
Branch-and-Refine for Solving
Time-Dependent Problems

Fabian Gnegel
Armin Fügenschuh

Cottbus Mathematical Preprints
COMP# 13(2020)

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/328276625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Branch-and-Refine for Solving Time-Dependent Problems

Fabian Gnegel Armin Fügenschuh

June 15, 2020

Abstract

One of the standard approaches for solving time-dependent discrete optimization prob-
lems, such as the travelling salesman problem with time-windows or the shortest path
problem with time-windows is to derive a so-called time-indexed formulation. If the
problem has an underlying structure that can be described by a graph, the time-
indexed formulation is usually based on a different, extended graph, commonly re-
ferred to as the time-expanded graph. The time-expanded graph can often be derived
in such a way that all time constraints are incorporated in its topology, and therefore
algorithms for the corresponding time-independent variant become applicable. The
downside of this approach is, that the sets of vertices and arcs of the time-expanded
graph are much larger than the ones of the original graph. In recent works, however,
it has been shown that for many practical applications a partial graph expansion, that
might contain time infeasible paths, often suffices to find a proven optimal solution.
These approaches, instead, iteratively refine the original graph and solve a relaxation
of the time-expanded formulation in each iteration. When the solution of the current
relaxation is time feasible an optimal solution can be derived from it and the algorithm
terminates. In this work we present new ideas, that allow for the propagation of infor-
mation about the optimal solution of a coarser graph to a more refined graph and show
how these can be used in algorithms, which are based on graph refinement. More pre-
cisely we present a new algorithm for solving Mixed Integer Linear Program (MILP)
formulations of time-dependent problems that allows for the graph refinement to be
carried out during the exploration of the branch-and-bound tree instead of restart-
ing whenever the optimal solution was found to be infeasible. For demonstrating the
practical relevance of this algorithm we present numerical results on its application
to the shortest path problem with time-windows and the traveling salesman problem
with time-windows.

Keywords: Graph Refinement, Branch-and-Bound, Shortest Path Problem with
Time-Windows, Traveling Salesman Problem with Time-Windows.

1 Introduction

Many classical problems of Operations Research such as the shortest path problem (SPP),
the traveling salesman problem (TSP) or the vehicle routing problem have an underlying
structure that can be formulated as a mixed integer linear program (MILP) derived from a
directed graph G = (N,A). In routing problems the set of vertices N is used to represent
locations and the set of arcs A is used to indicate whether there is a direct connection
between two locations. In most cases a complete description of the problem also requires
the specification of parameters for each vertex and each arc. For the vertices these can be
for example time-windows, processing times, or demands/supplies of a certain commodity.
For the set of arcs distances, traveling costs, traveling times, or capacities are often relevant
instance parameters. In this work we restrict ourselves to including time constraints,
i.e., time-windows and traveling times. One approach to include these constraints is to
formulate the problem not on the graph G, but on a graph, often referred to as a time-
expanded graph (see for example Skutella [26]). The nodes of the time-expanded graph

1

not only represent a location, but a location at a point of time and its arcs are only allowed
to connect nodes, if the time layer associated with the head of the arc is later than the
time layer associated the tail plus the traveling time of the arc. A major difficulty of
applying this approach lies in the derivation of the time-expanded graph, more precisely,
finding the pairs of location and time that have to be included in the graph. Time flows
continuously, so it is impossible to include all of them in a finite graph. In order to derive
a model with only finitely many nodes, a common approach is to consider only a finite
time-span T and re-scale the traveling times and time-windows so that they are integers.
If there is benefit to traveling slower than the traveling time and no cost for idle time,
it suffices to use only time layers that are integers as well. Even with this requirement
a completely time-expanded graph containing all feasible tours can have up to T · |N |
many nodes. Now, a helpful observation is that the time-expanded graph does not have
to include all nodes that are part of feasible tours, but only those that are part of optimal
tours (actually it would be sufficient to find the arrival times of one optimal tour). Finding
all of these nodes is as difficult as solving the original problem, but nevertheless for some
applications, it is already helpful to determine some of the nodes that cannot be part
of an optimal tour and remove them from the time-expanded graph in a preprocessing
routine. Whereas in practise, preprocessing can reduce computation times significantly,
some instances can remain notoriously difficult to solve. The approach we are going to use
in this work tackles the problem of constructing the time-expanded graph in a different way
and has recently been applied successfully to a variety of time-dependent problems.Instead
of starting with a large graph and removing nodes, the idea is to start with a graph that
underestimates the traveling times, but is much smaller than the time-expanded graph
with correct traveling times. We do this by aggregating the nodes of the time-expanded
graph to pairings of locations and time-intervals (instead of singular arrival times). While
solutions of the MILPs derived from these graphs may be time-infeasible, i.e., violate some
of the time-windows, they can be used to heuristically determine location-time pairings
that are likely to be part of an optimal solution. By splitting the time-intervals of the
nodes of the time-expanded graph at these points and adjusting the set of arcs, the graph
can be expanded iteratively until the solution of the MILP formulation associated with it
is time-feasible, i.e., fulfilling all time-window constraints. The graphs generated in this
way only differ locally. In this work, we show that the similarity of the graphs transfers
to the MILPs derived from them.

1

2

3

4

5

6

(a)

1̃

2̃

3̃

5̃

6̃

(b)

1̃

2̃

3̃

5̃

6̃

(c)

Figure 1: Illustration of a node contraction in a graph

Although conceptually we start with a coarse graph and refine it, the ideas in this
work are better illustrated when going from a fine graph to a contracted graph. Consider
the graphs (a),(b), and (c) given in Figure 1. Here, the graph in (c) can be obtained from
the one in (a) by contracting the nodes 3 and 4 and (b) is an intermediate multigraph. In
this example it is easy to see, that any path in (a) has a representative in (c). However,
the path 1̃ → 3̃ → 6̃ present in (c) has no representative in (a). For the constraints
derived from these graphs this can imply that a formulation derived from (c) which has
less variables and less constraints is a relaxation of the one derived from (a). For example
flow conservation constraints for (a), with node 2 as a source and node 6 as a sink, are
given by

2

1:

2:

3:

4:

5:

6:

−1 0 0 0 0 0
0 −1 −1 0 0 0
1 1 0 −1 0 0
0 0 1 0 −1 −1
0 0 0 1 1 0
0 0 0 0 0 1

x(1,3)
x(2,3)
x(2,4)
x(3,5)
x(4,5)
x(4,6)

 =

0
−1

0
0
0
1

 (1)

for (b), respectively, by

1̃:

2̃:

3̃:

5̃:

6̃:

−1 0 0 0 0 0

0 −1 −1 0 0 0
1 1 1 −1 −1 −1
0 0 0 1 1 0
0 0 0 0 0 1

x(1̃,3̃)
x(2̃,3̃)1
x(2̃,3̃)2
x(3̃,5̃)1
x(3̃,5̃)2
x(4̃,6̃)

=

0
−1

0
0
1

 (2)

and for (c) by

1̃:

2̃:

3̃:

5̃:

6̃:

−1 0 0 0

0 −1 0 0
1 1 −1 −1
0 0 1 0
0 0 0 1

x(1̃,3̃)
x(2̃,3̃)
x(3̃,5̃)
x(3̃,6̃)

 =

0
−1

0
0
1

 (3)

Notice that (2) is just (1) with two aggregated rows (which can be expressed by multiply-
ing its system matrix with some matrix from the left), and (3) is just (2) after deleting
duplicate columns (which can be expressed by multiplying its system matrix by some ma-
trix from the right). Vice versa, it is also possible to obtain (2) from (3) by duplicating
the respective columns. So, in this example we can obtain a relaxed MILP formulation
with less rows and less columns by multiplying the system matrix with suitable matrices.
However, it is not possible to delete columns arbitrarily: If we deleted the column corre-
sponding to the arc (4, 6) instead of the duplicate ones, any path containing that arc would
also be deleted, and the corresponding MILP formulation cannot be used as a relaxation.
For our concept of aggregation, we therefore make use of the intermediate formulation (2)
of (b), which we can obtain from (1) by aggregating two rows and also by disaggregating
columns of (3). Based on this concept we present two algorithms, one very similar to an
approach from the literature and one new branch-and-bound type algorithm, that allows
for such a graph refinement during the exploration of the branch-and-bound tree. To test
these algorithms we customize them for two suitable problems from the literature, the
shortest path problem with time-windows (SPPTW) for the LP case and the traveling
salesman problem with time-windows (TSPTW) for the MILP case.

2 Literature Review

In this work, we do not consider integer programming formulations that include time
explicitly as continuous variables, but so-called time-indexed formulations. These can,
for example, be derived from time-expanded graphs and are in many cases known to have
better LP-relaxations than those formulations incorporating time as additional continuous
variables (see for example Wang and Regan [28] or Dash et al. [9]). Many examples of
time-indexed MILP formulations can be found in the literature, an early example has been
given by Appelgren [1]. An early example for the use of time-expanded graphs in an MILP
formulation is the work of Levin [19]. As mentioned before, one of the problems of using

3

these formulations is that the time-expanded graph has much more nodes and arcs than the
original graph resulting in very large MILP formulations. Large MILP formulations are not
necessarily only theoretically relevant. Many branch-and-cut algorithms, see Nemhauser
and Wolsey [22], deal with a huge number of rows by including subroutines that separate
violated constraints and add these to the LP relaxation ‘on demand’. Column generation
algorithms for MILP such as branch-and-price, are often used to solve problems, where the
number of variables in the formulation scales exponentially with some input parameters,
hence they include a subroutine to find those variables that have negative reduced cost
(see Barnhart et al. [4] for an in depth explanation).

