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A B S T R A C T

Osteoarthritis (OA) is a debilitating disease with no approved disease-modifying therapies. Among the chal-
lenges for developing treatment is achieving targeted drug delivery to affected joints. This has contributed to the
failure of several drug candidates for the treatment of OA. Over the past 20 years, significant advances have been
made in antisense oligonucleotide (ASO) technology for achieving targeted delivery to tissues and cells both in
vitro and in vivo. Since ASOs are able to bind specific gene regions and regulate protein translation, they are
useful for correcting aberrant endogenous mechanisms associated with certain diseases. ASOs can be delivered
locally through intra-articular injection, and can enter cells through natural cellular uptake mechanisms. Despite
this, ASOs have yet to be successfully tested in clinical trials for the treatment of OA. Recent chemical mod-
ification to ASOs have further improved cellular uptake and reduced toxicity. Among these are locked nucleic
acid (LNA)-based ASOs, which have shown promising results in clinical trials for diseases such as hepatitis and
dyslipidemia. Recently, LNA-based ASOs have been tested both in vitro and in vivo for their therapeutic po-
tential in OA, and some have shown promising joint-protective effects in preclinical OA animal models. In order
to accelerate the testing of ASO therapies in a clinical trial setting for OA, further investigation into delivery
mechanisms is required. In this review article, we discuss opportunities for viral-, particle-, biomaterial-, and
chemical modification-based therapies, which are currently in preclinical testing. We also address potential
roadblocks in the clinical translation of ASO-based therapies for the treatment of OA, such as the limitations
associated with OA animal models and the challenges with drug toxicity. Taken together, we review what is
known and what would be useful to accelerate translation of ASO-based therapies for the treatment of OA.

1. Introduction

Osteoarthritis (OA) is a degenerative disease of the joints, affecting
approximately 10% of men and 18% of women over the age of 60
worldwide [1]. It is the most common type of arthritis, yet there is no
cure. Characteristic features of OA include cartilage degeneration, sy-
novial inflammation, subchondral sclerosis and osteophyte formation.
OA is associated with persistent pain in articulating joints including the
knees, hips, hands and spine, among other joints. This significantly
impacts mobility and independence, with 25% of those affected by OA

being unable to perform major daily activities [1]. Treatment options
are limited, as there are no approved disease-modifying OA drugs
(DMOADs). Symptom-modifying drug therapies provide only short-
term relief from pain. Often the disease continues to progress leading to
joint replacement surgery as the only viable option [2]. This is an in-
vasive and expensive treatment, and is not a solution for those with
generalized OA affecting multiple joints throughout the body. There is
an outstanding need in the OA field for drugs which can not only at-
tenuate symptoms but prevent disease progression.

Over recent decades, there have been several attempts to identify
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DMOADs, including clinical trials with biologics targeting pro-in-
flammatory cytokines [3–5], catabolic enzymes [6] and growth factors
[7]. An ideal agent would target the major features of OA by halting
cartilage degeneration, synovitis and subchondral bone sclerosis, or
even promoting tissue regeneration. However, none of the trials have
been able to adequately demonstrate disease modification in OA pa-
tients [3,8,9]. Reasons for this may include inefficacy of the drug itself,
inadequate drug targeting and penetration in the local tissue, or rapid
physiological turnover, among others. Given that OA affects the entire
joint, drugs are required to be beneficial, or at least not harmful, to
multiple tissues including the cartilage, bone, synovium and ligaments.
These are among the barriers, in addition to safety, for developing novel
DMOAD candidates with the potential for clinical translation.

Over 40 years ago, a breakthrough discovery was made in antisense
technology with major implications for disease therapy. Antisense oli-
gonucleotides (ASOs) were described in 1978 by Zamecnik and
Stepheson, who reported that a 13-nucleotide-long oligodeoxynucleo-
tide with complementarity to the target sequence in sarcoma virus RNA
was able to block viral replication and protein translation in vitro [10].
Since this first generation of ASOs, several modifications have been
made to enable clinical application where disease outcomes are im-
proved and toxicity is minimized. These second and third generation
ASOs are currently available in the market or are undergoing clinical
trials, showing beneficial outcomes in refractory diseases such as
amyloidosis, muscular atrophy and lymphoma [11–14].

