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Zusammenfassung 

Der Lebenszyklus einer Vielzahl von eukaryotischen Parasiten beinhaltet zwei oder mehrere 

morphologisch verschiedene Stadien in unterschiedlichen ökologischen Nischen. Dabei ist es 

für den Parasiten in gewissen Fällen von Vorteil, den Übergang zwischen diesen Stadien 

zeitlich zu koordinieren. Bei vielen Parasiten ist unbekannt, welche Faktoren die Progression 

des Lebenszyklus beeinflussen, bzw. welche Gene daran teilhaben. Darüber hinaus kann der 

zeitliche Ablauf der Entwicklung entweder genetisch prädeterminiert (kanalisiert) sein oder von 

äußeren Einflüssen abhängen; die Entwicklung des Parasiten kann demnach als Fall 

phänotypischer Plastizität betrachtet werden. 

In dieser Dissertation wurde die Progression der Lebenszyklen zweier einzelliger 

Darmparasiten in Abhängigkeit von wechselnden Umwelteinflüssen untersucht. Mit Mäusen 

als Modellorganismen wurden die Replikation der Parasiten in vivo, sowie die Progression des 

Lebenszyklus der Parasiten studiert. Bei den intrazellulären Eimeria falciformis wurden 

Parasiten im Oozysten-Stadium in den Fäzes als Maß für die Reproduktion quantifiziert und 

die Transkriptome von Parasit und Wirt wurden bei Infektion von Wirten unterschiedlicher 

Immunkompetenz, insbesondere auch bei Mäusen mit geschwächtem adaptivem Immunsystem 

(Rag1-Mutanten die keine reifen T- und B-Zellen besitzen), analysiert. Man geht im 

Allgemeinen davon aus, dass der hier betrachtete externe Stimulus, die Immunantwort des 

Wirtes, für das Pathogen eine Stresssituation darstellt. Die andere hier untersuchte Spezies ist 

Giardia duodenalis, ein extrazellulärer Darmparasit. Es wurde untersucht, inwiefern das 

Wachstum von G. duodenalis in vivo von der Verfügbarkeit der Aminosäure Arginin abhängt. 

Arginin fördert zwar die Replikation des Trophozoitenstadiums in vitro, die Relevanz in vivo 

ist jedoch nicht geklärt. Auch für die Infektion mit G. duodenalis wurden Wirtsorganismen 

verwendet, die sich in ihrer Reaktion auf den Stimulus – in diesem Fall die Verfügbarkeit von 

Arginin – unterscheiden. Mäuse mit einer Defizienz im mTOR-Signalweg (mechanistic Target 

Of Rapamycin) wurden infiziert. Dieser Signalweg ist u.a. essenziell für die Wahrnehmung der 

Aminosäureverfügbarkeit und damit die zelluläre Wachstumsregulation. Bei G. duodenalis 

wurden das Wachstum innerhalb des Wirtes (Replikation der Trophozoiten) sowie die 

Ausscheidung von Zysten (Reproduktion) in Wirten mit argininhaltiger bzw. argininfreier 

Ernährung untersucht. 

Bei E. falciformis hatten Unterschiede in der Immunkompetenz des Wirts weder Auswirkungen 

auf den Zeitpunkt der Oozystenausscheidung noch auf das Transkriptomprofil des Parasiten. 

Entgegen der gängigen Erwartung konnte E. falciformis keinen Nutzen aus der 

Immunschwäche seines Wirtes ziehen, d.h.in den Fäzes geschwächter Wirtsorganismen fand 

sich keine erhöhte Anzahl an Oozysten. Im Fall von G. duodenalis war, anders als frühere in 

vitro Studien hätten vermuten lassen, war die Replikation des Trophozoitenstadiums innerhalb 

des Wirts nicht auf Arginin aus der Nahrung angewiesen. Es wurden jedoch bei argininfrei 

ernährten Mäusen weniger, der für die Übertragung – und somit die Vollendung des 

Lebenszyklus - wichtigen, infektiösen Zysten in den Fäzes gefunden als bei Mäusen mit 
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argininhaltiger Kost. Im Gegensatz zu E. falciformis konnte G. duodenalis auch von der 

Infektion eines „geschwächten“ Wirts profitieren. 

Aufgrund dieser Daten handelt es sich bei E. falciformis um einen, hinsichtlich des 

Verhältnisses von Immunantwort des Wirts und der Progression seines Lebenszyklus, genetisch 

kanalisierten Parasiten. Seine mangelnde Empfänglichkeit für diesen Stimulus könnte in der 

relativen Vorhersehbarkeit der Immunantwort von Säugern begründet liegen. Da es 

aufwendiger ist Plastizität zu erhalten, als ein kanalisiertes Programm durchzuführen, das bei 

vorhersehbaren Stimuli eine Reaktion überflüssig macht, sollte die genetische Kanalisierung 

im Laufe der Evolution begünstigt werden. G. duodenalis hingegen wies, messbar durch die 

geringere Produktion von Zysten unter argininarmen Bedingungen, phänotypische Plastizität 

gegenüber dem untersuchten Reiz, Arginin, auf. Die Ausscheidung von Zysten war bei mTOR-

defizienten Wirten gegenüber dem Wildtyp erhöht, während die Replikation der Trophozoiten 

nicht beeinflusst wurde. In infizierten mTOR-defizienten Epithelien ist das zelluläre Wachstum 

(beispielsweise bei der Wundheilung) beeinträchtigt. Durch Probleme bei der regelmäßigen 

Erneuerung der Epithelien oder Schädigung im Zuge einer Infektion kann Arginin vom Wirt 

ins Darmlumen austreten und somit für den Parasiten verfügbar werden. Die erhöhte 

Reproduktion in geschwächten Wirten sowie die verringerte Replikation unter Arginin-armen 

Bedingungen lässt sich unter Beachtung der Stoffwechselwege von G. duodenalis 

mechanistisch erklären. In G. duodenalis kann durch den Arginindihydrolase (ADH) 

Stoffwechselweg unter Verwendung von Arginin ATP – ein zellulärer Energieträger – erzeugt 

werden. ADH stellt somit eine Alternative zur Gewinnung von ATP aus der 

Verstoffwechselung von Glukose, der Glykolyse, dar. Schon früher wurde gezeigt, dass ein 

Zwischenprodukt der Glykolyse, D-Fruktose-6-Phosphat, für die Bildung von N-

Acetylgalactosamin, einem Baustein für die Wände der Zysten von G. duodenalis, genutzt wird. 

Die Vernetzung von Glykolyse, Argininstoffwechsel und Zystenwand-Biosynthese könnte 

somit Arginin-abhängig die synchrone Progression im Lebenszyklus vom Trophozoiten- zum 

Zystenstadium in vielen G. duodenalis Zellen herbeiführen. Eine derartige Koordination ist von 

adaptivem Wert, z.B. wenn dadurch erreicht wird, dass eine gewisse infektiöse Dosis 

(Zystenzahl) den nächsten Wirt erreicht. Der Arginingehalt in der Nahrung variiert zwischen 

jeder Mahlzeit für ein Individuum und zwischen Individuen. Mit phänotypischer Plastizität auf 

den unvorhersehbaren und nicht konstanten Zufluss von Arginin zu reagieren, ist eine mögliche 

Strategie um die Progression des Lebenszyklus zu synchronisieren. 

Die Ergebnisse dieser Dissertation zeigen, dass Arginin ein relevanter Stimulus für die 

Progression des Lebenszyklus von G. duodenalis ist. Es wird angeregt, dass aus der 

unvorhersehbaren Argininaufnahme durch den Wirt ein Selektionsdruck für phänotypische 

Plastizität (Reaktionsfähigkeit auf Arginin) folgt. Des Weiteren machen unterschiedliche 

Ernährungsweisen jeden individuellen Wirt zu einer einzigartigen ökologischen Nische. 

Dadurch kann in jedem individuellen Wirt ein anderer Argininverwertungs-Genotyp des 

Parasiten bevorzugt werden. Durch dieses Phänomen entstünde genetische Variation zwischen 

den Zysten die von verschiedenen Wirten ausgeschieden werden. Somit würde nicht nur 

phänotypische Plastizität begünstigt und selektiert; es ist auf Populationsebene auch genetische 

Variation (Polymorphismus) in Genen mit Bezug zum Argininstoffwechsel zu erwarten. 
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Insbesondere wird erwartet, dass natürliche Auslese auf die Gene des ADH Stoffwechselwegs, 

z.B. auf dessen kritisches erstes Enzym, die Arginindeiminase (ADI), wirkt und 

Polymorphismus in diesen Genen befördert. 
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Abstract 

Many eukaryotic parasites have life cycles with two or more morphologically distinct stages in 

different ecological niches. Timing the conversion from one stage into another is in some cases 

beneficial for successful transmission into a new host. For many parasite species, little is known 

about determinants for such life cycle progression or the identities of the genes involved. In 

addition, the developmental timing can either be genetically pre-determined (canalized) or can 

depend on the exposure to an external stimulus, i.e., parasite development can be seen as a case 

of phenotypic plasticity.  

In this thesis, life cycle progression of two unicellular intestinal parasites was investigated in 

response to external stimuli. Using mice as infection models, in vivo parasite replication and 

life cycle progression was studied. For intracellular Eimeria falciformis, oocyst stage parasites 

in feces (reproduction) was quantified, and parasite and host transcriptomes were analyzed in 

differently immune competent hosts, including hosts with a poor adaptive immune response 

(Rag1-mutants lacking mature T- and B-cells). The external stimulus – a host immune response 

– is generally expected to induce stress to the pathogen. The other parasite species investigated 

here is Giardia duodenalis, an extracellular parasite of the intestine. G. duodenalis’ dependence 

on availability of the amino acid arginine for in vivo growth was investigated. Arginine supports 

parasite replication in its trophozoite life stage in vitro, although the in vivo relevance is 

unknown. A weakened host model was also used for the G. duodenalis infection. Mice deficient 

in a signaling network known as the mTOR-pathway (mechanistic Target of Rapamycin) were 

infected. The pathway is, among other things, central for sensing amino acid availability and 

thereby the regulation of cell growth, e.g. in intestinal epithelial cells. For G. duodenalis, 

within-host growth (trophozoite replication) and cyst shedding (reproduction) were assessed in 

hosts fed arginine-sufficient and arginine-free diets. 

In E. falciformis, different host immune competence did not change the timing of oocyst 

shedding or influence parasite transcriptome profiles. Counterintuitively, E. falciformis was 

unable to benefit from hosts with weakened immune responses, i.e. there were not more oocysts 

in feces of weakened hosts. In contrast to previous in vitro studies, G. duodenalis did not depend 

on dietary arginine for replication of the trophozoite life stage within its host. However, 

infective cysts, which are important for transmission and thus the completion of the life cycle, 

were less abundant in feces in arginine-poor conditions, compared to arginine-sufficient ones. 

Contrary to E. falciformis, G. duodenalis was also able to benefit from infecting a weaker host 

and generate more infective cysts there than in infections in wild type hosts. 

Based on these data, E. falciformis is an example of a genetically canalized parasite with regards 

to host immune stimulus and life cycle progression. Its unresponsiveness to the stimulus may 

be explained by the relative predictability of mammalian immune responses. Maintaining 

plastic responses is more costly than a canalized program, and predictable stimuli would obviate 

the need to react. Selection would thus favor the “cheaper” genetic canalization. In G. 

duodenalis, shedding of fewer cysts under arginine-poor conditions instead revealed phenotypic 

plasticity in response to the investigated stimulus, arginine. In addition, cyst shedding in 

mTOR-deficient hosts was higher than in WT. Trophozoite replication was unaffected. In 
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infected mTOR-deficient epithelia, cellular growth (e.g. wound healing) is hampered. If 

epithelia cannot renew normally or are harmed by the infection, arginine may leak from the 

host into the lumen and become available to the parasite. The observed higher reproduction in 

weakened hosts and G. duodenalis’ reduced replication in arginine-poor conditions can be 

explained mechanistically by considering the parasite’s metabolic pathways. In G. duodenalis, 

an arginine dihydrolase, ADH, pathway utilizes arginine to generate ATP –the cellular energy-

carrier. ADH is therefore an alternative to glucose-dependent glycolysis to generate ATP. 

Glycolysis was previously shown to shunt an intermediate, D-fructose-6P, into the N-acetyl-

galactosamine synthesis pathway. N-acetyl galactosamine is an important component for the 

G. duodenalis cyst wall. Thus, glycolysis, arginine metabolism, and cyst wall biosynthesis 

could, synchronize life cycle progression from trophozoite to cyst stages among many G. 

duodenalis cells simultaneously in an arginine-dependent manner. Such coordination can have 

an adaptive value, e.g. by ensuring that a certain infective dose (number of cysts) reaches the 

next host. Arginine content varies between food sources and arginine concentrations in meals 

vary both for one individual and between individuals. Sensing the unpredictable and non-

constant arginine-influx by phenotypic plasticity could be a strategy to synchronize life cycle 

progression.  

Based on the results of this thesis, arginine is a relevant stimulus for life cycle progression in 

G. duodenalis. Unpredictable host arginine intake is suggested to result in selection for 

phenotypic plasticity (responsiveness to arginine stimulation). In addition, differences in diets 

between hosts make each host individual a unique ecological niche. Therefore, different parasite 

arginine-utilizing genotypes may be favored in different host individuals. Such a phenomenon 

would generate genetic variation between cysts shed from different hosts. Therefore, not only 

would plastic capacity as observed here be beneficial and selected for, but genetic variation 

(polymorphism) in arginine-utilizing genes is expected at the population level. Specifically, 

natural selection is expected to act on genes of the ADH pathway, for instance its important 

first enzyme arginine deiminase (ADI), and to promote polymorphism in this gene set. 
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Definitions 

Phenotypic plasticity refers to phenotypic differences which are a result only of responses to 

external stimuli, i.e. without contribution of genetic variation. By this definition the 

contribution of phenotypic plasticity to a given phenotype can only be observed and measured 

in clonal organisms. In any polymorphic (see polymorphism) population with variations in 

phenotypes, both genetic diversity and phenotypic plasticity may contribute to the phenotype. 

Polymorphism is the presence of different alleles in a population, i.e. genetic variation. In some 

definitions, polymorphism is used to describe the total expression of a phenotype, however, 

since this also includes contributions from phenotypic plasticity this definition is not applied 

here and instead strictly genetic variation is intended. 

Replication (of Giardia spp.) is here defined exclusively as trophozoite division  

Reproduction (of Giardia spp.) is here defined as trophozoite encystation and successful 

transport of the cyst into shed feces. Without reproduction no transmission will take place, 

whereas G. duodenalis with these definitions can replicate without achieving transmission.
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were formatted to this thesis. Edits of typing or spelling-errors are not indicated. 
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1 Introduction 

Many eukaryotic parasites have life cycles with two or more morphologically distinct stages in 

different ecological niches. Timing the conversion from one stage into another may in some 

cases be beneficial for successful transmission into a new host (Reece, Ramiro, and Nussey 

2009), as shown e.g. for parasitic trypanosomes (Reuner et al. 1997; Dean et al. 2009; Rojas et 

al. 2019) and the malaria parasite (Paul and Brey 2003). However, for most parasite species, 

little is known about determinants for such life cycle progression and the genes involved in 

regulating it. The two projects presented in this thesis investigate protozoan parasite life cycle 

progression and if or how differentiation from one life cycle stage into another may be 

influenced by external stimuli. I study two unicellular parasites: Giardia duodenalis and 

Eimeria falciformis, of the gastrointestinal tract of mammals. 

1.1 Phenotypic plasticity 

Evolutionary biology asks fundamental questions about living organisms. It may address why 

a pathogen sometimes causes severe disease, resist treatment, or form dormant stages, whereas 

they in other cases behave differently. Variation may be explained by either parasite traits, or 

hosts being different, or by interactions between parasite and host. As drug resistance is an 

increasing problem, understanding the evolution of pathogens will help predict effects of 

treatments on the pathogen, such as likelihood of development of drug resistance. (Mideo and 

Reece 2012) I therefore find it both interesting and meaningful to place my parasitology data 

and findings on life cycle progression in the context of evolutionary concepts such as 

phenotypic plasticity. It is the phenomenon of genetically identical individuals displaying 

different phenotypes as a result of variations in their environment (Stearns 1989). Such 

differences can be achieved by, e.g., variation in gene expression or by developmental programs 

becoming for instance differently timed in response to stimuli, and/or can be constrained by the 

chemical and physical environment (temperature, pH, etc.). (Stearns 1989). Non-constitutive 

immune functions, i.e. responses to an assault such as a pathogen, are an example of phenotypic 

plasticity in e.g. humans (Pancer and Cooper 2006).  

1.1.1 Phenotypic plasticity in parasites 

Eukaryotic pathogens, parasites, are ubiquitous. Both multicellular worms and unicellular 

protozoan parasites cause human and animal disease, leading to loss of working capacity 

(~disability-adjusted life years, DALYs), deaths, and economic loss due to animal fitness 

losses. Examples of relatively well-known human unicellular parasites, which are the focus of 

this thesis, are the malaria parasite Plasmodium falciparum; the causative agents of 

toxoplasmosis (Toxoplasma gondii); cryptosporidiosis (Cryptosporidium spp.); various forms 

of leishmaniasis (Leishmania spp.); and African sleeping sickness (Trypanosoma spp.). Eimeria 

is a large genus (see details below) of protozoa which receive attention for causing diarrheal 

disease and economic loss in livestock (Clark, Tomley, and Blake 2017). G. duodenalis (syn. 
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Giardia lamblia or Giardia intestinalis) is an intestinal parasite which is one of the major 

infectious agents causing diarrhea in humans worldwide. G. duodenalis coinfections occur with 

protozoa such as Cryptosporidium spp. and Entamoeba histolytica (reviewed in Baldursson and 

Karanis 2011). Despite G. duodenalis’ distant relationship to Cryptosporidium spp. the two are 

often associated since both are spread via contaminated water. This illustrates both that distantly 

related protozoan species may have a similar niche and infection route, and that they experience 

partly similar challenges and external stimuli despite their differences regarding inter-host 

lifestyle (e.g. extra- and intracellular). In contrast, their niche specificity (e.g. within or outside 

a host cell) also expose them to highly specific stressors, but they may nevertheless possess 

similar strategies to cope with those different challenges (Vonlaufen et al. 2008). In our attempts 

to understand infections and develop interventions it may be useful to keep a broad perspective 

and learn from insights in distantly related species. E. falciformis and G. duodenalis are the 

parasites of study in this thesis. The former is an intracellular apicomplexan parasite (such as 

Plasmodium spp. and T. gondii) of mice (Mus musculus); the latter is an extracellular 

metamonad of humans and other mammals, more closely related to e.g. Trypanosoma spp..  

In parasites, life cycles can but do not have to be examples of phenotypic plasticity. Life cycles 

with morphologically and ecologically different stages are exhibitions of the competence of a 

genome to produce different phenotypes. However, these can only be defined to exhibit 

phenotypic plasticity if the differentiation from one stage into another occurs in response to 

external stimuli (i.e. is not genetically programmed or canalized) (general definitions of 

phenotypic plasticity can be found e.g. in Stearns 1989; DeWitt and Scheiner 2004; Fusco and 

Minelli 2010). Any parasite can certainly be exposed to extreme conditions (external stimuli) 

which will alter the life cycle progression (e.g. halt it completely upon exposure to toxins). 

However, I consider biologically relevant stimuli most useful to distinguish genetically 

canalized progression from that externally induced, i.e. the phenotypic plasticity cases. Both 

Eimeria spp. and Giardia spp. have asexual replicative, motile stages in their hosts and an 

environmentally, non-motile stable stage (oocyst/cyst; see life cycles below for each species). 

For both species it is poorly understood how life cycle progression and differentiation into 

another stage are induced. 

The following section is a quote from my published work (Ehret, Spork, et al. 2017). 

“For many parasite species it also remains unclear whether differences in 

pathology are due to parasites’ genotypic or phenotypic (plastic) 

differences, the latter often resulting from host-parasite interactions, e.g., 

host immune responses. An exception are Nematode infections (reviewed 

by (Viney and Diaz 2012)), in which for example worm length and other 

aspects of morphology (Weclawski et al. 2014), or developmental timing 

(Weclawski et al. 2013) has been shown to vary with host genotype. 

