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Abstract

To estimate dynamic functional connectivity (dFC), the conventional method of slid-

ing window correlation (SWC) suffers from poor performance of dynamic connection

detection. This stems from the equal weighting of observations, suboptimal time

scale, nonsparse output, and the fact that it is bivariate. To overcome these limita-

tions, we exploited the kernel-reweighted logistic regression (KELLER) algorithm, a

method that is common in genetic studies, to estimate dFC in resting state functional

magnetic resonance imaging (rs-fMRI) data. KELLER can estimate dFC through esti-

mating both spatial and temporal patterns of functional connectivity between brain

regions. This paper compares the performance of the proposed KELLER method with

current methods (SWC and tapered-SWC (T-SWC) with different window lengths)

based on both simulated and real rs-fMRI data. Estimated dFC networks were

assessed for detecting dynamically connected brain region pairs with hypothesis test-

ing. Simulation results revealed that KELLER can detect dynamic connections with a

statistical power of 87.35% compared with 70.17% and 58.54% associated with

T-SWC (p-value = .001) and SWC (p-value <.001), respectively. Results of these dif-

ferent methods applied on real rs-fMRI data were investigated for two aspects: calcu-

lating the similarity between identified mean dynamic pattern and identifying

dynamic pattern in default mode network (DMN). In 68% of subjects, the results of

T-SWC with window length of 100 s, among different window lengths, demonstrated

the highest similarity to those of KELLER. With regards to DMN, KELLER estimated

previously reported dynamic connection pairs between dorsal and ventral DMN

while SWC-based method was unable to detect these dynamic connections.
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1 | INTRODUCTION

One of the principal research fields in neuroimaging, particularly rest-

ing state functional magnetic resonance imaging (rs-fMRI), is the anal-

ysis of functional connectivity (FC). FC measures the association

between intrinsic blood oxygen level-dependent (BOLD) activities of

distant brain regions (B. Biswal, Zerrin, Haughton, & Hyde, 1995;

Friston, 2011). Traditionally, researchers have assumed stationarity of

FC during scanning period; however, evidences have been reported

that inter- and intra-FC of brain networks change over time (Chang &

Glover, 2010; Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013;

Preti, Bolton, & Van De Ville, 2017). Thus, assessing dynamic pattern

of FC has recently become critical for better understanding of the

brain function in healthy subjects (Fong et al., 2019; Goldhacker,

Tome, Greenlee, & Lang, 2018) as well as its dysfunction in patients

with various pathologies such as neurodegenerative diseases (Jones

et al., 2012; Wee, Yang, Yap, Shen,, & Alzheimer's Disease

Neuroimaging, 2016; Zhu et al., 2019) or neuropsychiatric disorders

(Damaraju et al., 2014; Du et al., 2018; Sakoglu et al., 2010; White &

Calhoun, 2019).

Dynamic functional connectivity (dFC) has been assessed by dif-

ferent approaches, including time-frequency coherence analysis

(Chang & Glover, 2010), state space model (Kang et al., 2011), time

series model (Lindquist, Xu, Nebel, & Caffo, 2014), change point

detection methods (Cribben, Haraldsdottir, Atlas, Wager, & Lindquist,

2012; Y. Xu & Lindquist, 2015), regression models with regularization

terms (Cai et al., 2018; A. Liu, Chen, McKeown, & Wang, 2015; Monti

et al., 2014), and sliding window correlation (SWC) method (Allen

et al., 2014; Handwerker, Roopchansingh, Gonzalez-Castillo, &

Bandettini, 2012; Hutchison et al., 2013; Iraji et al., 2019). The SWC

approach is a widely applied method in the literature because of its

simplicity in both concept and application (Preti et al., 2017).

While dFC studies have recently drawn increasing attention, sta-

tistical assessment of the results to capture the underlying dynamic

pattern from rs-fMRI data is of great importance. The spurious fluctu-

ations due to inherent noise in the rs-fMRI data, low signal-to-noise

ratio, and physiological artifacts can easily result in false dynamic con-

nections, which are not originated form neural interactions. In addi-

tion, how dFC is estimated is influential in the detection of statistically

significant dynamic connections (Hindriks et al., 2016; Lindquist et al.,

2014; Savva, Mitsis, & Matsopoulos, 2019). For example, Hindriks

et al., (2016) have claimed that it is impossible to detect dynamic con-

nections using the SWC method in individual sessions through simula-

tion studies and validated this claim by using both the rs-fMRI data of

the human and the macaque; however, they have reported that aver-

aging the statistical measure across subjects/sessions could increase

the power of detecting dynamic connections. In another study, Savva

et al., (2019) have shown that mutual information and variation of

information yield most consistent results by achieving high reliability

with respect to dFC estimations for different window sizes in compar-

ison with correlation metrics such as Pearson correlation, Spearman

and Kendall correlation, and Pearson and Spearman partial correlation.

Thus, their findings suggested that how dFC is estimated, greatly

affects the power of detecting dynamic connections. In consequence,

it has recently become critical to determine whether the estimated

dFC is in fact due to neuronal interactions or random noise (Hindriks

et al., 2016; Kudela, Harezlak, & Lindquist, 2017; Leonardi & Van De

Ville, 2015; Zalesky, Fornito, Cocchi, Gollo, & Breakspear, 2014).

Therefore, detection of statistically significant dynamic connections is

essential for dFC studies.

An appropriate statistical framework is required to determine

whether the observed variation in the FC time series can be charac-

terized as dynamic pattern or whether it is due to statistical uncer-

tainty (Hindriks et al., 2016; Sakoglu et al., 2010). To this end, a

commonly used approach is to calculate a test measure that charac-

terizes the fluctuation in the FC time series and subsequently applying

a statistical hypothesis test. In this framework, the null hypothesis

states that the estimated dFC time series is static and is evaluated on

the basis of the distribution of the calculated test measure. In the lit-

erature, several test measures have been proposed to test the pres-

ence of dynamicity in the estimated dFC time series, including the

variance of the dFC time series (Hindriks et al., 2016; Sakoglu et al.,

2010), a linear measure based on the dFC time series' Fourier trans-

form (Handwerker et al., 2012), and a nonlinear measure (Zalesky

et al., 2014). Since the null distributions of the measures cannot be

analytically derived, surrogate data, produced based on the statistical

properties of the observed data, are used and dynamic connectivity

tested based on a test statistics measure that reflects the dynamicity

of the estimated dFC time series (Pereda, Quiroga, & Bhattacharya,

2005). Considering the variance of the dFC time series (σ2) as the test

measure, in the absence of dynamicity (null hypothesis), this measure

is expected to be only due to statistical uncertainties and remain rela-

tively small over time. On the other hand, in the presence of

dynamicity (alternative hypothesis), this measure will not be only due

to statistical uncertainties and becomes relatively large. In other

words, the variance under the null hypothesis is positive but statisti-

cally smaller than that under the alternative hypothesis. Consequently,

if the variance of the estimated dFC is located in the upper five per-

centile of the null distribution, the null hypothesis will be rejected with

p-value <.05. This is an evidence for the presence of dynamicity in the

estimated dFC time series (Chang & Glover, 2010; Hindriks et al.,

2016; Zalesky et al., 2014).

Since one of the main factors that affects the statistical power in

the detection of dynamic connections is how dFC is estimated, devel-

oping a powerful method to estimate dFC with high accuracy is of

critical importance. The SWC-based methods, as the conventional

methods to estimate dFC, suffer from some limitations that can

impact the interpretation of the findings (Hindriks et al., 2016; Savva

et al., 2019) as follows:

1. Low detection power: SWC method uses equal weights across all

observations within a window (Lindquist et al., 2014), which in turn

leads to variations in the estimation results (Hindriks et al., 2016;

Kudela et al., 2017; Lindquist et al., 2014). In consequence, spuri-

ous fluctuations caused by noise can easily show up as dynamic

changes in the estimated dFC. Hence, the quality of the estimated
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dFC has an important effect on the power of detecting dynamic

connections. Furthermore, the bivariate nature of SWC, which only

captures the strength of association between pairs of brain

regions, might be another explanation for this limitation. This is

because multiple brain regions are engaged in cognitive tasks and

resting state conditions (Anzellotti, Caramazza, & Saxe, 2017;

Gallagher & Frith, 2003) and using bivariate measures to estimate

interactions between these regions may not explore the neural

bases of behavior or cognition. Recent exploration of uncertainty

in estimation of dFC has reported issues due to stationarity and

statistical testing of dFC (Liegeois, Laumann, Snyder, Zhou, & Yeo,

2017). Parametric approaches show greater power in detecting

dFC changes. For example, Liegeois et al., (2017) have suggested

that Autoregressive models are powerful tools for exploring the

dynamical properties of rs-fMRI. They also explored different

frameworks including phase randomization and autoregressive ran-

domization for generating surrogate data for statistical testing of

dFC. Their findings showed that bivariate autoregressive randomi-

zation approach is prone to false-positives compared with phase

randomization and multivariate autoregressive randomization

approaches.

2. Appropriate window length: Setting the length of time window is

very critical and affects the connectivity results (Shakil, Lee, &

Keilholz, 2016). Using a long window risks to miss fast changes in

FC evolution over time, whereas a short window will reduce effec-

tive sample size and make the estimation procedure unreliable

(Hutchison, Womelsdorf, Allen, et al., 2013). However, some

efforts have been made to address the algorithmic selection of the

window length to explore dFC (Vergara, Abrol, & Calhoun, 2019).

Vergara et al., (2019) proposed to use an averaged SWC, which

requires a window length smaller than that of SWC. This is impor-

tant because shorter windows allow for more accurate estimation

of transient dynamicity of FC. Including an averaging step in the

processing of SWC as proposed in (Vergara et al., 2019) provides a

method for eliminating artifact fluctuations due to windowing

compared with the common SWC. In this way, the averaged-SWC

identifies dFC fluctuations better than the common SWC.

3. Sparsity of dFC networks: The dFC networks resulting from the

SWC method are fully dense because of the presence of noise and

other nonneuronal sources that contribute to the acquired BOLD

signals, whereas numerous studies have reported that brain net-

works are of parsimonious structure which enable brain to process

and transfer information with high efficiency and low redundancy

(Bullmore & Sporns, 2009). Thus, estimation of the dFC network

structure is a problem (A. Liu et al., 2015; Monti et al., 2014),

which is inherently relevant in the estimation of the network's

sparsity.

In this work, we adopt the kernel-reweighted logistic regression

(KELLER) from genetic studies (Song, Kolar, & Xing, 2009), which pro-

vides us with a comprehensive framework to estimate dFC networks

while overcoming limitations of SWC. We change the definitions of

the variables in order to match them with those of the rs-fMRI data.

To address the first mentioned limitation, we model dependencies of

brain regions by considering multivariate relations between BOLD sig-

nals of pairs of brain regions in KELLER. Moreover, kernel-reweighted

feature of KELLER weighs observations unevenly in each window in a

way that the adjacent observations have stronger contributions to the

estimation process than the distant observations. Thus, we hypothe-

size that this modeling leads to a more accurate estimation of the

brain dynamic interactions. To overcome the second limitation, KEL-

LER utilizes a sophisticated parameter selection technique based on

the Akaike information criterion (AIC). Finally, KELLER ensures the

sparsity of the estimated dFC networks by applying an ℓ1-penalized

term in the loss function which effectively yields a sparse network.