One of the first reports showing the impact of ASOs on cartilage was
in 1994 [15]. Nietfeld et al. showed interleukin (IL)-6-ASOs could in-
hibit IL-1-induced production of IL-6 and prevent IL-1-induced inhibi-
tion of proteoglycan synthesis in ex-vivo human articular cartilage
[15]. Subsequently, Fibbi et al. proposed ASOs as a potential new class
of drugs for OA, where ASOs targeting urokinase-typeplasminogen ac-
tivator (u-PA) were used to inhibit u-PA-dependent cell proliferation
and chemo-invasion of synoviocytes [16]. Since then, ASOs have been
used to modulate therapeutic targets in vitro and in vivo, some of which
have shown promising effects in preventing or alleviating OA features
[17–20]. Targeting specific RNAs through small interfering RNAs
(siRNAs) [21] and microRNAs (miRNAs) [19,20,22] has shown mul-
tiple beneficial effects in cartilage, including reductions in inflamma-
tion, catabolism and apoptosis, and induction in anabolic activity. De-
spite accumulating evidence over the past 25 years showing the
therapeutic potential of ASOs in OA, to the best of our knowledge, none
have proceeded to clinical trial testing. This review focuses on oppor-
tunities and roadblocks in the development of ASOs as a potential
therapeutic strategy for OA treatment. We summarize what is known
from previous studies and what may be required to accelerate clinical
translation.

2. Methods

We performed a search for original articles in PubMed using key
words “antisense oligonucleotide” and “osteoarthritis” and identified
39 papers before December 2019. Among these, we found 26 original
research articles which reported the effects of ASOs as potential ther-
apeutics in OA. The details of the included studies are shown in Table 1,
highlighting various characteristics of the ASOs that were described.

3. Antisense oligonucleotides

3.1. History of chemical modification

Since 1978 when ASOs were described as a short fragment of un-
modified DNA that was used in cell culture [10], remarkable advances
have been made in ASO-based drug development. Typical ASOs possess
phosphorothioate (PS) linkages as their backbone, with ribose sub-
stitution. To render the nucleotide bonds resistant to nucleases, the
non-bridging oxygen atom of the phosphodiester backbone in the ASO

is replaced with a sulphur atom [23]. This structure is representative of
first generation ASOs. Most of these ASOs failed to reach their primary
endpoints in clinical trials due to rapid turnover and low affinity to
targets [24,25]. Rigorous modifications in their chemical structures
yielded the second generation of ASOs, with a backbone incorporating
2’-O-methyl (2’-OMe) and 2’-O-methoxyethyl (2’-O-MOE) [26]. These
ASOs had substantially improved structural stability to resist nuclease
degradation and achieve greater affinity to their targets [27,28]. This
led to second generation ASOs being tested in clinical trials [13,14].
Some of these have been approved by the US Food and Drug Admin-
istration for neurological disorders, including Eteplirsen for Duchenne
muscular dystrophy [29] and Nusinersen for spinal muscular atrophy
[30].

Representing further improvement, third generation ASOs have
locked nucleic acid (LNA) technology, in which the ribose ring in the
backbone is connected by a methylene bridge between the 2’-O and 4’-C
atoms [31]. While third generation ASOs still have a PS backbone, the
LNA technology markedly increases binding to the target RNA. LNA
oligonucleotides contain modified RNA nucleotides with an extra
bridge linking the 2′-O and 4′-C atoms thus “locking” the ribose ring.
This leads to an increased affinity for complementary RNA targets,
without loss of sequence specificity [32]. The superior performance of
single-stranded LNA-ASOs, especially for in vivo applications, is be-
coming widely recognized in various diseases including cancer, neu-
rodegenerative disease and systemic infection [33,34]. Notably, some
of these LNA-ASOs were tested in clinical trials with encouraging results
for future clinical approval [35].