However, it is unclear to which extent such differences a) are passively 

imposed on the parasite, or b) an adaptive response of the parasite. Such 

adaptive plasticity might be a determinant of the extent of host 

specialization, the likelihood of host-switches and ultimately the degree to 
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which co-speciation and co-adaptation (together defining co-evolution) 

are observed.” 

Even a passively imposed effect of certain stimuli could be adaptive, in that the parasite has 

“declined” to counteract the effect of the external stimuli, if counteracting it was less beneficial 

than accepting or otherwise adapting to the effect. A possible example would be a certain 

stressor inducing encystation. Instead of investing in neutralizing the stress, the adaptation 

could be to optimize the phenotypic change (in this example encystation) to e.g. increase speed 

or synchronize encystation in the infecting colony. Synchronization for a life stage switch has 

been demonstrated in African Trypanosoma spp.. They are extracellular, motile protozoa of 

blood and cause African sleeping sickness in humans or nagana in animals (Matthews, 

McCulloch, and Morrison 2015). Trypanosoma brucei differentiates from the so-called slender 

form into its transmissive stumpy stage (which is taken up by the tsetse vector) in a density-

dependent manner (Reuner et al. 1997). A detailed mechanism was only recently described and 

depends on a G-protein coupled receptor in slender parasites and release of oligopeptides, which 

induce stage-switching in the other infecting cells (Rojas et al. 2019). This is an example of 

external stimuli inducing life cycle progression and the mechanistic understanding is suggested 

by the authors to inspire development of new drugs. 

For the parasites under study here, much less is known about mechanisms governing life stage 

switching. For E. falciformis, the complete life cycle cannot be reproduced in vitro and no 

protocol exists (to my knowledge) for in vitro oocyst generation. However, in vivo E. 

falciformis life cycle progression is predictable in laboratory models with highly reproducible 

timing of oocyst shedding within the same mouse strain (Schmid et al. 2013; Ehret, Spork, et 

al. 2017). Whether parasite-generated signals for synchronization exist is not known and 

whether there is a molecular trigger for encystation in G. duodenalis is not known, although 

lipid starvation and an increase in pH are thought to contribute (Einarsson and Svärd 2015). 

Whether G. duodenalis coordinates encystation is also an open question. In vitro encystation is 

not complete, meaning that varying degrees but never 100% of a culture encysts and 

spontaneous encystation in normal growth medium is also reported (Einarsson and Svärd 2015). 

Pham et al. observed that an encystation marker (a cyst wall protein) was induced in densely 

colonized foci in a mouse infection model (Pham et al. 2017). The incomplete encystation in 

vitro could suggest a lack of synchronizing factors, whereas the expression of cyst wall 

components specifically detected in densely colonized areas could suggest the opposite 

(although the sensitivity would be intrinsically lower where less parasites reside, and non-dense 

areas were not analyzed separately in that study). For my discussion, I will use “plastic 

capacity”, “plasticity”, and “plastic response” to refer to phenotypic plasticity or phenotypic 

plastic capacity, or specify if anything else is intended. 

In order to test plastic capacity, one approach is to expose the organisms to extreme stress using 

e.g. high doses of a known drug against the parasite. Whereas such an approach is likely to 

induce a strong response and ensure an experimental readout, there is a risk that the outcome is 

artificial and does not reflect true parasite responses during infection. Such results could 

generate misleading interpretations. In this thesis I focus on biologically relevant stimuli for 
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each parasite, i.e., a potential stressor which is likely to occur during untreated infection (host 

immune responses) and nutritional stress (host dietary restriction). These stimuli are described 

and motivated separately for each parasite below. 

1.2 Two model protozoa for plasticity studies 

1.2.1 Eimeria falciformis – a natural parasite of mice  

The following introductory section is a quote from my published work (Ehret, Spork, et al. 

2017).  

“E. falciformis is an intracellular parasite in the phylum Apicomplexa, 

which comprises more than 4000 described species (Duszynski 2011). 

Prominent pathogens of humans are found in this phylum, such as 

Toxoplasma gondii, the causative agent of toxoplasmosis, Plasmodium 

spp., causing malaria, and Cryptosporidium spp., which cause 

cryptosporidiosis. Coccidiosis is a disease of livestock and wildlife 

caused by coccidian parasites which are dominated by >1800 species 

of Eimeria (Duszynski 2011). The genus is best known for several 

species which are problematic for the poultry industry (Chapman et al. 

2013). E. falciformis naturally infects wild and laboratory Mus 

musculus, and its genome is sequenced and annotated making it a useful 

model for studying Eimeria spp. (Heitlinger et al. 2014). The parasite 

has its niche in the cecum and upper part of colon, mainly in the cells 

of the crypts (Haberkorn 1970; Schmid et al. 2013) 

E. falciformis life cycle 

This monoxenous parasite goes through asexual (schizogony) and 

sexual reproduction, which results in the host releasing high numbers 

of oocysts approximately between day six and 14 after infection. When 

a mouse ingests E. falciformis oocysts, one sporulated oocyst releases 

eight infective sporozoites inside the host, which infect epithelial crypt 

cells. Within the epithelium, merozoite stages form in several rounds 

of asexual reproduction, followed by gamete formation and sexual 

reproduction, within the same host. Schizogony takes place 

approximately until day six and then gametes form and sexual 

reproduction takes place, resulting in unsporulated oocyst shedding. 

Schizogony is not completely synchronous; the exact number of 

schizogony cycles is unclear and could vary naturally (Haberkorn 

1970; Mesfin and Bellamy 1979). There is evidence for a genetic 

predisposition of Eimeria spp. to perform different numbers of 

schizogony cycles, as parasites can be selected to become 
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“precocious”, completing the life cycle faster with a reduced number 

of schizogony cycles (Montes et al. 1998; Pakandl 2005). Additionally, 

it has been shown that Eimeria vermiformis, also a parasite of M. 

musculus intestines, displays prolonged patency (period of oocyst 

shedding) but an unaltered length of prepatency periods in mice of 

different immune status (Rose, Owen, and Hesketh 1984; Rose and 

Hesketh 1986; Rose, Wakelin, and Hesketh 1985; Rose 1974). Whether 

this developmental plasticity in E. vermiformis is reflected on the 

transcriptional level of that parasite has not been investigated. Timing 

of both patency and prepatency was shown to be non-plastic in E. 

falciformis var. pragensis (Rose and Hesketh 1986). Beyond 

developmental timing it is not known whether parasite strategies – i.e. 

processes optimizing host exploitation – are plastic and can be triggered 

by exogenous stimuli, such as host immune responses. 

Eimeria spp. induce strong immune responses 

Eimeria spp. generally induce host protection against re-infection 

(Rose 1974; Blagburn and Todd 1984; Rose, Hesketh, and Wakelin 

1992; Gadde et al. 2009; Sühwold et al. 2010; A. L. Smith and Hayday 

1998; L. Smith and Hayday 2000) and T-cells play a major role (Rose, 

Hesketh, and Wakelin 1992; Sühwold et al. 2010; A. L. Smith and 

Hayday 1998b). In response to E. falciformis infection of laboratory 

mice, interferon gamma (IFNγ) is upregulated (Stange et al. 2012; 

Schmid et al. 2013). In an IFNγ-deficient mouse host model which 

displays larger weight losses and intestinal pathology but also lower 

oocyst output for E. falciformis, the wild-type (WT) phenotype was 

recovered by blocking IL-17A and IL-22 signaling (Stange et al. 2012). 

Also in E. vermiformis, IFNγ, interleukin-6 (IL-6), and major 

histocompatibility complex (MHC) class I and II have been shown to 

be required for protective immune reactions in mice (A. L. Smith and 

Hayday 1998a). These studies demonstrate that adaptive immunity 

clearly plays a role in limiting the reproductive success of Eimeria spp. 

infection, but effects on the parasite, apart from reproductive output, 

remain poorly understood. It is an open question whether the parasite 

is passively impacted or responds, e.g., via changes in its transcriptome, 

to changes in the host immune response.” 

1.2.2 Goals of E. falciformis research project 

Eimeria spp. are described as extremely niche specific. Intuitively, this suggests a rather limited 

requirement for phenotypic plasticity and capacity to survive variations in its ecological niche, 

simply since the niche can be considered relatively predictable. However, a recent study in wild 
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mice calls for a modification of the high niche-specificity (unpublished data, Victor H. Jarquin 

and Emanuel Heitlinger, Humboldt-Universität zu Berlin). This instead implies higher plastic 

capacity in E. falciformis, since even within laboratory mouse models e.g. bacterial composition 

varies (reviewed in T. Ehret et al. 2017), and between wild mouse species it will even more. 

Other determinants of the parasite niche such as food intake and other pathogens (coinfections) 

in the gastrointestinal tract are likely to vary more too, suggesting that plastic capacity would 

be beneficial. The strong immune responses induced by E. falciformis can be assumed to shape 

the microenvironment during infections and are therefore likely to have contributed to 

adaptations for survival, e.g. phenotypic plasticity. If the parasite possesses plastic capacity in 

response to immune defense stimuli, the prediction is that variations in host immune defenses 

would cause different parasite phenotypes. In a genetically canalized parasite, the phenotype 

under study would remain the same even in hosts with drastic differences in their immune 

response to the parasite. Plasticity would allow opportunism in weak hosts, seen e.g. by 

increased oocyst shedding, whereas genetically canalized parasites would not be able to profit 

from a weaker host. As described above, other Eimeria spp. display a capacity to become 

precocious which suggests plasticity in those species. In this thesis, I have investigated E. 

falciformis transcriptional responses to varying host immune conditions. A strong immune 

response is part of the ecological niche of E. falciformis and was therefore selected as the 

biologically relevant stimulus to evaluate. Using naïve as well as challenge infected hosts of 

wild type (WT), and of T- and B- cell impaired mice provided an experimental setup with 

variations in the intensity of host immune stress elicited on the parasite. I have studied the 

course of infection under which parasites enter epithelial cells, undergo schizogony, and 

reproduce sexually to generate oocysts in seven days. Parasite transcriptional responses to the 

stimulus were contrasted with reproductive success (oocyst shedding) as well as evaluated in 

parallel with the host transcriptomes in a dual RNA-seq analysis. These data provide a first 

description of E. falciformis transcriptional plasticity in response to a biologically relevant 

stimulus. 

1.2.3 Giardia duodenalis – an intestinal pathogen of mammals 

G. duodenalis is a unicellular eukaryotic pathogen. It is unusual in its (trophozoite stage) 

morphology and some cellular functions, e.g. the lack of mitochondria (a feature shared with 

other metamonads), the presence of two symmetrical nuclei, four flagellar pairs, and a ventral 

disc of tubulin which is used for attachment. The extracellular parasite colonizes the intestine 

of mammals and causes diarrheal disease. For survival outside a host it forms infective cysts 

which survive but do not replicate. Below I present selected aspects of G. duodenalis biology 

and epidemiology which I consider relevant for this thesis. For additional background I refer to 

a number of reviews on Giardia spp. immunology (Eckmann 2003; Klotz and Aebischer 2015; 

Singer 2016; Allain et al. 2017), genomics (R.C. Andrew Thompson and Monis 2012), 

taxonomy (R. C.A. Thompson and Ash 2019), and basic cell biology (Adam 2001).  
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G. duodenalis life cycle 

Giardia spp. have two major life cycle stages: the trophozoite stage and the cyst stage (Kulda 

and Nohynkova 1995). Trophozoites have two nuclei, each with a diploid genome. 

Trophozoites colonize the intestinal epithelium of a host and may cause disease. To replicate, 

a trophozoite duplicates its genome and undergoes cytokinesis to generate two trophozoites. As 

Figure 1. G. duodenalis life cycle indicating potential encystation signals and subsequent cellular 

changes upon encystation. Two stages are shown: the replicating trophozoite, which generates two 

new trophozoites, and the encysting trophozoite which generates a cyst with four nuclei, which 

upon transmission to a new host will release four trophozoites. 
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I will use the term here, Giardia spp. replicate when they divide as trophozoites and reproduce 

when a trophozoite encysts and a viable cyst successfully leaves the host with the feces Figure 

1. During encystation, one nuclear division and two genome duplications take place, which 

generates a cyst with four tetraploid nuclei (Bernander, Palm, and Svärd 2001). During 

encystation, nuclear fusion and probably homologous recombination occur (demonstrated in 

assemblage A) (Poxleitner et al. 2008) and genetic data support the existence of meiotic 

pathways and genes in G. duodenalis (Ramesh, Malik, and Logsdon 2005; Cooper et al. 2007; 

Melo et al. 2008). When a cyst enters a new host, commonly via contaminated water or food 

(Cacciò and Ryan 2008), it is exposed to the gastrointestinal environment with e.g. low pH and 

bile, and each cyst generates four trophozoites. These trophozoites are capable of either 

replication as trophozoites or reproduction, i.e. may generate a new cyst and complete the life 

cycle.  

Initiation of encystation 

Patterns for cyst shedding in G. duodenalis mouse models are not as distinct  (Bartelt et al. 

2013) as those seen for e.g. E. falciformis (see above and Ehret et al., 2017). However, G. 

duodenalis cyst shedding peaks occur and can be a result of peaking trophozoite growth, 

synchronized encystation, or both. Coordinated life cycle progression has been well studied in 

e.g. Trypanosoma spp. (Matthews, McCulloch, and Morrison 2015; Rojas et al. 2019) but also 

in free-living Dictyostelium, which respond to nutrient stimuli to synchronize life stage switches 

(Loomis 2014). In G. duodenalis, encystation has been studied in vitro (Lauwaet et al. 2007; 

Morf et al. 2010; Faso and Hehl 2011; Einarsson et al. 2016) which implies that there is no 

absolute control of medium conditions, since no defined growth medium is available for G. 

duodenalis. For encystation, protocols of different efficiency have long been available. For 

instance, Luján et al. listed ten reported protocols in 1997 (Luján, Mowatt, and Nash 1997). 

The major variations are increasing pH in addition to 1) a bile-free incubation followed by 

addition of porcine bile with lactic acid in medium (Gillin et al. 1987), or 2) incubation with 

cholesterol-starvation and fetal calf serum addition (Luján et al. 1996), or the most recent 

protocol 3) with adult bovine serum and high bovine bile (of varying concentration) in medium 

(Einarsson et al. 2016). Transcriptional changes upon in vitro (Morf et al. 2010; Einarsson et 

al. 2016) and in vivo (Pham et al. 2017) encystation confirm upregulation of cyst wall proteins 

(CWP) which are also used as molecular markers for encystation. Encystation specific vesicles 

(ESV) containing those proteins are detected upon in vitro encystation and thought to transport 

material to the cyst wall (Lauwaet et al. 2007; Morf et al. 2010; Faso and Hehl 2011; Einarsson 

et al. 2016). After induction, G. duodenalis appears to go into an encystation program which 

reaches a point of no return after which they proceed to encyst even if the inducing conditions 

are removed. In vitro this was determined to ~3-6h post induction. (Sulemana, Paget, and Jarroll 

2014; Einarsson et al. 2016). Taken together, current in vitro-generated data suggests that a 

drastic change in growth conditions and especially in lipid content and pH contribute to 

initiating encystation in G. duodenalis, and that parasites commit to the life stage switch. 
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The disease giardiasis and its epidemiology 

Humans commonly experience symptoms of G. duodenalis infection within seven to 10 days 

and spontaneous clearance of symptomatic infection is common within two to three weeks. In 

areas with good sanitation the prevalence is estimated to 0.4-7.5% and in poor sanitation areas 

higher, between 8 and 30% (U. Ryan and Cacciò 2013) but it is generally recognized that 

probably there are at least as many asymptomatic as symptomatic cases of G. duodenalis 

infections world-wide (Einarsson, Ma’ayeh, and Svärd 2016). The approximation for 

symptomatic cases is ~200 million persons per year, globally (U. Ryan and Cacciò 2013). 

Symptoms include nausea, bloating, severe diarrhea and abdominal cramps. Descriptions of 

symptoms vary greatly and correlate poorly with parasite data, i.e. its genotype. (Klotz and 

Aebischer 2015) Therefore, it is still unclear whether certain parasite genotypes (see below) are 

more pathogenic than others. Differences in host susceptibility and symptoms can also be 

caused by e.g. variations in diet, microbiota (Singer and Nash 2000; Barash et al. 2017), 

immune competence (Eckmann 2003; Buret et al. 2015; Einarsson, Ma’ayeh, and Svärd 2016), 

and probably other infections. Being a globally distributed disease, one can also expect 

discrepancies in how medical personnel and patients perceive symptoms and report them, a 

challenge for G. duodenalis surveillance. WHO included giardiasis as a neglected tropical 

disease (NTD) in 2006 (Savioli, Smith, and Thompson 2006), and unfortunately the lack of 

studies for many aspects of G. duodenalis infections still reflects this decision. Part of the 

explanation for discrepancies in epidemiological data is also likely methodological, i.e. 

inconsistencies in parasite typing (e.g. number of genes and the method used (R. C.A. 

Thompson and Ash 2019), as well as interpretation of sequence data which may be inconsistent 

and is not standardized for this tetraploid organism. In short, giardiasis is a NTD and many 

aspects of the disease are poorly understood and data is often contradictory.  

Giardia spp. classification 

G. duodenalis assemblages (~genotypes) A-H infect a broad range of mammals. Assemblages 

A and B are responsible for disease in humans, but also infect other primates and mammalian 

wildlife. A dataset of infections in Germany contained ~30% assemblage A parasites, 70% 

assemblage B parasites, and of all cases, ~20% carried both assemblage A and B (unpublished 

data, Christian Klotz, Robert-Koch Institute, Germany). When assemblages A and B occur in 

animals it is unclear whether they are the same sub-types which infect humans.(Cacciò and 

Ryan 2008) Determining the zoonotic potential is complicated by the lack of culturing methods 

for other genotypes than G. duodenalis assemblage A and B (and not all of these can be cultured 

either as mentioned above); coinfections with more than one G. duodenalis genotype in 

samples; and technical challenges for genotyping described above. Thompson and Ash (R. C.A. 

Thompson and Ash 2019) recently proposed 10 different to-date identified Giardia (prev. 

duodenalis) spp. to replace the assemblage classification system. They suggested to classify 

assemblage A as G. duodenalis and assemblage B as Giardia enterica. These two species share 

77% nucleotide/78% amino acid sequence homology (Franzén et al. 2009). In this thesis I use 

“G. duodenalis” as species name for the eight assemblages. My work was carried out using 

assemblage B, partly motivated by the indications for higher prevalence of this assemblage in 
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humans. I use subtype GS/H7 and in descriptions and discussions of my data referring to G. 

duodenalis, this isolate is intended. 

Host responses to G. duodenalis 

The mechanisms by which G. duodenalis (and other Giardia spp.) induce immune responses 

are not well understood. Some parasite proteins have been shown to activate immune responses 

(importantly here arginine deiminase (ADI) is among them, but also e.g. fructose-1,6- 

bisphosphate aldolase, ornithine carbamoyl transferase and α-giardins (Klotz and Aebischer 

2015)) but we do not know why some individuals elicit stronger immune responses, develop 

inflammation and e.g. leaky epithelia, whereas others are asymptomatic. Of relevance in this 

thesis (see below), mechanistic Target of Rapamycin (mTOR) has been identified as sensitive 

to the presence of G. duodenalis or derived proteins. Arginine depletion by G. duodenalis ADI 

induces cytokine profile changes in dendritic cells, DC, from human donors. Those changes 

coincided with changes in phosphorylations which could be linked, not only to the mTOR 

kinase S6, but also to one of its targets, CD83 (Banik et al. 2013). This suggests that DCs would 

sense G. duodenalis induced arginine depletion (given that it takes place) through the mTOR 

signaling network and initiate a response. Arginine dependent changes in the mTOR associated 

p70S6 kinase (one of two variants of S6) have also been reported (M. J. Rhoads et al. 2006), 

further supporting the relevance of this pathway in response to arginine, another focus of this 

thesis. The latter changes were additionally associated with enterocyte migration in the 

intestine. If G. duodenalis consumes arginine and induces mTOR signaling also in intestinal 

cells, one would expect mTOR to induce cellular and potentially even systemic responses. The 

association of p70S6 kinase with cellular migration proposes a mechanism for e.g. observed 

morphological changes in intestine upon G. duodenalis infections. 

