREAMING MODEL 29

The delete operator delete takes a table and a key k ∈ DK and returns a
modified table that does not contain a record with the input key.

Definition 20 (Delete Operator). Given a table T with schema T and a key k ∈ DK ,
delete : T JTK× DK → T JTK is defined as:

delete(T, k) : T = T\{r̄ ∈ T |r̄.k = k} (2.12)

We denote delete(T, k) also as T.delete(k)

It is important to note that delete modifies the provided input table.

2.4.4 Order and Time

In stream processing, operator semantics are based on timestamp order. For the
general case, it is only possible to define a deterministic model if input data is
strictly ordered. In our model, streams are sequences of records (Definition 10) that
are strictly ordered by their offsets, called offset order. However, timestamps are
not guaranteed to be unique, and thus, the time domain does not induce a strict
total timestamp order. Hence, we define time-based record order as follows:

Definition 21 (Time-based Record Order). Given two records r and r̄ from a stream
S. Record r is earlier (or before) record r̄, denoted r < r̄, iff:

r.t < r̄.t ∨ (r.t = r̄.t ∧ r.o < r̄.o)

In this case, we also say that r̄ is later (or after) r.

Definition 21 uses the record offset as the “tie breaker“ if records have the same
timestamp [JMS+08]. Since order is defined based on event-timestamps, but records
are stored in offset order, we introduce the notion of out-of-order records as follows:

Definition 22 (Out-of-Order Records). A record r ∈ S is out-of-order iff:

∃r̄ ∈ S : (r̄.o < r.o ∧ r̄.t > r.t)

We say that a stream is ordered if no out-of-order records exist in the stream;
otherwise the stream is unordered. Ordered data streams are not guaranteed in our
model because we use event-time semantics. We discuss how out-of-order data is
handled in Chapter 5.

For some cases, we are not interested in the order over all records, but only in
the order of all records with the same key. We define the notion of out-of-order
records with respect to the key as follows:

Definition 23 (Key-based Out-of-Order Records). A record r ∈ S is out-of-order
with respect to its key k iff:

∃r̄ ∈ S : (r̄.k = r.k ∧ r̄.o < r.o ∧ r̄.t > r.t)

30 CHAPTER 2. FUNDAMENTALS

2.5 Related Work

Data stream processing was in the focus of the database community for the first
time since the early 2000s resulting in a large variety of research prototypes. Most of
those system are centralized and single threaded, and address fundamental question
in data stream processing.

Some of the first systems specialize on certain use cases instead of general purpose
stream processing. For example, Tribeca [Sul96, SH98] is a single input in-memory
stream processing system for network traffic analysis. It supports filters, projections,
windowed aggregations, and splitting/merging of data streams. The NiagaraCQ sys-
tem [CDTW00, KNV03, VN02] is a continuous processing extension to the Niagara
distributed XML database system. The research goal was to detect common sub-
queries of continuous queries and merge new queries into existing ones to share
partial results. Gigascope [CGJ+02, CJSS03b, CJSS03a, JMSS05] is a specialized
stream processor for network monitoring and analytics. It has a two-tier architec-
ture to evaluate sub-queries at the data sources for data reduction, before sending
the data streams in the centralized system. It uses a SQL-like, but quite limited
and specialized, query language GSQL and exploits ordering properties for query
processing. Additionally to system architecture and design, research in approximate
aggregations and sampling was conducted [CJK+04, JMR05].

The TelegraphCQ project [MF02, MSHR02, CF02, KCC+03, CCD+03b,
CCD+03a, SHCF03, RSW+07] focused on adaptive data stream processing tech-
niques. Because stream processing programs are long running continuous queries,
and input data streams are not known in advance, there are no available statis-
tics that could be used for query optimization. Furthermore, data characteristics
may change over time, and thus, a currently optimal query execution plan may
be sub-optimal later. Hence, queries need to be optimized on-the-fly and changed
adaptively during runtime. TelegraphCQ proposes the highly adaptive Eddy op-
erator [AH00, Des04] and so-called State-Modules [MSHR02, RDH03] to build an
adaptive query processing system.

Other research focuses on general purpose stream processing. The Stanford
Stream Data Manager (STREAM) project [BW01, BBD+02, ABB+03a, ABB+03b,
MWA+03, BW04] developed a centralized system that uses query plans consisting of
operators, queues, and synopsis (to store state). STREAM is inspired by relational
database technology and pioneered general purpose SQL-like data stream processing
(in contrast to Gigascope). Queries are expressed with a declarative SQL-like query
language called CQL (Continuous Query Language) [ABW03, AW04, ABW06] that
transforms data streams into tables to execute the specified operators using rela-
tional semantics. We discuss more details about CQL in the second part of this
thesis (Chapter 5). Furthermore, the project investigated (sub-)query sharing, re-
sult approximation, and scheduling [BBMD03, BBD+04].

The Aurora project [CcC+02, ACc+03b, ACc+03a, CcR+03, BBC+04] was the
first to focus on data flows to express stream processing programs (“box and ar-
row model”). Additionally to continuous queries, ad-hoc queries are also supported.
To reason about queries and to allow for query optimization similar to relational
database systems, Aurora introduces its own Stream Query Algebra (SQuAl) in-

2.5. RELATED WORK 31

cluding window operators, and describes detailed operator scheduling techniques.
A novel concept in Aurora is the notion of Quality of Service (QoS) that allows
to trade-off response-time, result completeness, and result utility via load shedding.
Related to load-shedding is Aurora’s runtime cost model that incorporates a notion
of throughput and capacity that is similar to—but more basic than—our cost model
(Chapter 3).

Aurora* and Medusa [CBB+03, ZSC+03, BBS04] are distributed and feder-
ated stream processing prototypes based on Aurora. Later Borealis, an advance-
ment of Aurora, Aurora*, and Medusa, was developed [AAB+05, XZH05, ABC+05,
RMCZ06, BBMS08, HCCZ08]. Borealis is able to distribute the load of queries
over multiple nodes in a processing cluster, considering the structure of the data
flow program, operator load, and node utilization. Because Borealis is distributed,
fault-tolerance is considered, too, and a novel approach called Delay, Process, and
Correct (DPC) [BBMS05] that allows users to trade-off availability vs. consistency
is proposed. Furthermore, Borealis extends Aurora’s data model by allowing for
insert, delete, and replacement messages, and adds control messages that can be
used to updated filter predicates or window sizes at runtime.

System S is a distributed stream processing system [AJS+06, AAB+06, JAA+06,
GAW+08] using an adaptive resource control algorithm and a declarative language to
express streaming data flow programs. Its SODA optimizer [WBH+08] implements
an adaptive scheduling algorithm with the goal to maximize the result utility and
balancing load. The assumption is that the input data rate it too high and not
all records can be processed in a timely manner. System S also supports a limited
form of data-parallel processing [WKWO12]. Instead of sharding state over multiple
nodes, multiple thread use a shared state to process input records in parallel.

The latest generation of stream processing systems focus on data-parallel pro-
cessing and horizontal scaling inspired by MapReduce [DG04, Dea06, DG08]. In
this thesis, we investigate the runtime behavior of such systems.

StreamCloud [GJPPMV10, GJPPM+12] is a research prototype built on top of
Borealis. It proposed a novel protocol for load balancing and dynamic scaling, as well
as a fault-tolerance protocol including operator state. StreamCloud also introduces
multiple parallelization strategies that are compared to each other based on a cost
model.

Nephele streaming [LWK12, LWK14, LJK15] is similar to StreamCloud, however
the research focus is on Quality of Service guarantees. The impact of dynamic
batching, dynamic task chaining, and dynamic scaling on the processing latency in
streaming data flows is studied. The goal of the proposed optimization algorithms
is to meet latency constraints.

Apache S4 [ASFd, NRNK10] is inspired by MapReduce and SPC [AAB+06].
While it offers only a low level programming interface and only supports ephemeral
in-memory operator state, it is one of the first systems used in the industry. Mup-
pet [LLP+12] is similar to S4, however, allows to backup operator state in an external
key-value store to provide improved fault-tolerance. Apache Storm [ASFf, TTS+14]
and Apache Heron [ASFb, KBF+15] (a successor of Storm) offer similar program-
ming abstractions as S4 and Muppet. Both are noteworthy, because they are the
first systems that gained a broader adoption in industry, and inspired many research

32 CHAPTER 2. FUNDAMENTALS

papers [ABQ13, NMG+15, YM15, PHH+15, CDE+16, XPG16, FAG+17]. We also
use Apache Storm in this thesis.

MapReduce inspired systems like S4, Muppet, Storm, and Heron do not sup-
port sophisticated state handling or fault-tolerant state. Those limitations are ad-
dressed by Apache Samza [ASFe, KK15, NPP+17], SEEP [CFMKP13], and Apache
Flink [ASFa, CKE+15, CEF+17]. All three systems use operator local state instead
of an external data system for high performance state access. While Samza mate-
rializes a write-ahead-log (WAL) into an external system for fault-tolerance, SEEP
and Flink checkpoint operator state. SEEP integrates checkpointing with dynamic
stateful scaling. Flink focuses on globally consistent checkpoints, implementing a
distributed snapshot algorithm based on Chandy-Lamport [CL85].

Orthogonal to distributed systems research, novel stream processing program-
ming models and semantic models have been developed as well. Akidau et al.
[ABB+13, ABC+15] suggest a watermark and trigger based evaluation model, to
handle out-of-order data and to allow users to trade-off correctness vs. latency and
cost. Trill [CGB+14] introduces a temporal-relational processing model that com-
bines real-time stream processing, temporal historical, and offline processing. To
control processing latencies for the real-time streaming case, punctuations are used.

33

Part II

Cost-based Streaming Data
Flow Optimization

35

Chapter 3

Streaming Data Flow Cost
Model

Contents
3.1 Data Flow Capacity . 38
3.2 Processing Costs . 41

3.2.1 Improvements of Throughput with Batching 42
3.2.2 Operator Dependencies . 45

3.3 Network Costs . 48
3.3.1 Input Network Capacity . 49
3.3.2 Output Network Capacity 51

3.4 Batching Layer . 52
3.5 Related Work . 60
3.6 Summary . 61

This chapter introduces our cost model for streaming data flow programs that
considers processing and network requirements. Our model is used to optimize data
flow provisioning and therefore we define processing cost to include CPU utiliza-
tion as well as disk access. Main-memory is excluded from the cost model because
modern distributed stream processing systems either use external storage to pre-
serve state [BROL14, CDE+16] or use local disk-based state management [CEF+17].
Thus, we assume that available storage is much larger than required—i. e., no main-
memory limitation—, and hence memory is no provisioning concern.

Our cost model is designed with the notion of capacity (formally defined in
Section 3.1) as core building block. The main idea is to model how much data a
data flow program—or to be more precise, an execution graph—can process. Given a
target input data rate, we use the cost model to compute a deployment configuration
that avoids runtime bottlenecks. While we introduce the cost model itself in this
chapter, we discuss its application in Chapter 4.

The capacity of a data flow program and its operators depends on the CPU and
network costs (Section 3.2 and Section 3.3). For CPU costs, we include batching
as introduced in Section 2.1 in our model that allows us to reduce the required
resources to execute a data flow program. In particular, we describe different batch-
ing techniques for stream processing in detail in Section 3.4. For the overall cost

37

38 CHAPTER 3. STREAMING DATA FLOW COST MODEL

model, we first focus on single operator costs in isolation. In a second step, we
extend our model to data flow graphs and include upstream/downstream operator
dependencies. Hence, we consider the structure of the data flow program in our
model allowing for performance prediction for complex data flows. At the end of
this chapter, we evaluate our cost model experimentally using a processing cluster
to show that our cost model reflects real-world observations.

3.1 Data Flow Capacity
In order to address the cost model requirements as described in Section 2.1.2 we use
the notion of capacity as the central concept of our cost model. We define capacity
as a generic concept in an abstract way as follows:

Definition 24 (Capacity). The capacity is the maximum amount of work that can
be performed in a certain time span.

The capacity concept allows us to model cost per time unit. As discussed in
Section 2.1.2, modeling absolute costs would not be useful for an infinite incoming
data stream, because costs would be infinite [VN02].

For our cost model we apply the general capacity concept (Definition 24) to data
flow programs as well as to individual operators. Because data flow programs consist
of operators, the individual operator capacities determine the capacity of the overall
data flow program. Before we can illustrate the relationship between operator and
data flow capacity, we formally define the capacity of a data flow program as follows:

Definition 25 (Data Flow Capacity). The capacity of a data flow program is the
maximum number of input records per input stream that a data flow program can
process per time unit. Given a data flow program D with sources S = ⟨s1, . . . , sn⟩,
the capacity C of D is:

C(D) = ⟨c1, . . . , cn⟩ (3.1)

where ci denotes the maximum number of input records per time unit for si such
that the data flow program D is able to process all input streams simultaneously.

The capacity of a data flow program is a vector that describes the maximum
throughput per source a data flow program can process. If it is clear from the
context to which data flow program D a capacity refers we denote C instead of
C(D) in the remainder of this work. Modeling the capacity as a vector has two
implication (c. f. Example 3 below):

1. C is not unique for D, i. e., there are multiple different data flow capacities for
a data flow program D. We denote the set of all C of D as C†(D).

2. There are dependencies between all values ci, and all ci together must meet
the criteria of “maximum number of input records [...] D is able to process”
with respect to the complete data flow program. Hence, the term “maximum
number of input records per time unit for si“ cannot be applied in isolation to
each source to define the capacity of D (c. f. Example 3). These dependencies
are implicitly expressed in Definition 25 as “such that [...] D is able to process
all input streams simultaneously”.

3.1. DATA FLOW CAPACITY 39

C1(D) =

⎡
⎢⎢⎢⎢⎢⎣

c1 = 3 s−1

c2 = 2 s−1

⎤
⎥⎥⎥⎥⎥⎦

s1

C(s1) = 7 s−1

s2

C(s2) = 4 s−1

o

C(o) = 5 s−1

C2(D) =

⎡
⎢⎢⎢⎢⎢⎣

c1 = 1 s−1

c2 = 4 s−1

⎤
⎥⎥⎥⎥⎥⎦

s1

C(s1) = 7 s−1

s2

C(s2) = 4 s−1

o

C(o) = 5 s−1

Figure 3.1: Data flow program with three nodes having multiple data flow capacities
C1(D) and C2(D).

We use Example 3 to discuss both implications in more detail.

Example 3. Assume a data flow program with two source operators (s1 and s2) and
a single sink operator (o) that is connected to both sources as shown in Figure 3.1.
Furthermore, let the operator capacities be the following: C(s1) = 7 s−1 (i. e., si

can process 7 records per second), C(s2) = 4 s−1, and C(o) = 5 s−1. Since the sink
is connected to both sources, it processes all incoming data records of both sources
simultaneously. As the sink can process maximum 5 records per second, the sum
of both output data rates of the sources cannot be larger than 5 records per second.
Thus, some example capacities of the data flow program are C1 = ⟨3 s−1, 2 s−1⟩,
C2 = ⟨1 s−1, 4 s−1⟩, C3 = ⟨5 s−1, 0 s−1⟩, etc.

Counter examples that exceeds the capacity of D are ⟨9 s−1, 2 s−1⟩, ⟨1 s−1, 7 s−1⟩,
⟨6 s−1, 0 s−1⟩ or ⟨4 s−1, 3 s−1⟩: in the first two examples, the capacity of source s1 or
s2 is exceeded, respectively, violating Definition 25. For the last two examples, both
sources could handle a corresponding input data rate themselves, however, the sink
cannot handle an input data rate of more than 5 records per second, and thus, both
examples exceed the capacity of D, too.

Example 3 shows that C is not unique for D—it lists three concrete capacities
for D (not comprehensive). Additionally, the example illustrates the dependencies
between all ci (Item 2) from Definition 25 and that the maximum capacity per source
cannot be used to define the data flow capacity. Formally, we define the maximum
capacity for sources as follows:

Definition 26 (Maximum Source Capacity). Given the set of all capacities C† for
a data flow program D with sources S = ⟨s1, . . . , sn⟩, the maximum capacity ˆ︁ci for
source si is defined as:

ˆ︁ci = max{ci|⟨c1, . . . , ci, . . . , cn⟩ ∈ C†} (3.2)

40 CHAPTER 3. STREAMING DATA FLOW COST MODEL

The maximum capacity ˆ︁ci is the maximum input data rate for source si the data
flow program D can possibly process.

Example 3 (cont.). For D from Figure 3.1 we can infer that ˆ︁c1 = 5 s−1 and ˆ︁c2 =
4 s−1. We emphasize that the maximum capacity ˆ︁c1 for source s1 is smaller than
the capacity of s1 (i. e., ˆ︁c1 = 5 s−1 < 7 s−1 = C(si)), because the capacity of node o
limits the maximum throughput for source s1 in the overall data flow program. For
ˆ︁c2, the capacity of s2 itself is the limiting factor.

However, ˆ︁ci cannot be used to compute C as we will show in the following:

Example 3 (cont.). Both maximum source capacities ˆ︁c1 and ˆ︁c2 together, i. e.,
⟨ˆ︁c1, ˆ︁c2⟩ = ⟨5 s−1, 4 s−1⟩, exceed the capacity of D, because the downstream node o
has a capacity that is smaller than the sum of both source capacities (i. e., C(p) =
5 s−1 < 9 s−1 = 5 s−1 + 4 s−1 = ˆ︁c1 + ˆ︁c2).

Hence, the term “maximum number of input records per time unit for si” in
Definition 25 does not imply that ci = ˆ︁ci. Definition 25 excludes ⟨ˆ︁c1, ˆ︁c2⟩ from the
capacity definition via “such that the data flow D is able to process all input streams
simultaneously.”. We point out that ⟨ˆ︁c1, ˆ︁c2⟩ /∈ C† in our concrete example. In
general, ⟨ˆ︁c1, · · · , ˆ︁cn⟩ may be a capacity for D though.

Example 3 illustrates that the data flow capacity C depends on the individual
operator capacities. Next, we defined operator capacity (Definition 27) based on
task capacity (Definition 28) that we define afterwards. Data flow programs are
translated into execution graphs, and thus, we distinguish between the capacity of
an operator and the capacity of a task. Because we assume linear scaling due do
data parallelism, the capacity of an operator is the capacity of a task multiplied by
the number of operator tasks, i. e., the degree of parallelism of the operator.

Definition 27 (Operator Capacity). Given a operator v ∈ V of a data flow program
D = (V, E) with tasks tv

1, . . . , tv
dop(v). We assume that each task has the same capacity

C(tv), i. e., C(tv) = C(tv
1) = · · · = C(tv

dop(v)). Thus, the operator capacity C(v) of
v is:

C(v) = dop · C(tv) (3.3)

If it is clear from the context if we refer to an operator capacity or a task capacity,
we denote C instead of C(v) or C(tv) in the remainder of this work. The task capacity
is defined as follows:

Definition 28 (Task Capacity). The capacity of a task is the maximum number of
input records per time unit a task can process. It is determined by three parameters:
its input capacity Ci, its processing capacity Cp, and its output capacity Co. We
define the task capacity C as:

C = min{Ci, Cp, Co} (3.4)

Ci and Co model network input and output while Cp models CPU costs. Hence,
the individual parameters Ci, Cp, and Co are independent from each other and
depend on the operator itself as well as on the execution environment, i. e., the
underlying hardware. We take the minimum over all three capacities, because one

3.2. PROCESSING COSTS 41

p

queue
c

Figure 3.2: Data exchange via a queue between tasks of two operators.

p

queue
network

queue
c

Figure 3.3: Data exchange via queues and network between tasks of two operators.

of them will be the limiting factor for the overall task capacity. All three values are
defined with respect to the maximum number of input records per time unit a task
can process. In particular, the output capacity, is defined as the maximum input
data rate, such that the resulting output data rate does not result in a network
bottleneck. For sources, we do not compute an input capacity but set Ci = ∞.
Accordingly for sinks, we do not compute an output capacity but set Co =∞. This
allows us to use Equation 3.4 for all tasks without the need to distinguish different
task types. We formally introduce and define the processing capacity Cp, as well as
network capacities Ci and Co in the following sections.

3.2 Processing Costs
Based on our general definition of capacity (Definition 24), we formally define the
processing capacity of a task as follows (c. f. [CcC+02]):

Definition 29 (Processing Capacity). The processing capacity Cp of a task is the
maximum number of records the task can process per time unit. Let cp be the pro-
cessing cost for a single input record; processing costs are defined in time units. We
define the processing capacity of a task as:

Cp = 1
cp

(3.5)

Because we define the processing costs as number of time units per record, the
processing capacity Cp of a task is the inverse of cp (c. f. [CcC+02]). Before breaking
down the processing costs and introducing our processing cost model for tasks,
we consider some more details of the execution model. Data stream processing
programs are modeled as data flow programs as discussed in Chapter 2. Tasks of
different operators are connected with queues [BBD+02, CcC+02] to decouple them
and to allow them to be executed by different threads [MF02, LLP+12, LWK12].
An upstream task puts its output records into a queue, while the downstream task
pulls its input records from a queue (Figure 3.2). Similarly, if tasks are executed on
different physical machines, there are additional network threads [TTS+14, KBF+15]
that are responsible to send and receive data (Figure 3.3). Thus, threads that execute
a task exchange data with network threads via queues, too.

As indicated in Definition 29, the core unit of our cost model is processing costs
of a single record. Additionally, we discussed that tasks exchange data via queues.

42 CHAPTER 3. STREAMING DATA FLOW COST MODEL

Hence, the processing costs consist of three parameters: cost to process a single
record as well as the cost to enqueue and dequeue records. Because there is no
one-to-one relationship between the number of input and output records1 we also
need to consider the operator selectivity (denoted by s). We model the selectivity as
average number of output records per input record [ACc+03b]. We point out that
the selectivity can be larger than 1 for this definition [BBMD03].
Definition 30 (Record Processing Cost). The processing costs of a task are domi-
nated by three parameters. Cost to dequeue one input record (cfetch) from the input
queue, cost to process a single record (ccpu), and cost to enqueue output records
(cemit) into the output queue (this cost might apply multiple times depending on the
operator selectivity s). We model all of those costs as time units spent to perform
the corresponding action for a single record. We define the processing costs cp for a
single record of a task as (c. f. [CcC+02]):

cp = cfetch + ccpu + s · cemit (3.6)

We set cfetch = 0 for sources that do not have incoming edges. For sinks we set
s = cemit = 0 because they have no outgoing edges. This allows us to handle all
tasks the same way without the need to distinguish different task types.

3.2.1 Improvements of Throughput with Batching

Data transfer between tasks via queues may result in high CPU and/or network
overhead [LWK12]. As tasks run on different threads, the queues between tasks must
be synchronized to guard against concurrent access. This results in lock contention
as both threads must acquire a lock before accessing the queue.

To reduce the queuing overhead, batching can be used to reduce the lock con-
tention between consecutive tasks. Multiple records are collected within a batch,
and the whole batch of records is put() into the queue at once. On the consumer
side, a task receives a batch of records returned by a single poll() operation on
the queue. Hence, using batching, the number of queue operations is reduced and
lock contention is mitigated. Batching has the drawback of an increased processing
latency though. If a task produces an output record and inserts it into its output
batch, this record cannot be consumed by the downstream task until the batch is
full and the whole batch is sent downstream. Thus, to keep latency low, it is desired
to keep the batch size as small as possible.

However, it is hard to estimate the required batch size. Thus, in practice, a trial-
and-error approach is applied to find appropriate batch sizes for different operators2

that reduces the overhead, but does not increase latency unnecessary. This is a
long and error prone process. Some research was conducted to apply auto-batching
techniques, to automate this trial-and-error approach and to dynamically change the
batch sizes during runtime [LWK12]. Similar dynamic batch size techniques are also
applied to micro-batching systems [DZSS14]. However, those models only follow a
reactive approach and lack a holistic cost model. Therefore, we cannot apply them
to compute a configuration3 for a data flow program.

1An operator could implement a filter or flatMap function, and can—in general—emit zero,
one, or multiple output records per input record.

2All tasks of an operator use the same batch size, as configured on the operator.
3We formally define a configuration in Chapter 4.

3.2. PROCESSING COSTS 43

Additionally to batching, there are other techniques like operation fusion4

[CcC+02, CcR+03, CRP+10, HSS+14, LWK12, SGH15] that help to increase
throughput. Those techniques are complementary to batching, and thus, we assume
that operator fusion is independent of our cost model. That is, fusion may be
applied before using our cost model. There are different trade-offs and limitations
for operator fusion that we mention for completeness:

• Operator fusion is only possible for record-at-a-time operations (i. e., no data
repartitioning/grouping is required between consecutive operators).

• Operator fusion is only possible if two operators are executed on the same
machine, which may not be the case in a distributed system.

• Even if operator fusion is possible, it can be better to run each operator indi-
vidually if

– both operators are compute intensive and
– the operators are executed in a multi-core environment and
– if horizontal scaling is not possible due to a lack of data parallelism.

With the above assumptions we refine our task cost model and put batching into
account. Assume we have a batch size of b records. For this case, a task gets b
records from the input queue at once. Furthermore, enqueuing only happens after
a batch of output records is available. Before that, a task internally buffers output
records to assemble a full batch.

We point out that we model input and output batches independently. Modeling
both independently is different to other batching techniques [CGB+14] or the micro-
batching approach (Section 2.1). Those systems assemble one batch of input records
at the source level and forward the batch from operator to operator. Thus, the batch
size is fixed for input and output over multiple operators and it is determined by the
source operator. Tuple batching in Aurora is fine grained, however, only based on
operator input records and used to improve operator scheduling [CcC+02, CcR+03].
Since we model input and output batches independently for a single operator, we
allow for different batch sizes, namely input batch size bin and output batch size
bout. Hence, there is one batch enqueue operation (with cost cemit) after bout output
records were produced.

Definition 31 (Batch Processing Cost). The processing costs cb
p of one batch of

input records (with batch size bin), for a task with selectivity s and an output batch
size bout, is defined as:

cb
p = cfetch + bin · ccpu + s · bin

bout
· cemit (3.7)

We infer from Equation 3.7 that the costs for processing one batch of records is
the cost of dequeuing one batch of input records, plus the cost to process each of
the input records, plus the cost of enqueuing output batches. Enqueuing an output

4Operator fusion is also called combining boxes, operator batching, or task chaining in the liter-
ature.

44 CHAPTER 3. STREAMING DATA FLOW COST MODEL

batch happens after the number of output records s · bin exceeds bout. Hence, it
is possible that none or multiple enqueue operations are executed per input batch.
If no enqueue operation is executed, it implies that multiple input batches must
be processed to complete an output batch. We emphasize that Equation 3.7 is an
average cost notation per input batch.

Example 4. Assume an input batch size of 10 records (bin = 10), an output batch
size of 20 records (bout = 20), and an operator selectivity of 50 % (s = 0.5). After
processing the first batch of records, there are s · bin = 0.5 · 10 = 5 output records.
In order to complete an output batch of 20 records, its required to process 4 input
batches. Thus, the cost of enqueuing an output batch, is shared over 4 input batches,
and we get cost of 0.25 · cemit per input batch on average.

To simplify our model, we normalize the cost of processing a batch of input
records to the average cost of processing a single input record. This simplification
allows us to compare the impact of batching with the base model (i. e., Equation 3.6
and Equation 3.7). We compute the normalized cost cp by dividing the cost to
process one input batch by the input batch size as follows:

cp =
cb

p
bin

=
cfetch + bin · ccpu + s·bin

bout
· cemit

bin

= cfetch
bin

+ ccpu + s · cemit
bout

(3.8)

Comparing Equation 3.8 and Equation 3.6 yields that Eq. 3.6 is a special case of
Eq. 3.8 with bin = bout = 1. This relationship proves that our model refines our
initial base model. Furthermore, we observe that the processing costs have a lower
bound, namely ccpu. With an increasing input and output batch size, the dequeuing
and enqueue cost can be shared over as many records as desired. Hence, for an
infinite input or output batch size, the amortized dequeue and enqueue costs are
zero:

lim
bin→∞

cfetch
bin

= 0 and lim
bout→∞

s · cemit
bout

= 0 (3.9)

Therefore, the theoretical minimum processing cost is:

min cp = lim
bin→∞
bout→∞

cfetch
bin

+ ccpu + s · cemit
bout

= ccpu (3.10)

Since processing cost has a lower bound, processing capacity (Definition 29) has an
upper bound:

ˆ︁Cp = max Cp = 1
min cp

= 1
ccpu

(3.11)

We discuss the impact of this relationship in more detail in Chapter 4.

3.2. PROCESSING COSTS 45

3.2.2 Operator Dependencies

In the previous section, we focused on a single tasks of a single operator and dis-
cussed that input and output batch size are independent from each other. In this
section, we put the focus on inter operator dependencies, or to be more precise, on
consecutive operators. For example, if a downstream operator receives data from an
upstream operator, the output batch size of the producer is the input batch size of
the consumer. Furthermore, if a consumer receives data from multiple producers it
has input batches of different sizes in general.

Corollary 1. Based on the definition of data flow programs, execution graphs, and
our cost model, operators can only be configured with output batch sizes. Operator
input batch sizes depend on those output batch sizes and cannot be configured.

Before we discuss the details of operator dependencies, we define input and
output data rates for tasks and operators. Additionally, we describe how the output
data rate of an operator or task depends on the corresponding input data rate.

Definition 32 (Task Input and Output Data Rate). Let t ∈ T be a task in an
execution graph EG = (T, F). The task input data rate rin(t) is the number of
input record per time unit of t. The task output data rate rout(t) is the number of
output record per time unit of t.

If it is clear from the context to which task rin and rout belongs, we omit the
parameter t in the formulas. Similar to task input and output data rate, we define
input and output data rate for data flow operators as follows:

Definition 33 (Operator Input and Output Data Rate). Let v ∈ V be an operator in
a data flow program D = (V, E). The operator input data rate Rin(v) is the number
of input records pre time unit of v. The operator output data rate Rout(v) is the
number of output records per time unit of v. Assuming a uniform data distribution
over all tasks of an operator, the operator data rates can be computed based on the
corresponding task data rates as follows:

Rin(v) = dop(v) · rin (3.12)

and
Rout(v) = dop(v) · rout (3.13)

Definition 33 builds on the assumption of a uniform data distribution that is
often applied in data-parallel systems. Introducing non-uniform data distributions
into our model is interesting future work. If it is clear from the context to which
node Rin and Rout belongs, we omit the parameter v in the formulas.

In the section above, we discussed the relationship between task and operator
data rates. Next, we explain the relationship between the input and output data
rate of a single task or operator. The output data rate of a task or operator is
computed based on the input data rate and the selectivity.

Definition 34 (Operator and Task Output Data Rate). Given the input data rates
rin and Rin of a task and operator and the selectivity s. The corresponding output
data rates are computed as follows:

rout = s · rin (3.14)

46 CHAPTER 3. STREAMING DATA FLOW COST MODEL

p1

p2

c

5555

1010

51051055

Figure 3.4: Data flow program with two producers (p1 and p2) configured with
different output batch size and single consumer c.

and
Rout = s ·Rin (3.15)

The above definitions are based on single operators. In the following, we discuss
dependencies of consecutive operators. In particular the computation of input data
rates and input batch sizes depend on the output data rates and output batch sizes
of upstream producers.

Definition 35 (Operator Input Data Rate). Given a consumer c ∈ V of a data
flow program D = (V, E) with corresponding producers p ∈ V . The consumer input
data rate is the sum of the producer output data rates:

Rin(c) =
∑︂

∀p∈V :∃(p,c)∈E

Rout(p) (3.16)

In the following, we describe the dependency of upstream output batch sizes and
downstream input batch sizes of consecutive operators. In order to apply our cost
function (Equation 3.8) that allows us to reason about the consumer performance, a
single input batch size value is required. However, in general, a consumer can have
multiple producers and all those producers could have a different output batch size.
Hence, we introduce the notion of a consumer’s effective input batch size that we
compute as a weighted average of the output batch sizes of its producers.

Definition 36 (Effective Input Batch Size). The effective input batch size of a
consumer c is the number of records over which the cost of a single dequeue operation
is shared on average. The effective input batch size bin is defined as:

bin(c) = input records per time unit
batches per time unit (3.17)

In the remainder of this work we use the terms input batch size and effective
input batch size interchangeably and denote both as bin.

Example 5. Assume two producers p1 and p2 with output batch size bout(p1) = 5
and bout(p2) = 10 and a single consumer c as shown in Figure 3.4. Furthermore,
assume that both producers have an output data rate Rout of 1 s−1. Thus, p1 emits
an output batch every 5 seconds while p2 emits an output batch every 10 seconds.

In this setup, c receives 3 batches in every 10 second interval—2 batches of size 5
and 1 batch of size 10. As discussed in Section 3.2.1, the cost of dequeuing an input
batch is shared over all records within the batch. We observe that in our example

3.2. PROCESSING COSTS 47

dequeuing a batch of size 5 happens twice as often as dequeuing a batch of size
10. On average, c performs 3 dequeue operations to receive 20 records—2 dequeue
operations providing 5 records each, and 1 dequeue operation that provides 10 records.
Therefore, the cost of a single dequeue operation is shared over #records

#batches = 20
3 = 6.6

records on average in our example.