3.2. ASOs: mechanism of action

ASOs are designed as “anti-sense” against specific sequences to
target RNAs, including encoded mRNAs. By binding to and interfering
with the function of target mRNAs, ASOs modulate the expression of
proteins encoded by mRNAs. Among the multiple mechanisms through
which ASOs can impact protein synthesis, the most important is acti-
vation of the RNase H enzyme [36]. Modified ASOs leave a central
nucleotide-phosphorothioate gap (gapmer) that allows RNase H to
cleave the target mRNA [37]. Specifically, after binding to the target
mRNA, ASOs form a RNA-DNA hybrid that becomes a substrate for
RNase H, leading to RNA degradation (Fig. 1). This mechanism is highly
efficient and can result in 85–95% downregulation of mRNA relative to
control levels [37]. Other mechanisms of downregulating or destabi-
lizing target mRNAs include inhibition of RNA-binding protein, poly-
adenylation and splicing (Fig. 1). ASOs are also able to increase
translational activity by blocking upstream open reading frames
(uORFs) that typically inhibit the expression of the primary ORFs
(Fig. 1). Therefore, ASOs can both positively and negatively regulate
expression depending on their precise mechanism of action.

3.3. ASOs: advantages as a therapeutic

Current antibody-based therapies for inflammatory arthritis such as
rheumatoid arthritis (RA) and spondyloarthritis (SpA) target specific
protein ligands and/or receptors of pro-inflammatory cytokines such as
IL-1, IL-6 and tumor necrosis factor (TNF). Therefore, antibody-based
therapies can only regulate their targets after the protein is translated
and secreted outside of the cell. In contrast, ASOs target specific mRNAs
before protein translation. This ability to modulate expression of targets
at an upstream level is a major advantage of ASOs, as functional protein
products are not made. Thus, ASOs can act to inhibit the synthesis of
specific proteins within cells such as chondrocytes, fibroblasts, and
osteocytes, in addition to lowering levels of secreted inflammatory cy-
tokines or catabolic enzymes in blood or synovial fluid. Demonstrating
this, a study investigating cholesterol profiles in hepatocytes confirmed
a reduction of triglyceride content in both hepatocytes and serum of
mouse models with ASOs targeting Angiopoietin-like protein-3
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(ANGPTL3) [38]. This intracellular lipid reduction was not observed
with anti-ANGPTL3 antibodies [39], suggesting that regulation of target
genes in the desired cells via ASO treatment was able to achieve a ro-
bust effect.

A second major advantage of ASOs as a therapeutic is their ability to
enter cells via natural cellular uptake mechanisms. Unlike siRNAs that
are delivered to cells with lipid nanoparticles via macropinocytosis
pathways [40,41], PS-based ASOs can enter cells without additional
modification or formulation. In fact, one of the major mechanisms of
cellular uptake is endocytosis, with ASOs binding to cell-surface pro-
teins [42]. Several cell-surface receptors have been reported to bind
ASOs, including the toll-like receptor family and scavenger receptors
[43–46]. These natural uptake mechanisms enable effective ASO de-
livery without the disadvantages associated with other delivery me-
chanisms (e.g. viral delivery).

The third major advantage of ASOs as a therapeutic is that they can
be delivered or injected both systemically and locally. Previous studies
have demonstrated the efficacy of systemic ASO injections in preclinical
animal models as well as in clinical trials [34,35]. For OA treatment, a
local injection may be beneficial over a systemic injection in order to
increase efficiency of drug delivery to target joint tissues. To the best of
our knowledge, there have been no clinical trials conducted using an
intra-articular injection of ASOs; however, recent preclinical OA studies
have showed some encouraging results as described in the sections
below [19,22,47].

3.4. Pharmacokinetic features of ASOs

For ASOs to be effective therapeutic agents, it is critical to maximize
bioavailability and promote exposure of ASOs to the target tissues or
biofluids. Drug distribution is strongly influenced by the administration
route. For ASOs, routes for systemic drug administration have been
well-studied, including intravenous, intraperitoneal and subcutaneous
injections [38,48]. Following systemic drug administration, ASOs ra-
pidly bind to serum proteins such as albumin and α-2 macroglobulin,

which prevent ASOs from being excreted via glomerular filtration in
kidneys and allow ASOs to stay in tissues and be absorbed in cells [49].

The distribution of intravenously-injected first generation ASOs was
previously tested in rodent tissues in vivo [43]. ASOs were detectable in
the extracellular matrix of organ tissues (e.g. liver and kidney) at 2 h
post-injection, and became more prominent intracellularly 24 h post-
injection, suggesting that ASOs are taken up by cells within 24 h of
intravenous injection [43]. Interestingly, this study also tested the
distribution of ASOs in the joint tissues. While connective tissues in-
cluding bone, muscle, synovium and joint capsule were positive at 24 h
post-injection, positive cells were not detected in the cartilage, which is
an avascular tissue [43]. Given that the pharmacokinetic properties of
ASOs are similar across species [50], it is very likely that human ar-
ticular cartilage would also be the most difficult joint tissue to target by
systemic injection of ASOs. Whereas pharmacokinetic studies following
systemic injection are well-documented, studies on local injection of
ASOs are limited. However, some recent studies show encouraging
therapeutic potential of locally injected LNA-based ASOs in spinal cord
injury [51], lung fibrosis [52] and OA [19,20,22].