Immune defenses which can be expected upon host responses to G. duodenalis include T helper 

(Th) cell 1, Th2, and Th17 responses, i.e. no distinct branch of the adaptive immune response 

(Klotz and Aebischer 2015). Several studies support that immunoglobulin (Ig) A is important 

to clear Giardia spp. infections. In the mouse model, IgA does not appear necessary for 

clearance though, and depending on infection dose (5x105 or 107 G. duodenalis assemblage B) 

and time for measurements, different results were acquired. (Singer and Nash 2000; Langford 

et al. 2002) Pre-activated DCs stimulated in vitro by G. duodenalis lysates produce increased 

levels of e.g. tumor necrosis factor (TNF) α, interleukin (IL) 6, and IL-12 – all pro-inflammatory 

cytokines (Banik et al. 2013). Mouse experiments have also supported that DCs are an 

important source of IL-6 to protect against G. duodenalis (assemblage B) (Kamda, Nash, and 

Singer 2012). Other innate immune responses such as antimicrobial peptides (AMP), nitric 

oxide (NO) production and intestinal proteases have been implicated in protections against 

Giardia spp. In vitro killing by e.g. defensins (example of AMP) has been demonstrated and 

the molecules are secreted by intestinal epithelium Paneth cells, and found in mucus. Mucus 

itself is also suggested to have a protective function as a physical barrier. (Klotz and Aebischer 

2015) 
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The long-suggested importance of arginine during G. duodenalis 

infection 

Arginine utilization is reported among many pathogens (e.g. Gogoi et al., 2016) and the 

enzymes responsible for its metabolism are considered virulence factors (e.g. McGraw et al., 

1999). An example is the bacterium Pseudomonas aeruginosa, a lung-pathogen in humans, 

which utilizes arginine as an energy source. In addition, a secondary metabolite (agmatine) of 

arginine catabolism in an arginine decarboxylase-pathway is not only a source for ATP 

generation in the bacterium. Its extracellular presence (from a e.g. human host or the bacterium 

itself) promotes inflammation and bacterial biofilm formation (Paulson et al. 2014 and reviewed 

in Gogoi et al. 2016). Such interactions which involve arginine both as energy source and 

signaling molecule, and a role in both pathogen and host, have been suggested also for G. 

duodenalis (Jarroll, E.L., and Paget 1995; Eckmann 2003; Pham et al. 2017)). 

G. duodenalis increases in vitro growth for ~24h upon addition of 5 or 10 mM arginine to 

growth medium (Edwards et al., 1992), levels comparable to biologically relevant 

concentrations in humans (Adibi and Mercer, 1973). The effect reported by Edwards et al. was 

seen also in the absence of glucose in the growth medium. The arginine dihydrolase (ADH) 

pathway, which is not present in humans, was described for G. duodenalis in 1990 (P. J. 

Schofield et al. 1990). Its presence in G. duodenalis has been confirmed by the published 

genomes (Morrison et al. 2007; Franzén et al. 2009 for assemblages A and B, respectively) and 

its activity by gene expression experiments in vitro (Birkeland et al. 2010; Morf et al. 2010; 

Stadelmann et al. 2013) and in vivo (Pham et al. 2017), although in the latter only one pathway 

enzyme (ornithine carbamoyl transferase, OCT) was among the top differentially regulated 

ones. ADI upregulation was e.g. demonstrated at 6h when parasite mRNA was compared at 

different time-points after exposure to a model of intestinal epithelial cells, the Caco2 cell-line 

(Stadelmann et al. 2013). With the ADH pathway, G. duodenalis can efficiently utilize arginine 

as an alternative energy source to glucose (Philip J. Schofield et al. 1992). Therefore, poor 

access to arginine is expected to hamper parasite growth, although to my knowledge no 

information on the in vivo relevance for this capability has so far been available.  

It has also been suggested that arginine is important for encystation and coping with oxidative 

stress (Jarroll, E.L., and Paget 1995; Pham et al. 2017). G. duodenalis may consume or degrade 

arginine to hamper host responses during infection. However, arginine also appears to support 

growth in the trophozoite stage and possibly arginine improves encystation independently of a 

potential effect on the host. If that function is significant for the parasite, effects on hosts could 

be neutral, positive for the parasite (impaired host signaling or NO production) or even negative 

(a warning signal to the host). This work investigates total replication and reproduction effects 

on the parasite when arginine access is varied. 
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Aspects of arginine in mammalian hosts 

Arginine is perhaps best known in humans for being the substrate for nitric oxide synthase 

(NOS), which generates nitric oxide (NO), an important innate immune defense molecule. 

However, in mammals arginine has several other functions and is for instance a substrate for 

arginase to generate ornithine which can feed into polyamine synthesis (Morris 2006) which is 

also the case in Giardia spp. (Maia et al. 2008). Arginine is a semi-essential amino acid in 

humans, meaning it is generally synthesized to sufficient levels, but it can become limiting 

under certain extreme conditions such as diseases and infections (Morris 2006). Arginine is 

regulated in the body, demonstrated by varying levels in different body fluids compared to e.g. 

leucine or glutamine. Its concentration in food also varies greatly and it is for instance quite 

low in concentration in human milk, compared to other amino acids (J. M. Rhoads and Wu 

2009). Humans can convert ornithine, a metabolite of arginine catabolism, via citrulline back 

to arginine on a systemic level in the so called intestinal-renal axis. Arginine generated via this 

axis is mainly synthesized in the kidneys. (Morris 2006) About 40% of dietary arginine is in 

adults catabolized in the intestine and does not reach the circulation (J. M. Rhoads and Wu 

2009). Indications for a local effect in the intestine of arginine deprivation come from 

experiments demonstrating growth defects in a Caco2 model of intestinal epithelial cells 

(Stadelmann et al. 2012). Stadelmann et al. report reduced proliferation of those cells if they 

are grown in the absence of arginine, and a smaller effect when medium was complemented 

with citrulline. Therefore, although arginine concentrations probably are reduced in intestine 

by dietary restriction and have effects locally on intestinal epithelial cells (as suggested by 

Stadelmann et al., 2012), mammals compensate lost intake systemically. In blood such 

compensation comes to ~15% from de novo synthesis and ~85% from protein ((Morf et al. 

2010). Therefore, short-term dietary restriction of arginine is not expected to have dramatic 

overall effects on mammals.  

A weakened host model to investigate G. duodenalis plastic capacity 

As described above, arginine manipulation experiments in this thesis aim to investigate the in 

vivo relevance of arginine availability for parasite replication and reproduction. In addition, I 

include a host model in which I expect beneficial conditions for the parasite. This serves to 

provide further evidence for or against phenotypic plastic capacity in this parasite. The model 

of choice is a mechanistic Target of Rapamycin (mTOR)-deletion mutant specific for intestinal 

epithelial cells (IECs, determined by the villin-promotor; see Sampson et al. 2016 and Materials 

and Methods for details). The central role and broad effects of sensing and signaling in the 

mTOR network in regulating cellular growth in response to external cues, including nutrients, 

can hardly be exaggerated (Laplante and Sabatini 2012). Functions of mTOR signaling and the 

mTOR gene in intestinal epithelium were thoroughly evaluated by Sampson et al. (2016). 

Specific cells of intestinal epithelium were affected by tissue-specific mTOR disruption: 

absorptive cells, Paneth cells and Goblet cells regenerated to a lesser extent after irradiation 

damage in mTOR-deficient mice. Arginine is a potent stimulator for mTOR signaling (e.g. 

Morris 2006; J. M. Rhoads and Wu 2009). Arginine supplementation during rotavirus-infection 

activated mTOR signaling seen by phosphorylation of one of its targets, p70S6 kinase, and as 
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expected increased protein synthesis. Oral treatment with the mTOR-signaling inhibitor 

Rapamycin (and simultaneous arginine stimulation) partially decreased protein biosynthesis 

and decreased epithelial electrical resistance (Corl et al. 2008), a measure of “leakiness”. 

In human endothelial cells, Rapamycin mTOR-signaling inhibition stimulated arginine uptake 

by increasing protein expression of CAT2, an arginine transporter (Visigalli et al. 2007). This 

suggests that an mTOR mutant would behave similarly and increase its capacity for arginine 

uptake. However, since mTOR has broad effects also on tissue regeneration after injury, the 

total effect of a mTOR-mutant could also be a slowly healing, and possibly leaky, phenotype. 

Paneth cells, shown to regenerate poorly in the Sampson et al. (2016) mTOR epithelium mutant 

mouse, support tissue regeneration but also secrete antimicrobial peptides (Porter et al. 2002), 

which may influence Giardia spp. (Eckmann 2003). Goblet cells produce and secrete mucins, 

the major components of intestinal mucus (Birchenough et al. 2015) and a defect in this function 

during infection could also be beneficial for Giardia spp.. After evaluating several genes 

involved in mTOR-signaling, Sampson et al. conclude that mTOR gene disruption in intestinal 

epithelium causes atrophy upon radiation-induced injury. Taken together, the literature suggests 

that tissue-specific mTOR-disruption can be used as a model which causes localized benefits 

for an intestinal extracellular parasite without drastic overall effects on the host (at least not for 

the time-frame of interest here; 7 days, see Methods). Establishing the G. duodenalis infection 

model in tissue-specific mTOR-deletion mice in this thesis serves to introduce a host in which 

phenotypic plasticity could be revealed. Parasite sensitivity and responsiveness measured in 

phenotypic readouts such as trophozoite or cyst numbers could support the presence of 

phenotypic plasticity in G. duodenalis. In addition, the previously described implications for 

mTOR-sensing of arginine in DCs (Banik et al. 2013) and intestinal epithelium (M. J. Rhoads 

et al. 2006) suggest that this infection model may be valuable in future studies of the role of 

arginine during G. duodenalis infections. 

1.2.4 Goals for G. duodenalis research project 

G. duodenalis utilizes glucose in axenic culture but in one study grew better on arginine 

(Edwards et al. 1992). This suggests plastic capacity in G. duodenalis with regards to arginine 

utilization. Attempts to culture parasites isolated from infected humans are challenging 

(unpublished data, Christian Klotz, Robert Koch Institute, Berlin, Germany) and indicate 

plasticity since they sometimes succeed given enough time (see also Nash 2019) or fail 

(indicating limits of plasticity or lack thereof). Although it appears clear that arginine does offer 

growth benefits for G. duodenalis (in vitro), its relevance in vivo, e.g. through access via host 

diets, could be different since the metabolic context is more complex. Here, I investigate G. 

duodenalis trophozoite replication and encystation success under different arginine availability 

in vivo. I thereby address a long-standing question of the overall importance of arginine access 

for G. duodenalis replication and reproduction in vivo. I analyze the relevance of my findings 

both in the context of G. duodenalis biology/infections, and in an evolutionary context by 

applying the concept of phenotypic plasticity to discuss my observations. 
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1.3  Aim of this thesis 

This project has three major aims. The overall aim is to generate data on protozoan parasite 

phenotypes in response to biologically relevant external stimuli and apply theoretical concepts 

of phenotypic plasticity to evaluate those findings in two distantly related protozoan parasites. 

To that aim, I 1) assess E. falciformis’ transcriptional plasticity in response to host immune 

defenses; and 2) determine the impact of sufficient versus poor arginine availability on in vivo 

growth of G. duodenalis trophozoite replication and reproductive success: cyst generation and 

shedding. 
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2 Materials and Methods 

2.1 Project I: E. falciformis 

The following Materials and Methods section is a quote from my published work (Ehret, Spork, 

et al. 2017) 

2.1.1 Mice, infection procedure and infection analysis  

Three strains of mice were used in our experiments: NMRI, C57BL/6 

(Charles River Laboratories, Sulzfeld, Germany), and Rag1−/− on 

C57BL/6 background (obtained from German Rheumatism Research 

Centre, Berlin). Rag1−/− −mice are deficient in T- and B-cell 

maturation. Animals where infected as described by Schmid et al. 

(Schmid et al. 2012), but tap-water was used instead of PBS for 

administration of oocysts. Briefly, NMRI mice were infected two 

times, which will be referred to as naïve and challenge infection. For 

the naïve infection, 150 sporulated oocysts were administered in 100 

μL water by oral gavage. During the naïve infection of 52 mice, all 

animals were weighed every day. On day zero, before infection, as well 

as on 3 dpi, 5 dpi and 7 dpi, caeca from 3 to 4 sacrificed mice per 

timepoint were collected. Epithelial cells were isolated as described in 

(Schmid et al. 2012), using a protocol which generated epithelial cells 

with 90% purity. For challenge infection, mice recovered 

spontaneously and after 4 weeks they were challenge infected. 

Recovery was monitored by weighing and visual inspection of fur. For 

the challenge infection, 1500 sporulated oocysts were applied by oral 

gavage in 100 μL water (a higher dose was necessary to establish a 

challenge infection). Tissue from three to four mice per replicate was 

pooled for both non-reinfection control (referred to as day 0 of 

challenge infection) and for all other samples. Rag1−/− mice and the 

background C57BL/6 strain control mice were also subjected to naïve 

and challenge infections with 10 sporulated oocysts in 100μL water in 

both cases. Samples were taken on day 0 (pre-infection control) and 

5dpi in both naïve and challenge infections of these mice and were 

otherwise treated as described above for NMRI mice. Oocyst shedding 

was determined from eight NMRI mice in naïve infection and four 

challenge infected ones; from 15 naïve Rag1−/−mice and C57BL/6 

mice respectively, and from nine challenge infected Rag1−/− mice and 

C57BL/6 mice, respectively. Overall oocyst output was compared 

using Mann-Whitney U-test in R (“R Development Core Team” 2008). 
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2.1.2 Oocyst purification for infection, sequencing and quantification  

Oocysts for infection were purified by NaOCl flotation of mouse feces 

stored in potassium dichromate, in which oocysts for infection were 

allowed to sporulate at room temperature for at least 5 days. During the 

patency phase, feces of mice were collected and oocysts were flotated 

using saturated NaCl-solution. The oocyst output was quantified using 

the McMaster chamber. For sequencing, unsporulated oocysts were 

purified twice per day from feces of NMRI mice on 8–10 dpi, and 

immediately subjected to RNA purification. The strain “E. falciformis 

Bayer Haberkorn 1970” was used for all infections and parasite 

samples. It is maintained through passage in NMRI mice in our 

facilities as described previously (Schmid et al. 2012). 

2.1.3 Sporozoite isolation  

Sporocysts were isolated according to the method of (Kowalik and 

Zahner 1999) with slight modifications. Briefly, not more than 5 

million sporulated oocysts were resuspended in 0.4% pepsin solution 

(Applichem), pH 3, and incubated at 37 °C for 1 h. Subsequently, 

sporocysts were isolated by mechanical shearing using glass beads 

(diameter 0.5 mm) and a vortex mixer, washed and separated from 

oocyst cell wall components by centrifugation at 1800 g for 10 min. 

Sporozoites were isolated from sporocysts by in vitro excystation. For 

this, sporocysts were incubated at 37 °C in DMEM containing 0.04% 

tauroglycocholate (MP Biomedicals) and 0.25% trypsin (Applichem) 

for 30 min. Released sporozoites were purified in cellulose columns as 

described in (Schmatz, Crane, and Murray 1984). 

2.1.4 RNA extraction and quantification  

For RNA-seq, total RNA was isolated either from infected epithelial 

cells, sporozoites, or unsporulated oocysts using Trizol according to the 

manufacturer’s protocol (Invitrogen). In addition, unsporulated oocysts 

in Trizol were treated by mechanical shearing using glass beads for at 

least 20 min under frequent microscopic inspection. Purified RNA was 

used to produce an mRNA library using Illumina’s TruSeq RNA 

Sample Preparation guide. This kit uses poly-T priming and we thus do 

not assess non-polyadenylated transcripts like those derived from the 

apicoplast genome. For qPCR, uninfected and infected epithelial cells 

from 3, 5 and 7 dpi were isolated as described above and cells were 

stored in 1 mL Trizol at −80°C. Total RNA was isolated using the 

PureLink RNA Mini Kit (Invitrogen) and immediately reverse 
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transcribed into cDNA using the Superscript III Platinum Two Step 

qRT-PCR Kit (Thermo Fisher Scientific). These RNA preparations 

were used for RT-qPCR of Eimeria 18S and creation of a mouse gene 

reference index. For the reference index, the mouse genes cytochrome 

c-1 (Cyc), peptidylprolyl isomerase A (Ppia) and peptidylprolyl 

isomerase B (Ppib) were amplified using the primers Cyc1_qPCR_f 

(5′- CAGC TACCATGTCACAAGTAGC-3′) and Cyc1_qPCR_r (5′- 

ACCACTTATGCCGCTTCATG -3′); Ppib_qPCR_f (CA 

AAGACACCAATGGCTCAC) and Ppib_ qPCR_r (5′-T 

GACATCCTTCAGTGGCTTG-3′); Ppia_qPCR_f (5′-AC 

CGTGTTCTTCGACATCAC-3′) and Ppia_qPCR_r (5′- 

ATGGCGTGTAAAGTCACCAC-3′), respectively. The E. falciformis 

18S gene was amplified using the primers Ef18s_for (5′-

ACAATTGGAGGGCAAGTCTG-3′)and Ef18s_rev (5′-

AAACACCAACAGACGCAGTG-3′). After initialization at 50°C for 

2 min followed by activation of enzymes at 95°C, 40 amplification 

cycles consisting of denaturation at 95°C for 15s and combined 

annealing and elongation at 60°C for 60s were performed. After each 

cycle the fluorescent signal was measured. A reference index was 

constructed taking the cube route of the multiplied cycle threshold (ct)-

values for the three mouse genes. This composite “index ct-value” was 

used to calculate the ct difference (delta-ct) of the E. falciformis 18S 

gene. The lowest of these values was set as reference for calculation of 

how much more E. falciformis 18S RNA was detected compared to the 

level of background noise in the sample with the lowest value leading 

to delta-delta ct, or “noise normalized” ct-values. The number of 

transcripts above noise level was calculated taking these values as 

exponents to the base two. The procedure was performed in triplicate 

for each experimental group. A linear model was constructed in R (“R 

Development Core Team” 2008) to predict these noise normalized 

delta-ct values by day post infection (dpi) and type of infection (naïve 

or challenge infected). This model excludes measurements at 0 dpi 

infection as background noise. 

2.1.5 Sequencing and quality assessment  

cDNA libraries were sequenced on either GAIIX (13 samples) or 

Illumina Hiseq 2000 (14 samples) platforms after preparation in a total 

of four experimental batches as specified in Table 3. A 

fastq_quality_filter (FASTQ- toolkit, version 0.0.14, available at 

https://github.com/ agordon/fastx_toolkit) was applied to Illumina 

Hiseq 2000 samples using a phred score of 10. We intentionally did not 

use a stringent trimming before mapping to genome assemblies as the 
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mapping process itself has been shown to be a superior quality control 

(MacManes 2014). 

2.1.6 Alignment and reference genomes  

The M. musculus mm10 assembly (Genome Reference Consortium 

Mouse Build 38, GCA_000001635.2) was used as reference genome 

for mapping and corresponding annotations were used for downstream 

analyses. The E. falciformis genome (Heitlinger et al. 2014) was 

downloaded from ToxoDB (Gajria et al. 2007). For mapping, mouse 

and parasite genome files were merged into a combined reference 

genome, and files including mRNA sequences from both species were 

aligned against this reference using TopHat2, version 2.0.14, (Trapnell, 

Pachter, and Salzberg 2009) with the option –G specified, and Bowtie2, 

version 1.1.2, (Langmead and Salzberg 2012). This was done to avoid 

spurious mapping in ultra- conserved genomic regions. Single-end and 

pair-end sequence samples were aligned separately with library type 

‘fr-unstranded’ specified for pair-end samples. Bam files were used as 

input for the function “featureCounts” from of the R package 

“Rsubread” (Liao, Smyth, and Shi 2014). All subsequent analyses were 

performed in R (“R Development Core Team” 2008). 