To utilize KELLER in estimating dFC from rs-fMRI data, we define

a new time-varying network model based on temporal modeling of rs-

fMRI time series in which we model the multivariate probability den-

sity function (pdf) of the rs-fMRI time series of all brain regions at

each time point by using a pairwise Markov Random Field (MRF)

model. In this model, dFC between each pair of brain regions indicates

the strength of undirected interaction between them. The MRF model

has been appealing in the analysis of complex dependence structures

(Kaiser, 2007). We reformulate the multivariate pdf of the rs-fMRI

time series of brain regions into a product of conditional pdfs. As a

result, the problem of estimating dFC networks is decomposed into

one of estimating a series of distinct and static FC networks. More-

over, this step provides an opportunity to estimate multivariate rela-

tions between brain regions by estimating functional interaction

pattern of a brain region and other regions simultaneously at each

time point, using a neighborhood selection procedure (Song et al.,

2009; Wainwright, 2006). The resulting functional pattern of each

brain region over time is referred to as dynamic neighborhood vector

in the rest of the paper. In this way, we can estimate dFC networks by

putting together all estimated dynamic neighborhood vectors related

to all brain region with a temporal resolution equal to the sampling

rate of the BOLD signal. Subsequently, null hypothesis significance

testing based on the amplitude-adjusted phase randomization proce-

dure surrogate data generation (Betzel, Fukushima, He, Zuo, & Sporns,

2016) is employed for detecting dynamic connections (Chen,

Rubinov, & Chang, 2017). One possible approach towards obtaining

such a statistical assessment is to use a statistic measure that charac-

terizes the changes in the estimated dFC time series (Hindriks et al.,

2016; Savva et al., 2019). Then, the estimated statistic measure is

tested through its null distribution approximated using surrogate data

to verify the presence of dynamic pattern in the estimated dFC time

series. Thus, the second hypothesis in this paper is that utilizing KEL-

LER for estimating dFC networks increases dynamic pattern detect-

ability in estimated dFC time series due to modeling the multivariate

relations between BOLD signals of brain regions. Moreover, the ability

of KELLER to automatically estimate true sparse structure of dFC net-

work at each time point increases the accuracy of the estimated dFC

networks.

As mentioned above, SWC has low power of dynamic connection

detection because of weighting all observations equally in each win-

dow (Lindquist et al., 2014). This limitation of SWC can be overcome
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by using tapered windows. Thus, we evaluate the performance of

KELLER on a series of simulation studies and real rs-fMRI data in com-

parison with the SWC-based methods including SWC and Tapered-

SWC (T-SWC) (see Section 2.5). Moreover, since the SWC-based

approaches can only obtain time-varying estimates of the covariance

matrices, for fair comparison, we apply the graphical lasso (Friedman,

Hastie, & Tibshirani, 2008) subsequently to learn true sparsity struc-

ture in the dFC networks. The combined methods are referred to as

SWCGL (SWC and graphical lasso) and T-SWCGL (T-SWC and graphi-

cal lasso) in the rest of the paper.

Another important issue in the SWC method is the effect of

window size on the estimated dFC time series. In the literature, a

suitable window for dFC is suggested to be between 30 and

100 seconds (s) (Wilson et al., 2015). On the other hand, a rule of

thumb has been proposed by Leonardi and Van De Ville for remov-

ing spurious fluctuations due to inappropriate window length. They

set window length to 1/fmin s or larger in SWC, where fmin corre-

sponds to the smallest frequency in the spectrum (Leonardi & Van

De Ville, 2015; Zalesky & Breakspear, 2015). The spectrum of fMRI

BOLD signals has been proposed to start at 0.01 Hz after studying

frequencies dominated by neuronal activity and away from physio-

logical noise such as cardiac and respiratory activities (Chen &

Glover, 2015). Moreover, Zalesky and Breakspear (Zalesky &

Breakspear, 2015) have provided further statistical support for this

rule of thumb, but suggested that if fMRI data has a moderate SNR,

the window length of 1/fmin s may be overly conservative and in this

case, dFC can in theory be detected with much shorter window

lengths (e.g., 40 s). They have also suggested that statistical testing

and appropriate surrogate data is crucial in this respect. Thus, in this

work, to minimize the effect of window length on the capability of

SWC-based methods, we use different window lengths from 20 to

140 s in 20 s steps.

The remainder of the paper is organized as follows. In the next

section, we will first introduce the KELLER algorithm in detail for

computing dFC networks from rs-fMRI data. Next, in the Materials

and Methods Section, we explain simulation studies as well as real

rs-fMRI data. Then, we describe how to estimate dFC time series by

utilizing KELLER and detecting dynamic connections. In the Results

Section, we present the results of the simulation studies to evaluate

the performance of KELLER in comparison with SWC-based

methods. We also present the findings of applying KELLER on the

rs-fMRI data to study the dynamic behavior of the whole brain in

healthy subjects.

2 | KELLER ALGORITHM

In this section, we introduce the KELLER algorithm (Song et al., 2009)

for computing dFC networks from rs-fMRI data. First, a dFC network

model based on temporal modeling of rs-fMRI time series is described.

Afterwards, we explain the core of KELLER for estimating dFC net-

works as the estimation of a dynamic neighborhood vector. Finally,

we discuss how parameters of KELLER are set. In the following,

matrices, vectors, and scalars are denoted by boldface capital letters,

boldface lowercase letters, and lowercase letters, respectively.

2.1 | Dynamic FC network model based on
temporal modeling of rs-fMRI time series

Let us consider the representative rs-fMRI time series of p regions of

interest (ROIs) at a given time point t as a random vector denoted by

y tð Þ≔ y tð Þ
1 ,…,y tð Þ

p

� �
. We suppose that T observations of y are available

denoted by Y�RT×p. Representative rs-fMRI time series of each ROI is

extracted as the mean rs-fMRI time series of all voxels in that ROI.

Prior biological knowledge of rs-fMRI data allows us to hypothesize

that there may be a meaningful correlation at a given time point

t between each pair of y tð Þ
m andy tð Þ

n ,m,n�1 : p . Our objective is to esti-

mate dFC matrices {θ(t), t = 1 : T}≔ {θ(1),…, θ(T)} between all pairs of

y(t)�Rp over time, that is, an FC matrix for every time point of the rs-

fMRI measurement. To consider multivariate interactions between

brain regions in estimating dFC matrices, we used the KELLER algo-

rithm originally proposed in the genetic studies framework as a gener-

ative model based on a pair-wise MRF which represents the

multivariate pdf of the random vector y(t) at a given time point t. To

translate KELLER from genetic to rs-fMRI, we need to define a dichot-

omized variable d tð Þ≔ d tð Þ
1 ,…,d tð Þ

p

� �
�Rp that classifies each observation

vector y tð Þ≔ y tð Þ
1 ,…,y tð Þ

p

� �
�Rp at a given time point t to “High” (d tð Þ

m =1Þ
or “Low” (d tð Þ

m = −1Þ level of functional activity

(D y tð Þ� �
: binarizedy tð Þ ! d tð Þ = d tð Þ

1 ,…,d tð Þ
p

� �
�Rp,d

tð Þ
m ϵ −1,1f gÞ: To this

end, we normalize all the representative rs-fMRI time series of the p

regions of interest (ROIs) separately between zero and one; this nor-

malization does not affect the pair-wise correlation between the ROIs

because the temporal variations of the rs-fMRI time series are pre-

served. So, the observed random vector denoted by

y tð Þ≔ y tð Þ
1 ,…,y tð Þ

p

� �
�Rp at a given time point t will be within the interval

(0,1) and then can be dichotomized to “High” or “Low” level of func-

tional activity as d tð Þ≔ d tð Þ
1 ,…,d tð Þ

p

� �
�Rp,d

tð Þ
m ϵ −1,1f g by setting a fixed

threshold of 0.5. Note that this thresholding is a kind of adaptive

thresholding based on the variation of functional activity in a given

ROI, because the representative rs-fMRI time series of the p regions

of interest (ROIs) were separately normalized between zero and one

before thresholding. Thus, the generative model can be defined based

on pair-wise MRF which represents the joint probability of measured

BOLD signal of all ROIs at time point t, y(t) as follows:

P y tð Þjθ tð Þ
� �

≔
1

Z θ tð Þ
� �exp X

m,nð Þ are connected
θ tð Þ
mny

tð Þ
m y tð Þ

n

0
@

1
A ð1Þ

where θ tð Þ
mn encodes the undirected interaction between the rs-fMRI

signals of each pair of ROIs (m and n) at time point t θ tð Þ
mn = θ

tð Þ
nm

� �
. In

other words, dFC between each pair of brain regions is modeled as

θ tð Þ
mn which indicates the strength of undirected interaction between

them. The partition function Z(θ(t)) in the MRF model normalizes Equa-

tion (1) to a probability function. In MRF modeling, the dependencies
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of a set of random variables are represented by an undirected graph.

Therefore, dFC matrices {θ(t)} are expected to be undirected,

weighted, and symmetric. The presence of a non-zero entry in the

dFC matrix θ(t) means that the fluctuations of the rs-fMRI time series

of the corresponding ROIs are functionally related at a given time

point t. Changes in the value of parameter θ tð Þ
mn over time is considered

as the dynamic interaction between ROIs (m and n). In other words, if

the value of θ tð Þ
mn increases (or decreases), it reflects that the interac-

tion between ROIs (m and n) becomes stronger (or weaker) or connec-

tion between them appeared (or disappeared). Accurate estimation of

a series of dFC matrices {θ(t), t = 1 : T}≔ {θ(1),…, θ(T)} is the main focus

of this study.

From the perspective of the brain functional organization, we

impose the following two properties on the estimation procedure of

the dFC matrices {θ(t)}. Since the topology of FC networks changes

smoothly over time (Lin et al., 2017), the first property is the smooth-

ness of variation in dFC pattern over time. In mathematical terms,

smooth changes of dFC networks means that the changes in

θ tð Þ
mn−θ t+1ð Þ

mn

��� ��� are small over time. Note that current limitation in fMRI

recording technology allows dFC methods to capture dynamic varia-

tion in FC in the time scale of a single fMRI time frame (typically

1–3 s) up to several minutes (Chen et al., 2017). This property indi-

cates that the change in the dFC network structure is small at adja-

cent time points because temporally neighboring networks are most

likely to contain more common connections than temporally distant

networks. Thus, it is reasonable to incorporate the information of

neighboring time points in the rs-fMRI time series to estimate dFC

network at each time point. The second property is the sparsity of

dFC networks (Achard, Salvador, Whitcher, Suckling, & Bullmore,

2006; Bassett & Bullmore, 2006) which makes it reasonable to force

dFC networks to be sparse in the estimation process.

The problem of estimating dFC matrices {θ(t)} with the above

properties (smooth temporal variations and sparsity of dFC networks)

is not practically feasible by maximizing the log-likelihood of the joint

probability function in Equation (1), Pθ tð Þ y tð Þjθ tð Þ
� �

, because of the

existence of the partition function Z(θ(t)) which equals to the sum of a

number of exponential terms. To solve this problem, we use a frame-

work that decomposes the problem of estimating dFC network along

two axes. The first axis is time, where we estimate the dFC network

at each time point, and the second is space, where we identify all ROIs

in the brain which are connected to a specific ROI. We refer to these

connected ROIs as the neighbors of that specific ROI. We define the

neighbors of each ROI at each time point (neighborhood vector of

each ROI is defined as θ tð Þ
n0

n o
where n0 specifies the set of ROIs except

{n}, i.e., n0≔ {1,…, p}− {n}; j = 1 : p) and recover dFC network by putting

together all these vectors. In other words, in the new framework, we

decompose the estimation problem to a set of identical optimization

tasks by reformulating the problem. An additional benefit of such

reformulation is that we can model the level of activity at each ROI

(which is a binary variable d tð Þ
n ϵ −1,1f g ) as a function of interactions

between that ROI and its neighboring ROIs. So, the generative model

in Equation (1) can be simplified as a set of conditional probabilities of

the level of functional activity at each ROI based on the functional

activity of the rest of ROIs at time point t. These neighborhood vec-

tors reflect multivariate relations between a brain region and the rest

of the brain regions at a given time point t. Afterwards, we join the

corresponding dynamic neighborhood vectors to recover the overall

dFC network at each time point. It is worth mentioning that dynamic

neighborhood vector of each ROI at a given time point t defines the

multivariate functional pattern of a particular brain region with other

brain regions.