Example 5 shows that the dequeuing cost of input batches is shared over a
certain number of records on average. There are two parameters that determine
this average number of input records: the different input batch sizes as well as the
corresponding frequencies of arriving batches with different sizes. The frequency of
arriving batches depends on the output batch size and the output data rate of the
producer. We can generalize this to compute the effective input batch size bin of a
consumer as follows:5

Given a consumer c that receives input from n producers p1, . . . , pn with producer
output data rates Rout(pi) and output batch sizes bout(pi). We compute bin of c by
using Equation 3.17 of Definition 36 (we denote the input data rate in batches as
Rb

in).

bin(c) = Rin(c)
Rb

in(c)
(3.18)

The input data rate Rin(c) is computed based on Rout(pi) using Equation 3.16.
To compute the input data rate in batches Rb

in, we first compute the producer
output data rate in batches. The number of output batches per time unit Rbout

out for
a producer pi is:

Rbout
out (pi) = Rout(pi)

bout(pi)
(3.19)

Based on Equation 3.19 the input data rate in batches Rb
in of c is the sum over

all output batches per time unit of the producers pi:

Rb
in(c) =

n∑︂

i=1
Rbout

out (pi)

=
n∑︂

i=1

Rout(pi)
bout(pi)

(3.20)

Hence, the effective input batch size bin of c is computed by utilizing Eq. 3.16
and Eq. 3.20 as substitutions within Eq. 3.18 as:

bin(c) = Rin(c)
Rb

in(c)

=
∑︁n

i=1 Rout(pi)
∑︁n

i=1
Rout(pi)
bout(pi)

(3.21)

5We use operator data rates to compute the effective input batch size below. Using task data
rates would be possible, too, and would yield the same result.

48 CHAPTER 3. STREAMING DATA FLOW COST MODEL

Equation 3.21 provides a way to compute the effective input batch size of a
consumer solely based on properties of the corresponding producers: in particular the
configured output batch sizes as well as the output data rates. This representation
simplifies the application of our cost model in Chapter 4.

In this section, we focused on a task processing capacity. The input parameters
of our model are single record processing cost, dequeue and enqueue cost, as well as
the operator selectivity. Given the upstream producer output data rates and output
batch sizes, we can compute the consumer processing capacity for any configured
consumer parallelism and output batch size. In Chapter 4, we leverage our equations
to optimize output batch sizes given different “performance goals”. In the next
section, we discuss network costs of our cost model.

3.3 Network Costs
Similar to processing costs, we model network costs based on the capacity concept
as introduced in Definition 24. The network capacity is the maximum data rate in
records per time unit that a task can receive or send. It depends on the underlying
hardware as well as the record sizes. We model the hardware as maximum through-
put of a network connection N in bits per second (called bandwidth). Furthermore,
we assume that a network connection is exclusive for a single task and that input
and output connections are independent. How N is determined is discussed in more
detail in Section 4.2. In this section, we assume N to be given. The second param-
eter for the network capacity is the record size rs, i. e., the average size in bytes of
a serialized record. Given N and the record size we define the network capacity as
follows:

Definition 37 (Network Capacity). The network capacity is the maximum number
of records that can be transferred between two consecutive tasks per time unit. Given
N and rs, we compute the network capacity CN as:

CN = N
8 · rs (3.22)

Since N is given in bits per second, we divide by a factor of 8 to translate from bits
to bytes.

The network capacity CN depends on N and the record size rs. In practice,
not all records in a data stream have the exact same size. To incorporate different
record sizes in our model, we use the average record size instead of individual record
sizes. We denote average input and output record sizes of operators as rsin and rsout,
respectively.6 In the remainder of this work, we use the term record size to refer to
the average record size for simplicity.

We point out that the network capacity models the maximum number of records
that can be transferred over the network and is not to be confused with the input
network capacity or the output network capacity of a task (Definition 28). In partic-
ular, the output network capacity models an input data rate. It does not describe

6We do not distinguish between operator and task input/output record sizes, because they are
the same for an operator and its corresponding tasks.

3.3. NETWORK COSTS 49

p1

p2

c

555555

20

55205555

Figure 3.5: Data flow program with two producers (p1 and p2) with different output
data rates and different output record sizes and a single consumer c.

the maximum output data rate that can be transferred to downstream tasks. We ex-
plain how the network capacity is used to define input and output network capacity
in Section 3.3.1 and Section 3.3.2, respectively.

3.3.1 Input Network Capacity

The input network capacity Ci depends on N as well as on the input record size
(Equation 3.22). Because consumers receive data from upstream producers, the pro-
ducer output record sizes determine the consumer input record sizes. If a consumer
has multiple upstream producers, it receives records of different sizes from different
producers. Hence, we introduce an effective input record size that we compute as
weighted average over all upstream output record sizes.7

Definition 38 (Effective Input Record Size). The effective input record size of a
consumer c is the average record size in bytes over all input records. We define the
effective input record size rsin as:

rsin(c) = input bytes per time unit
input records per time unit (3.23)

Example 6. Assume two producers p1 and p2 with output record size rsout(p1) = 5 B
and rsout(p2) = 20 B and a single consumer c as shown in Figure 3.5. Furthermore,
assume that the producers have output data rates Rout(p1) = 6 s−1 and Rout(p2) =
1 s−1. Thus, p1 emits 6 s−1 · 5 B = 30 B/s while p2 emit 1 s−1 · 20 B = 20 B/s. This
implies that c receives 50 B/s with a data rate of 7 s−1 records. Within each second,
c receives records with an average size of #bytes

#records = 50 B
7 = 7.1 B in this example.

As illustrated in Example 6, there are two parameters that determine the effective
input record size of a consumer: the output record sizes as well as the corresponding
output data rates of the producers. We generalize this to compute the effective input
record size rsin of a consumer as follows:8

7Computing the effective input record size as weighted average is the same approach that we use
to compute the effective input batch size for an operator (c. f. Section 3.2.2).

8We use operator data rates to compute the effective input record size below. Using task data
rates would be possible, too, and would yield the same result.

50 CHAPTER 3. STREAMING DATA FLOW COST MODEL

Given a consumer c that receives input from n producers p1, . . . , pn with producer
data output rates Rout(pi) and output record sizes rsout(pi). We compute rsin of c
by using Equation 3.23 from Definition 38 (we denote the input byte rate as RB

in):

rsin(c) = RB
in(c)

Rin(c) (3.24)

The input data rate Rin(c) is computed using Equation 3.16. To compute the
input byte rate RB

in(c) we first compute the producer output byte rates RB
out. The

output byte rate for each producer pi is its record output rate times its output record
size:

RB
out(pi) = Rout(pi) · rsout(pi) (3.25)

Based on Equation 3.25 we compute the input byte rate RB
in of c as sum over all

the output bytes rates of producers pi:

RB
in(c) =

n∑︂

i=1
RB

out(pi)

=
n∑︂

i=1
(Rout(pi) · rsout(pi))

(3.26)

Hence, the effective input record size rsin of c is computed by utilizing Eq. 3.16
and Eq. 3.26 together within Eq. 3.24 as:

rsin(c) = RB
in(c)

Rin(c)

=

n∑︁
i=1

(Rout(pi) · rsout(pi))
n∑︁

i=1
Rout(pi)

(3.27)

Given the effective input record size rsin(v) of an operator based on Equa-
tion 3.27, we compute the corresponding task input capacity Ci utilizing Equa-
tion 3.22 as:9

Ci = Crsin
N = N

8 · rsin(v) (3.28)

Hence, the input network capacity of a task (Equation 3.28) is directly derived
from the network capacity (Equation 3.22). In the next section, we describe how
the output network capacity of a task is computed.

9In the remainder of this work, we use the term input record size to refer to effective input record
size for simplicity.

3.3. NETWORK COSTS 51

3.3.2 Output Network Capacity

To compute the output capacity of a task we cannot use Equation 3.22 directly,
even if the average output record size is known. First, the output network capacity
is defined with respect to the maximum input data rate of a task (Definition 28).
Thus, it is required to map the output data rate that is transferred over the network
to its corresponding input data rate. Second, the output data rate of a task is not
the same as the output data load.

Definition 39 (Task Output Load). The output load rload of a task is the number
of records per time unit that must be transferred over the network to downstream
consumer tasks.

Similarly to operator capacity, input and output data rate, the operator output
load is defined as:

Definition 40 (Operator Output Load). The output load Rload of an operator is
the number of records per time unit that must be transferred over the network to
downstream consumers. Given an operator v with dop(v) and tasks with output load
rload. The operator output load is:

Rload(v) = dop(v) · rload (3.29)

Operators may have multiple downstream consumers that all receive a full copy
of the output stream. For this case, each record must be transferred over the network
multiple times, resulting in increased network load. We use the term fan-out in our
model [CcR+03], that is the number of downstream consumer of an operator, to
compute the output load based on the output rate.

Definition 40 (Task Output Load (cont.)). Given a task t with output data rate
rout and corresponding operator fan-out f(v). The task output load rload is computed
as:

rload(t) = f(v) · rout(t) (3.30)

To compute the maximum possible output data rate of a task t, it is required to
consider the task output load and the downstream network capacity based on the
corresponding operator output record size rsout(v) (Definition 37):

max(rload(t)) = Crsout
N = N

8 · rsout(v) (3.31)

Combining Equation 3.30 and Equation 3.31 yields:

max(rout(t)|rload(t) ≤ Crsout
N) = max(rload(t))

f(v)

= N
8 · rsout(v) · f(v)

(3.32)

The maximum possible output data rate of a task t can be mapped to the output
network capacity Co (i. e., the maximum input data rate such that the task load is

52 CHAPTER 3. STREAMING DATA FLOW COST MODEL

smaller than the downstream network capacity), using the corresponding operator
selectivity s(v):

Co = max(rin|rload ≤ Crsout
N)

= max(rout|rload ≤ Crsout
N)

s(v)

= N
8 · rsout(v) · f(v) · s(v)

(3.33)

A task’s output network capacity depends on the operator output record size,
selectivity, and fan-out. A small selectivity or small fan-out increases the capac-
ity, while a large selectivity or a large fan-out decreases the capacity. Example 7
illustrates this relationship.
Example 7. Assume a filter task with input data rate rin = 1000 s−1 and operator
selectivity s = 0.5, fan-out f = 4, and an input record size rsin. Because the operator
is a filter we derive that the output record size is the same as the input record size,
i. e., rsout = rsin. Hence, we can transfer the same total amount of records on the
input as well as the output network connection. Since we have a fan-out of 4, the
task has to send 4 result records downstream (i. e., over the network) for each input
record. Last, for each input record there are 0.5 output records on average and the
output data rate is rout = s · rin = 500 s−1.

Let’s assume further that the network capacity is 1000 s−1 that is equal to the
input data rate. Even if neither input data rate nor the output data rate is larger
than the network capacity, the output load is larger, i. e., rload = f ·rout = 4·500 s−1 =
2000 s−1. This implies that the task cannot process its input data rate.

Overall, the output network capacity of the filter task is Co = 1000 s−1

f ·s =
1000 s−1

4·0.5 = 500 s−1 input records per second, which is smaller than the input data rate
rin = 1000 s−1.

We model the output network capacity as maximum number of input records
per time unit instead of maximum load. Using maximum load might seem more
intuitive, however, our approach simplifies the overall model and optimization al-
gorithm in Chapter 4, because processing capacity and network input capacity are
defined as input records per time unit. Defining the output network capacity based
on input records per time unit (instead of maximum load), allows us to combine all
three capacities into an overall operator capacity in a straightforward manner. Mod-
eling the output network capacity as maximum load would prohibit (or complicate)
Definition 28.

The above definitions of network costs complete our cost model. Table 3.1 sum-
marizes all introduced input and cost model parameters. We discuss important
design aspects of a batching implementation for queues in distributed, data-parallel
systems in the next section.

3.4 Batching Layer
To design a record batching layer for distributed, data-parallel streaming systems,
we need to consider the system model as discussed in Section 2.2 and Section 2.3. For

3.4. BATCHING LAYER 53

Table 3.1: Cost Model Parameters

Parameter Abbr. Notes
data flow program D = (V, E) nodes V and edges E

execution graph EG = (T, F) tasks T and connections F

configuration Γ c. f. Definition 41 (Chapter 4)
degree of parallelism dop

input/output batch size bin / bout in number of records
selectivity s can be larger than 1
fan-out f number of consumers

for a producer
input/output record size rsin / rsout in bytes (B)
operator input/output rate Rin / Rout in records per second (s−1)
task input/output rate rin / rout in records per second (s−1)
task/operator output load rload / Rload in record per second (s−1)
workload W c. f. Definition 42 (Chapter 4)
data flow capacity C
set of data flow capacities C†

operator capacity C(v), v ∈ V in records per second (s−1)
task capacity C(t), t ∈ T in records per second (s−1)
processing capacity Cp in records per second (s−1)
input capacity Ci in records per second (s−1)
output capacity Co in records per second (s−1)
processing cost cp in seconds (s)
(per record)
dequeuing cost cfetch in seconds (s)
(per record or batch)
cpu cost ccpu in seconds (s)
(per record)
emitting cost cemit in seconds (s)
(per record or batch)
network capacity CN in records per second (s−1)
network bandwidth N e. g., 1 Gbit/s

example, an operator instance may have multiple downstream consumers, each with
a different degree of parallelism. Hence, an operator must partition its output records
into distinct batches based on the partitioning scheme and consumer parallelism, to
ensure correct data repartitioning. In this section, we design a batching layer for
data parallel systems. We describe how a batching layer may be designed in this

54 CHAPTER 3. STREAMING DATA FLOW COST MODEL

p

c1

c2

task record buffer connection

Figure 3.6: Producer task p with single output buffer and two consumer tasks (c1
and c2) connected via random or broadcast connection pattern.

section in general. Additionally, we provide some details of our implementation
using the open source system Apache Storm [ASFf, TTS+14] in Section 4.3.

In the following, we distinguish between a logical input stream and its physical
substreams, i. e., partitions (Section 2.2.1 and Section 2.3.2). Substreams are pro-
cessed by independent tasks and data is redistributed between all tasks of a producer-
consumer pair. To ensure correct data distribution, batching must consider the four
common partitioning patterns as discussed in Section 2.2.2. Depending on the par-
titioning pattern a different batching scheme is applied. Below, we present three
different batching schemes that use a different number of buffers to assemble record
batches. The number of buffers impacts the code complexity, memory requirement,
as well as processing latency for each batching scheme.

Batching for Random Partitioning

Random or broadcast distribution do not require special data partitioning. Hence,
we use a single output buffer to assemble record batches. Each time the output buffer
is full, i. e., a batch is completed, the system either sends the batch of records to one
(random) or to all (broadcast) consumer tasks. Figure 3.6 shows one producer with
one task p connected to one consumer with two tasks c1 and c2. The producer sends
data to the consumer via two substreams depicted as bold connection arrows. The
producer inserts output records (depicted as small arrows) into the output buffer
(depicted as rectangle). We assume a batch (i. e., buffer) size of six records in our
example. Each time the output buffer is full, the producer sends a batch with six
records to one consumer task, assuming random partitioning. For broadcasting, the
producer sends each batch to all consumer tasks. The consumer tasks receive the
record batches and process each record within a batch individually.

Using a single buffer for batching implies (1) low code complexity, (2) low memory
requirements, and (3) low latency. (1) Because there is only a single buffer, each
record is appended to the same buffer and data partitioning is no concern. (2) The
producer buffers at most bout records (independent of the number of consumer tasks),
i. e., the memory requirement is minimal for assembling a batch of bout records. (3)
A record batch is completed after bout output records are emitted by p without any

3.4. BATCHING LAYER 55

p

c1

c2

task records with different keys (color coded)

logical sub-streams buffer connection

Figure 3.7: Producer task p with two output buffers and two consumer tasks (c1
and c2) connected via hash- or range-partitioning connection pattern.

additional delay, i. e., latency is minimal as a batch cannot be sent downstream
before bout output records are available.

A single output buffer for batching provides low code complexity, memory re-
quirements, and latency. However, it can only be used for random partitioning or
broadcasting. For hash-based or range-based partitioning, a single output buffer is
not sufficient but would result in incorrect repartitioning. Data of different parti-
tions that must be processed by different tasks, would be contained in a single batch
that is sent to a single tasks. Therefore, it is necessary to use multiple distinct
output buffers to separate data of different partitions from each other, as discussed
in the next section.

Batching for Key-Based Data Distribution

In Section 2.3.2 we introduced two key-based data partitioning techniques: hash-
based and range-based partitioning. Both, hash-partitioning and range-partitioning
are based on some grouping attributes within the records. We call those grouping
attributes keys10. All records with the same key are grouped together and form
a logical substream, and logical substreams are grouped into physical substreams.
To guarantee correct data partitioning, a batch can only contain records that must
be transferred via one physical substream to one consumer task. To explain the
underlying concept of key-based batching, we first describe a simplified batching
technique that only works for producers with a single consumer. Key-based batching
for the general case with multiple consumers is discussed later.

Figure 3.7 shows one producer with one task p connected to one consumer with
two tasks c1 and c2. The producer sends data to the consumer via two substreams
depicted as bold connection arrows. We assume a batch size of six records and eight
different record keys (indicated by different colors). Task c1 processes records with
red, blue, brown, and teal keys and task c2 processes records with orange, green,

10A grouping key is not a unique identifier (or primary key) like in the relational data model.

56 CHAPTER 3. STREAMING DATA FLOW COST MODEL

p

c1

c2

c̄1

c̄2

c̄3

task records with different keys (color coded)

logical sub-streams buffer connection

Figure 3.8: Producer task p with distinct output buffers and two consumers with
different degree of parallelism, connected via hash- or range-partitioning connection
pattern.

violet, and olive keys. Within the producer, output records (depicted as solid colored
arrows) are inserted into the output buffers (depicted as rectangles) depending on
the record key. While there are eight logical substreams (indicated by the dotted
colored arrows), the producer splits its output into two physical substreams because
there are only two consumer tasks. For each physical substream, one buffer is used
to assemble a batch of records and each full batch is sent to exactly one consumer
task. The consumer tasks receive the record batches, and process each record within
a batch individually. Because one output buffer is used for each task, and there
is a one-to-one mapping between output buffers and consumer tasks, records are
correctly redistributed based on the partitioning function.

The above described batching technique is simplified and does not work if there
are multiple downstream consumers with different degree of parallelism or different
partitioning functions. In the following we describe a generic batching technique
that work for all cases, namely distinct batching scheme and shared batching scheme.
The advantage of distinct batches is that it uses a smaller number of output buffers

3.4. BATCHING LAYER 57

compared to the shared batching scheme. A reduced number of buffers implies a
reduced memory requirement as well as reduced latency compared to the shared
batching scheme. We additionally introduce the shared batching scheme because it
can be implemented in user space, which may be a desired property as discussed in
more detail below.

Distinct Batching If a producer has multiple consumers, each consumer may
have a different degree of parallelism and may use a different partitioning strategy.
To ensure that each batch only contains records for a single consumer task, it is
possible to maintain one batching buffer per task over all consumers. Buffers are
logically grouped into buffer pools—one pool per consumer—each containing one
buffer per associated consumer task. Each output record must be transferred once
to each consumer, and hence, it is inserted into one buffer per buffer pool. For each
buffer pool, hash or range partitioning is used considering the degree of parallelism
of the corresponding consumer. Hence, each record is inserted into one buffer per
pool, independently to all other buffer pools. The initial example from Figure 3.7 is
a special case for a single consumer. It can be applied to multiple consumers only if
all consumers use the same partitioning strategy, based on the same key, and have
the same degree of parallelism. For this case, all buffer pools are exact copies of
each other, and therefore it is possible to “merge” them.

The general case is depicted in Figure 3.8. The figure illustrates a single producer
task p with two logical consumers. Similar to the example in Figure 3.7 we assume
a batch size of six records and eight different record keys (indicated by different
colors). The first logical consumer is the exact same as in Figure 3.7. Task c1
processes records with red, blue, brown, and teal keys and task c2 processes records
with orange, green, violet, and olive keys. Additionally, there is a second consumer
with three tasks c̄1, c̄2, and c̄3. In our example, both consumers use the same
grouping strategy, however, the second consumer has three tasks, and thus, the eight
logical substream are assigned to the three tasks differently compared to the first
consumer. Task c̄1 processes records with red, teal, and violet keys, task c̄2 processes
records with blue, orange, and olive keys, and task c̄3 processes records with green
and brown keys. Since there are two logical consumers, the producer uses two buffer
polls (depicted as gray rectangles); one for each consumer. Within the producer,
output records (depicted as solid colored arrows) are inserted into one output buffer
(depicted as rectangles) per buffer pool (indicated by the dotted or dashed arrows—
each key color is used once per buffer pool) depending on the record key. Hence, the
eight logical substreams are grouped into different physical substreams per consumer.
For each physical substream, one buffer is used to assemble a batch of records and
each full batch is sent to exactly one consumer task. The consumer tasks receive
the record batches, and process each record within a batch individually. Since one
output buffer is used for each task, and there is a one-to-one mapping between
output buffers and consumer tasks, records are correctly redistributed based on the
partitioning function.

Using distinct buffers for each consumer task implies increased (1) code com-
plexity, (2) memory requirement, and (3) latency compared to using a single buffer
as discussed above. (1) There are multiple buffers and multiple buffer pools, and
each record must be inserted using a different partitioning function per buffer pool.

58 CHAPTER 3. STREAMING DATA FLOW COST MODEL

(2) The required overall buffer size is (∑︁C dop(C)) · bout records, i. e., the required
memory grows with larger consumer parallelism. (3) Assuming a uniform data dis-
tribution, a record batch is completed on average after dop · bout output records
are emitted by p.11 Hence, records are buffered longer until a batch is completed
compared to using a single buffer, and thus, latency increases.

Distinct batching requires to send each output batch to exactly one task of ex-
actly one consumer. This is easy to implement within a stream processing system.
However, there are cases for which the stream processing system does not implement
batching and users would like to add this capability on top of the system. For this
case, the user code does not forward single records but batches of records transpar-
ently to the processing system. Because the stream processing system is not aware
of this change, it forwards each batch to one task of each downstream consumers.
Therefore, the distinct batching scheme cannot be applied because it requires that
a batch is sent to one task of one specific consumer only. To address this issue, we
introduce the shared batching scheme as discussed in the next paragraph.

Shared Batching The shared batching scheme is a technique that allows for a
fully transparent batching layer implementation on top of a stream processing system
without the need to alter the underlying system. If the underlying system does not
support batching and cannot be modified (i. e., not open-source), shared batches can
be used to increase system throughput.

For this case, the stream processing system is not aware that it transfers batches
of records and it sends each batch to one task of each logical consumers. Therefore,
it is required to assign records to batches such that the system can send each batch
to all logical consumers without violating the original partitioning strategy. To
achieve this, shared batches uses a polynomial number of output buffers based on
the number of tasks per consumer. Given a producer P with consumers C1, · · · , Cn,
the number of used buffers is:

∏︂

C∈{C1,··· ,Cn}
dop(C)

Using our example from Figure 3.8, the consumers A and B have a dop of 2
and 3, respectively. Shared batches uses 2 · 3 = 6 buffers that are conceptually
represented as a matrix with 2 rows and 3 columns (Figure 3.9). The matrix entries
represent all possible consumer task combinations from different consumers that
may share records within one batch. For each record, a buffer is selected a follows:
The key attributes of consumer A are used to select the row (based on the consumer
partitioning function pfA) and the key attributes of consumer B are used to select the
column (base on the consumer partitioning function pfB). The record is inserted in
the buffer corresponding to the computed position in the matrix. Figure 3.9 depicts
which key is inserted into what buffer using color coding. For example, the top-left
buffer, contains records with red or teal key only. In our example, a record with
blue key is inserted into the buffer of tasks c1 and c̄2. This buffer selection scheme
ensures that records that are added to a batch obey the partitioning requirements
of both consumers. Therefore, each buffer can be sent to each consumer without

11We denote the average degree of parallelism of all consumers of a producer as dop.

3.4. BATCHING LAYER 59

r pfB(r)

pfA(r)

c̄1 c̄2 c̄3

c1

c2

r send to c1

send to c̄2

Figure 3.9: Matrix of 6 buffers for two logical consumers A and B with dop(A) = 2
and dop(B) = 3.

violating the partitioning. While our example uses two consumers, and thus, a
matrix (i. e., a 2-dimensional array), the same pattern extends to n consumers using
an n-dimensional array.

Figure 3.10 depicts the same producer and consumer tasks as used in Figure 3.8
and both consumers use the same partitioning. However, the producer uses shared
batching. We point out that there are no buffer pools and each record is inserted
into exactly one buffer.12 Furthermore, each buffer is transferred twice—once for
each consumer. All batches are assembled to not violate the partitioning. In our
example with only 8 different keys, only two buffers have two different keys: The
first buffer contains records with red and teal keys, and the fifth buffer contains
records with orange and olive keys. Notice that red and teal keys are processed by
a single task of each consumer, namely c1 and c̄1. Hence, it is correct to add red
and teal keys to the same batch. Similarly, records with orange and olive keys are
processed together in both consumers. As a counter example, it would be incorrect
to add records with red and blue key to the same buffer: while red and blue keys are
processed by a single task of the first consumer (namely c1), records with red and
blue keys are processed by different tasks of the second consumer (namely c̄1 for red
and c̄2 for blue). Hence, sending a batch containing records with red and blue keys,
to either c̄1 or c̄2 would be incorrect.

Shared batches is an over-partitioning strategy: Records that are processed by
one consumer task are added to different batches and each consumer task receives
batches from multiple buffers. For example c1 processes all records with red, blue,
brown, and teal keys (c. f. Figure 3.8). In the shared batching scheme, records with
red and teal keys are added to batch number one, records with blue keys are added
to batch number two, and records with brown keys are added to batch number

12Conceptually, the buffers are arranged in a matrix as depicted in Figure 3.9. Figure 3.10
depicts the six buffers without background color coding and arranged below of each other for ease
of presentation. The color coded dotted and dashed logical substreams indicate the same partition
as in Figure 3.9 though: The top three buffers correspond to the top row, and the bottom three
buffers correspond to the bottom row.

60 CHAPTER 3. STREAMING DATA FLOW COST MODEL

p

c1

c2

c̄1

c̄2

c̄3

task records with different keys (color coded)

logical sub-streams buffer connections

Figure 3.10: Producer task p with shared output buffers and two consumers with
different degree of parallelism, connected via hash- or range-partitioning connection
pattern.

three. Therefore, it is required to send all those batches to task c1 as depicted in
Figure 3.10.

We described shared batches scheme for two logical consumers. However, shared
batches work the same way for n consumers by arranging all buffers logically in
an n-dimensional array. The disadvantage of shared batches compared to distinct
batches is the use of more output buffers. Hence, there is an increased main memory
consumption within the batching layer and an increased latency because buffers do
not fill up as quickly if there are more buffers. Another impact of shared batches is
that record offset order (Section 2.4.4) is not preserved. The relative offset order is
only preserved for records with the same key.

3.5 Related Work
Throughput, capacity, and output data rate are define similarly to our work in
Aurora [CcC+02]. However, Aurora uses its cost model for operator scheduling as

3.6. SUMMARY 61

it is a centralized and single threaded system. There is also no notion of network
cost or batching (their train scheduling approach is purely related to scheduling).
Borealis [XZH05] uses the same cost model as Aurora for operator placement. The
load of a single server is the accumulated cost over all operators executed by the
server. Borealis aims to assign operators dynamically to ensure load balancing within
the processing cluster. While our cost model shares a common basis with Aurora/
Borealis, we aim to estimate the execution cost of parallel data flows, to reduce the
execution cost via batching, and to optimized operator parallelism.

Daum et al. [DLB+11] present a method for cost model calibration. Similar
to our model, the system and operators are treated as black-boxed. To determine
cost model parameters, multiple queries with different characteristics are executed
while resource consumption is measured. A similar approach may be applicable to
calibrate our cost model.

There are many rate-based cost models for data stream processing. Those models
usually assume to know the semantics or even implementation of the modeled opera-
tors. Viglas et al. [VN02] propose one of the first rate-based cost models, considering
selections (i. e., filter), projections, and joins (so-called SPJ queries). The goal of
their optimization is to maximize the output data rate. Ayad and Naugthon [AN04]
use their cost model to rewrite query plans with the goal to minimize resource con-
sumption. If the system is overloaded, they propose to optimize for a maximized
output data rate similar to Viglas et al. Many papers focus on the optimization
of multi-way windowed stream joins [KNV03, GO03b, GC06, CKSV08, HAE08]
Those model compare different join algorithms, and try to find an optimal operator
tree. They usually considering window sizes, query execution interval, and time-
granularity. While all those cost models are rate-based, the optimization goal is
orthogonal to ours. However, it seems possible to combine those model with ours
and to model the actual processing costs of an operator not as a black-box but with
operator specific knowledge.

Improving the throughput of distributed, data-parallel stream processing system
via batching is a known technique [LWK12, DZSS14]. Existing work does not model
the impact of batching but instead focuses on dynamic batch size adjustments base
on observed system load. We consider our cost-model-based and predictive approach
complementary to those reactive approaches.

3.6 Summary

In this chapter, we introduced a rate-based cost model for streaming data flow
programs, considering CPU and network costs. Our model treats operators as black-
boxes while considering data parallel operator execution as well as record batching.
We base our model on the concept of operator/task and data flow capacity, and
describe inter and intra operator dependencies. A detailed model like ours, provides
insight in the performance of streaming data flow programs and helps to understand
operator dependencies.

While rate-based cost models are common in data stream processing, they are
usually used for query optimization similar to optimizers in relational database sys-
tems. In contrast, the goal of our model is to describe the performance of immutable
data flow programs with black-box operators. We use our model in Chapter 4 to

62 CHAPTER 3. STREAMING DATA FLOW COST MODEL

optimize the data flow configuration (formally defined later) to avoid bottlenecks
and over provisioning. We believe that adaptive and reactive optimization methods
are not sufficient [FAG+17] and propose to enhance those method with a cost model
like ours to improve dynamic scaling.

Additionally, we provided a detailed description on the design of our batching
layer for data-parallel stream processing systems and discussed different trade-offs
and optimization opportunities when employing record batching.

Chapter 4

Data Flow Optimization

Contents
4.1 Bottleneck Detection and Throughput Prediction 65

4.1.1 Bottleneck Detection . 65
4.1.2 Throughput Prediction . 68

4.2 Minimizing Resource Consumption 72
4.2.1 Minimizing Parallelism . 73
4.2.2 Batch Size Computation . 75
4.2.3 Algorithm Resource Optimizer 77

4.3 Evaluation . 80
4.3.1 Throughput . 81
4.3.2 Data Flow Optimization . 86

4.4 Related Work . 90
4.5 Summary . 91

In Chapter 3, we presented our cost model for streaming data flow programs.
Based on this cost model, we introduce algorithms for bottleneck detection and
data flow optimization in this chapter. In particular, we present an algorithm in
Section 4.1 that takes a data flow program, its configuration, and workload as in-
put, and outputs bottlenecks in the data flow program.1 Additionally, it computes
the effective throughput for each operator. The second algorithm (Section 4.2) fo-
cuses on performance optimization. The algorithm takes a data flow program and
a workload as input and compute a configuration based on an optimization crite-
ria. We define the corresponding optimization problem formally and prove that our
algorithm computes an optimal solution for it.

As described in Chapter 2, a data flow program is translated into an execution
graph (Definition 4) using a function dop that specifies the degree of parallelism for
each operator. Furthermore, each operator may be executed with different batch
sizes (Section 3.2.1). We assume that the output batch size for each operator is
specified similar to the degree of parallelism. As explained in Corollary 1, input
batch sizes cannot be specified, but are computed based on the output batch sizes

1Configuration, workload, and bottlenecks are defined below.

63

64 CHAPTER 4. DATA FLOW OPTIMIZATION

t11

t12

v1

t21

v2

t31

t32

v3

t41

t42

t43

v4

t51

t52

v5

t61

v6

bout(v1) = 100

bout(v2) = 50

bout(v3) = 1

bout(v4) = 20

Figure 4.1: Execution graph with parallelism and output batch sizes from Example 8.

of upstream producers. We unify both parameters as a configuration of a data flow
program, defined as follows:

Definition 41 (Configuration). Let D = (V, E) be a data flow program. A config-
uration of D is a function Γ : V → N× (N ∪ {⊥})

Γ(v) = ⟨dop(v), bout(v)⟩ (4.1)

where v ∈ V is an operator in the data flow with dop(v) and bout(v) being the degree
of parallelism and the output batch size of v. For sinks, no output batch size is
assigned, indicated via ⊥.

Example 8. Consider the data flow program from Example 1 and a configuration
Γ for D as shown in the following table:

v1 v2 v3 v4 v5 v6

dop 2 1 2 3 2 1
bout 100 50 1 20 ⊥ ⊥

The top row shows the operators and each column contains the dop and the output
batch size of one operator. Operators v5 and v6 do not have any batch size configured
(denoted ⊥) since they are both sinks and do not have outgoing edges. The resulting
execution graph with its batch size configuration is depicted in Figure 4.1.

Additionally to a configuration, a user may specify a workload (as for the algo-
rithms presented in Section 4.1 and Section 4.2) that is defined as follows:

Definition 42 (Workload). A workload for a data flow program is the expected input
data rate per source. Given a data flow program D with sources S = ⟨s1, . . . , sn⟩ a
workload W for D is:

W(D) = ⟨I1, . . . , In⟩ (4.2)

where Ii denotes the expected number of input records per time unit for si.

A workload is defined as a vector, similar to the data flow capacity (Defini-
tion 25). Since both are represented as vectors, it is possible to compare workloads
to capacities in the following sections to each other.

