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Abstract A conceptual model of core dynamics and the 
earth's magnetic field is presented. It differs from pre
vious investigations in the use of an estimated core 
viscosity of 2 x 107 cm 2 s- 1. The simplified derivations 
predict the correct order of magnitude for the external 
magnetic field and for the westward drift of the non
dipole field. 
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Introduction 

The theory of magnetic field generation by a fluid 
dynamo in the core of the earth has received a great 
deal of attention over the past several years by a num
ber of investigators. The early investigations concen
trated on demonstrating that solutions to the magnetic 
induction equation would lead to an external dipole 
field, e.g., Elsasser (1941, 1946a, b, 1947, 1950, 1956) 
and Bullard (1948, 1949a, b). Later investigations con
centrated on the core dynamics and the interactions 
and controls between the hydrodynamic flow and the 
magnetic field, e.g., Bullard and Gellman (1954), Parker 
(1955), Hide (1956), Herzenberg (1958), Hide and Ro
berts (1961), Rikitake (1966), Roberts (1971), Busse 
(1975, 1976, 1983), Gubbins (1974, 1976), Levy (1976), 
Braginsky (1976), Watanabe (1977) and Soward (1982). 
Concurrently, there have been presentations of various 
possible mechanisms that could lead to the observed 
polarity reversals, e.g., Parker (1969), Levy (1972a, b) 
and Robbins (1976, 1977). 

There are, indeed, various ways in which an exter
nal dipole field can be generated by thermal convection 
of an electrical conductive fluid in a rotating earth. An 
important consideration has to be the values of the 
core parameters which delineate the hydrodynamic flow 
and the magnetic field, particularly the viscosity. 

As discussed in the next section, the kinematic vis
cosity of the core is one of the least known parameters, 
with estimated values ranging from 10- 3 cm2 s- 1 to 
1011 cm 2 s- 1. Most of the previous investigations have 
used a core viscosity of around 10- 2 cm2 s- 1, based on 
theoretical estimates, or have ignored core viscosity 

effects. This value is not in accord with values de
termined from various observable geophysical parame
ters. In particular, a direct interpretation of the damp
ing of seismic waves propagating through the fluid core 
leads to a value of 2 x 107 cm 2 s- 1. 

The purpose here is to develop a conceptual model 
of core dynamics and the earth's magnetic field using 
this value of kinematic viscosity. The derivations are 
simplified and apply to steady state conditions and the 
central regime of the convective flow. 

The results are encouraging in that they lead to 
correct order of magnitude estimates for the external 
field strength and the westward drift, and correctly 
predict that the nondipole components are related to 
boundary layer flow effects near the mantle-outer core 
boundary. 

With a viscosity of 2 x 107 cm2 s- 1 there is a global 
circulation including a predominant boundary layer 
flow; with a viscosity of 10- 2 cm2 s- 1 the flow breaks 
up into small scale cyclonic circulations. In essence, the 
former resembles a worldwide oceanic circulation; and 
the latter resembles small scale, atmospheric geo
strophic circulations. 

Outer core parameters 

Table 1 lists the parameter values used in the sub
sequent derivations and calculations. They include d1 , 

inner core radius; d2 , outer core radius; Q, angular 
rotational velocity of the earth; g, gravity for outer 
core; p0 , outer core density; a, thermal coefficient of 
expansion; cP, specific heat; k, thermal conductivity; µ, 
magnetic permeability; (J, electrical conductivity; v, 
kinematic viscosity for outer core; ¢,latitude; H 0 , mag
netic dipole field at mantle-outer core boundary; and 
Q, heat conduction at mantle-outer core boundary. The 
table also includes the dependent parameter values d, 
outer core thickness; a, Coriolis parameter; D, fric
tional depth for Ekman-type flow; R, ratio of Lorentz
to Coriolis-forcing terms in the motion equations; Jc, 
horizontal density gradient; and K, thermal diffusivity. 