2.1.7 Differential mRNA abundance, data normalization and sample 

exclusions  

After import of data to R, mouse and parasite data was separated using 

transcript IDs and analyzed, including normalization, separately. For 

each species, count data was normalized using the R-package edgeR 

version 3.16.2 (Robinson, McCarthy, and Smyth 2010) with the 

upperquartile normalization method. This raw data underlying our 

study is available as supplementary data S1. Briefly, genes with below 

an overall of 3000 reads (mouse) and 100 reads (E. falciformis) 

summed over all samples (libraries) were removed and normalization 

factors were calculated for the 75% quantile for each library. This 

normalization is suitable for densities of mapping read counts which 

follow a negative binomial distribution. We excluded samples 

NMRI_2nd_3dpi _rep1 and NMRI_2nd_5dpi_rep2 due to low parasite 

contribution (0.012% and 0.023%) to the overall transcriptome. 

Technically, this exclusion made it possible to obtain parasite read 

counts in agreement with a negative binomial distribution. Both 

excluded samples are from challenge infection and it is likely that the 

infected mice were immune to re-infection. One additional sample 

(NMRI_1stInf_0d- pi_rep1) was excluded because the uninfected 
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control showed unexpected mapping of reads to the E. falciformis 

genome (0.033%). As samples and individual replicates were 

sequenced in batches to different depth and using different 

instrumentation (Table 3) we performed multidimensional scaling of 

samples as quality controls using “plotMDS”. We also plotted mean 

expression vs. difference (MA) plots using “plotSmear”. Both 

functions are provided in the R package edgeR v 3.16.2(Robinson, 

McCarthy, and Smyth 2010). 

2.1.8 Testing of differentially abundant mRNAs and hierarchical 

clustering  

We also used edgeR v 3.16.2 (Robinson, McCarthy, and Smyth 2010) 

further to fit generalized linear models (GLMs with a negative binomial 

link function) for each gene (glmFit) and to perform likelihood ratio 

tests for models with or without a focal factor (glmLRT) using the 

“alternate design matrix” approach specifying focal contrasts 

individually. Tested contrasts comprised for the mouse a) infections at 

each time-point versus uninfected controls, b) corresponding 

timepoints between different mouse strains and c) corresponding 

timepoints and mouse strains for naïve and challenge infection. Since 

the control sample for infection in naïve NMRI mice was removed from 

the analysis (see above), the two uninfected replicates from challenge 

infection were used as uninfected controls in all NMRI mouse analyses. 

For the parasite, contrasts were set between a) all different stages of the 

life cycle, as well as b) and c) as above (see also results in Table 4). 

Mouse mRNAs which responded to infection or were differently 

abundant at different dpi (0 vs “any dpi” or “any dpi” vs “any dpi”; see 

Table 4) and E. falciformis genes showing differences between any life 

cycle stage (oocysts versus sporozoites, or either of those versus “any 

dpi” or “any dpi” versus “any dpi”) were selected and used for 

hierarchical clustering. Hierarchical clustering was performed using 

the complete linkage method based on Euclidean distances between Z-

scores (mRNA abundance values scaled for differences from mean 

over all samples of each gene in units of standard deviations). 

2.1.9 Enrichment tests and evolutionary conservation test  

Gene Ontology (GO) enrichment analysis was performed using the R 

package topGO with the “weight01” algorithm and Fisher’s exact tests. 

We additionally performed a correction for multiple testing on the 

returned p-values (function “p.adjust” using the BH-method 

(Benjamini and Hochberg 1995)). Similarly, a Fisher’s exact test and 
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corrections for multiple testing were used to test for overrepresentation 

of transcripts with a signal sequence for entering the secretory pathway 

or containing transmembrane domains (as inferred using Signal P) 

which are predicted for the E. falciformis genome. Evolutionary 

conservation of gene families was analyzed based on categories from 

(Heitlinger et al. 2014) which are as follows: i) E. falciformis specific, 

ii) specific to the genus Eimeria, compiled by an analysis of E. 

falciformis, E. maxima and E. tenella, iii) Coccidia: Eimeria plus T. 

gondii and Neospora caninum, iv) Coccidia plus Babesia microti, 

Theileria annulata, Plasmodium falciparum and Plasmodium vivax v) 

the same apicomplexan parasites as in iv plus Cryptosporidium 

hominis, vi) universally conserved in the eukaryote super-kingdom 

inferred from an analysis of Saccharomyces cerevisiae and Arabidopsis 

thaliana. These categories were tested for overrepresentation in 

parasite gene clusters with particular patterns described in the text using 

Fisher’s exact-tests. Resulting p-values were corrected for multiple 

testing using the procedure of Benjamini and Hochberg (Benjamini and 

Hochberg 1995) and reported as false discovery rates (FDR). 

2.1.10 Correlation analysis of apicomplexan transcriptomes  

Transcriptome datasets from (Reid et al. 2014; Walker et al. 2015) and 

(Hehl et al. 2015) were downloaded from ToxoDB (Gajria et al. 2007). 

Orthologues between E. falciformis, E. tenella and T. gondii were 

compiled as in (Heitlinger et al. 2014) and only 1:1:1 orthologue triplets 

were retained for analysis, as multi-paralog gene-families might 

contain members showing divergent evolution of gene-expression due 

to neo/sub functionalization. Mean mRNA abundances per life cycle 

stage were used for samples from our study. Spearman’s correlation 

coefficients for expression over different samples in all studies and over 

different species represented by their orthologues were determined. 

Hierarchical clustering with complete linkage was used to cluster 

resulting correlations coefficients. 
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2.2 Project II: G. duodenalis 

2.2.1 Infection experiments 

One major readout of interest and expected limiting (low sensitivity) read-out in my 

experiments was cyst-shedding. The animal experiment allowance would determine the number 

of animals allowed to use in experiments. Therefore, cyst shedding data from Shukla et al 

(Shukla and Sidhu 2011) were applied in a power analysis (Appendix 1) to determine necessary 

animal group size. The requirement for sensitivity (difference with p-value ≤0.05) was set to 

106 cysts/gram feces or more between any groups. This difference in average value between 

days post infection (dpi) was reported in the same paper and therefore thought to be a realistic 

difference to detect. 

Determining parameters of infection 

When applied, antibiotics (1.4g/L Neomycin (Cayman-Chemicals/Biomol GmbH, Germany, 

Item No. 14287), 1g/L Ampicillin (Sigma-Aldrich (now Merck), Germany) and 1g/L 

Vancomycin (a kind gift from M. Heimesaat, Charite, Berlin) were supplied in the drinking 

water and changed every three days in pilot experiment 2 and 1-2 times per week in the 

following experiments. All experiments were performed with ~50/50% female/male mice no 

older than 11 weeks at the start of experiments. 

If nothing else is indicated, mice were housed in groups of 2-5 mice per cage, unless males 

were fighting in which case they were housed separately. The facilities used are SPF (specific 

pathogen-free) certified (Appendix 2). Animals had access to water ad libitum, and to food 

during the 12h dark cycle (6pm to 6am). During pilot infections, feces were collected in 

antibiotics-containing water (250µL milli-Q water with erythromycin, 200µg/mL, 

chloramphenicol, 400µg/mL, amicazin µg/mL, tetracycline 200 µg/mL, rifampicin 400 µg/mL, 

and phosphomycin 100 µg/mL) from individual mice at 6am, 12pm, and 6pm and stored at 4°C 

until analysis. At 6pm, mice were moved to a new cage and the following day, at 6am, mice 

were again transferred to a new cage and the group total (“night feces”) feces were collected 

from each cage in a 50mL tube with 35mL antibiotics-containing water as above. In total, four 

different pilot infection experiments were carried out over approximately seven months as 

summarized in  

2.2.2 Experimental infections of mTOR-deletion mice and diet 

manipulation 

Mouse strains 

Mice with intestinal epithelium-specific mTOR-gene knock-out were generated from breeding 

of strains previously established (Sampson et al., 2016). Briefly, two male and two female mice 
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which are heterozygote for Cre-recombinase under the intestinal-epithelium specific villin 

promoter (B6.Cg-Tg(Vil1-cre)997Gum/J) were purchased (The Jackson Laboratory, USA). 

Mice were kept for seven days in our facility and then used for breeding. Similarly, two male 

and two female mice with loxP-regions flanking both copies of the gene of interest, mechanistic 

Target of Rapamycin, mTOR, (B6.129S4-Mtortm1.2Koz/J: here referred to as mTORflox/flox and 

WT) were purchased from the same company at the same time. Mice were bred in-house by 

our facility (Robert Koch-Institute, Berlin, Germany). F1 offspring which were positive for Cre 

and heterozygote (always heterozygote due to the cross with B6.Cg-Tg(Vil1-cre)997Gum/J) 

for loxP-mTOR; “mTORflox” were used to generate F2-mice. These were positive for Cre-

recombinase and homozygote for loxP-mTOR, i.e. mTORΔIEC lacking the mTOR gene in cells 

expressing villin (ΔmTOR in intestinal epithelial cells). Mice were genotyped using primers 

and protocols from the provider (primer order-numbers: Vil1-Cre forward: 14506; Vil1-Cre 

reverse: 18960; Vil1-Cre internal control forward: oIMR7338; Vil1-Cre internal control 

reverse: oIMR7339; loxP-mTOR forward: 11649; and loxP-mTOR reverse: 11650). As 

determined by pilot experiments, seven days prior to infection approximately equal numbers of 

6-10 weeks old males and females were randomly assigned to experimental groups and placed 

accordingly in new cages. Antibiotics were provided in the drinking water and mice were 

housed as in pilot experiment number 4. 

Table 1. Primers for genotyping loxP-mTOR (also mTORflox/flox and WT) and Villin-Cre (see text). 

For complete PCR and genotyping-protocols, see Appendix 3. 

Name by Jackson Laboratory Sequence Comment 

34368 GAT AAT TGC AGT TTT GGC TAG CAG loxP-mTOR Forward  

34369 CTC CTT CTG TGA CAT ACA TTT CCT loxP-mTOR reverse 

   

18960 TTC TCC TCT AGG CTC GTC CA Villin-Cre forward 

14506 CAT GTC CAT CAG GTT CTT GC Villin-Cre reverse 

   

oIMR7338 CTA GGC CAC AGA ATT GAA AGA TCT Villin-Cre internal ctrl forward 

oIMR7339 GTA GGT GGA AAT TCT AGC ATCATC C Villin-Cre internal ctrl reverse 

Arginine manipulation in mouse diets 

Seven days prior to infection, the experimental diet (“arginine-free”: EF Crystalline AA 

Arginine free, purified diet, 10mm, order number S1039-E010, ssniff Spezialdiäten, GmbH, 

Arnsberg, Germany) or control diet (“normal diet”, EF Crystalline AA, Control diet, 10mm, 

order number S1039-E005, ssniff Spezialdiäten, GmbH, Arnsberg, Germany) were introduced. 

Diets are crystalline, i.e. each amino-acid is added separately (as opposed to addition of whole 

protein), ensuring a 0% L-arginine experimental diet. In order to keep the concentrations of all 

other amino-acids constant in the control diet, minor differences in protein (1.6kcal%), fat 

(0.4kcal%) and carbohydrate (1.2 kcal%) content were accepted, with a total difference in 

energy content of 0.1MJ/kg (total Atwater energy content 16.6 or 16.7 MJ/kg. See additional 

details in Appendix 4). 
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Parasites for infection 

G. duodenalis GS clone H7 (ATCC 50581; ATCC, Germany) were purchased and cultured. 

Stocks of passage eight were frozen in liquid nitrogen. For in vitro culture and amplification, 

TYI-S-33 medium with bovine bile as previously described (Keister, 1983), and Amphotericin 

B (2µg/mL final concentration, Biochrom, Germany) and Gentamicin (100µg/mL final 

concentration, Sigma-Aldrich/Merck, Germany) was used. Parasites were cultured in 11mL 

volume medium and one confluent culture tube typically contained 5-8*106 trophozoites 

(parasites appear to “squeeze” if cultures are left untouched, hence the large variation in 

numbers). For infections, trophozoites were quickly thawed in RT and added to 5mL pre-

warmed medium (37°C) followed by centrifugation at 900g for five minutes at 4°C. The 

supernatant was carefully removed, and 1mL warm medium added. The ~1.5mL parasite 

suspension was added to the culture tube containing 9.5mL warm medium. Tubes were visually 

inspected for viable (motile and/or attached with beating flagella) trophozoites. The medium 

was changed one day after thawing and then every 3-4 days until infections. New medium was 

prepared at least every 5 days. 2-3h prior to infection, taking tubes directly from incubator the 

medium was removed and tubes were refilled with fresh RT medium. This served to remove 

unattached (possibly dead) parasites. Tubes with fresh medium were placed on ice for 30 

minutes to detach parasites and hit against the palm 3-4 times to render more parasites to detach. 

Cultures were poured into a 50mL tube containing 35mL ice cold PBS and centrifuged at 900g 

for 5 minutes at 4°C. The supernatant was removed, and parasites counted twice in at least two 

different dilutions. Trophozoites were diluted with ice cold PBS to 5x106 +/- 5x105 trophozoites 

per 100µL. At least 2mL more suspension than required was prepared to improve handling and 

avoid bubbles during oral infections. Parasites were stored on ice up to 40 minutes prior to 

infection. After infections, remaining parasites were added to normal culture tubes with warm 

medium and in all cases grew normally for at least seven days. 

Animal sacrifice and sample collection 

Animals were moved to a dissection room and placed in a large measurement glass cylinder 

with paper and anaesthetized in Isoflurane (CP-Pharma, Germany). Blood was collected 

through retro-orbital bleeding and collected in EDTA-coated 1.5mL tubes and placed on ice. If 

necessary, mice were replaced in Isoflurane prior to sacrifice by cervical dislocation.  

The mouse was then placed on an ice-cold metal plate for dissection. A three cm piece of small 

intestine, starting at 2 cm from pylorus, was measured and placed on a cool petri dish. Luminal 

content was removed by gently rolling a pipet tip over the tissue and luminal content was 

collected in 0.5mL RNALater. The three cm tissue for DNA and RNA extraction was placed in 

1mL RNALater. Both samples were placed on ice within 3 minutes and stored on ice during 

dissections up to 3.5h and then frozen at -20°C until further processing. The following one cm 

small intestine was measured and placed in empty tubes which were immediately placed in 

liquid nitrogen and later stored in -70°C until further processing. The remaining small intestine 

was flushed with cold PBS, rolled (“Swiss roll”) in cassettes, and placed in RT 4% 
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formaldehyde for histological analysis. Cecum was cut one to two times, placed in 10mL 4% 

formaldehyde and shaken. Caeca were kept in RT for 24h and then stored at 4°C until further 

processing.  

Homogenization of small intestinal tissue for RNA/DNA extractions 

Tissue samples for RNA and DNA extraction were thawed in a water bath at 37°C for 3-5 

minutes and thereafter kept at RT. Samples were weighed and 60mg (+/-5mg) tissue was 

transferred into homogenization tubes; 1.5mL RNase free tubes were filled with 1mm bead-

mixture (50/50% 1mm and 0.1mm sharp-edged RNase free silicon carbide beads from Bio Spec 

Products Inc, pre-treated at 180°C for 2.5h) and 600µL Buffer RLT from Qiagen RNeasy Mini 

kit (Qiagen GmbH, Germany) with 1% RNase free 2-mercaptoethanol (Aldrich, now Merck, 

Germany). Homogenization was performed immediately with a Pecellys 24 tissue homogenizer 

(Bertin Instruments, France) at 5500xg for 60 seconds. Homogenates were centrifuged for 3 

minutes at 21 500xg at RT. Supernatants (~300-400µL, without foam which forms on top) were 

collected and stored in RNase free 1.5mL tubes at -70°C until RNA/DNA extraction. 

Parasite quantification in small intestinal tissue by qPCR 

Supernatants from homogenized tissue were thawed in a water bath at 37°C for 1-2 minutes. 

100µL supernatant, corresponding to 17mg tissue, was used for DNA extraction. DNA was 

extracted using the NucleoSpin Tissue kit (Machery-Nagel, Düren, Germany), protocol 5 

according to manufacturer's instructions with the first proteinase K-incubation at 56°C for 1h 

and 100µL elution volume. Yields were between 82 and 218ng DNA/µL. G. duodenalis 

quantification by qPCR was performed based on protocols and primers in (Verweij et al. 2003). 

A multiplex reaction which amplifies the Giardia small subunit (ssu) ribosomal RNA gene and 

an internal amplification control (IAC) in the same reaction was carried out using a BioRad 

cycler (Bio-Rad Laboratories, GmbH, Germany). Primers used are listed in Table 2. Reagents 

used were 12.5µL Maxima qPCR MasterMix (ThermoScientific), 2.0µL each of ddIAC 

forward and reverse primers, 0.5µL ddIAC-Cy5 probe, 2.5µL IAC plasmid, 1.0µL each of 

Giardia-80F/Giardia-127R forward and reverse primers, 0.5µL Giardia-105T probe, 1µL 

DEPC-treated water, and 2uL sample DNA in a total reaction volume of 25µL. The internal 

amplification plasmid from Deer et al. was used (Deer, Lampel, and González-Escalona 2010). 

The cycle program was as follows: 10 minutes initial denaturation at 95°C (1 cycle) followed 

by 40 cycles of: 15 seconds denaturation at 95°C, 30 seconds annealing at 60°C, 30 seconds of 

extension at 72°C. Standard curves were produced in every experiment using quantified DNA 

extracted by the protocol above from in vitro grown trophozoites as follows: G. duodenalis 

GS/H7 (ATCC 50581) trophozoites were cultured to passage 8 confluent cultures (3-4 days 

after passaging), detached on ice for 30 minutes, washed in 1:5 units PBS by centrifugation at 

5000xg for 5 minutes. Pellets were then resuspended in 110µL PBS (and further diluted as 

appropriate) for counting. 50x106 trophozoites were used for DNA extraction on five separate 

columns and the eluates were pooled and frozen at -20°C in DNA low binding tubes as DNA 

stock. All qPCR measurements were performed in 2 technical replicates. Raw data was 
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processed using the commercial CFX Maestro 1.1 software (version 4.1.2433.1219, Bio-Rad 

Laboratories, GmbH, Germany). Thresholds were set manually for each run. It was set as low 

as possible, with the requirement of generating no cycle threshold (ct)-signal for clearly 

negative samples (no exponential increase in fluorescence). Inhibition was defined as a sample 

having a ct value >2 ct over IAC average ct. No samples were inhibited. All non-template 

controls were negative. Two technical replicates were analyzed and not allowed to differ by 

>2ct (in which case the analysis was repeated). The CFX Maestro software computes DNA SQ 

based on the standard curves in each analysis. The average SQ of the two replicates was used 

to calculate G. duodenalis genome equivalents per gram tissue assuming 0.1pg DNA per 

trophozoite (0.05pg DNA per genome; Erlandssen & Rasch, 1994) and the known input amount 

of tissue (equivalent of 0.34mg/qPCR reaction). Seven dpi samples were compared using a 

Kruskal-Wallis rank sum test in R. Comparisons were done for WT diets, WT versus mTORΔIEC 

(normal diet), and mTORΔIEC diets. 

Table 2. Primers and target plasmid for G. duodenalis small subunit RNA (ssu) qPCR (Verweij 

et al. 2003) and internal amplification control for inhibition in samples. 

Name and stock concentration Sequence Comment 

dd-IAC_f (10 pmol/μl) 5'- CTAACCTTCGTGATGAGCAATCG -3' Forward control primer 

dd-IAC_r (10 pmol/μl) 5'- GATCAGCTACGTGAGGTCCTAC -3' Reverse control primer 

dd-IAC-Cy5 (10 pmol/μl) 5'-Cy5-AGCTAGTCGATGCACTCCAGTCCTCCT-BBQ-3* Probe and quencher 

   

IAC target plasmid (106 copies/ μl) See Deer, Lampel, and González-Escalona 2010 Amplification control plasmid 

   

Giardia-80F (3.3 μM) 5’-GACGGCTCAGGACAACGGTT-3’ ssu forward primer 

Giardia-127R (3.3 μM) 5’-TTGCCAGCGGTGTCCG-3’ ssu reverse primer 

Giardia-105T (3.3 μM) FAM-5’-CCCGCGGCGGTCCCTGCTAG-3’-BHQ1** Probe and quencher 

Quantification of parasites in feces: cyst analysis by microscopy 

Fecal samples were collected daily from 4-7 dpi in main experiments (with mouse genotype 

and diet manipulation). In one separate experiment, feces were collected from 0-14 dpi to 

determine shedding post the timepoint for RNA-seq. Samples were taken from individual mice 

between 6am and 7am. Each pellet was collected in 500 µL water during infection 

establishment and 250µL water in subsequent experiments. Water contained antibiotics (as 

described above) to avoid bacterial growth and stored at 4°C until processing. For microscopy 

of samples from dietary and mouse genotype manipulation experiments, each fecal pellet was 

weighted, and water volume adjusted to 100mg feces per mL liquid. In both infection 

establishment experiments and manipulation experiments, pellets were disrupted by vortexing 

or (if necessary) manually with a pipet tip followed by vortexing. Large particles were allowed 

to settle for 2-5 minutes and then 50µL liquid was carefully resuspended and collected for 

staining. Samples were stained with a commercial anti-Giardia cyst antibody (Giardi-a-Glo, 

Waterborne INC, New Orleans, USA; 1µL per sample) and 1% 1,4-diazabicyclo[2.2.2]octane 

(DABCO; Carl Roth GmbH, Germany) to slow down bleaching. Samples were incubated in the 

dark at RT for 30 minutes and 6µL sample was analyzed in KOVA Glasstic Slide 10 counting 

chambers (KOVA International, California, USA). The detection limit for infection 
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establishments was 20 000 cysts/gram feces, and 1666 cysts/gram in the diet- and mTOR-

manipulation experiments. The difference was due to the volume of sample analyzed in the 

respective experiments. A representative image from such analysis is shown in Figure 2. 