4.1. BOTTLENECK DETECTION AND THROUGHPUT PREDICTION 65

4.1 Bottleneck Detection and Throughput Prediction

In this section, we present an algorithm that takes a data flow program, its config-
uration, and a workload as input and identifies bottlenecks in the execution graph.
Additionally, the algorithm computes the throughput of each operator in the data
flow program. Before we present the algorithm, we formally define bottlenecks as
follows:

Definition 43 (Bottleneck). An operator v is a bottleneck in a data flow program
if its input data rate Rin is larger than its capacity C (Definition 27):

v is a bottleneck ⇐⇒ Rin(v) > C(v) (4.3)

For this case, we say that the operator is overloaded. We further distinguish between
CPU bottlenecks and network bottlenecks, and say an operator is CPU bound or
network bound, respectively. An operator is CPU bound if its input data rate is
larger than its processing capacity Cp:

v is CPU bound ⇐⇒ Rin(v) > Cp(v) (4.4)

An operator is network bound, if its input data rate is larger than its input (Ci) or
output (Co) capacity (c. f. Section 3.3.2), respectively:

v is input network bound ⇐⇒ Rin(v) > Ci(v)
v is output network bound ⇐⇒ Rin(v) > Co(v)

(4.5)

If there exists either a CPU bottleneck or a network bottleneck in a data flow
program, we say that the data flow program is CPU bound or network bound. The
above definition only applies for a data flow program given its configuration. With-
out a configuration the capacity of a data flow program is not defined.

In Chapter 3, we described how the output data rate of an operator is computed
(Equation 3.13). This definition does not take into account that an operator might
be overloaded. Thus, we re-define the computation of the operator output data rate
as follows:

Rout = s ·min{Rin, C} (4.6)

If an operator is a bottleneck, its output data rate is not determined by its input data
rate, but by its capacity (c. f. Equation 4.3). Based on our definition of bottlenecks,
we describe our bottleneck detection algorithm in the next section (Section 4.1.1).
In section Section 4.1.2, we compute the effective throughput for each operator (and
thus, the data flow throughput) for the case that a bottleneck is detected.

4.1.1 Bottleneck Detection

In this section, we introduce an algorithm that identifies all operators in a data flow
program that are overloaded, taking a data flow program, its configuration, and
workload as input. This algorithm may be applied if a user wants to verify a man-
ually specified configuration. We first explain the high level idea of our bottleneck
detection algorithm and present it formally later.

66 CHAPTER 4. DATA FLOW OPTIMIZATION

v1

v2

v3
v4

v5

v6

l = 0 l = 1 l = 2 l = 3

Figure 4.2: Operator levels of the data flow program from Example 1.

Given a workload and configuration of a data flow program, we identify bot-
tlenecks in the corresponding execution graph as follows: for each operator in the
data flow program, we compute its input data rate and capacity. We then compare
the input data rate with the operator capacity. If the input data rate exceeds the
capacity, the operator is overloaded, and thus, it is a bottleneck (Definition 43).
The input data rate of sources is known from the provided workload. For all other
operators, the input data rate depends on the output data rates of their upstream
producers. We exploit this producer-consumer dependency in our bottleneck detec-
tion algorithm: the algorithm starts at the sources and traverse the whole data flow
graph step by step until in reaches the sinks. To formally describe our algorithm,
we introduce levels of a data flow graph as follows:

Definition 44 (Levels of a Data Flow Graph). For each operator in a data flow
graph D = (V, E), we assign a (operator) level, a natural number describing “how
far” an operator is away from a source. We define levels l ∈ N0 recursively for all
v ∈ V starting at the sources that are assigned level 0 as follows:

l(v) =
{︄

0 if ∄v′ : (v′, v) ∈ E
ˆ︁l(v) + 1 otherwise

(4.7)

with
ˆ︁l(v) = max{l(v′)|∀v′ : (v′, v) ∈ E}

Example 9. Let D = (V, E) be the data flow graph from Example 1. Figure 4.2
depicts D including the levels for all operators. The two sources v1 and v2 both have
level 0. Operator v3 has level 1, because its only predecessor v1 has level 0. For v4,
we need to consider both predecessors and the maximum of their levels. Therefore,
l(v4) = 2 because ˆ︁l(v4) = max{l(v2), l(v3)} = max{0, 1} = 1. Finally, both v5 and
v6 have level 3.

Our traversal strategy is different to a breath-first search (BFS) traversal. For
example, in BFS operators v3 and v4 would both be considered in the second recur-
sive step of the algorithm, while in our case only v3 is considered. The difference is
that recursive levels in BFS are defined as the minimum distance to sources (i. e.,
the “root” node), while we define levels as the maximum distance.

Algorithm 1 shows our bottleneck detection algorithm. After the initialization
phase (Lines 7-8) the algorithm traverses the complete data flow program (Lines 10-
28). In each round, it processes all operators of one level (Line 11) starting with the
sources at level 0 (Line 8). Processing a single operator consists of four steps. (1)

4.1. BOTTLENECK DETECTION AND THROUGHPUT PREDICTION 67

Algorithm 1: Bottleneck Detection
1 Input: data flow D = (V, E); configuration Γ(D); workload W(D)
2 Output: all operators B that are overloaded
3
4 Def: V (l)← {v ∈ V |l(v) = l} // all operators of level l
5 S ← V (0) // get sources
6
7 B ← {} // all found bottlenecks
8 l← 0 // start at level 0
9

10 while V (l) ̸= ∅ do
11 foreach v ∈ V (l) do
12 if v ∈ S then // c. f. Line 5
13 Rin(v)← Ii // Ii ∈W
14 else
15 P ← {p|(p, v) ∈ E} // producers
16 Rin(v)←∑︁

∀p∈P Rout(p) // Equation 3.16
17

18 bin(v)←
∑︁

∀p∈P
Rout(p)∑︁

∀p∈P

Rout(p)
bout(p)

// Equation 3.21

19
20 C(v)← Equation 3.3 // apply cost model from Ch.3
21 // starting with Eq.3.3
22 // dependent equations omitted for brevity
23
24 if Rin(v) > C(v) then // bottleneck detected (Eq.4.3)
25 B ← B ∪ {v}
26
27 Rout(v)← s ·min{Rin(v), C(v)} // Equation 4.6
28 l← l + 1

First, the input date rate and input batch size is computed (Lines 12-18). For sources
(Line 12), the input data rate is provided by the workload (Line 13). No input batch
size is computed because sources do not have an input queue. For all other operators,
the input data rate and input batch size is computed as described in Section 3.2.2
(Lines 16-18). (2) In the second step (Line 20), the cost model from Chapter 3 is
applied to compute the operator capacity. (3) The actual bottleneck detection step
follows in Lines 24-25 based on Definition 43. If an operator is overloaded, it is
added to the result set B in Line 25. (4) In the last step, the output data rate of
the operator is computed (Line 27). After all operators of one level are processed,
the algorithm advances to the next level (Line 28). The main loop (Line 10) checks
if the current level contain any operators. This condition is true until all sinks are
processed and the level is larger than the level of any operator. For this case, the
algorithm terminates.

68 CHAPTER 4. DATA FLOW OPTIMIZATION

Lemma 1. The bottleneck detection algorithm (Algorithm 1) has a runtime com-
plexity of O(|V | · δ) with δ being the maximum input degree, i. e., maximum number
of incoming edges, over all operators in the data flow program.

Proof. Algorithm 1 is initialized with level 0 in Line 8, and the level is incremented
exactly once within the main loop (Line 28). Hence, the main loop (Lines 10-28) is
executed as many times as levels exists in the data flow program. Furthermore, it is
clear from Definition 44 that each operator is contained in exactly one level. Thus,
each operator will be processed in exactly one for-loop execution of the algorithm.
Processing a single operator (Lines 12-27) has runtime complexity O(δ) because
Equation 3.16 (Line 16), Equation 3.21 (Line 18), and Equation 3.27 (Line 20)2

depend on the number of upstream producers. Hence, the complexity of Algorithm 1
is O(|V | · δ).

Corollary 2. The complexity of Algorithm 1 is O(|V |2) because in general δ grows
with |V |. For example, let D be a graph with x sources and x sinks (i. e., |V | = 2 ·x),
and each source is connected to all sinks. For this case, each sink has |V |/2 producers,
and thus, δ = |V |/2.

In practice, δ does not grow with |V | but is a constant. Hence, in practice we
expect a linear runtime in the number of operators |V | of Algorithm 1.

Algorithm 1 only identifies bottlenecks in the data flow program, but does not
categorize them into CPU or network bottlenecks. It is straightforward to extend
the algorithm to compute a categorization, and thus, we omit it for brevity. The cat-
egorization is useful, because it helps to change a configuration to avoid bottlenecks.
For network bottlenecks, it is required to increase the parallelism to increase the
operator capacity. For CPU bottlenecks, increasing the output batch size or input
batch size3 of an operator may also increase its capacity. We refer to Section 4.2 for
an algorithm that computes a configuration that avoid bottlenecks in a data flow
program.

Above, we introduced our bottleneck detection algorithm (Algorithm 1) and
defined bottlenecks formally (Definition 43). Next, we introduce an algorithm that
predicts the effective throughput of a data flow program for the case that a bottleneck
exists.

4.1.2 Throughput Prediction

Detecting bottlenecks as discussed in the previous section is useful to verify if a
configuration of a data flow program results in bottlenecks. However, it does not
provide any insight into the achieved throughput if a bottleneck exists. Thus, we
introduce a second algorithm that computes the achieved throughput per source. In
alignment to the data flow capacity (Definition 25) and workload (Definition 42),
we define the data flow throughput as a vector (c. f. Definition 46 below) that de-
scribes the throughput per source operator. Before we formally define the data flow

2Equation 3.27 is used within Equation 3.3 to compute the output network capacity Co.
3The input batch size can be increased indirectly, by increasing the output batch sizes of the

corresponding producers.

4.1. BOTTLENECK DETECTION AND THROUGHPUT PREDICTION 69

throughput, we introduce effective operator input and operator output data rate as
follows:

Definition 45 (Effective Operator Input and Output Data Rate). Given an oper-
ator v in a data flow program. The effective input data rate ˆ︁Rin of v is the number
of input records per second that is processed by v. The effective output data rate
ˆ︁Rout of v is the number of output records per second that v sends downstream.

Definition 45 implies that ˆ︁Rin ≤ Rin and that ˆ︁Rout ≤ Rout. We call the effective
input data rate of an operator the operator throughput. Furthermore, the data flow
throughput is defined as follows:

Definition 46 (Throughput of a Data Flow Program). Given a data flow program
D with sources s1, . . . , sn. The throughput T of D with regard to a configuration Γ
and workload W is:

T(D, Γ,W) = ⟨ ˆ︁Rin(s1), . . . , ˆ︁Rin(sn)⟩ (4.8)

Corollary 3 (Throughput and Workload Relationship). For any given triple D, Γ,
and W, Definition 46 implies that:

T ≤W (4.9)

with
T ≤W ⇐⇒ ∀ ˆ︁Rin(si) ∈ T : ˆ︁Rin(si) ≤ Ii

In the following, we discuss how to compute the throughput of a data flow
program. Before we introduce an algorithm to compute the data flow throughput,
we explain the dependencies of effective input and output data rates (Definition 45)
between the operators of a data flow program. If a single operator cannot send its
output data in a timely manner, e. g., there is a network bottleneck, the effective
output data rate limits the effective input data rate. Furthermore, given a producer
p and its consumer c, there is a dependency between ˆ︁Rout(p) and ˆ︁Rin(c), because the
producer output data rate may be limited by the effective consumer input data rate.
This dependency is called back pressure [SGH15, CWI+16, FAG+17, KRK+18]. A
slower downstream operator throttles the throughput of upstream operators. In the
following, we discuss this dependency and how we compute ˆ︁Rin and ˆ︁Rout. We point
out that back pressure propagates in the reverse direction to the data flow (i. e.,
from higher levels to lower levels). Thus, we start our discussion beginning with
sinks.

Definition 47 (Effective Sink Input Data Rate). Let v be a sink in a data flow
program. Because sinks do not have any downstream operators, they are not subject
to back pressure. Therefore, the effective input data rate of v only depends on its
input data rate and capacity and is computed as:

ˆ︁Rin = min{Rin, C} (4.10)

If we know the effective input data rate of an operator, we compute the effective
output data rates for all its upstream producers as follows:

70 CHAPTER 4. DATA FLOW OPTIMIZATION

p1

p2

c

5 s−1

15 s−1

Rout(p1) = 10 s−1

Rout(p2) = 30 s−1

R̂in(c) = 20 s−1

Figure 4.3: Back pressure from consumer c to producers p1 and p2.

p

c1

c2

10 s−1

10 s−1

R̂out(p) = 10 s−1

R̂in(c1) = 10 s−1

R̂in(c2) = 20 s−1

Figure 4.4: Back pressure from consumers c1 and c2 to producer p.

Definition 48 (Effective Operator Output Data Rate). Given a consumer c with
producers p1, . . . , pn. The effective output data rate for each producer pi is computed
as:

ˆ︁Rout(pi) = Rout(pi)
Rin(c) ·

ˆ︁Rin(c) (4.11)

Example 10. Assume two producers p1 and p2 with data rates Rout(p1) = 10 s−1 and
Rout(p2) = 30 s−1 and a consumer c with an effective input data rate ˆ︁Rin(c) = 20 s−1

(Figure 4.3). The data rate of 20 s−1 that c can process, is distributed between p1
and p2. Because p1 sends 25% = 10 s−1

40 s−1 = Rout(p1)
Rin(c) of all input data (i. e., Rin(c) =

10 s−1 + 30 s−1 = 40 s−1), it can effectively send ˆ︁Rout(p1) = 25% · ˆ︁Rin(c) = 25% ·
20 s−1 = 5 s−1. Similarly, p2 contributes 75% = 30 s−1

40 s−1 of Rin(c), and thus, can
effectively send ˆ︁Rout(p2) = 75% · 20 s−1 = 15 s−1.

Example 10 illustrates how back pressure propagates from downstream to up-
stream operators. If downstream back pressure occurs, it limits the throughput, i. e.,
effective input data rate (Definition 45), of an operator. For this case, we compute
the effective input data rate as follows:

Definition 49 (Effective Operator Input Data Rate). Given a producer p with
selectivity s (c. f. Section 3.2) and consumers c1, . . . , cn. Each consumer ci might
limit the producer output data rate, and thus, the lowest ˆ︁Rin(ci) determines ˆ︁Rout(p).
Hence, we compute ˆ︁Rin of p as:

ˆ︁Rin(p) =
ˆ︁Rout(p)

s
(4.12)

with
ˆ︁Rout(p) = min{ ˆ︁Rin(ci)|1 ≤ i ≤ n} (4.13)

4.1. BOTTLENECK DETECTION AND THROUGHPUT PREDICTION 71

Algorithm 2: Throughput Prediction
1 Input: data flow D = (V, E); configuration Γ(D); workload W(D)
2 Output: throughput T(D, Γ,W)
3
4 // compute capacity, input, and output data rates
5 bottleneckDetection(D,Γ,W) // use Algorithm 1
6

7 S̄ ← {v ∈ V |∄v′ : (v, v′) ∈ E} // sinks
8 l← l − 1 // initialized in Line 5 via Algorithm 1
9

10 // compute effective input and output data rates
11 while l ≥ 0 do
12 foreach v ∈ V (l) do
13 if v ∈ S̄ then
14 ˆ︁Rin(v)← min{Rin(v), C(v)} // Equation 4.10
15 else
16 ˆ︁Rout(v)← min

{︂
Rout(v)
Rin(c) · ˆ︁Rin(c) |(v, c) ∈ E

}︂
// Equation 4.11

17

18 ˆ︁Rin(v)← min{ˆ︁Rin(c)|(v,c)∈E}
s // Equation 4.12

19 l← l − 1

Example 11. Assume a producer p with two consumers c1 and c2 with maximum
input data rates ˆ︁Rin(c1) = 10 s−1 and ˆ︁Rin(c2) = 20 s−1 (Figure 4.4). The maximum
output data rate of p is limited by the smallest maximum input data rate of its
consumers, and thus, ˆ︁Rout(p) = 10 s−1.

Given Equation 4.10, Equation 4.11, and Equation 4.12 we can compute the
throughput of a data flow program as follows: first, we identify the bottleneck op-
erators. We emphasize that there might be multiple bottlenecks on a path from a
source to a sink, and thus, the bottlenecks in higher levels of the data flow program
determine the data flow throughput. After those bottlenecks are detected, we back-
track to the sources using the equations from above to compute the effective input
and output data rate for each operator.

Algorithm 2 computes the throughput of a data flow program. In the first phase
it uses Algorithm 1 to compute the operator capacity as well as the operator input
and output data rate for all operators in the data flow program (Line 5). In the
second phase (Lines 11-19), the data flow graph is traversed in the reverse order
(Line 19), starting at the largest level (Line 8) and terminating after level 0 was
processed (Line 11). In this phase, the effective input and output data rates for each
operator are computed. Finally, the algorithm returns the data flow throughput that
comprises the effective source input data rates.

Corollary 4. The runtime complexity of Algorithm 2 is the same as the runtime
complexity of Algorithm 1. Equation 4.10 and Equation 4.11 have constant runtime
and Equation 4.12 has complexity O(δ). Furthermore, each operator is processed
exaclty once in the second phase of the algorithm, similarly to the first phase.

72 CHAPTER 4. DATA FLOW OPTIMIZATION

In this section, we introduced algorithms that take a data flow program and
its configuration as input and compare the computed data flow capacity to a given
workload. These algorithms are useful to reason about a given configuration. How-
ever, it implies that a user needs to specify the configuration manually. In the
next section, we introduce an algorithm that computes a configuration, lifting the
requirement for the user to specify a configuration.

4.2 Minimizing Resource Consumption

A common goal in data flow provisioning is to minimize the used compute resources
while avoiding bottlenecks at the same time. To this end, we employ the following
resource model. We assume a homogeneous cluster of servers onto which the stream
processing system is deployed. Given a server with n CPU cores and a server network
bandwidth of N̂ (Section 3.3), we assign n tasks slots per server. Each task slot
may executed a single task using a single thread for execution. Hence, a task slot
may utilize a single CPU core. The available network bandwidth is shared over all
n tasks slots, i. e., each task slot has a network bandwidth of N = N̂/n. We assume
that a task will fully utilizes either its CPU or its network resource. Hence, our
resource model ensures that a single server is never overloaded because we allow
for n task slots per server. Because a task may not fully utilize both its CPU and
network capacity, using n tasks slots may result in some under utilization of a server.
We consider this an orthogonal scheduling problem that is beyond the scope of this
thesis, and refer to related work (Section 4.4).

In Section 3.1, we discussed that batching can increase the capacity of an oper-
ator. Furthermore, for a fixed input data rate (i. e., given workload), an increased
capacity allows to run fewer tasks. The required resources to execute a data flow
program depend on the number of deployed tasks. Hence, to minimize the required
resources, we want to find a configuration that uses batch sizes that allows to deploy
a minimum number of tasks.

Before we introduce our optimization goal formally, we define the resource con-
sumption of a data flow program with respect to its configuration as follows:

Definition 50 (Resource Consumption). Let D = (V, E) be a data flow program
with configuration Γ resulting in execution graph EG = (T, F) (Definition 4). The
resource consumption RC of EG is:

RC(EG) = |T | (4.14)

The resource consumption can also be expressed as a function of D and Γ:

RC(D, Γ) =
∑︂

v∈V

dop(v) (4.15)

The resource consumption is the number of all tasks of an execution graph,
which equals to the sum of all dop values over all operators in D with respect to Γ.
Because we assume that each task is deployed into one task slot as discussed above,
RC implicitly describes the required number of CPU cores and network consumption
that are required to execute EG.

4.2. MINIMIZING RESOURCE CONSUMPTION 73

To compute a configuration that minimizes the used resources, we need to find a
configuration that minimizes the overall parallelism. At the same time, this config-
uration must result in a data flow capacity (Definition 25) that avoids bottlenecks,
as defined below:

Definition 51 (Workload-Capacity-Relationship). Given a workload W =
⟨I1, . . . , In⟩ (Definition 42), the set of all capacities C†, and a capacity C ∈ C† for
a data flow program D with configuration Γ. We say C = ⟨c1, . . . , cn⟩ is equal or
greater than W, denoted C ≥W, iff:

C ≥W ⇐⇒ ∀ci ∈ C : ci ≥ Ii (4.16)

Definition 51 states that a capacity is larger than a workload if all capacity
elements are larger than their corresponding input data rates of the workload. The
definition of data flow capacity (Definition 25) implies that no operator in D is
overloaded for this case—otherwise C would violate its definition.

Using Definition 50 and Definition 51 we describe the problem to minimize the
resource consumption of an execution graph (given a data flow program and work-
load), such that there is no bottleneck, as the following minimization problem:

Definition 52 (Minimizing Resource Consumption). Given a data flow program
D = (V, E) and a workload W. Find a configuration Γ with:

min
∀Γ(V)

{RC(D, Γ)}

with ∃C ∈ C† : C ≥W
(4.17)

The data flow capacity C depends on the configuration Γ of D. To minimize the
resource consumption of D, we determine the optimal configuration Γ∗ such that
RC is minimized by Γ∗ and there exists a capacity C that is larger than the given
workload. We emphasize that there is a set of solutions for Γ∗, because our objective
function is only required to minimize resource consumption. The batch size for each
operator of D might have different values for different configurations in the solution
space. Because batch sizes influence processing latency, our algorithm preferably
chooses small batch sizes to achieve a low latency following a best effort approach.
Using small batch sizes to keep latency small is not part of the optimization problem.
Minimizing the latency would require to model the expected latency based on batch
sizes. Such a latency model is beyond the scope of this thesis and is interesting
future work.

4.2.1 Minimizing Parallelism

The goal of our optimization is to avoid bottlenecks as defined in Definition 43.
Thus, we compute a dop for each operator such that the operator capacity is larger
than the operator input data rate. The capacity of an operator depends on the
capacity of the corresponding tasks as well as the number of tasks for this operator.
Thus, given the input data rate Rin of an operator v we derive that there is no
bottleneck for a large enough operator dop. Using Equation 4.3 and Equation 3.3

74 CHAPTER 4. DATA FLOW OPTIMIZATION

we express this relationship formally as follow:

Rin(v) ≤ C(v)
⇐⇒ Rin(v) ≤ dop · C(tv)
⇐⇒ dop ≥ Rin(v)

C(tv)

(4.18)

Our optimization goal is to minimize RC, which implies to minimize the dop of each
operator. Hence, the minimum dop∗ of an operator that avoids a bottleneck is:

dop∗(v) =
⌈︃

Rin(v)
C(tv)

⌉︃
(4.19)

Equation 4.19 is based on a given input data rate Rin and the task capacity C. If we
maximize the task capacity by computing corresponding batch sizes (Section 4.2.2
below), we minimize the dop of an operator. The task capacity is based on the
processing capacity, the input network capacity, and the output network capacity
(Definition 28):

C = min{Ci, Cp, Co}
All parameters to compute the network input capacity and the network output
capacity of a task are known. We emphasize that the network capacities are inde-
pendent of the data flow configuration. However, the input batch size and the output
batch size that influence the processing capacity are not given and must be computed
by our algorithm. Hence, the processing capacity Cp is unknown (Equation 3.5 and
Equation 3.8):

Cp = 1
cfetch

bin
+ ccpu + s·cemit

bout

However, to minimize the dop, it is not required to know the processing capacity.
Instead, we use the maximum processing capacity ˆ︁Cp (Equation 3.11), which is
independent of input and output batch size:

ˆ︁Cp = 1
ccpu

To compute the minimum dop∗ of an operator, we take into account that ˆ︁Cp is a
strict (i. e., exclusive) bound. ˆ︁Cp can never be achieved because using an infinite
batch size is not possible.

Example 12. Assume an input data rate Rin = 10 s−1 and CPU cost ccpu = 1 s.
If ˆ︁Cp could be achieved, it would be sufficient to execute 10 tasks assuming enough
network capacity. However, the processing cost (Equation 3.8) includes some non-
zero input fetch and output emit cost. Hence, the maximum processing capacity ˆ︁Cp
of 1 s−1 is larger than the actual processing capacity, for all input/output batch sizes.
Using a degree of parallelism (c. f. Equation 4.19)

dop =
⌈︄

Rin
ˆ︁Cp

⌉︄
= 10

would not be sufficient to avoid a CPU bottleneck.

4.2. MINIMIZING RESOURCE CONSUMPTION 75

Using the maximum processing capacity of a task, the minimum dop∗ for an
operator that avoids a CPU bottleneck is computed as follows:

dop∗
cpu =

⌊︄
Rin
ˆ︁Cp

⌋︄
+ 1 (4.20)

Equation 4.20 incorporates that the maximum processing capacity is an exclusive
bound. Applying it to Example 12 results in 11 tasks instead of 10 (as shown
originally). We generalize the relationship of Equation 4.19 and Equation 4.20 in
the following corollary:

Corollary 5. For any ϵ > 0, ϵ→ 0, and Cp = ˆ︁Cp − ϵ it holds that:
⌈︄

Rin
Cp

⌉︄
=

⌊︄
Rin
ˆ︁Cp

⌋︄
+ 1 (4.21)

Equation 4.20 ensures that finite input and output batch sizes exist such that
the processing capacity is larger than the input data rate. We discuss how input
and output batch size are computed in Section 4.2.2. Using the discussed equations
from above, we compute the minimum degree of parallelism dop∗ of an operator
considering each capacity individually. Since all three capacities are independent
from each other, each determines an independent lower bound for the required dop.
The minimum dop∗ of an operator is the maximum over all three lower bounds.
Hence, we split Equation 4.19 in three parts and take the maximum over all three:

dop∗(v) =
⌈︃

Rin(v)
C

⌉︃

=
⌈︄

Rin(v)
min{Ci, Cp, Co}

⌉︄

=
⌈︄

max
{︄

Rin(v)
Cp

,
Rin(v)

Ci
,
Rin(v)

Co

}︄⌉︄

= max
{︄⌈︄

Rin(v)
Cp

⌉︄
,

⌈︃
Rin(v)

Ci

⌉︃
,

⌈︃
Rin(v)

Co

⌉︃}︄

(4.22)

As a last step, we use Equation 4.21 to substitute the unknown processing capacity
by the maximum processing capacity:

dop∗(v) = max
{︄⌊︄

Rin(v)
ˆ︁Cp

⌋︄
+ 1,

⌈︃
Rin(v)

Ci

⌉︃
,

⌈︃
Rin(v)

Co

⌉︃}︄
(4.23)

We use Equation 4.23 in our optimization algorithm, to minimize the parallelism
for each operator. To ensure that there is no bottleneck for the computed dop∗, we
compute corresponding batch sizes as discussed in the next section.

4.2.2 Batch Size Computation

In the previous section, we discussed how we compute the minimum dop∗ of each
operator for a given data flow program and workload. To find a solution for our op-
timization problem (Equation 4.17), we must compute an output batch size for each

76 CHAPTER 4. DATA FLOW OPTIMIZATION

operator such that there is no bottleneck in the execution graph of D. Since batch-
ing increases processing latency it is desired to use small batch sizes to reduce the
processing latency. Our algorithm does not guarantee a minimum processing latency
but uses a best effort approach to compute small batch sizes for each operator.

Considering our discussion from Section 4.2.1 we know that dop∗ is large enough
to avoid network bottlenecks. To ensure that dop∗ also avoids CPU bottlenecks, the
batch sizes must be large enough such that the processing capacity is larger than
the task input data rate (Equation 3.5 and Equation 3.8):

rin ≤ Cp

≤ 1
cp

≤ 1
cfetch

bin
+ ccpu + s·cemit

bout

(4.24)

From Equation 4.24 we derive that there are lower bounds for bin and bout in the
solution space. Increasing only the input batch size or only the output batch size
might not be sufficient to achieve the required processing capacity.

Example 13. Let v be an operator with costs cfetch = cemit = ccpu = 900 ms and a
selectivity s = 1. Assuming an input data rate of Rin = 1 s−1, we derive based on
Equation 4.20 and Equation 3.11 that a single tasks is sufficient to avoid a CPU
bottleneck:

dop∗ =

⎢⎢⎢⎣ Rin
1

ccpu

⎥⎥⎥⎦ + 1 =
⌊︄

1 s−1

1
900 ms

⌋︄
+ 1 =

⌊︃ 900 ms
1000 ms

⌋︃
+ 1 = 1

Let bin = 5: For this case, if bout →∞, the minimum processing cost is 1080 ms:

cp = lim
bout→∞

cfetch
bin

+ ccpu + s · cemit
bout

= lim
bout→∞

900 ms
5 + 900 ms + 1 · 900 ms

bout
= 180 ms + 900 ms + 0 ms = 1080 ms

Thus, a CPU bottleneck exists because the processing capacity is Cp = 1/1080 ms < Rin.
Only if the input batch size is at least 10, an output batch size of 90 or higher is
sufficient to avoid a CPU bottleneck:

cp = 900 ms
10 + 900 ms + 900 ms

90 = 1000 ms

Some other solutions (i. e., batch sizes that avoid a CPU bottleneck) for this example
are bin = 15 and bout = 25, or bin = 20 and bout = 20.

Example 13 illustrates that there are lower bounds for input and output batch
size and that there are multiple solutions for input and output batch sizel to avoid

4.2. MINIMIZING RESOURCE CONSUMPTION 77

a CPU bottleneck. We compute the lower bounds b∗
in and b∗

out of bin and bout based
on Equation 4.24 as follows:

bin ≥
cfetch

1
rin
− ccpu − s·cemit

bout

=⇒ b∗
in =

⌊︄
lim

bout→∞
cfetch

1
rin
− ccpu − s·cemit

bout

⌋︄
+ 1

=
⌊︄

cfetch
1

rin
− ccpu

⌋︄
+ 1

(4.25)

and
bout ≥

s · cemit
1

rin
− ccpu − cfetch

bin

=⇒ b∗
out =

⌊︄
lim

bin→∞
s · cemit

1
rin
− ccpu − cfetch

bin

⌋︄
+ 1

=
⌊︄

s · cemit
1

rin
− ccpu

⌋︄
+ 1

(4.26)

A solution for our optimization problem (Equation 4.17) is a configuration that
contains output batch sizes, but no input batch sizes. To use Equation 4.24 to
compute output batch sizes, we first need to compute the corresponding input batch
size bin. Input batch sizes depend on the upstream producer output batch sizes (c. f.
Corollary 1). To resolve mutual dependencies, we exploit the structure of a data flow
program: (1) sources do not have input batch sizes, and thus, we can compute their
output batch sizes; (2) the operator levels (Definition 44) allow us to compute bin
before bout for all other nodes. Knowing bin, we compute bout based on Equation 4.24
as follows:

bout =

⎡
⎢⎢⎢

s · cemit(︂
1

rin
− ccpu − cfetch

bin

)︂

⎤
⎥⎥⎥

(4.27)

To use Equation 4.27 we consider the following: for a source node there is no input
queue, and thus, we set cfetch = 0 that allows us to compute a minimum output
batch size without bin as a parameter. If we know the output batch sizes of a
producer (e. g., a source), we can compute corresponding input batch sizes for their
consumers from the next level. For this step, the effective input batch size must be
larger then the minimum input batch size. If this condition is violated, we must
increase the producer output batch sizes accordingly. After the effective input batch
sizes are known, we compute the output batch size of downstream nodes. Following
this pattern, it is possible to compute an output batch size for all operators in a
data flow program level-by-level. We describe an algorithm that uses this approach
in more detail in the next section.

4.2.3 Algorithm Resource Optimizer

In this section, we introduce a resource minimization algorithm (Algorithm 3) that
computes a solution for the optimization problem as specified in Definition 52. Algo-
rithm 3 takes a data flow program D and a workload W(D) as input and computes

78 CHAPTER 4. DATA FLOW OPTIMIZATION

Algorithm 3: Resource Minimizer
1 Input: data flow: D = (V, E); workload: W(D)
2 Output: configuration Γ that is a solution to Equation 4.17
3
4 Def: V (l)← {v ∈ V |l(v) = l} // all operators of level l
5 S ← V (0) // get sources
6
7 l← 0 // start at level 0
8 while V (l) ̸= ∅ do
9 foreach v ∈ V (l) do

10 if v ∈ S then // c. f. Line 5
11 Rin(v)← Ii // Ii ∈W
12 else
13 Rin(v)←∑︁

∀p∈V :∃(p,c)∈E Rout(p) // Equation 3.16
14

15 dop(v)← max
{︃⌊︃

Rin(v)
ˆ︁Cp

⌋︃
+ 1,

⌈︂
Rin(v)

Ci

⌉︂
,
⌈︂

Rin(v)
Co

⌉︂}︃
// Equation 4.23

16
17 if v /∈ S then // c. f. Line 5
18 bin(v)←

∑︁n

i=1 Rout(pi)∑︁n

i=1
Rout(pi)
bout(pi)

// Equation 3.21

19 b∗
in(v)←

⌊︃
cfetch

1
rin

−ccpu

⌋︃
+ 1 // Equation 4.25

20
21 while bin(v) < b∗

in(v) do
22 p̄← p ∈ V : (p, v) ∈ E∧
23 bout(p) = min{bout(p′)|∀p′ ∈ V : ∃(p′, v) ∈ E}
24 bout(p̄)← b∗

in(v)
25 bin(v)←

∑︁n

i=1 Rout(pi)∑︁n

i=1
Rout(pi)
bout(pi)

// Equation 3.21

26
27 if ∃v′ ∈ V : (v, v′) ∈ E then // non-sinks

28 bout(v)←
⎡
⎢⎢⎢

s·cemit(︂
1

rin
−ccpu− cfetch

bin(v)

)︂
⎤
⎥⎥⎥

// Equation 4.27

29 Rout(v)← s ·Rin(v) // Equation 3.15
30 l← l + 1

a configuration Γ for D that is a solution to Equation 4.17. Algorithm 3 is based on
the equations from the previous sections.