The values for a, cP, k, µ and (J are the same as 
those used by Bullard and Gellman (1954) and are the 
same or similar to the values used by subsequent in
vestigators. The value for H0 is taken from the consid
eration that magnetic field strength was about one-half 
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Table 1. Core parameter values used in derivations and calcu
lations 

d1 = 1,200 km 
Q =7.3x10- 5 s- 1 

ex =4.5 x 10- 6 0 c- 1 

µ = 1 emu 
cp =0.16 cal g- 1 0 c- 1 

v =2x107 cm2 s- 1 

H 0 = 1.9 gauss 

d =d2 -d 1 =2,300 km 

d2 =3,500km 
g =800cms- 2 

p0 = 10.6 g cm - 3 

(J =3 x 10- 6 emu 
k =0.10 cal cm- 1 0c- 1 s- 1 

Q =0.1x10- 6 cal cm- 2 s- 1 

<jJ =30° 

[Qsin</J] 112 
a = -i-· - = 1.35 x 10- 6 cm- 1 

n 
D =-=23.3 km 

a 
(J µ1 H~ 

R 2 ,-, . ,,, =0.0140 
••Po Sln 'I' 

[ 8orn3 p vQ] 112 
l = 0 =0.253 x 10- 15 g cm- 4 

cPgd 
k 

K =--=0.0590cm2 s- 1 

Po cP 

its present value throughout the Phanerozoic, e.g., Mer
rill and McElhinny (1983). The value for Q is taken 
from the discussion by Verhoogen (1980); this heat flow 
value per unit area at the mantle-outer core boundary 
is approximately one-tenth that at the earth's outer 
surface. 

The critical parameter in Table 1 is the viscosity, v, 
of the outer core. It is one of the least well known 
parameters with estimated values differing by several 
orders of magnitude, ranging from 10- 3 to 
1~11 cm2 s- 1, e.g., summaries given by Hide (1956), 
Hide and Roberts (1961) and Jacobs (1975). The lower 
values have come from theoretical estimates and the 
higher values from seismological determinations. 

The general practice of those who have made 
theoretical investigations of various aspects of the 
earth's magnetic field and core dynamics has been to 
assume a viscosity of around 10- 2 cm 2 s- 1, e.g., Bullard 
Roberts (1961), Roberts (1967), Gubbins (1974) and 
Busse (1975, 1976, 1983). In the latter studies this viscos
ity value was based on the theoretical estimate of Gans 
(19_72). Understandably, the choice of the low viscosity 
estimate leads to a very different form of core dynamics 
and delineation of the controlling factors between the 
hydrodynamic flow and magnetic field than if the as
sumed viscosity had been several orders of magnitude 
larger. 

The procedure here uses a viscosity based on seis
mological observations. The assumption is made that 
the Navier-Stokes equation applies not only to hy
drodynamic flow in the outer core but also to seismic 
wave propagation through the outer core. This method 
is the same as that used by Jeffreys (1926, 1952), which 
gives an upper limit estimate for core viscosity. The 
viscous damping term for seismic wave propagation is 
of the form, e.g., Lamb (1932), 

2vw2 
--~-s 

e 3c 3 (1) 

Table 2. Seismological determinations of the kinematic v1s
cosity of the outer core 

Source Q' 

Sacks (1971) 10,000 
Buchbinder (1971) 4,000 
Adams ( 1972) > 2,200 
Qamar and Eisenberg (1974) 5,000-10,000 

1x107 

2 x 107 

<4 x 107 

1-2 x 107 

where w is the circular frequency, c the compressional 
wave velocity and s the ray path distance. The corre
sponding relation between v and the seismic dissipation 
parameter, Q', is, e.g., Stacey (1977), 

3c2 P 
V=--

8n:Q' (2) 

where P is the period of the seismic wave. There have 
been several determinations of the attenuation of P 
waves propagating through the core. These results are 
summarized in Table 2, along with the estimates for v 
made from Eq. (2) using a value of c = 9 x 105 cm s - 1. A 
value of v = 2 x 10 7 cm 2 s - 1 was chosen as represen
tative of the outer core viscosity. 

There are a number of other observable geophysical 
parameters from which estimates of core viscosity can 
be made. Several lead only to an upper limit for the 
viscosity and, in general, these estimates appear some
what less definitive than the procedures used in the 
previous paragraph. 

Free oscillations of the earth caused by large earth
quakes also undergo damping, and permit estimates for 
the seismic dissipation factor, Q', to be made as a 
function of earth radial distance. The damping in the 
outer core, however, is quite small compared with that 
in the mantle and precludes more than an approximate 
estimate of the outer core Q' value. Anderson and Hart 
(1978a, 1978b) quote a value of Q' = 106 for the outer 
core in their earth model. The same relation (2), be
tween v and Q', applies to free oscillations as well as to 
seismic wave propagation. Using an appropriate value 
of P= 1,000 s, this Q' value converts to v= 14 
x 107 cm2 s- 1• 

Sato and Espinosa (1967) and Suzuki and Sato 
(1970) have estimated values of the viscosity in the 
outer core at the mantle-outer core boundary from 
reflected shear waves. Their results are v = 8 
x 1010 cm2 s- 1 and 5 x 109 cm 2 s- 1, respectively. 