The pharmacokinetic properties of ASOs are driven by the chemistry
of the backbone. Pharmacokinetic investigation using second and third
generation ASOs showed rapid drug distribution to tissues with a
longstanding half-life of > 2 weeks [50]. For instance, 2’-OMe-based
ASOs have been shown to have > 2 weeks tissue retention time after
systemic administration [53]. Moreover, third generation LNA-based
ASOs exhibit remarkable knockdown efficacy of the target gene in
various tissues even 5 weeks after systemic injection [54].

4. Opportunities for clinical application

4.1. Targeted ASO delivery: intra-articular injection

The concept of ASOs may seem straightforward: a target mRNA with
therapeutic relevance is selected, a complementary ASO sequence is
synthesized, the ASO is administered to the relevant tissue(s) and

Fig. 1. Functional mechanisms of antisense oligonucleotides (ASOs) in the regulation of targets. When ASOs enter the nucleus, they can directly bind to immature
mRNA (pre mRNA) and inhibit (a) formation of the 5′ cap, (b) splicing, (c) polyadenylation, and (d) attachment of RNA binding proteins to mRNA. (e) ASOs also
induce degradation of ASO-targeted mRNA by RNase H1. (f) ASOs in the cytoplasm can block the binding of ribosomal subunits, which inhibits the translation of
target mRNA. (g) ASOs can directly bind to microRNA sequences (h) as well as natural antisense transcripts (NATs). Thus, ASOs prevent protein synthesis by
interfering with various steps of mRNA synthesis.
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protein expression is modulated. Yet there are several obstacles to
achieving this, one of which is successful delivery of the ASO to the
target tissue and cells. These hurdles must be cleared for ASOs to reach
their functional sites intracellularly, in particular the chondrocytes in
the cartilage, the most commonly affected tissue in OA [55,56].

Articular cartilage exhibits a formidable biological barrier to drug
delivery. Because cartilage is an avascular, alymphatic and aneural
tissue, drug penetration only occurs through limited mechanisms such
as diffusion and electrostatic interaction [57]. When a free (non-mod-
ified) drug is administered into the synovial fluid by intra-articular
injection, it is rapidly cleared out. Small molecules may diffuse through
the sub-synovial capillaries, whereas macro-molecules and particles
may leave through the lymphatic vessels in the synovium. Drug diffu-
sion through cartilage is generally slower than the rate of clearance out
of the joint [56]. This means that drug penetration to chondrocytes
must be adequately efficient to reach therapeutic levels before the drug
is cleared from the joint space.

ASOs show potential in targeting articular cartilage, but not without
challenges due to their size and anionic charge. At approximately 20
bases, ASOs are much larger than traditional small molecule drugs such
as steroids [58,59]. Their anionic nature makes diffusion across the
negatively-charged cell membrane difficult. Previous studies using
intra-articular injection of ASOs suggest there is potential for ASOs to
penetrate cartilage and reach intracellular sites, as decreased expression
of target genes in preclinical mouse and rat models have been observed
[22,47].

4.2. Viral-mediated gene therapy

Intra-articular injection provides a mode for local administration of
viral vectors carrying ASOs. These vectors may include lentiviruses,
adenoviruses, adeno-associated viruses (AAV) and retroviruses.
Preclinical evidence from animal studies supports the use of viral vec-
tors for ASO delivery. Lian et al. demonstrated that lentivirus-shuttled
ASOs could be delivered to the cartilage of the mouse knee joint by
intra-articular administration to effectively reduce target gene expres-
sion of Atg12, an autophagy regulator [47]. Others used adenovirus and
successfully showed that inhibition of miR-101 with ASOs prevented
cartilage degeneration by targeting SOX9 in a monoiodoacetate-in-
duced rat model of OA [60]. Previous clinical trials with viral-mediated
gene therapy showed encouraging results [61,62], suggesting that this
system may be effective for ASO delivery in future clinical trials.