 

Figure 2. Two representative images of the microscope view for counting cysts (green). 

Propidium iodide (PI) stains DNA. Arrows and numbers exemplify the following: 1 and 6: 

typical G. duodenalis cysts not staining for PI; 2: green autofluorescence of fecal material; 3 

and 5: typical G. duodenalis cyst out of focus; 4: typical G. duodenalis cyst stained with PI 

Analysis of cyst counts 

G. duodenalis cysts counts were analyzed for significant differences between experimental 

groups. All analyses were performed in R (“R Development Core Team” 2008). First, all counts 

from four to seven dpi were summarized (“pooled”) per experimental group (genotype+diet 

combination) and pairwise tested for differences by a Kruskal-Wallis rank sum test. Seven dpi 

samples were further compared using a Kruskal-Wallis rank sum test. Pooled and 7dpi 

comparisons were done for WT diets and WT versus mTORΔIEC (normal diet), and for pooled 

samples the comparison for mTORΔIEC diets was also performed. See data in Appendix 5. 

Parasite genome equivalents in feces: DNA extraction and qPCR 

The samples used for microscopy were also used to extract DNA to quantify total parasite 

genome equivalents in fecal samples. Samples were resuspended using cut pipet tips (1000µL) 

and 100µL (corresponding to 10mg feces) was collected in new tubes. DNA was extracted 

following the protocol from the bead-based Maxwell 16 FFPE Plus LEV DNA Purification Kit 

on a Maxwell 16 Instrument (Promega Corporation, Wisconsin, USA) with the following 

exceptions: 14uL proteinase K and 126uL “Incubation buffer”, and 500uL lysis buffer was used 

per sample. DNA was eluted in 70µL nuclease-free water and stored at 4°C. qPCR for G. 

duodenalis ssu with IAC inhibition control was performed as described above for small 

intestinal samples but with 3uL DNA (equivalent of 0.4mg feces) and no added water. Starting 
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quantities (SQ) of G. duodenalis DNA was estimated by the CFX Maestro software using 

standard curves as described above. Total genome equivalents (cysts + trophozoites) per gram 

feces was calculated as (SQ in 0.4 mg feces / 0.05pg DNA per genome)*2500. Seven dpi 

samples were compared using a Kruskal-Wallis rank sum test in R. Comparisons were done for 

WT diets, WT versus mTORΔIEC (normal diet), and mTORΔIEC diets. 

Histological analysis of small intestinal tissues 

Small intestinal samples were rinsed with cold PBS, rolled and stored 24-36h in 4% 

paraformaldehyde at RT followed by storage at 4°C until further processing. Histology was 

performed at iPATH.Berlin, Core Unit of Charité - Universitätsmedizin Berlin, Germany by 

Dr. Anja Kühl. Paraffin sections (1-2 µm) of small intestinal swiss rolls were dewaxed and 

subjected to periodic acid-Schiff reaction (PAS; Sigma-Aldrich). Sections were coverslipped 

with corbit balsam (Hecht, Germany). For immunohistochemical detection of mTOR protein, 

1-2 µm paraffin sections were dewaxed and subjected to a heat-induced epitope retrieval step 

prior to incubation with anti-mTOR (clone 7C10, Cell Signaling). This was followed by 

incubation with biotinylated secondary antibody (Dianova). For detection, alkaline 

phosphatase-labelled streptavidin and chromogen RED (both Agilent) were employed. Nuclei 

were counterstained with hematoxylin (Merck) and sections were coverslipped with glycerol 

gelatin (Merck). Images were acquired using the AxioImager Z1 microscope (Carl Zeiss 

MicroImaging, Inc.). 
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3 Results 

The results from the two research projects are divided into two sections. The first reports my 

findings from E. falciformis infections in mice and has been published (Ehret, Spork, et al. 

2017). That section is a quote from the published work, in which results and discussion were 

integrated in one section. Additional aspects of my E. falciformis data which as relevant for this 

thesis are included in the Discussion. For the G. duodenalis project, results and discussion are 

reported separately. 

3.1 Project I: E. falciformis 

The following Results and Discussion section is a quote from my published work (Ehret, Spork, 

et al. 2017) 

3.1.1 Immune competent hosts induce protective immunity against 

E. falciformis infection  

To investigate E. falciformis development throughout the life cycle in 

a natural mouse host (NMRI mice) dual transcriptomes were produced 

at 3, 5, and 7 days post infection (dpi), which are suitable time points 

to assess asexual and sexual developmental stages of the parasite in its 

host (Haberkorn 1970; Mesfin and Bellamy 1979). We also 

investigated parasite development and transcriptomes in a mouse strain 

which is severely limited in adaptive immune responses (Rag1−/−; 

“immunocompromised” hereafter) with Rag1−/− and the respective 

isogenic background strain (C57BL/6 as control) at day 5 post 

infection. To further elucidate host immune responses and variation 

between the host genotypes and parasite sensitivity to host immunity, 

we also challenge infected all mouse groups (i.e. infected after recovery 

of a first infection; see Methods) and sampled at the same time-points 

as in naïve mice. Infections showed drastically decreased oocyst output 

(Fig. 1a and b) in immune competent hosts undergoing a second, 

challenge infection compared to naïve animals infected for the first 

time (Mann–Whitney test, in NMRI, n = 12, U = 32, p = 0.004; in 

C57BL/6, n = 24, U = 111, p = 0.008). Similarly, a strong reduction of 

parasite 18S rRNA (in cecum epithelia) in the challenge infection down 

to 3.5% of the amount measured in naïve hosts was detected in reverse 

transcription quantitative PCR (RTqPCR) in NMRI hosts (Fig. 1c). The 

model inferring this had a good fit (R2 = 0.94) and the change of the 

intercept for challenged compared to naïve hosts was highly significant 

(t = −6.71; p < 0.001). Differences in the slope were not significant (t 

= −1.522; p = 0.15), indicating that the amount of parasite material on 
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3 dpi is sufficient to explain a linear increase until 7 dpi. Overall this 

data is in line with the strong reduction of oocyst shedding seen in 

challenge infected immune competent mice, but also suggests that the 

host immune defense disturbs the parasite already at an early stage of 

infection, possibly even before 3 dpi. In contrast, in immune deficient 

mice no significant difference in parasite reproductive success (Fig. 1a) 

was observed between naïve and challenge infection (Mann–Whitney 

test; n = 24, U = 96, p = 0.10). Both in the immunocompromised and 

immune competent animals, however, all mice had cleared the 

infection by day 14. We thereby note that E. falciformis infection is 

self-limiting also in mice without mature T- and B-cells, however with 

a delayed peak of oocyst shedding in immune deficient hosts (Fig. 1b). 

E. vermiformis, in contrast, has been shown to display prolonged 

patency (shedding of oocysts up to 23 instead of 16 dpi) in 

immunocompromised hosts (Rose, Owen, and Hesketh 1984; Rose and 

Hesketh 1986; Rose, Wakelin, and Hesketh 1985). In comparison, the 

delayed peak of shedding we observe for E. falciformis in 

immunocompromised hosts does not affect pre-patency and patency 

periods (beginning and end of oocyst shedding), confirming earlier 

reports of largely lacking developmental plasticity in E. falciformis 

(Rose and Hesketh 1986). We take advantage of the presence of the 

same life cycle stages in hosts of varying immune competence to assess 

whether E. falciformis optimizes its host exploitation strategies in 

response to varying host defenses. 
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Figure 3. Oocyst output and changes in intensity of E. falciformis infection in mouse. Oocyst 

counts in naïve and challenge infection are shown for three different mouse strains. For 

infection of naïve NMRI 150 oocysts were used, for challenge infection 1500 oocysts. For 

C57BL/6 and Rag1−/− mice 10 oocysts were used in each infection. a) Overall output of shed 

oocysts and (b) shedding kinetics are depicted. c) RT-qPCR data of E. falciformis 18S in NMRI 

mice displays an increase in parasite mRNA over the course of infection. Significantly less 

parasite 18S transcripts (normalized against host transcripts of house-keeping genes) were 

detected in challenge infected mice. Formulas and prediction lines are given for linear models. 

d) The percentage of parasite mRNA detected by RNA-seq increases during infection (shown 

for NMRI). More mRNA is detected in naïve mice compared to challenge infected mice. 

Sporozoites and oocysts contained ~100% parasite material. 

3.1.2 Parasite and host dual transcriptomes can be assessed in 

parallel  

We found the increase in parasite numbers over time after infection to 

also be reflected by the proportion of E. falciformis mRNAs sequenced 

in the combined pool of transcripts from host and parasite (for NRMI 

mice in Figure 3d). Using mRNA from infected cecum epithelium we 

demonstrate that even early in infection (3 dpi, during early asexual 

reproduction) there is sufficient parasite material to detect parasite 
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mRNAs in the pool including host mRNAs, and to quantify individual 

host and parasite mRNA abundance (Table 4). The number of total 

(host + parasite) read mappings for individual replicates ranged from 

25,362,739 (sample Rag_1stInf_0dpi_rep1) to 230,773,955 

(NMRI_2ndInf_5dpi_rep1). Similar to qPCR, a minimal level of 

background noise in the abundance estimates of E. falciformis 

transcripts is detected in RNA-seq for uninfected mice at 0 dpi. We did 

not detect bias in overall mRNA abundance patterns induced by, e.g., 

use of different sequencing platforms (and resulting differences in 

overall depth of sequencing), or by groups of samples processed in 

parallel (experimental batches) using a multivariate technique 

(multidimensional scaling, MDS; Appendix 6: Figure S1). Efficient 

normalization was confirmed in that samples with large differences in 

parasite read proportions show similar transcriptome signatures. This 

normalization also resulted in unimodal distributions of read numbers 

(Appendix 7: Figure S2) in agreement with negative binomial 

distributions assumed for statistical modeling and testing. Remarkably, 

at 7 dpi before oocyst shedding peaks, samples from infected naïve 

mouse epithelium contained 77% and 92% parasite mRNA, i.e., 

drastically more mRNA from the parasite than from the host (Figure 3d 

and Table 3). Our transcriptomes for these late infection samples are in 

agreement with previously published microarray data from mice 

infected with E. falciformis (Schmid et al. 2013), as log2 fold-changes 

at our 7 dpi versus controls correlated strongly – for given mRNAs – 

with log2 fold changes at 6 dpi versus controls in that study 

(Spearman’s σ = 0.72, n = 9017, p < 0.001; Appendix 8: Figure S3). 

Considering both biological differences in the experiments, such as 

exact time-points for sampling, and technical differences between the 

two methods, this correlation confirms the adequacy of using dual 

RNA-seq for assessing the host transcriptome in the presence of large 

proportions of parasite mRNA. Below, we first describe changes in the 

mouse transcriptome and suggest possible mechanisms at play. 

Variance in host transcriptome changes upon infection constitutes a 

potential environmental stimulus or stress for parasites to react on, as 

addressed later.  



48 

 

Table 3 Summary of data per sample, sorted according to number of reads mapping to the E. 

falciformis genome. 

 

The mouse transcriptome undergoes large changes upon E. falciformis 

infection  

We here show that upon infection with E. falciformis, which induces 

weight loss (Appendix 9: Figure S4) and intestinal pathology in mice, 

the host transcriptome undergoes drastic changes affecting more than 

3000 individual mRNA profiles significantly (edgeR; glm likelihood-

ratio tests corrected for multiple testing, false discovery rate [FDR] < 

0.01). Statistical testing for differential abundance between infected 

and uninfected mice revealed that differences in mRNA abundance 

were more pronounced (both in magnitude and number of genes 

affected) at the two later time-points post infection (Table 4, Figure 4a, 

Appendix 10: Figure S5). 325 mRNAs were differently abundant (FDR 
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< 0.01) between controls and 3 dpi, 1804 mRNAs between controls and 

5 dpi, and 2711 mRNAs between controls and 7 dpi. This leads to a 

combined set of 3453 transcripts responding to infection. Differentially 

abundant mRNAs early in infection (3 and 5 dpi) were not a mere 

subset of genes differentially abundant later in infection (7 dpi; Figure 

4a), which would be the case if the same genes were regulated 

throughout infection. Instead, the transcriptional profile of the mouse 

changes more fundamentally with different genes varying in abundance 

late compared to early in infection. This is in line with expression of 

cytokines as major regulators of immune responses (Stange et al. 2012; 

Ovington, Alleva, and Kerr 1995) against E. falciformis and with 

extended regulation of the mouse transcriptome upon infection 

(Schmid et al. 2013). To further analyze the distinct responses early and 

late in infection, we performed hierarchical clustering on transcript 

abundance patterns at different time-points post infection (Figure 4b). 

Three main sample clusters formed (dendrogram indicating similarities 

between columns at top of Figure 4b). Immune deficient Rag1−/− mice, 

including infected Rag1−/− samples, show an expression pattern most 

similar to uninfected samples. This similarity between infected and 

non-infected Rag1−/− samples confirms the immune deficiency 

phenotype; a failure to react to infection in these mice, and suggests a 

strong influence of the adaptive immune system on overall 

transcriptional responses. Surprisingly, these patterns indicate that 

innate immune responses and other B- and T-cell independent 

processes play detectable though relatively small roles (mouse gene 

cluster 4; Mm-cluster hereafter, Figure 4b) in shaping the mouse 

transcriptome upon E. falciformis infection.  



50 

 

 

 

Figure 4. Differentially abundant mouse mRNAs and clustering thereof. a Venn diagram 

visualizes the overlap between genes showing differential abundance (FDR < 0.01; edgeR glm 

likelihood-ratio tests) between i) uninfected controls and different time-points post infection 

and ii) between different time-points and the sum of all genes reacting to infection. Controls 

from challenge infection were used. b Hierarchical clustering of differentially abundant mRNAs 

performed on Euclidean distances using complete linkage. Cluster cut-offs (dendrogram 

resolution) were set to identify gene-sets with profiles interpretable in relation to the parasite 

life cycle and between mice of different immune competence. Clusters are represented with 

color on the left-hand side of rows and additional numbering is used to refer to clusters (right). 
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Table 4. Number of mouse and E. falciformis mRNAs significantly differentially abundant in 

different comparisons (Contrasts). 

 

Responses to parasite infection differ between immunocompromised and 

immune competent mice  

The self-limiting nature of E. falciformis infection and host resistance 

to reinfection ((Ovington, Alleva, and Kerr 1995) and Figure 3a) makes 

it interesting to analyze transcriptomes of immune competent hosts in 

depth. On 3 and 5 dpi, mRNAs of two gene clusters have overall high 

abundance in samples of all immune competent infected animals (Mm-
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clusters 1 and 2). Other mRNAs (Mm-clusters 3 and 4) show lowered 

abundance in all those infected samples. Gene Ontology (GO) terms 

enriched among the mRNAs which become more abundant only early 

in infection (Mm-clusters 1 and 2) are, e.g., “stem cell population 

maintenance”, “mRNA processing”, and “cell cycle G2/M transition”, 

indicating tissue remodeling in the epithelium. This is expected in an 

infection which damages epithelial tissue (Blagburn and Todd 1984; 

Stange et al. 2012; Stange 2012), but the early onset of these reactions 

is noteworthy. In addition, terms such as “regulation of response to 

food” are enriched (Appendix 11: Table S1). This is interesting since 

weight losses and malnutrition are generally common during parasitic 

infections (Stephenson, Latham, and Ottesen 2000; Aloisio et al. 2006), 

also in Eimeria spp. infections (Stange 2012; Preston-Mafham and 

Sykes 1970; Sharman et al. 2010), and weight loss was also seen in the 

present study (Appendix 9: Figure S4). Genes whose mRNA levels 

decreased in abundance upon infection (Mm-clusters 3 and 4) indicate 

induction of IL-1 and IL-6, which are involved in inflammation, 

including T- and B-cell recruitment and maturation, and broad acute 

phase immune responses (Appendix 11: Table S1). IL-6 has also been 

shown to support tissue repair and inhibit apoptosis after epithelial 

wounding (Kuhn et al. 2014). In addition, IL-6 is linked to Th17 

responses (Park et al. 2005) which are known to play an important role 

in responses to E.falciformis (Schmid et al. 2013; Stange et al. 2012). 

It is therefore surprising to see these cytokines being downregulated, 

and it might indicate host regulatory functions to limit e.g. tissue 

damage due to inflammation Further terms indicate a regulation of 

transforming growth factor-β (TGFβ) which is important for wound 

healing in intestinal epithelium (Beck et al. 2003), epidermal growth 

factor (EGF) and tumor necrosis factor (TNF), which regulate 

proliferation of epithelial cells and inhibit apoptosis in epithelial cells 

(Suzuki et al. 2010; Kaiser and Polk 1997). Inhibition of Notch 

signaling, which is also highlighted by GO terms, has been shown to 

alter the composition of cell-types in the epithelium towards Paneth and 

Goblet-like cells (VanDussen et al. 2012). Although speculative, 

several of the GO terms (e.g. “calcineurin-NFAT signaling cascade”, 

“Inositol-phosphate mediated signaling”, “Notch receptor processing” 

in addition to those mentioned above) annotated to genes whose mRNA 

levels change in abundance upon early infection (Mm-cluster 3 and 4) 

can be linked to explain fundamental mechanisms. Inositol signaling 

can lead to release of calcium and calcineurin-dependent translocation 

of NFAT to the nucleus; and there to activation of NFAT target genes 

in T-cells, but also many other cell types (Macian 2005). In addition, 

changes in the host epithelium do take place when cells are invaded by, 

e.g., E. falciformis, but also generally by pathogens, and this is reflected 
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in the stem-cell and cell cycle-related GO terms described above for 

Mm-clusters 1 and 2. Further investigation of the role of the processes 

and molecules highlighted here will contribute to better understanding 

of epithelial responses to intestinal intracellular parasitic infection. 

Interestingly, in T- and B- cell deficient hosts, the same four groups of 

genes described above (Mm-clusters 1–4, Figure 4b), which are 

responsible for these dominating responses in immune competent hosts 

show no differences between infected and non-infected immune 

deficient animals.  

Adaptive immune responses characterize late infection 

Pronounced transcriptional changes in the mouse host occur late in 

infection in immune competent animals (Table 4 and Mm-cluster 5 in 

Figure 4b). Annotated processes and functions (GO terms) for genes 

with increased abundance at 7 dpi reflect the expected onset of an 

adaptive immune response (Appendix 11: Table S1). As late as 5 dpi, 

genes responsible for these enrichments are still low on mRNA 

abundance. This confirms a strong induction of immune responses, 

particularly adaptive immune responses, between 5 and 7 dpi. This 

result is well in line with previously described immune responses to 

infection with Eimeria spp. (Rose 1974; Blagburn and Todd 1984; 

Rose, Hesketh, and Wakelin 1992; Gadde et al. 2009; Sühwold et al. 

2010; A. L. Smith and Hayday 1998b;  a. L. Smith and Hayday 2000). 