In the case of graph refinement algorithms, it is not the variables or constraints which
are added on-demand, but the nodes and arcs of the time-expanded graph from which
the MILP is derived. If the solution of the current graph is found to be time-infeasible
and therefore additional nodes are required, they are added and the MILP formulation
is adjusted. In contrast to branch-and-cut algorithms, in which constraints can be added
during the exploration of the branch-and-bound tree, the graph refinement is performed
in an outer loop. Boland et al. [7] suggest to make use of two different graphs, that are
refined based on infeasible solutions. The first is underestimating traveling times and can,
therefore, be used to find lower bounds and the second is overestimating traveling times and
therefore defines upper bounds. If the optimal solution of the current MILP violates a time-
window, the graph is refined and the MILP is adjusted to the new graph. These steps are
repeated until either no time-windows are violated and an optimal solution is found, or the
objective of the current MILP is equal to the upper bound found by the formulation from
the graph overestimating traveling times, proving its optimality. Recently, this approach
has been adapted successfully to a variety of problems, see He et al. [17], Vu et al. [27],
Boland et al. [6], and Lagos et al. [18]. Riedler et al. [25] propose a similar algorithm, the
iterative refinement algorithm, in which additionally nodes are added based on the current
LP relaxation. Furthermore, they compare a variety of refinement strategies. Gnegel and
Fügenschuh [16] propose another type of refinement algorithm for an airplane scheduling
and routing problem. The difference to the previously mentioned approaches is that time
is included as variables and the graph is expanded based on the number of times an
airport is visited in the solution of the relaxation. We adopt the terminology ‘iterative
refinement’ from Riedler et al. [25], instead of ‘dynamic discretization discovery’ from He
et al. [17], because our refinement algorithms are not restricted to finding discretizations
of time-windows and can be applied to more general MILPs.

In this work, in addition to a general iterative refinement algorithm fitting the previ-
ously mentioned examples, we suggest a new kind of refinement algorithm, which we call
branch-and-refine. Similar to branch-and-cut algorithms, which add cuts during the ex-
ploration of the branch-and-bound tree, branch-and-refine includes the graph refinement
as an additional step in a branch-and-bound algorithm. To the best of our knowledge this
kind of concept has not been explored in the literature before.

The first problem we use to encourage the use of our algorithms is the SPPTW, a time-
dependent variant of the SPP. While algorithms for the SPP with polynomial runtime in
the number of vertices are well-known, e.g., Dijkstra’s algorithm [10], if the arc weights
are non-negative, or the Bellmann-Ford algorithm [13, 5], if there are no negative cycles,
no such algorithm exists for the general SPPTW unless P equals NP [11]. In order to solve
the SPPTW, we use the flow-based SPP formulation of Wolsey [29] on the time-expanded
graph. Because strong duality holds for this formulation, it suffices to solve an LP instead
of an MILP.
The second problem we consider in this work is the TSPTW. The TSP without additional
constraints is already an NP hard problem and was used by Dantzig [8] to demonstrate the
relevance of the simplex algorithm for the solution of combinatorial problems. It is one of

4

the classical examples of integer programming problems. In the literature, many different
solution approaches for the TSPTW can be found. Exact algorithms are for example the
branch-and-cut algorithms of Ascheuer et al. [2] or Dash et al. [9], and the constraint logic
programming based approach by Pesant et al. [24]. The best-known feasible solutions on
very large instances, however, are often found by heuristics. Examples of well-performing
heuristics are the hybrid algorithm of López-Ibáñez and Blum [20] combining techniques
of ant colony algorithms and beam search, the simulated annealing approach by Ohlmann
and Thomas [23], and the insertion heuristic of Gendreau et al. [15].

3 Constraint and Variable Aggregations of Mixed-Integer
Linear Programs

We start by introducing some general terms and notions, which allow us to formally express
the variable and constraint aggregations outlined in the introduction.

For the set of non-negative rational numbers, we use Q≥, and for the set of natural
numbers including 0 we use N. Then, for given n ∈ N we use In ∈ Qn×n for the n × n-
identity matrix and eni ∈ Qn for the i-th unit column vector.

For the theoretical results, we use the following standardized form of MILPs, making
use of inequality constraints only. In later sections, however, we will introduce models
that include equality constraints. For these models, we implicitly assume that they are
first transformed into the standard form so that the theoretical results can be applied.

Definition 1. An MILP (in standard form) M with n variables, of which p are continuous,
and m constraints is an optimization problem given by

min
x∈Qp≥×Nn−p

c>x

s.t. Ax ≥ b,
(M)

where A ∈ Qm×n, c ∈ Qn, b ∈ Qm. If p = n then M is called a linear program (LP).
The MILP obtained by replacing p with n in the optimization problem above is called the
linear relaxation of M and is denoted by L. If M is an LP, then we call the optimization
problem given by

max
y∈Qm≥

b>y

s.t. A>y ≤ c,
(Ld)

the dual linear program.

Whenever we introduce a general MILP M i
j with subscript i and superscript j, we

use Aij , b
i
j , c

i
j ,m

i
j , n

i
j , p

i
j in the same way as A, b, c,m, n, p are used in Definition 1 for M

without explicitly introducing them1.

Definition 2. Given an MILP M and a point x ∈ Qp
≥ × Nn−p, we say x is feasible if

Ax ≥ b and call c>x objective value of x. The set of all feasible x for an MILP M is
denoted by feas(M).

We call obj(M) := inf{c>x | x ∈ feas(M)} the optimal value of M and say x is an
optimal solution if c>x = opt(M). The set of all optimal solutions is denoted by opt(M).

Given a matrix A ∈ Qm×n, we write A(·) ∈ L(Qn,Qm) for the respective linear
mapping. For B ⊆ Qn, we denote the image of B under the mapping A(·) by A(B).

With these notations, we now give the definition of a relation between MILPs that is
essential for the remainder of this work.

1Here, i and j do not necessarily have to be numbers or letters, and might be missing entirely.

5

Definition 3. Let M1 and M2 be two MILPs such that m2 ≤ m1 and n2 ≤ n1. Further
let C ∈ Qm2×m1

≥ with rank(C) = m2 and V ∈ Qn2×n1
≥ with rank(V) = n2 be two matrices.

Additionally, let V have a block structure

V =

(
V ′ 0
0 V ′′

)
with V ′ ∈ Qp2×p1 and V ′′ ∈ Nn2−p2×n1−p1.

M2 is called a (C, V)-aggregation (or simply aggregation) of M1 if

CA1 = A2V, Cb1 = b2, c
>
1 = c>2 V. (4)

An aggregation is called proper if either n2 < n1 or m2 < m1. If M2 is a (proper) aggrega-
tion of M1, then, conversely, M1 is called a (proper) refinement of M2. Furthermore, if M2

is a (C, V)-aggregation of M1 we call y ∈ feas(M2) expandable if there exists x ∈ feas(M1)
with V x = y.

With this definition, we can now formally introduce the variable and constraint aggre-
gations mentioned in the introduction in general terms.

Example 1. 1. Let M1 be an MILP, i, j ∈ {1, . . . ,m} with i < j, and α ∈ Q≥. With
V = In and

C =
(
em1 , . . . , emi−1, emi + αej , emi+1, . . . , emj−1, emj+1, . . . , emm

)
, (5)

we obtain an aggregation M2 of M1, with A∗ = CA, b∗ = Cb, c∗ = c, n∗ = n, p∗ = p
and m∗ = m − 1. We call M2 a constraint aggregation of M1 and additionally the
special case α = 0 a constraint removal of M .

2. Let M2 be an MILP, i, j ∈ {p+ 1, . . . , n} and α ∈ N≥. With C = Im and

V =
(
en1 , . . . , enj−1, αeni , enj , . . . , enn

)
, (6)

we can obtain a refinement M1 of M2 with A∗ = AV , b∗ = b, c∗ = V >c, p∗ = p,
n∗ = n+1 and m∗ = m. We call M1 (and also the analogous case for two continuous
variables, i.e., i, j ∈ {1, . . . , p} and p∗ = p+ 1) a variable refinement of M2, and M2

a variable aggregation of M1.

3. The previous examples can be generalized to MILPs obtained by aggregating multiple
subsets of constraints or variables.

4. Consider the MILPs

min
x∈N2

x1 + x2

s.t. x1 ≥ 1,

x2 ≥ 1

(M1)

and
min
y∈N2

y1 + y2

y2 ≥ 1,
(M2)

where the second can be obtained from the first by removing the first constraint, so
it is an aggregation with V = I2 and C =

(
1 0

)
. In this case y =

(
0 1

)
is not

expandable, but y =
(
1 1

)
is.

6

Although the concept of aggregations is much more general, the algorithms of the later
sections are only making use of those in Example 1 with α ∈ {0, 1}. It would be interesting
to identify other, maybe not even graph based problems, where other types of aggregations
appear.

The following lemma indicates, that there are several properties of MILPs and their
solutions which can be derived from their aggregations. It also illustrates that aggregating
an MILP can be useful for solving it.

Lemma 1. Let M1 and M2 be MILPs, and V ∈ Qn2×n1
≥ and C ∈ Qm2×m1

≥ be matrices
such that M2 is a (C, V)-aggregation of M1. Then:

(i) L2 is a (C, V)-aggregation of L1,

(ii) V (feas(M1)) ⊆ feas(M2),

(iii) if feas(M2) = ∅, then feas(M1) = ∅,

(iv) opt(M1) = inf{c>2 y|y ∈ V (feas(M1))},

(v) opt(M2) ≤ opt(M1),

(vi) if x ∈ feas(M1) with V x ∈ opt(M2), then x ∈ opt(M1).

Proof.

(i) Replace p1 by n1 and p2 by n2 in Definition 3.

(ii) Let x ∈ feas(L1), then A1x ≥ b1 and hence, CA1x ≥ Cb1. By substituting prop-
erty (4) of the definition of (C, V)-aggregation, this is equivalent to A2V x ≥ b2.
Furthermore, the block structure of V guarantees that V x fulfills the integrality
constraints of M2, if x fulfills the integrality constraints of M1. So, we can conclude
V x ∈ feas(M2).

(iii) This is a direct consequence of (ii).

(iv) Since c1 = V >c2, this statements can be shown by the change of variables:

opt(M1) = inf
x∈feas(M1)

c>1 x = inf
x∈feas(M1)

c>2 V x = inf
y∈V (feas(M1))

c>2 y.

(v) Note that by (ii) holds

inf
y∈feas(M2)

c>2 y ≤ inf
x∈feas(M1)

c>2 V x

and by assumption, also holds c>2 V = c>1 . So, we can conclude that

opt(M2) = inf
y∈feas(M2)

c>2 y ≤ inf
x∈feas(M1)

c>2 V x = inf
x∈feas(M1)

c>1 x = opt(M1).

(vi) Let x ∈ feas(M1) and V x ∈ opt(M2), then

opt(M2) = c>2 V x = c>1 x ≥ inf
x′∈feas(M1)

c>1 x
′ = opt(M1).

With the estimation in property (v), we obtain opt(M1) = opt(M2) and, therefore,
x ∈ opt(M1).