AAV is now widely used for gene therapy because of its ability to
transduce different cell types and tissues, and its low risk of im-
munogenicity [63]. Retrovirus was used in the world's first gene
therapy product TissueGene C (Invossa), which was approved for the
treatment of OA in South Korea in 2017 [64]. Invossa is a drug con-
taining allogenic chondrocytes that have been transduced with retro-
virus containing transforming growth factor-beta 1 (TGF-β1). Although
structural modification is still unclear, Invossa was successfully shown
to reduce pain [64,65]. A Phase III clinical trial in the United States is
currently suspended to recruit participants (Clinical Trial ID:
NCT03203330) due to CMC (chemistry, manufacturing and control)
concerns.

Although viral-mediated therapies have been successfully used in
gene therapy for their superior transfection efficacy, there are several
challenges to overcome. Viral-mediated therapies can lead to cyto-
toxicity, immunogenicity and oncogenecity. It is difficult to functiona-
lize the virus with carrying agents. Finally, there is a significant
monetary cost associated with this delivery method [66]. To overcome
some of these concerns, non-viral gene delivery systems such as par-
ticle-based therapies present viable alternatives [67].

4.3. Particle-based strategy

For particle-based drug delivery, particles such as polymeric

micelles, liposomes and dendrimers are commonly used. Micron-scale
(microgels, microparticles, etc.) biomaterials made from synthetic and/
or natural polymers are also used to reduce the range of clearance and
control the release of drugs. This is particularly useful for achieving
targeted and sustained drug delivery to the joint, and in fact particle-
based drug delivery has been previously explored for intra-articular
injection in OA. For instance, intra-articular injections of liposomes
carrying hyaluronan or collagen-based surface-anchored ligand into
knee joints showed the anti-inflammatory efficacy of diclofenac and
dexamethasone in a rat model of OA induced by monosodium iodoa-
cetate [68].

Recently, nanoparticulated drugs (nanodrugs) have gained re-
cognition for their strengths in drug delivery. Systemic administration
of a nanodrug was shown to localize in the synovial joint of preclinical
animal models of rheumatoid arthritis [69]. Following systemic injec-
tion, nanodrugs exploit synovial capillary fenestrations to accumulate
within the synovium, and subsequently enter the synovial cavity
through the gaps between synovial cells [70,71]. However, unlike the
abundant angiogenic capillaries with fenestrations in RA synovial
tissue, OA synovial tissue has fewer fenestrated capillaries, and this
hampers the efficacy of systemic injection in targeting the joint [72].
Therefore, intra-articular injection of nanodrugs would be required to
target delivery to the OA joint.

Previous studies have shown that when small (< 15 nm) cationic
nanocarriers are injected intra-articularly, they can overcome the bio-
logical barriers of the joint by binding and penetrating anionic cartilage
tissue faster than the carriers can be cleared from the joint space
[73–76]. Geiger et al. showed that nanodrugs composed of poly-
amidoamine dendrimers (generation 4 and 6) carrying IGF-1 success-
fully penetrated bovine cartilage of similar thickness to human cartilage
within 2 days. This enhanced therapeutic IGF-1 residence time in rat
knees by 10-fold for up to 30 days [77]. Furthermore, a single intra-
articular injection of dendrimer-IGF-1 rescued surgically-induced OA
changes to cartilage and bone in rat knee joints. Not only did the single
injection reduce the total area and width of medial tibial cartilage de-
generation, it also reduced the total volume of osteophytes compared to
that of rats with no treatment following surgery [77].

Regarding the use of nanocarriers to administer ASOs in OA,
Sacchetti et al. utilized intra-articular injection of polyethylene glycol
(PEG) chain-modified single-walled carbon nanotubes (SWCNTs) as a
drug delivery system to chondrocytes [78]. PEG-SWCNTS are 1D na-
noparticles with diameters smaller than 10 nm and lengths ranging
from tens to several hundreds of nanometers [79]. The authors showed
that intra-articularly injected PEG-SWCNTs displayed long-lasting re-
sidence time within the joint cavity of both healthy and OA mice, and
efficiently entered chondrocytes residing in the upper zone of the car-
tilage. More importantly, intra-articularly injected PEG-SWCNTs suc-
cessfully delivered morpholino ASOs into chondrocytes of both healthy
and OA cartilage without discernible toxicities in the mice.