Algorithm 3 traverses the data flow program based on levels (similarly to Al-
gorithm 1 and Algorithm 2). For each operator of a level (Line 9), the algorithm
computes dop and bout as follows: first it computes the operator input data rate. For
sources, the input data rate is the same as provided by the workload that is an in-
put to the algorithm (Line 11). For all other operators, the input data rate depends
on the upstream operator output data rates (Line 13). In Line 15, the algorithm

4.2. MINIMIZING RESOURCE CONSUMPTION 79

computes the minimum dop∗ as described in Section 4.2.1. If an operator is not a
source, Algorithm 3 computes the operator input batch size following Section 4.2.2
(Lines 17-25). First, it computes the operator input batch size based on the up-
stream output batch sizes (Line 18). The input batch size must not be smaller than
the minimum input batch size b∗

in that is computed in Line 19. As long as bin < b∗
in

(Lines 21-25), the algorithm increases the output batch of the producer with the
smallest output batch size (Line 22) to b∗

in (Line 24). In Line 25, the input batch
size is recomputed using the updated upstream output batch size. The last phase of
the algorithm does not apply to sink nodes (Lines 27-29) because those do not have
output queues or downstream consumers. In this phase, the algorithm computes
output batch sizes (Line 28) and output data rates (Line 29). We use Equation 3.15
instead of Equation 4.6 because we know that no bottleneck exists. After all opera-
tors of a level are processed, Algorithm 3 advances to the next level (Line 30) until
all operators are processed (i. e., V (l) = ∅) and the algorithm terminates (Line 8).

Lemma 2. Algorithm 3 computes a configuration that is a solution to the “Mini-
mizing Resource Consumption” optimization problem (Definition 52).

Proof. Algorithm 3 computes a configuration that minimizes RC because it com-
putes a minimal dop (Line 15) for each operator of the input data flow program.
Since the dop of each operator is minimized, it follows that RC is minimized. If only
RC − 1 tasks are deployed, one operator will not have enough capacity to process
its input data rate and would be a bottleneck. Furthermore, Algorithm 3 computes
output batch sizes such that no operator is a CPU bottleneck. For sources, this
follows from our cost model (Line 28). For all other operators Lines 21-25 ensure
that bin ≥ b∗

in. If bin is smaller that b∗
in at least one upstream bout must be smaller

than b∗
in, because bin is computed as a weighted average over all upstream bout values

(Equation 3.21). Therefore, setting bout(p) to b∗
in (Line 24) increases bout(p) and it

follows that bin is increased (Line 25). The while-loop is guaranteed to terminate,
because for all bout it holds that it is either larger than b∗

in initially, or it may be
increased to b∗

in ensuring that the weighted average over all bout will eventually be
at least b∗

in. Since bin will be at least b∗
in after the while-loop it follows that Line 28

computes an output batch size that avoids a CPU bottleneck. Last, increasing the
output batch size of upstream producers (Line 24) can only increase the producer
task capacity, and thus, cannot introduce a bottleneck.

Lemma 3. The complexity of Algorithm 3 is O(|V | · δ2), with δ being the maximum
input degree over all operators in the data flow program.

Proof. Algorithm 3 executes the outer while-loop (Lines 8-30) once for each level
(Line 30). The for-loop (Lines 9-29) is executed once per operator per level. Hence,
overall it is executed exactly once per operator, because each operator is assigned
to exactly one level. The inner while-loop (Lines 21-25) is executed at most once
per incoming edge of v and has linear runtime in δ because the input batch size
is recomputed in Line 25. Hence, the inner while-loop has a runtime complexity
of O(δ2). All other lines have constant or linear runtime in δ. Hence, the overall
runtime complexity of Algorithm 3 is O(|V | · δ2).

80 CHAPTER 4. DATA FLOW OPTIMIZATION

Even if the complexy of Algorithm 3 is O(|V | · δ2) = O(|V |3), in practice, δ does
not grow with |V | but is a constant (c. f. Corollary 2). Hence, in practice we expect
a linear runtime in the number of operators |V | of Algorithm 3.

4.3 Evaluation
In the previous chapter (Chapter 3), we introduced our cost model and discussed
different batching techniques (Section 3.4). Using our cost model, we introduced
several algorithms to detect bottlenecks (Section 4.1.1), to predict the data flow
throughput (Section 4.1.2), and to minimize resource consumption (Section 4.2). In
this section, we present results derived from our cost model and algorithms.

We first present some micro benchmark results that show the impact of batch-
ing on the capacity/throughput of tasks. Later, we evaluate the performance of
data flow programs for different configurations. For this evaluation, we are using
Apache Storm [ASFf, TTS+14] an open-source, distributed, and data-parallel stream
processing system. Apache Storm does not support batching natively; thus, we im-
plemented a custom batching layer using the shared batching scheme as described
in Section 3.4.

We ran our experiments using Apache Storm version 0.9.3 and Open-JDK 8 (64-
bit) with Ubuntu Server 16.04 LTS (64-bit). Our processing cluster consists of 28
machines each equipped with two Xeon E5-2620 2 GHz CPUs (6 cores) and 24 GB
of main memory. The machines are connected via 10 Gbit Ethernet. The clocks of
all machines are synchronized via NTP.

Before we describe our experiments, we discuss some details about our batching
layer implementation in Apache Storm:

Transparent Batching Implementation Our approach in implementing batch-
ing is non-intrusive, i. e., we do not alter the streaming system.4 Non-intrusive
batching has the advantage that a user does not need to install a modified version
of Apache Storm. We built our library in such a way that it can be used without
even altering the existing user code, in particular user-defined functions. Hence, our
batching layer is transparent both to the system and to the user. We implemented
our batching layer as user-defined second-order functions that take the original user
functions as input. Our second-order functions are a wrapper to batch result records,
and a wrapper to de-batch incoming records. A batch is basically a fat record—we
call it batch record. To Storm, a batch record looks like a regular (but very big)
record. Because Storm performs some sanity-checks on emitted records, we used
a vertical layout for our batch records. A straightforward batch layout that con-
catenates multiple records into a single record would not work with Storm, because
Storm expects the number of attributes of output records to match a user-defined
schema. For example, using a batch layout with a single attribute (that is a concate-
nation/list of records) or a “wide” schema (a concatenation of all attributes of all
records within a batch) would be rejected by Storm, because the actual and expected
number of attributes would not match. Hence, we implemented a vertical batch lay-
out similar to the column-based table layout as used in some relational database

4The code is available on GitHub: https://github.com/mjsax/aeolus.

https://github.com/mjsax/aeolus

4.3. EVALUATION 81

1K 10K 100K 1000K
100

101

102

103

104

105

106

107

workload in records/second

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd

Workload Spout Bolt

Figure 4.5: Spout/bolt throughput for bout = 1 and different workloads.

systems. The schema of a batch record comprises list-attributes. Each user record
is split into its attributes and the attributes are appended to the corresponding list-
attribute of the batch record. For example, three records r1 = ⟨a1, b1⟩, r2 = ⟨a2, b2⟩,
and r3 = ⟨a3, b3⟩ are inserted into a batch record b as ⟨[a1, a2, a3], [b1, b2, b3]⟩. There-
fore, the batch record has the same number of attributes as the original records and
Storm accepts the batch record (Storm does not check the attributes types).

Additionally, it is necessary to change the hash function used by Storm, i. e.,
the default .hashCode() method that all Java classes have. For each record, Storm
calls .hashCode() on the key attributes to determine the consumer task per node.
Therefore, we cannot use Java’s standard List implementations to represent a col-
umn of the batch record because it would change the hash value inconsistently. The
List.hashCode() implementation considers all elements in the list and computes
a different hash value compared to the hash value of any single value in the list.
Hence, we use a custom List implementation (AttributeList class) that returns
the hash value of the first element in the list. We could use any element in the
list because we know that all elements have the same hash value modulo number of
consumer tasks—otherwise a record would have been inserted into a different buffer
(c. f. Section 3.4). Therefore, AttributeList.hashValue() ensures that the hash
value modulo number of consumer tasks of a record batch is the same as for each
record in the record batch. Using AttributeList ensures that the partitioning stays
the same when Storm computes the target task for a single record or batch.

4.3.1 Throughput

In this section, we evaluate the impact of batching on task capacity, and hence,
task throughput. We first consider a single consumer-producer pair for a base-line
evaluation. Later, we consider more complex data flow programs with multiple
different batch sizes.

82 CHAPTER 4. DATA FLOW OPTIMIZATION

10-
100

K

10-
100

0K

100
-10

0K

100
-10

00K

100
0-1

00K

100
0-1

000
K

100
00-

100
K

100
00-

100
0K

0

0.2

0.4

0.6

0.8

1

1.2
·106

bout = 10 bout = 100 bout = 1000 bout = 10000

workload in records/second for different bout

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd Workload Spout Bolt

Figure 4.6: Spout/bolt throughput for different batch sizes and workloads.

Batch Size and Throughput

Our first experiment is a micro-benchmark that measures the throughput of a source
and its consumer. Sources are called spouts, and all other nodes are called bolts in
Storm. A data flow program, comprising spouts and bolts, is called a topology.
Hence, our first topology consists of a single spout and a single bolt that are con-
nected to each other. We do not consider parallelism in this experiment, and execute
both operators with dop = 1. The spout generates random data in-memory (with a
record size of 100 B), and we vary the data rate (i. e., workload) as well as the spout
output batch size.

Figure 4.5 depicts the observed throughput numbers for workloads of 1000 s−1 to
1 000 000 s−1, and a spout output batch size of bout = 1 (i. e., no batching). Hence,
Figure 4.5 presents our base line result, and we discuss the performance impact
of batching in the next paragraph. Because there is a single spout and a single
bolt, the bolt input batch size is bin = 1. For small data rates of 1000 s−1 and
10 000 s−1 the spout throughput and the bolt throughput are equal to the workload
indicating that there is no bottleneck in the topology. However, for a workload of
100 000 s−1, the bolt becomes a bottleneck as indicated by its throughput of about
25 000 s−1 that is smaller than the workload and spout throughput. Furthermore,
for a workload of 1 000 000 s−1, the spout becomes a bottleneck; its throughput of
about 120 000 s−1 is smaller than the workload. For this case, the overall bottleneck
that dictates the throughput of the topology is the bolt, and the overall topology
throughput is limited to 25 000 s−1. An interesting observation is that the spout has
a larger capacity than the bolt. Because neither spout nor bolt do any computation,
and because the bolt does not emit any output records, we derive that the cost for

4.3. EVALUATION 83

0 10 20 30 40 50 600

2,000

4,000

6,000

8,000

10,000

time in seconds

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd

Figure 4.7: Bursty bolt throughput for spout output batch size bout = 10000 and a
workload of 1000 s−1.

putting a record into the output queue (i. e., cemit) and the cost for fetching a record
from the input queue (i. e., cfetch) are different.

We repeat the above experiment for the larger workloads of 100 000 s−1 and
1 000 000 s−1, using spout output batch sizes of 10, 100, 1000, and 10 000 records.
The result is shown in Figure 4.6. For an output batch size of 10 records, the
bolt is no bottleneck for the smaller workload any longer. However, a batch size
of 10 is not sufficient to eliminate bottlenecks for the larger workload, and both
spout and bolt have a smaller throughput than the workload. Similarly, a batch
size of 100 results in a spout and bolt bottleneck for a workload of 1 000 000 s−1. A
batch size bout = 1000 eliminates the spout bottleneck, however, the bolt still has
a smaller throughput (about 965 000 s−1) than the workload. Finally, the largest
batch size of 10 000 records avoids all bottlenecks. Overall, the second part of the
experiment shows that an increased output batch size not only increases the spout
(i. e., producer) capacity, but also the downstream bolt (i. e., consumer) capacity.

We also evaluated the impact of large batch sizes for small workloads. Figure 4.7
shows the bolt throughput over time for a workload of 1000 s−1 and a spout output
batch size bout = 10000 records. We observe that the data rate is bursty. Since the
workload is small and the batch size is large, the spout emits batches in 10 second
intervals. The bolt processes all records of an input batch quickly and stays idle
until the next batch arrives. An interesting observation is that the bolt throughput
spikes to 10 000 s−1, while the workload is only 1000 s−1. Those large spikes are the
result of the long idle times and the high processing capacity of the bolt. Further-
more, those spikes result in an increased processing latency that is dominated by
batching, i. e., the time it takes to complete an output batch in the spout. Assuming
a stable workload data rate of 1000 s−1, the 95th percentile of the processing latency
is about 9.5 seconds. However, for a low workload batching is not required (c. f. Fig-
ure 4.5), and the data could be processed without a bottleneck and effectively zero
latency. Therefore, the experiment shows that large batch sizes are undesired for

84 CHAPTER 4. DATA FLOW OPTIMIZATION

1 10 100 1000 10000
0

0.5

1

1.5
·106

spout output batch size

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd Spout-Predicted Spout-Observed
Bolt-Predicted Bolt-Observed

Figure 4.8: Predicted capacity and observerd throughput for different batch sizes
and a workload of 1 000 000 s−1.

small workloads because they result in bursty data rates and increased processing
latency.

To compare the observed throughput and the predictions of our cost model, we
apply Equation 3.5 and Equation 3.8 (Section 3.2.1) to estimate the spout and bolt
processing capacity. For the spout, there is no input stream and no input batch
size. Furthermore, in our example topology the bolt is a sink and has no output
stream and no output batch size. Thus, we remove the term cfetch

bin
from the equation

for the spout, and we remove the term cemit
bout

from the equation for the bolt. We
parametrize the cost model for the spout with cp = 900 ns and cemit = 7500 ns, and
for the bolt with cp = 900 ns and cfetch = 45 000 ns. We estimate those values using
our experimental results from Figure 4.5 and Figure 4.6.

Figure 4.8 depicts the predicted capacity and observed throughput for the spout
and the bolt based on Equation 3.5 and Equation 3.8. The predictions of our cost
model are quite accurate and the average estimation error is about 8.65 % , with a
minimum error of 0.11 % and a maximum error of 16.14 %.

Effective Input Batch Size

In the previous section, we evaluated the capacity prediction of our cost model with
regards to batching. For this setup, we used a single producer-consumer pair, and
modified the output batch size of the producer (which is the same as the input
batch size of the consumer for this case). In general, the consumer input batch size
depends on multiple factors like the output batch sizes and output data rates of its
producers (Section 3.2.2). Each producer may have a different output batch size
and different output data rate.

In this section, we evaluate the impact of multiple producers with different output
batch sizes and different output data rates on the consumer capacity and through-
put. We also compare the predictions of our cost model (Equation 3.21) to the

4.3. EVALUATION 85

Table 4.1: Effective Input Batch Sizes Based on Equation 3.21

bout 1 5
bout Rout 10 30 50 70 90 10 30 50 70 90

1

10 1
30 1
50 1
70 1
90 1

5

10 3.6 5
30 2.3 5
50 1.6 5
70 1.3 5
90 1.1 5

10

10 5.3 9.1
30 2.7 7.7
50 1.8 6.7
70 1.4 5.9
90 1.1 5.3

observed consumer throughput. For this experiment, we use two spouts both con-
nected to a single bolt. We vary the spout output data rates and output batch
sizes while measuring the bolt throughput. We use a fixed data rate of 100 000 s−1

and distribute this data rate over both spouts. We start with an imbalanced work-
load and shift the load from one spout to the other spout until we reach a re-
versed imbalanced workload: in actual numbers, we use the following workload data
rates: 10 000 s−1/90 000 s−1, 30 000 s−1/70 000 s−1, 50 000 s−1/50 000 s−1, 70 000 s−1/
30 000 s−1, and 90 000 s−1/10 000 s−1. The setup contains one combination that is a
balance workload. We run the experiment for each output data rate combination
with different output batch sizes for both spouts, in particular output batch sizes of
1/1, 1/5, 1/10, and 5/5.

Table 4.1 shows the predicted effective input batch sizes for the bolt (Equa-
tion 3.21) for all data rate and batch size combinations. For the cases with equal
spout output batch sizes (e. g., 1/1 and 5/5) the effective bolt input batch size is the
same as the spout output batch sizes, independent of the workload. However, differ-
ent spout output batch sizes result in different effective bolt input batch sizes—even
if the workload is balanced. This result shows that estimating the effective input
batch size is rather difficult, and a manual configuration/optimization of batch sizes
is hard in practice.

Similar to the previous experiments, both spouts generate random data in-
memory (with a record size of 100 B). Figure 4.9 depicts the measured bolt through-
put (we omit batch size combination 5/10 because the bolt is not a bottleneck for
this case and its throughput is about 100 000 s−1 for all workloads). The figure shows
that different batch sizes impact the bolt capacity dependent of their corresponding
data rate. For example, using a batch size of 5 for the high throughput spout (i. e.,
1/5 with workload 10 000 s−1/90 000 s−1), increases the bolt capacity from about

86 CHAPTER 4. DATA FLOW OPTIMIZATION

10K-90K 30K-70K 50K-50K 70K-30K 90K-10K
0

0.2

0.4

0.6

0.8

1

1.2
·105

spout output data rate combinations

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd Bolt-1/1 Bolt-1/5 Bolt-1/10 Bolt-5/5

Figure 4.9: Bolt throughput for different combinations of spout output data rates
and spout output batch sizes.

25 000 s−1 to 87 000 s−1 (most left blue and red bars). The impact of an increased
batch size is reduced for lower data rates: while the workload shifts from the second
to the first spout the observed throughput is reduced, because the higher batch size
of 5 is less efficient (compare red bar from left to right). Similarly, the bolt through-
put decreases from left to right for a batch-size combination of 1/10. Using a batch
size bout = 5 for both spouts, the bolt is no bottleneck for all workloads. This result
indicates that a batch size of 5 is sufficient to avoid a bolt bottleneck. An interesting
observation is that there is no bottleneck for batch size combination 1/10 and work-
load 10 000 s−1/90 000 s−1. This result aligns with the prediction of our cost model:
Table 4.1 shows an effective batch size of 5.3 for this case that is larger than the
required batch size of 5 to avoid a bottleneck. Overall, the experiment shows that
we modeled the dependency of data rates and batch sizes for multiple producers
accurately, and that our cost model computes a correct efficient input batch size.

4.3.2 Data Flow Optimization

In the previous section, we used micro-benchmarks and non-parallel execution graphs
to evaluate the impact of batching on the task processing capacity. In this section, we
use the Linear Road benchmark [ACG+04] to evaluate our cost model and resource
minimization algorithm. We did not run the benchmark as proposed in the original
paper, and we do not report a L-factor (a scalar value indicating the scaling factor,
and hence maximum throughput of a system). Instead, we use the Linear Road
data generator and a modified data flow program as depicted in Figure 4.10 in our
evaluation. Our example data flow consists of a single spout that reads car position
records line by line from a file. The spout sends the records to the parse operator
that extracts the needed attributes like timestamp, vehicle id, vehicle speed, etc.
Additionally, invalid records are filtered out by the parse operator. The parsed
records are forwarded to the agg operator that computes the average speed over all

4.3. EVALUATION 87

Spout Parse Agg

Block

Mv Toll

Figure 4.10: Modified Linear Road data flow program.

Table 4.2: Linear Road Meta Data

Spout Parse Agg Block Move Toll
ccpu (in ns) 1000 3500 2600 5000 7000 4500
rout (in bytes) 107 32 24 16 24 20
s 1.0 0.99 0.0003 0.002 1.0 1.0

Table 4.3: Optimized configuration w/ and w/o batching.

Spout Parse Agg Block Mv Toll RC

w/o dop 5 7 5 1 1 1 20
w/ dop 1 2 2 1 1 1 8

bout 15 387 1 ⊥ 1 ⊥

vehicles per road segment per minute. The agg operator forwards its output to two
consumers: (1) the block operator, which computes the traffic capacity, and (2) the
mv operator, which computes the average speed over a five minute hopping window
with an advance of one minute. Finally, the toll operator computes the toll to be
paid using the output of the mv operator. While the data is distributed randomly
between spout and parse, all other connections use a hash-based partitioning on
some record attributes.

In the following experiments, we used a processing cluster with similar configu-
ration as described above. The main differences are that the nodes are connected
with 1 Gbit Ethernet, and that we used Storm version 0.8.2. Additionally, we cali-
brated our cost model with (cfetch = 7400 ns and cemit = 2600 ns). The cost factors
and selectivity for each operator of our data flow program (Figure 4.10) is shown in
Table 4.2.

Using a workload of 500 000 s−1, we computed two configurations for our data
flow program—one with batching enabled, and one with batching disabled—to mea-
sure the impact of batching on the resource consumption. We modified Algorithm 3
accordingly such that it always uses a batch size of 1, and only minimized the dop
for each operator. The result configurations for both cases are shown in Table 4.3.
For the non-batching case, 20 tasks are deployed while for the batching case only
8 tasks are required. The result shows that batching increases task capacity and
allows for a reduced resource consumption.

To evaluate if the computed configurations result in any bottleneck or over-
provision the execution graph, we executed our data flow program with both con-
figurations and measure the throughput for each node. Additionally, we manually

88 CHAPTER 4. DATA FLOW OPTIMIZATION

987654321
0

2

4

6
·105

degree of parallelism of the parse operator

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd Spout Parse Agg

Figure 4.11: Operator throughput for different dop configurations of the parse oper-
ator with batching disabled.

7654321
0

2

4

6
·105

degree of parallelism of the agg operator

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd Spout Parse Agg

Figure 4.12: Operator throughput for different dop configurations of the agg operator
with batching disabled.

4.3. EVALUATION 89

4321
0

2

4

6
·105

degree of parallelism of the parse operator

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd Spout Parse Agg

Figure 4.13: Operator throughput for different dop configurations of the parse oper-
ator with batching.

4321
0

2

4

6
·105

degree of parallelism of the agg operator

th
ro

ug
hp

ut
in

re
co

rd
s/

se
co

nd Spout Parse Agg

Figure 4.14: Operator throughput for different dop configurations of the agg operator
with batching.

90 CHAPTER 4. DATA FLOW OPTIMIZATION

modified the dop to confirm if a lower dop results in a bottleneck, or if the computed
dop over-provisions an operator. The results are depicted in Figure 4.11, Figure 4.12,
Figure 4.13, and Figure 4.14. To vary the parallelism for each case we considered a
range of dop ∈ {1, . . . , dop∗ + 2}, with dop∗ being the optimized degree of parallelism
from Table 4.3.

For the non-batching case, Figure 4.11 shows that the parse operator is a bottle-
neck if its dop is smaller than the computed dop = 7 from Table 4.3. The throughput
of the agg operator grows with the throughput of the parse operator as its through-
put is limited by the parse output data rate. Similarly, Figure 4.12 shows that the
agg operator is a bottleneck for a dop < 4. For this case, the computed solution from
Table 4.3 over-provisions the agg operator by one task.

Figure 4.13 and Figure 4.14 depict the corresponding results if we use batching.
For both cases, the parse or agg operator is no bottleneck with a dop = 2 as computed
by Algorithm 3.

Our results show that our cost model captures the runtime cost of data flow
programs with regard to the operator parallelism and batch sizes accurately. Fur-
thermore, Algorithm 3 minimizes the parallelism and computes corresponding batch
sizes such that no bottleneck exists in the data flow.

4.4 Related Work

Aurora [CcC+02] has as similar overload concept to our model, with the main dif-
ference that Aurora is a centralized system and only considers CPU bottlenecks.
Additionally, it introduces the notion of headroom that is the percentage of maxi-
mal available capacity for steady state (i. e., utilization in steady state). Headroom
incorporates the fact that fluctuations in input data rates and data stream character-
istics are expected to vary. While we described our optimization goal to fully utilize
resources, we can easily adopt the headroom concept what should be beneficial for
real-world deployments.

Bottleneck detection for parallel data flow programs is also proposed by Battré
et al. [BHL+10] considering CPU and I/O (i. e., network). The main difference to
our work is that they do not use a cost model but monitor a data flow program
during execution. Bottlenecks are detected by leveraging observed operator state
(i. e., PROCESSING vs. WAITING) and network channel state (i. e., READY vs.
SATURATED). Furthermore, only parallelism is considered in their work, while we
include operator output batch sizes.

The impact of batching on the processing latency in streaming data flows is stud-
ied by Lohrmann et al. [LWK12, LWK14, LJK15]. They propose dynamic batching,
dynamic task chaining, and dynamic scaling based on measured latencies, with the
goal to meet latency constraints. In our work, we use a best effort approach to reduce
latency, without any quality of service guarantees. Furthermore, we determine the
optimal parallelism and batch size analytically, rather than reactively. Our believe
is that both approaches are complementary to each other and it is interesting future
work to integrate them together.

4.5. SUMMARY 91

Adaptive batching is also applied in Spark Streaming [DZSS14]. However, be-
cause Spark Streaming uses a micro-batching approach (Section 2.1) changing the
batch size impacts the result and is not an internal and transparent optimization.

Similar to Lohrmann’s work, dynamic scaling was also proposed for Storm
[YM15, XPG16] and Heron [FAG+17]. For Storm, dynamic scaling is not done auto-
matically, but must be triggered by the user, while Heron automatically adjusts the
parallelism. However, both approaches focuses on parallelism and throughput only.
For Heron, the authors also report that dynamic scaling may suffer from a cascad-
ing scaling effect, because upstream scale-out may lead to a downstream bottleneck.
Hence, we propose to combine dynamic scaling with an analytical cost model ap-
proach, to predict downstream bottlenecks proactively and to avoid a cascading
scaling effect.

Other work on elastic scaling focused on operator state handling [CFMKP13],
minimizing latency spikes during a scaling event [HJHF14], or the integration of
scaling and operator scheduling [FDM+17].

There is a large amount of work in the area of operator/task scheduling in dis-
tributed stream processing systems [WBH+08, BFc12, ABQ13, PHH+15, FDM+15].
The goal is to utilize cluster resources most efficiently, while avoiding the overload
of individual servers. Our resource model is very simple and only based on tasks
that are pinned to “task slots” (Section 4.2). A simple resource model is sufficient
for our work. However, it is desirable to integrate our cost model with a scheduler
using a more fine grained resource model.

4.5 Summary
In this section, we discussed the problem to identify bottlenecks in a data flow
program and presented an algorithm that detects all bottlenecks in a data flow
program given a data flow configuration. This algorithm is helpful if users specify
a configuration manually. For the case that a bottleneck exists, we introduced an
algorithm that estimates the achieved throughput. Second, we formally defined the
optimization problem to minimize the used resources of a data flow deployment. We
also introduced an algorithm that computes a solution to this optimization problem,
i. e., our algorithm minimizes the degree of parallelism by computing corresponding
batch sizes for each node in the data flow. The evaluation shows that batching
increases task capacity and that our cost model and optimization algorithms are
fairly accurate. We also discussed dynamic scaling and the shortcomings of such
approaches. It is interesting future work to enhance dynamic scaling algorithms
with an analytical cost model like ours.

Part III

Data Streaming Model

93

Chapter 5

The Dual Streaming Model

Contents
5.1 Streams and Tables . 96
5.2 Stream Processing Operators 102

5.2.1 Record Stream Transformations 103
5.2.2 Record Stream Aggregation 107
5.2.3 Record Stream Joins . 115
5.2.4 Table Operators . 125

5.3 Model Trade-offs . 128
5.3.1 Processing Latency . 129
5.3.2 Design Space . 132
5.3.3 Data Retention . 133

5.4 Related Work . 134
5.5 Summary . 138

Even after many years of research, there is still no agreement in academia or
industry on a standard stream processing model. The reason for this lack of stan-
dardization seems to lie in the semantic requirements that are highly application
dependent. No existing model seems to satisfy a large enough range of use cases
to be considered as a de-facto standard. At the same time, defining semantics for
stream processing is demanding and existing proposals for data models and pro-
cessing semantics span a wide range in the design space. One needs to cope with
challenges imposed by the nature of data streams, the expressiveness of operators,
and trade-offs faced when implementing a streaming model.

Data-related challenges: Data sources of contemporary streaming applications
are inherently distributed (e. g., in IoT use cases) and commonly assign timestamps
to streaming data, which induces a logical order. Yet, the physical order of data
arriving at a stream processing system may be inconsistent with this logical or-
der [SW04], due to imperfect clock synchronization, network delays, or sources
buffering data while being disconnected for some time [ABC+15] (e. g., a mobile
phone pushes data produced during a flight after reconnecting to the network).
Hence, a stream processing model must be able to handle out-of-order data arrival.

95

96 CHAPTER 5. THE DUAL STREAMING MODEL

Operator-related challenges: A stream processing model shall avoid implicit
operator semantics, in order to achieve deterministic and well-defined processing
results [BDD+10, DTM+13]. In particular, operators may be stateful and need to
be based on the timestamps assigned to data in a stream, i. e., the logical order of
streaming data [BBD+02]. Furthermore, the infinite nature of data streams implies
a trade-off between processing cost, latency, and result completeness. Modeling
this trade-off explicitly and in the light of operator properties (e. g., distributive,
algebraic, and holistic functions [GCB+97]) allows users to reason about the system
behavior.

System-related challenges: A central tenet of stream processing systems is on-
line handling of data with low processing latency, which is of utmost importance.
Hence, when implementing a stream processing model, one cannot rely on cen-
tralized algorithms in order to enable distributed evaluation of operators, that is
required to provide low latency for high volume data streams. At the same time,
data buffering (e. g., for reordering data to resolve inconsistencies of logical and
physical ordering) [ACc+03b, TMSF03] shall be avoided, as it would compromise
processing latency [KFD+10]. With records that are potentially delayed by hours
(e. g., disconnected mobile phone during a flight) decoupling processing latency from
handling out-of-order data is paramount.

Over the past decades, a plethora of stream processing models have been pre-
sented in the literature. Yet, we argue that existing models target only a subset
of the aforementioned challenges. For instance, the seminal work on the Continu-
ous Query Language (CQL) [ABW03] provides well-defined semantics for relational
operators, but neglects issues stemming from out-of-order data. Other models, in
turn, focus on handling of unordered data, but fail to address some of the other
related challenges: stream punctuations [TMSF03] lead to increased processing la-
tency; the “time-travel” mechanism of Borealis [AAB+05] stores the stream history,
blurring the idea of online data handling; while existing models for update/delete
data streams [BW01] lack formal semantics for operators or do not address the
challenges of distributed processing [LTS+08, KFD+10].

In the following sections, we present the Dual Streaming Model to address the
above questions and to unify existing approaches in a holistic model. The main idea
of our model is to introduce state, captured by the relational notion of a table, as
a first class citizen and to represent state as both a mutable collection of records
and a stream of successive updates. This state representation induces a duality of
tables and streams that enables reasoning over inconsistencies between the physical
and logical order of streaming data.

5.1 Streams and Tables

In most existing streaming models, operators directly yield an output data stream
and the treatment of operator state is considered to be an implementation detail.
That is, models such as CQL [ABW03] ignore how inconsistencies of the physical and
logical order of a stream may influence the computation of operator state and, there-
fore, the resulting output stream. Out-of-order records are neglected in the stream

5.1. STREAMS AND TABLES 97

Table 5.1: Formal Notation

Parameter Abbr. Notes
schemas R, S, T for records, streams, tables

R = {T, K, V } – timestamp, key, value
S = {O, T, K, V } – offset, timestamp, key, value
T = {T, K, V } – timestamp, key, value

(table) record r = ⟨t, k, v⟩ w/o offset
stream record r = ⟨o, t, k, v⟩ w/ offset
record attributes r.o, r.t, r.k, r.v offset, timestamp, key, value
stream S[S] / S w/ and w/o explicit schema
table T [T] / T w/ and w/o explicit schema
table version Tt of version t

evolving table T⃗ [T] / T⃗ w/ and w/o explicit schema
record domains JRK, JSK, JTK set of all records

w/ corresponding schema R, S, T
stream domain SJSK set of all streams w/ schema S
table domain T JTK set of all tables w/ schema T
evolving table domain T⃗ JTK set of all evolving tables w/ schema T
modified key set Kt set of modified keys of table Tt

set domain 2D set of all sets of domain D

processing model, so achieving consistent and correct results requires that evalua-
tion is delayed until the logical order of records is established. As a consequence,
the latency with which the output stream is computed grows linearly with the max-
imum unorder/delay of records [MLT+05, KFD+10], i. e., the difference between the
timestamp of an out-of-order record r and the largest timestamp of all records with
a smaller offset than r. Thus, latency is dominated by the characteristics of the data
stream instead of the semantics and implementation of the operator.

To overcome this limitations, we propose a model in which the operator result is
updated continuously [LWZ04, BGAH07]. Our model enables us to drop any assump-
tions about the consistency of the logical and physical order of records. Furthermore,
the result of an operator may be viewed either statically, as its materialization from
processing a stream up to an offset, or dynamically, as a stream of successive up-
dates. Both views induce just two ways of programming with respect to time: one
may process a stream of result updates or continuously query the materialized result
to express the same computation.

The above idea is realized in our Dual Streaming Model, which comprises the
notions of a table, a table changelog stream, and a record stream. Table 5.1 summa-
rizes our notation of all terms that we define in this chapter or that we introduced
in Section 2.4.

98 CHAPTER 5. THE DUAL STREAMING MODEL

Data Stream
(no semantics)

Record Stream
(facts)

=⇒ r.k = ⊥

Changelog Stream
(updates)

=⇒ r.k ̸= ⊥

Figure 5.1: Data stream types and their relationship.

Definition 53 (Record Stream). A record stream is a data stream (Definition 10),
with records representing facts. We also call a record stream a fact stream.