2.2 | Estimation of neighborhood vector

In this new framework, we employ neighborhood selection procedure

(Song et al., 2009; Wainwright, 2006) to convert estimation of dFC

matrices at each time point to estimation of a sequence of neighbor-

hood vectors θ tð Þ
n0

n o
. In other words, estimating dFC network is equiv-

alent to recovering the structure of interactions of each ROI (n) with

the rest of ROIs. In fact, if we can correctly estimate the neighbor-

hood vectors, it will lead to exact recovery of dFC networks. There-

fore, the joint probability function in Equation (1) is decomposed into

the product of conditional probability functions of y tð Þ
n given y tð Þ

n0 den-

oted by P y tð Þ
n jy tð Þ

n0 ,θ
tð Þ
n0

� �
, which represents the conditional probability

of the functional activity of ROI n at a time point t, given the mea-

sured BOLD signal of all ROIs except ROI n at time point t,

y tð Þ
n0 ≔ y tð Þ

1 ,…,y tð Þ
n−1,y

tð Þ
n+1,…,y

tð Þ
p

� �
ϵRp−1.

Here, we justify how the joint probability function in Equation (1)

is decomposed into the product of conditional probability functions.

As mentioned in Section (2.1), if two distinct ROIs m and n are con-

nected at time point t, θ tð Þ
mn 6¼0, otherwise, θ tð Þ

mn =0 . Thus, Equation (1)

can be simplified as follows:

P y tð Þjθ tð Þ
� �

≔
1

Z θ tð Þ
� �exp Xp

n=1

Xp
m=1,

m 6¼ n

θ tð Þ
mny

tð Þ
m y tð Þ

n

0
BBBBB@

1
CCCCCA ð2Þ

P y tð Þjθ tð Þ
� �

≔
1

Z θ tð Þ
� �exp Xp

n=1

< θ tð Þ
n0 ,y

tð Þ
n0 > y

tð Þ
n

 !
ð3Þ

where hv1, v2i = v1
Tv2 is the inner product. We use n0 to determine all

ROIs excluding {n}, that is, n0 ≔ {1, …, p} − {n}; n = 1 : p. Now, we can

rewrite this joint probability function by using only conditional proba-

bilities. Based on the chain rule, it is proven that

P X1,…,XNð Þ= QN
i=1

P Xij
Ti−1

j=1X j

� �
and the above equation based on the

conditional probabilities would be:

P y tð Þjθ tð Þ
� �

≔
Yp
n=1

Pθ tð Þ y tð Þ
n j
\n−1

m=1

y tð Þ
m

 !
ð4Þ

Because of the upper-triangular property of the θ(t) matrix, each

of the conditional probabilities Pθ tð Þ y tð Þ
n j
Tn−1

m=1 y
tð Þ
m

� �
,n=1 : p is the

MALEKI BALAJOO ET AL. 5



probability of the functional activity of each ROI at a time point t,

given the measured BOLD signals of the rest of the ROIs at time point

t, y tð Þ
n0 .

As described in Section 2.1, in the new framework adopted from

the KELLER algorithm, we used a binary block to define the level of

functional activity of each ROI at every time point and assumed a lin-

ear relationship between the functional activity level of ROI n and

those of all other ROIs except ROI n at time point t and defined d tð Þ
n as

a binary variable of y tð Þ
n (D y tð Þ� �

: binarizedy tð Þ ! d tð Þ d tð Þ
1 ,…,d tð Þ

p

� �
�Rp ,

d tð Þ
n ϵ −1,1f g,n=1 : pÞ. Since d tð Þ

n is a binary variable, it would be math-

ematically possible to assume that Pθ tð Þ d tð Þ
n jy tð Þ

n0

� �
andd tð Þ

n ϵ −1,1f g take
the form of a logistic regression because their log-odds ratio is

affine, that is, log P xð Þ
1−P xð Þ
� �

= β0 + β1x . Solving this for P, it gives

P xjβð Þ= 1
1+ e− β0 + β1 :xð Þ (Banerjee, 2007). In our case, the log-odds ratio

follows the following equation:

log
p

1−p

� �
= log

Pθ tð Þ d tð Þ
n =1jy tð Þ

n0

� �
Pθ tð Þ d tð Þ

n = −1jy tð Þ
n0

� �
0
@

1
A=2< θ tð Þ

n0 ,y
tð Þ
n0 > ð5Þ

where ℓ is the log-odd, and hv1, v2i = v1
Tv2 is the inner product. Thus,

in our case, all conditional probabilities follow the logistic function as:

P
θ tð Þ
n0

d tð Þ
n jy tð Þ

n0

� �
=

1

1+ exp −2d tð Þ
n θ tð Þ

n0 ,y
tð Þ
n0

D E� � =
exp 2d tð Þ

n θ tð Þ
n0 ,y

tð Þ
n0

D E� �
exp 2d tð Þ

n θ tð Þ
n0 ,y

tð Þ
n0

D E� �
+1

ð6Þ

In this model, θ tð Þ
n0 = θ tð Þ

mnjm�n0 ,θ tð Þ
nn =0

n o
as parameters of the

model is a p-1 dimensional neighborhood vector of the nth ROI at time

point t and y tð Þ
n0 is the set of predictors of the model.

Therefore, the estimation of the dFC networks at each time

point is decomposed into estimation of p dynamic neighborhood

vectors. The sequence of dynamic neighborhood vectors θ tð Þ
n0

n o
are

quantified by considering the following negative log-likelihood

function:

γ θ tð Þ
n0

n o
;y tð Þ

� �
= − log P

θ tð Þ
n0

d tð Þ
n jy tð Þ

n0

� �� �
ð7Þ

It is not possible to estimate θ tð Þ
n0

n o
by directly minimizing

Equation (7) which is the negative log-likelihood based on only one

measurement of variables at each time point. On the other hand, even

if we could estimate θ tð Þ
n0

n o
, Equation (7) would ensure none of the

both previously mentioned properties of dFC networks. In order to

estimate θ tð Þ
n0

n o
using Equation (7) and ensure that the estimated

θ tð Þ
n0

n o
varies smoothly over time, we introduce the following kernel

reweighted function w(t)(t*):

w tð Þ t�ð Þ= kh t�−tð Þ
	XT

t� =1

kh t�−tð Þ ð8Þ

where kh �ð Þ= k �
h

� �
is a nonnegative symmetric kernel and h is a band-

width parameter that controls the kernel size. In this work, we define

kh(�) as a radial basis function Gaussian kernel as kh(t) = exp(−t2/h) in a

way that the adjacent observations have stronger contributions to the

estimation than the distant observations. It is noteworthy that

weighting the observations is used in other methods such as short-

time Fourier transform to extract the transient frequency components

(Ahmed & Xing, 2009; Song et al., 2009).

γ θ tð Þ
n0

n o
;y tð Þ

� �
= −

XT

t� =1
w tð Þ t�ð Þlog P

θ tð Þ
n0

d t�ð Þ
n jy t�ð Þ

n0

� �� �� �
ð9Þ

Finally, sparsity is introduced into the model by using an

ℓ1-norm regularization term which assigns a large penalty to vec-

tors with large absolute values. In this way, the penalty term

shrinks elements to zero effectively. KELLER minimizes the follow-

ing loss function:

θ̂
tð Þ
n0 = argmin

θ tð Þ
n0 �R

p−1 −
XT

t� =1
w tð Þ t�ð Þγðθ tð Þ

n0 ;y
t�ð ÞÞ

� �
+ δ θ tð Þ

n0




 



1

ð10Þ

We use k.k1 for the ℓ1-norm, vk k1 =
Pp

n=1 vnj j . In Equation (10),

δ≥ 0 is a constraint to control the magnitude of the estimated

dynamic neighborhood vectors and the sparsity of the dFC

network defined by combining these neighborhood vectors

θ̂ tð Þ
= θ̂

tð Þ
10 ,…, θ̂

tð Þ
n0 ,…, θ̂

tð Þ
p0

h i
. Now, this model allows for the estimation of

dFC networks which have the properties of temporal smoothness and

sparsity while providing an accurate estimation of dFC networks with

identifying multivariate interactions between ROIs. The model param-

eters h and δ are set using the available data as will be described in

Section 2.4.

2.3 | Optimization algorithm

Estimating dFC networks using the neighborhood selection procedure

(Song et al., 2009; Wainwright, 2006), described in Section 2.2,

requires solving a series of optimization problems given in Equation

(10). The ℓ1-regularized logistic regression problem is a convex and

nondifferentiable problem due to the presence of the penalty terms

(Song et al., 2009). Such a ℓ1-regularized logistic regression can be

solved by among others, least absolute shrinkage and selection opera-

tor (LASSO) (Tibshirani, 1996), grafting (Perkins & Theiler, 2003), gen-

eralized LASSO (Roth, 2004), generalized iterative scaling (Goodman,

2002), and projected gradient (PG) (Duchi, Shalev-Shwartz, Singer, &

Chandra, 2008).

In the estimation of dFC networks during resting state or a cogni-

tive process, there are tens of subjects, hundreds of ROIs, and hun-

dreds of time points, and hence about a million optimization

problems. Therefore, it is crucial to choose an efficient algorithm for

solving the minimizing problems defined in Equation (10) to minimize

the overall computation cost. Here, we parallelized the optimization

procedure across different ROIs and different time points by

implementing the projected gradient (PG) method (Duchi et al., 2008)

because of its simplicity and efficiency. Since ℓ1-regularized logistic

6 MALEKI BALAJOO ET AL.



regression loss function can be reformulated as a constrained minimi-

zation problem, we can rewrite Equation (10) as follows:

θ̂
tð Þ
n0 = argmin

θ tð Þ
n0 �R

p−1 −
XT

t� =1
w tð Þ t�ð Þγðθ tð Þ

n0 ;y
t�ð ÞÞ

� �
s:t: θ tð Þ

n0




 



1
≤Cδ ð11Þ

where Cδ is the upper bound of the first order norm of θ tð Þ
n0 and deter-

mines the area (Ω) that contains all the estimated parameters. A one-

to-one correspondence exists between the penalty parameter δ in

Equation (10) and Cδ in Equation (11). In the new formulation, the

objective function L θ tð Þ
n0

� �
is a convex function and its derivative with

respect to vector θ tð Þ
n0 is obtained as follows:

= tð Þ = ∂L θ tð Þ
n0

� �
= −

XT

t� =1
w tð Þ t�ð Þ∂γ θ tð Þ

n0

� �
ð12Þ

In the PG method, the parameters are updated in line with a

negative gradient. Following an update, if the parameter is outside

the Ω area, it is projected back into the Ω area. Otherwise, the algo-

rithm goes to the next step. The basic step in this method, which

guarantees its performance, is the projection of the parameter into

the Ω area:

θ tð Þ
n0  ΠΩ θ tð Þ

n0 −η= tð Þ
� �

ð13Þ

where ΠΩ(a) = argminb{ka − bk | b � Ω} is the Euclidean projection of

vector a into the Ω area (Duchi et al., 2008). The implemented version

of PG algorithm for the optimization problem in Equation (11) is

described in the Supporting Information (S1). It should be noted that

the PG method has several internal parameters, such as α, ε, and σ,

which are adjusted in accordance with (Bertsekas, 2016).