Upper limit estimates of core viscosity from a va
riety of observed geodetic parameters, particularly the 
damping of the Chandler wobble, have had a long and 
complex history. Molodenskiy (1981) has recently given 
upper limit estimates of 106 cm 2 s- 1 from the ampli
tudes of the forced nutation of the earth 2 
x 109 cm 2 s- 1 from the damping of the Chandler ~ob

ble, and 107 cm 2 s- 1 from tidal variations in the length 
of day. 

Theoretical estimates include those by Bondi and 
Lyttleton (1948) of 107 cm2 s- 1, Gans (1972) of 
10- 2 cm 2 s- 1, Bukowinski and Knopoff (1976) of 
10° cm 2 s- 1, and Watanabe (1977) of 103 cm 2 s- 1. 
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Derivations and results 

The equations defining the magnetohydrodynamics of 
the outer core are the Navier-Stokes hydrodynamic 
equation, the heat equation and the magnetic induction 
equation, 

av 1 1 
-+(v· V) v= --Vp+-pg+v V· Vv at Po Po 

-2Q x v+-µ-(V x H) x H 
4np0 

(3) 

aT q 
-+(v · V) T=-+K V· VT at p0 cP 

(4) 

aH 1 
-+(v· V)H=(H · V)v+--V· VH at 4n (j µ 

(5) 

where v is the flow velocity, p the pressure, p the 
density, T the temperature, q the internal heat generat
ed per unit volume, H the magnetic field strength and 
the other parameters are as defined in the previous 
section. In addition there are the flow and magnetic 
flux continuity relations and the equation of state re
lating density and temperature, 

V·v=O (6) 

V·H=O (7) 

ap 
aT = -apo. (8) 

They form a set of coupled, nonlinear partial differen
tial equations. The first two terms on the right hand 
side of Eq. (3) are the forcing terms, the third the vis
cous resistance term, the fourth the Coriolis or geo
strophic term, and the fifth the Lorentz term. The ul
timate driving force for the system is related to the heat 
flux through the core. The resultant temperature, or 
density, gradient provides the driving force for the hy
drodynamic flow of Eq. (3), and the flow, itself, provides 
the generating term for the magnetic field of Eq. (5). 

The interest, here, is in obtaining solutions to these 
equations under conditions of an assumed outer core 
viscosity of v = 2 x 10 7 cm 2 s - 1, in order to delineate the 
resultant core dynamics as well as to ascertain whether 
such an outer core viscosity is plausible considering the 
observed external magnetic field strength and secular 
changes. Further, it is of interest to retain all three of 
the terms that may affect the flow, viscous, Coriolis and 
Lorentz, in the solutions. 

We assume steady state conditions. We assume the 
flows are sufficiently small for the nonlinear term, 
(v · V) v, to be neglected in consideration of the other 
terms in Eq. (3). We assume that the flow is hemispheri
cally symmetrical across the equator and that the first 
mode of the convection flow is dominant. In the ab
sence of Coriolis and Lorentz effects, the flow pattern 
would be as shown in Fig. 1. We shall solve the equa
tions in Cartesian coordinates, thus ignoring sphericity 
effects. For the northern hemisphere we take a coor
dinate system as shown in Fig. 2. 

We look for solutions applicable to the central, or 
mid-latitude, region. Under these conditions it is rea-
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Fig. 1. Thermal circulation in the outer core in the absence of 
Coriolis and Lorentz forcing terms 

OUTER CORE BOUNDARY 

X- SOUTH 

INNER CORE BOUNDARY 

Z - VERTICAL 

Fig. 2. Coordinate system 

sonable to assume that the horizontal density gradient, 
ap/ax, is constant. This form of reduction to a de
scription of the flow in its central regime is the same as 
that applied to gravitational circulation in the upper 
mantle by Officer and Drake (1983), and in estuaries, 
by Officer (1976). Since the system is closed in the 
longitudinal direction, ap/ay is necessarily zero. Under 
these conditions v and H are functions of z only, and p, 
p and T are the pressure, density and temperature 
differences from adiabatic, or static, conditions. The 
flow boundary conditions are vx=vy=vz=O at z=O 
and z=d which give, from relation (6), vz=O. The mag
netic field conditions for a nonconducting mantle and 
inner core are Hx=Hy=O at z=O and z=d which give, 
from relation (7), Hz=H0 =constant. The choice of a 
conducting inner core would change the H x and HY 
fields near the outer core-inner core boundary. 