7

From a practical point of view, the results of Lemma 1 are especially relevant, if M2

has much less constraints or variables than M1. In this case, solving M2 can sometimes
take only a fraction of the time it takes to solve M1. If we determine that feas(M2) = ∅,
then we can directly conclude that also feas(M1) = ∅, without investing the time necessary
to solve M1. Furthermore, if we find a solution y ∈ opt(M2), by (v) the objective value of
y gives a proven lower bound for the optimal value of M1. This can be very effective in
combination with a heuristic that finds upper bounds for M1 (in practise these heuristics
usually try to find feasible points for M1, whose objective then defines an upper bound on
opt(M1)). If, in addition we have an effective algorithm to check whether there exists an
x ∈ feas(M1) such that V x = y (i.e., y is expandable), we can apply (vi) to conclude that
x is a proven optimal solution of M1.

The following result shows, that aggregation is also a transitive relation.

Proposition 1. Let M1, M2 and M3 be MILPs, and V1 ∈ Qn2×n1
≥ , C1 ∈ Qm2×m1

≥ , V2 ∈
Qn3×n2
≥ and C2 ∈ Qm3×m2

≥ be matrices such that M3 is a (C2, V2)-aggregation of M2 and
M2 is a (C1, V1)-aggregation of M1. Then M3 is a (C2C1, V2V1)-aggregation of M1.

Proof. The assumptions imply that C1A1 = A2V1 and C2A2 = A3V2. The second equality
implies that C2A2V1 = A3V2V1, and a substitution of the first yields C2C1A1 = A3V2V1.
Similarly, we get c>1 = c>2 V1 = c>3 V2V1 and b3 = C2b2 = C2C1b1. Furthermore, it holds
V1(Qp1 × Nn1−p1) ⊆ Qp2 × Nn2−p2 and V2(Qp2 × Nn2−p2) ⊆ Qp3 × Nn3−p3 , and hence
V2(V1(Qp2 × Nn2−p2)) ⊆ Qp3 × Nn3−p3 . The multiplication of two matrices with non-
negative entries always results in a matrix with non-negative entries and rank(V2V1) = n3
and rank(C2C1) = m3 (by Sylvester’s rank inequality or Sylvester’s law of nullity, see for
example [21]), so we can conclude that M3 is a (C2C1, V2V1)-aggregation of M1.

The next result shows that we can preserve the aggregation relation between two
MILPs when new constraints are added.

Lemma 2. Let M1 and M2 be MILPs, and V ∈ Qn2×n1
≥ and C ∈ Qm2×m1

≥ be matrices

such that M2 is a (C, V)-aggregation of M1. Additionally let l ∈ N, D ∈ Ql×n2, d ∈ Ql,
and M∗1 ,M

∗
2 be the MILPs obtained by setting

A∗1 =

(
A1

DV

)
, b∗1 =

(
b1
d

)
, c∗1 = c1, n

∗
1 = n1,m

∗
1 = m1 + l, p∗1 = p1

and

A∗2 =

(
A2

D

)
, b∗2 =

(
b2
d

)
, c∗2 = c2, n

∗
2 = n2,m

∗
2 = m2 + l, p∗2 = p2

then

(i) M∗2 is a (C∗, V)-aggregation of M∗1 , where C∗ =

(
C 0
0 Il

)
.

(ii) For all x ∈ feas(M1) with V x ∈ feas(M∗2) it holds that x ∈ feas(M∗1).

Proof.

(i) We check all conditions from Definition 3. The objective functions did not change,
so c∗1

> = c∗2
>V . Furthermore,

C∗A∗1 =

(
CA1

DV

)
=

(
A2V
DV

)
= A∗2V

and

C∗b∗1 =

(
Cb1
d

)
=

(
b2
d

)
= b∗2.

If C has only non-negative entries and full row rank so does C∗.

8

(ii) If x ∈ feas(M1), then A1x ≥ b and if V x ∈ feas(M∗2), then DV x ≥ d and therefore
also x ∈ feas(M∗1).

Adding constraints to an MILP is for example done in the branching step of branch-
and-bound algorithms or when adding cuts in branch-and-cut algorithms. Now, if we only
know a refinement of the original MILP M1, but need to find a refinement of the MILP
with additional inequalities, it is possible to apply Lemma 2 to find it.

The last result on aggregations we present in this section is about finding feasible
points of the dual LP by solving an aggregation.

Proposition 2. Let L1 and L2 be LPs, and V ∈ Qn2×n1
≥ and C ∈ Qm2×m1

≥ be matrices

such that L2 is a (C, V)-aggregation of L1. For y ∈ feas(Ld
2) holds C>y ∈ feas(Ld

1).

Proof. Let y ∈ feas(Ld
2) then by definition A>2 y ≤ c2. Multiplication by V > from the left,

which has only non-negative entries, yields (A2V)>y ≤ V >c2. Substituting equation (4)
from Definition 3 implies A>1 C

>y ≤ c1, and since C>y ≥ 0 we get C>y ∈ feas(Ld
1).

In the computational experiments we will make use of this result to speed up the
algorithms. The basic idea is: if the linear relaxation of an MILP has already been solved,
then a solution of the dual LP (which can be easily computed by the revised simplex or
dual simplex algorithm) can be easily transformed to obtain a feasible starting point for
solving the linear relaxation of its refinements by the dual simplex algorithm.

4 Refinement Algorithms

In the previous section we introduced the concept of aggregations and refinements. In
particular, the results in Lemma 1 show that it is possible to obtain important insights
about an MILP by solving some aggregations of it. A closer look, however, also reveals
that there is no guarantee that solving an aggregation is actually useful.

Assume, for example, that we want to solve an MILP M for which holds feas(M) = ∅.
Now, if we solve an aggregation Magg of M , there are two possibilities: If feas(Magg) = ∅,
then by Lemma 1 (iii), we can conclude correctly that feas(M) = ∅, but if feas(Magg) 6= ∅,
there are no implications for M . A similar situation also appears if M has a solution. If
we find a solution of Magg and we can show that it is expandable, then by Lemma 1 (vi)
we can calculate opt(M). However, if it is not expandable (or we cannot show that it is),
solving Magg is of little use. In addition, the lower bound we obtain by applying Lemma 1
(v) does not have to be tight.

Finding aggregations of an MILP that are easier to solve is a trivial task, but finding
those that are actually helpful for finding proven optimal solutions is not. In this section,
we propose two algorithms for finding aggregations with the desired properties. For ease
of notation we assume, that all MILPs used in the input of the algorithms have an optimal
value strictly greater than −∞.

4.1 General Iterative Refinement Algorithm

The first algorithm designed to find useful aggregations is outlined in Algorithm 1. We call
it the General Iterative Refinement Algorithm. For the input of Algorithm 1 one should
chose MILPs M , Magg such that it is much easier to solve Magg than M . Then, within a
loop, Magg is replaced by another MILP, that is both, an aggregation of M and a proper
refinement of Magg. The loop is exited, when the current Magg has no solution (line 2)

9

Algorithm 1: General Iterative Refinement Algorithm

1 Input: An MILP M and an aggregation Magg of M .
2 while feas(Magg) 6= ∅ do
3 Find y ∈ opt(Magg);
4 if y is expandable then
5 return c>aggy;

6 else
7 (Refine:) Find a proper refinement Mnew of Magg, such that Mnew is an

aggregation of M ;
8 Magg ←Mnew;

9 return +∞;

or an expandable solution (line 5). Note that, because a proper refinement is required
in line 7, with each iteration Magg becomes more and more likely to have an expandable
solution or no solution (if M has no solution). Although difficult in principle, in specific
applications checking whether y is expandable in line 4 can be easy. In the applications of
the later sections this is the case and because of this, it is not even necessary to explicitly
store M in the memory.

The following theorem shows that Algorithm 1 always terminates and returns the
objective value of M .

Theorem 1. Algorithm 1 terminates after finitely many steps. The return value is
opt(M).

Proof. In each loop iteration of Algorithm 1, Magg is always replaced by a proper refine-
ment which implies that the algorithm either terminates in line 9 or at some point Magg

has to have the same number of constraints and variables as M . Now, if Magg and M
have the same number of constraints and variables and Magg is a (C, V)-aggregation of M ,
then V and C are square matrices with full rank and hence invertible matrices. For the
solution y found in line 3, this implies V −1y ∈ feas(M). Therefore y is expandable and
the algorithm terminates in line 5. So, a situation, where it is not possible anymore to find
a proper refinement or the algorithm cycles cannot occur. We conclude that Algorithm 1
always terminates after a finite number of steps.

Now, if Algorithm 1 terminates in line 9, it holds feas(Magg) = ∅ for an aggregation
Magg of M . By Lemma 1 (iii), it holds feas(M) = ∅. This implies opt(M) = +∞, the
return value. Finally, if Algorithm 1 terminates in line 5, y is expandable and there exists
x ∈ feas(M) such that y = V x ∈ opt(Magg) for an aggregation Magg of M . By Lemma 1
(vi) then holds x ∈ opt(M). Therefore, opt(M) = c>x = c>aggy. Hence, the return value
is also correct in this case.

4.2 Branch-and-refine

The second algorithm follows the branch-and-bound paradigm. Branch-and-bound algo-
rithms for MILPs are based on repetitively executing a branching step, where the set of
feasible points is divided into two (or possibly more) subsets, and a bounding step, where
a lower bound valid for all elements of a given subset is computed. This lower bound is
usually found by relaxing the constraints in some way. In the case of MILPs, the relaxed
problem can be obtained by discarding the integer condition and solving the LP relaxation
instead (see for example Fügenschuh and Martin [14] for a more formal description). Con-
sidering the property stated in Lemma 1 (i), it is also possible to use the LP-relaxation of
an aggregation.