2.4 | Parameter selection

The proposed KELLER method requires two input parameters h and δ,

which can be adjusted using the available data. The parameter h is the

width of the Gaussian kernel. This parameter is the most important

factor in controlling the temporal smoothness of the estimated dFC

networks. A large kernel size allows for more observations to be used

in the estimation of the dFC networks while increases the possibility

of losing rapid changes in the dFC network. On the other hand, a small

kernel size increases the sensitivity to rapid changes, while, the esti-

mation variance increases due to a drastic drop in the number of

observations used for the estimation.

The parameter δ controls the sparsity. In particular, a large δ will

result in a network that has a high degree of sparsity. Therefore,

determination of both h and δ parameters is very important. We

employ a sophisticated parameter tuning technique based on AIC. The

use of AIC allows us to estimate the in-sample prediction error for

each choice of parameter h and δ resulting in a clear comparison

across different values of each parameter. For a given range of h and

δ values, an extensive grid-search is performed and for any pair of

h and δ, we define AIC as:

AIC h,δð Þ= 2=Tð Þ
X
n�1:p

XT
t=1

XT

t� =1
w tð Þ t�ð Þγ θ̂

tð Þ
−n;y

t�ð Þ
� �� �

+2N ð14Þ

where N is the estimated number of degrees of freedom and equalsPT
t =1

Nz θ̂
ðtÞ� �

2 , Nz(.) counts the number of non-zero entries in θ̂
tð Þ
, as the

estimated dFC matrix at time point t. Finally, a pair of parameters that

minimizes AIC is chosen to be the optimal values for the parameters

h and δ. In this way, a clear comparison across different values of each

parameter is provided (Hastie, Tibshirani, & Friedman, 2009) and their

best values are selected.

It is worth mentioning that the Bayesian information criterion

(BIC) has been used to tune hyper-parameters (Song et al., 2009).

However, BIC selects the correct model if an infinite amount of data

are available (Burnham & Anderson, 2002) or the correct model is

among a set of candidates (Olofsen & Dahan, 2015). Since in our

application, there is no guarantee that the correct model belongs to a

set of candidates, we use AIC.

2.5 | Comparison to related work

2.5.1 | SWC

SWC uses an overlapping partition of the data to estimate the pairwise

correlation (Pearson correlation coefficient) between brain regions. For

each window, the cross-correlation matrix is calculated using only the

observations within that window. Then, the window slides along the

time series and the calculation is repeated. The resulting connectivity

time series is smooth since adjacent windows share all data point except

those in the double sliding steps. KELLER is capable of estimating dFC

network at each time point which means that it uses the maximum

overlap between windows. Therefore, in this work, the two following

windows in SWCGL and T-SWCGL also have the maximum overlap and

the sliding step is equal to one sample point. Moreover, to minimize the

effect of window length on the capability of the SWC-based methods,

we use different window lengths from 20 to 140 s in 20 s steps. Subse-

quently, we compare the KELLER results with those of the SWC-based

methods with different window lengths. Moreover, since SWC can only

obtain time-varying estimates of the correlation matrices, for fair com-

parison, we apply the graphical lasso (Friedman et al., 2008) on the SWC

results to learn the sparsity structure in the estimated dFC networks

(see Section 2.5.3). This combined method is referred to as SWCGL in

the rest of the paper.

2.5.2 | Tapered sliding window correlation
(T-SWC)

T-SWC is identical to SWC but it uses weighted Pearson cross-corre-

lation. As mentioned previously, SWC uses equal weights for all
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observations in a window (Lindquist et al., 2014), which in turn leads

to variations in the estimation results (Hindriks et al., 2016; Kudela

et al., 2017; Lindquist et al., 2014). Consequently, spurious fluctua-

tions caused by noise can easily show up as dynamic changes in the

estimated dFC. T-SWC solves this problem by using a discounting

function similar to utilizing kernel functions in KELLER. That is, in

T-SWC, the weights are defined at each window by a diminishing

function, which exponentially decreases the contribution of more dis-

tant time points so that the correlation coefficients weigh recent

events more heavily. In this work, we use T-SWC presented in (Betzel

et al., 2016) while we use different window lengths from 20 to 140 s

in 20 s steps. Then, we compare the KELLER results with those of the

SWC-based methods with different window lengths. Moreover, for

fair comparison, we also apply the graphical lasso (Friedman et al.,

2008) subsequently on the results of T-SWC to learn the sparsity

structure in the estimated dFC networks (see Section 2.5.3). This com-

bined method is referred to as T-SWCGL in the rest of the paper.

2.5.3 | How the graphical lasso was applied on the
results of SWC and T-SWC

To apply graphical lasso on the results of SWC and T-SWC, we first

convert the calculated correlation matrix at the tth window to the

covariance matrix by:

cov tð Þ
ij = cor tð Þ

ij × σ tð Þ
i × σ tð Þ

j ð15Þ

Here, the ijth element of the covariance matrix is related to the

corresponding element of the correlation matrix by the above formula

where σi and σj are the standard deviation (SD) of the ith and jth vari-

ables at the tth window. Then, the corresponding precision (inverse

covariance) matrix at the tth window is estimated while considering

sparsity in its structure by using sparse inverse covariance estimation

with the graphical lasso proposed by Friedman et al., (2008). The point

which should be noted is that the sparsity in KELLER is inherited in

the algorithm however, for the SWC-based methods, we do it as a

post-processing step.

3 | MATERIALS AND METHODS

3.1 | Simulated data generation and analysis

In this section, we evaluate the performance of KELLER in estimat-

ing the dFC networks in comparison with T-SWCGL and SWCGL.

The objective of the simulation studies is to measure the capability

of KELLER in retrieving the underlying dFC patterns as well as the

power of KELLER in detecting dynamic connections. The evolution

of dFC networks over time is generally smooth (Lin et al., 2017),

so we tried to replicate it in the simulated datasets. To satisfy this

property, dynamicity in the FC networks can be expressed by

the emerging (strengthening) of connections or disappearing

(weakening) of connections. Thus, dynamic correlation structure

between simulated rs-fMRI datasets over time is expected to vary

smoothly without abrupt changes and to behave as a piece-wise

stationary process.

To generate simulated data, we consider well-known properties

of functional brain organization such as high positive temporal auto-

correlation of BOLD signals (B. Biswal et al., 1995; Friston, 2011) and

self-organization and scale-free characteristics of brain networks

(Eguiluz, Chialvo, Cecchi, Baliki, & Apkarian, 2005; Lee et al., 2010;

X. Liu, Ward, Binder, Li, & Hudetz, 2014). Since, in the literature

(Liegeois et al., 2019; Monti et al., 2014; Rogers, Katwal, Morgan,

Asplund, & Gore, 2010; Valdes-Sosa et al., 2005), the first-order Vec-

tor Autoregressive (VAR) processes are used to evaluate dFC net-

works, we generated simulated rs-fMRI data based on the first order

VAR process. The VAR process is well suited to the task of producing

auto-correlated multivariate time series as they are capable of

encoding autocorrelations within components as well as cross-

correlations across components (Cribben et al., 2012; Monti et al.,

2014). In order to evaluate the performance of different methods in

estimating dFC networks, simulated rs-fMRI datasets were generated

based on a first order VAR model with pre-defined temporal autocor-

relation structures and modulation (Deler & Nelson, 2001). We stud-

ied the performance of the proposed algorithm by using two types of

random graphs as the structure of a pre-defined autocorrelation net-

work: Erd}os–Rényi random graphs (Erdos & Renyi, 1959) and scale-

free random graphs obtained by using the preferential attachment

model of Barabási and Albert model (Barabási & Albert, 1999). Erd}os–

Rényi random graphs are the simplest and most widely studied type

of random networks while the use of scale-free networks is motivated

by the fact that they resemble some aspects of fMRI networks. For

example, previous studies (Eguiluz et al., 2005; van den Heuvel, Stam,

Boersma, & Hulshoff Pol, 2008) suggested that the degree distribution

of the resting state functional brain organization follows a power law.

Moreover, it has been shown that the self-organization property of

the functional brain organization is linked with the power-law (scale-

free) scaling property of functional brain organization (Gisiger, 2001).

In the case of scale-free networks, the power of preferential attach-

ment (new connection) was set to unity on the rs-fMRI networks,

similar to previous studies (Monti et al., 2014). Additionally, we used

pre-defined temporal modulation of autocorrelation matrices in VAR

process to ensure that the dynamicity is inherited in the simulated

data with gradual changes within a state and that changes from one

state to another state are smooth and thus without any abrupt

changes.

Schematic overview of how we generated simulated rs-fMRI data

are illustrated in Figure 1a. We generated simulated dataset based on

the first order VAR process while the temporal structure of network

and the temporal modulation of connections were predefined. For the

simulated data, we considered three states and the correlation struc-

ture of each state was randomly generated by Erd}os–Rényi random

networks (Erdos & Renyi, 1959) or scale-free random networks

(Barabási & Albert, 1999) with 5 nodes in the 0.4–0.7 sparsity range.

At each state, the number of simulated observations with repetition
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time of one second was equal to 100 samples (i.e., total number of

observations was 300 and the overall duration was 300 s). Temporal

modulation of connections in the VAR process was defined as follows:

the strength of the nonzero elements of the network structure (based

on random graphs) over time was simulated by a positive slope line

for the emerging connections and a negative slope line for the dis-

appearing connections from the range [0.1, 0.75] to avoid abrupt

changes. Finally, a vector autoregressive time series for each

corresponding connection in the network structure was simulated

based on the first order VAR process. Thus, each dataset consisted of

300 samples with 2 change points at times t = 100 and 200 s. More-

over, in this simulation study, the dynamicity was simulated within

and between states. In fact, gradual changes within a state occur with

modeling temporal modulation in the strength of each connection

during 100 s of each state with some node-pair connections emerging

or disappearing during each state. This also leads to a change in the

structure of connections after 100 s, so that after that time, the brain

structure turns smoothly to a new state. The parameters of KELLER

were adjusted by AIC as discussed in Section 2.4. In the case of

SWCGL and T-SWCGL, we used various window lengths from 20 to

140 s in 20 s steps, and the penalty parameter in the graphical lasso

was estimated by minimizing AIC.

This simulation setup was repeated while the number of nodes

increased from 5 to 70 to study the performance of all algorithms.

This step is critical as it is often the case that the number of nodes

involved in the analysis increases which in turn further increases the

difficulty of the estimation procedure. The same parameters of KEL-

LER that were used before were adjusted by AIC as discussed in Sec-

tion 2.4. But, in the case of SWCGL and T-SWCGL, we set the

window length to 100 s and the penalty parameter in the graphical

lasso was estimated by minimizing AIC.

3.1.1 | Performance measure to evaluate methods

The goal of this study is to estimate the dFC networks at a sampling

rate that leads to a correct estimation of the nonzero elements in the

estimated dFC matrices, θ̂
tð Þ
,t=1,…,T , so we evaluate the perfor-

mance of the estimation procedures using an F1 score (Chinchor,

1992) (Figure 1b). All of the nonzero entries in θ̂
tð Þ
mn 6¼0

� �
are assumed

to be an edge, and thus, we can define a set that consists of all esti-

mated edges at time point t, which is denoted as

E tð Þ
edges = m,nð Þ, θ̂ tð Þ

mm 6¼0,m=1 : p,n=1 : p
n o

. We define the correspon-

ding set of true edges at time point t as T tð Þ
edges = m,nð Þ,θ tð Þ

mn 6¼0
n o

,

where θ(t) denotes the true structure of underlying network state

which is completely known in the simulation procedure at time

point t. Next, we measure the precision, Pre(t), as the percentage of

estimated edges that are present in reality and recall, and Rec(t)as the

F IGURE 1 Schematic overview of simulation study including process of generating simulated rs-fMRI data (a), process of evaluating the
performance of different methods by F1-score (b) and process of detecting dynamic connection as the benchmark in the simulated dataset (c)
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percentage of true edges estimated by the algorithm. The precision

and recall are calculated as follows:

Pre tð Þ =
j E tð Þ

edges\T tð Þ
edges j

j E tð Þ
edges j

,Rec tð Þ =
j E tð Þ

edges\T tð Þ
edges j

jT tð Þ
edges j

ð16Þ

The F1 score attempts to balance between the Pre and Rec as a

prevalent metric of the performance measure. Finally, the F1(t) score is

defined as

F1 tð Þ =2
Pre tð Þ ×Rec tð Þ

Pre tð Þ +Rec tð Þ ð17Þ

High performance in retrieving the true structure of the network

depends on having a high F1(t) score, which in turn requires that both

the precision and recall are also high.