Although nanocarriers have the demonstrated ability to deliver
cargo into cartilage, their safety profile is still fragmental and needs to
be confirmed before testing in clinical settings. Indeed, not all nano-
carriers that enter the joint infiltrate the cartilage [80], and drug ac-
cumulation in cells of surrounding joint tissues may result in adverse
events. Clinical trials using particle-based therapy are ongoing
(NCT02837094 and NCT04120194), and these results will provide
further insight into the potential for clinical application.

4.4. Chemical modification-based strategy

Since the safety profiles of viral-based delivery and nanocarriers
have not yet been confirmed, various natural drug delivery strategies
have been investigated. To circumvent the use of viruses or nano-
carriers, chemical modifications to ASOs have been made to facilitate in
vivo delivery. The LNA-modified ASO delivery system is one of the most
advanced in vivo delivery systems [81]. LNA can interact with
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complementary RNA with high affinity, neutralizing the targeted RNA
[31]. In 2018, our group showed the therapeutic potential of LNA-miR-
181a-5p ASO in facet and knee OA using preclinical animal models
across joints and species [19]. Specifically, we demonstrated that
blocking miR-181a-5p with intra-articularly injected LNA-miR-181a-5p
ASOs decreased the severity of OA in both injury-induced spine OA in
rat and trauma-induced knee OA in mice, accompanied by decreased
expression of cartilage catabolic and cell death markers. Baek et al. also
showed the efficacy of LNA-miR-449a ASO in a rat preclinical model of
knee OA [22]. They demonstrated that LNA-miR-449a ASOs were
successfully delivered to cartilage defect sites and performed dual po-
sitive roles, regenerating damaged cartilage and preventing OA pro-
gression by targeting LEF1 and SIRT1. These studies demonstrate that
intra-articular injection of LNA-based ASOs resulted in high stability
and cellular uptake in rat facet joints and mouse/rat knee joints to
suppress disease progression in surgically-induced OA. While these re-
sults are promising, showing that ASOs are able to have an effect in
cartilage, pharmacokinetic studies with labeled-LNA-ASOs (e.g. fluor-
escence-labeled ASOs) are warranted to visualize cellular uptake and
trafficking in chondrocytes and confirm that the observed effects are
indeed the result of ASO activity.

4.5. Biomaterial-based therapy

Biomaterial carriers such as hydrogels are able to sustain drugs in
the joint with slow release. Recently, Garcia et al. reported a drug de-
livery strategy targeting ADAMTS5 with LNA-ASOs and fibrin-hya-
luronic acid (HA) using a hydrogel-based scaffold to deliver the ASOs to
human OA chondrocytes [82]. This hydrogel-based platform displayed
a 14-day sustained release of the incorporated LNA-ASOs, and allowed
for LNA-ASO uptake by primary human OA chondrocytes after diffusion
through the hydrogel. Furthermore, knockdown of ADAMTS5 was ob-
served 14 days post-drug administration [82]. The same group also
showed that high-molecular weight HA can be used to tune nano-
particle targeting to specific epitopes [83]. The authors demonstrate
increased CD44-dependent chondrocyte binding and controlled release
of ASOs in a hydrogel where effective silencing of COX2 was observed
over 14 days in OA chondrocytes [18]. This suggests that high-mole-
cular weight HA-based drug delivery systems have the potential of
specifically targeting cartilage by offering a good scaffold for chon-
drocyte binding. These studies demonstrate that chemical modifications
to ASOs combined with HA-based delivery strengthens bioavailability
in the synovial cavity, and therefore promotes ASO uptake and function
in local tissues over longer periods.