10

Following this idea, we propose another refinement algorithm for solving MILPs. The
details are given in Algorithm 2, which we call branch-and-refine. Although not obvi-
ous at first glance, branch-and-refine is structurally very similar to the General Iterative
Refinement Algorithm. Solving Magg in line 3 of Algorithm 1 is usually done by a branch-
and-bound algorithm. Branch-and-refine incorporates the refinement step of Algorithm 1
(line 7) into a branch-and-bound algorithm, and therefore makes the loop of Algorithm 1
unnecessary. Before presenting results for Algorithm 2, we remark that if Magg = M

Algorithm 2: Branch-and-refine

1 Input: Two MILPs M and Magg, such that Magg is an aggregation of M .
2 LO ← {Magg}, LC ← ∅, U ← +∞;
3 while LO 6= ∅ do
4 Choose M∗ ∈ LO;
5 if feas(L∗) = ∅ or opt(L∗) ≥ U then
6 Move M∗ from LO to LC ;

7 else
8 Find y ∈ opt(L∗);
9 if y ∈ feas(Magg) then

10 if y is expandable then
11 U ← c>aggy;

12 Move M∗ from LO to LC ;

13 else
14 (Refine:) Find a proper refinement Mnew of Magg, such that Mnew

is an aggregation of M ;
15 Set Magg to Mnew and transform each problem M ′ ∈ LO in

accordance with Lemma 2 into a problem M ′new;

16 else
17 (Branch:) Add additional constraints to M∗ to obtain MILPs M∗1 and M∗2

such that feas(M∗) = feas(M∗1) ∪ feas(M∗2). Add M∗1 ,M
∗
2 to LO and move

M∗ from LO to LC ;

18 return U ;

intially then y is always expandable in line 10 and the block in line 14-15 can never be
reached. So, in this case Algorithm 2 describes just a usual branch-and-bound algorithm
using the LP-relaxation for bounding. We further remark, that the MILPs M∗1 and M∗2
which are added to the list of open problems LO in line 17 are obtained by imposing ad-
ditional constraints to the MILP M∗ and we can, therefore, use the formula in Lemma 2
to obtain the problems M∗new in line 15.

The following results show that Algorithm 2 can be used to solve MILPs. For ease of
notation, given K ∈ Q ∪ {+∞} we denote by

feasK(M) := {x ∈ feas(M)|c>x < K},

the set of all feasible points of an MILP M with objective value that is strictly less than
K.

Lemma 3. For any matrices C, V such that Magg is a (C, V)-aggregation of M , it holds
that

V (feasU (M)) ⊆
⋃

M ′∈LO

feas(M ′) (7)

11

during the execution of Algorithm 2.

Proof. IfMagg is a (C, V)-aggregation ofM , then by Lemma 1 (ii) V (feas(M)) ⊆ feas(Magg)
and the assertion holds in line 2, where LO = {Magg} and U = +∞.

Furthermore, the elements of LO that are removed, are either added to LC or, in
line 17, divided in such a way that the union of their feasible sets is the original feasible
set. Therefore, we can conclude, that if (7) holds at some point then until the ‘Refine’
step, i.e., line 14-15, is reached, it holds that

V (feasU (M)) ⊆ feas(Magg) =
⋃

M ′∈(LO∪LC)

feas(M ′).

Now, assume there exists x ∈ feasU (M) and M ′ ∈ LC such that V x ∈ feas(M ′). Conse-
quently, feas(M ′) 6= ∅ and, hence, opt(M ′) ≥ U (otherwise it would not have been added to
LC in line 5 or line 12). Now, by Lemma 1 (v) it holds that c>x ≥ opt(M) ≥ opt(M ′) ≥ U ,
a contradiction to x ∈ feasU (M). We conclude that until we reach the ‘Refine’ step (7)
holds true.

Now, assume line 15 is reached. Let LnewO be the transformed list, and C1, V1, C2, V2
be matrices such that Magg is a (C1, V1)-aggregation of Mnew and Mnew is a (C2, V2)-
aggregation of M . By Proposition 1, Magg is a (C1C2, V1V2)-aggregation of M and, there-
fore, (7) holds for V = V1V2, i.e.,

V1(V2(feasU (M))) ⊆
⋃

M ′∈LO

feas(M ′).

This implies that for all x ∈ V2(feasU (M)) exists M ′ ∈ LO such that V1x ∈ feas(M ′). This
M ′ is just Magg with additional inequalities of type Dx ≥ d (as required in Lemma 2)
which were added in previous calls of the ‘Branch’ step. Therefore, we can apply Lemma 2
(ii) with V = V1, C = C1, M1 = Mnew, M2 = Magg, M∗1 = M ′new, M∗2 = M ′, to show
x ∈ feas(M ′new). It follows that

V2(feasU (M)) ⊆
⋃

M ′new∈LnewO

feas(M ′new),

which is (7) for the transformed list and new aggregation matrix. In summary, we have
shown that (7) holds initially, that while the ‘Refine’ step is not reached it remains valid,
and that after the ‘Refine’ step is performed (7) holds for the transformed list and any new
aggregation matrix. So, we can conclude, that (7) holds true throughout the execution of
the algorithm.

Using this result, we can now prove the following result for Algorithm 2.

Theorem 2. If Algorithm 2 terminates, the return value is opt(M).

Proof. If feas(M) = ∅, then y can never be expandable in line 10, therefore U is never
changed throughout the algorithm. So, if the algorithm terminates, it has to terminate
with U = +∞ = opt(M).

If feas(M) 6= ∅, upon termination holds LO = ∅, and we can apply Lemma 3 to obtain

V (feasU (M)) ⊆
⋃

M∗∈LO

feas(M∗) = ∅.

Because we assumed feas(M) 6= ∅, it follows that V (feas(M)) 6= ∅. So, it has to hold
that opt(M) ≥ U , which also implies U 6= +∞. Therefore, U has changed during the
execution of the algorithm and is equal to the objective of an expandable y. For any y
that is expandable exists x ∈ feas(M), with the same objective as y. Therefore, also holds
that opt(M) ≤ U which concludes the proof.

12

Note that in Theorem 2 we do not conjecture, that Algorithm 2 terminates which is a
major difference to the statement in Theorem 1. This is because the branching rule is too
general to guarantee that it will only branch finitely many times.

To the best of our knowledge, there is no example of an algorithm in the literature that
matches Algorithm 2, but in principle it is possible to formulate Algorithm 2 as a classical
branch-and-bound algorithm, where the relaxations used for finding lower bounds (i.e., the
linear relaxation of different aggregations) are changed during its execution. We further
note the similarities to branch-and-cut algorithms that initially leave out a subset of the
constraints and then add some of them on demand in form of cutting planes during the
exploration of the branch-and-bound tree. Discarding constraints as pointed out before is a
special type of aggregation and, therefore, if constraints are only added when the solution
of the LP-relaxation of the chosen node is integer, these algorithms fit the framework
of branch-and-refine. Although we do not give the details, it should be apparent that
Algorithm 2 can be adapted in such a way that the transformation step can also be
reached if y has fractional values. Then, most branch-and-cut algorithms would fit into
the framework of the so-adapted branch-and-refine.

5 Applications of the Refinement Algorithms

In this section we present two graph-based problems and show that they can be solved
with the refinement-based algorithms of the previous section. Throughout this section we
assume that G = (N,A) is a directed graph with nodes in N and arcs in A. Furthermore,
we assume that each node i ∈ N has a time-window Ii = {ei, . . . , li} associated with it,
and each arc (i, j) ∈ A has parameters ci,j ∈ Q> and di,j ∈ N, the costs and traveling
times, respectively. In the notations of the expansions of G considered in this work, we
make use of the concepts introduced in the following definition.

Definition 4. Let I = {l, . . . ,m} with l,m ∈ N, l ≤ m, and Ii ⊆ I, i ∈ {1 . . . , k} for
some k ∈ N. The set P = {I1, . . . , Ik} is called an ordered partition (partition) of I if
I =

⋃k
i=1 I

i and max(Ii) + 1 = min(Ii+1) for all i = 1, . . . , k − 1.

Definition 5. If Pi = {I1i , . . . , I
ki
i } with ki ∈ N are partitions of the time-windows Ii of the

nodes i ∈ N , then P = {Pi | i ∈ N} is called a time-window partition. The time-window
partition P̂ := {{{ei}, {ei + 1}, . . . , {li}} | i ∈ N} is called the complete time-window
partition.

Now, for a time-window partition P, we introduce the following notations for the
expanded sets of nodes and arcs:

NPi := {i} × Pi, ∀ i ∈ N,
APi,j := {(i, I, j, J) ∈ NPi ×NPj | min(I) + di,j ≤ max(J)}, ∀ (i, j) ∈ A,

NP :=
⋃
i∈N
NPi ,

AP :=
⋃

(i,j)∈A

APi,j ,

δP+(i, I) := {(i, I, j, J) ∈ AP}, ∀ (i, I) ∈ NP ,
δP−(j, J) := {(i, I, j, J) ∈ AP}, ∀ (j, J) ∈ NP .

Based on these, we can define the types of time-expanded graphs.

Definition 6. Let P be a time-window partition. The graph GP = (NP ,AP) is called the
time-expanded graph given by P. The time-expanded graph given by the complete time-
window partition P̂ is called the completely time-expanded graph. Given an arc (i, I, j, J) ∈

13

AP then the difference between the earliest point represented by (j, J) and the earliest point
represented by (i, I), i.e., min(J)−min(I), is called the length of (i, I, j, J).

In the derivation of the refinement algorithms, we additionally use the following terms.

Definition 7. Let P, P ∗ be two partitions of the same set I. The partition P ∗ is called a
refinement of P , if for all I∗ ∈ P ∗ there exists a J ∈ P such that I∗ ⊆ J . If additionally
I ⊂ J for at least one I∗ ∈ P ∗ and one J ∈ P , then P ∗ is called a proper refinement.

Note that, the only refinement that is not also a proper refinement is the identity.

Definition 8. Let P = {Pi | i ∈ N} and P∗ = {P ∗i | i ∈ N} be time-window partitions.
The time-window partition P∗ is called a refinement of P (and P an aggregation of P∗)
if P ∗i is a refinement of Pi for all i ∈ N . If additionally, P ∗i is a proper refinement of Pi
for at least one i ∈ N , then we call P∗ a proper refinement of P.

Now, we can derive refinement algorithms for two time-dependent problems on G, the
SPPTW and the TSPTW.

5.1 A Refinement Algorithm for the SPPTW

Given two nodes s, t ∈ N , s 6= t the SPPTW asks for a path p = (p1, . . . , pk) in G with
s = p1 and t = pk that has minimal cost among all paths that are time-feasible, i.e., for
which there exist θpj ∈ Ipj for all j ∈ {1, . . . , k}, such that θpj ≥ θpj−1 + d(pj−1,pj) for
j ∈ {2, . . . , k}.

In this section we want to find solutions of the SPPTW on G by finding solutions of
the SPP on time-expanded graphs GP given by time-window partitions P. Solutions of
the SPP on GP can be found by solving the LP-relaxation of the MILP

min
z∈Q|A|≥

∑
(i,j)∈A

ci,j
∑
I,J :

(i,I,j,J)∈AP

zi,I,j,J (8a)

s.t. ∑
(j,J):

(i,I,j,J)∈AP

zi,I,j,J −
∑
(j,J):

(j,J,i,I)∈AP

zj,J,i,I =

1, (i, I) = (s, {es}),
−1, (i, I) = (t, {lt}),
0, else,

∀(i, I) ∈ NP (8b)

with the revised simplex algorithm. The path is then constructed from the arcs (i, I, j, J) ∈
AP for which zi,I,j,J = 1.