3.1.2 | Defining dynamic connections in the
benchmark model in the simulation study

Although we simulated dynamicity in the temporal modulation of

functional connections as a predefined pattern by gradual emergence

or disappearance of connections, we applied a statistical hypothesis

analysis on the simulated dFC time series to define connections

whose simulated fluctuations in their temporal modulation pattern

were due to their dynamic nature. In this analysis, the distribution of

the calculated test measure is constructed based on the null hypothe-

sis which corresponds to temporal modulation pattern of the simu-

lated connection being static while the alternative hypothesis

corresponds to being dynamic. As illustrated in Figure 1c, we first cal-

culated the variance of the predefined temporal modulation of con-

nections (or equivalently, their SD) as the statistical measure (the

observed measure). Subsequently, we constructed 500 surrogate sets

for the simulated rs-fMRI data set based on the amplitude-adjusted

phase randomization procedure (Betzel et al., 2016). Next, for each

surrogate data, we estimated the parameters of the VAR model which

in fact represented how connections in the simulated data were mod-

ulated over time. The estimated parameters over time reflected the

dynamic pattern of connections in the simulated data. Consequently,

we could approximate the null distribution of each parameter of the

VAR model by calculating the variance of that parameter over time in

500 surrogate sets. Finally, 95th percentiles of the null distribution

were extracted as the significance threshold for rejecting null hypoth-

esis with p-value <.05, that is, the observed measure is greater than

95th percentiles of the distribution. If the null hypothesis is rejected,

the simulated temporal modulation pattern for the given connection is

dynamic. In this way, we defined the number of dynamic connections

in the benchmark model and were able to report the detectability

power of dynamic connections by different methods. Then, we esti-

mated dFC time series from the simulated rs-fMRI data using different

methods including KELLER, T-SWCGL, and SWCGL, and employed

statistical hypothesis testing to calculate the percentage of statistically

significant dynamic connections. Finally, analysis of variance (ANOVA)

in tandem with a post hoc test (permutation test, 100,000 iterations,

p-value <.05) was applied to compare the results of KELLER with

those of the previous methods.

3.2 | Real data

We used open access data from the imaging center of the

Washington University in St. Louis as one of the 30 international

imaging sites involved in the 1,000 Functional Connectomes Project,

where for all subjects, T1-weighted structural as well as rs-fMRI scans

([dataset] Schlaggar, 2010; B. B. Biswal et al., 2010) were acquired

with the same scanning protocol and imaging system. The data avail-

able from the Washington University includes 31 healthy subjects

(25.1 ± 2.31 years; 14 males). Similar to all international imaging sites

involved in the 1,000 Functional Connectomes Project, this center's

respective ethics committee approved the submission of the

deidentified data obtained with written informed consent from each

participant. The rs-fMRI dataset was acquired using gradient-echo

echo-planar-imaging (EPI) pulse sequence and 3 Tesla MRI scanners

with eyes open and fixation. During the scanning, 127 volume images

were acquired for each subject using the following parameters: repeti-

tion time = 2,500 milliseconds, voxel size = 4 × 4 × 4 (mm3), field of

view = 256 × 256 mm2, and 32 slices. Detailed information can be

found on the FCP website at http://www.nitrc.org/frs/?group_

id=296.

3.3 | Preprocessing of real data

The rs-fMRI and anatomical data were preprocessed using Statistical

Parametric Mapping (SPM12) and the Data Processing Assistant for

Resting-State fMRI toolbox (DPARSF) (Yan, Wang, Zuo, & Zang,

2016). The preprocessing consisted of the following steps:

(a) Removing the first three volumes of each subject's EPI images to

remove the BOLD signal transient state; (b) Realigning the remaining

EPI volumes to the same subject's mean EPI-volume using a least

square approach with 6� of freedom (rigid body) affine transformation

to compensate for the head motion (none of the subjects were

excluded due to excessive movement [cumulative translation >2 mm

or rotation >2�]); (c) Co-registering the EPI volumes to the respective

structural T1 images; (d) Segmenting T1 images into gray matter (GM),

white matter (WM) and cerebrospinal fluid (CSF) using tissue-

probability maps and an affine regularization procedure;

(e) Normalizing EPI and T1 images from subject space into Montreal

Neurological Institute (MNI) 152 space; (f) Resampling all of the EPI

volumes to an isotropic voxel size of 3 × 3 × 3mm3; (g) Spatially

smoothing the EPI volumes (Gaussian Kernel: FWHM 4 mm); (h)

Removing linear temporal trends of the EPI images; (i) Temporally

band-pass filtering the EPI images (0.01–0.1 Hz); and (j) Regressing

out the nuisance variables such as the motion parameters (by using

Frinston-24 model), the WM and CSF signals (Kelly, Uddin, Biswal,
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Castellanos, & Milham, 2008), and the global signal (H. Xu et al., 2018)

from the EPI images. A recent study has revealed that global signal

regression may greatly influence the estimation of dynamic connec-

tion and brain states in the rs-fMRI studies (H. Xu et al., 2018).

3.4 | Statistical assessment of estimated dFC time
series

To detect true dynamic connections, statistical assessment of the esti-

mated dFC time series is essential for all dFC studies. Therefore, a

proper statistical framework should be applied to determine whether

the observed variation in the estimated dFC time series can be charac-

terized as dynamic pattern or it is due to statistical uncertainty

(Hindriks et al., 2016; Sakoglu et al., 2010). To this end, a commonly

used approach is to calculate a test measure that characterizes the

fluctuation in the estimated dFC time series by applying a statistical

hypothesis test with a null hypothesis which is constructed based on

the distribution of the calculated test measure. The null hypothesis

states that the estimated dFC time series is static.

3.4.1 | Hypothesis testing and statistic measure

In this study, we focus on the variance of the dFC time series

(or equivalently, the SD of the dFC time series) as a test measure to

characterize the fluctuation in the estimated dFC time series. This is

the most straightforward and widely used measure in rs-fMRI

studies. In order to obtain dFC time series, we converted the esti-

mated dFC matrix at each time point t, θ̂
tð Þ

to a single vector,

V tð Þ
θ = θ̂1

tð Þ
,…, θ̂n

tð Þ
,…, θ̂N

tð Þh iT
of size N×1 (N = p(p−1)/2, N = number

of ROI pairs) and put these vectors in a matrix,

D= V 1ð Þ
θ ,…,V tð Þ

θ ,…,V Tð Þ
θ

h i
,t=1,…,T. Thus, D contained the estimated

dFC time series of all ROI pairs. Now, the test measure is represented

by the SD of the estimated dFC time series for the nth ROI pair as:

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T−1

XT
t=1

θ̂n
tð Þ
− μ̂

� �2vuut ð18Þ

where θ̂n = θ̂n
1ð Þ
,…θ̂n

ið Þ
,…, θ̂n

Tð Þh i
,n=1 :N , is the estimated dFC time

series of the nth ROI pair, and μ̂ denotes the sample mean of θ̂n. In this

model, the null hypothesis (static FC) is defined as: “The SD of the

dFC time series (σ) is only due to statistical uncertainties.” The alterna-

tive hypothesis (dynamic FC) is defined as: “The SD of the dFC time

series is not only due to statistical uncertainties”. In other words, the

SD under the null hypothesis is positive but statistically smaller than

that under the alternative hypothesis. While testing for the true SD

equals to zero is theoretically possible, we did not do it because the

estimated SD will be always positive (nonzero) due to the presence of

noise and biological variations. This hypothesis testing is a right-tailed

test; if the SD falls within the upper five percentile of the null distribu-

tion, we reject the null hypothesis (accept the alternative hypothesis)

with a p-value <.05 and conclude that the estimated dFC time series

for the nth ROI pair is dynamic. To estimate the distribution of σ under

the null hypothesis, we use randomized data, known as surrogate

data, similar to the analysis of nonstationary time series and dFC

(Betzel et al., 2016; Chang & Glover, 2010; Prichard & Theiler, 1994;

Zalesky et al., 2014).

3.4.2 | Surrogate data generation

To approximate the null distribution, we construct 1,000 surrogate

sets of BOLD time series for the 112 ROIs of the Harvard-Oxford

atlas for each rs-fMRI scan in the data set, using an approach similar

to that presented in (Betzel et al., 2016). This approach is based on

the amplitude-adjusted phase randomization procedure in which sur-

rogate BOLD time series are generated with randomized phase, but

with the same amplitude distribution so as to preserve the static FC

pattern of the real data.

3.5 | Estimating dFC time series and detecting
dynamic connections

To assess the power of KELLER in detecting dynamic connections and

compare with those of SWC based method, we applied KELLER and

T-SWCGL methods on real rs-fMRI data set. A graphical summery of

processing steps on the real rs-fMRI data based on KELLER method is

illustrated in Figure 2. After preprocessing, we estimated individual

dFC matrices from 112 extracted time series based on Harvard-

Oxford atlas (Bohland, Bokil, Allen, & Mitra, 2009) by KELLER and T-

SWCGL methods, for each subject. These matrices represent the indi-

vidual dFC patterns. To reduce dimensional complexity, the upper tri-

angular matrix of the adjacency matrix (size: 112 × 112) excluding the

diagonal was vectorized, thereby obtaining a unique vector (size:

6212 × 1) corresponding to each matrix. These adjacency vectors for

all time points for each subject were then concatenated to form esti-

mated dFC time series. Then, we analyzed the estimated dFC time

series for all 6,216 connection pairs between whole brain regions to

detect dynamic pattern from the observed fluctuations of dFC time

series. To this end, we calculated the SD of the dFC time series as a

test measure for each of the 6,216 ROI pairs in 31 subjects. In the

case of T-SWCGL, we obtained dFC time series for each ROI pair

using different window lengths from 20 to 140 s in 20 s steps and a

step size of one sample (2.5 s). The test measure for each ROI pair in

each window length was subsequently calculated. In the following

step, we generated, for each subject, 1,000 phase randomized surro-

gate time series for each ROI in a way that the stationary correlation

between every ROI pair was preserved within every set of surrogates.

Next, we calculated values of test measure for each of the

corresponding 1,000 surrogates with different method including KEL-

LER and T-SWGL and with different window lengths (including 20 up

to 140 s in 20 s steps), for every ROI pair. Finally, for each subject and

for each ROI pair, we pooled the values of test measure of all

corresponding ROI pairs from 1,000 surrogate data together in order

MALEKI BALAJOO ET AL. 11



to obtain a p-value for the observed value of test measure in that ROI

pair. We also averaged the observed and the surrogate test mea-

sure values across subjects and obtained the corresponding

p-values by applying hypothesis testing analysis which we refer to

as “averaged case” in the following sections. In this way, dynamic

connections between all brain region pairs were detected by

adjusting the calculated p-values for multiple comparisons using

Bonferroni correction.