Equations (3) and (5), thus, reduce to 

a2 vx=_l_ ap + 2Qvysin</J __ µ_H aHx (9) 
az2 p0 v ax v 4n p0 v z az 

a2 vy 2Qvxsin</J µ aHY 
-= - +--H - (10) 
az2 v 4n p0 v z az 
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O=H ovx+_l_ a2 Hx 
z oz 4nCTµ oz2 

O=H avy+_1_a2Hy 
zaz 4nCTµoz 2 

(11) 

(12) 

and the flow and magnetic flux continuity relations are 

d 

f vxdz=O (13) 
0 

d 

f Hxdz=O. (14) 
0 

It is appropriate to take an isodynamic condition at the 
mantle-outer core boundary. The pressure will be given 
by 

(15) 

where ~ is the dynamic depression of the boundary and 
p0 a constant. We have, then, for the horizontal pres
sure gradient, 

op zap a~ 
-=gf-dz-p0 g
ox oax ox 

=gAz-p0 gi (16) 

where we have ignored second order terms and where i 
= o~/ox is the slope of the mantle-outer core surface 
and A.=op/ox the horizontal density gradient. Equa
tions (9) through (12) are in the form of four coupled, 
ordinary differential equations which, with relation (16), 
may be easily solved. Equation (13) will provide a de
fining relation between i and A., and Eq. (14) will pro
vide a defining relation between H 0 and the other pa
rameters of the system. 

Equations (9) through (12) may be combined to give 
the following two equations, separable in vx and vY, 

2Qsin¢ op 

PoV2 ax· 

(17) 

(18) 

Using the parameter values listed in Table 1 we have 
for the ratio, R, of the square root of the terms in the 
parentheses 

CT µ 2 H; 
R= Pov 

2Q sin¢ 

v 

CT µ 2 H; 
2Q p0 sin¢ 

0.0140. (19) 

We may neglect the second term in the parentheses 
with respect to the first term, reducing Eqs. (17) and 
(18) to 

2Q sin <P op 
Po v2 ax· 

(20) 

(21) 

Using relation (16), the complementary and particular 
integral solutions to Eqs. (20) and (21) are 

Rgi RgA. 
vx=---2-+ 2 z+C1 coshazcosaz 

2a v 2a p0 v 

+ C 2 sinh a z cos a z + C 3 cosh a z sin a z 

+ C 4 sinh a z sin a z 

gi gA. . . 
vy=--2-- 2 z-(2C1 +RC4)smhazsmaz 

2a v 2a PaV 

-(2 C 2 +RC 3) cosh a z sin a z 

+ (2 C 3 - RC 2) sinh a z cos a z 

+(2C4 -RC1) coshaz cosaz. 

(22) 

(23) 

The constants C1 through C4 are determined from the 
boundary conditions that vx = vY = 0 at z = 0 and z = d. 
Using the condition from Tables 1 and 2 that 

(24) 

and the continuity condition, Eq. (13), which gives 

1 A.d 
i=- - (25) 

2 Po 

we obtain 

gA.d [( ) . Vx= 2 1-R e-azsmaz+2Re-azcosaz 
4a p0 V 

4Rz 
-2R+---e-a(d-z) sin a(d -z) 

d 

-2R e-a(d-zJ cos a(d -z)] (26) 

g A.d [ 2z 3R . VY= 2 l---e-azcosaz+-e-azs1naz 
4a p0 v d 2 

+ e-a(d-z) cos a(d -z)+~ e-a(d-z) sin a(d -z)]. (27) 