Record streams are “regular” streams and used in most stream processing sys-
tems. In our model, keys are identifiers and thus, to represent immutable facts, it
is required that each record in a record stream has a unique key. Instead of stor-
ing those unique identifiers explicitly we allow the identifier to be unassigned (i. e.,
r.k = ⊥), with ⊥ ̸= ⊥, implying the same semantics. Hence, we refine the app
operator from Definition 12 for records streams as follows:

Definition 54 (Record Stream Append). Given a record stream S[S] = (r0, . . . , rn)
and a record r with schema R̄ = R\{K}, app : SJSK× JR̄K→ SJSK appends r to S:

app(S, r) = app(S, ⟨t,⊥, v⟩) (5.1)

We use app as defined in Definition 12 on the right hand side of Equation 5.1.
All variations of the append operator are denoted by app because it is clear from
the context which one is used.

The second stream type in our model is a changelog stream.

Definition 55 (Changelog Stream). A changelog stream is a data stream (Defi-
nition 10), in which records represent updates. Updates are semantically based on
record keys and timestamps, i. e., a later record with key k semantically updates an
earlier record with the same key. Delete semantics are incorporated by interpreting
records with ⊥-value as deletes for earlier records with a corresponding key.

It is important to note that there are no in-place updates or deletes in a changelog
stream, because a changelog stream inherits all data stream properties and hence
is append-only. Hence, a changelog stream records the complete history of all up-
dates. Both record streams (Definition 53) and changelog streams (Definition 55)
are data streams (Definition 10) with different semantic interpretation as depicted
in Figure 5.1.

Finally, the result of an operator may be given by a table (Definition 11), which is
updated for each processed input record. For instance, for an aggregation operator
the grouping conditions (e. g., time windows or group-by clauses) define the primary
key of the result table. A table models a snapshot of the result at a particular point
in time. However, for stream processing operators that have temporal semantics, we
need to reason about the content of a table over time. Hence, we consider tables to
maintain multiple versions in parallel.

5.1. STREAMS AND TABLES 99

Definition 56 (Evolving Table). An evolving table T⃗ with schema T (denoted by
T⃗ [T]) is a sequence of table versions, using timestamps as version numbers. The
table version at timestamp t is denoted by Tt while an evolving table is denoted by
T⃗ [T] = (T0, . . .)

In the remainder of this chapter, we use the terms evolving table and table in-
terchangeably. While input data is processed, time progresses and a table evolves
based on the timestamps of the updates: new table versions are added and older ta-
ble versions might be updated if out-of-order data is processed. We define a generic
update operator update that can be used to insert, modify, or delete records in a
table. To define update correctly, we first introduce the notion of a modified key set
for a table version.

Definition 57 (Modified Key Set). The modified key set Kt of a table Tt ∈ T⃗ with
version t is the set of keys for which a modification with timestamp t was applied to
T⃗ .

We use insert (Definition 19) and delete (Definition 20) as defined in Sec-
tion 2.4.3 to define update as follows.

Definition 58 (Update Operator). Given a table T⃗ with schema T, each table
update is represented as a record r with schema R. The update operator update :
T⃗ JTK× JRK→ T⃗ JTK applies r to T⃗ by applying the update on all Tv ∈ T⃗ :

v = r.t ∨ (v > r.t ∧ ∀v′ : (r.t < v′ ≤ v =⇒ r.k /∈ Kv))

as

Tv =
{︄

Tv.insert(r) if r.v ̸= ⊥
Tv.delete(r.k) otherwise

(5.2)

and updating the modified key set of Tr.t:

Kr.t = Kr.t ∪ {r.k} (5.3)

If Tr.t does not exist in T⃗ = (T0, . . . , Tv) (i. e., r.t > v), new table versions are
appended to T⃗ as

T⃗ = (T0, . . . , Tv, Tv+1, . . . , Tr.t)
with

Tv = Tv+1 = · · · = Tr.t

and
Kv+1 = · · · = Kr.t = {}

before the update is applied to Tr.t.

To reason about the state of an evolving table, we assign a generation number
to it. Each applied update increments the generation by one. Thus, the table
generation is the same as the offset of the latest processed input record. We denote
a table T⃗ of generation g as T⃗ (g).

Example 14 (Evolving Table). Assume an empty table at generation zero T⃗ (0) =
(T0) with schema {key:String, value:Double}, T0 = {}, K0 = {} and the following
sequence of updates:

100 CHAPTER 5. THE DUAL STREAMING MODEL

No. t k v

0 1 A 7.2
1 3 A 8.9
2 4 B 4.7
3 2 C 3.3
4 3 A ⊥
5 0 B 9.9
6 1 A 2.8

Applying the updates evolves the table from generation 0 to 7, incorporating table
versions T0, . . . , T4 (updates are highlighted):

T⃗ (0):

K0 = {}
T0

t k v

Initially, there is an empty table with version 0.

T⃗ (1) = T⃗ (0).update(1, A, 7.2):

K0 = {} K1 = {A}
T0 T1

t k v t k v
1 A 7.2

The first update creates new table version T1 and inserts the new record into it.
Additionally, the key A is added to K1.

T⃗ (2) = T⃗ (1).update(3, A, 8.9):

K0 = {} K1 = {A} K2 = {} K3 = {A}
T0 T1 T2 T3

t k v t k v t k v t k v
1 A 7.2 1 A 7.2 3 A 8.9

The second update creates two table versions, namely T2 and T3, because the
update timestamp is 3. T2 is a copy of T1 while T3 contains the updated record for
key A. It is important to note that K2 is empty, because neither the first nor the
second update has timestamp 2.

5.1. STREAMS AND TABLES 101

T⃗ (3) = T⃗ (2).update(4, B, 4.7):

K0 = {} K1 = {A} K2 = {} K3 = {A} K4 = {B}
T0 T1 T2 T3 T4

t k v t k v t k v t k v t k v
1 A 7.2 1 A 7.2 3 A 8.9 3 A 8.9

4 B 4.7

The third update inserts a record with new key B into the table. Hence, the newly
create version T4 contains two records. Since the record with key A was not updated
at timestamp 4, K4 contains only B.

T⃗ (4) = T⃗ (3).update(2, C, 3.3):

K0 = {} K1 = {A} K2 = {C} K3 = {A} K4 = {B}
T0 T1 T2 T3 T4

t k v t k v t k v t k v t k v
1 A 7.2 1 A 7.2 3 A 8.9 3 A 8.9

4 B 4.7
2 C 3.3 2 C 3.3 2 C 3.3

The fourth update is the first out-of-order update that is applied to T⃗ . It affects
not only T2, but also all future versions because none of them contain a record with
key C. The actual condition if an update is propagated to future table versions does
not depend on the existence of the key in the table, but the existence of the key in
the modified key set. This condidition holds, as C is not in K3 or K4.

T⃗ (5) = T⃗ (4).update(3, A,⊥):

K0 = {} K1 = {A} K2 = {C} K3 = {A} K4 = {B}
T0 T1 T2 T3 T4

t k v t k v t k v t k v t k v
1 A 7.2 1 A 7.2

4 B 4.7
2 C 3.3 2 C 3.3 2 C 3.3

The fifth update is a delete that is also out-of-order. Hence, the record with key
A is deleted from T3 and T4.

102 CHAPTER 5. THE DUAL STREAMING MODEL

T⃗ (6) = T⃗ (5).update(0, B, 9.9):

K0 = {B} K1 = {A} K2 = {C} K3 = {A} K4 = {B}
T0 T1 T2 T3 T4

t k v t k v t k v t k v t k v
1 A 7.2 1 A 7.2

0 B 9.9 0 B 9.9 0 B 9.9 0 B 9.9 4 B 4.7
2 C 3.3 2 C 3.3 2 C 3.3

Similar to the fourth update, the sixth update is an out-of-order insert. However,
it does not affect all its future versions. Since a record with the same key B exist in
T4, T4 is not modified.

T⃗ (7) = T⃗ (6).update(1, A, 2.8):

K0 = {B} K1 = {A} K2 = {C} K3 = {A} K4 = {B}
T0 T1 T2 T3 T4

t k v t k v t k v t k v t k v
1 A 2.8 1 A 2.8

0 B 9.9 0 B 9.9 0 B 9.9 0 B 9.9 4 B 4.7
2 C 3.3 2 C 3.3 2 C 3.3

The last update to key A at timestamp 1 only affects T1 and T2. Even if T3 does
not contain a record with key A, A was explicitly deleted previously at timestamp 3
and thus is contained in K3, which implies that updating T3 would be incorrect.

Our streaming model comprises of record streams, table changelog streams, and
evolving tables. To this end, table changelog streams and evolving tables induce a
duality between each other. Both represent the same data and can be transformed
into each other without information loss. Consider the sequence of updates from Ex-
ample 14. We can describe this sequence of updates as a changelog (Definition 55)
and as shown in Example 14, this changelog can be transformed into a table by ap-
plying each record as an update to the table. At the same time, given any relational
or evolving table, each modification to the table can be captured as an update record
that is appended to a corresponding changelog stream. Hence, a changelog stream
is a high level abstraction of a table write-ahead-log (WAL) as used in relational
database systems. Figure 5.2 depicts the relationship between tables and changelog
streams.

5.2 Stream Processing Operators
In this section, we introduce the stream processing operators of our model. We
distinguish different types of operators depending on their properties. Operators
may be stateless or stateful, have one or more input streams, and may be defined
on special types of input streams only. Figure 5.3 summarizes all transformations
between different types of streams/tables for different operators. Record streams
are transformed into record streams (Section 5.2.1 and Section 5.2.3) with the ex-
ception of the aggregation operator that yields a result table (Section 5.2.2). Tables

5.2. STREAM PROCESSING OPERATORS 103

Table Changelog Stream

capture updates

materialize updates

Figure 5.2: Duality of streams and tables.

are transformed into new tables (Section 5.2.4), unless joined with a stream (Sec-
tion 5.2.3), in which case the result is an output stream. Furthermore, as discussed
in Section 5.1, tables and table changelog streams can be converted into each other.

5.2.1 Record Stream Transformations

In the following, we define the operators of our streaming model in a declarative way
that describes the expected output. To abstract over ordered and unordered input
streams, we first define stream equivalence for record streams. Ordered streams
are canonical representatives of an equivalence class of streams that contains both
ordered and unordered streams. Hence, we define operators based on ordered input
streams. Exploiting stream equivalence we consider an operator as correct if it
computes a result on unordered input streams that is equivalent to the result as
defined on ordered input streams.

Stream Equivalence and Operator Correctness

To define operator correctness we need to compare data streams. A straightforward
comparison of two data streams leverages stream equality that is defined as follows:

Definition 59 (Record Stream Equality). Two record streams S1[S] and S2[S] are
equal, denoted S1 = S2, iff:

∀r ∈ S1 : (∃r̄ ∈ S2 : r = r̄) ∧ ∀r̄ ∈ S2 : (∃r ∈ S1 : r̄ = r) (5.4)

Stream equality implies that two streams are exactly the same, i. e., all records appear
in the exact same offset order. To define operator correctness, stream equality is too
strict for two reasons:

Stream Comparison Let S1 = (r, s, t, v) be an ordered and S2 = (r, s, v, t) be an
unordered input record stream. Both contain the same data, i. e., the same values
with the same timestamps, but in different offset order. Since both streams contain
the same data we want that an operator computes the same result for both input
streams. However, stream equality cannot be used to express that both streams
contain the same data. If two input streams are not “the same” (i. e., are not equal)
it would be unreasonable to demand that an operator computes the same result for
both inputs.

104 CHAPTER 5. THE DUAL STREAMING MODEL

Record Stream Table Changelog Stream

join

flatMap
filter/projection
join

agg

changelog

table

filter/projection
agg
join

Figure 5.3: Transformations between record streams, changelog streams, and tables.

Similarly, we want to compare output streams. Assume we apply a filter
operator to each stream yielding the following results:

filter(S1) = filter((r, s, t, v)) = (r, t, v)

filter(S2) = filter((r, s, v, t)) = (r, v, t)

Let us assume that (r, t, v) is a correct result, because it is computed based on
an ordered input stream. Since both output streams contain the same data (i. e.,
timestamps and values), the result (r, v, t) should be considered as correct, even if
it is not equal to the ordered result stream.

Thus, we need a different comparison criteria that allows us to compare two
streams that contain the same data but are not equal. To compare record streams
only timestamp and value should be considered. Offsets that describe the physical
order should be ignored.

Infinite Input In practice, stream equality of output streams can never be guaran-
teed because input streams are potentially infinite and may have out-of-order data
with arbitrary unorder/delay. Stream processing operators must be implemented
using incremental algorithms to avoid blocking forever. However, operators could
never emit any output if they need to guarantee that the output stream follows
a certain offset order, because it is impossible to decide if there will be a future
out-of-order record in the input stream.

Techniques like punctuations/watermarks [ABC+15, TMSF03] try to address the
out-of-order issue, by giving guarantees about input stream properties. However, as
discussed in the beginning of this chapter, those approaches increase the processing
latency and address the issue as a “preprocessing step”, rather than as part of the
processing model itself. Furthermore, in practice watermarks are often estimated
and do not provide strict guarantees about out-of-order data.

To ignore offset order when comparing records streams we use stream equivalence.
Since all records in a record stream have k = ⊥, keys are ignored. We define stream
equivalence based on multi-set equality [BGAH07, KS09] as follows:

5.2. STREAM PROCESSING OPERATORS 105

Definition 60 (Record Stream Equivalence). Two record streams S1[S] and S2[S]
are equivalent, denoted S1[S] ≡ S2[S], iff their corresponding multi-sets of time-
stamp-value pairs are equal:

S1 ≡ S2 ⇔ MS(πT,V (S1)) = MS(πT,V (S2)) (5.5)

with MS being an operator that transforms a sequence into a multi-set and π being a
stream projection that returns the timestamp and value attribute for each record.

The definition of record stream equivalence states that two record streams are
equivalent, and thus belong to the same equivalence class, if they contain exactly the
same records equally often but in potentially different offset order [BGAH07, KS09].
As record streams allow for duplicate records with same value and timestamp, we
want to ensure that there is the same number of duplicates in both streams. Ignoring
record offsets (i. e., physical order), we can interpret both record streams as multi-
sets (also called bags) and state that two record streams are equivalent if their
multi-sets are equal.

Based on record stream equivalence (Definition 60), we define correctness for
record stream operators that output record streams as follows:

Definition 61 (Operator Correctness). Given two ordered data streams O1[S1] and
O2[S2] and two unordered data streams U1[S1] and U2[S2]. An unary stream process-
ing operator op : SJS1K→ SJS′K is correct, iff:

O1 ≡ U1 =⇒ op(O1) ≡ op(U1) (5.6)

A binary stream processing operator op′ : SJS1K× SJS2K→ SJS′K is correct, iff:

O1 ≡ U1 ∧O2 ≡ U2 =⇒ op′(O1, O2) ≡ op′(U1, U2) (5.7)

Definition 61 states that if two input streams are equivalent, both output streams
must belong to the same equivalence class. Furthermore, ordered streams are canon-
ical representatives for each equivalence class. Hence, defining operator semantics
based on ordered input streams that yield ordered output streams is sufficient to
define operator semantics for unordered input and output streams implicitly. It
is important to note that Definition 61 can be extended to n-ary operators in a
straightforward manner.

Stateless Operators

Given a record stream S, a stateless operator is applied to each record in the input
stream in offset order and produces an order preserving output record stream. The
output records inherit the timestamp from the input records. Examples of unary
operators are filter, projection, or map that are all special cases of flatMap.

The flatMap operator flatMap is a second-order function that takes a record
stream and a user-defined first-order function f : JRK → SJS′K as parameters. For
each record in input stream S, flatMap invokes f and appends all records from the
result to the output stream. To define flatMap, we use app (Definition 54) as defined
above as well as fst (Definition 14) and sfx (Definition 16) from Section 2.4.2.

106 CHAPTER 5. THE DUAL STREAMING MODEL

Definition 62 (FlatMap Operator). Given a ordered record stream S[S] and a func-
tion f : JRK → SJS′K with stream-compatible schema R. We define flatMap(S, f) :
SJSK× (JRK→ SJS′K)→ SJS′K with S′ = {O, T, K ′, V ′} as follows.

flatMap(S, f) =
{︄

() if S = ()
app(f(r), flatMap(sfx(S, 1), f)) otherwise

(5.8)

with
r = πR(fst(S))

Two restrictions apply to f :

1. all output records from f(r) must inherit the timestamp1 of the input record,
i. e., ∀r̄ ∈ f(r) : r̄.t = r.t

2. the result for f(r) must be finite

The second restriction is no restriction in practice, but must be part of the
model: we demand that the computation of f is finite—otherwise, f would introduce
a non-terminating operation. Thus, it would not be possible to process the input
stream incrementally. Based on flatMap we define map and filter applying specific
restrictions to the user-defined function f

• map: f returns exactly one record, i. e., |f(r)| = 1.

• filter: f returns either zero or one result record and does not modify the
key or value i. e., |f(r)| ≤ 1 ∧ ∀r̄ ∈ f(r) : (r̄.k = r.k ∧ r̄.v = r.v)

Expressing a filter operator as special case of flatMap allows us to reduce the
number of operators in our model, however, it is rather unnatural: users would like
to only specify a boolean predicate that returns true or false instead of a function
f that can be provided to flatMap. Thus, we explicitly define the filter operator
filter as second-order function that takes a user-defined filter predicate as input.

Definition 63 (Filter Operator). A filter operator is a second-order function
filter : SJSK × (JRK → {⊥,⊤}) → SJSK. It takes an ordered data stream S[S]
and a user-defined filter predicate p : JRK → {⊥,⊤} with stream-compatible schema
R (Definition 8), and applies p to each record in the data stream. The result data
stream contains all records for which p returns ⊤.

filter(S, p) = flatMap(S, flatMapFilter(p)) (5.9)

with
flatMapFilter : (JRK→ {⊥,⊤})→ (JRK→ SJSK)

flatMapFilter(p) = r → f(r)

with f(r) =
{︄

() if p(r) = ⊥
(⟨0, r.t, r.k, r.v⟩) if p(r) = ⊤

1It would be possible to restrict f to not return a timestamp and let flatMap add the timestamp
automatically. However, our definition simplifies the notation of Equation 5.8.

5.2. STREAM PROCESSING OPERATORS 107

The helper function flatMapFilter takes a filter predicate and returns a func-
tion that can be provided to flatMap. Given an input record r, f(r) returns an
empty record stream if the filter predicate returns ⊥. Otherwise, it returns a record
stream with one record that carries the input record timestamp, key, and value. The
offset is zero, because record streams are sequences that always start with offset zero.
We emphasize that the created function obeys the restrictions of a filter function as
described above.

A projection operator can be defined as a special case of map (similarly to
filter that is a special case of flatMap). However, in our key-value model,
projection is not useful and thus we omit it. For a generic tuple-based data model
(similar to relational algebra), it is straightforward to define a projection operator
on record streams.

Lemma 4. The flatMap operator is correct (Definition 61), i. e., it computes the
correct result on unordered input streams.

Proof. The flatMap operator processes records independently of each other and
thus computes the same result records independently of the record position in the
input stream. Hence, if there are out-of-order records in the input stream, the result
stream will contain the exact same records (only in different offset order) as if the
input stream would not contain any out-of-order data. Therefore, the output stream
of flatMap for an unordered input stream is equivalent to the output stream of an
equivalent ordered input stream.

Corollary 6. All unary stateless record stream operators are correct.

Proof. Since flatMap is the most generic unary stateless record stream operator, all
other unary stateless stream operators can be expressed as flatMap with a corre-
sponding user-defined function f . Since flatMap is correct, all other unary stateless
record stream operators are correct.

5.2.2 Record Stream Aggregation

The aggregation operator takes an input record stream and computes an aggregation
result based on some grouping condition, similar to a GROUP BY clause in SQL.
The aggregation returns a result table with the grouping attribute as primary key.
Returning a table as the aggregation result differs from most stream processing
systems that usually return a record stream instead.

The aggregation operator agg is a second-order function that takes a record
stream, a user-defined first-order grouping function g : JSK → DK′ , and a user-
defined first-order aggregation function f : SJSK → DV ′ as input, and produces a
table as output. The input stream is split into substreams based on g, i. e., one
substream per grouping attribute value. The aggregation function f is applied to
each substream to compute the aggregation result.

Definition 64 (Aggregation Operator). Given an ordered record stream S[S], a
function g : JSK → DK′, and a function f : SJSK → DV ′. The aggregation operator

108 CHAPTER 5. THE DUAL STREAMING MODEL

agg : SJSK× (JSK→ DK′)× (SJSK→ DV ′)→ T⃗ JTK computes a table T⃗ with schema
T = {T , K’,V ’} as:

agg(S, g, f) = T⃗ = (T0, · · · , Tt̂) (5.10)
with

t̂ = max{r.t|r ∈ S}
and

∀Tt ∈ T⃗ : (St = S.filter(r → r.t ≤ t) ∧
K = {g(r)|r ∈ St} ∧
|Tt| = |K| ∧
∀k ∈ K : (Sk

t = St.filter(r → g(r) = k) ∧
t̂k = max{r.t|r ∈ Sk

t } ∧
⟨t̂k, k, f(Sk

t)⟩ ∈ Tt))

The result of a record stream aggregation is a table that grows without bound,
since new table versions are added while time progresses. In practice, applications
are usually only interested in the latest result and hence it it sufficient to only store
the most recent Tt.

Example 15 (Record Stream Aggregation). Assume an ordered record stream S
that represent web-site clicks. Let the web-site click stream contain information
about the country of origin and we want to compute the click count per country. The
timestamp/value pairs of the click stream are as follows:

S = (⟨0, GER⟩, ⟨1, GER⟩, ⟨1, US⟩, ⟨2, US⟩)

The corresponding aggregation result table is:

K0 = {GER} K1 = {GER, US} K2 = {US}
T0 T1 T2

t k v t k v t k v
0 GER 1 1 GER 2 1 GER 2

1 US 1 2 US 2

The record stream aggregation operator as defined in Equation 5.10 applies the
aggregation function f to the substream Sk

t . If f is a holistic aggregation func-
tions [GCB+97] it would be required to store Sk

t . However, Sk
t may grow with-

out bound over time and therefore we do not allow holistic aggregation functions
for non-windowed aggregations.2 However, we allow algebraic aggregation func-
tions [GCB+97] if their underlying functions are commutative and associative. For
this case, a new table version Tt+1 can be computed incrementally based on Tt and
all input stream records with timestamp t + 1.

We introduce Algorithm 4 that computes agg incrementally, given a commu-
tative and associative aggregation function f : JRK × JTK → DV ′ . To describe the
incremental algorithm that computes agg for ordered3 input streams, we use update
(Definition 58) as defined above as well as lookup as defined next.

2We discuss windowed aggregations later.
3We discuss unordered input streams later.

5.2. STREAM PROCESSING OPERATORS 109

Algorithm 4: Incremental Record Stream Aggregation
1 Input: S[S]; g : JSK→ DK′ ; f : JSK× (JTK∪{⊥})→ DV ′ with T = {T , K’,V ’}
2 Output: continuously updated table T⃗ [T]
3

4 T⃗ ← ({}) // init result with empty table
5 foreach r ∈ S do // never terminates
6 k ← g(r)
7 v̄ ← T⃗ .lookup(k)
8 v′ ← f(r, v̄)
9 T⃗ .update(r.t, k, v′)

Definition 65 (Lookup Operator). Given a table T⃗ = (T0, . . . , Tt) with schema
T = {T, K, V }—that contains t table versions—and a key k ∈ DK . The lookup
operator lookup : T⃗ JTK× DK → DV returns the latest value v ∈ DV of k in T⃗ :

v = Tt.lookup(k) (5.11)

Definition 65 uses lookup (Definition 18) to get the value of the key from the
latest table version. Because lookup may return ⊥ if the key does not exist, the
aggregation functions f must accept ⊥ as input.

Algorithm 4 computes a record stream aggregation over an ordered input record
stream. It processes the input records one-by-one and incrementally updates the
aggregation result based on the currently processed record. First, agg calls the
grouping function g with the current record r to determine the grouping attribute-
value k = g(r) that is the primary key of the corresponding aggregation result in
the result table. Based on k, the current aggregation result v̄ is retrieved from the
table. Afterwards, the commutative and associate aggregation function f is applied
to the current record and the current aggregation result. Finally, the result table is
updated with the new aggregation result returned by f , before the next record is
processed.

Lemma 5. Algorithm 4 computes the correct result based on Definition 64.

Proof. Let r be the currently processed record and let T⃗ = (T0, . . . , Tv) be the
current result table.

(1) The latest table version in T⃗ is of timestamp v ≤ r.t: Because the result table
is initialzed as an empty table, and because the input stream S is ordered, update
(Definition 58) either modifies the latest existing table version, or it creates a new
table version for timestamp r.t. Hence, it holds that v ≤ r.t for each processed
record.

Assuming that the table is updated correctly for each input record (as proven in
(3) below), it holds that:

(2) The current aggregation result of g(r), i. e., the aggregation result of g(r) at
timestamp r.t before r is processed, is stored in the latest table version Tv: Because
of (1), r.t ̸< v. If r.t = v, it’s clear that (2) holds because S is ordered. If r.t > v, it
holds that all not-yet existing table versions Tx with v < x ≤ r.t are equal to Tv; S
is ordered and therefore (a) all updates before r.t are reflected in Tv already, (b) no

110 CHAPTER 5. THE DUAL STREAMING MODEL

update exists with timestamp between v and r.t (both bounds exclusive), and (c) r
is the first update at timestamp r.t (otherwise, r.t would not be larger than v based
on (1)). Hence, getting the current aggregation result from Tv is correct for r.t > v.

(3) The table is updated correctly for each processed record: Because of (2) and
because f is commutative and associative, the computed new aggregation result is
equal as the aggregation result from Definition 64 with regard to pre(S, r.o + 1)
(Definition 15). Therefore, the table is updated correctly for each processed record.

There is no cyclic dependency between (2) and (3) because the result is initialized
with the empty table, and hence, the assumption that (3) holds is not required for
the first processed record to prove (2). Additionally, when r is processed (3) holds
for all previously processed records. Because (3) holds for each record, Lemma 5 is
correct.

Windowed Aggregation

Aggregations in stream processing are usually based on a grouping attribute (similar
to a GROUP BY clause in the relational model) and windows [BBD+02]. Windows are
additional grouping conditions. In contrast to a GROUP BY condition that generates
“vertical” substreams, windows split the input stream “horizontal” usually based on
timestamps.4 Our model supports windowed aggregations by encoding the grouping
attribute and a window-ID [LMT+05] in the primary key of the result table. The
table stores the current aggregate per key and per window. Hence, we do not dis-
tinguish between windowed and non-windowed aggregations explicitly. However, a
windowed aggregation applies the aggregation function to finite windows5, and thus,
holistic aggregation functions are permitted for this case if they are commutative
and associative. Since record timestamps are not guaranteed to be unique, there
may be multiple ordered record streams in the same equivalence class. The aggrega-
tion result over all those ordered record streams is only the same if the aggregation
function is commutative and associative

The two most common fixed size time windows are non-overlapping tumbling
windows and overlapping hopping windows. A tumbling window has a single pa-
rameter ω that defines the size of the window in time units. Windows are aligned
to the time epoch, with window start timestamp being inclusive and window end
timestamp being exclusive. For example, a tumbling window with a size of 10 time
units, has the following window boundaries:

[0, 10), [10, 20), [20, 30), . . . , [n · ω, n · ω + ω)

Hopping windows have a second parameter δ that defines the advance of the window.
For example, a hopping window with a size of 10 time units and an advance of 5
time units, has the following window boundaries:

[0, 10), [5, 15), [10, 20), [15, 25), [20, 30), . . . , [n · δ, n · δ + ω)
4Count-based windows are also common, however, they are inherently non-deterministic if record

order is defined on event-time, and thus, we omit count-based windows.
5This holds for fixed size time windows—for session windows [ABC+15], it is conceptually pos-

sible that a window grows unbounded. In practice, session windows are bounded and thus holistic
aggregation functions may be applied.

5.2. STREAM PROCESSING OPERATORS 111

To this end, tumbling windows are a special case of hopping windows with δ = ω.
For both window types, the grouping attribute (i. e., primary key of the result table)
is a pair ⟨k, w-Id⟩, with k being a value-extracted grouping attribute and w-Id being
a unique window-ID. For fixed size time windows, w-Id can be expressed as the
window start timestamp.

For tumbling windows, each record is contained in exactly one window with
window start timestamp:

w-Id(r) =
⌊︃

r.t

ω

⌋︃
· ω

For hopping windows, records may be contained in multiple windows. The window
start timestamps are computed as follows:

w-Id(r) =
{︃ ⌊︃

r.t− ω

δ

⌋︃
· δ + 1 · δ,

⌊︃
r.t− ω

δ

⌋︃
· δ + 2 · δ,

. . . ,
⌊︃

r.t− ω

δ

⌋︃
· δ + #w · δ

}︃

with #w(r) = ⌊ r.t
δ ⌋ − ⌊ r.t−ω

δ ⌋ being the number of windows that contain a specific
record. It is important to note that for hopping windows, not all records may be
contained in the same number of windows. Hence, #w must be computed on a per
record basis.

Example 16 (Hopping Window). Assume a hopping window with window size ω =
10 and advance δ = 3. The following window boundaries apply (we use inclusive
upper bounds to only show timestamps that belong to a window):

w-Id0 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
w-Id3 = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
w-Id6 = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
w-Id9 = [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
w-Id12 = [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

The window boundaries show that records fall either into 3 or 4 windows. For exam-
ple, records with timestamp 9 or 12 belong to 4 windows, while records with timestamp
10 or 11 belong to only 3 windows.

However, in Definition 64 the grouping function g returns a single grouping
attribute and hence overlapping windows are not supported. To allow for overlapping
windows, we change g to return a set of grouping keys instead: g : JSK → 2DK′ .
Furthermore, we modify Definition 64 to compute the set of primary keys as:

K = {k|r ∈ St ∧ k ∈ g(r)}

and, the corresponding substreams as:

Sk
t = St.filter(r → k ∈ g(r))

112 CHAPTER 5. THE DUAL STREAMING MODEL

Example 17 (Windowed Aggregation). Assume the same ordered input stream as
from Example 15:

S = (⟨0, GER⟩, ⟨1, GER⟩, ⟨1, US⟩, ⟨2, US⟩)

Instead of counting all clicks per country, we count clicks using a tumbling window
with ω = 2. The corresponding aggregation result table is:

K0 = {⟨GER, 0⟩} K1 = {⟨GER, 0⟩, K2 = {⟨US, 2⟩}
⟨US, 0⟩}

T0 T1 T2
t k v t k v t k v
0 GER,0 1 1 GER,0 2 1 GER,0 2

1 US,0 1 1 US,0 1
2 US,2 1

The windows have boundaries w-Id0 = [0, 2) and w-Id2 = [2, 4). The first window
is instantiated twice, once for grouping attribute GER and once for US. The second
window is instantiated only for US. Hence, there are three primary keys ⟨GER, 0⟩,
⟨US, 0⟩, and ⟨US, 2⟩ in the final result (T2). Both records with value GER belong
to w-Id0 and thus the count is 2. The two “US” records belong to separate windows
and thus the count is 1 each.

For windowed aggregation, the result table grows without bound in two dimen-
sions: (1) similar to the non-windowed case, new table versions are added over
time; (2) additionally, the size of individual table versions Tt grows unbounded, be-
cause with advancing time, the set of primary keys grows without bound due to
a unbounded number of created windows. We discuss this issue in more detail in
Section 5.3.

Aggregation of Unordered Record Streams

Definition 64 defines the expected result of the record stream aggregation operator
based on ordered input streams. Because the result of an aggregation is a table, we
use table equality to define result correctness for unordered input streams.

Definition 66 (Operator Correctness). Given an ordered data stream O[S] and a
unordered data stream U [S]. The agg operator is correct, iff:

O ≡ U =⇒ agg(O, g, f) = agg(U, g, f) (5.12)

In contrast to Definition 61 we demand that the result tables are equal, if the
corresponding input record streams are equivalent (Definition 60). Hence, even if
there is out-of-order data in the input stream, the aggregation must compute the
exact same result table. If out-of-order data is in the input data stream, the result
table may have a different intermediate result though: if the stream prefixes are not
equivalent, i. e., pre(O, n) ̸≡ pre(U, n) the corresponding intermediate result tables
may be different [BGAH07].

5.2. STREAM PROCESSING OPERATORS 113

Example 18 (Out-of-Order Aggregation). Let S′ be the following data stream that
is equivalent to S from Example 15:

S′ = (⟨0, GER⟩, ⟨1, GER⟩, ⟨2, US⟩, ⟨1, US⟩)

Processing S and S’, evolves the output table from generation 0 to generation 3.
The first 2 records of both data streams are the same and hence, the first two table
generations are the same. However, T⃗ (3) ̸= T⃗

′(3):

T⃗ (3) = agg((⟨0, GER⟩, ⟨1, GER⟩, ⟨1, US⟩), . . .):

K0 = {GER} K1 = {GER, US}
T0 T1

t k v t k v
0 GER 1 1 GER 2

1 US 1

T⃗
′(3) = agg((⟨0, GER⟩, ⟨1, GER⟩, ⟨2, US⟩), . . .):

K0 = {GER} K1 = {GER} K2 = {US}
T0 T1 T2

t k v t k v t k v
0 GER 1 1 GER 2 1 GER 2

2 US 1

Lemma 6. Both intermediate results from Example 18, i. e., T⃗ (3) and T⃗
′(3), are

correct.