Protective responses occur earlier in challenge infected than in naïve 

hosts  

Transcriptomes from three samples from early and late challenge 

infection show the same distinct profile of elevated mRNA abundance 

at 3, 5 and 7 dpi (Mm-cluster 6, Figure 4b). The underlying mRNAs 

are highly enriched for GO terms for RNA processing, e.g., splicing, 

which indicates post-transcriptional regulation. In addition, terms for 

histone and chromatin modification are enriched (Appendix 11: Table 

S1). This, along with less oocyst shedding during challenge infection, 

suggests that protective immune responses in challenge infected 

animals are regulated both at the transcriptional and post-

transcriptional level. The high abundance of these mRNAs at different 

time-points post infection in wild type hosts (NMRI) further indicates 

that protective immunity is similar at these time-points. Possibly, 

induction and chronologic differences in challenge infected animals 

occur before 3 dpi. The completely cleared infection in some samples 

(Table 3; and unexpected clustering of e.g. NMRI_2ndInf_7dpi_rep2), 

apart from clearly demonstrating protection, also supports an early 
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timing of this response upon challenge infection. However, the distinct 

shared profile at the investigated timepoints (days 3, 5, and 7) does 

show that the protective response is still detectable at the transcriptional 

level several days after the challenge.  

3.1.3 A framework to interpret E. falciformis transcriptomes is 

provided by orthologues in the Coccidia E. tenella and T. gondii 

To establish E. falciformis as a model for coccidian parasites, 

transcriptome profiles of orthologue genes from closely related 

parasites can help to draw parallels between life cycle stages. This can 

be informative in predicting gene function and in analyzing 

evolutionary forces acting on the different life cycle stages. Therefore, 

we performed correlation analysis between our E. falciformis 

transcriptome and RNA-seq transcriptomes from closely related 

parasites at corresponding stages of their life cycles. Two datasets for 

the economically important chicken parasite E. tenella (Reid et al. 

2014; Walker et al. 2015) and one dataset of the model apicomplexan 

parasite T. gondii (Hehl et al. 2015) were included. The latter was used 

because it is to date the only available dataset for the life cycle of T. 

gondii for multiple stages within and outside of both an intermediate 

host and the definitive (cat) host, and it is therefore comparable with 

our data. For all samples from these studies and our data, abundances 

of orthologous genes were correlated and Spearman’s coefficient was 

compared (Figure 5).  
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Figure 5. Correlations of E. falciformis mRNA abundance with orthologues from other 

Coccidia. E.falciformis mRNA abundance was compared to that of orthologous genes of E. 

tenella (Reid et al. 2014; Walker et al. 2015) and T. gondii (Hehl et al. 2015). Correlation 

coefficients (Spearman’s ρ) were clustered using complete linkage. T. gondii and Eimeria spp. 

“late infection” samples cluster together. E. falciformis early infection samples cluster with E. 

tenella merozoites. E. falciformis sporozoites cluster with E. falciformis early infection, 

whereas unsporulated oocysts cluster with E. tenella unsporulated oocysts. 

With the exception of sporozoites (see below), transcriptomes tend to 

be more strongly correlated (similar) between corresponding life cycle 

stages of different parasite species than between stages in the same 

parasite species. Orthologues in E. tenella and E. falciformis gamete 

stages (purified gametocytes and 7 dpi intestinal samples, respectively) 

are highly correlated in their expression across the two species, 

indicating conserved gene sets orchestrating sexual replication of the 

two parasites. Similarly, transcriptomes of E. tenella merozoites from 

both independent studies of that parasite are most similar to early E. 

falciformis samples, indicating similarity also during asexual 



56 

 

reproduction. E. falciformis unsporulated oocyst transcriptomes share 

the highest similarity with those of unsporulated E. tenella oocysts. E. 

falciformis sporozoites transcriptome profiles are more similar to E. 

falciformis early infection samples than to sporozoite transcriptomes of 

E. tenella orthologues. Similarities between sporozoites and early 

infection stages could be explained by similar biological processes, 

especially host cell invasion (and reinvasion by merozoites), being 

prepared or performed. Sporozoites are the only life cycle stages in 

which orthologue mRNA abundance patterns show such dissimilarities 

to E. tenella and this might indicate a higher species specificity of the 

genes and processes in this invasive stage. This could be a result of 

virulence factors being expressed in this stage, which are known to 

undergo rapid gene family expansion, as seen in surface antigens 

(SAGs) in E. falciformis (Heitlinger et al. 2014), T. gondii (Gajria et al. 

2007), Neospora caninum (Reid et al. 2012), and other Eimeria spp. 

(Reid et al. 2014), or var. genes in Plasmodium falciparum (Gardner et 

al. 2002). Below we provide a detailed description of the E. falciformis 

transcriptome, including a discussion of genes which have been shown 

to be important in closely related parasites such as E. tenella and T. 

gondii.  

3.1.4 Overall transcriptional changes in the life cycle of E. falciformis 

Similar to the host transcriptome, differences in parasite mRNA 

abundance were mostly observed between late and early infection. 

Between 3 and 5 dpi 103 mRNAs were differently abundant (edgeR 

likelihood ratio tests on glms; FDR < 0.01), whereas between 3 and 7 

dpi 1399 mRNAs, and between 5 and 7 dpi 2084 mRNAs were 

differentially abundant (Figure 6a, Table 4, Appendix 10: Figure S5). 

We therefore define transcriptomes as distinct at a threshold of >1000 

parasite genes being differently expressed given the statistical power of 

our experiment (and i.e. regard the ~100 genes in 3 dpi versus 5 dpi less 

relevant for our analysis). Hierarchical clustering resulted in seven 

different gene clusters, with differently pronounced profiles in different 

life cycle stages (sample clusters). Confirming the analysis based on 

significant thresholds (differential abundance), clustering did not 

separate samples from 3 and 5 dpi and we thus refer to these as “early 

infection” and 7 dpi as “late infection”.  
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 Distinct abundance differences (>1000 genes differentially expressed 

and separated by sample clustering) define early infection with a single 

cluster of genes (parasite gene cluster 6, “Ef-cluster 6” hereafter, Figure 

6b). At those time-points asexual reproduction takes place (Haberkorn 

1970; Mesfin and Bellamy 1979). Two separate gene clusters define 

late infection (7 dpi, Ef-clusters 2 and 7). The separation of these genes 

into two gene clusters was driven by slightly different expression 

profiles during other life cycle stages while being mainly characterized 

by very strong expression at 7 dpi. In these samples we assume 

gametocytes to be present due to the peak of oocyst shedding 1 day 

later (Figure 3a) (Mesfin and Bellamy 1979) and similarity of these 

transcriptomes with purified E. tenella gametocytes (Fig. 3). The 

extracellular stages, sporozoites (Ef-cluster 4) and unsporulated 

oocysts (Ef-clusters 1 and 5) are clearly distinguished by high mRNA 

abundance. In order to assess the biological relevance of these patterns, 

we applied enrichment analyses for GO terms and “gene family 

conservation profiles” based on earlier annotations (Heitlinger et al. 

2014).  

Figure 6. Differentially abundant E. falciformis mRNAs and clustering thereof. a Venn 

diagram visualizes the overlap between genes showing differential abundance (FDR < 0.01; 

edgeR glm likelihood-ratio tests) between intracellular stages at 3 dpi, 5 dpi and 7 dpi. b 

Hierarchical clustering of abundance profiles for differentially abundant mRNAs performed 

on Euclidean distances using complete linkage. Cluster cut-offs (dendrogram resolution) 

were set to identify gene-sets with profiles interpretable in relation to the parasite life cycle. 

Clusters are represented with color on the left-hand side of rows and additional numbering 

is used to refer to clusters (right). 
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Sporozoites express genes which are evolutionarily unique to E. 

falciformis 

Sporozoites are in our study released from oocysts in vitro, after which 

they are capable of invading host cells. We suggest that the requirement 

for proteins which mediate motility and other invasion processes are 

reflected by their mRNA levels in the transcriptome. Due to the “host-

mRNA free” nature of transcriptomes generated from sporozoites 

raised in vitro and deep sequencing it was possible to assess those 

transcripts even at relatively low mRNA expression levels observed for 

some of them (R. Ryan, Shirley, and Tomley 2000) (Appendix 10: 

Figure S5). We find that E. falciformis sporozoites are defined by a 

group of genes (Ef-cluster 4, Figure 6b) that is largely specific to E. 

falciformis (Table 4). This indicates that E. falciformis does not share 

with other species many of the abundant sporozoite genes so far 

described for those Coccidia. Interestingly, five out of 12 SAG gene 

transcripts predicted for E. falciformis (Heitlinger et al. 2014) are 

typical for sporozoites. SAG proteins, divergent or unrelated between 

species, are thought to be involved in host cell attachment and invasion, 

and possibly in induction of immune responses in other apicomplexan 

species (Reid et al. 2014, 2012; Mineo and Kasper 1994; Grimwood 

and Smith 1996; Cowman and Crabb 2006; Carruthers and Boothroyd 

2007; Chow et al. 2011). In total, mRNAs encoding ten SAGs were 

detected as differentially abundant in our data, but in other life cycle 

stages than sporozoites. Such expression of particular SAGs in stages 

other than sporozoites has been reported for E. tenella (Tabarés et al. 

2004). Genes also receiving attention as potential virulence factors in 

E. tenella are rhoptry kinases (RopKs) (Talevich and Kannan 2013). 

Transcripts of two out of ten E. falciformis orthologues of RopKs are 

highly abundant in sporozoites (Ef_cluster 4). Also in E. tenella, some 

RopKs are expressed predominantly in sporozoites and have been 

shown to be differentially expressed compared to E. tenella 

intracellular merozoite stages (Oakes et al. 2013). For genes with 

orthologues known to be important in other Coccidia, e.g., SAGs and 

RopKs, orthologues indicate a molecular function, but the biological 

relevance of their expression in E. falciformis remains unclear. For the 

overall biological functions of sporozoite genes (Ef-cluster 4), GO 

enrichment data suggests ATP production and biosynthesis processes 

as dominant features (Appendix 12: Table S2). In addition, this 

invasive stage is characterized by "maintenance of protein location in 

cell" and GO terms which indicate similar biological functions. 

Possibly, this reflects control of microneme or rhoptry protein 

localization as sporozoites prepare for invasion. The genes driving the 

enrichment of those processes (annotations) would be good candidates 
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for mechanistic studies to investigate apicomplexan and E. falciformis 

specific invasion processes. Sporozoites therefore display a 

transcriptome indicative of large requirements for ATP and production 

of known virulence factors such as SAG and RopKs and are 

characterized by expression of species-specific genes. Genes typical for 

the sporozoite stage displayed a species-specific profile with the 

respective gene families absent outside E. falciformis (Table 4). This 

mirrors our analysis of orthologous genes, in which sporozoites were 

the only life cycle stage not displaying strong cross-species correlation 

in their transcriptome. This suggests that traits involved in host cell 

invasion may have evolved quickly, and rapidly became specific for a 

parasite in its respective host species or target organ niche.  

Growth processes dominate the transcriptome during asexual 

reproduction  

Invasion of epithelial cells by sporozoites is followed by asexual 

reproduction leading to a massive increase in parasite numbers between 

3 and 5 dpi, when several rounds of schizogony take place in a 

somewhat unsynchronized fashion (Haberkorn 1970; Mesfin and 

Bellamy 1979). In early infection, and similar to sporozoites, mRNAs 

annotated for biosynthetic activity are enriched, but different 

genes/mRNAs are contributing to enrichment of similar GO terms 

compared to sporozoites (Appendix 12: Table S2). Enrichment of terms 

referring to replication and growth-related processes (biosynthesis) 

highlights the parasite’s expansion during schizogony. Amongst early 

infection high abundance mRNAs, we found four out of ten RopKs 

which are predicted in E. falciformis (Heitlinger et al. 2014). This is the 

largest number of RopKs in any one group of differentially abundant 

mRNAs in our analysis and they constitute a statistically significant 

enrichment (Fisher’s exact test; p < 0.001). Three of these have 

orthologues in T. gondii: ROP41, ROP35 and ROP21 (Taylor et al. 

2006; Saeij et al. 2007; Fleckenstein et al. 2012; Fox et al. 2016). Our 

data gives a first overview of expression patterns for E. falciformis 

RopKs and offer a good starting point for functional analysis of these 

virulence factors in Eimeria spp.   

Gametocyte motility dominates the transcriptome late in infection  

Two E. falciformis gene clusters show a distinct profile characterized 

by high mRNA abundance on 7 dpi (Ef-clusters 2 and 7; Figure 6b). 

Both clusters display low mRNA abundance in other life cycle stages, 

especially in oocysts and sporozoites. Enriched GO terms such as 

"movement of cell or subcellular component" and “microtubule-based 
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movement” along with terms suggesting ATP production (e.g. “ATP 

generation from ADP”) indicate the presence of motile and energy 

demanding gametocytes in these samples. Peptide and nitrogen 

compound biosynthetic processes along with “chitin metabolic 

process” (Appendix 12: Table S2) also suggest that the parasite 

produces building blocks for oocysts and their walls in this stage. Our 

data confirms findings of Walker et al. (2015) in E. tenella 

gametocytes: these authors also identified cytoskeleton related and 

transport processes as upregulated in gametocytes compared to 

merozoites or sporozoites (Walker et al. 2015).  

Oocysts are characterized by cell differentiation and DNA replication 

processes  

Oocysts are the infective stage in the life cycle of Coccidia. They are 

shed with feces as unsporulated, “immature”, capsules, and in the 

environment they undergo sporulation – meiotic and mitotic divisions 

(Duszynski 2011) – and become infective. Our oocysts were purified 

in the unsporulated stage from passage in lab mice. Two expression 

clusters of mRNA are highly abundant in this stage (Ef-clusters 1 and 

5; Figure 6b). One of these oocyst gene sets (Ef-cluster 5) is enriched 

for apicomplexan-shared orthologues (Table 5) and for GO terms such 

as “DNA repair”, “protein modification process” and “cell 

differentiation”, supporting that expected sporulation processes have 

been initiated. The same cluster is also the only cluster which is 

enriched for transmembrane domains (Fisher’s exact test, FDR < 

0.001).  

  

Table 5. Enrichments and underrepresentation of species or species-group orthologues in 

E. falciformis gene clusters. 
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E. falciformis does not respond plastically to differences in the host 

transcriptome  

We show that infections with E. falciformis in its natural host, the house 

mouse, display a chronological pattern independent of the immune 

status of the host. This suggests genetic canalization of the number and 

timing of asexual reproductive cycles during schizogony. Similar 

observations have been reported before for a closely related parasite 

strain (Rose and Hesketh 1986). Beyond developmental timing, 

parasites appear to lack strategies for most efficient host-interactions in 

response to the host’s immune status. This is supported by the lack of 

differences in parasite transcriptomes from immune competent and 

immune deficient hosts, or from naïve and challenge infected hosts 

(Figure 6b). In its core our finding of a lack of transcriptional plasticity 

is a negative result: we can – given our experimental design and 

statistical power – not reject our null hypothesis, which is the absence 

of differences. It is impossible to prove a negative (Popper 1980). 

However, using the changes across the parasite life cycle as a 

benchmark we can state that any change in the parasite transcriptome 

would be so minute to be very unlikely to correspond to an altered 

“infection program” or strategy. Only recently have transcriptomes 

been used to investigate plasticity in “infection programs”, which 

parasites induce as a response to host signals. Since gene expression is 

orchestrated by the genetic makeup of an organism, plasticity in 

transcription – when it occurs – is likely to be an adaptation which 

allows the parasite to react on host stimuli and to produce an altered 

phenotype. We here suggest that it is useful to distinguish between such 

plastic (responsive) transcription programs and more “passive” forms 

of phenotypic change imposed on the parasite without being controlled 

at the transcriptional level. In our case, the extent of oocyst shedding – 

probably an important component of parasite fitness – appears to be 

attributable to “unbuffered” host impact. In a Nematode, the presence 

of phenotypic plasticity has for example been shown to lack a 

transcriptional basis (Weclawski et al. 2014), and could therefore be 

regarded “passive” or “unbuffered”. In contrast, unicellular Entamoeba 

spp. infections of variable pathogenicity (i.e. phenotypic plasticity) did 

indeed manifest in transcriptional differences between the parasites 

under various in vitro conditions (Weber et al. 2016). Among 

apicomplexan parasites, different infection programs with distinct 

transcriptional profiles have been proposed: in Plasmodium spp., the 

parasite’s transcriptome is distinct in different mouse genotypes 

(BALB/c and C57BL/6) and tissues within one genotype (Lovegrove 

et al. 2006), hence demonstrating the capability for – likely adaptive – 

plasticity in this parasite. Similarly, and even more closely related to 
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Eimeria spp., the coccidian T. gondii forms dormant tissue cysts 

(bradyzoites), a process induced by and depending on the host 

environment (Ferreira da Silva et al. 2008), and involving large changes 

in parasite transcriptomes (Buchholz et al. 2011). In addition, T. gondii 

is capable of infecting all studied warm-blooded vertebrates and all 

nucleated cells in those animals (David Sibley 2011) suggesting 

parasite plasticity in different host environments also in the tachyzoite 

stage. A switch from epithelial remodeling and innate immune 

processes to adaptive immune responses in the immune competent 

host, between 5 and 7 dpi, is paralleled by a switch from asexual to 

sexual reproduction of E. falciformis irrespective of host immune 

status. This contemporaneity might be an evolutionary adaptation of 

the parasite to host responses in order to complete its life cycle before 

the host environment becomes hostile. Such a response could be based 

on genetically canalized developmental timing or the parasite sensing 

an immune challenge and establishing a reaction plastically. Our results 

on parasite development support a genetically canalized developmental 

timing. Beyond this developmental timing, the severity of E. 

falciformis infection (measured as the extent of oocyst shedding) varies 

between hosts of different immune competence. We propose that 

adaptive plasticity would be identified as a transcriptional response. 

Since the parasite’s transcriptome in an immune deficient host cannot 

be distinguished from the one in an immune competent host, we suggest 

that E. falciformis follows a non-plastic, and instead genetically 

canalized program in the mouse host. We therefore conclude that E. 

falciformis cannot plastically adjust infection strategies to optimize 

exploitation of hosts which vary in susceptibility. 

Quote from (Ehret, Spork, et al. 2017) ends here. 
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3.2 Project II: G. duodenalis 

3.2.1 Establishment of G. duodenalis infection in a mouse model 

In order to optimize conditions for experimental G. duodenalis GS/H7 infections in my model 

animals in our facilities, experiments were carried out using the mTORflox/flox (WT control; see 

Methods). Pilot infections served to ensure a reproducible readout of one of my most important 

parameters, cyst shedding, in our setting. To that end, we performed pilot infections for a 

number of reasons. We needed to 1) evaluate the necessity to pre-treat animals with a previously 

published antibiotics-mix (e.g. Barash, Maloney, et al. 2017; Barash, Nosala, et al. 2017 as well 

as personal communication with Steven Singer) as commonly required to establish G. 

duodenalis infection in mice. We also 2) evaluated two previously published infection doses 

(106 and 5x106 trophozoites) which generated cyst shedding; 3) evaluated the possibility to use 

both males and females without introducing too high variance for the above specified 

sensitivity; 4) sampled at different time-points (6 am, 12 am and 6 pm) during the day to 

determine whether certain time-points generated lower variance and/or higher sensitivity for 

cyst detection; and finally 5) to identify the peak cyst shedding day in order to sacrifice hosts 

around this timepoint. 

In order to reduce, replace and refine experiments, I aimed to have as low an infection dose as 

possible for the desired readout. I also had a preference to avoid unnecessary manipulation 

(antibiotics treatment), and a preference to use both males and females, to both generate sex-

independent data and to reduce the number of animals required in the breeding process. For 

practical reasons and the relatively minor drawbacks (Adell et al. 2014), trophozoites were 

chosen for infection. Doses applied in two previous publications were evaluated; one was from 

Shukla and Sidhu (Shukla and Sidhu 2011), which used assemblage A, Portland strain I 

parasites, BALB/c mice (sex not reported), no antibiotics, and an infection dose of 5x106 

trophozoites. The other by Barash et al. (Barash, Maloney, et al. 2017) used assemblage B, 

GS/M/H7 trophozoites in C57BL/6J female mice, with antibiotics pre-treatment and 106 

trophozoites. The first infection without antibiotics and the low infection dose (  
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Table 6) did not generate detectable cysts. We therefore proceeded with both antibiotics-

treatment and the higher dose to ensure a readout and cysts were detected in all animals (Figure 

7). In initial experiments, antibiotics treatment correlated with a temporary decline in weight-

gain or weight-loss, and a worsened general appearance (e.g. fur and posture) in some mice for 

3-4 days as a result of antibiotics treatment. Therefore, instead of pre-treating with antibiotics 

for 3 days as in Barash et al. (2017), I pre-treated for 7 days prior to infection since all mice had 

returned to their weight curve 5-6 days after introduction of antibiotics. With this protocol, no 

mice had fitness-scores on the day of infection. 
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Table 6. Pilot infection experiments overview. 