4 | RESULTS

4.1 | Simulation results

A sample of simulated dFC network structure over time using the fol-

lowing setup (network topology = Erd}os–Rényi random graph; num-

ber of nodes = 5; number of states = 3) as well as simulated dFC time

series are presented in Figure 3a,b. The resulting performance of

three methods, KELLER, T-SWCGL, and SWCGL, in estimating dFC

networks are demonstrated in Figure 3c based on F1 score

(mean ± SD) over time. In the case of T-SWCGL and SWCGL methods,

we reported the results of setting window length to 100 s. In this plot,

the distribution of mean F1 score over time was calculated over

100 runs. The results revealed that KELLER (0.94 ± 0.012) estimated

the structure of dFC networks over time more accurately than

T-SWCGL (0.76 ± 0.01) with p-value <.001 and SWCGL (0.71 ± 0.02)

with p-value <.001 (Table 1).

In Figure 3d and Table 1, we present the percentage (mean ± SD)

of statistically significant dynamic connections over 100 runs based

on the estimated dFC networks. The results imply that KELLER can

detect the dynamic connections by mean statistical power of 87.35%

compared with TSWCGL with mean statistical power of 70.17%

(p-value = .001) and SWCGL with mean statistical power of 58.54%

(p-value <.001). The result from this simulation reveals that KELLER

provides more accurate estimates of dFC networks than T-SWCGL

and SWCGL. Additionaly, due to the higher accuracy in the estimation

procedure, KELLER has also shown a higher power in detecting

dynamic connections than the other methods.

F IGURE 2 Overview of processing steps on real data to estimate dFC time series using KELLER and to detect dynamic connections.
(1) Preprocessing pipeline; (2) Extracting mean time series for 112 ROIs based on Harvard Oxford Atlas; (3) Schematic overview of KELLER to
estimate dFC matrices; (4) Statistical assessment of dFC to detect dynamic connections by applying hypothesis testing framework using surrogate
data generation approach; (5) Sample result of detected dynamic connection by adjusting the calculated p-values for multiple comparisons using
Bonferroni correction. dFC, dynamic functional connectivity; KELLER, kernel-reweighted logistic regression

12 MALEKI BALAJOO ET AL.



F IGURE 3 Simulation study with the following setup (network topology = Erd}os–Rényi random graph; number of nodes = 5). (a) The sample
of simulated dynamic network structure over time, State 1 through State 3, some connections between nodes appeared or disappeared. (b) We
vectorized the simulated dFC networks at each time point to construct the evolution of simulated networks over time in terms of the structure
and connection's strength in 300 time points for each pair of ROIs. (c) Boxplots of F1 scores as the performance measure of KELLER, T-SWCGL,
and SWCGL in estimating dFC networks. (d) Power of dynamic connections detection calculated by assessing true dynamic fluctuations in the
estimated dFC time series by the three methods. In the case of T-SWCGL and SWCGL, we reported the results for window length of 100 s.
*Shows statistical significance. dFC, dynamic functional connectivity; KELLER, kernel-reweighted logistic regression; T-SWCGL, tapered sliding
window correlation + graphical lasso; SWCGL, sliding window correlation + graphical lasso. Detailed information is provided in the Table 1

TABLE 1 Performance measure and detectability power of the three different methods in estimating true structure of simulated network

F1 score (mean ± SD) p-value
Power of dynamic connection
detection (mean ± SD) p-value

KELLER vs. 0.94 ± 0.012
<.001

87.35 ± 6.43
.001

T-SWCGL 0.76 ± 0.01 70.17 ± 8.30

KELLER vs. 0.94 ± 0.012
<.001

87.35 ± 6.43
<.001

SWCGL 0.71 ± 0.02 58.54 ± 6.25

T-SWCGL vs. 0.76 ± 0.01
.001

70.17 ± 8.30
.003

SWCGL 0.71 ± 0.02 58.54 ± 6.25

Note: Simulated network with the following setup: network topology = Erd}os–Rényi random graph; number of nodes = 5; Detailed information is given in

Figure 3.

Abbreviations: KELLER, kernel-reweighted logistic regression; SD, standard deviation; SWCGL, sliding window graphical lasso; T-SWCGL, tapered sliding

window graphical lasso.
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Additionally, we evaluated whether an increase/decrease in win-

dow length influenced the results of T-SWCGL and SWCGL. We ran

this simulation study 100 times with 5-nodes and random network

structure. We also applied paired-samples t test to assess if the “aver-

age” values obtained by each window length was “significantly” better

than those of other window lengths. The results showed that there

was no significant difference between the obtained results for differ-

ent window lengths. However, both T-SWCGL and SWCGL led to

comparable performance with regards to F1-score and dynamic con-

nection detection power for a window length of 100 sec (Tables 2

and 3).

For a better comparison, we ran the simulations with two differ-

ent network topology structures while the number of nodes increased

from 5 to 70. The results of all algorithms over 100 runs of simula-

tions with two different network topology structures in terms of the

mean F1 score over time and runs are illustrated in Figure 4. Detailed

information including the overall mean and SD of F1
(t) scores as well

as the resulting p-values for the comparison of the results of different

methods are provided in the Table S1. Moreover, the confusion matri-

ces that are the basis of F1 score computation are given in the

Tables S2 and S3. Note that the performance of all algorithms deterio-

rates to some extent by increasing the number of nodes and the com-

plexity of network topology structures in the simulations. However,

this decrease in the accuracy of estimating dFC networks is less pro-

nounced for KELLER relative to the others. Interestingly, KELLER is

the best at keeping its accuracy level as the number of nodes are

increased. However, this decline of performance tends to weaken

when the number of nodes is larger than 40. This can be explained by

the ratio of false positive to false negative values based on the confu-

sion matrix. We provided the related confusion matrix in Tables S2

and S3. It is evident that for the number of nodes larger than 40, this

ratio decreases considerably compared with the number of nodes

smaller than 40. In other words, if the number of nodes goes to infin-

ity, the ratio of the false positive to false negative values tends to

unity. Thus, the performance of methods for the number of nodes

larger than 40 can be considered as the steady state performance. As

indicated in the Section 2.5.3 the sparsity estimation for the SWC-

based methods was done as a post-processing step by applying the

graphical lasso, and we also compared the estimated sparsity of SWC

and T-SWC with those of KELLER. We reported the mean ± SD of the

resulting sparsity in the simulated networks by different methods in

the simulation study with over 100 runs (Tables S4 and S5). Subse-

quently, we applied paired–samples t test to assess whether there

were any significant (p-value <.05) differences between the results.

However, no significant differences were found, meaning that the

performance of KELLER, with inherited property of forcing the esti-

mated dFC to be sparse, is similar to the performance of SWCGL and

the combination of SWC-based methods with the graphical lasso.

Moreover, for each of the different methods, we assessed the

percentage of the observed fluctuations in the estimated dFC time

series that were due to its dynamic nature and not statistical uncer-

tainty in comparison with the benchmark model. In Figure 5, we illus-

trate the mean percentage of statistically significant dynamicT
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connections for each of the different methods, over 100 runs and

time based on the estimated dFC networks while the number of

nodes increases. Detailed information including the overall mean and

SD of significant dynamic connections detection power by three

methods as well as the resulting p-values for the comparison of the

results of different methods are provided in the Table S6. Results in

Figure 5 show that their patterns are similar to those obtained in the

performance of methods in estimating true structure of dFC networks

illustrated in Figure 4. In both simulation studies of random and scale-

free networks, KELLER worked more efficiently in detecting dynamic

connections since this method estimated dFC time series more accu-

rately than the other methods as demonstrated in Figure 4.

4.2 | Experimental results

We applied the KELLER and T-SWCGL methods to real rs-fMRI data

and compared the results. We did not apply the SWCGL method to

real rs-fMRI data since this method was outperformed in estimating

dFC networks over time by the other two methods in the simulation

studies.

4.2.1 | Detecting dynamic connections in healthy
subjects

The first row in Figure 6, depicts the results achieved by KELLER

while the following rows show the results of T-SWCGL with different

window lengths from 20 to 140 s, spaced 20 s apart. In Figure 6 (col-

umn a), we demonstrated the SD of the estimated dFC time series for

all ROI pairs of each subject, as well as the averaged case. The related

p-values of all those ROI pairs were obtained from statistical hypothe-

sis testing and adjusted for multiple comparisons using Bonferroni

correction. These results surpassed the 5% significance threshold for

each individual subject as well as in the averaged case are illustrated

in Figure 6 (column b). The histogram of the SD value of the estimated

dFC time series for all ROI pairs for all subjects is depicted in Figure 6

(column c). Figure 6 (column d) shows the number of connections with

statistically significant dynamic pattern. We found that in most plots

shown in Figure 6 (column d), for an individual, a few connections

have significant dynamic pattern while for the averaged case, this

number increases remarkably. As previously mentioned, in the aver-

aged case, we averaged the observed and the surrogate test measure

values for each ROI pair connection across subjects. We then applied

null hypothesis testing to define which connections were dynamic. In

fact, the averaging process naturally increased the statistical power of

the null hypothesis testing in detecting dynamic connections. How-

ever, findings of KELLER and T-SWCGL with window length of 100 s

showed different patterns. The number of significant dynamic con-

nection for individuals in both results obtained by KELLER and T-

SWCGL with window length of 100 s are more than those of T-

SWCGL with window lengths of 20, 40, 60, 80, 120, and 140 s. Figure

6 (column E) demonstrates the mean dFC network for the averagedT
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F IGURE 4 Performance of three different methods in estimating dFC networks in terms of F1 score as the number of nodes increases from
5 to 70 with two different network topology structures: (a) Erd}os–Rényi random network; (b) Scale-free network. The mean F1 score over
100 runs and time for KELLER, T-SWCGL, and SWCGL. In the case of T-SWCGL and SWCGL, we reported the results for window length of
100 s. Note that there is a drop in the performance of all three methods as the number of nodes increases, but it is less pronounced for the a-
KELLER method. Detailed information is provided in the Supporting Information (Tables S1, S2, and S3). dFC, dynamic functional connectivity;
KELLER, kernel-reweighted logistic regression; T-SWCGL, tapered sliding window correlation + graphical lasso; SWCGL, sliding window
correlation + graphical lasso

F IGURE 5 Power of detecting dynamic connections as the number of nodes increases from 5 to 70 with two different network topology
structures: (a) Erd}os–Rényi random network; (b) Scale-free network. Mean and SD of detectability power over 100 runs and time for estimated
dFC time series by KELLER, T-SWCGL, and SWCGL. In the case of T-SWCGL and SWCGL, we reported the results for window length of 100 s.
Patterns are similar to those in Figure 4. In both network categories, KELLER is more efficient than the other methods in detecting dynamic
fluctuations. Detailed information is provided in the Supporting Information (Table S4). dFC, dynamic functional connectivity; KELLER: kernel-
reweighted logistic regression; T-SWCGL: tapered sliding window correlation + graphical lasso; SWCGL: sliding window correlation + graphical
lasso
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case across subjects with statistically significant dynamic connections

adjusted for multiple comparisons using Bonferroni correction.

To compare the results obtained by KELLER with those of T-

SWCGL considering different window lengths, the similarity between

the mean estimated dFC matrix by both methods with statistically sig-

nificant dynamic connections was calculated for each subject (Table

4). The results revealed that in 68% of the subjects, T-SWCGL with

window length of 100 s had the highest similarity to KELLER. The

range of similarity varied from r = 0.37 to r = 0.77 for different win-

dow lengths. The findings are in line with the rule of thumb proposed

by Leonardi and Van De Ville (2015) which suggests that appropriate

SWC window length should be set to 1/fmin s or larger, where fmin

corresponds to the smallest frequency in the spectrum (Leonardi &

Van De Ville, 2015; Zalesky & Breakspear, 2015). In this study, fmin

equals 0.01 Hz and the window length for SWC should be equal to or

larger than 100 s. In the averaged case, the highest similarity between

KELLER and T-SWCGL was achieved for a window length of 60 s (r =

0.78), followed by window lengths of 40 and 100 s (r = 0.71).