Proof. The fact that T⃗ (3) ̸= T⃗
′(3), does not violate Definition 66 because:

pre(S, 3) ̸≡ pre(S′, 3)
(⟨0, GER⟩, ⟨1, GER⟩, ⟨1, US⟩) ̸≡ (⟨0, GER⟩, ⟨1, GER⟩, ⟨2, US⟩)

Because the processed input streams are not equivalent after processing 3 records
each, it is not required that the result tables are equal. Furthermore, both results
T⃗ (3) and T⃗

′(3) are computed for a prefix that does not contain out-of-order data.
Hence, both results (in particular T⃗

′(3)) are correct based on Definition 64.

In Example 18, pre(S, 1) ≡ pre(S′, 1), pre(S, 2) ≡ pre(S′, 2), and pre(S, 4) ≡
pre(S′, 4). Hence, it is required that T⃗ (1) = T⃗

′(1) T⃗ (2) = T⃗
′(2), and T⃗ (4) = T⃗

′(4).

The incremental aggregation computation as introduced in Algorithm 4, expects
ordered input streams, and may compute an incorrect result for unordered input
streams (incorrect result highlighted in red):

114 CHAPTER 5. THE DUAL STREAMING MODEL

Algorithm 5: Out-of-Order Record Stream Aggregation
1 Input: S[S]; g : JSK→ 2DK′ ; f : JSK× (JTK ∪ {⊥})→ DV ′

with T = {T , K’,V ’}
2 Output: continuously updated table T⃗ [T]
3

4 T⃗ ← ({}) // init result with empty table
5 foreach r ∈ S do // never terminates
6 if r.t > T⃗ .t then // add new table version
7 foreach k ∈ g(r) do
8 v̄ ← T⃗ .lookup(k)
9 v′ ← f(r, v̄)

10 T⃗ .update(r.t, k, v′)
11 else
12 T ∗ = {Tx ∈ T⃗ |x = r.t ∨ (x > r.t ∧ g(r) ∩ Kx ̸= ∅)}
13 foreach Tx ∈ T ∗ do
14 if x = r.t then // oldest table version to be updated
15 K ← g(r)
16 else
17 K ← {k ∈ g(r)|k ∈ Kx}
18 foreach k ∈ K do
19 v̄ ← Tx.lookup(k)
20 v′ ← f(r, v̄)
21 T⃗ .update(x, k, v′)

T⃗
′(4) = agg((⟨0, GER⟩, ⟨1, GER⟩, ⟨2, US⟩, ⟨1, US⟩), . . .):

K0 = {GER} K1 = {US, GER} K2 = {US}
T0 T1 T2

t k v t k v t k v
0 GER 1 1 GER 2 1 GER 2

1 US 1 2 US 1

Since the input stream is assumed to be ordered, Algorithm 4 updates only
a single table version corresponding to the record timestamp, i. e., T1 gets a new
count of 1 for the US. However, to handle out-of-order data correctly, it is required to
additionally update all newer table versions that exist in T⃗ , i. e., T2 should have been
updated to a count of 2 for the US. To address this issue, we introduce an incremental
aggregation algorithm (Algorithm 5) for unordered record streams. Algorithm 5 uses
the generic grouping function that returns a set of grouping keys and hence supports
windowed-aggregations. To describe the algorithm, we use update (Definition 58)
and evolving table lookup (Definition 65) from above as well as table version lookup
(Definition 18) from Section 2.4.2.

Algorithm 5 takes a record stream S[S] that may contain out-of-order records,
a grouping function g : JSK→ 2DK′ , and a commutative and associative aggregation
function f : JSK×JTK→ DV ′ with T = {T, K ′, V ′} as input. The algorithm processes

5.2. STREAM PROCESSING OPERATORS 115

S incrementally and updates the aggregation result table for each processed input
record. There are two main cases: first, the processed record might advance time
and a new table version is added to the result (Lines 6-10). For this case, the table
is updated for each grouping attribute-value as returned by g(r). The update for
a single key, is the same as in Algorithm 4: the algorithm first receives the old
aggregation value v̄ from the table, computes a new aggregation result using f ,
and updates the result table accordingly. Second, the processed record updates an
existing table version (Lines 12-21). For this case, the table version that matches
the record timestamp, as well as all newer table versions that contain at least one
grouping attribute-value in their modified key set, are updated explicitly. Those
table versions are computed in Line 12. To update those table versions, the table
version that matches the record timestamp is updated for all grouping attribute-
values (Line 15), which may insert new keys into the table. All other tables only
need an explicit update for all grouping attribute-values that are contained in the
corresponding modified key set (Line 17). All grouping attribute-values that are not
contained in the modified key set are updated implicitly when an older table version
is updated (c. f. Definition 58). The actual table update per key (Lines 19-21) is
similar to Lines 8-10, however, the current aggregation value v̄ is retrieved from the
corresponding table version (Line 19) instead.

Lemma 7. . Algorithm 5 computes the correct aggregation result (Definition 64 and
Definition 66) for unordered input streams.

Proof. Algorithm 5 handles two different cases: (1) A new table version is added: For
this case, we apply Lemma 5, because the update of each table key is independent
from the updates to all other table keys. (2) An existing table version is updated:
For this case, all table versions beginning with the table version corresponding to the
record timestamp must be updated for all grouping attribute-values. For the table
version that corresponds to the record timestamp, this is guaranteed because the
set of all keys K is set to g(r). Furthermore, based on Definition 58, each explicit
update implicitly updates all existing newer table versions that do not contain the
corresponding key in their modified key set. Updating newer versions implicitly
is correct because it ensures that all results that are equal, i. e., not modified in
a newer table version, are updated together. If a table version has a key k in
its modified key set, it implies that the aggregation result for k is different to its
previous version. Therefore, it needs to be explicitly updated with the new record.
Since Algorithm 5 updates exactly those table versions for exactly those keys, the
result table is correctly updated for each processed record.

5.2.3 Record Stream Joins

We include a variety of equi-join operators for streams and tables in our model,
i. e., stream-stream, stream-table, and table-table joins. In this section, we intro-
duce stream-stream and stream-table joins, while we discuss table-table joins in
Section 5.2.4.

All joins require an equi-join condition to allow for a distributed join computa-
tion. As discussed in the beginning of this chapter, a distributed operator imple-
mentation is desired in modern large-scale stream processing systems: requiring an
equi-join condition allows for a data-parallel join computation (Section 2.2.1). Both

116 CHAPTER 5. THE DUAL STREAMING MODEL

inputs can be split into N shards, using for example hash- or range-partitioning
(Section 2.2.2) on the join-attribute. Sharding the input allows us to compute the
join result using N machines in parallel by co-partitioning the corresponding shards
on the same machine.

Stream-Stream Join

A stream-stream join returns a stream on its output. Additionally, we apply a
sliding window on the input streams that effectively defines an event-time band-join
over both:6 two records join if they have the same join attribute value and if their
timestamps are close to each other, i. e., their timestamp difference is less than or
equal to the window size.

The stream-stream join operator join, takes as input two data streams S and
S̄, two extractor functions g and ḡ that return the join attribute value for records of
each stream, a window size parameter ω, as well as a joiner function j that computes
the join result for two joining records. For each pair r ∈ S and r̄ ∈ S̄ that joins, j is
called to compute the join result. A new record with the join result and timestamp
t′ = max{r.t, r̄.t} is appended to the result stream.

Definition 67 (Windowed Stream-Stream Join). Given two record streams S[S]
and S̄[S̄], two extractor functions g : JSK → DK′ and ḡ : JS̄K → DK′, a window
size parameter ω ∈ T , as well as a function j : JSK × JS̄K → DV ′, join : SJSK ×
SJS̄K × (JSK → DK′) × (JS̄K → DK′) × T × (JSK × JS̄K → DV ′) → SJS′K with S′ =
{O, T, {O ×O}, V ′} is defined as:

join(S, S̄, g, ḡ, ω, j) = S′ (5.13)

with

∀r ∈ S,∀r̄ ∈ S̄ : ((g(r) = ḡ(r̄) ∧ |r.t− r̄.t| ≤ ω)
=⇒ ∃r′ ∈ S′ : r′ = ⟨o, max{r.t, r̄.t}, ⟨r.o, r̄.o⟩, j(r, r̄)⟩) ∧

∀r′ ∈ S′ : (∃r ∈ S, ∃r̄ ∈ S̄ : (r′.k = ⟨r.o, r̄.o⟩ ∧ g(r) = ḡ(r̄) ∧ |r.t− r̄.t| ≤ ω) ∧
∀r∗ ∈ S′ : (r∗.k = r′.k =⇒ r∗ = r′))

Definition 67 explicitly assigns unique keys (as input record offset pair, instead
of ⊥) to the result records. The reason to assign keys explicitly is twofold: (1)
Assigning keys explicitly is required for a correct definition of the result. Records
at different offsets may have the same value and timestamp, leading to multiple
result records with equal value and timestamp (at different offsets). If the definition
would use ⊥-keys, those “equal” result records could not be distinguished and the
required number of join results would not be reflected in the definition because the
∃-quantifier cannot express quantities. Assigning unique keys based on input record
offsets ensures that no join result is missing in the output stream. (2) Assigning
keys explicitly allows us to handle unordered input data streams for outer joins

6Limiting the scope of a join is required to avoid unbounded growth of the operator state. Join
operators usually buffer records in hash-tables to compute the join result incrementally [AA91,
ACc+03b, Des04] (c. f. Section “Incremental Join Computation” below). Sliding-windows are the
most common approach because it is easy to reason about the operator semantics. However, there
also exist many other techniques [XY07].

5.2. STREAM PROCESSING OPERATORS 117

ω = 6

S: A1 A2 C3 E4 B5

S̄: B1 D2 E3 E4 A5

1 2 3 4 5 6 7 8 9 time

inner: E4-E3 E4-E4 A2-A5

left: A1-⊥ C3-⊥ E4-E3 E4-E4 A2-A5 B5-⊥
right: ⊥-B1 ⊥-D2 E4-E3 E4-E4 A2-A5

full: A1-⊥ ⊥-B1 C3-⊥ ⊥-D2 E4-E3 E4-E4 A2-A5 B5-⊥

Figure 5.4: Stream-stream join example.

(as defined in the next paragraph) gracefully. We discuss joins on unordered input
streams in more detail later (c. f. Section “Joining Unordered Data Streams”).

Furthermore, we point out that the offset attribute of result records is not ex-
plicitly defined, because any order of output records is considered correct. Similar to
unary record stream transformations, we apply stream equivalence (Definition 60)
as correctness criteria to stream-stream joins.

Outer-Joins: Additionally to the inner stream-stream join as introduced above
(Definition 67), we also include left-, right- and full-outer joins in our model.7
Their definition follows left-/right-/full-outer join semantics as known from rela-
tional database systems. If a record from the left and/or right input stream does
not join on the inner join condition, i. e., no join partner record in the other streams
exists, the record is still added to the result stream. We discuss later, how outer-
joins are computed in more detail. For stream-stream joins, outer result records are
computed as follows:

Left-Outer: ⟨o, r.t, ⟨r.o,⊥⟩, j(r,⊥)⟩

Right-Outer: ⟨o, r̄.t, ⟨⊥, r̄.o⟩, j(⊥, r̄)⟩

Example 19 (Stream-Stream Join). Figure 5.4 depicts two ordered input streams S
and S̄, and their inner/left-outer/right-outer/full-outer join result for a window of
size ω = 6, using the values as join attribute. We only show the values; their indices
indicate the input record offsets. Timestamps are given by the timeline while keys,
that are ⊥, are omitted.

The inner join produces 3 join results. A1 does not join with A5 because they do
not fall into the same join window. Similarly, the time difference between B1 and
B5 exceeds the window size, and thus, both do not join. However, A2 joins with A5
and E4 from S joins with E3 and E4 from S̄. The other records (C3 and D2) within

7We us the term outer join to refer the all three types of outer joins at once.

118 CHAPTER 5. THE DUAL STREAMING MODEL

the time window do not join, because there is not record in the other stream with
equal join attribute value.

The left-outer join contains all result records from the inner join. Additionally,
the three left-stream records A1, C3, and B5 are included in the result. Similarly,
the right-outer join includes the two right-stream records B1 and D2 in addition to
the inner join result. Finally, the full-outer join result contains all records from the
inner-, left-outer-, and right-outer join results.

It is important to note that the depicted join result streams are shown in times-
tamp order to indicate the assigned result record timestamps. The actual offset order
may be different and is not specified in the example.

To compute the correct result, a join operator needs to store records from both
input streams in its internal state. If both input streams are ordered, the window
size determines how long records needs to be stored. If the time in one input stream
advances from t to t + 1, all records from the other stream with timestamp up to
t − ω can be deleted because they cannot join with any future records any longer.
However, for the case of unordered input streams, it is a-priori unknown how long
records need to be stored, because an out-of-order record might occur at any time.
Conceptually, records would need to be stored forever, resulting in unbounded space
requirements. Furthermore, for outer joins it is unclear if an outer join result can
be emitted or not. Even if the join windows “ends”, there might be an out-of-order
record later that results in an inner join result. Because an out-of-order record may
appear at any point in time, conceptually outer join results can never be added to
the result stream safely, because it is unknown if they are contained in the result or
not. We discuss both issues of unbounded space requirements and handling of outer
join results for unordered input streams in more detail in Section 5.3.

Stream-Table Join

A stream-table join is a temporal table lookup-join and it yields an output stream
as result. It is basically a “stream enrichment join”: for each stream record, a join
attribute is extracted and the join attribute is used to find a table record with the
corresponding primary key. If such a record exists in the table, the stream record is
joined with the table record and a join result is appended to the output stream. A
stream-table join is a temporal join: the table lookup is based on the stream record
join attribute and the stream record timestamp. In particular, a record is joined
with the table version corresponding to the stream record timestamp.

The stream-table join operator join, takes as input a data stream S, a table T⃗ ,
an extractor function g that returns the key from the stream record for the primary-
key table lookup, as well as a joiner function j that computes the join result for two
joining records. The return type of g must be the same as the primary key type of
T⃗ . Output records inherit the input stream record timestamp.

Definition 68 (Stream-Table Join). Given a record stream S[S], a table T⃗ [T̄], an
extractor function g : JSK → DK̄ , and a function j : JSK × JT̄K → DV ′, join :
SJSK× T⃗ JT̄K× (JSK→ DK̄)× (JSK× JT̄K→ DV ′)→ SJS′K with S′ = {O, T, O, V ′} is
defined as:

join(S, T⃗ , g, j) = S′ (5.14)

5.2. STREAM PROCESSING OPERATORS 119

with

∀r ∈ S : (r̄ = Tr.t.lookup(r.k) ∧
(r̄ ̸= ⊥ =⇒ ∃r′ ∈ S′ : r′ = ⟨o, r.t, r.o, j(r, r̄)⟩)) ∧

∀r′ ∈ S′ : (∃r ∈ S : (r.o = r′.k ∧ Tr.t.lookup(r.k) ̸= ⊥) ∧
∀r∗ ∈ S′ : (r∗.k = r′.k =⇒ r∗ = r′))

It is important to note that Definition 68 explicitly assigns unique keys to the
result records. The reason is the same as for stream-stream joins as discussed pre-
viously (Definition 67).

Example 20 (Stream-Table Join). Figure 5.5 depicts a stream-table join between a
stream S and table T⃗ . For S, only the record values that are used as join-attribute are
shown. For T⃗ , we also depict the modified key set in braces. The first stream record
A at timestamp 1 does not join, because there is no corresponding table version.
Inserting a key-value pair into the table at timestamp 2 does not yield a join result
either, because there is no corresponding stream record. At timestamp 3, a new key-
value pair ⟨B, 2⟩ is inserted into the table and a new stream record is processed.
Hence, inner join result record B-2 is appended to the output stream. Stream record
A with timestamp 4 joins with ⟨A, 1⟩ independent of the update of key B to value
3. At timestamp 5, stream record B is processed. Even if there is no table version
at timestamp 5, B joins with the latest value and record B-3 is emitted, because a
“missing” table version at timestamp 5 implies that T5 = T4. The last stream record
A does not produce any join result because A is explicitly deleted from the table at
the same time as indicated by the modified key set of T5 that contains A.

A stream-table join can also be a left-outer join ensuring that there is exactly
one join result per stream input record.

Definition 69 (Left-Outer Stream-Table Join). Given a record stream S[S], a table
T⃗ [T̄], an extractor function g : JSK → DK̄ , and a function j : JSK × (JT̄K ∪ {⊥}) →
DV ′, leftJoin : SJSK × T⃗ JT̄K × (JSK → DK̄) × (JSK × JT̄K → DV ′) → SJS′K with
S′ = {O, T, O, V ′} is defined as:

leftJoin(S, T⃗ , g, j) = S′ (5.15)

with

∀r ∈ S : (r̄ = Tr.t.lookup(r.k) ∧
∃r′ ∈ S′ : r′ = ⟨o, r.t, r.o, j(r, r̄)⟩) ∧

∀r′ ∈ S′ : (∃r ∈ S : r.o = r′.k ∧
∀r∗ ∈ S′ : (r∗.k = r′.k =⇒ r∗ = r′))

Example 20 includes the result of a left-outer stream-table join. For this case,
every input stream record produces one output record. Right-outer and full-outer
joins are not defined for stream-table joins, because the join is “asymmetric” and
only stream-side records may result in output records, while table-side updates are
applied “passively”.

120 CHAPTER 5. THE DUAL STREAMING MODEL

T⃗ :

T2

{A}
k v

A 1

T3

{B}
k v

A 1

B 2

T4

{B}
k v

A 1

B 3

T6

{A}
k v

B 3

S: A B A B A

1 2 3 4 5 6 time

inner: B-2 A-1 B-3

left: A-⊥ B-2 A-1 B-3 A-⊥

Figure 5.5: Stream-table join example.

Incremental Join Computation

Assuming ordered input data streams, stream-stream and stream-table joins can
be computed incrementally. An incremental computation requires some time-syn-
chronization between both inputs. Record processing alternates between the left
and right input based on the record timestamps. For stream-table join we assume
an ordered table-changelog stream as input that updates the right-hand side table
accordingly. To synchronize both input streams, the operator always looks at the
next record to be processed for both input streams, and picks the record with the
smaller timestamp. If both records have the same timestamp, either record may be
processed for a stream-stream join, while it is required to process a table changelog
record before a stream record for stream-table joins (to ensure that the table is
updated before a table-lookup is performed).

For example, the inner stream-stream join can be implemented as symmetric-
hash-join [AA91, ACc+03b, Des04]: a left record is processed by inserting it into the
left hash-table and additional probing of the right hash-table. Since joins are mono-
tone operators [TGNO92], processing records incrementally in offset-order yields the
correct result.

Computing inner stream-stream and inner/left-outer stream-table joins incre-
mentally, using input stream time-synchronization as described above, produces or-
dered output data streams. For stream-stream outer joins it is required to apply a
more sophisticated algorithm, because emitting outer join results must be delayed
until window size time passes (otherwise, a record might still produce an inner join
result). If it is required that the output stream is ordered, delaying outer join result
records requires delaying inner join result records, too. In such case, all computed
result records would be buffered in the operator state first. While time advances,
inner and outer join result records with a timestamp smaller than the current time
minus the window size can be appended to the output stream in timestamp order.8

8Instead of buffering the result records, it is also possible to delay the whole computation until
window size time has passed. For each buffered record that is ready for processing, i. e., its time-

5.2. STREAM PROCESSING OPERATORS 121

Joining Unordered Data Streams

Handling out-of-order records in stream-stream and stream-table join inputs requires
several strategies. For inner stream-stream joins, it is sufficient to preserve history,
while for outer stream-stream and stream-table joins preserving history is necessary
but not sufficient to compute the correct result. The decision if a result record needs
to be appended to the output stream is not affected for inner stream-stream joins
if inputs are unordered. If two records join, it is always correct to emit a result
record. As long as stream history is preserved, i. e., older records are buffered in
the operator state, any out-of-order record can be joined correctly.9 However, for
outer stream-stream joins and left-outer stream-table join, if a record does not have
any join partner in the other input, it is unclear if emitting an outer join result is
correct, because a future out-of-order record in the other input might result in an
inner join result later.

Consider Figure 5.4 from Example 19: the first record A1 from left input stream
S produces a left-outer join result record A1-⊥. Assuming an incremental join com-
putation (c. f. Section “Incremental Join Computation” from above), it is unknown
when processing A1 if there might be a A-record with timestamp 2 to 7 (or actually
with timestamp −5 to 7, as earlier and later records need to be considered) in the
right input stream after record B1. The naïve strategy to delay emitting A1-⊥ after
a record with timestamp 8 is observed on S̄ only works for ordered input stream. If
there is no out-of-order data, it is clear that there would not be any joining right hand
side record and A1-⊥ is the correct result. However, for unordered data streams,
there might be a joining record at any point in the future and emitting A1-⊥might be
incorrect. Some systems apply punctuation/watermarks [TMSF03, ABB+13] to ad-
dress this problem, however, we argue (c. f. Section 5.3) that this couples processing
latency to data properties, which is undesirable. Processing latency should depend
on the system and its processing/operator model, but not on the processed data.
Therefore, we suggest an emit-eager-and-update-later processing strategy. Each time
a record is processed and no inner join result is computed, the operator emits an
outer join result immediately. If a inner join result is computed later, it is treated
as an update to the previous outer join result. Hence, instead of emitting a second
fact record, update semantics similar to table changelog streams are applied.

Example 21 (Eager Join Compuation). Figure 5.6 depicts the same input streams
as Figure 5.4 from Example 19, and the result of a left- and right-outer join with the
same window size ω = 6. Additionally, the output record keys are shown. The result
is computed eagerly, and hence, each time a record is processed an output record is
emitted.

For the left-outer join, all records from the left input stream produce a left-outer
join result, because no matching right hand side record was processed yet. Processing
records B1 and D2 from S̄ does not result in any output records, as no matching left
hand side record is available, and for a left join right input records do not trigger

stamp is smaller than current time minus window size, the probing into the other hash-table can be
done considering only later records with respect to the currently processed record. Earlier records
are not considered, because the corresponding join results would have been computed already when
those earlier records became available for processing.

9It is important to note that it is impossible to guarantee ordered output streams if input streams
are unordered.

122 CHAPTER 5. THE DUAL STREAMING MODEL

ω = 6

S: A1 A2 C3 E4 B5

S̄: B1 D2 E3 E4 A5

1 2 3 4 5 6 7 8 9 time

left:

k:

A1-⊥
⟨0, ⊥⟩

A2-⊥
⟨1, ⊥⟩

C3-⊥
⟨2, ⊥⟩

E4-⊥
⟨3, ⊥⟩

E4-E3

⟨3, ⊥⟩
E4-E4

⟨3, 3⟩
A2-A5

⟨1, ⊥⟩
B5-⊥
⟨4, ⊥⟩

right:

k:

⊥-B1

⟨⊥, 0⟩
⊥-D1

⟨⊥, 1⟩
E4-E3

⟨3, 2⟩
E4-E4

⟨3, 3⟩
A2-A5

⟨1, 4⟩

Figure 5.6: Stream-stream left- and right-outer join example with eager emitting.

any outer join results. However, processing E3, E4, and A2 from S̄ produces inner
join result records. The first result E4-E3 is an update to the previously emitted left
join results E4-⊥ and hence gets the same key ⟨3,⊥⟩ assigned. The second result
E4-E4 does not need to update any left join result and hence it gets it own unique key
based on the input record offsets ⟨3, 3⟩ assigned. Similar to the first record, the last
record A5 gets the same key ⟨1,⊥⟩ assigned as the left join result from timestamp 2
to “update” the join result from an outer join result to an inner join result.

For the right-outer join, the exact same output as in Example 19 is emitted. In
our example, no “incorrect” eager right-outer join result is emitted and hence there
is nothing to be updated.

Example 21 illustrates our emit-eager-and-update-later processing strategy. The
emitted output streams, are a super set of the expected output streams as illustrated
in Figure 5.4. It is important to note that the result is no longer a record stream
(Definition 53), because it contains updates. Hence, record stream equivalence (Def-
inition 60) does not apply. We redefine equivalence for data streams with updates,
which allows us to apply our operator correctness definition (Definition 61).

Definition 70 (Equivalence of Data Streams With Updates). Given a stream S[S]
that contains updates. S[S] can be transformed into a record stream S′[S], by re-
moving all records that are updated later:

S′ = S.filter(f)

with: f(r) =
{︄
⊤ if ∄r̄ ∈ S : (r̄.k = r.k ∧ r̄.o > r.o)
⊥ otherwise

Given two streams S1[S] and S2[S] that both may contain updates. Both streams
are equivalent, denoted S1[S] ≡ S2[S], iff their corresponding record streams are
equivalent:

S1 ≡ S2 ⇐⇒ filter(S1, f) ≡ filter(S1, f) (5.16)

Definition 70 states that two streams containing updates are equivalent if they
contain the same data after all “outdated” records are removed from the stream.

5.2. STREAM PROCESSING OPERATORS 123

Considering Example 19 and Example 21, both left-outer join result streams are
equivalent because the additional records A2-⊥ and E4-⊥ from the eager join com-
putation are updated via A2-A5 and E4-E3 and hence the record stream that corre-
sponds to the eager result stream (Definition 70) is equivalent with the result stream
from Example 19.

Applying our eager-computation strategy, handling out-of-order records for outer
stream-stream joins is achieved natively.

Example 22 (Joining Unordered Streams). Figure 5.7 uses equivalent input streams
as Example 19 and Example 21, however, records are out-of-order (highlighted in
red). Therefore, no timeline is depicted but records are ordered by their offsets and
timestamps are added explicitly to each record (i. e., ⟨t, v⟩)10. Both input streams
are shown interleaved to indicate the processing order, which is based on the record
timestamps as discussed above (c. f. Section “Incremental Join Computation”). It
is important to note that the lower part of the figure is a continuation of the upper
part. As before, the join window has a size of ω = 6 (not depicted).

The inner join result is the same as in the previous examples illustrating that
inner stream-stream joins are not affected by out-of-order data and produce result
record streams (i. e., no updates are required). However, the result stream is un-
ordered as compared to previous examples because the input streams are unordered.
For the left-outer join, there is an eager result from processing A2 at offset 2 in S
that is updated later with A2-A5 when A5 from S̄ is processed (highlighted in blue).
This is similar to Example 21. In contrast, because E4 from S is out-of-order and
is processed after E3 and E4 from S̄, no eager outer join result is contained in the
left-outer result stream for E-records, but only the two inner join results. At the
same time, there are two outer join results for E3 and E4 in the right-outer join
result stream (highlighted in green), due to the delay of E4 in S. Both are updated
when E4 is processed as last record of S resulting in two output records, one for
each previous outer join result. The full-outer join result contains all eager left- and
right-outer join result records as expected. It is important to note that the keys of
the records are assigned differently in each case, depending if an inner join result is
an update to a previous eager outer join result or not. Finally, the fact that record
D2 from S̄ is out-of-order does not have an impact on the result: because it results
in a correct right-outer join result, it does not matter when D2 is processed.

Example 22 illustrates that handling out-of-order records is natively achieved
applying our eager-emit-and-update strategy. The order of input records as well as
their delay only affects which intermediate outer join result records are computed,
but do not have an impact on the final result.

For stream-table joins, out-of-order stream records do not require special han-
dling. For each record, a table lookup is done and a corresponding output record is
appended to the output stream if appropriate. However, out-of-order table updates
could yield incorrect join results, if not treated properly. Assume that the table up-
date in Figure 5.5 from ⟨B, 2⟩ to ⟨B, 3⟩ is delayed. Stream record B at timestamp 5
would incorrectly join with the table version 3 and emit ⟨B, 2⟩. To handle this case,

10The value indices are the same as in the previous examples to allow an easy mapping between
them.

124 CHAPTER 5. THE DUAL STREAMING MODEL
offset:

0
1

2
S:

⟨1
,A

1 ⟩
⟨3

,C
3 ⟩

⟨2
,A

2 ⟩

S̄:
⟨2

,B
1 ⟩

⟨6,E
3 ⟩

⟨4,D
2 ⟩

offset:
0

1
2

inner:

left:
⟨1

,⟨0
,⊥

⟩,A
1 -⊥

⟩
⟨3

,⟨1,⊥
⟩,C

3 -⊥
⟩

⟨2
,⟨2

,⊥
⟩,A

2 -⊥
⟩

right:
⟨2,⟨⊥

,0⟩,⊥
-B

1 ⟩
⟨6,⟨⊥

,1⟩,⊥
-E

3 ⟩
⟨4,⟨⊥

,2⟩,⊥
-D

2 ⟩

full:
⟨1

,⟨0
,⊥

⟩,A
1 -⊥

⟩
⟨2,⟨⊥

,0⟩,⊥
-B

1 ⟩
⟨3

,⟨1,⊥
⟩,C

3 -⊥
⟩

⟨2
,⟨2

,⊥
⟩,A

2 -⊥
⟩

⟨6,⟨⊥
,1⟩,⊥

-E
3 ⟩

⟨4,⟨⊥
,2⟩,⊥

-D
2 ⟩

offset:
3

4
S:

⟨9
,B

5 ⟩
⟨5,E

4 ⟩

S̄:
⟨8

,A
5 ⟩

⟨7,E
4 ⟩

offset:
3

4

inner:
⟨8

,⟨2,3⟩,A
2 -A

5 ⟩
⟨6

,⟨4,1⟩,E
4 -E

3 ⟩
⟨7,⟨4

,4⟩,E
4 -E

4 ⟩

left:
⟨8

,⟨2,⊥
⟩,A

2 -A
5 ⟩

⟨9
,⟨3,⊥

⟩,B
5 -⊥

⟩
⟨6

,⟨4,1⟩,E
4 -E

3 ⟩
⟨7,⟨4

,4⟩,E
4 -E

4 ⟩
right:

⟨8
,⟨2,3⟩,A

2 -A
5 ⟩

⟨7,⟨⊥
,4⟩,⊥

-E
4 ⟩

⟨6
,⟨⊥

,1⟩,E
4 -E

3 ⟩
⟨7

,⟨⊥
,4⟩,E

4 -E
4 ⟩

full:
⟨8

,⟨2,⊥
⟩,A

2 -A
5 ⟩

⟨7,⟨⊥
,4⟩,⊥

-E
4 ⟩

⟨9
,⟨3,⊥

⟩,B
5 -⊥

⟩
⟨6

,⟨⊥
,1⟩,E

4 -E
3 ⟩

⟨7
,⟨⊥

,4⟩,E
4 -E

4 ⟩

Figure
5.7:

Stream
-stream

join
exam

ple
for

unordered
input

stream
s

w
ith

ω
=

6.

5.2. STREAM PROCESSING OPERATORS 125

we apply the same emit-eager-and-update-later incremental processing strategy. To
allow updating result records later, it is required to buffer input stream records in
the stream-table join operator and re-trigger the join computation for out-of-order
table updates. If an out-of-order table update occurs, corresponding update records
are sent downstream to update previously emitted join records.

5.2.4 Table Operators

We define table operators with relational semantics enriched with a temporal com-
ponent to incorporate the nature of evolving tables (Definition 56) that have mul-
tiple table versions. Additionally, we limit the scope of allowed transformations to
mapValues (i. e., key-preserving projection as introduced in Definition 71 below),
filter (i. e., selection), aggregation, and equi-join. Those operators allow us to
maintain result tables incrementally if the input tables are updated, using tech-
niques from relational database systems to maintain materialized views.

Since input tables are updated continuously, a table operator needs to contin-
uously update the result table. Therefore, result tables are effectively materialized
views. To apply updates with low latency as required for a stream processing model,
materialized views need to be updated incrementally [BLT86, JMS95, LPBZ96].
Hence, all known limitations to allowed table operations apply in our model. For
example, aggregation functions need to be subtractable to avoid unbounded space
requirements for an incremental computation.

In practice, not all tables need to be materialized and some computations may
be performed on a table changelog stream (for example a filter). A cost model shall
be employed to decide if an operator uses a materialized table or operates over the
corresponding table changelog stream only.

Table Transformations

The mapValues operator mapValues is a second-order function that takes a table
and a user-defined first-order function f : JTK→ DV ′ as parameters. For each record
in table T⃗ , mapValues invokes f and inserts a record with returned value into the
output table.

Definition 71 (MapValues Operator). Given a table T⃗ [T] and a function f :
JTK → DV ′. We define mapValues(T⃗ , f) : T⃗ JTK × (JTK → DV ′) → T⃗ JT′K with
T′ = {T, K, V ′} as follows.

mapValues(T⃗ , f) = (T ′
0, . . . , T ′

t̂
) (5.17)

with
T⃗ = (T0, . . . , Tt̂) ∧ ∀Tt ∈ T⃗ : T ′

t = mapValues(Tt, f)
and

mapValues : T JTK× (JTK→ DV ′)→ T JT′K

mapValues(T, f) = T ′

with
∀r ∈ T : (∃r′ ∈ T ′ : r′ = ⟨r.t, r.k, f(r)⟩)∧
∀r′ ∈ T ′ : (∃r ∈ T : r′.k = r.k)

(5.18)

126 CHAPTER 5. THE DUAL STREAMING MODEL

The mapValues operator preserves key and timestamp for each record. We do
not allow to modify the key, because this may lead to primary key conflicts on the
resulting table that cannot be resolved deterministically. Assume an input table
with two records ⟨k1, t, v1⟩ and ⟨k2, t, v2⟩, and a function f(r) = ⟨k, r.v⟩. Because
there is no order between both input table records, it is not defined if the result
table should contain ⟨k, t, v1⟩ or ⟨k, t, v2⟩. If a table shall be re-keyed, it is required
to use the aggregation operator (c. f. Definition 73 below).