Infection 

establishmen

t experiment 

number 

Mouse sexes Antibiotics pre-

treatment 

Infection 

dose 

Housing 

condition 

Comment 

1 Male and female No 106 2-5 mice per 

cage 

No cysts detected by 

immunofluorescence labelling and 

microscopy 

2 Male and female Yes, 3 days prior to 

infection 

5x106 2-5 mice per 

cage 

Cysts were detected in all 

individuals 

3 Male and female Yes, 7 days prior to 

infection 

5x106 1 mouse per 

cage 

Cysts were detected in all 

individuals 

4 Male and female Yes, 7 days prior to 

infection 

5x106 2-5 mice per 

cage 

Cysts were only evaluated as 

present or non-detectable; not 

quantified. Cysts were detected in 

all individuals 

The minimum requirement here was to achieve detection of a difference of (sensitivity) 106 

cysts/gram feces between days or groups (Appendix 1). 

Antibiotics were required in our setting 

An initial experiment was performed with a low infection dose and without antibiotics pre-

treatment of mice. A commercial anti-Giardia cyst antibody was used for detection. 

Commercially available cysts spiked into mouse feces were included as positive controls. No 

cysts were detected from mice infected in this experiment.  

Established cyst shedding and time of day for sampling 

Based on the previously published requirement to pre-treat some mice with antibiotics in order 

to establish infection (Singer and Nash 2000) I now introduced pre-treatment with antibiotics. 

In infection establishment experiment number one and two (  
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Table 6) mice were pre-treated for three days prior to infection. Due to temporary observed 

weight losses, this time was increased to seven days prior to infection for infection 

establishment experiment number three and four. A meta-analysis of Giardia spp. infections 

and cysts as one readout parameter (Adell et al. 2014) had reported drastic differences in cyst 

shedding numbers in mice only when the infection dose was increased from 107 to 108 

trophozoites. Although providing an indication for the dose change sensitivity, that study 

compared different experiments from different facilities, different G. duodenalis assemblages, 

and did not consider antibiotics treatments. I reasoned that a slight increase from 106 to 5*106 

could have an impact in our specific setup and increase chances to establish infection without 

the drawback of introducing animal suffering. I therefore simultaneously increased infection 

dose and introduced antibiotics pre-treatment. Cyst shedding was confirmed by microscopy in 

all infected WT individuals, and the kinetic was within the expected range (Figure 7 and in the 

literature e.g. (Shukla and Sidhu 2011).  

 

Figure 7. Pilot experiment cyst shedding in WT mice with standard facility diet. Cyst numbers 

were determined by microscopy of labelled cysts. Results are shown from experiments using 

antibiotics in mouse drinking-water, and 5x106 trophozoites for oral infection. In experiment 

(batch) No. 2, mice were housed in groups of 2-5 mice and the experiment ended on 18 dpi, and 

in experiment (batch) No. 3 all mice were housed in individual cages. Cysts were detected in 

all individuals on at least one examined time-point in both experiments. Datapoints shown at 

103 are zero-counts. n for batch 2 = 6 and n for batch 3 = 10. 

Pooled feces collected after the 12h dark cycle with access to food were also analyzed and had 

slightly higher cyst counts (data not shown) but based on the large variation in numbers between 

individuals that sensitivity was considered to be driven by a few individuals and not informative 

for the desired downstream analyses.  
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Infection was established by oral gavage in all individuals 

The cyst shedding data showed that individuals had different peak-shedding days post oral 

gavage infection. Although such patterns might be present also in published datasets, those 

generally visualize means/medians and variance/standard deviations/s.e.m., but seldomly show 

individual datapoints. I therefore wanted to exclude that initial infection by oral gavage had 

failed in some individuals, and that shedding in those was starting (and peaking) later due to 

infection by cysts by coprophagy from infected cage-mates. Therefore, an additional 

experiment was carried out with the established protocol and with individual housing of all 

mice. All individuals shed cysts in this experiment. Although re-infection by cysts cannot be 

excluded there were two major reasons to co-house the mice. One reason is to reduce animal 

suffering and additional stress which may also influence experimental outcomes. The other 

reason was to enable simultaneous infection batches of all four experimental groups (due to 

space limitations in the facility). Therefore, mice were onwards housed in groups of 2-5 mice 

per cage (with exceptions of biting/fighting males which in a few cases were housed in single 

cages).  

Cyst shedding peaked on day eight post infection 

In order to select the day for analysis of intestinal parasite loads by qPCR, cecum analysis and 

RNA-seq transcriptome analysis of host epithelial responses, a high-parasite load day was 

desired. Cyst shedding data for all pilot infections carried out with the same infections dose and 

antibiotics treatment were pooled and day 8 post infection determined as the highest median 

cyst shedding day, on which all animals shed cysts. This peak was not as distinct as can be seen 

in some published datasets (Shukla and Sidhu 2011), but the pattern is commonly seen in 

experimental infections of mice with G. duodenalis as well as Giardia muris (e.g. Roberts-

Thomson et al. 1976 and personal communication Steven Singer, Georgetown University, 

USA, and Ivet Yordanova, Free University, Germany).  

3.2.2 Manipulation of diet and mTOR signaling in host epithelia 

To test the impact of arginine availability on G. duodenalis replication and reproduction in vivo, 

I infected mice with G. duodenalis assemblage B trophozoites (GS/H7). Mice were fed normal 

food (containing 1% L-arginine) or arginine-free food. Since I am interested in the role of 

arginine, which is sensed in the host by the mTOR network, mice with reduced mTOR 

expression levels in intestinal epithelia were used (applying the Cre-loxP system for mTOR-

floxed animals; (Sampson et al. 2016), see Methods). See Figure 8 for an overview of the 

experimental design.  
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Figure 8. Overview of experimental groups. Bottom boxes represent the eight experimental 

groups. WT = mouse expressing mTOR flanked by loxP, mTORΔIEC = Cre-induced mTOR 

deletion in intestinal epithelial cells. “Sufficient arginine” = 1% L-arginine present in food, 

“Arginine-free” = food lacking L-arginine, Control = uninfected, parasite image (courtesy of 

Scott C. Dawson, UC Davies) = group was infected with G. duodenalis trophozoites. 

Illustration by Estefania Delgado Betancourt, Robert Koch-Institute. 

Mice expressing Cre-recombinase under the epithelium-specific villin-promoter were crossed 

with mice with a loxP-sequence flanking the mTOR region, targeting mTOR for Cre-

recombinase. Genotypes of all mice were confirmed by PCR and gel electrophoresis. mTOR 

deletion was evaluated by histology and staining of the mTOR protein in randomly selected 

male and female animals. An incomplete deletion was confirmed in small intestine, with the 

general pattern that some villi appeared to express the protein whereas others do not (Figure 9). 

As expected, non-epithelial cells (not expressing villin and therefore not expressing Cre-

recombinase) display normal mTOR protein expression. These phenotypes as well as the 

growth phenotype are comparable with the original publication of the model by Sampson et al. 

(2016). 
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Figure 9. mTOR protein expression in in-house bred WT (upper left) with (positive control) and 

without (negative control) applying the primary anti-mTOR antibody, mTORΔIEC females 

(middle), and males (bottom). Letters indicate individuals. This data was generated from tissue 

samples provided by the author which were processed by Dr. Anja Kühl, iPATH.Berlin, Core 

Unit of Charité - Universitätsmedizin Berlin. 

Fecal analysis confirms infection in all individuals 

Seven days post infection was the day before the most pronounced cyst shedding peak in the 

pilot experiments described above. Hosts were sacrificed on day seven post infection for 

analysis of small intestinal parasite load by qPCR, RNA-seq transcriptome analysis of small 

intestine, and analysis of parasites in cecum. Infection in all mice was confirmed on at least one 

timepoint between four and seven dpi by qPCR of individual fecal samples (Figure 10).  
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Figure 10. Genome equivalents of G. duodenalis ssu DNA from fecal samples from individual 

mice. All individuals were positive on at least one analyzed timepoint, confirming parasite 

colonization in all mice (see raw-data in Appendix 12). Number of samples (n) vary slightly 

between days but are between 8 and 13 for WT on normal diet; 9 and 12 for WT on arginine-

free diet; 10 and 12 for mTORΔIEC on normal diet; 13 and 14 for mTORΔIEC on arginine-free 

diet, in all groups (see raw-data). A Kruskal-Wallis rank sum test was applied on seven dpi 

with the comparison between WT normal diet versus  WT arginine free diet  rendering p=0.47 

(nnorm=12; narg-free = 12), WT and mTORΔIEC on normal diet rendering p = 0.25 (nWT=12, 

nmTOR=12), and mTORΔIEC on normal diet versus mTORΔIEC on arginine free diet p = 0.83 

(nWT=12, nmTOR=13). 

Cyst shedding does not reflect total parasite abundance 

The same individual fecal samples analyzed by qPCR were used to assess cyst shedding from 

4-7 dpi. A commercial Giardia cyst-specific detection antibody was used and manual counting 

was performed (Figure 11). In contrast to the detection of G. duodenalis DNA in feces, cysts 

were only detected (i.e. shedding above the detection limit of 1666 cysts/gram feces) in some 

of the infected individuals. In WT mice fed a normal diet (Figure 11), cyst shedding was 

detected on seven dpi in 32% (7/22) of the individuals. Under arginine depleted conditions 

(Figure 11), cysts were only detected on six dpi and in 10% (2/20) of all individuals. Statistical 

tests for the pooled total cyst count between WT mice on normal and arginine-free diets (Figure 

13) were not significantly different, which was expected considering the high number of 

samples below the detection limit. 
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Figure 11. Cyst shedding as determined by microscopy of feces from individual WT mice. WT 

mice with normal food: n=22, and WT mice with arginine-free food: n=20. Data is from three 

independent experimental batches. WT cyst counts on seven dpi were compared with a Kruskal-

Wallis rank sum test with p=0.007.  

Cyst shedding is higher in mTORΔIEC hosts  

In vivo, G. duodenalis interacts directly with small intestinal epithelial cells. The plasticity of 

G. duodenalis could partly be assessed by investigating the parasites’ capacity to benefit from 

weakened hosts. The epithelium-specific mTOR (incomplete) deletion model was chosen (see 

Introduction and Methods for more background). As for WT hosts, I analyzed cyst shedding in 

intestinal epithelium-specific mTOR deletion mutant mice (mTORΔIEC). These hosts shed 

significantly more cysts than WT between 4 and 7 dpi (Figure 11, middle, Kruskal-Wallis rank 

sum test, p=0.013). There was no significant difference between the normal versus arginine-

free diets in mTORΔIEC hosts (p=1). In mTORΔIEC mice, cyst shedding was detected on all 

timepoints (4-7dpi, Figure 12). On seven dpi, 42% (10/24) of the mTORΔIEC mice shed 

detectable levels of cysts, compared to 32% in WT mice. In spite of the incomplete knock-out, 

significantly more cysts were shed in mTORΔIEC mice fed a normal diet than in the WT control 

group (Figure 13). 
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Figure 12. Cyst shedding from individual mice deficient in intestinal epithelial mTOR 

expression (mTORΔIEC). Data shown for mTORΔIEC mice with normal food, n=24; and 

mTORΔIEC with arginine-free food, n=25. n is one infected mouse which was sampled every 

day. mTORΔIEC cyst counts between normal and arginine-free diets on seven dpi were compared 

with a Kruskal-Wallis rank sum test with p=0.41. The detection limit (1667 cysts/gram) 

indicates the theoretically lowest cysts/gram feces for which one cyst would be detected. A zero 

data-point should be considered to have a value between zero and the detection limit minus one 

(1666 cysts/gram). Data is from three independent experiments. 

 

Figure 13. Pooled cyst counts from feces from 4-7dpi in all experimental groups. One data-

point represents the 4-7dpi pool for one mouse. A zero data-point should be considered to lie 

anywhere within the grey area (see Methods). The difference between WT and mTORΔIEC is 
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significant (p=0.013) whereas the difference between different diets in WT (p=0.092) and 

mTORΔIEC (p=1.0) are not (Kruskal-Wallis rank sum tests). 

No difference in intestinal parasite load between groups on seven dpi 

Since I was interested in assessing the effect of arginine-lack on parasite replication as well as 

reproduction, I analyzed G. duodenalis genome equivalents in small intestine as a proxy for 

mainly trophozoite numbers. Hosts from the four infected experimental groups were sacrificed 

on seven dpi and DNA extracted for qPCR measurements. Except for two individuals, all 

samples were positive for G. duodenalis in small intestine on seven dpi (Figure 14). There were 

no significant differences between experimental groups (Kruskal-Wallis rank sum test). 

 

Figure 14. G. duodenalis genome equivalents in small intestine on seven dpi. Two individuals 

(WT on normal and arginine-free diets, respectively) had no signal (not visualized). Tests were 

performed between diets in WT, diets in mTORΔIEC respectively and WT versus mTORΔIEC on 

normal diets. No differences were significant (p=0.49 and p=0.76, and p=0.30, respectively by 

Kruskal-Wallis rank sum test). WT, normal diet: n=11; WT arginine-free diet: n=11; mTORΔIEC 

normal diet: n=11; and mTORΔIEC arginine-free diet: n=12. 

Dietary arginine has an impact on encystation in WT but not in mTORΔIEC 

On seven dpi, WT hosts on normal diets shed significantly more cysts than those on arginine-

free diets (in the latter group, no cysts were detected in any individual. Kruskal-Wallis rank 

sum test, p=0.007, n normal=22 and n arg-free=20) on seven dpi. In contrast, parasite loads in small 

intestine on seven dpi are not different between any experimental groups. Compared to WT 

(normal diet), cyst shedding was tendentially but not significantly higher in mTORΔIEC on seven 

dpi only (p=0.06, nWT=22 and n mTORΔIEC= 24, data in Figure 11 and Figure 12). However, as 

noted previously overall (pooled) cyst shedding was indeed higher in mTORΔIEC than in WT. 
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Therefore, both host epithelial mTOR and dietary arginine have an impact on G. duodenalis 

cyst shedding. 
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4 Discussion 

The overall findings in this thesis contribute insights into the biology of two distantly related 

protozoan parasites, as well as an evaluation of those separate projects in the theoretical 

framework of phenotypic plasticity. Data interpretation and the E. falciformis-specific 

discussion for that project is included in that result section. 

4.1 G. duodenalis responds plastically to dietary 

arginine 

With the data presented here, I for the first time demonstrate in vivo that low or no access to 

arginine hampers G. duodenalis cyst generation and reproduction, but not trophozoite growth. 

It has previously been proposed that G. duodenalis shunts D-fructose-6P from glycolysis into 

cyst wall polysaccharide production during encystation, and that ADH and glycolysis both 

contribute to ATP synthesis during this process (Jarroll et al. 2011; Pham et al. 2017). In Figure 

15, I propose an extension of this model, with the support of the data presented in my thesis. I 

show in vivo that access (or no access) to arginine does not appear to impact the number of 

intestinal stage parasites (mainly trophozoites), but arginine limitation indeed reduced the 

number of cysts detected in feces. Similar to my results, in vitro encystation efficiency of 

assemblage A WB6 parasites decreased from 4-8% to 0.1% when ADI, the first arginine 

catabolizing enzyme of the ADH pathway, was overexpressed. (Touz et al. 2008) This suggests 

that excess arginine catabolism, as in the overexpression experiment by Touz et al., is 

hampering encystation presumably by too rapid removal of arginine from the encystation 

medium. Therefore, both external (e.g. dietary) and internal (parasite catabolism) arginine 

restriction or depletion appear to impact G. duodenalis assemblage A (Touz et al. 2008) and B 

(this study) encystation success negatively. Supporting the hypothesis that arginine only 

becomes limiting during encystation are the initial experiments which characterized ADH and 

ADI in G. duodenalis Portland-1 strain, assemblage A (Schofield et al. 1992). They determined 

glycolysis flux and ADH-enzyme activities (ADI, ornithine transcarbamoylase (OTC), and 

carbamate kinase (CK)) and ADH flux in PBS by using labelled L-arginine and glucose, 

respectively. Interestingly here, the same pathway fluxes were determined for both pathways 

while adding either up to 10mM L-arginine (for glycolysis flux) or 10mM glucose (for ADH 

flux) with minor effects on the two pathways. The authors concluded that there does not appear 

to be any crosstalk between the pathways, but the alternative model presented here – crosstalk 

between glycolysis and ADH arginine-metabolism exclusively during encystation – is not 

contradictory to Schofield’s et al. (1992) findings since they did not investigate the life stage 

switch. In addition, their data was generated using undefined growth-medium which makes it 

difficult to draw general conclusions. 

The model presented here proposes that G. duodenalis is exposed to one or a number of 

stressors, e.g. those which have previously been shown to influence encystation: lipid starvation 

and/or an increase in pH (Gillin et al. 1987; Luján et al. 1996; Einarsson et al. 2016). Common 
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for in vitro encystation protocols is also a drastic change in growth medium (e.g. bile-free to 

bile-containing). In addition to the requirement for a stressor, based on the data in this thesis I 

propose a requirement for a minimum (and not yet defined) amount of arginine and ADH 

metabolism. If glucose is not a limiting resource, but there is nevertheless a need for ADH-

generated ATP during encystation, it seems likely that encystation coincides with an inability 

of the parasite to perform glycolysis (or the downstream pyruvate metabolism, which also 

generates ATP). Therefore, to identify the stressor or stressors which can induce encystation, 

requirements for glycolysis and pyruvate metabolism, such as oxygen pressure, can be 

considered. In order to perform controlled experiments to identify triggers and requirements for 

encystation, and considering the evidence for metabolic control of encystation, a defined 

growth medium for in vitro cultures is most likely necessary. Experiments which add defined 

amounts of e.g. arginine to defined culture conditions should ideally also be carried out using a 

chemostat to control e.g. nutrient and oxygen levels prior to perturbing the G. duodenalis 

culture and attempting to induce encystation in a controlled manner. 

 

Figure 15. Proposed model for metabolic switch in G. duodenalis upon changes in the life cycle 

(inspired by Pham et al. 2017). During trophozoite growth, glycolysis is proposed to dominate 
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ATP generation (upper box). Upon a still poorly understood signal (see Figure 1), encystation 

is initiated (lower box). I propose that arginine levels will vary depending on host food intake 

(type, amount, and timing) and that sufficient access to arginine is a prerequisite for encystation 

(blue arrow). Glucose is drawn as being shunted (blue arrow from D-fructose-6P) into cyst 

wall biosynthesis through the N-acetyl-galactosamine pathway (Jarroll et al. 2001). Upon 

arginine influx to the infectious site, I propose a resulting major ATP generation from ADH, 

and glucose utilization mainly for cyst wall biogenesis. Note that some individual parasite cells 

may have better or worse access to arginine due to, e.g., their position in a colony of parasites 

which would contribute to variation in the encysting phenotype. Little grey boxes in pathways 

represent metabolite intermediates. Large shadowed boxes indicate proposed low pathway 

activity. For more detail, enzymes involved and expression data I refer to Jarroll et al. 2001 

and Pham et al. 2017. 

Arginine as substrate for nitric oxide is not determining infection 

Arginine is certainly utilized by both parasite and host. However, it is not clear whether 

competition for the amino acid occurs or how relevant its role is during infection. In contrast to 

the above parasite-focused explanatory model, a role for arginine in host protection as the 

substrate for NOS has also been proposed for arginine (e.g. Eckmann 2003; Stadelmann et al. 