For a better comparison, we focused on the mean dynamic pat-

tern of regions involved in the default mode network (DMN) yielded

by different methods for the averaged case. The names of the ROIs in

the Harvard-oxford atlas and their abbreviations are included in

Table S7. These ROIs are selected in association with seven resting

state networks of functionally coupled parcellated regions across the

cerebral cortex (Yeo et al., 2011) as well as subcortical regions includ-

ing amygdala, hippocampus, and para-hippocampal regions. In

Figure 7, we illustrated the dynamic connections in DMN yielded by

different methods. We also listed the common dynamically connected

ROI pairs identified by KELLER and T-SWCGL in Table 5. Results

showed that most of the commonly identified dynamic connections in

DMN were between subcortical, temporal, and frontal regions. On the

other hand, the list of dynamic connections in DMN identified only by

specific methods are presented in Table 6. Most of those dynamic

connections identified only by KELLER are located between posterior

and anterior regions of DMN while T-SWCGL identified connections

between temporal and anterior region of DMN.

F IGURE 6 ROI-pairs analysis of dFC time series by KELLER (first row) and T-SWCGL with different window lengths including 20 up to 140 s

in the following rows. SD value of the estimated dFC time series for all ROI pairs for each subject, as well as the averaged case (column a);
Corresponding calculated p-values of all those ROI pairs by statistical hypothesis test and adjusted for multiple comparisons using Bonferroni
correction, crossed the 5% significance threshold, for each individual subject as well as the averaged case (column b). Histogram of the SD value
of the estimated dFC time series for all ROI pairs for all subjects (column c). Number of connections with statistically significant dynamic pattern
(column d). We found that in the most plots in column d, for an individual, very few connections have significant dynamic pattern while for the
averaged case this number increases substantially. However, findings of KELLER and T-SWCGL with window length of 100 s showed different
pattern. In these cases, the number of significant dynamic connection for individuals are more than those of T-SWCGL with window length of
20, 40, 60, 80, 120, and 140 s. Mean dFC network for the averaged case across subjects with statistically significant dynamic connections
adjusted for multiple comparisons using Bonferroni correction (column e). dFC, dynamic functional connectivity; KELLER, kernel-reweighted
logistic regression; T-SWCGL, tapered sliding window correlation + graphical lasso
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5 | DISCUSSION

5.1 | Overview of the current study

The main goal of this study was to improve the power of detecting

dynamic connections in estimated dFC by conventional methods.

Thus, we introduced a framework developed in the gene regulatory

studies, the KELLER algorithm (Song et al., 2009), and utilized it in the

dFC network studies. KELLER allowed for the retrieval of the dFC pat-

tern of brain networks in terms of the network's structure and modu-

lation over time.

A series of simulation studies were done to measure the capabil-

ity of KELLER in retrieving the underlying structure of dFC network as

well as the power of KELLER in detecting dynamic connections in

comparison with T-SWCGL and SWCGL. We also employed the pro-

posed method in estimating whole brain dFC networks from rs-fMRI

data of 31 healthy subjects to detect statistically significant dynami-

cally connected brain region pairs. To achieve this, we performed

proper statistical tests on the SD of dFC time series as a test statistic

measure using appropriate surrogate data.

We demonstrated the following key results via simulation studies:

(a) KELLER estimates dFC networks more accurately than T-SWCGL

and SWCGL and because of its more accurate estimation procedure,

the detectability power of dynamic connections in KELLER is also

higher than the other methods; (b) increasing/decreasing of window

size in SWCGL and T-SWCGL does not have any significant effect on

their performance; (c) increasing the number of nodes and the com-

plexity of network topology structures in the simulation studies

affects the performance of all algorithms in terms of both the accu-

racy of estimated dFC networks as well as the power of dynamic con-

nections detection.

The experimental findings illustrated that KELLER and T-SWCGL,

with different window lengths from 20 to 140 s, detect dynamic pat-

terns in single subject rs-fMRI data as well as in the averaged case.

However, findings of KELLER and T-SWCGL with window length of

100 s showed different patterns. In both obtained results by KELLER

and T-SWCGL with window length of 100 s, the number of significant

dynamic connection for individuals are more than those of T-SWCGL

with window lengths of 20, 40, 60, 80, 120, and 140 s. Using either

approach, averaging across all subjects increases significant dynamic

connections substantially. This finding is in line with a previous study

(Hindriks et al., 2016) and confirms that averaging across all subjects

increases statistical power of null hypothesis testing in detecting

dynamic connections which could be a result of the number of subjects

used for averaging. Moreover, results revealed that the mean estimated

dFC matrix of statistically significant dynamic connections by T-SWCGL

with window length of 100 s among different window lengths has the

highest similarity to the KELLER method. This finding is consistent with

previous studies (Leonardi & Van De Ville, 2015; Zalesky & Breakspear,

2015) suggesting that appropriate window length for SWC studies

should be equal or larger than 100 s. Interestingly, in the averaged case,

the highest similarity between KELLER and T-SWCGL was achieved for

F IGURE 7 Mean dynamic pattern of default mode networks for the averaged case estimated by (a) KELLER and T-SWCGL with different
window length (w = (b) 40, (c) 60, and (d) 100 s). Note various dynamic connections between anterior and posterior regions of DMN identified by
KELLER mostly missed by T-SWCGL methods. KELLER, kernel-reweighted logistic regression; T-SWCGL, tapered sliding window correlation +
graphical lasso; DMN, default mode network

18 MALEKI BALAJOO ET AL.



a window length of 60 s, followed by window lengths of 40 and 100 s.

We then focused on DMN dynamic pattern based on the mean dFC

pattern of the averaged case by the KELLER and T-SWCGL (w = 40,

60, and 100 s) methods in order to allow us to go deeper for a precise

comparison. Results revealed that most of the common identified

dynamic connections in DMN are between subcortical, temporal and

frontal regions. On the other hand, most of those dynamic connections

identified only by KELLER method are located between posterior and

anterior regions of DMN while T-SWCGL method identified connec-

tions between temporal and anterior regions of DMN.

5.2 | Previous studies in assessing dFC in rs-fMRI
by using SWC technique and comparison with the
present study

The effect of different sliding window parameters such as window

type, length, and step, as well as different FC metrics on the detec-

tion of dynamic connections or brain states have been investigated

(Hindriks et al., 2016; Savva et al., 2019; Shakil et al., 2016). In

(Shakil et al., 2016), segmented real BOLD time series were mixed

to form a simulated setting where the switching between brain

TABLE 4 Similarity between the
mean estimated dFC matrix with
statistically significant dynamic
connections for each subject as well as
averaged case by KELLER method and
T-SWCGL with different window lengths.

Window lengths 20 s 40 s 60 s 80 s 100 s 120 s 140 s

Subject01 0.09 0.58 0.67 0.51 0.73 0.57 0.44

Subject02 0.08 0.43 0.49 0.32 0.57 0.56 0.56

Subject03 0.36 0.45 0.59 0.53 0.68 0.49 0.48

Subject04 0.21 0.62 0.57 0.47 0.57 0.45 0.12

Subject05 0.18 0.17 0.55 0.44 0.62 0.62 0.59

Subject06 0.22 0.26 0.35 0.46 0.55 0.69 0.08

Subject07 0.21 0.56 0.39 0.23 0.47 0.41 0.5

Subject08 0.26 0.58 0.43 0.31 0.51 0.3 0.32

Subject09 0.27 0.3 0.28 0.25 0.5 0.54 0.19

Subject10 0.16 0.08 0.18 0.17 0.57 0.41 0.37

Subject11 0.09 0.13 0.01 0 0.44 0.21 0.27

Subject12 0.14 0.29 0.21 0.18 0.58 0.55 0.19

Subject13 0.21 0.26 0.19 0.15 0.39 0.19 0.18

Subject14 0.36 0.44 0.36 0.15 0.35 0.12 0.29

Subject15 0.13 0.23 0.21 0.2 0.48 0.28 0.31

Subject16 0.13 0.5 0.57 0.12 0.3 0.16 0.07

Subject17 0.15 0.29 0.06 0 0.26 0.1 0.12

Subject18 0.06 0.27 0.19 0.19 0.63 0.21 0.07

Subject19 0.24 0.19 0.08 0 0.4 0.23 0.15

Subject20 0.08 0.44 0.55 0.65 0.77 0.65 0.65

Subject21 0.32 0.42 0.42 0.26 0.6 0.49 0.46

Subject22 0.23 0.4 0.33 0.31 0.35 0.27 0.27

Subject23 0.11 0.27 0.37 0.39 0.56 0.27 0.22

Subject24 0.11 0.05 0.02 0 0.17 0.07 0.23

Subject25 0.26 0.61 0.6 0.57 0.71 0.64 0.64

Subject26 0.25 0.27 0.18 0 0.38 0.12 0.11

Subject27 0.32 0.29 0.44 0 0.58 0.05 0.12

Subject28 0.14 0.4 0.23 0.21 0.44 0.23 0.2

Subject29 0.4 0.32 0.29 0.19 0.47 0.37 0.36

Subject30 0.18 0.29 0.27 0.19 0.37 0.3 0.24

Subject31 0.17 0.51 0.58 0.56 0.61 0.57 0.57

Averaged case 0.57 0.71 0.78 0.66 0.71 0.58 0.51

Mean score 0.209 0.363 0.358 0.271 0.51 0.366 0.309

Note: The bolded result in each row presents the highest similarity score which calculated between the

results of T-SWCGL with different window length and KELLER's result.

Abbreviations: KELLER, kernel-reweighted logistic regres; T-SWCGL, tapered sliding window graphical

lasso; s, seconds.
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states were known. Their findings implied that window length and

size affected the identification of brain state switching (Shakil et al.,

2016). Similar to our findings on experimental fMRI data showed

that window length influenced the results of T-SWCGL method. In

another study, they tried to answer similar questions by applying

different FC metrics to estimated dFC network and using experi-

mental rs-fMRI data in two separate groups for test–retest valida-

tion (Savva et al., 2019). The authors showed that the obtained

results based on mutual information and variation of information

with a window length larger than 120 s yielded the most consistent

results by applying test–retest analysis. Moreover, in (Hindriks et al.,

2016) it was claimed that it was impossible to detect dynamic con-

nections by using SWC in individual sessions through simulation

studies and this claim was validated using both rs-fMRI data of

humans and macaques (Hindriks et al., 2016). Recently, the possible

impact of global signal regression on the estimation of dynamic con-

nection and brain states was evaluated by H. Xu et al., (2018).

Results showed that the impact of global signal regression on dFC

was temporally modulated by the mean global signal magnitude

across windows and authors suggested that global signal regression

should be applied to SWC analyses with caution. In the present

study, we evaluated the impact of global signal regression on KEL-

LER and T-SWCGL with window length of 100 s (Figures S1 and S2,

respectively). We also investigated the influence of global signal

regression on the mean dynamic pattern of DMN for the averaged

case, estimated by KELLER and T-SWCGL with window length of

100 s. The results showed a considerable change when considering

global signal regression. In fact, the number of dynamic connections

decreased considerably in both methods when considering global

signal regression, because global signal increases the dependencies

among brain regions (Figure S3). It is noteworthy that most of the

previous dFC studies including (Hindriks et al., 2016; Shakil et al.,

2016) have not considered the impact of global signal regression on

their findings.