For some fixed time-window partition P we denote the system (8) by LPSPP. Addi-
tionally, we remark, that it suffices to consider the linear relaxation of LPSPP, because the
constraint matrix is totally unimodular and the right-hand side is integral, see for instance
[22, 29].

Now, although solutions of the SPPTW can be found by directly solving LP̂SPP, our
goal is to find solutions by using the general iterative refinement algorithm of the previous

section. For doing so, we have to find aggregations of the LP relaxation of LP̂SPP.

We start with an example. Consider the graphs depicted in Figure 2. The graph on
the right-hand side is the completely time-expanded graph of the one on the left-hand side
and we assume that the costs are equal to the traveling times assigned to the arcs.

14

1

2

3

4

I1 = {0}

I2 = {0, 1, 2}

I3 = {1}

I4 = {2}

1

1

1

2

t = 0

1, {0}

2, {0}

t = 1

2, {1}

3, {1}

t = 2

2, {2}

4, {2}

Figure 2: A graph with time-windows (left) and the corresponding time-expanded graph
(right).

The LP formulation of the SPP with s = 1 and t = 4 on the graphs illustrated in
Figure 2 are

min
z∈Q4

2z1,2 + z1,3 + z2,4 + z3,4

s.t.

1:

2:

3:

4:

1 1 0 0
−1 0 1 0

0 −1 0 1
0 0 −1 −1

z1,2
z1,3
z2,4
z3,4

 =

1
0
0
−1

 (LP1)

and

min
z∈Q5

2z1,{0},2,{2} + z1,{0},3,{1} + z2,{0},4,{2} + 2z2,{1},4,{2} + z3,{1},4,{2}

s.t.

(1,{0}):
(2,{0}):
(2,{1}):
(2,{2}):
(3,{1}):
(4,{2}):

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0

0 −1 0 0 1
0 0 −1 −1 −1

z1,{0},2,{2}
z1,{0},3,{1}
z2,{0},4,{2}
z2,{1},4,{2}
z3,{1},4,{2}

 =

1
0
0
0
0
−1

 .
(LP2)

A simple calculation verifies that (LP1) is a (C, V)-aggregation of (LP2) with

V =

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1

 , C =

1 0 0 0 0 0
0 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

We remark, that this example can be adapted to any graph G and its completely time-

expanded graph GP̂ . For a fixed arc (i, j) ∈ A, the matrix V then aggregates all variables

which are indexed by arcs (i, I, j, J) ∈ AP̂i,j . Therefore, it has a row for each original arc

(i, j) ∈ A and a column for each arc (i′, I ′, j′, J ′) ∈ AP̂ . Its entries are 1 if (i′, j′) = (i, j)

and 0 otherwise. The matrix C aggregates the constraints of all the nodes (i, I) ∈ N P̂i ,
for all i ∈ N . So, it has a row for each original node i ∈ N and a column for each node

(i′, I ′) ∈ N P̂ . Its entries are 1 if i = i′ and 0 otherwise.

Now, note that, if P = {{Ii} | i ∈ N}, then G has the same topology as GP . So, we
have given an example of a time-window partition P, for which LPSPP is an aggregation of

LP̂SPP. The following results show, that this actually holds for any time-window partition
P. We start by proving a lemma.

15

Lemma 4. Let P = {Pi | i ∈ N} and P∗ = {P ∗i | i ∈ N}, be two time-window partitions.
Furthermore, let P ∗

ĩ
= (Pĩ ∪ {Inĩ ∪ I

n+1
ĩ
}) \ {In

ĩ
, In+1
ĩ
} for some n ∈ {1, . . . , |Pĩ| − 1} and

some node ĩ ∈ N \{s, t}, and Pj = P ∗j for all nodes j ∈ N \ {̃i}. Then there exist matrices

C, V such that LP
∗

SPP is a (C, V)-aggregation of LPSPP.

Proof. For proving the assertion, we find two matrices C, V for which all conditions in
Definition 3 hold true. Since there are no integer constraints, in fact we do not have to
assign a block structure to V .

Let Ĩ := In
ĩ
∪ In+1

ĩ
. Then, we define for (i, I, j, J) ∈ AP∗

ω(i, I, j, J) :=

{(i, Ini , j, J), (i, In+1

i , j, J)} ∩ AP , (i, I) = (̃i, Ĩ),

{(i, I, j, Ini), (i, I, j, In+1
i)} ∩ AP , (j, J) = (̃i, Ĩ),

{(i, I, j, J)}, else.

For the nodes (i, I) ∈ NP∗ we define

ψ(i, I) :=

{
{(i, Ini), (i, In+1

i)}, (i, I) = (̃i, Ĩ),

{(i, I)}, else.

These sets are defined precisely in such a way that it holds

ω(δP
∗

+ (i, I)) = δP+(ψ(i, I)), ∀(i, I) ∈ NP∗ , (9a)

ω(δP
∗
− (i, I)) = δP−(ψ(i, I)), ∀(i, I) ∈ NP∗ . (9b)

Now, let C be the matrix that realizes the constraint aggregation with α = 1 of the rows
of LPSPPfor (̃i, In

ĩ
) and (̃i, In+1

ĩ
). Since ĩ /∈ {s, t} (and hence the right-hand sides of both

aggregated constraints are 0), the aggregated constraints are

∑
(j,J):

(i,I,j,J)∈δP+(ψ(i,I))

zi,I,j,J −
∑
(j,J):

(j,J,i,I)∈δP−(ψ(i,I))

zj,J,i,I

=

1, (i, I) = (s, {es}),
−1, (i, I) = (t, {lt}),
0, else,

∀(i, I) ∈ NP∗ . (10)

Now, define V ∈ Q|AP
∗ |×|AP | as the matrix that realizes the variable refinement

(V z)i,I,j,J =
∑

(i′,I′,j′,J ′)∈ω(i,I,j,J)

zi′,I′,j′,J ′ ∀(i, I, j, J) ∈ AP∗ . (11)

The refined constraints of LP
∗

SPP are

∑
(j,J):

(i,I,j,J)∈δP∗+ (i,I)

∑
(i′,I′,j′,J ′)∈
ω(i,I,j,J)

zi′,I′,j′,J ′ −
∑
(j,J):

(j,J,i,I)∈δP∗− (i,I)

∑
(j′,J ′,i′,I′)∈
ω(j,J,i,I)

zj′,J ′,i′,I′

=

1, (i, I) = (s, {es}),
−1, (i, I) = (t, {lt}),
0, else,

∀(i, I) ∈ NP∗ .

16

Since the sets in the image of ω are pairwise disjoint, this is equivalent to∑
(i′,I′,j′,J ′)∈ω(δP∗+ (i,I))

zi′,I′,j′,J ′ −
∑

(j′,J ′,i′,I′)∈ω(δP∗− (i,I))

zj′,J ′,i′,I′

=

1, (i, I) = (s, {es}),
−1, (i, I) = (t, {lt}),
0, else,

∀(i, I) ∈ NP∗ . (12)

Now, by the relations in (9), (12) is equivalent to (10). Therefore, holds for the corre-
sponding matrices CAPSPP = AP

∗
SPPV and CbPSPP = bP

∗
SPP. Additionally, substituting (11) in

the objective function of LP
∗

SPP directly yields that also cPSPP = V >cP
∗

SPP, which concludes
the proof.

Using the result of this lemma, we can proof the following result.

Proposition 3. Given a time-window partition P, then:

(i) LP
∗

SPP is an aggregation of LPSPPfor any aggregation P∗ of P,

(ii) LP
∗

SPP is a refinement of LPSPPfor any refinement P∗ of P,

(iii) LPSPPis an aggregation of the time-indexed formulation LP̂SPP.

Proof.

(i) If P∗ is an aggregation of P, we can split the time-windows repeatedly in such a
way that we obtain a sequence P1, . . . ,Pn of aggregations, such that P1 = P and
Pn = P∗, and Pi and Pi+1 are related as the partitions in Lemma 4. For Pi and Pi+1

then holds LPiSPP is an aggregation of L
Pi+1

SPP . So we can apply Lemma 1 inductively
to show that LP

∗
SPP is an aggregation of LPSPP.

(ii) This follows by reversing the roles of P and P∗ in statement (i).

(iii) This is an application of statement (i) to P∗ = P̂.

Algorithm 3: Iterative Refinement Algorithm for the SPPTW

1 Input: The LP LP̂SPP and a time-window partitioning P, for an SPPTW instance.
2 while feas(LPSPP) 6= ∅ do
3 Find y ∈ opt(LPSPP);
4 if y is expandable then
5 return (cPSPP)>y;

6 else
7 (Refine:) Find a proper refinement of Pnew of P;
8 P ← Pnew;

9 return +∞;

So, by Proposition 3 all time-expanded formulations LPSPP are aggregations of LP̂SPP,
and by Theorem 1, Algorithm 1 can be used to solve an MILP (and therefore also its
LP relaxation), by solving only aggregations of it. Together, this implies that we can

17

apply Algorithm 1 to find solutions of the SPPTW by only solving LPSPP for more and
more refined time-window partitions P. The details are given in Algorithm 3. Because
Algorithm 3 is an iterative refinement algorithm, by Theorem 1 we can state the following
result.

Proposition 4. Algorithm 3 terminates after finitely many steps. The return value is

opt(LP̂SPP).

In Section 6 we discuss an implementation of Algorithm 3 and perform computational
experiments on randomly generated SPPTW instances.