Let us look for the moment at the type of core 
dynamics that these solutions delineate. The flow may 
be considered to consist of three parts, an Ekman-type 
boundary layer current defined by the frictional depth, 
D = n/a, near the mantle-outer core boundary and near 
the outer core-inner core boundary and a mid-depth 
drift current. For vx the upper boundary layer flow is 
defined by the exp( -a z) sin a z term and the lower 
boundary layer flow in the opposite direction by the 
exp [ -a(d -z)] sin a(d -z) term. In the mid-depth re
gion there is a small drift current related to the Lorentz 
term in the original equations and given by the ex
pression [ -2R + (4R z)/d]. For vY there are correspond
ing boundary layer flows and a large mid-depth drift 
current related to the Coriolis term in the defining 
equations and given by the expression [1 -(2z)/d]. In 
the limit of no Coriolis or Lorentz effects the solutions 
(26) and (27) reduce to 

gA. 
v =--[d2 z-3dz2 +z 3] 

x 12p0 V 
(28) 
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Fig. 3. Graphs of vx and vY for boundary layer flows and mid
depth flow. Note changes in ordinate and abscissa scales 

(29) 

which are the solutions for gravitational, or horizontal 
density gradient, circulation of Officer and Drake 
(1983). 

From Eqs. (11) and (12) the corresponding solutions 
for Hx and HY may be obtained with the boundary 
conditions Hx=Hy=O at z=O and z=d, giving 

H= x 
ngA.d<JµH [ . 

3 ° 1-e-az(cosaz+smaz)-4Raz 
2a p0 v 

4Raz2 . J + -e-a(d-zl(cosa(d-z)+sma(d-z)) (30) 
d 

ngA.d<JµH [ . 
Hy= 3 ° 1-e-az(cosaz-smaz)-2az 

2a p0 v 

2az2 J +-d--e-a<d-zl(cosa(d-z)-sin a(d-z)) . (31) 

The magnetic flux relation of Eq. (14), then, gives from 
solution (30) the condition for H 0 in terms of the other 
parameters of the system that 

fRad=l. (32) 

From the definition (19) for R, we have 

[3Q p0 sin ¢]112 

H0 = 2 = 1.1 gauss 
<J µ ad 

(33) 
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Fig 4. Graphs of Hx and HY for boundary flows and mid
depth flow. Note changes in ordinate and abscissa scales 

using the parameter values in Table 1. It is, indeed, 
interesting and encouraging that this simplified expo
sition does give a value for the external field strength 
which is the same order of magnitude as the value of 
1.9 gauss for the average field strength during the 
Phanerozoic. 

Both the Hx and HY fields have a depth variation 
similar to that of the hydrodynamic flow. There is a 
rapidly varying portion near the mantle-outer core 
boundary and near the outer core-inner core boundary 
defined by the frictional depth, D. Within the mid
depth region both components vary slowly. The Hx 
field lies in a northerly direction in the northern hemi
sphere near the mantle-outer core boundary. In spheri
cal coordinates, the Hx and Hz components form the 
poloidal field, and the HY component determines the 
toroidal field. The mid-depth portion of the H x field 
differs from that of the HY field by the factor R. In 
other words, the toroidal field will be about two orders 
of magnitude greater than the poloidal field. In this 
formulation a strong toroidal field is predicted for the 
outer core. 

Figures 3 and 4 are graphs of the depth-variable 
portions of the vx and vY flows and the Hx and HY 
fields, respectively. The ordinate and abscissa scale 
changes should be noted in these figures. They illustrate 
quantitatively the depth variations for each component 
discussed in the previous paragraphs. 

Figures 5 and 6 are schematic representations of the 
core dynamics assuming a hemispherically symmetrical 
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Fig. 5. Schematic representation of global boundary layer cir
culation in the outer core 

Fig. 6. Schematic representation of global mid-depth circu
lation in the outer core 

circulation. The flows consist of spiral motions in a 
westerly direction from each pole toward the equator 
near the mantle-outer core boundary and spiral mo
tions in the opposite direction near the outer core-inner 
core boundary. For the mid-depth portion the motion 
is dominantly westerly with a small poleward com
ponent in the upper portion, and dominantly easterly 
with a small equatorward component in the lower por
tion. 

It is necessary, next, to obtain some reasonable es
timate for the horizontal density gradient, Jc=8p/8x. 
The horizontal heat fluxes related to the mid-depth 
portion of the vx flow will balance out. For the upper 
boundary layer flow, the conductive heat flux out at the 
mantle-outer core boundary per unit distance must be 

equal to the decrease in the convective heat flux per 
unit distance and, correspondingly, for the heat flux in 
at the outer core-inner core boundary, assuming no 
internal heat generation. We have, then, from Eq. (26) 

8T 00 gJcd . 
Q= -cPp0 - S 2 e-azsmazdz 

ax 0 4a p0 v 

or, using relation (8), 

A= [8o:a3 Pov QJ1;2=0.253x10-1s g cm-4 
crgd 

using the parameter values of Table 1. 