TABLE 5 Common dynamic connections in DMN identified by KELLER and T-SWCGL with different window length (w = 40, 60, and 100 s).

dFC connections in DMN

Common dFC connection in DMN

between KELLER and T-SWCGL

(w = 40, 60, and 100 s)

1. Hippocampus (R), superior frontal gyrus (R)

2. Hippocampus (R), anterior-middle temporal gyrus(R)

3. Hippocampus (R), Paracingulate gyrus (L)

4. Hippocampus (R), hippocampus (L)

5. Hippocampus (R), anterior-cingulate gyrus (L)

6. Anterior-superior temporal gyrus(R), posterior-middle temporal gyrus (L)

7. Anterior-superior temporal gyrus(R), frontal medial cortex (R)

8. Frontal medial cortex (R), inferior frontal gyrus(R)

9. Temporal pole (L), temporal pole (R)

10. Temporal pole (L), posterior-parahippocampal gyrus(L)

11. Posterior-parahippocampal gyrus (R)0, posterior-superior temporal gyrus (L)

12. Posterior-parahippocampal gyrus (R)0, posterior-superior temporal gyrus (R)

13. Anterior-middle temporal gyrus (L), posterior-cingulate gyrus (L)

14. Anterior-middle temporal gyrus (R)0 ,frontal orbital cortex (L)

15. Precuneous cortex (L), posterior-middle temporal gyrus(R)

16. Amygdala (R), posterior-parahippocampal gyrus(L)

Common dFC connection DMN

only between KELLER and T-

SWCGL (w = 40 s)

1. Hippocampus (R), superior frontal gyrus (L)

2. Hippocampus (R), temporal pole (R)

3. Hippocampus (R), angular gyrus (L)

4. Hippocampus (R), anterior-parahippocampal gyrus (R)

5. Hippocampus (R), posterior-parahippocampal gyrus (R)

6. Posterior-middle temporal gyrus (L), middle frontal gyrus (L)

7. Temporooccipital-middle temporal gyrus (L), amygdala (L)

8. Angular gyrus (R), anterior- cingulate gyrus (L)

9. Anterior-parahippocampal gyrus (R), precuneous cortex (R)

Common dFC connection DMN

only between KELLER and T-

SWCGL (w = 60 s)

1. Hippocampus (R), temporal pole (R)

2. Posterior-middle temporal gyrus (L), middle frontal gyrus (L)

3. Inferior frontal gyrus (R), hippocampus (L)

4. Anterior-superior temporal gyrus (L), temporooccipital-middle temporal gyrus(R)

5. Temporooccipital-middle temporal gyrus (L), amygdala (L)

6. Angular gyrus (R), anterior-cingulate gyrus (L)

7. Anterior-parahippocampal gyrus(R), precuneous cortex (R)

Common dFC connection DMN

only between KELLER and T-

SWCGL (w = 100 s)

1. Inferior frontal gyrus (R), hippocampus (L)

2. Inferior frontal gyrus (R), paracingulate gyrus (L)

3. Posterior parahippocampal gyrus (R), anterior-superior temporal gyrus (L)

Abbreviations: dFC, dynamic functional connectivity; DMN, default mode network; KELLER, kernel-reweighted logistic regression; T-SWCGL, tapered slid-

ing window graphical lasso; L, left hemisphere; R, right hemisphere; s, seconds.
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In the present study, we used KELLER (Song et al., 2009) to esti-

mate dFC networks at each time point of BOLD signal measurement.

The important feature of KELLER is that it considers multivariate

dependencies between brain regions to estimate dFC networks

through estimating functional pattern of each brain region spatially

and temporally. SWC-based methods only capture bivariate linear

association between brain regions. Additionally, KELLER also has the

potential to define a proper window length to extract dFC time series,

utilizing AIC as a model selection approach. In this study, for KELLER,

we defined a range of values (from 10 to 150 with 10 s steps) for the

window length parameter, h, Then, we employed an extensive grid-

search in the given range of the parameters h and δ. We used AIC to

estimate the in-sample prediction error for each choice of parameters

h and δ, allowing for a direct comparison across different values of

each parameter. Finally, a pair of parameters that minimizes AIC is

chosen as the optimal values. Moreover, the structure of dFC net-

works is automatically estimated at each time point because of the

ℓ1-penalized term in the loss function optimized by KELLER which in

turn yields a sparse network effectively.

To evaluate the performance of the proposed approach, we com-

pared it with T-SWCGL and SWCGL in terms of their abilities to

recover structure of dFC networks over time as well as detecting

dynamically connected brain region pairs. T-SWCGL and SWCGL

model dFC networks using correlation analysis at the ith window of

observations. For a fair comparison, we applied graphical lasso to

consider the sparsity of the estimated dFC networks. Moreover, to

minimize the effect of window length in the capability of the SWC-

based methods, we used various window lengths, from 20 to 140 s in

20 s steps. The simulation results suggested that KELLER was supe-

rior to T-SWCGL and SWCGL in terms of the mean F1 score. It is

notable to mention that the capability of considering multivariate

dependencies between brain regions in KELLER results in the accu-

rate estimation of dFC networks, which in turn may be the main rea-

son of improving the detection of dynamic connections in the

estimated dFC network by KELLER. As expected, modeling multivar-

iate dependencies in estimating dFC networks increased the number

of dynamic connections.

5.3 | “The higher number of detected dynamic
connections, the more statistical power of method
to estimate dFC matrices,” is this correct?

Answering this question is not straightforward. Actually, if there were

a ground truth for dynamic behavior of brain region pairs, then this

statement could be evaluated. In fact, the absence of ground truth in

human brain network analysis warns us that the higher number of

dynamically connected regions detected should not be interpreted as

higher statistical power of a specific method in estimating dFC matri-

ces (Savva et al., 2019; Shakil et al., 2016). However, to determine

which method is the most appropriate to be applied in dFC analysis,

there are two approaches: (a) designing simulation studies that pro-

vide ground truth for evaluation; and (b) comparing the results

obtained on real data with those reported in the literature. Since there

is no comprehensive study that investigated and reported dynamically

connected brain region pairs in the whole brain, we only focused on

the detected dynamically connected regions with posterior cingulate

cortex (PCC) in DMN and compared the results with those of the pre-

vious studies (Chang & Glover, 2010; Savva et al., 2019). Specifically,

in Savva et al., (2019), the presence of dynamic connections between

brain regions comprising DMN was examined by employing various

window lengths and FC metrics. They found that PCC and bilateral

parietal lobes were involved in most dynamic connections as the hub

regions of dorsal and ventral DMN, respectively (Savva et al., 2019).

Moreover, in Chang & Glover, (2010), dynamic connections between

PCC and those brain regions that are correlated or anti-correlated

with PCC were examined, utilizing wavelet transform. The authors

found that phase coupling between these regions and PCC were

dynamic (Chang & Glover, 2010). In Table 5, the results are shown

for the common dynamic connections detected by KELLER and

T-SWCGL (w = 40, 60 and 100 s), focusing on DMN (Shirer, Ryali,

Rykhlevskaia, Menon, & Greicius, 2012). Most of those commonly

detected dynamic connections are located between subcortical, tem-

poral and frontal regions of DMN. On the other hand, in Table 6, we

reported specific dynamic connections detected only by KELLER or

T-SWCGL. For KELLER, these connections are specially located at

TABLE 6 Specific dynamic connection identified in DMN only by KELLER or T-SWCGL with different window length (w = 40, 60, and 100 s).

dFC connections estimated only by KELLER dFC connections estimated only by T-SWCGL W (s)

1. Inferior frontal gyrus (R), posterior-superior temporal

gyrus (R)

2. Frontal medial cortex (R), posterior-cingulate

gyrus (R)

3. Frontal medial cortex (R), precuneous cortex (R)

4. Frontal medial cortex (R), anterior-parahippocampal

Gyrus (L)

5. Posterior-cingulate gyrus (L), frontal medial cortex (L)

6. Posterior-cingulate gyrus (L), precuneous cortex (L)

7. Precuneous cortex (L), middle frontal gyrus (L)

1. Hippocampus (L), anterior-parahippocampal gyrus (R)

2. Hippocampus (R), anterior-cingulate gyrus (R)

3. Frontal medial cortex (L), anterior-middle temporal gyrus (L)

4. Posterior-middle temporal gyrus (L), middle frontal gyrus (R)

5. Temporal pole (L), anterior-superior temporal gyrus (L)

6. Anterior-middle temporal gyrus (R), anterior-cingulate gyrus (L)

7. Anterior-cingulate gyrus (L), posterior-cingulate gyrus (L)

8. Anterior-middle temporal gyrus (L), posterior-middle temporal

gyrus (L)

9. Anterior-parahippocampal gyrus (L), paracingulate gyrus (R)

10. Paracingulate gyrus (L), inferior frontal gyrus (R)

40, 60, and 100

40 and 60

40 and 60

40

40

40

40

40

60 and 100

100

Abbreviations: dFC, dynamic functional connectivity; KELLER, kernel-reweighted logistic regression; T-SWCGL, tapered sliding window graphical lasso; L,

left hemisphere; R, right hemisphere; s, seconds.
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dorsal DMN connection pairs (PCC-frontal cortex, PCC-precuneus,

and precuneus-frontal cortex) which were commonly detected in the

previous studies (Chang & Glover, 2010; Savva et al., 2019). As can be

seen in Table 6, most of the mentioned connection pairs detected by

previous studies are detected as dynamically connected by utilizing

KELLER. On the other hand, SWC-based method detected only one

dynamic connection in dorsal DMN between PCC and frontal cortex,

suggesting that Pearson correlation coefficient has less sensitivity to

detect dFC. This finding is consistent with previous studies (Hindriks

et al., 2016; Savva et al., 2019).

5.4 | Study limitations and future work

We mentioned some limitations of SWC-based methods in this study

and introduced KELLER to overcome them. However, KELLER also

has its own limitations. For instance, it is very time consuming due to

computational complexity of the optimization algorithm and the

model selection approach involved in KELLER. This is especially true

when the number of involved brain regions is large. On the other

hand, SWC-based methods are time efficient in estimating dFC net-

works. However, since these methods have low sensitivity in

detecting previously reported dynamic connections (Tables 5 and 6),

developing a powerful method to estimate dFC time series with high

accuracy is of critical importance.

Assessment of the estimated dFC networks to detect statisti-

cally significant dynamically connected brain region pairs is highly

suggested for future work in this vibrant area of neuroimaging

research. Future work can also apply KELLER for estimating dFC

from rs-fMRI data of neurodegenerative and neuropsychiatric dis-

orders to investigate the abnormal dynamic connectivity patterns

and compare their findings with those of the conventional

methods.

6 | CONCLUSION

In this study, a comprehensive analysis of dFC in the whole brain

using rs-fMRI data were performed by employing the newly intro-

duced KELLER method considering multivariate dependencies

between brain regions to estimate dFC network. In order to evaluate

the proposed dFC estimation method in comparison with SWC, a

series of simulation studies was implemented providing ground truth,

and then a hypothesis testing framework was applied to detect

dynamically connected region pairs. The simulation results showed

that KELLER outperformed T-SWCGL and SWCGL approaches in

retrieving dFC pattern of brain networks in terms of the network's

structure and modulation over time as well as in detecting dynamically

connected brain regions. Experimental results showed that KELLER

was able to detect previously reported dynamically connected brain

region pairs within DMN. Overall, dFC network analysis has a promis-

ing capability for a better understanding of the brain as well as con-

tributing to the development of new biomarkers for diagnosis or

prognosis of mental disorders. However, statistical assessment of the

estimated dFC should be done as a primary step to ensure that the

detected dFC patterns are due to the dynamic nature of the cognitive

process or resting state condition in the brain.
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