5.2 Refinement Algorithms for the TSPTW

Given the graph G, the TSPTW asks for a tour visiting all nodes in the graph G of
minimal cost that is starting and ending in the depot node 1 and that is time-feasible.
Given a time-window partition P, consider the following MILP:

min
x∈{0,1}|A|,
z∈{0,1}|AP|

∑
(i,j)∈A

ci,j
∑
I,J :

(i,I,j,J)∈AP

zi,I,j,J (13a)

s.t. ∑
(j,J):

(i,I,j,J)∈AP

zi,I,j,J −
∑
(j,J):

(j,J,i,I)∈AP

zj,J,i,I =

1, (i, I) = (s, {es}),
−1, (i, I) = (t, {lt}),
0, else,

∀(i, I) ∈ NP , (13b)

∑
i:(i,j)∈A

xi,j = 1, ∀ j ∈ N, (13c)

∑
I,J :(i,I,j,J)∈AP

zi,I,j,J − xi,j = 0, ∀ (i, j) ∈ A, (13d)

This is LPSPP with additional binary variables xi,j for all (i, j) ∈ A and two additional
types of constraints. For some fixed time-window partition P we denote the system (13)
by MPTSP. The x-variables, similar to the z-variables are used to describe a path, but in
G instead of GP . The additional constraints in (13c) ensure that each node of G is part
of the path and the constraints in (13d) then link the paths described by the x and z-
variables. For any arc (i, j) ∈ A, some time indexed arc (i, I, j, J) ∈ APi,j has to be chosen,
ensuring that they describe the same path in G once the time-indices are ignored. If all
arcs in (i, I, j, J) ∈ AP have positive length and hence GP is cycle-free, this guarantees
that no subtours can be included. Additionally, if all arcs lengths are greater or equal
the traversing time it also guarantees that the tour is time-feasible. So, if s and t are two

copies of the depot node, M P̂TSP is a valid MILP formulation of the TSPTW.
Since MPTSP is very similar to LPSPP, the following results and proofs are also similar to

the ones for the SPPTW. Therefore, we omit the details of the arguments in the proofs, if
they already appeared in the proofs of the previous section. The first result implies that
we can apply the refinement algorithms of the previous section to the TSPTW.

Lemma 5. Let P = {Pi | i ∈ N} and P∗ = {P ∗i | i ∈ N}, be two time-window partitions.
Furthermore, let P ∗

ĩ
= (Pĩ ∪ {Inĩ ∪ I

n+1
ĩ
}) \ {In

ĩ
, In+1
ĩ
} for some n ∈ {1, . . . , |Pĩ| − 1} and

some node ĩ ∈ N \{s, t}, and Pj = P ∗j for all nodes j ∈ N \{̃i}. Then, there exist matrices

C, V such that MP
∗

TSP is a (C, V)-aggregation of MPTSP.

18

Proof. Using the same notations as in the proof of Lemma 4, let V be given by

(V z)i,I,j,J =
∑

(i′,I′,j′,J ′)∈ω(i,I,j,J)

zi′,I′,j′,J ′ ∀(i, I, j, J) ∈ AP∗

(V x)i,j = xi,j ∀(i, j) ∈ A

and C be the constraint aggregation of the constraints of MPTSP for (̃i, In
ĩ

) and (̃i, In+1
ĩ

).
We remark, that V has the required block structure, because there are no non-integer
variables. Then we can apply the same arguments as in the proof of Lemma 4 to show
that CAPTSP = AP

∗
TSPV , CbPTSP = bP

∗
TSP and cPTSP = V >cP

∗
TSP.

Proposition 5. Given a time-window partition P, then:

1. For any aggregation P∗ of P is MP
∗

TSP an aggregation of MPTSP,

2. For any refinement P∗ of P is MP
∗

TSP a refinement of MPTSP,

3. The MPTSP is an aggregation of the time-indexed formulation M P̂TSP.

Proof. The same arguments stated in the proof of Proposition 3 can also be applied here,
by using Lemma 5 instead of Lemma 4.

Before we go into the details of the refinement algorithms, we note that if the partition
P is not chosen in such a way that all arcs of AP have positive length, then it is possible
for solutions of MPTSP to contain subtours. Hence, it can be strengthened by subtour
elimination constraints. For the TSPTW the so-called (π)-inequalities and (σ)-inequalities
introduced by Balas et al. [3] dominate the traditional subtour elimination constraints.
We express these inequalities in the notations of Dash et al. [9] and write i ≺ j for nodes
i, j ∈ N if in any time-feasible tour the time-step assigned to j is larger than the one
assigned to i. For sets S, S′ ⊂ N , we write S ≺ S′, if for all i ∈ S and i′ ∈ S′ holds
i ≺ i′. Now, for any S ⊆ N we define π(S) := {i ≺ j for some j ∈ S | i ∈ N} and
σ(S) := {i ≺ j for some i ∈ S | j ∈ N}. Furthermore, for any set S ⊆ N let

δπ(S) := {(i, j) ∈ A | i ∈ S \ π(S), j ∈ N \ (π(S) ∪ S)},
δσ(S) := {(i, j) ∈ A | i ∈ S \ σ(N \ S), j ∈ N \ (σ(N \ S) ∪ S)}.

Then, the following inequalities can be added to MPTSP without removing any expand-
able solutions: ∑

(i,j)∈δπ(S)

xi,j ≥ 1, ∀S ⊆ N \ {1}, (π)

∑
(i,j)∈δσ(N\S)

xi,j ≥ 1, ∀S ⊆ N \ {1}. (σ)

The details of an Iterative Refinement Algorithm for the TSPTW making use of these
inequalities are given in Algorithm 4. We now have to show, that this is in fact an iterative
refinement algorithm.

Proposition 6. Algorithm 4 terminates after finitely many steps. The return value is

opt(M P̂TSP).

19

Algorithm 4: Iterative Refinement for the TSPTW

1 Input: A time-window partitioning P.
2 Magg ←MPTSP.
3 while feas(Magg) 6= ∅ do
4 LO ← {Magg},LC ← ∅,U ←∞,y∗ ← ∅;
5 while LO 6= ∅ do
6 Choose M∗ ∈ LO;
7 if feas(L∗) = ∅ or opt(L∗) ≥ U then
8 Move M∗ from LO to LC ;

9 else
10 Find y ∈ opt(L∗);
11 if y ∈ feas(Magg) then
12 U ← c>aggy;

13 y∗ ← y;
14 Move M∗ from LO to LC ;

15 else
16 (Branch:) Find a non-integral entry yk /∈ {0, 1} of y . Divide M∗ into

two problems M∗1 and M∗2 , which are obtained by adding inequalities
that set the k-th variable to 0 or 1, respectively. Add M∗1 ,M

∗
2 to LO

and move M∗ from LO to LC ;

17 if y∗ is expandable then
18 return U ;
19 else
20 if y∗ contains a subtour S then
21 Add the constraints (π) and (σ) for S to Magg;

22 else
23 Find a refinement Pnew of P;

24 P ← Pnew, Magg ←MPnew
TSP ;

25 Add all previously added (π) and (σ) constraints to Magg;

26 return ∅;

Proof. We show that Algorithm 4 is a variant of Algorithm 1. The inner loop line 5-16 is
just a branch-and-bound algorithm solving Magg and hence matches line 3 of Algorithm 1.

Now, note that we can implicitly assume that all constraints (π) and (σ) are included
in M . Therefore adding them in line 21 is a type of refinement. By Proposition 5 this
is also true for the MILP found in line 23. These are, therefore, just two possibilities of
finding the refinement in line 7 of Algorithm 1.

So, Algorithm 4 is indeed a variant of Algorithm 1 and the assertion holds by Theo-
rem 1.

The details of applying branch-and-refine are given in Algorithm 5. Note, that by
the chosen transformation, none of the transformed variables show up in the additional
inequalities added in the branching step.

Proposition 7. Algorithm 5 terminates after finitely many steps. The return value is

opt(M P̂TSP).

Proof. For the second part of the assertion it suffices to show that Algorithm 5 is a variant
of Algorithm 2, because it then directly follows from Theorem 2.

20

Algorithm 5: Branch-and-refine for the TSPTW

1 Input: A time-window-partitioning P.
2 LO ← {MPTSP},LC ← ∅,U ←∞,S ← ∅;
3 S ← ∅;
4 while LO 6= ∅ do
5 Choose M∗ ∈ LO;
6 if feas(L∗) = ∅ or opt(L∗) ≥ U then
7 Move M∗ from LO to LC ;

8 else
9 Find y ∈ opt(L∗);

10 if y ∈ feas(Magg) then
11 if y is expandable then
12 U ← c>aggy;

13 Move M∗ from LO to LC ;

14 else
15 if y contains a subtour S then
16 Add the constraints (π) and (σ) for S to Magg;

17 else
18 Find a refinement Pnew of P;

19 P ← Pnew, Magg ←MPnew
TSP ;

20 Add all previously added (π) and (σ) constraints to Magg;

21 Transform each problem in LO in accordance with Lemma 2;

22 else
23 (Branch:) Find a non-integral entry yk /∈ {0, 1} of y . Divide M∗ into two

problems M∗1 and M∗2 , which are obtained by adding inequalities that set
the k-th variable to 0 or 1, respectively. Add M∗1 ,M

∗
2 to LO and move M∗

from LO to LC ;

24 return U ;

The lines 15-20 of Algorithm 5 are identical to the lines 20-25 of Algorithm 4. So,
by the same argument as in the proof of Proposition 6, these are just two possibilities of
finding refinements of Magg, which is required in line 14 of Algorithm 2.

Furthermore, the ‘Branch’ step in line 23 is just branching on an integer variable that
has a fractional value in the solution of the LP-relaxation and hence it holds feas(M∗) =
feas(M∗1) ∪ feas(M∗2) and it matches line 17 of Algorithm 2. The other lines follow the
structure of Algorithm 2, and we conclude that Algorithm 5 is a variant of Algorithm 2.

For proving that Algorithm 5 terminates after finitely many steps, we first note that in
each iteration of the while loop, there are only two cases, in which the size of LO does not
decrease: Either the branching step in line 23 is reached, or the MILP Magg is replaced
by a refinement in line 11-21. In the branching step a node is replaced by two nodes,
whose MILPs have an additional constraints, which fixes the value of a binary variable
and restricts the depths of the search tree to the number of variables in M . In line 11-21
of Algorithm 5 Magg is replaced by a proper refinement, which can only be done finitely
many times, because either the number of variables or the number of constraints of Magg

is increased. So, after finitely many steps all nodes are guaranteed to be removed from
LO and none added anymore. It then directly follows that after finitely many iterations
has to hold LO = ∅, and Algorithm 5 terminates in line 24.

21

With this, we have shown that both, branch-and-refine and the general iterative refine-
ment algorithm, can be used to solve the TSPTW. Taking a closer look at the pseudo-code
of Algorithm 4 and Algorithm 5 the aforementioned similarities between the two refine-
ment algorithms become apparent. The only conceptual difference is that, in Algorithm 5
all branching decisions are preserved when the MILP is refined, and Algorithm 4 always
starts with a newly initiated branch-and-bound tree in each iteration. Both approaches
have their advantages and disadvantages. In Algorithm 5, it is possible that the time-
window partition is refined based on solutions that would be cut off later in the branch-
and-bound process anyway. In Algorithm 4, the aggregated MILP is solved to optimality
before refining, so this cannot happen. On the other hand, in Algorithm 4, no knowledge
obtained from the branching decisions is carried over to the subsequent iterations, and,
therefore, similar branching decisions might be repeated in each iteration reconstructing
the discarded search tree. In the following section we present computational results about
the computational performance of these algorithms.