4.6. Targeting a gene family

Typically, ASOs are used to target one specific gene (sequence).
However, this strategy may not be sufficient to achieve optimal out-
comes in some instances. Recent studies have demonstrated a strategy
for using ASOs to target a group (family) of genes, especially for
miRNAs. Obad et al. developed an approach for inhibiting miRNA fa-
milies using ultra-short LNA (termed “tiny LNA”) ASOs that com-
plementarily bind to the common seed region of miRNA family mem-
bers [84]. The greatest advantage of this method is the ability to inhibit
all miRNA family members that may have overlapping or redundant
roles in disease. Indeed, Hullinger et al. showed that tiny LNA-ASOs
with complementarity to the seed region of the miR-15 family were
more potent in eliciting de-repression of downstream targets than the
regular LNA ASOs which targeted a specific family member, even
though both ASOs showed comparable uptake to cardiac tissue [85].
Moreover, tiny LNA-ASOs targeting miR-34 family members (−34a,
−34b, and −34c) were effective in inhibiting all three members in two
different cardiac stress models and attenuated cardiac remodeling and
atrial enlargement, while inhibition of a specific miRNA member (miR-
34a) alone with regular LNA-ASOs did not show these effects [86].

Regarding OA, and to the best of our knowledge, no study to date
has tested the inhibition of co-expressed miRNA family members, at
least in in vivo animal models. This represents a promising novel
therapeutic strategy. While our group showed the therapeutic potential
of inhibiting miR-181a-5p in facet and knee OA animal models [19,20],
others independently demonstrated that inhibiting miR-181b had an
effect in cartilage protection in a surgery-induced OA mouse model
[87]. Furthermore, miR-29 family members (−29a, −29b, and −29c)
have been reported as potential therapeutic targets in OA, as their ex-
pression increases upon surgical induction in a mouse cartilage injury
model [88]. Therefore, using tiny LNA ASOs to target miRNA families
such as miR-181 and miR-29, and other miRNAs involved in OA pa-
thogenesis, should be further explored.

5. Roadblocks for clinical application

5.1. Animal models

Use of preclinical OA animal models is essential for testing new drug
candidates prior to clinical trials. The vast majority of studies use
mouse or rodent models to test new agents, including intra-articular
injection of ASOs [19,20,22,47]. Although rodent models have en-
hanced our understanding of OA pathogenesis, they may not be suffi-
cient to understand drug delivery and uptake mechanisms. Pharmaco-
kinetics must be assessed with larger animals such as dogs, sheep, or
horses, as their joint anatomy (e.g. cartilage thickness) has more simi-
larity to that of humans and thus is more clinically relevant [89]. The
thickness of cartilage in the joint increases with animal size [90]. For
instance, the average mature cartilage thickness is up to 40 times less in
mouse (around 50 μm) or rats (100–150 μm) than in humans
(1.5–2.0 mm) [90,91]. This difference could hinder translation across
species when investigating drug uptake, diffusion-based transport ki-
netics and retention in the joint. For example, whereas drug carriers can
penetrate rapidly into 50 μm-thick mouse cartilage, in larger animals or
humans, these drug carriers are easily cleared from the joint before
adequate penetration. Conversely, once a drug is delivered to the car-
tilage, retention might be prolonged with thicker cartilage, which
would enable adequate time to function at the target cells. Therefore,
given that any disease-modifying drug targeting chondrocytes ought to
penetrate 1 to 2 mm of cartilage in humans to access resident chon-
drocytes [92], demonstrating penetration through thicker tissues in
large animal models is necessary for translation of cartilage drug de-
livery technology intended to target human chondrocytes.

In addition to the species, the method used to induce OA is also
critical in the evaluation of new drugs. In animal models of knee OA,
surgical methods such as destabilization of the medial meniscus (DMM
[19,93,94]) and anterior cruciate ligament transection (ACLT [95,96]),
are commonly used. These surgical models represent post-traumatic
OA, where phenotypic features of disease tend to appear much faster
than is typical for human OA. The shorter overall disease trajectories
may not truly reflect the disease course in humans during primary OA.
Furthermore, the severity of OA that develops can depend on surgical
skill and harvest time points. These factors could lead to different
outcomes between animal OA models and human OA. For this reason,
models of spontaneous OA may be an appropriate alternative, such as
the life-long voluntary joint loading mouse model [97], despite the
greater time investment that is required to age animals and assess
outcomes.

5.2. Targeting a distinct stage (severity) of OA

Animal models can be used to capture different types and stages of
OA. Post-traumatic OA is best represented by surgical models of OA, as
described above. Primary (idiopathic) OA is best represented by aging
models of OA, where animals are allowed to age and joints are assessed
for signs of OA using gene expression, histological features, and
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radiographic features. Mice that are aged 18–24 months are considered
old and roughly equivalent in age to humans between 56 and 69 years
[98]. Given that the incidence of OA increases with age, the aging
animal model is a strategy for more closely representing the natural
history of the disease. Different stages of OA can be captured by ex-
amining mice at different ages. For example, a 1-year-old mouse is
predicted to be roughly equivalent in age to a 42.5-year-old person
[98]. Careful examination of the joints at this stage may reveal early
features of OA, making this model appropriate for testing ASOs with
preventative effects in OA.