(34) 

(35) 

The multiplying factors for the vx and vY flows of 
Eqs. (26) and (27) and for the Hx and HY fields of 
Eqs. (30) and (31) are, then, 

gJcd 
A= 2 =0.0301cms- 1 

4a p0 V 

and 

B ngJcdaµ 
2a3 Pov 

0.420. 

(36) 

(37) 

From relations (33) and (35) and the definition for a in 
Table 1 it is to be noted that the various dependences 
on the viscosity, v, are Jc proportional to v- 114 ; vx and 
vy proportional to v- 114 ; and Hx, HY and Hz pro
portional to v114. All the components show a relatively 
weak dependence on the viscosity. 

Let us look next at the nondipole components of 
the earth's magnetic field. Elsasser (1941, 1946b) dem
onstrated that the nondipole components must orig
inate as a skin effect in the outer core adjacent to the 
mantle-outer core boundary at a depth not in excess of 
150 km from the boundary. This is in accord with the 
core dynamic formulation given here. The nondipole 
components could originate from spatial variations in 
the boundary layer flow near the mantle-outer core 
boundary. Further, the observed secular variations in 
the nondipole field would originate from temporal vari
ations in the boundary layer flow. Although the simple 
formulation given here does not include consideration 
of such effects, spatial and temporal variations are, 
indeed, an important characteristic of Rayleigh-Benard 
boundary layer circulation. 

It is possible to estimate the drift of these irregulari
ties from the formulation given here. Over the frictional 
depth of the upper boundary layer flow there is a 
strong westward drift in both hemispheres, gives by 

lD gJcd -1 
Vw=- S vydz=0.206-2--=0.025 cm s 

Do a Pov 
(38) 

using the parameter values of Table 1. As with the 
deduced magnitude of the main field strength, H 0 , from 
relation (33), it is encouraging that the predicted value 
for the westward drift from this simplified formulation 
is in accord with the observed westward drift of the 
main field, e.g., Bullard et al. (1950) as well as others. 
This formulation also predicts that there should be an 
additional but much smaller northerly drift in the nor-
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thern hemisphere and southerly drift in the southern 
hemisphere given by 

lD gAd _1 
v.=-S vxdz=o.o36-2---=o.004cms . 

Do a Pov 

Speculations as to the origin of the secular variations 
and polarity reversals 

(39) 

The principal purpose of this investigation has been do 
delineate the gross features of core dynamics and the 
geomagnetic field under conditions of an outer core 
viscosity of 2 x 10 7 cm 2 s - 1 . The analytic solutions are 
for steady state and apply only to the central portion of 
the flow regime. It is of interest to pursue, in a qualita
tive manner, the implications of this formulation for 
an understanding of other features of the secular varia
tions and the polarity reversals. The following discussion 
is admittedly speculative. 

Special and temporal instabilities are an inherent 
characteristic of Rayleigh-Benard circulation, since the 
defining equations are coupled and nonlinear. Various 
aspects of these instabilities have been examined by a 
number of investigators, e.g., Howard (1966), Welander 
(1967), Krishnamurti (1970a, b), Busse and Whitehead 
(1971), Moore and Weiss (1973), Nield (1975), Busse 
and Riahi (1980) and Krishnamurti and Howard (1981). 
It is possible that both the observed temporal varia
tions in the magnetic moment of the dipole field and 
the observed movement of the magnetic pole around 
the geographic pole might be related to such temporal 
and spatial variations of the global core dynamics 

096[ 1.10 

( 

) 

95 

about equilibrium. The nondipole field and the tem
poral variations in its magnitude could be related to 
smaller· scale spatial irregularities and temporal varia
tions in the boundary layer flow near the mantle-outer 
core boundary. 