To express a filter/selection on tables, we use the mapValues operator and allow
f to return ⊥ (or return the value unmodified) to indicate that a record is dropped.
To incorporate ⊥ as return value, Definition 71 is updated to:

mapValues(T, f) = T ′

with

∀r ∈ T : v′ = f(r) ∧ (v′ ̸= ⊥ =⇒ (∃r′ ∈ T ′ : r′ = ⟨r.t, r.k, v′⟩))∧
∀r′ ∈ T ′ : (∃r ∈ T : r.k = r′.k ∧ f(r) ̸= ⊥)

To allow users to only specify a boolean predicate that returns true or false
instead of a function f that can be provided to mapValues, we define the filter
operator filter as second-order function that takes a user-defined filter predicate
as input as follows.

Definition 72 (Filter Operator). A filter operator is a second-order function
filter : T⃗ JTK×(JTK→ {⊥,⊤})→ T⃗ JTK. It takes a table T⃗ and a user-defined filter
predicate p : JTK → {⊥,⊤}, and applies p to each record in the table. The result
table contains all records for which p returns ⊤.

filter(T⃗ , p) = mapValues(T⃗ , mapValuesFilter(p)) (5.19)

with
mapValuesFilter : (JTK→ {⊥,⊤})→ (JTK→ (JTK ∪ {⊥}))

mapValuesFilter(p) = r → f(r)

with f(r) =
{︄
⊥ if p(r) = ⊥
r.v if p(r) = ⊤

The helper function mapValuesFilter in Definition 72 takes a filter predicate
and returns a function that can be provided to mapValues.

Table Aggregation

The aggregation operator agg is a second-order function that takes a table, a user-
defined first-order grouping function g : JTK → DK′ , and a user-defined first-order
aggregation function f : T JTK → DV ′ as input, and produces a table as output.
The input table is split into subsets based on g, i. e., one subset per grouping at-
tribute value. The aggregation function f is applied to each subset to compute the
aggregation result.

5.2. STREAM PROCESSING OPERATORS 127

Definition 73 (Aggregation Operator). Given a table T⃗ [T], a function g : JTK →
DK′, and a function f : T JTK→ DV ′. The aggregation operator agg : T⃗ JTK×(JTK→
DK′) × (T JTK → DV ′) → T⃗ JT′K computes a table T⃗ with schema T′ = {T, K ′, V ′}
as:

agg(T⃗ , g, f) = (T ′
0, · · · , T ′

t̂
) (5.20)

with
T⃗ = (T0, . . . , Tt̂) ∧ ∀Tt ∈ T⃗ : T ′

t = agg(Tt, f, g)
Definition 73 uses the relational aggregation operator and applies it to all table

versions to incorporate the temporal nature of an evolving table.

Table-Table Joins

Joining two tables requires an equi-join condition (as all other joins), and computes
an output table. Similar to stream-table joins, table-table joins are temporal joins,
implying that table versions with the same version number are joined.

The join operator join, takes as input two tables, two extractor functions g1
and g2 that return the join key value from table records for each input table, as well
as a joiner function j that computes the join result for two joining records.
Definition 74 (Table-Table Join). Given a table T⃗ 1[T1], a table T⃗ 2[T2], two func-
tions g1 : JT1K→ Dk and g2 : JT2K→ Dk, as well as a function j : JT1K×JT2K→ DV ′,
join : T⃗ JT1K× T⃗ JT2K× (JT1K→ Dk)× (JT2K→ Dk)× (JT1K× JT2K→ DV ′)→ T⃗ JT′K
with T′ = {T, ⟨K1, K2⟩, V ′} joins both tables by joining their corresponding table
versions:

join(T⃗ 1, T⃗ 2, g1, g2, j) = T⃗
′ = (T ′

0, · · · , T ′
t̂
) (5.21)

with
t̂ = max{t|Tt ∈ T⃗ 1 ∨ T̄ t ∈ T⃗ 2} ∧
∀T ′

t ∈ T⃗
′ : ∀r ∈ Tt,∀r̄ ∈ T̄ t :

g1(r) = g2(r̄) =⇒ ⟨max{r.t, r̄.t}, ⟨r.k, r̄.k⟩, j(r, r̄)⟩ ∈ T ′
t

Definition 74 defines an inner equi-join on the join attribute value returned by g1
and g2, and hence is a many-to-many join. For one-to-many or one-to-one joins, the
definition could be adapted accordingly. Furthermore, defining left-, right-, and full-
outer joins is straightforward. Even if we omit the corresponding formal definitions,
our model supports all those joins. All joins follow the same temporal semantics
that we illustrate for inner equi-joins in the following example.
Example 23 (Table-Table Join). Figure 5.8 depicts an inner join example for two
input tables T⃗ A (with table versions 1, 5, 6) and T⃗ B (with table versions 2, 3, 6).
Similar to a stream-table join if a table version is missing, it implies that there
was no update with corresponding timestamp. Hence, we can use the previous table
version because Tt = Tt−1 for this case.

In our example, there is no result table version T ′
1 because there is no version

T
(B)
1 and thus T

(A)
1 cannot be joined at timestamp 1. Because T

(A)
2 does not exist,

T
(B)
2 joins with T

(A)
1 yielding T ′

2. Updating T
(B)
2 to T

(B)
3 results in updating T ′

2 to
T ′

3. Similarly, T ′
5 is the result of joining the updated T

(A)
5 with T

(B)
3 . At timestamp

6 both input tables are updated at the same time and thus T ′
6 = T

(A)
6 ⋊⋉ T

(B)
6 .

128 CHAPTER 5. THE DUAL STREAMING MODEL

left table T⃗A T
(A)
1 T

(A)
5 T

(A)
6

right table T⃗B T
(B)
2 T

(B)
3 T

(B)
6

result table T⃗ ′ T ′
2 T ′

3 T ′
5 T ′

6

1 2 3 4 5 6 time

Figure 5.8: Table-table join example.

5.3 Model Trade-offs

Our Dual Streaming Model embraces the notion of “the result so far” [LWZ04], in-
cremental record-by-record processing, and handles out-of-order records leveraging
“updates”. The main goals of our model are, to decouple the processing of out-
of-order records from the processing latency, and to open up the design space for
stream processing applications. To this extent, our model does not require external
time tracking or time estimation mechanism like punctuation [TMSF03] or water-
marks [ABB+13], but addresses out-of-order records within the processing model
itself. However, punctuation/watermark may still be used to achieve different trade-
offs within the model, as we discuss in more detail later.

Figure 5.9 depicts the 3-dimensional design space for stream processing mod-
els incorporating result correctness/completeness, processing cost, and processing
latency. Result correctness/completeness targets the processing of unordered data
streams. Depending on the maximum unorder/delay of out-of-order input records,
it is required to buffer a certain history of data (either raw input records or partial
results) to compute the correct result, which increases the processing cost. While the
design space is 3-dimensional, existing stream processing models often limit users to
have only a trade-off between processing cost vs. result correctness/completeness.
Those models only support immutable results, and hence, couple processing latency
to result correctness/completeness. Results can only be emitted after it is known11

that all corresponding input data was received.
For example, buffering techniques that order data streams before processing

(green line in Figure 5.9) as well as punctuations/watermarks (orange line in Fig-
ure 5.9) imply an increased processing latency if result correctness/completeness
shall be achieved. The higher the maximum unorder/delay of out-of-order in-
put records is, the longer data needs to be buffered and the later a punctuation/
watermark arrives. Hence, processing cost and processing latency increase at the

11If all data was received or not, is often an estimation.

5.3. MODEL TRADE-OFFS 129

correctness/
completeness

latency

cost
Buffering and Reordering
– high cost and high latency

Punctuations/Watermarks
– low cost and high latency

Dual Streaming Model
– medium cost and low latency
– decouple latency from correctness

Figure 5.9: Trade-offs of data stream processing models.

same time. To this end, record buffering and reordering implies higher costs com-
pared to a punctuation/watermark approach, as noted by Li et al. [LTS+08].

In contrast, our model (blue line in Figure 5.9) always achieves low process-
ing latency, even if processing costs increase to achieve higher result correctness/
completeness. Independent of the maximum unorder/delay of records, data is pro-
cessed in offset order and the result is updated immediately by either updating a
result table or appending a result stream record eagerly. We discuss latency in wa-
termark based models compared to our model in more detail in the next section
using the example of the window aggregation operator.

5.3.1 Processing Latency

Most stream processing models are “stream-only” models implying that operator
inputs and outputs are always immutable record streams. In contrast to our model,
an aggregation does not yield a result table, but a result stream in those models:

record-stream→ aggregation-operator→ record-stream

For a windowed aggregation, those models imply that there is exactly one output
record per window per grouping attribute-value in the result stream. To compute
the aggregation result, the aggregation operator maintains internal state, most likely
as a key-value store. For example, for each window and each grouping attribute-
value, a unique key/window-ID is generated (c. f. Section “Windowed Aggregation”
above). For each window-ID, a corresponding entry is added to the key-value store.
The value can either be a list of all raw input records that belong to the window that
is identified by the window-ID, or an already pre-aggregated representation of the
aggregation result. When a corresponding watermark arrives, the system triggers the
computation of the aggregation and appends a result record to the output stream.

130 CHAPTER 5. THE DUAL STREAMING MODEL

watermark:
delay=3,interval=1

0 1 2 3 4 5 6 7 8 9 time

a b c d e

t=1 t=2 t=3 t=4 t=5

compute aggregation

l=4.5

output
z= agg(a,b,c,d)

0 1 2 3 4 5 6 7 8 9 time

z

Figure 5.10: Windowed aggregations with watermarks.

Additionally, the corresponding key-value entry is removed from the internal state,
because the computation for the window is completed and the window is not needed
any longer.

Figure 5.10 depicts the computation of an aggregation window with window size
ω = 5, a watermark delay of 3, and watermark generation interval of 1 time unit.
The first window has boundaries [0, 5) and hence it is closed when a watermark with
timestamp t = 5 is observed. Such a watermark arrives at timestamp 8 triggering
the computation of the aggregation result z that is appended to the output stream.
The processing latency is l = 4.5 time units, because the result could have been
computed at time 3.5 when the last record d in the window arrived.

In our model, the result of an aggregation is not a record stream but a table plus
its changelog stream:

record-stream→ aggregation-operator→ table plus changelog

For each input record, the aggregation operator updates the result table and
appends a corresponding changelog record to the output stream. Figure 5.11 depicts
the same windowed aggregation as Figure 5.10, using our processing model, showing
the result table changelog stream. Each time a new input record is received, the
aggregation result is updated (with zero latency l = 0) and a changelog record is
emitted. Hence, the final window result is emitted at timestamp 3.5, the same
time the last record d within the window arrives. In our model, the result latency
(ignoring the actual computation time) is zero. The main difference of both results
is that the changelog stream contains 4 output records that “update” each other,
while the record stream contains one result record. Because the changelog stream
contains more output records, the processing cost for downstream operators are
higher compared to the watermark model. This property is reflected in Figure 5.9,

5.3. MODEL TRADE-OFFS 131

ordered input

0 1 2 3 4 5 6 7 8 9 time

a b c d e

compute aggregation (l=0)
compute aggregation (l=0)

compute aggregation (l=0)
compute aggregation (l=0)output

w= agg(a)
x= agg(a,b)

y= agg(a,b,c)
z= agg(a,b,c,d)

0 1 2 3 4 5 6 7 8 9 time

w x y z

Figure 5.11: Continuous windowed aggregation.

and our model is considered to provided medium processing costs, compared to low
processing cost as the watermark model. However, result latency is decoupled from
record correctness/completeness.

Considering unordered input data streams, the processing latency in the wa-
termark model does not depend on the event-time of the last record in a window,
instead it depends on the difference between the processing timestamps of the last
out-of-order record and the processing timestamp of the watermark that triggers
the computation. How large the latency may be is data and hence application de-
pendent. It is important to note that the latency may vary significantly between
result records. In the watermark model, the computation of all parallel windows
(i. e., same time boundaries but different aggregation attribute-values) is triggered
by a single watermark. Hence, the latency is different for each parallel window.
Furthermore, the unorder/delay distribution of records impacts the processing la-
tency in the watermark model. If the distribution is skewed, i. e., there is a very
small fraction of records that have very high unorder/delay, it is required to set the
watermark high as well increasing the latency for most records significantly.

Figure 5.12 depicts an aggregation with 6 parallel windows that end at timestamp
5 (windows not shown), aggregation attributes a to f , and a corresponding out-of-
order record per window. The timeline depicts processing-time, and we assume that
all records have an event-timestamp between [0, 5) and belong to the corresponding
window. The watermark delay is set to 10 and hence the watermark with timestamp
5 that closes the windows arrives at timestamp 15. Only record e arrives with a
high unorder/delay and is close to the watermark. For this record, the latency is
low (note that the latency does not depend on the window end time). All other

132 CHAPTER 5. THE DUAL STREAMING MODEL

a

b

c

d

e

f

t = 5
watermark

l = 7

l = 9

l = 6

l = 7

l = 2

l = 8

l ≈ 0
Dual Streaming Model

6 7 8 9 10 11 12 13 14 15 time

Figure 5.12: Processing latency in the watermark model.

records are much earlier and their latency is high, because the unorder/delay is
not evenly distributed over all records. If the unorder/delay distribution is skewed,
watermarks provide a poor upper bound on time progress. In contrast, our model
does not depend on watermarks and thus latency for each window is independent
as indicated by the blue line in Figure 5.12. Hence, the Dual Streaming Model
allows to compute the final result as soon as the last record is available, while a
watermark based approach needs to wait for a corresponding watermark to arrive.
Hence, even if the maximum unorder/delay increases, processing latency stays low in
our model, while it increases in the watermark model, based on the record unorder/
delay distribution.

5.3.2 Design Space

Our model decouples processing latency from result correctness, however, it increases
the load of downstream operators for certain type of computations. For example, the
aggregation operator emits one output record per input record for non-windowed and
tumbling-window aggregations. For overlapping windows, each input record updates
multiple windows and hence results in multiple output records. A watermark based
model emits only one result record per window per aggregation attribute-value, and
hence, reduces the downstream load significantly. In a distributed environment, a
watermark based model may also use upstream pre-aggregation before data is redis-
tributed based on the aggregation attribute. Pre-aggregation cannot be applied in
our continuous model though, because our model would required to send the current
partial pre-aggregation result downstream immediately to allow an immediate up-
date of the aggregation result. Therefore, no load reduction can be achieved using
upstream pre-aggregation.

5.3. MODEL TRADE-OFFS 133

The above paragraph describes our model in its pure form that is latency opti-
mized. It is easily possible to enhance our model with different emit strategies. For
example, it would be possible to emit the first result of a windowed aggregation only
after the window end time passed, and update the window immediately for every
consecutive update. This strategy reduces the downstream load significantly if an
application is not interested in early (and partial) window aggregation results. For
this case, upstream pre-aggregation may be applied as long as window end time did
not pass. Some watermark based models also allow for flexible triggering strate-
gies [ABC+15]. However, they do not define update semantics in result streams but
treat outputs as record streams. Hence, triggering a window computation multiple
times may lead to incorrect downstream results.

Similar to windowed aggregations, it is possible to delay the computation of
outer-join result records until the window end time passed. If each record is pro-
cessed eagerly, the probability of “false” outer-join results that are updated later is
high, because not all records that belong to the join window are received yet. The
drawback of delaying the computation of outer-join result is an increased processing
latency for all actual outer-join result records. It is important to note that the la-
tency of inner-join result records is not affected. Hence, users may chose between an
eager and lazy emit strategy depending on the number of expected outer-join result
records.

Additionally, our model allows applications to retrieve result tables either push
or pull based. Because tables are a first class citizen, applications can exploit the du-
ality between changelog streams and tables, and either subscribe to a table changelog
stream (push) or query the result via table lookups (pull). Furthermore, it is pos-
sible that different applications request different emit strategies. For example, two
application might be interested in a certain data stream aggregation result. The
first application contains a dash-board and is interested in every update to display
the partial results. At the same time, the second application may only be inter-
ested in final results. For this case, the computation can be done once, and two
different output streams are published using different emit strategies. In contrast,
watermark based models couple the emit strategy to the aggregation operator and
only one strategy can be picked. In our case, the emit strategy is decoupled from
the aggregation operator itself, and hence the aggregation is computed only once.

Overall, our model covers a wide range in the design space as shown in Fig-
ure 5.13. Depending on the emit strategy, any point in the design space as indicated
by the blue triangle can be achieved. Our model not only decouples processing la-
tency from result correctness/completeness, but also allows to trade-off processing
cost vs. processing latency by applying different emit strategies. In particular, our
model allows to use watermark based emit strategies. Therefore, the Dual Stream-
ing Model not only enlarges the design space it can operate in, but also incorporate
all trade-offs of watermark based models.

5.3.3 Data Retention

Our model handles out-of-order records by applying a emit-eager-and-update-later
strategy. This strategy requires to buffer the history of received input records. For
example, stream-stream join operators need to buffer old records to be able to join
out-of-order data later. Additionally, our model uses evolving table, which consists of

134 CHAPTER 5. THE DUAL STREAMING MODEL

correctness/
completeness

latency

cost

Figure 5.13: Design space of the Dual Streaming Model.

table versions. While time progresses new table versions are added. Furthermore, for
windowed aggregations, the table primary key space grows without bound over time
because new window-IDs are generated while time progresses. Hence, in practice it
is required to bound the size of result tables [BGAH07] and internal state.

To avoid unbounded growth of tables and operator state, we apply a so-called
retention period to all stateful operators and windowed tables. Data that is older
than the current time minus the retention period is discarded. Purging data from
the result table implies that further updates to those elements are not accepted and
corresponding input records are dropped.

Introducing a retention period makes the trade-off between result completeness
and storage requirements explicit. For example, if users know that there is an ap-
plication specific upper bound for the maximum unorder/delay of out-of-order data,
they may configure the retention period accordingly to ensure a complete result. An
explicit retention period also allow users to reason about memory/storage require-
ments. As such, retention time is somewhat similar to a punctuation/watermark
mechanism [TMSF03, ABB+13], because both are used to purge old state. How-
ever, retention period is orthogonal to processing latency and it does not introduce
additional latency, because the result table is updated immediately, while a punctu-
ation/watermark would delay the computation until the watermark passes.

5.4 Related Work
In our model, we build on research conducted on sequences, streams, updates, tables,
and maintenance of materialized views.

Sequence Databases Sequence processing was studied by Seshadri et al. [SLR94,
SLR95, SLR96] introducing the SEQ model. The main abstraction is a sequence of

5.4. RELATED WORK 135

records with a schema. A sequence is defined as a function (f : N → S) that maps
from positions to records, i. e., for each position in the sequence there is exactly one
record. Later, this definition is extended to allow for n-to-m mappings between the
ordering domain and a set of records. Sequence operators yield result sequences and
queries are operator trees. The SEQ model defines selection, projection, position
offset (i. e., a “shift” operator), and aggregation operators. Aggregations are define
with an agg_pos(i) function that returns a set of positions of the input sequence
that should be aggregated as well as an aggregation function that is applied to the
selected records and computes the result record for the output sequence at position
i. Additionally, a positional join operator called compose is part of the SEQ model.

While ordering is a main concept in SEQ that is used in query optimization,
sequences are finite and there is no notion of time. Sequences are stored in the
system and it is possible to create indices over sequences. Thus, a sequence can be
linearly scanned or probed using an position index. Furthermore, there is no notion
of continuous queries, but queries are ad-hoc as in relational database systems.
Thus, the SEQ model is closer related to relational database systems than to stream
processing, even if the abstraction of ordered records is similar to stream processing.

Continuous Queries in Relational Database Systems Continuous queries
over append-only databases were introduced by Terry et al. [TGNO92, GNOT92].
They propose to register queries in a relational database system and execute them
periodically. Each time a query is executed, it returns the delta to the result of
its previous execution. Even if queries are executed periodically, “the result of
a continuous query is the set of data that would be returned if the query were
executed at every instant in time” (highlighting as in original publication). Terry
et al. distinguish between monotone and non-monotone queries. Monotone queries
guarantee that if a result record is generated, it will be contained in all future
results. The paper also introduces rewrite rules to convert a non-monotone query
into a monotone one.

The notion of monotone queries is relevant to stream processing. Many stream
processing systems only model record streams, and thus can only execute monotone
queries correctly. Windowing in stream processing is the most common technique
to guarantee monotone queries for input streams with no out-of-order data.

Continual Queries in Relational Database Systems Lui et al. [LPBZ96,
LPT99] introduce continual queries that are evaluated periodically in a database
system. In contrast to Terry et al. [TGNO92, GNOT92] the database is not re-
stricted to be append-only. The proposed algorithm does not re-evaluate queries
from scratch but is able to process the change data. This work is similar to incre-
mental maintenance of materialized view [BLT86].

Incremental updates are a core concept in our model. The work of Lui et al. and
the view maintenance problem in relational databases are defined on relations (i. e.,
finite input data) and thus are not directly applicable to data streams. However, it
is closely related to our model with regard to evolving tables.

Chronicle Data Model The chronicle data model [JMS95] builds on chronicles,
relations, and persistent views. A chronicle is an unbounded sequence of transaction

136 CHAPTER 5. THE DUAL STREAMING MODEL

records and only the tail of the sequence containing the latest records is stored.
Transactional records with the same sequence number are grouped in a chronon
that has a version number that is equal to the record sequence number. Relations
are similarly defined as in the relational model with the addition of version numbers.
Persistent views are relations without a version number and the result of operators
that remove the sequence attribute. The chronicle algebra is defined on version
numbers (i. e., join between a chronicle and a relation) and includes operators similar
to the relational model (e. g., selection, projection, join, group-by, and aggregation).
Since only the tail of chronicles is stored, the chronicle algebra and its operators are
defined with monotonic semantics with respect to insertions into the chronicles. An
extension of the chronicle data model adds a time domain that allows to define time
based views that are similar to time windows in stream processing.

The chronicle data model is quite similar to the model we propose in this work.
However, the time domain is only part of the extended model and not a first class cit-
izen as in our model. Furthermore, our model includes out-of-order record processing
and contains the notion of a changelog stream, which enables defining non-monotonic
operators.

Updates in Data Streams Data streams containing update or delete records
have been considered in previous work. Babu and Widom [BW01] discuss the general
idea of updates and deletes in data streams. However, they do not provide detailed
operator semantics or define the correctness of results formally.

The Borealis system [AAB+05, RMCZ06] applies a “time travel” approach to
process updates by storing the history of the original input stream. If an update
record occurs, the stored input stream is updated accordingly (i. e., an in-place
update) and reprocessed using the new record. To reduce downstream updates, it
does not re-emit all newly computed output messages, but only the deltas to the
previous output, using the stored history of the output stream. Additionally, it
allows for downstream result refinement via revision tuples that send old and new
values. Compared to our model, Borealis is still a stream-only system and does not
support tables. Also, refinements are not defined formally. It is unclear how long a
stream history is preserved, or how refinement tuples are mapped to existing tuples.
Furthermore, reprocessing input streams suffixes after updating them is compute
intensive compared to our incremental updating approach.

Semantic Models The CQL continuous query language builds on the relational
model to provide strong semantics. Data streams are always converted into tables
using special operators and actual processing is done via the relational model using
those tables. CQL also introduces operators to convert tables back to data streams.
Records in the CQL model have a relational schema and a timestamp, which is not
part of the schema. Windowing is supported by corresponding stream-to-relation
operators.

Our model as well as CQL support streams and tables as first class citizens. The
difference is that processing is always based on tables in CQL, even for stateless
transformations like map, projection, or filtering/selection. Those transformations
return a data stream in our model but a table in CQL that must be converted into a
stream by the user. Some stream-table transformations are done by the system auto-

5.4. RELATED WORK 137

matically, making it even harder for users to understand the semantics of the system
because those transformation rules are quite complex. Transforming streams into
tables for stateless transformations also has the disadvantage that records might be
lost if they have the same timestamp in a non-deterministic manner (c. f. [JMS+08]).
Another difference is the types of supported streams: CQL used IStream for insert
streams, DStream for delete stream, and RStream that is the relation stream. In
our model, we support record streams (similar as IStream) and changelog streams
(a combination of IStream and Dstream). It is important to note that a RStream
can be used to compute a corresponding changelog stream and thus both models
are equally expressive with regard to their types of data streams.

While the CQL model was the first to define strict operator semantics, the model
seems to be quite attached to the relational model. In contrast to CQL, we propose
to embrace data streams as first class citizens in combination with relational tables.
The goal is to simplify operator semantics and allow users to reason about the system
easily.

Law et al. [LWZ04] introduce a similar model to ours and define operators that
continuously update the output with the notion of “the result so far”. They define
correctness of operators based on input prefix and have a formal notion of blocking
and non-blocking operators. The difference to our work is that they only model
record streams and their model is limited to monotonic queries for this reason.
They also do not consider out-of-order records or windowing operators.

The SECRET model [DTM+13] aims to describe different window semantics
with a uniform model. SECRET focuses on centralized stream processing systems,
cannot express out-of-order data, and does not cover other stream processing oper-
ators [ATM+17]. Our model is more generic than SECRET, which focuses solely on
windowing semantics.

Order and Time Order and time present multiple challenges in data stream
processing. For example, how to handle out-of-order data and what time semantics
should be used? The notion of event-time vs. processing-time was first introduced by
Srivastava and Widom [SW04]. They noted that processing-time or ingestion-time
guarantees that there is no out-of-order data. Using event-time raises challenges
for unsynchronized clocks of external data sources resulting in skewed time, delays,
and out-of-order data. Buffering and reordering is one suggested technique to re-
order data. For avoiding delay, heartbeats are introduced, which also help to detect
unsynchronized clocks.

Time semantics are discussed by Barga et al. [BGAH07]. They introduce strong
time semantics similar to temporal database systems, including definitions for differ-
ent levels of consistency. Out-of-order records as well as blocking operators are con-
sidered, too. A temporal-relational algebra is also used by StreamScope [LFQ+16]
based on time intervals that are assigned to records instead of scalar timestamps.

Another approach to handle out-of-order data are punctuations [TMSF03]. Punc-
tuations are control messages that provide certain guarantees about the data stream.
For example, they can express that no record after the punctuation will have a times-
tamp smaller than a certain value. Thus, punctuations are similar to heartbeats but
more generic as they can express arbitrary constraints on the data, while heartbeats
only express time progress.

138 CHAPTER 5. THE DUAL STREAMING MODEL

The discussed techniques have in common that they imply a partially blocking
computation until a heartbeat or punctuation arrives, or a buffer to reorder records
is filled up. Thus, those techniques result in delays and increased processing latency.
A different approach is to process all data immediately to keep processing latency as
small as possible and refine results later if required. We follow the update approach
and use punctuations to trade-off space (reduced number of downstream updates)
vs. time (increase latency). Thus, updates are a more generic approach compared
to punctuations and partial blocking.

Finally, Bogeli et al. [BAH+19] propose a change to SQL that allows to incor-
porate data streams and temporal tables and to express unified queries over both.
Their temporal table is very similar to our evolving table, however, their processing
model is not based on continuous updates as ours, but on watermarks and triggers.

5.5 Summary
We introduced the Dual Streaming Model in the second part of this thesis. It puts
forward the duality between data streams and temporal-relational tables, and treats
state as first class citizen instead of an internal implementation detail. To this end,
the Dual Streaming Model decouples result correctness/completeness from process-
ing latency. This decoupling opens up the design space for data stream processing
applications and allow users to trade-off result correctness/completeness vs. process-
ing latency vs. processing cost. Furthermore, our model enables users to retrieve
the result of their program either push based, by subscribing to the result stream,
or pull based by querying the result table.

The Dual Streaming Model is the foundation of Kafka Streams [ASFg], the
stream processing library of Apache Kafka [ASFc, KNR11]. Kafka Streams is widely
adopted in the industry, including large enterprises, which shows that our Dual
Streaming Model is useful in practice.

139

Part IV

Discussion

141

Chapter 6

Conclusion

The requirement for low-latency data processing of high-volume data streams had
increased over the last few years. Yet, state-of-the-art distributed stream processing
systems are still hard to operate in practice. Furthermore, there is no agreement
on a unified processing model, and different systems offer different semantics and
trade-offs to the user.

In this thesis, we introduced a cost-model for data-parallel distributed stream
processing systems (Chapter 3). Our cost-model is built on operator parallelism and
record batching. To execute a streaming data flow program efficiently, record batch-
ing may be employed to trade-off processing latency vs. throughput. Furthermore,
for high-volume data streams, data-parallelism is used to allow a system to process
all data without “falling behind”. Our model considers CPU and network cost to
estimate the required degree of parallelism for each operator given a target input
data rate. Based on our cost-model, we presented multiple algorithms to detect pro-
cessing bottlenecks, predict the data flow throughput, and to optimize batch sizes as
well as operator parallelism (Chapter 4). To this end, we believe that our cost-model
and analytical optimization approach should be combined with dynamic scaling to
adapt to the changing characteristics of input data streams. Furthermore, extend-
ing our model to incorporate processing latency and to extend dynamic batching
approaches with such a model is interesting future work.

In the second part of this thesis (Chapter 5), we proposed the Dual Streaming
Model that unifies concepts of existing models. We put forward the duality of data
streams and temporal-relational tables, and treat state as a first class citizen. The
model makes explicit to the user, the trade-off between processing cost vs. processing
latency vs. result correctness/completeness. Hence, it opens the design space for
stream processing applications and allows users to pick a trade-off depending on
their application requirements. We believe that the Dual Streaming Model is a
step forward to generic processing semantics that allow to express a wide variety of
stream processing application within a single model.

143

Bibliography

[AA91] N. Wilschut A. and Peter M. G. Apers. Dataflow Query Execution in
a Parallel Main-Memory Environment, pages 68–77. IEEE Computer
Society, United States, 12 1991. Imported from EWI/DB PMS [db-
utwente:arti:0000002032].

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Uğur Çet-
intemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,
Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing, and Stanley B. Zdonik. The design of the Borealis stream pro-
cessing engine. In CIDR 2005, Second Biennial Conference on In-
novative Data Systems Research, Asilomar, CA, USA, January 4-7,
2005, Online Proceedings, pages 277–289, 2005.

[AAB+06] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen,
Richard King, Philippe Selo, Yoonho Park, and Chitra Venkatramani.
SPC: A distributed, scalable platform for data mining. In Proceed-
ings of the 4th International Workshop on Data Mining Standards,
Services and Platforms, DMSSP ’06, pages 27–37, New York, NY,
USA, 2006. ACM.

[ABB+03a] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith
Ito, Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys
Thomas, Rohit Varma, and Jennifer Widom. STREAM: The Stanford
stream data manager. IEEE Data Engineering Bulletin, 26(1):19–26,
2003.

[ABB+03b] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith
Ito, Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom.
STREAM: The Stanford stream data manager (demonstration de-
scription). In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, pages 665–665,
New York, NY, USA, 2003. ACM.

[ABB+13] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. MillWheel: Fault-tolerant stream processing at
internet scale. Proceedings of the VLDB Endowment, 6(11):1033–
1044, August 2013.

145

146 BIBLIOGRAPHY

[ABC+05] Yanif Ahmad, Bradley Berg, Uǧur Cetintemel, Mark Humphrey,
Jeong-Hyon Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaem-
manouil, Alexander Rasin, Nesime Tatbul, Wenjuan Xing, Ying Xing,
and Stan Zdonik. Distributed operation in the Borealis stream pro-
cessing engine. In Proceedings of the 2005 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’05, pages
882–884, New York, NY, USA, 2005. ACM.

[ABC+15] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow
model: A practical approach to balancing correctness, latency, and
cost in massive-scale, unbounded, out-of-order data processing. Pro-
ceeding of the VLDB Endowment, 8(12):1792–1803, August 2015.

[ABQ13] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. Adap-
tive online scheduling in Storm. In Proceedings of the 7th ACM Inter-
national Conference on Distributed Event-based Systems, DEBS ’13,
pages 207–218, New York, NY, USA, 2013. ACM.

[ABW03] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A lan-
guage for continuous queries over streams and relations. In Database
Programming Languages, 9th International Workshop, DBPL 2003,
Potsdam, Germany, September 6-8, 2003, Revised Papers, pages 1–
19, 2003.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL con-
tinuous query language: Semantic foundations and query execution.
The VLDB Journal, 15(2):121–142, June 2006.

[ACc+03a] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Er-
win, E. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stone-
braker, N. Tatbul, Y. Xing, R. Yan, and S. Zdonik. Aurora: A data
stream management system. In Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’03, pages 666–666, New York, NY, USA, 2003. ACM.

[ACc+03b] Daniel J. Abadi, Don Carney, Uğur Çetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tat-
bul, and Stan Zdonik. Aurora: A new model and architecture for
data stream management. The VLDB Journal, 12(2):120–139, Au-
gust 2003.

[ACG+04] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier,
Anurag S. Maskey, Esther Ryvkina, Michael Stonebraker, and Richard
Tibbetts. Linear road: A stream data management benchmark. In
Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, VLDB ’04, pages 480–491. VLDB Endow-
ment, 2004.

BIBLIOGRAPHY 147

[ADT+18] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shix-
iong Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia.
Structured streaming: A declarative API for real-time applications in
Apache Spark. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, pages 601–613, New York,
NY, USA, 2018. ACM.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive
query processing. SIGMOD Records, 29(2):261–272, May 2000.