2012). The idea is supported by in vitro observations of NO-induced trophozoite growth 

inhibition, inhibition of excystation, but parasite inhibition of NO-release by host cells has also 

been shown. Combined, this has been interpreted as a host-parasite interaction through arginine 

and NO (Eckmann 2003). This idea focuses on arginine for host defenses and (implicitly) 

considers the presence of ADH in Giardia spp. to indicate a parasite “response” (on the 

evolutionary time-scale) rather than arginine having a significant value of its own in the parasite 

(although the paper does recognize the efficient transport and catabolism of arginine in the 

parasite). The NO-hypothesis predicts (again implicitly) better parasite growth when arginine 

is absent, since host defenses would not be as strong without the substrate for NO. My data 

contradicts a model in which arginine mainly is important for host defenses. Host data on local 

gene expression or systemic cytokine profiles from the different experimental groups in the 

current thesis could provide indications on the impact on the host. However, for the parasite the 

absence of arginine was harmful for replication in WT and (with my sensitivity) made no 

difference in mTORΔIEC hosts. This is consistent with arginine mainly being important for the 

parasite and the host relying on other defenses.  

Is polyamine signaling a contributor to encystation commitment? 

In addition to the metabolic shift during life cycle change from trophozoite growth to 

encystation proposed by Jarroll (2011) and Pham et al. (2017) and me, secondary metabolites 

of arginine metabolism may contribute to life stage switching in G. duodenalis. In contrast to 

assemblage A, the assemblage B genome has an arginase gene (Franzén et al. 2009), suggesting 

an important function for e.g. ornithine and polyamine metabolism. Both ADH and arginase 

catabolism generate ornithine, which is a precursor for polyamines in eukaryotes. In several 
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eukaryotic systems, high growth rates – here corresponding to replicating trophozoites – 

correlated with high polyamine levels (reviewed in (Goyns 1982)). Goyns further proposes 

polyamines to mainly be growth supporting (not inducing) since a decrease in polyamine levels 

only influences (mammalian) cell survival after 2-3 generations. Applying this idea to G. 

duodenalis, utilization of ornithine from catabolized arginine for polyamine generation is a 

possibility which could support trophozoite growth maintenance. If the ADH flux increases (as 

proposed during encystation) a shift in ornithine availability and subsequently polyamine levels 

(and the balance between different types of polyamines) could occur and support commitment 

to encystation. Supporting a role in the G. duodenalis life cycle, addition of a 10mM putrescine 

analogue (which caused growth inhibition in Trypanosoma cruzi and an anaerobic 

trichomonad) caused morphological abnormalities upon cell division and other growth defects 

in trophozoites in vitro (Maia et al. 2008). Unfortunately, encystation was not investigated in 

that study.  

In my model (Figure 15), low ADH-activity during trophozoite growth is predicted and 

ornithine in this stage would, in the model, come mainly from arginase activity (for assemblage 

B parasites). Available arginine might be utilized by the assemblage B arginase and generate 

polyamines to support trophozoite growth and continue generating ATP from glucose. If 

activation of the highly efficient ADH pathway upon encystation leads to intra-parasite 

competition for arginine, and if ornithine (as polyamine precursor) is more efficiently generated 

by arginase than by OCT in the ADH pathway, a decrease in polyamine concentrations could 

result. If the trophozoite growth-maintaining signal is removed or reduced, this could support 

commitment to encystation in G. duodenalis. It has been reported that G. duodenalis 

(assemblage A) commits to encystation in vitro, i.e. does not return to replicative growth once 

the encystation program is initiated even if the triggers for encystation are removed (Sulemana, 

Paget, and Jarroll 2014). Investigations into G. duodenalis arginase activity (as compared to 

OCT) and changes in polyamine levels during the transition from trophozoite replicative growth 

to encystation would provide first clues to test this hypothesis. In such studies, a comparison 

between assemblage A and B encystation would be informative, since no arginase gene has 

been found in assemblage A. Analysis of differences in the activity of involved metabolic 

enzymes and comparisons of (theoretical) metabolic fluxes could help to generate specific, 

testable hypotheses concerning assemblage-specific mechanisms. If a polyamine-level 

encystation-commitment mechanism exists in G. duodenalis, its contribution to commitment is 

likely to be slow and supportive rather than constituting the initial and major regulatory 

mechanism.  

Diets have an impact on cyst shedding 

The relatively small difference between arginine-containing and arginine-free diets in this study 

is likely due to the intrinsically low cyst shedding in this model. It turned out that the change 

from our facility’s standard mouse diet to control food for experiments (which should be highly 

similar to the standard diet) reduced cyst shedding in WT control animals; particularly the 

number of animals with detectable cysts in feces was reduced from 100% to 32% (compare 

Figure 7 and Figure 11). Major differences between the standard food used for normal housing 
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and my experimental diets (control and arginine-free) are shown in Table 7 (see also Appendix 

13). When selecting the experimental diets, a crystalline diet was preferred for exact control of 

amino acid content. This means that each amino acid was added separately, and not as an 

estimated content of total protein added to the diet. A control diet could be designed to keep the 

total nitrogen/(artificial) protein content equal by adding more of other amino acids. Another 

option was to accept a slight shift in concentrations of protein/total amino acid contribution-fat-

carbohydrate-contents and keep amino acid percentages the same. Choosing to compensate 

nitrogen/protein content has the drawback of also manipulating other amino acids, meaning a 

change in the major class of molecules of interest in this experiment. Especially since 

experiments of mTOR nutrient sensing were planned, this was not an appealing choice. I instead 

opted for the latter, as is reflected in the differences in total fat, protein and carbohydrates seen 

in Table 7. The 1% L-arginine diet was the standard concentration for the crystalline complete 

diet from the provider.  

Table 7. Diet comparison. A selection of nutrient contents is presented here. For full specifications, see 

Appendix 4. 

 Standard facility diet (“Fortified 

energy rich for mouse”)  

Experimental 

control diet 

Experimental arginine-free diet 

Fat (% in diet) 16 18 18.4 

Protein (% in diet) 27 16 14.4 

Carbohydrates (% in 

diet) 

57 66 66 

L-arginine (% in diet) 1.5 0.98 0 

Given that all WT hosts shed cysts in pilot experiments with the standard facility diet, and only 

32% in the experimental setting, these dietary differences appear to have had a drastic effect on 

cyst shedding. Since arginine content also varied, there is an actual tendency in this data 

indicating that most cysts were detected in hosts with a 1.5% arginine content and the least cysts 

were detected in WT hosts with 0% arginine diets. However, since other nutrient components 

also changed between 1.5% and 1% arginine content, and the experiments were not performed 

in parallel or otherwise designed for direct comparisons, this is speculative. It can also not be 

excluded that other factors, e.g., microbiota composition of mice, also changed during the ~10 

months period during which experiments were carried out. However, given the strictly 

standardized breeding, housing and animal handling procedures in our facilities I consider that 

explanation alone unlikely. Diets exerting the observed effect on cysts through changes in 

microbiota composition rather than via a direct nutrient-access effect on the parasite is a more 

likely explanation and an interesting research question. Major improvements in the 

experimental setup include 1) optimizing the control diet for high cyst shedding while ensuring 

the possibility to remove arginine without otherwise changing the diet; and 2) including 

microbiota analysis of uninfected mice with normal and arginine-free diets.  
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Intestinal epithelium mTOR deficiency is beneficial for G. duodenalis cyst 

shedding 

G. duodenalis generated more cyst shedding in (tissue specific) mTOR-deficient hosts 

(mTORΔIEC) than in WTs. mTOR is important for nutrient sensing and inducing arginine uptake 

(Visigalli et al. 2007), as well as cell cycle regulation and cell proliferation (Laplante and 

Sabatini 2012), which are central functions in intestinal epithelium. The epithelium is 1) 

responsible for whole-organism nutrient uptake, and 2) rapidly renewing (e.g. Blander 2016). 

Therefore, mTOR-deficient hosts can be considered weakened in the parasite niche with regards 

to cell proliferation/healing and they are likely to have an altered nutrient absorption phenotype.  

I show that G. duodenalis benefits from this host phenotype by producing more cysts. 

Interestingly, dietary arginine deprivation had an effect on parasite reproduction (cysts) in WT 

but not in mTOR-manipulated hosts (comparing arginine-sufficient and arginine-free diets 

between mTORΔIEC hosts). Furthermore, the number of trophozoites was not higher in either 

mTORΔIEC group compared to WT on arginine-sufficient diet, indicating that the favorable 

effect supported encystation but not replication. In summary, the effect on cyst numbers of 

arginine-free diets seen in WT was not detected in the mutant hosts.  

Healthy, adult humans and mice can synthesize arginine via the intestinal-renal axis (Morris 

2006). mTORΔIEC epithelia are morphologically and cellularly different from WT and do not 

heal as well upon irradiation injury (Sampson et al. 2016). If G. duodenalis disturbed the 

epithelium upon attachment (support for this view is found e.g. in (Allain et al. 2017; Liu et al. 

2018)), mTORΔIEC epithelia are likely to heal worse than WT epithelia and become more leaky. 

Therefore, infection in these hosts could result in increased luminal nutrient levels, including 

arginine which is synthesized in epithelial cells, presumable also in mTORΔIEC hosts. Such 

leakiness could generate an infectious niche which is equally rich in arginine in hosts fed 

arginine-sufficient and arginine-free diets. Such arginine leakiness being a major determinant 

for infection when comparing mTORΔIEC and WT hosts in these experiments is supported by 

the fact that cyst numbers but not trophozoite numbers were different between WT and mutants 

combined with the evidence and arguments presented above for a encystation-specific role for 

arginine in G. duodenalis growth and life cycle progression. Measuring arginine levels in 

intestinal lumen in WT and mTORΔIEC hosts combined with measurements of parasite 

regulation of ADH pathway and other encystation-specific genes would be a way to approach 

this hypothesis. 
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4.2 Phenotypic plasticity in protozoan parasites 

Data on two protozoan parasites are here discussed in the context of phenotypic plasticity, i.e., 

the parasites’ (in this case) capacity and tendency to produce different phenotypes not due to 

genetic differences but in response to environmental stimuli. The two parasite species were 

exposed to types of stimuli which they are likely to have been exposed to over evolutionary 

time-scales. In the case of intracellular E. falciformis, strong immune responses are well 

documented and were used as stimulus. For G. duodenalis, arginine supports parasite growth 

in vitro, and arginine-free host diets were used as stressors in those infections. In both studies 

(in mouse models), reduced oocyst (E. falciformis) and cyst (G. duodenalis) shedding was 

observed in more immune competent hosts and under arginine-deplete conditions, respectively. 

Reduction in oocyst/cyst generation could be the result of either reduced replication in intestinal 

stages in the host, or of hampered oocyst/cyst formation, or even host destruction of 

successfully encysted parasites. For G. duodenalis, I excluded a difference in trophozoite 

replication, therefore concluding that arginine depletion acts specifically on cysts. G. 

duodenalis was able to respond plastically and opportunistically and generate more cysts in 

weakened hosts (mTOR mutants), which we have reason to think are providing more arginine 

to the parasites (see above). In contrast, E. falciformis was not able to generate more oocysts in 

hosts with lower-than-WT immune stimuli on the parasite. For E. falciformis, the evidence 

therefore suggests no (undetectable) plastic capacity to differences in immune stimulus. G. 

duodenalis is responding plastically by increasing reproductive success in the weakened 

mTOR-mutant host, and a leaky epithelium which makes arginine available could be causing 

this effect (see mTOR discussion section above). More targeted experiments are required 

though, to elucidate whether mTOR-deficient hosts are indeed providing the lumen and 

parasites with more arginine than WT hosts on normal arginine-diets. The very limited cyst 

shedding in WTs on arginine-free diets indicate the lower limit of G. duodenalis plastic capacity 

with regards to arginine and suggest that a minimal arginine availability is necessary for 

encystation. 

Active phenotypic plasticity in response to arginine in G. duodenalis 

Plastic capacity in G. duodenalis can be an active response by the parasite and then a sensor 

for arginine can be proposed. If the effect is passively imposed a direct and mechanistically 

limited effect of arginine availability would be the case. The latter could be defined as, e.g. an 

isolated reduced flux through ADH and arginine catabolism of arginine resulting in less 

products in those pathways but no or marginal effects beyond these reactions. However, since 

arginine is consumed as substrate for ATP generation, its metabolism through ADH is linked 

to growth (Edwards et al. 1992), and ADH enzymes are regulated (Stadelmann et al. 2012), it 

can be assumed that variations in arginine availability are actively sensed and cause an active 

response. Responses beyond the catabolism of arginine by ADH or arginase, i.e. subsequent 

events are a predictable effect of changes in arginine availability. Above I propose such an 

active response (Figure 15) since I suggest a change in ADH flux and generation of ATP to 
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cause the shunting of D-fructose-6P from glycolysis into the N-acetyl-galactosamine (cyst wall 

component) pathway, and this in turn to induce or stimulate encystation. 

Unpredictable stimuli promote phenotypic plasticity 

The strategies employed by parasites to cope with external stimuli – for instance active sensing 

and plasticity or genetically canalized programs which disregard stimuli –will be linked to the 

nature of the stimulus, e.g. predictability. For immune defenses, on a coarse-grained level they 

might be considered predictable. They change in the type of molecules involved and intensity 

but also this is (relatively) predictable for the parasite. Since maintaining plastic capacity can 

be assumed to be more costly than genetic canalization (Reece, Ramiro, and Nussey 2009) this 

suggests that E. falciformis has adapted a canalized program which assumes certain immune 

stimuli. If one optimal phenotype exists this is the predicted outcome. If instead different 

distinct phenotypic optima exist because of varying and unpredictable external stimuli, 

phenotypic plasticity is expected to be selected for. (DeWitt and Scheiner 2004)  

Considering G. duodenalis infections in the mouse model, mice in the wild have a calory intake 

comparable with, or slightly higher, than that of laboratory mice fed ad libitum (Austad and 

Kristan 2003), suggesting no lack of carbohydrates and substrate for glycolysis in wild mice. 

Together with the model in Figure 15 this predicts no carbohydrate limitation on trophozoite 

replication in the wild. However, the access to amino acids (such as arginine) from meat, nuts 

and seeds may indeed be limited and unpredictable (J. M. Rhoads and Wu 2009) and according 

to the model in Figure 15, cyst shedding would be equally unpredictable. Arginine access would 

vary between host individuals, meaning that it is unpredictable when efficient arginine-

dependent encystation can take place in different infected individuals. This situation should 

promote phenotypic plasticity (i.e. sensing arginine) for encystation, so that trophozoite 

differentiation is initiated when arginine access is sufficient. This may not be the only 

requirement, and commonly a stressor induces life cycle progression in microorganisms (e.g. 

Reuner et al. 1997; Dean et al. 2009; Loomis 2014). Possibly, stressed trophozoites arrest or 

slow down growth and undergo differentiation into cysts when arginine becomes available. An 

optimum could be to generate a certain number of cysts within a short time-frame to increase 

chances of successful transmission, also similar to the Trypanosome spp. synchronization to 

differentiate into the stumpy parasite stage (Reuner et al. 1997; Dean et al. 2009; Rojas et al. 

2019; Sollelis and Marti 2019). 

Considering non-clonal G. duodenalis: Phenotypic plasticity and genetic 

variation in wild populations 

I use commercially available (assumed) clonal parasites to demonstrate phenotypic plasticity in 

an experimental setting; the definition for phenotypic plasticity being that phenotypes vary in 

response to external stimuli and despite genetic homogeneity (see Definitions). In vitro, G. 

duodenalis assemblage A (WB-6) has a high recombination rate (Le Blancq, Korman, and Van 

der Ploeg 1992) and both assemblages A and B also display allelic heterozygosity, the latter to 
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a larger extent (Adam 2011). I can therefore assume that the parasite is not clonal in nature. 

Phenotypic plasticity and polymorphisms will then exist side by side in nature and possibly 

contribute to the arginine utilizing and encystation phenotypes. 

Genetic diversity is a prerequisite for selection of any trait, including capacity for phenotypic 

plasticity. The unpredictable arginine availability within a host is here proposed to promote 

plastic capacity.  

I further suggest that dietary differences between host individuals promote genetic diversity. If 

those are clonal, the parasite relies solely on its phenotypic capacity to thrive and encyst 

efficiently when necessary. If the capacity to sense arginine (plasticity) is combined with an – 

for the diet of this particular host – optimal arginine utilization, e.g. determined by the ADI 

enzyme, a more beneficial encystation phenotype is possible. An encystation phenotype would 

describe e.g. the number of cysts shed per gram feces and the frequency of shedding. In that 

particular host, one genotype would be dominant among the shed cysts. However, given the 

diversity in diets between host individuals (with regards to content and timing) I expect the 

genetic diversity among cysts from many hosts in nature to be high and an analysis of an 

environmental cyst sample to show polymorphism in genes related to arginine utilization. An 

additional contributor to expected genetic diversity is recombination during encystation 

(Ramesh, Malik, and Logsdon 2005; Cooper et al. 2007; Melo et al. 2008). A limited number 

of cysts will initiate a new infection upon ingestion by a new host and meiosis and homologous 

recombination during encystation would contribute to ensuring genetic diversity among cysts 

which are shed together. 

I particularly expect genetic diversity in genes which contribute to arginine responsiveness and 

utilization. Supporting this suggestion, ADI, the first enzyme of the ADH pathway, was indeed 

polymorphic in eight analyzed isolates of assemblage B parasites (and also in assemblage A 

parasites), analyzed at the amino acid level (unpublished, Christian Klotz, Robert Koch-

Institute). If the proposed mechanism to synchronize encystation is indeed important in nature, 

I would expect polymorphism also in other ADH pathway genes, and potentially in genes of 

the N-acetyl-galactosamine pathway. Considering that diet is the external stimulus I suggest to 

synchronize encystation, there could be genetic similarities between parasite genotypes which 

infect herbivores (e.g. assemblage E, found in hoofed livestock and subtypes of assemblage A 

found in livestock) which distinguish them from parasite genotypes which infect e.g. strict 

carnivores (e.g. assemblage F found in cats and C or D in canids) (U. Ryan and Cacciò 2013). 

Those predictions are however complicated by the still unclear taxonomy of G. duodenalis as 

described in the introduction of this thesis. Nevertheless, access to genome data from naturally 

occurring G. duodenalis infections can be used to assess polymorphic patterns. Analysis of 

enrichment in polymorphism has been reported and the method by Tataru et al. is particularly 

interesting here since it allows beneficial mutations (Tataru et al. 2017). Using this or similar 

methods could be a way to assess whether parasite genotypes on loci relevant for arginine-

metabolism and encystation are enriched in polymorphisms compared to the overall genome. 

In addition, such sequence data from a wide range of sources can be used to ask whether these 
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genes cluster in a way which reflects host dietary habits. Combined, such analysis would be an 

interesting extension of the results and new hypotheses presented here. 

Conclusions 

Infection biology requires the study and analysis of molecular and cell biology, as well as host 

immune responses, pathogen life cycles, metabolic requirements, multispecies interactions 

(ecology), epidemiology, and evolutionary biology. In addition, for human purposes 

pharmacology as well as drug development and resistance can be added to this (incomplete) 

list. This thesis aims to contribute some basic insights into the biology of two protozoan 

parasites with a focus on life cycle progression, and to place the findings in a broader 

perspective by applying an evolutionary concept to evaluate results. E. falciformis showed no 

signs of phenotypic plasticity at the levels of transcription or reproduction (oocyst shedding) in 

response to variations in host immune stimulus. G. duodenalis instead displays phenotypic 

plasticity in response to a biologically relevant stimulus, nutrient availability. I argue that the 

capacity to respond plastically is an adaptation to unpredictable availability of a key metabolite: 

arginine. Making use of the timing in host food intake, or specifically that of arginine, could be 

an elegant solution to synchronize encystation to ensure successful transmission. If (selected) 

phenotypic plasticity is necessary for efficient transmission due to the intrinsic unpredictability 

of the stimulus (diet), I expect to see this reflected in G. duodenalis genomes as polymorphism 

in arginine metabolizing genes. For one gene, ADI, such unpublished data confirms the 

hypothesis.  

Taken together, this thesis contributes new insights to E. falciformis and G. duodenalis behavior 

during in vivo infections. The E. falciformis life cycle transcriptome is additionally a resource 

and reference for future projects. New data on G. duodenalis dependence on arginine for 

encystation in vivo highlight the importance of studying the complete life cycle in order to 

understand parasite growth requirements and overall biology. The data presented encourage to 

investigate arginine dependency in encystation protocols, thereby possibly improving them and 

importantly, determine specific conditions under which G. duodenalis replicates, initiates, and 

commits to encystation. 
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