6 Implementation Details and Computational Experiments

In this section we present strategies for implementing Algorithms 3-5 and also the results
of a computational study that compares these implementations with each other. All
experiments were run on a 2018 MacMini with a 3.2 GHz i7 processor and 64 GB of
RAM. All linear programs were solved with the dual simplex algorithm using IBM ILOG
CPLEX 12.10.0.0 restricted to use one thread. All other parameters were set to their
default values unless specified otherwise.

Before we go into specific implementation details of the two applications, we note here
that in Section 5 the definition of the time-expanded graphs for a time-window partition
P includes many arcs that model an unnecessarily long traveling time. While these are
very useful for establishing the theoretical results, including them in the LPs and MILPs
of our computational study makes the models unnecessarily large, because any solution
using those arcs can be replaced by one that includes the same nodes, but only uses the
arcs with the shortest traveling times. Our implementations, therefore, use the following
definition of APi,j :

APi,j := { (i, I, j, J) ∈ NPi ×NPj | max({min(I) + di,j , ej}) ∈ J} }.

This definition guarantees that each node (i, I) ∈ NPi can be connected to at most one
node (j, J) ∈ NPj which has to be earliest reachable one.

6.1 Implementation details of the iterative refinement algorithm for the
SPPTW

In our computational study for the SPPTW we investigate the performance of Algorithm 3,

the iterative refinement algorithm. Since this algorithm solves LP̂SPP, we compare it to a
direct solution approach using the LP solver.

The pseudo-code in Algorithm 3 is formulated in general terms which allow a variety
of different implementations. More precisely, it does not specify: what the initial time-
window partition P is, how to find y in line 3, how to check if y is expandable in line 4,
and how to chose the proper refinement Pnew.

We use the unpartitioned time-windows as the initial time-window partition P.
In our implementations of line 3 we solve LPSPP in three different ways: (1) with

the ‘advance’ routine of IBM ILOG CPLEX switched off (no information from previous
iterations is used), (2) with the advance routine switched on but no additional user input (if
only some of the constraints and variables are changed, IBM ILOG CPLEX has an internal

22

routine for advancing from the previously calculated optimal solution), and configuration
(3), where the advance routine is switched on and a start vector given by the formula in
Proposition 2 is used.

For checking whether y is expandable in line 3, we first reconstruct the path in G
described by the arcs in y with value 1. Afterwards we calculate the earliest time steps θi,
at which each node i of the path can be reached, when following the path. If θi /∈ Ii for
one of the nodes, then y cannot be expandable. So, we do not have to actually work with
the time-expanded graph to check for feasibility of y.

Because we always have to check if y is expandable, before we try to find a refinement
line 7, we can use the θi in our implementation of that line. By construction of the time-
expanded graphs, we know that there exists at least one node i ∈ N , for which θi ∈ Ii, but
it is not the minimum of an interval of the partition of the time-window Ii (the arcs chosen
in y would otherwise represent the correct traveling times and it would be expandable).
Therefore, when we split the partition of each node at θi, at least one partition is changed
and we find a proper refinement of the current time-window refinement.

6.2 Computational experiments for the SPPTW

In our computational study for the SPPTW we investigate the effectiveness of Algorithm 3

for solving instances of the SPPTW, i.e., LP̂SPP for different graphs G. We, therefore,
compare the summed up time the LP solver takes during the execution of Algorithm 3 to

the time it takes the LP-solver to solve LP̂SPP directly.

The SPPTW instances that we used were constructed in the following way.

1. Randomly generate the graph G = (N,A) with start node s and terminal node t
such that each node is included in some s-t path.

2. Assign random integer values to the parameters ci,j , di,j for all (i, j) ∈ A.

3. Set Is = {0} and use the earliest time each node i ∈ N \ {0} can be reached from
the start node s as the lower bound of its time-window ei.

4. For t choose a value lt such that lt > et and for each node i ∈ N \ {0} assign the
latest time t can be reached from it to li.

Following these steps we generated 50 graphs with 250 nodes plus start and terminal
node. For investigating the effect of the restrictions imposed by the time-windows on the
computation time, we generated 50 instances from each of these graphs by incrementally
reducing the upper bounds li for all nodes i ∈ N proportional to the width li − ei of the
original time-window and rounding to integers. All instances are available for download
via DOI 10.26127/btuopen-5199.

An overview of the computational results for the three different configurations of Al-

gorithm 3 and directly solving LP̂SPP are given in Figure 3.

The horizontal axes of the plots are the width of the time-windows in percentages of
the width of the original time-window. The vertical axis in Figure 3a has a logarithmic
scale and shows the geometric mean of the computation time of solving the 50 randomly
generated graphs. The number of refinement steps performed by the three configurations
of Algorithm 3 is given in Figure 3b.

The graphs for directly solving LP̂SPP is monotonously increasing, i.e., the wider the
time-windows the higher the computation time. The shape of the graphs of the imple-
mentations of Algorithm 3 indicate a different effect of the width of the time-windows.
The graphs are not monotonously increasing. They increase sharply at first and then after

23

Time-window width

T
im

e
IR (1)

IR (2)

IR (3)

Direct

(a) Geometric mean of computation times.

Time-window width

R
e

fi
n

e
m

e
n

ts

IR (1)

IR (2)

IR (3)

(b) Number of refinements.

Figure 3: Computational results for the SPPTW.

reaching a maximum at about 15 % monotonously decreasing until they are almost con-
stant at about 70 %. The number of refinement steps mirrors this behaviour. So, solving
instances with both large time-windows and very small time-windows, i.e., not very re-
strictive time-windows and very restrictive time-windows, needs much less time and fewer
refinements than medium sized time-windows.

Comparing the graphs of the 3 parameter configurations of Algorithm 3 with each
other, it becomes apparent that configuration (3) using the feasible warm-start performs
best, closely followed by configuration (2). Configuration (1) without start vector, per-
formed considerably worse than these two. Not visible in the figures is that in the experi-
ments using configuration (2), IBM ILOG CPLEX almost always reported that the initial
solution is infeasible, so it is surprising that it performed so much better than configuration
(1).

Now, comparing Algorithm 3 set to parameter configuration (3) with the benchmark of

directly solving LP̂SPP, the latter performed better on only about a third of the instances,
the instances with the smallest time-windows. When the time-windows pose no restriction
on the shortest path, the LP based on the completely time-expanded graph has much more
constraints and variables than the aggregations used in Algorithm 3, whose solution in
this case is expandable and can be calculated in much less time. In the other extreme case,
the time-windows are so small that the time-expanded graphs have the same topology as
the time-expanded graph, only one LP has to be solved and the computation times are the
same. In between the extremes, there can be time-infeasible paths in the time-expanded
graphs used during the execution of Algorithm 3. The more of these there are, the more
likely it is for Algorithm 3 to need additional iterations and it performs worse. For practical
applications we can conclude that it depends on the type of instances whether Algorithm 3
should be applied. Only if the time-windows are expected to be not very tight, should one
consider using it.

6.3 Implementation details of the refinement algorithms for the TSPTW

In our computational study for the TSPTW we investigate the effectiveness of Algorithm 4

and Algorithm 5 for solving instances of the TSPTW, i.e., LP̂SPP for different graphs G.
We, therefore, compare the summed up time the LP solver takes during the execution of

Algorithm 4 and Algorithm 5 to the time it takes the MILP-solver to solve M P̂TSP directly.

In Algorithm 5 we do not specify, how to chose the node M∗ in line 5 (node selec-
tion), the refinement P∗ in line 18 (refinement selection), or the arc a in line 23 (variable

24

selection).
Finding the strategies that can cope with state-of-the-art, however, is not the focus of

this work and we therefore make use of basic ideas that have been found effective in the
literature for branch-and-bound frameworks and are also applicable to branch-and-refine.

The node selection strategy in our computational experiments is sometimes referred
to as best first, meaning that we always chose the node for which we have the best known
lower bound.

For variable selection we follow the pseudo-cost branching strategy by Eckstein [12].
The concept of pseudo-cost branching is to choose the branching variable based on how
effective branching on it was in previously explored nodes of the branch-and-bound tree.

For the starting partition we used the full time-window of each node and for the
refinement selection we implemented the recursive path refinement, which was introduced
by Riedler et al. [25]. The steps in our notation are given in the following.

We denote the current time-window partition by P, and if we found a subtour-free
feasible integer solution y of the current MILP Magg then the partition Pnew is obtained
by the following steps:

1. Reconstruct the path P in G described by the arcs in y with value 1 and calculate
the earliest time-steps θi, at which each node i of the path can be reached, when
their order is fixed by P .

2. For any node i ∈ P such that θi /∈ Ii backtrack in GP along the arcs of P and split
the partition of the respective nodes. When the length of the arc is the traversing
time, stop the backtracking.

3. Repeat this process until the path P is no longer present in Pnew.

Because we are just splitting intervals of the time-window partition P to obtain Pnew, the
partition found in this way fits line 18 of Algorithm 5 and line 23 of Algorithm 4.

6.4 Computational experiments for the TSPTW

For the test instances of our computational experiments of the TSPTW, we constructed
instances to investigate the impact of the restrictions imposed by the time-windows. We
made use of the following steps to generate 30 TSPTW instances with 20 nodes each.

1. Choose a complete graph G = (N,A). Randomly choose |N | of points in the plane
and assign their euclidean distance rounded to integers to the costs ci,j .

2. Find a near optimal tour S for the maximization traveling salesman problem (TSP-
MAX) on G. For each node i ∈ N assign to θi the time it the node is reached
when following S with traveling times di,j = ci,j . Assign to θi the time each node is
reached when going through S in reverse.

3. Find a near optimal solution S∗ of the TSP on G and assign arrival times assign to
θ∗i the arrival times by following S∗.

4. For each node i assign one time-window bound to θi and the other either to θi or θ∗i
depending on which results in the bigger interval.