With regard to clinical assessment, detecting early stages of OA in pa-
tients is not straightforward due to the lack of congruence between symp-
toms and radiographic features [99]. Currently, Kellgren-Lawrence (KL)
grading [100] of radiographic features of OA, including joint space nar-
rowing and osteophyte formation, is used to determine the severity of OA
based on 5 grades ranging from 0 (radiographically undetectable OA) to 4
(most severe OA). However, it is not uncommon for patients to experience
pain while not showing any radiographic features of OA. Pain is often as-
sessed through self-report, using scales such as the Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC) [101]. In particular,
WOMAC scores capture pain, stiffness and physical function for people with
knee or hip OA. A relevant clinical outcome for testing the effectiveness of
ASO therapy is the change in WOMAC score over time, where responders to
ASO therapy could be differentiated from non-responders. This outcome
may show more responsiveness than structural changes reflected by KL
grade, which would likely require longer treatment durations. The choice of
outcome that is used in OA clinical trials is critical, as the mechanism of the
ASO therapy must be known (symptom-modifying versus structure-mod-
ifying), and the duration of the ASO therapy must be appropriately captured
in the trial (short-acting to improve pain versus long-acting to prevent
structural progression).

5.3. Potential toxicity associated with ASOs

Each class of third-generation ASO has a stereotypic toxicity profile.
PS-based ASOs are reported to have potential acute toxicity. ISIS2303,

an ASO of intercellular adhesion molecule 1 (ICAM-1), was shown to
cause remarkable changes in blood pressure, lethargy, periorbital
edema and increase of circulating neutrophils and cytokines such as IL-
6 and IL-12 in monkey [102]. In most cases, these changes recovered
within 15–30 s, but in rare cases, more severe effects occurred [102].
The underlying mechanisms remain elusive but complement activation
is one pathway that may contribute to toxicity [102]. Furthermore,
ASOs can occasionally bind to proteins such as toll-like receptors in a
sequence-dependent manner, which can also cause unexpected side
effects [103].

As described above, LNA ASOs have relatively high potency with
favorable binding affinities in part due to their short sequence. Since
LNAs work primarily though RNase H, they exhibit lower im-
munostimulatory activity relative to earlier generations of ASOs.
Despite this, LNA ASOs have been reported to have greater potential for
hepatotoxicity through several mechanisms that are largely in-
dependent of immunostimulatory activity [104]. First, while high af-
finity is a huge advantage in suppressing target genes, intracellular drug
accumulation is also increased, and that may increase associated toxi-
cities. Second, ASOs may bind to off-target RNAs that share a high
degree of homology with the target sequence, thereby inducing toxicity
via multiple tissues [105]. Third, since the liver and kidney are major
drug clearance organs, the issue of hepatotoxicity and nephrotoxicity
remain as challenges in ASOs-based treatment [106].

6. Conclusion

Recent in vitro and in vivo animal models of OA exploring ASO-
based therapies have provided promising proof of concept data. Further
tailoring this approach for administration in humans, including tar-
geted drug delivery systems, will promote the feasibility of clinical
application (Fig. 2). The stage is set with the ongoing surge in human
genomic and proteomic data that will enable identification of promising
RNA targets for ASOs. Validation of these targets, accompanied by
optimized ASO structure, delivery and safety profile, will position ASO-
based drugs as a promising therapeutic strategy for OA treatment.

Fig. 2. Overview of potential therapeutic strategies with antisense oligonucleotides (ASOs) in osteoarthritis (OA). Intra-articular (IA) injections deliver the modified
ASOs to the joint space. The ASOs subsequently penetrate cartilage to bind to the target mRNA. Potential strategies with ASOs include (1) chemical modification-
based, (2) viral-assisted, (3) particle-based, (4) biomaterial-based, and (5) targeting gene family-based approaches, which may overcome the difficulties toward
clinical applications such as drug sustainability, cartilage penetration and off-target effects.
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