Of particular interest to a consideration of polarity 
reversals are the numerical experiments of Welander 
(1967). His numerical computations are related to a 
very simple, boundary-layer type flow. It consists of a 
vertical tube of fluid forming a closed loop that is 
heated from below and cooled from above. The fluid 
motion is defined by the usual coupled hydrodynamic 
and heat continuity equations and there are two 
equilibrium flow conditions, viz., clockwise or counter
clockwise flow. His calculations show that depending 
on the relative magnitude of the resistive and driving 
forces, flow instabilities will result, leading in the ex
treme to flow reversals. The interesting result is that for 
even this very simple system of heat-driven, boundary
layer type convection flow, reversals are an inherent 
characteristic of the system. Robbins (1977) has extend
ed the calculations for the Welander loop and those for 
a reversing disc dynamo, defined by similar equations, 
towards an understanding of the polarity reversals. 

Following the results from Robbins (1977), Officer 
and Lynch (unpublished data, 1985) have continued the 
numerical calculations for the Welander loop for in
creasing flow resistance and the ratio of resistive to 
driving force (Fig. 7). The progression is from (A) 
steady state, to (B) steady state with oscillatory damp
ing, to (C) nearly neutral oscillations about one of the 
equilibrium positions, to (D) gradual buildup of the 
oscillations to a reversal, and then repetition of the 
sequence about the other equilibrium position, to (E) 
periodic oscillation sequences, to (F) aperiodic oscil-
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Fig. 7 A-F. Plots of fluid flow (nondimensional) versus time (nondimensional) for the Welander loop numerical experiment for 
various values of the parameters, a and e. A 0.4, 0.2; B 2, 1; C 20, 3; D 40, 6; E 102.4, 3.2; F 10,240, 96 
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lations. For the last case the spectral distribution of the 
reversal time intervals has a peak near the time for one 
circuit of the loop, dropping off steeply for shorter time 
intervals and more gradually for longer time intervals. 
This type of sequential behaviour appears to be charac
teristic of a number of similar systems, specifically the 
Lorenz equations, Lorenz (1963) and Sparrow (1982), 
and the nonlinear oscillator studied by Moore and 
Spiegel (1966). For the core dynamics formulated here
in, the comparison with the Welander loop is that 
both are heat-driven, boundary-layer type circulations 
with heat-convective effects dominant over heat-con
ductive effects. For the core dynamics the mid-depth 
flow is geostrophically controlled. The boundary layer 
flow is characterized by a large resistance term and a 
small driving force, with a time for one complete cycle 
of about 10000 years. 

Assuming that the magnetic polarity reversals are 
related to reversals in the global circulation in the 
outer core and that the present core conditions may 
correspond to Fig. 7F, a number of consequences fol
low. Throughout the Phanerozoic there would be es
sentially equal periods of westward and eastward drift 
of the nondipole field. The circulation, itself, forms a 
coupled northern and southern hemisphere system. The 
specifics of the flow reversals may not be exactly the 
same in each hemisphere, leading to a quadrupole field 
during the transition. Further, there is an inherent inde
terminacy in the determination of the direction of a 
new dipole field. With flow reversals the new magnetic 
field may be in the same or the opposite direction to 
the old field. Thus, we should expect equal episodes of 
magnetic field excursions toward a zero field strength 
but return to the original field direction and of episodes 
of field reversals. Finally, if the core viscosity has in
creased substantially with geologic time, the flow re
versal sequence would progress from Fig. 7D to E to F, 
leading to a possible explanation for the extended pe
riods of either normal or reversed polarity during the 
earlier Phanerozoic. 

All the above comments are, of course, speculative. 
The important point is that a more detailed under
standing of the Welander loop type of flow instabilities 
as applied to core dynamics may lead toward an under
standing of magnetic polarity reversals, as also con
cluded by Robbins (1977). 

Conclusions 

An alternative model of core dynamics and explanation 
for the origin of the earth's magnetic field has been 
given. The formulation differs from previous models in 
the application of an estimated kinematic viscosity for 
the outer core of 2 x 107 cm2 s- 1. The simplified de
rivations assume a hemispherically symmetrical, global 
circulation in the core. The resulting boundary layer 
flow is thermally driven, and is controlled in a latitu
dinal direction by the Coriolis force and in a longitu
dinal direction by the Lorenz and Coriolis forces. The 
theory predicts the correct order of magnitude for the 
dipole field strength, 1.1 gauss, and the correct order of 
magnitude for the westward drift of the nondipole field, 
0.025 cm s- 1. It is suggested that both the secular varia
tions in the dipole and nondipole fields and the po-

larity reversals may be related to the instabilities in the 
Rayleigh-Benard, boundary-layer hydrodynamic flow in 
the outer core. 
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