Because we fix one of the bounds to the arrival times of the feasible tour S, the instances
generated in this way are guaranteed to have a solution. To produce interesting instances,
we noticed that using one other feasible tour was not enough, so we chose both the reversed
TSP-MAX solution and the TSP solution to produce the other interval bound. Analogous
to the procedure described for the SPPTW, we varied the width of the time-windows for

25

the 30 instances generated in that way. Because we have to guarantee the existence of a
tour, we cannot always fix the lower bound or upper bound, instead for all nodes i ∈ N
we fixed the bound that is equal to θi. All of these instances are available for download
via DOI 10.26127/btuopen-5199.

In our computational experiments we tested five different approaches:

(1) A self-implemented branch-and-refine algorithm with feasible start vector (see Propo-
sition 2) for the refined LPs,

(2) The branch-and-refine algorithm from (1) with no start vector for the refined LPs,

(3) The general iterative refinement algorithm using IBM ILOG CPLEX 12.10.0.0 for
solving the aggregated MILPs,

(4) Solving M P̂TSP directly by the branch-and-refine algorithm from (1) which is just a
branch-and-bound algorithm in this case,

(5) Solving M P̂TSP by using IBM ILOG CPLEX 12.10.0.0.

The results of the computational experiments can be found in Figure 4.

Time-window width

T
im

e

IR (1)

BNR (2)

BNR (3)

Direct (4)

Direct (5)

(a) Geom. mean of computations times.

0-25% 26-50% 51-75% 76-100%

Time-window width

0

10

20

30

40

50

60

70

80

90

100

T
im

e
d

-o
u

t
in

s
ta

n
c
e

s

IR (1)

BNR (2)

BNR (3)

Direct (4)

Direct (5)

(b) Timed-out instances.

Figure 4: Computational results for the TSPTW.

The horizontal axes of the plot in Figure 4a are the width of the time-windows and the
vertical axis in Figure 4a is the geometric mean of the computation times for the 30 ran-
domly generated graphs. The number of timed-out instances are given in Figure 4a, where
the different time-window widths are collected in four buckets for a better visualization.

The computation times for the implementation of Algorithm 4 and the two imple-
mentations of Algorithm 5 are very close to each other with a slight advantage for the
branch-and-refine algorithm. The margin, however, is too small to conclude that this ad-
vantage persists for other types of instances, with for example more customers or clustered
customers. The direct solution approaches, however, performed far worse, which matches
the results found by Riedler et al. [25] on various benchmark instances. Comparing the
two direct solution approaches, especially with the number of time-outs depicted in Fig-
ure 4b in mind, it is apparent that our branch-and-bound implementation performed far
worse than the off-the-shelf solver. The results of the two implementations of branch-and-
refine indicate that using feasible start vectors for the refined LPs reduces computation
times. This effect is much less apparent than it was for the SPPTW. We attribute this
mostly to the fact, that only the refined LPs are treated differently and not those created
by branching.

26

7 Conclusions and Future Work

We introduced a relation between MILPs that we called aggregations/refinements. We
then proved some basic results, which show that in some cases solving an aggregation of
a MILP can be very helpful for solving the MILP itself. Based on these results we ad-
ditionally proposed two refinement algorithms, the general iterative refinement algorithm
and the branch-and-refine algorithm. For showing that these algorithms are not only of
theoretical nature, but have potential for efficiently solving real-world problems, we dis-
cussed, how the SPPTW and the TSPTW can be solved by our algorithms and, with
computational experiments, explored for which of problems instances they are the most
promising.

The results of the computational experiments for the SPPTW suggest, that refinement
algorithms should only be applied if the time-windows, and therefore the completely time-
expanded graphs, are large. Furthermore, we showed that the revised simplex algorithm
used for solving the LP relaxations can be initiated with a feasible starting vector derived
from solutions of previous iterations. Making use of this proved to be computationally
beneficial independent of the instance we used.

In case of the TSPTW, the refinement algorithms outperformed the direct approach
of solving a MILP derived from the completely time-expanded graphs for all time-window
widths. This observation matches the results obtained by Riedler et al. [25] on bench-
mark instances. We additionally showed that branch-and-refine, is an alternative to more
established algorithms, which are structured like our general iterative refinement algo-
rithm. The kind of MILP transformations required in our branch-and-refine algorithms,
are not compatible with off-the-shelf solvers and therefore require more implementation
effort. We do not see this as a general downside, because this also shows that there is a lot
of unexplored potential for incorporating more sophisticated heuristics and preprocessing
routines, which off-the-shelf solvers benefit from.

In this work we neither performed computational experiments for fine tuning our algo-
rithms, nor did we investigate if they can compete with state-of-the-art solution methods
from the literature. Therefore, exploring different strategies for node selection, variable se-
lection or the time-window refinements in the branch-and-refine algorithm is part of future
work. Additionally, we want to apply the algorithms to other time-dependent problems
that can be modeled with a time-expanded formulation fitting our framework. Since the
algorithms are not restricted to time-dependent problems it would be interesting to inves-
tigate other applications, that also allow for the use of aggregations. Finally, refinement
algorithms have already been successfully applied to problems in which traversing times
are time-dependent and make-span objectives are used, e.g. [27, 17]. The MILPs and
relaxations they use do not fit our notion of aggregations, because the objective value is
often strictly underestimated. In the terms of Definition 3 this would require to allow
cᵀ1x > cᵀ2V x for some solutions x. An adaptation of the branch-and-refine algorithm to
these kinds of MILPs is another direction for future research.

Acknowledgements

The authors acknowledge the funding by the German Research Association (DFG), grant
number FU 860/1-1.

References

[1] Leif H Appelgren. A column generation algorithm for a ship scheduling problem.
Transportation Science, 3(1):53–68, 1969.

27

[2] Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. A polyhedral study of
the asymmetric traveling salesman problem with time windows. Networks: An Inter-
national Journal, 36(2):69–79, 2000.

[3] Egon Balas, Matteo Fischetti, and William R Pulleyblank. The precedence-
constrained asymmetric traveling salesman polytope. Mathematical Programming,
68(1-3):241–265, 1995.

[4] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh,
and Pamela H Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations research, 46(3):316–329, 1998.

[5] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–
90, 1958.

[6] Natashia Boland, Mike Hewitt, Luke Marshall, and Martin Savelsbergh. The price of
discretizing time: a study in service network design. EURO Journal on Transportation
and Logistics, 8(2):195–216, 2019.

[7] Natashia Boland, Mike Hewitt, Duc Minh Vu, and Martin Savelsbergh. Solving
the traveling salesman problem with time windows through dynamically generated
time-expanded networks. In International Conference on AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, pages 254–262.
Springer, 2017.

[8] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the Operations Research society of America,
2(4):393–410, 1954.

[9] Sanjeeb Dash, Oktay Günlük, Andrea Lodi, and Andrea Tramontani. A time bucket
formulation for the traveling salesman problem with time windows. INFORMS Jour-
nal on Computing, 24(1):132–147, 2012.

[10] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[11] Moshe Dror. Note on the complexity of the shortest path models for column genera-
tion in vrptw. Operations Research, 42(5):977–978, 1994.

[12] Jonathan Eckstein. Parallel branch-and-bound algorithms for general mixed integer
programming on the cm-5. SIAM Journal on Optimization, 4(4):794–814, 1994.

[13] Lester R Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica
Ca, 1956.

[14] Armin Fügenschuh and Alexander Martin. Computational Integer Programming and
Cutting Planes. In R. Weismantel K. Aardal, G.L. Nemhauser, editor, Handbooks in
Operations Research and Management Science, Vol. 12, Discrete Optimization, pages
69–121. Elsevier, Amsterdam, 2005.

[15] Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A generalized
insertion heuristic for the traveling salesman problem with time windows. Operations
Research, 46(3):330–335, 1998.

[16] Fabian Gnegel and Armin Fügenschuh. An iterative graph expansion approach for the
scheduling and routing of airplanes. Computers & Operations Research, 114:104832,
2020.

28

[17] Edward He, Natashia Boland, George Nemhauser, and Martin Savelsbergh. A dy-
namic discretization discovery algorithm for the minimum duration time-dependent
shortest path problem. In International Conference on the Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research, pages 289–297.
Springer, 2018.

[18] Felipe Lagos, Natashia Boland, and Martin Savelsbergh. The continuous-time
inventory-routing problem. Transportation Science, 54(2):375–399, 2020.

[19] Amos Levin. Scheduling and fleet routing models for transportation systems. Trans-
portation Science, 5(3):232–255, 1971.

[20] Manuel López-Ibáñez and Christian Blum. Beam-aco for the travelling salesman
problem with time windows. Computers & Operations Research, 37(9):1570–1583,
2010.

[21] Leonid Mirsky. An introduction to linear algebra. Courier Corporation, 2012.

[22] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley-Interscience, USA, 1988.

[23] Jeffrey W Ohlmann and Barrett W Thomas. A compressed-annealing heuristic for the
traveling salesman problem with time windows. INFORMS Journal on Computing,
19(1):80–90, 2007.

[24] Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. An
exact constraint logic programming algorithm for the traveling salesman problem
with time windows. Transportation Science, 32(1):12–29, 1998.

[25] Martin Riedler, Mario Ruthmair, and Günther R Raidl. Strategies for iteratively
refining layered graph models. In International Workshop on Hybrid Metaheuristics,
pages 46–62. Springer, 2019.

[26] Martin Skutella. An introduction to network flows over time. In Research trends in
combinatorial optimization, pages 451–482. Springer, 2009.

[27] Duc Minh Vu, Mike Hewitt, Natashia Boland, and Martin Savelsbergh. Dynamic
discretization discovery for solving the time-dependent traveling salesman problem
with time windows. Transportation Science, 2019.

[28] Xiubin Wang and Amelia C Regan. Local truckload pickup and delivery with hard
time window constraints. Transportation Research Part B: Methodological, 36(2):97–
112, 2002.

[29] L.A. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics and Opti-
mization. Wiley, 1998.

29

IMPRESSUM

Brandenburgische Technische Universität Cottbus-Senftenberg
Fakultät 1 | MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik
Institut für Mathematik
Platz der Deutschen Einheit 1
D-03046 Cottbus

Professur für Ingenieurmathematik und Numerik der Optimierung
Professor Dr. rer. nat. Armin Fügenschuh

E fuegenschuh@b-tu.de
T +49 (0)355 69 3127
F +49 (0)355 69 2307

Cottbus Mathematical Preprints (COMP), ISSN (Print) 2627-4019
Cottbus Mathematical Preprints (COMP), ISSN (Online) 2627-6100

www.b-tu.de/cottbus-mathematical-preprints
cottbus-mathematical-preprints@b-tu.de
doi.org/10.26127/btuopen-5199