[AJS+06] Lisa Amini, Navendu Jain, Anshul Sehgal, Jeremy Silber, and Olivier
Verscheure. Adaptive control of extreme-scale stream processing sys-
tems. In 26th IEEE International Conference on Distributed Comput-
ing Systems (ICDCS 2006), 4-7 July 2006, Lisboa, Portugal, page 71,
2006.

[AN04] Ahmed M. Ayad and Jeffrey F. Naughton. Static optimization of
conjunctive queries with sliding windows over infinite streams. In
Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’04, pages 419–430, New York, NY,
USA, 2004. ACM.

[ASFa] The Apache Software Foundation. Apache Flink project web page.
https://flink.apache.org/.

[ASFb] The Apache Software Foundation. Apache Heron project web page.
https://apache.github.io/incubator-heron/.

[ASFc] The Apache Software Foundation. Apache Kafka project web page.
https://kafka.apache.org/.

[ASFd] The Apache Software Foundation. Apache S4 project web page.
https://incubator.apache.org/projects/s4.html.

[ASFe] The Apache Software Foundation. Apache Samze project web page.
https://samza.apache.org/.

[ASFf] The Apache Software Foundation. Apache Storm project web page.
https://storm.apache.org/.

[ASFg] The Apache Software Foundation. Kafka Streams documenation.
https://kafka.apache.org/documentation/streams/.

[ATM+17] Lorenzo Affetti, Riccardo Tommasini, Alessandro Margara, Gian-
paolo Cugola, and Emanuele Della Valle. Defining the execution se-
mantics of stream processing engines. Journal of Big Data, 4(1):12,
Apr 2017.

[AW04] Arvind Arasu and Jennifer Widom. A denotational semantics for
continuous queries over streams and relations. SIGMOD Records,
33(3):6–11, September 2004.

https://flink.apache.org/
https://apache.github.io/incubator-heron/
https://kafka.apache.org/
https://incubator.apache.org/projects/s4.html
https://samza.apache.org/
https://storm.apache.org/
https://kafka.apache.org/documentation/streams/

148 BIBLIOGRAPHY

[BAH+19] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn
Knight, and Kenneth Knowles. One SQL to rule them all - an effi-
cient and syntactically idiomatic approach to management of streams
and tables. In Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska, editors, Proceedings of the 2019
International Conference on Management of Data, SIGMOD Con-
ference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
pages 1757–1772. ACM, 2019.

[BBC+04] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Uğur Çet-
intemel, Mitch Cherniack, Christian Convey, Eddie Galvez, Jon Salz,
Michael Stonebraker, Nesime Tatbul, Richard Tibbetts, and Stan
Zdonik. Retrospective on Aurora. The VLDB Journal, 13(4):370–
383, December 2004.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and issues in data stream systems. In Pro-
ceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’02, pages 1–16,
New York, NY, USA, 2002. ACM.

[BBD+04] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Dilys Thomas. Operator scheduling in data stream systems. The
VLDB Journal, 13(4):333–353, December 2004.

[BBMD03] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar.
Chain: Operator scheduling for memory minimization in data stream
systems. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, pages 253–264,
New York, NY, USA, 2003. ACM.

[BBMS05] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and
Michael Stonebraker. Fault-tolerance in the Borealis distributed
stream processing system. In Proceedings of the 2005 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’05, pages 13–24, New York, NY, USA, 2005. ACM.

[BBMS08] Magdalena Balazinska, Hari Balakrishnan, Samuel R. Madden, and
Michael Stonebraker. Fault-tolerance in the Borealis distributed
stream processing system. ACM Transactions on Database Systems,
33(1):3:1–3:44, March 2008.

[BBS04] Magdalena Balazinska, Hari Balakrishnan, and Michael Stonebraker.
Load management and high availability in the Medusa distributed
stream processing system. In Proceedings of the 2004 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’04, pages 929–930, New York, NY, USA, 2004. ACM.

[BCG+11] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and
Rares Vernica. Hyracks: A flexible and extensible foundation for data-

BIBLIOGRAPHY 149

intensive computing. In Proceedings of the 2011 IEEE 27th Interna-
tional Conference on Data Engineering, ICDE ’11, pages 1151–1162,
Washington, DC, USA, 2011. IEEE Computer Society.

[BDD+10] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas,
Renée J. Miller, and Nesime Tatbul. SECRET: A model for analysis
of the execution semantics of stream processing systems. Proceedings
of the VLDB Endowment, 3(1-2):232–243, September 2010.

[BEH+10] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker
Markl, and Daniel Warneke. Nephele/PACTs: A programming model
and execution framework for web-scale analytical processing. In Pro-
ceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,
pages 119–130, New York, NY, USA, 2010. ACM.

[BFc12] Nathan Backman, Rodrigo Fonseca, and Uǧur Çetintemel. Managing
parallelism for stream processing in the cloud. In Proceedings of the
1st International Workshop on Hot Topics in Cloud Data Processing,
HotCDP ’12, pages 1:1–1:5, New York, NY, USA, 2012. ACM.

[BGAH07] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Ming-
sheng Hong. Consistent streaming through time: A vision for event
stream processing. In CIDR 2007, Third Biennial Conference on In-
novative Data Systems Research, Asilomar, CA, USA, January 7-10,
2007, Online Proceedings, pages 363–374, 2007.

[BH02] Richard J. Bolton and David J. Hand. Statistical fraud detection: A
review. Statistical Science, 17(3):235–249, 2002.

[BHL+10] Dominic Battré, Matthias Hovestadt, Björn Lohrmann, Alexander
Stanik, and Daniel Warneke. Detecting bottlenecks in parallel dag-
based data flow programs. In 3rd Workshop on Many-Task Comput-
ing on Grids and Supercomputers, MTAGS@SC 2010, New Orleans,
Louisiana, USA, November 15, 2010, pages 1–10. IEEE Computer
Society, 2010.

[BLT86] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently
updating materialized views. SIGMOD Records, 15(2):61–71, June
1986.

[BROL14] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. Summing-
bird: A framework for integrating batch and online MapReduce com-
putations. Proceedings of the VLDB Endowment, 7(13):1441–1451,
August 2014.

[BW01] Shivnath Babu and Jennifer Widom. Continuous queries over data
streams. SIGMOD Records, 30(3):109–120, September 2001.

[BW04] Shivnath Babu and Jennifer Widom. StreaMon: An adaptive engine
for stream query processing. In Proceedings of the 2004 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’04, pages 931–932, New York, NY, USA, 2004. ACM.

150 BIBLIOGRAPHY

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald
Carney, Uğur Çetintemel, Ying Xing, and Stanley B. Zdonik. Scalable
distributed stream processing. In CIDR 2003, First Biennial Con-
ference on Innovative Data Systems Research, Asilomar, CA, USA,
January 5-8, 2003, Online Proceedings, 2003.

[CCA+10] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, and Russell Sears. MapReduce online. In Pro-
ceedings of the 7th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’10, pages 21–21, Berkeley, CA, USA,
2010. USENIX Association.

[CcC+02] Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul,
and Stan Zdonik. Monitoring streams: A new class of data manage-
ment applications. In Proceedings of the 28th International Confer-
ence on Very Large Data Bases, VLDB ’02, pages 215–226. VLDB
Endowment, 2002.

[CCD+03a] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel Madden, Vijayshankar Raman, Frederick Reiss, and Mehul A.
Shah. TelegraphCQ: Continuous dataflow processing for an uncertain
world. In CIDR 2003, First Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 5-8, 2003, Online
Proceedings, 2003.

[CCD+03b] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R. Madden, Fred Reiss, and Mehul A. Shah. TelegraphCQ:
Continuous dataflow processing. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’03, pages 668–668, New York, NY, USA, 2003. ACM.

[CcR+03] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cher-
niack, and Mike Stonebraker. Operator scheduling in a data stream
manager. In Proceedings of the 29th International Conference on Very
Large Data Bases - Volume 29, VLDB ’03, pages 838–849. VLDB En-
dowment, 2003.

[CDE+16] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas
Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar
Patil, Boyang Peng, and Paul Poulosky. Benchmarking streaming
computation engines: Storm, Flink and Spark streaming. In 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May 23-27,
2016, pages 1789–1792. IEEE Computer Society, 2016.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Nia-
garaCQ: A scalable continuous query system for internet databases.

BIBLIOGRAPHY 151

In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’00, pages 379–390, New York,
NY, USA, 2000. ACM.

[CEF+17] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan
Richter, and Kostas Tzoumas. State management in Apache Flink®:
Consistent stateful distributed stream processing. Proceedings of the
VLDB Endowment, 10(12):1718–1729, August 2017.

[CER17] CERN. Future ICT challenges in scientific research. http:
//cds.cern.ch/record/2301895/files/Whitepaper_brochure_
ONLINE.pdf, 2017.

[CF02] Sirish Chandrasekaran and Michael J. Franklin. Streaming queries
over streaming data. In Proceedings of the 28th International Con-
ference on Very Large Data Bases, VLDB ’02, pages 203–214. VLDB
Endowment, 2002.

[CFMKP13] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki,
and Peter Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 725–736, New York, NY, USA, 2013. ACM.

[CGB+14] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert
DeLine, Danyel Fisher, John C. Platt, James F. Terwilliger, and John
Wernsing. Trill: A high-performance incremental query processor for
diverse analytics. Proceeding of the VLDB Endowment, 8(4):401–412,
December 2014.

[CGJ+02] Chuck Cranor, Yuan Gao, Theodore Johnson, Vlaidslav Shkapenyuk,
and Oliver Spatscheck. Gigascope: High performance network moni-
toring with an SQL interface. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’02, pages 623–623, New York, NY, USA, 2002. ACM.

[CJK+04] Graham Cormode, Theodore Johnson, Flip Korn, S. Muthukrishnan,
Oliver Spatscheck, and Divesh Srivastava. Holistic UDAFs at stream-
ing speeds. In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04, pages 35–46, New
York, NY, USA, 2004. ACM.

[CJSS03a] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and
Vladislav Shkapenyuk. The Gigascope stream database. IEEE Data
Engineering Bulletin, 26(1):27–32, 2003.

[CJSS03b] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: A stream database for network applications.
In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’03, pages 647–651, New York,
NY, USA, 2003. ACM.

http://cds.cern.ch/record/2301895/files/Whitepaper_brochure_ONLINE.pdf
http://cds.cern.ch/record/2301895/files/Whitepaper_brochure_ONLINE.pdf
http://cds.cern.ch/record/2301895/files/Whitepaper_brochure_ONLINE.pdf

152 BIBLIOGRAPHY

[CKE+15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. Apache Flink™: Stream and
batch processing in a single engine. IEEE Data Engineering Bulletin,
38(4):28–38, 2015.

[CKSV08] Michael Cammert, Jürgen Krämer, Bernhard Seeger, and Sonny Vau-
pel. A cost-based approach to adaptive resource management in data
stream systems. IEEE Transactions on Knowledge Data Engineering,
20(2):230–245, 2008.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. ACM Transactions on
Computer Systems (TOCS), 3(1):63–75, February 1985.

[Cla15] Peter Clay. A modern threat response framework. Network Security,
2015(4):5–10, 2015.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, June 1970.

[CRP+10] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum.
FlumeJava: Easy, efficient data-parallel pipelines. SIGPLAN Notices,
45(6):363–375, June 2010.

[CWI+16] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul
Jaiswal, Ran Lei, Nikhil Simha, Wei Wang, Kevin Wilfong, Tim
Williamson, and Serhat Yilmaz. Realtime data processing at face-
book. In Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD ’16, pages 1087–1098, New York, NY,
USA, 2016. ACM.

[Dea06] Jeffrey Dean. Experiences with MapReduce, an abstraction for large-
scale computation. In Proceedings of the 15th International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT
’06, pages 1–1, New York, NY, USA, 2006. ACM.

[Des04] Amol Deshpande. An initial study of overheads of eddies. SIGMOD
Records, 33(1):44–49, March 2004.

[DG92] David DeWitt and Jim Gray. Parallel database systems: The future
of high performance database systems. Communications of the ACM,
35(6):85–98, June 1992.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.

BIBLIOGRAPHY 153

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, January 2008.

[DGGR02] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Ras-
togi. Processing complex aggregate queries over data streams. In
Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’02, pages 61–72, New York, NY,
USA, 2002. ACM.

[DLB+11] Michael Daum, Frank Lauterwald, Philipp Baumgärtel, Niko Pollner,
and Klaus Meyer-Wegener. Black-box determination of cost models’
parameters for federated stream-processing systems. In Proceedings
of the 15th Symposium on International Database Engineering &
Applications, IDEAS ’11, pages 226–232, New York, NY, USA, 2011.
ACM.

[DRV03] Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayaraman, ed-
itors. Proceedings of the 19th International Conference on Data Engi-
neering, March 5-8, 2003, Bangalore, India. IEEE Computer Society,
2003.

[DTM+13] Nihal Dindar, Nesime Tatbul, Renée J. Miller, Laura M. Haas, and
Irina Botan. Modeling the execution semantics of stream processing
engines with SECRET. The VLDB Journal, 22(4):421–446, August
2013.

[DZSS14] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. Adaptive
stream processing using dynamic batch sizing. In Proceedings of the
ACM Symposium on Cloud Computing, SOCC ’14, pages 16:1–16:13,
New York, NY, USA, 2014. ACM.

[FAG+17] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and
Karthik Ramasamy. Dhalion: Self-regulating stream processing in
Heron. Proceedings of the VLDB Endowment, 10(12):1825–1836, Au-
gust 2017.

[FDM+15] Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Marianne Winslett,
Yin Yang, and Zhenjie Zhang. DRS: Dynamic resource scheduling
for real-time analytics over fast streams. In 35th IEEE International
Conference on Distributed Computing Systems, ICDCS 2015, Colum-
bus, OH, USA, June 29 - July 2, 2015, pages 411–420, 2015.

[FDM+17] Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Marianne Winslett,
Yin Yang, and Zhenjie Zhang. DRS: Auto-scaling for real-time stream
analytics. IEEE/ACM Transactions on Networking, 25(6):3338–3352,
December 2017.

[GAW+08] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and
Myungcheol Doo. SPADE: The System S declarative stream process-
ing engine. In Proceedings of the 2008 ACM SIGMOD International

154 BIBLIOGRAPHY

Conference on Management of Data, SIGMOD ’08, pages 1123–1134,
New York, NY, USA, 2008. ACM.

[GC06] Joseph S. Gomes and Hyeong-Ah Choi. Cost-based solution for op-
timizing multi-join queries over distributed streaming sensor data.
In Enrico Blanzieri and Tao Zhang, editors, 2nd International ICST
Conference on Collaborative Computing: Networking, Applications
and Worksharing, CollaborateCom 2006, Atlanta, GA, USA, Novem-
ber 17-20, 2006. IEEE Computer Society / ICST, 2006.

[GCB+97] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don
Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1):29–
53, January 1997.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 29–43, New York, NY,
USA, 2003. ACM.

[GJPPM+12] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez,
Claudio Soriente, and Patrick Valduriez. StreamCloud: An elastic
and scalable data streaming system. IEEE Transactions on Parallel
and Distributed Systems, 23(12):2351–2365, December 2012.

[GJPPMV10] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez,
and Patrick Valduriez. StreamCloud: A large scale data streaming
system. In Proceedings of the 2010 IEEE 30th International Confer-
ence on Distributed Computing Systems, ICDCS ’10, pages 126–137,
Washington, DC, USA, 2010. IEEE Computer Society.

[GNOT92] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry.
Using collaborative filtering to weave an information tapestry. Com-
munications of the ACM, 35(12):61–70, December 1992.

[GO03a] Lukasz Golab and M. Tamer Özsu. Issues in data stream management.
SIGMOD Records, 32(2):5–14, June 2003.

[GO03b] Lukasz Golab and M Tamer Özsu. Processing sliding window multi-
joins in continuous queries over data streams. In Proceedings of the
29th International Conference on Very Large Data Bases - Volume
29, VLDB ’03, pages 500–511. VLDB Endowment, 2003.

[Gul12] Vincenzo Gulisano. StreamCloud: An Elastic Parallel-Distributed
Stream Processing Engine. (StreamCloud: un moteur de traitement
de streams parallèle et distribué). PhD thesis, Technical University of
Madrid, Spain, 2012.

[HAE08] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid.
Query processing of multi-way stream window joins. The VLDB Jour-
nal, 17(3):469–488, May 2008.

BIBLIOGRAPHY 155

[HCCZ08] Jeong-Hyon Hwang, Sanghoon Cha, Uǧur Cetintemel, and Stan
Zdonik. Borealis-R: A replication-transparent stream processing sys-
tem for wide-area monitoring applications. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, pages 1303–1306, New York, NY, USA, 2008. ACM.

[HJHF14] Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof
Fetzer. Latency-aware elastic scaling for distributed data stream pro-
cessing systems. In Proceedings of the 8th ACM International Con-
ference on Distributed Event-Based Systems, DEBS ’14, pages 13–22,
New York, NY, USA, 2014. ACM.

[HSS+14] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and
Robert Grimm. A catalog of stream processing optimizations. ACM
Computing Surveys, 46(4):46:1–46:34, March 2014.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed data-parallel programs from sequential
building blocks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys ’07, pages
59–72, New York, NY, USA, 2007. ACM.

[JAA+06] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho
Park, Philippe Selo, and Chitra Venkatramani. Design, implemen-
tation, and evaluation of the linear road benchmark on the Stream
Processing Core. In Proceedings of the 2006 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’06, pages
431–442, New York, NY, USA, 2006. ACM.

[JMR05] Theodore Johnson, S. Muthukrishnan, and Irina Rozenbaum. Sam-
pling algorithms in a stream operator. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’05, pages 1–12, New York, NY, USA, 2005. ACM.

[JMS95] H. V. Jagadish, Inderpal Singh Mumick, and Abraham Silberschatz.
View maintenance issues for the chronicle data model (extended ab-
stract). In Proceedings of the Fourteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS ’95,
pages 113–124, New York, NY, USA, 1995. ACM.

[JMS+08] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke,
Jennifer Widom, Hari Balakrishnan, Uğur Çetintemel, Mitch Cherni-
ack, Richard Tibbetts, and Stan Zdonik. Towards a streaming SQL
standard. Proceedings of the VLDB Endowment, 1(2):1379–1390, Au-
gust 2008.

[JMSS05] Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, and
Oliver Spatscheck. A heartbeat mechanism and its application in Gi-
gascope. In Proceedings of the 31st International Conference on Very
Large Data Bases, VLDB ’05, pages 1079–1088. VLDB Endowment,
2005.

156 BIBLIOGRAPHY

[KBF+15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. Twitter Heron: Stream processing at
scale. In Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’15, pages 239–250, New
York, NY, USA, 2015. ACM.

[KCC+03] Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol
Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong,
Samuel Madden, Frederick Reiss, and Mehul A. Shah. TelegraphCQ:
An architectural status report. IEEE Data Engineering Bulletin,
26(1):11–18, 2003.

[KFD+10] Sailesh Krishnamurthy, Michael J. Franklin, Jeffrey Davis, Daniel Fa-
rina, Pasha Golovko, Alan Li, and Neil Thombre. Continuous analyt-
ics over discontinuous streams. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’10, pages 1081–1092, New York, NY, USA, 2010. ACM.

[KK15] Martin Kleppmann and Jay Kreps. Kafka, Samza and the unix philos-
ophy of distributed data. IEEE Data Engineering Bulletin, 38(4):4–
14, 2015.

[KNR11] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A distributed mes-
saging system for log processing. In Proceedings of the NetDB, pages
1–7, 2011.

[KNV03] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. Evaluating
window joins over unbounded streams. In Dayal et al. [DRV03], pages
341–352.

[KRK+18] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman
Samarev, Henri Heiskanen, and Volker Markl. Benchmarking dis-
tributed stream data processing systems. In 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April
16-19, 2018, pages 1507–1518. IEEE Computer Society, 2018.

[KS09] Jürgen Krämer and Bernhard Seeger. Semantics and implementa-
tion of continuous sliding window queries over data streams. ACM
Transactions on Database Systems, 34(1):4:1–4:49, April 2009.

[LFQ+16] Wei Lin, Haochuan Fan, Zhengping Qian, Junwei Xu, Sen Yang, Jin-
gren Zhou, and Lidong Zhou. StreamScope: Continuous reliable dis-
tributed processing of big data streams. In 13th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2016, Santa
Clara, CA, USA, March 16-18, 2016, pages 439–453, 2016.

[LJK15] Björn Lohrmann, Peter Janacik, and Odej Kao. Elastic stream pro-
cessing with latency guarantees. In 35th IEEE International Con-
ference on Distributed Computing Systems, ICDCS 2015, Columbus,

BIBLIOGRAPHY 157

OH, USA, June 29 - July 2, 2015, pages 399–410. IEEE Computer
Society, 2015.

[LLP+12] Wang Lam, Lu Liu, Sts Prasad, Anand Rajaraman, Zoheb Vacheri,
and AnHai Doan. Muppet: MapReduce-style processing of fast data.
Proceedings of the VLDB Endowment, 5(12):1814–1825, August 2012.

[LMT+05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.
Tucker. Semantics and evaluation techniques for window aggregates
in data streams. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, USA,
June 14-16, 2005, pages 311–322, 2005.

[LPBZ96] Ling Liu, Calton Pu, Roger S. Barga, and Tong Zhou. Differential
evaluation of continual queries. In Proceedings of the 16th Interna-
tional Conference on Distributed Computing Systems, Hong Kong,
May 27-30, 1996, pages 458–465, 1996.

[LPT99] Ling Liu, Calton Pu, and Wei Tang. Continual queries for inter-
net scale event-driven information delivery. IEEE Transactions on
Knowledge Data Engineering, 11(4):610–628, 1999.

[LTS+08] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos,
Theodore Johnson, and David Maier. Out-of-order processing: A
new architecture for high-performance stream systems. Proceedings
of the VLDB Endowment, 1(1):274–288, August 2008.

[LWK12] Björn Lohrmann, Daniel Warneke, and Odej Kao. Massively-parallel
stream processing under QoS constraints with Nephele. In Proceedings
of the 21st International Symposium on High-Performance Parallel
and Distributed Computing, HPDC ’12, pages 271–282, New York,
NY, USA, 2012. ACM.

[LWK14] Björn Lohrmann, Daniel Warneke, and Odej Kao. Nephele streaming:
stream processing under QoS constraints at scale. Cluster Computing,
17(1):61–78, 2014.

[LWZ04] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Query languages and
data models for database sequences and data streams. In Proceedings
of the Thirtieth International Conference on Very Large Data Bases
- Volume 30, VLDB ’04, pages 492–503. VLDB Endowment, 2004.

[MF02] Samuel Madden and Michael J. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In Proceedings
of the 18th International Conference on Data Engineering, San Jose,
CA, USA, February 26 - March 1, 2002, pages 555–566, 2002.

[MLT+05] David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadi-
mos. Semantics of data streams and operators. In Proceedings of the
10th International Conference on Database Theory, ICDT’05, pages
37–52, Berlin, Heidelberg, 2005. Springer-Verlag.

158 BIBLIOGRAPHY

[MMI+13] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. Naiad: A timely dataflow system.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 439–455, New York, NY, USA,
2013. ACM.

[MSHR02] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vi-
jayshankar Raman. Continuously adaptive continuous queries over
streams. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02, pages 49–60, New
York, NY, USA, 2002. ACM.

[MWA+03] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock,
Shivnath Babu, Mayur Datar, Gurmeet Singh Manku, Chris Olston,
Justin Rosenstein, and Rohit Varma. Query processing, approxima-
tion, and resource management in a data stream management system.
In CIDR 2003, First Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 5-8, 2003, Online Proceed-
ings, 2003.

[NMG+15] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales,
David García-Soriano, Nicolas Kourtellis, and Marco Serafini. The
power of both choices: Practical load balancing for distributed stream
processing engines. In Johannes Gehrke, Wolfgang Lehner, Kyuseok
Shim, Sang Kyun Cha, and Guy M. Lohman, editors, 31st IEEE
International Conference on Data Engineering, ICDE 2015, Seoul,
South Korea, April 13-17, 2015, pages 137–148. IEEE Computer So-
ciety, 2015.

[NPP+17] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon
Bringhurst, Indranil Gupta, and Roy H. Campbell. Samza: Stateful
scalable stream processing at LinkedIn. Proceedings of the VLDB
Endowment, 10(12):1634–1645, August 2017.

[NRNK10] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Ke-
sari. S4: Distributed stream computing platform. In Proceedings
of the 2010 IEEE International Conference on Data Mining Work-
shops, ICDMW ’10, pages 170–177, Washington, DC, USA, 2010.
IEEE Computer Society.

[OV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed
Database Systems (2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1999.

[PHH+15] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and
Roy Campbell. R-Storm: Resource-aware scheduling in Storm. In
Proceedings of the 16th Annual Middleware Conference, Middleware
’15, pages 149–161, New York, NY, USA, 2015. ACM.

BIBLIOGRAPHY 159

[RDH03] Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein.
Using state modules for adaptive query processing. In Dayal et al.
[DRV03], pages 353–364.

[RMCZ06] Esther Ryvkina, Anurag Maskey, Mitch Cherniack, and Stanley B.
Zdonik. Revision processing in a stream processing engine: A high-
level design. In Ling Liu, Andreas Reuter, Kyu-Young Whang, and
Jianjun Zhang, editors, Proceedings of the 22nd International Confer-
ence on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA,
USA, page 141. IEEE Computer Society, 2006.

[RSW+07] Frederick Reiss, Kurt Stockinger, Kesheng Wu, Arie Shoshani, and
Joseph M. Hellerstein. Enabling real-time querying of live and his-
torical stream data. In 19th International Conference on Scientific
and Statistical Database Management, SSDBM 2007, 9-11 July 2007,
Banff, Canada, Proceedings, page 28. IEEE Computer Society, 2007.

[ScZ05] Michael Stonebraker, Uğur Çetintemel, and Stan Zdonik. The 8
requirements of real-time stream processing. SIGMOD Records,
34(4):42–47, December 2005.

[SGH15] Scott Schneider, Bugra Gedik, and Martin Hirzel. Language runtime
and optimizations in IBM streams. IEEE Data Engineering Bulletin,
38(4):61–72, 2015.

[SH98] Mark Sullivan and Andrew Heybey. Tribeca: A system for managing
large databases of network traffic. In Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference, ATEC ’98, pages
2–2, Berkeley, CA, USA, 1998. USENIX Association.

[SHCF03] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and
Michael J. Franklin. Flux: An adaptive partitioning operator for
continuous query systems. In Dayal et al. [DRV03], pages 25–36.

[SLR94] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Sequence
query processing. In Proceedings of the 1994 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’94, pages
430–441, New York, NY, USA, 1994. ACM.

[SLR95] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. SEQ: A
model for sequence databases. In Proceedings of the Eleventh Inter-
national Conference on Data Engineering, ICDE ’95, pages 232–239,
Washington, DC, USA, 1995. IEEE Computer Society.

[SLR96] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. The de-
sign and implementation of a sequence database system. In Proceed-
ings of the 22th International Conference on Very Large Data Bases,
VLDB ’96, pages 99–110, San Francisco, CA, USA, 1996. Morgan
Kaufmann Publishers Inc.

160 BIBLIOGRAPHY

[STD+00] Jayavel Shanmugasundaram, Kristin Tufte, David J. DeWitt, David
Maier, and Jeffrey F. Naughton. Architecting a network query engine
for producing partial results. In The World Wide Web and Databases,
Third International Workshop WebDB 2000, Dallas, Texas, USA,
Maaay 18-19, 2000, Selected Papers, pages 58–77, 2000.

[Sul96] Mark Sullivan. Tribeca: A stream database manager for network
traffic analysis. In Proceedings of the 22th International Conference
on Very Large Data Bases, VLDB ’96, pages 594–, San Francisco,
CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[SW04] Utkarsh Srivastava and Jennifer Widom. Flexible time management
in data stream systems. In Proceedings of the Twenty-third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’04, pages 263–274, New York, NY, USA, 2004. ACM.

[SY93] James W. Stamos and Honesty C. Young. A symmetric fragment
and replicate algorithm for distributed joins. IEEE Transactions on
Parallel and Distributed Systems, 4(12):1345–1354, 1993.

[TGNO92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Con-
tinuous queries over append-only databases. In Proceedings of the
1992 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’92, pages 321–330, New York, NY, USA, 1992. ACM.

[TMSF03] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras.
Exploiting punctuation semantics in continuous data streams. IEEE
Transactions on Knowledge and Data Engineering, 15(3):555–568,
March 2003.

[TTS+14] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and
Dmitriy Ryaboy. Storm@Twitter. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’14, pages 147–156, New York, NY, USA, 2014. ACM.

[VN02] Stratis D. Viglas and Jeffrey F. Naughton. Rate-based query optimiza-
tion for streaming information sources. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’02, pages 37–48, New York, NY, USA, 2002. ACM.

[VPO+17] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael
Armbrust, Ali Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion
Stoica. Drizzle: Fast and adaptable stream processing at scale. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 374–389, New York, NY, USA, 2017. ACM.

[WBH+08] Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak
Rajan, Rohit Wagle, Kun-Lung Wu, and Lisa Fleischer. SODA: An

BIBLIOGRAPHY 161

optimizing scheduler for large-scale stream-based distributed com-
puter systems. In Proceedings of the 9th ACM/IFIP/USENIX Inter-
national Conference on Middleware, Middleware ’08, pages 306–325,
New York, NY, USA, 2008. Springer-Verlag New York, Inc.

[WKWO12] Sai Wu, Vibhore Kumar, Kun-Lung Wu, and Beng Chin Ooi. Paral-
lelizing stateful operators in a distributed stream processing system:
How, should you and how much? In Proceedings of the 6th ACM
International Conference on Distributed Event-Based Systems, DEBS
’12, pages 278–289, New York, NY, USA, 2012. ACM.

[XPG16] Le Xu, Boyang Peng, and Indranil Gupta. Stela: Enabling stream
processing systems to scale-in and scale-out on-demand. In 2016
IEEE International Conference on Cloud Engineering, IC2E 2016,
Berlin, Germany, April 4-8, 2016, pages 22–31. IEEE Computer So-
ciety, 2016.

[XY07] Junyi Xie and Jun Yang. A survey of join processing in data streams.
In Charu C. Aggarwal, editor, Data Streams - Models and Algorithms,
volume 31 of Advances in Database Systems, pages 209–236. Springer,
2007.

[XZH05] Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. Dynamic load dis-
tribution in the Borealis stream processor. In Proceedings of the 21st
International Conference on Data Engineering, ICDE ’05, pages 791–
802, Washington, DC, USA, 2005. IEEE Computer Society.

[YDHP07] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker.
Map-reduce-merge: Simplified relational data processing on large
clusters. In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’07, pages 1029–1040,
New York, NY, USA, 2007. ACM.

[YM15] Mansheng Yang and Richard T.B. Ma. Smooth task migration in
Apache Storm. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’15, pages
2067–2068, New York, NY, USA, 2015. ACM.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Asso-
ciation.

[ZDL+13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant stream-
ing computation at scale. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 423–
438, New York, NY, USA, 2013. ACM.

162 BIBLIOGRAPHY

[ZSC+03] Stanley B. Zdonik, Michael Stonebraker, Mitch Cherniack, Uğur Çet-
intemel, Magdalena Balazinska, and Hari Balakrishnan. The Aurora
and Medusa projects. IEEE Data Engineering Bulletin, 26(1):3–10,
2003.

	Contents
	List of Figures
	List of Tables

	I Data Stream Processing
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 Fundamentals
	2.1 From Batch Processing to Stream Processing
	2.1.1 Properties of Stream Processing Systems and Batch Processing Systems
	2.1.2 Cost Model Considerations

	2.2 Principles of Distributed Data Processing
	2.2.1 Parallelism
	2.2.2 Data Partitioning
	2.2.3 Scaling
	2.2.4 System Architecture

	2.3 Scalable Stream Processing Systems
	2.3.1 Data and Programming Model
	2.3.2 Program Execution

	2.4 Data Streaming Model
	2.4.1 Records, Streams, and Tables
	2.4.2 Stream Operations
	2.4.3 Table Operations
	2.4.4 Order and Time

	2.5 Related Work

	II Cost-based Streaming Data Flow Optimization
	3 Streaming Data Flow Cost Model
	3.1 Data Flow Capacity
	3.2 Processing Costs
	3.2.1 Improvements of Throughput with Batching
	3.2.2 Operator Dependencies

	3.3 Network Costs
	3.3.1 Input Network Capacity
	3.3.2 Output Network Capacity

	3.4 Batching Layer
	3.5 Related Work
	3.6 Summary

	4 Data Flow Optimization
	4.1 Bottleneck Detection and Throughput Prediction
	4.1.1 Bottleneck Detection
	4.1.2 Throughput Prediction

	4.2 Minimizing Resource Consumption
	4.2.1 Minimizing Parallelism
	4.2.2 Batch Size Computation
	4.2.3 Algorithm Resource Optimizer

	4.3 Evaluation
	4.3.1 Throughput
	4.3.2 Data Flow Optimization

	4.4 Related Work
	4.5 Summary

	III Data Streaming Model
	5 The Dual Streaming Model
	5.1 Streams and Tables
	5.2 Stream Processing Operators
	5.2.1 Record Stream Transformations
	5.2.2 Record Stream Aggregation
	5.2.3 Record Stream Joins
	5.2.4 Table Operators

	5.3 Model Trade-offs
	5.3.1 Processing Latency
	5.3.2 Design Space
	5.3.3 Data Retention

	5.4 Related Work
	5.5 Summary

	IV Discussion
	6 Conclusion

	Bibliography

