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ABSTRACT

This paper presents the results of a set of radiative hydrodynamic (RHD) simulations of con-
vection in the near-surface regions of a rapidly rotating star. The simulations use microphysics
consistent with stellar models, and include the effects of realistic convection and radiative
transfer. We find that the overall effect of rotation is to reduce the strength of turbulence. The
combination of rotation and radiative cooling creates a zonal velocity profile in which the
motion of fluid parcels near the surface is independent of rotation. Their motion is controlled
by the strong up and down flows generated by radiative cooling. The fluid parcels in the deeper
layers, on the other hand, are controlled by rotation.

Key words: Stars: Atmospheres – Stars: Rotation – Methods – Numerical

1 INTRODUCTION

Convection is one of the two dominant forms of heat transport in
stars, and is also a significant source of uncertainty in stellar models.
These models are predominantly one-dimensional, and incorporat-
ing a three-dimensional (3D) phenomenon such as convection into
them, requires drastic approximations, such as the mixing length ap-
proximation (MLT) Böhm-Vitense (1958). While MLT is successful
in reproducing the properties of stars in near-adiabatic regions of
efficient convection, there is evidence from helioseismic and aster-
oseismic observations that these approximations do not model the
near-surface layers of a star particularly well (Abbett et al. 1997;
Kim et al. 1996). Of much more concern is the fact that the free pa-
rameters in the approximation directly control the radii of models,
and thus these models cannot predict stellar radii without intro-
ducing additional constraints. To overcome this constraint, there
are increasing efforts to simulate convection in the outer regions
of stars on different parts of the Hertzsprung-Russell (HR) dia-
gram (Magic et al. 2013c; Trampedach et al. 2013a) for different
metallicity (Magic et al. 2013a; Tanner et al. 2013) in order under-
stand near-surface convection, and also to use the results of the
simulations to improve stellar models (Mosumgaard et al. 2018;
Spada et al. 2018). These studies of convection have generally been
limited to non-rotating stars. In this work we explore how rapid
rotation affects near-surface convection.

Stellar convection has a huge range of spatial and temporal
scales making it impossible to resolve all the dynamical and thermal
scales in a numerical model. Consequently, there have been two
approaches to modeling convection in stars; (i) global models of all
or a large part of a star or (ii) local models of the surface layers of
a tiny part of the star.

⋆ Email: robinsonf3@sacredheart.edu

Global models have been developed for the Sun to model dif-
ferential rotation (Brun & Toomre 2002; Miesch 2007), meridional
circulation (Featherstone & Miesch 2015) and the near-surface
shear layer (Miesch & Hindman 2011; Hotta et al. 2014). More re-
cently, these techniques have been applied to other types of stars
(Palacios & Brun 2007; Brun et al. 2017). These models typically
include the entire convection zone in a full spherical shell geometry
(Miesch et al. 2006; Brun et al. 2011; Nelson et al. 2018), solving a
truncated form of the fully compressible system called the anelastic
approximation. In this approximation, acoustic waves are filtered
out and a linearized form of the governing equations is solved (see
Appendix). This approximation limits the simulations to regions of
efficient convection, and is therefore not suitable to study the ef-
fects of inefficient convection that causes the greatest uncertainty
in stellar models. Other global models (Robinson & Chan 2001;
Käpylä et al. 2010), solve the fully compressible system in a wedge
covering 60-120 degrees in latitude and longitude centered about
the equator.

The global models span about 6-8 scale heights, whereas the
convection zone on encompasses about 19 pressure scale heights.
This means that the resolved eddies in the global simulations are
thousands of times larger than solar granules observed at the surface
of the Sun,and hence again not suitable for studying the effects of
inefficient convection on stellar structure. Furthermore, the numer-
ical energy flux at the lower boundary is millions of times larger
than the actual radiative flux at that depth (Brandenburg et al. 2005).
In these models the equation of state is typically an ideal gas and
radiation is approximated by a conduction layer (Brun & Toomre
2002).

Local models are designed to accurately represent energy trans-
port in the thin convection-radiation transition layer at the top of
the star. Nordlund (1985) was among the first to use local RHD
simulations to accurately account for realistic near-surface convec-
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2 Robinson, Tanner & Basu

tive dynamics and radiative energy transport, but the technique has
since been used by numerous authors (e.g. Chan & Sofia 1989;
Freytag & Steffen 2004; Magic et al. 2013b). These type of simula-
tions are 3D Radiation Hydrodynamic (3DRHD) simulations and, as
the name suggests, includes the effect radiation has on the dynamics
caused by convection. Typically, the depth of a simulation box is be-
tween 3 and 5 Mm (about 8 pressure scale heights). The simulation
is driven by an imposed energy flux at the base of the box. In these
‘realistic’ simulations, this energy flux is close to the radiative flux
σTeff

4, whereas in the global simulation it is many times larger. The
simulations use realistic equations of state P(ρ, e), where P, ρ and e

are the pressure, density and internal energy of the gas, respectively.
They also include the thermodynamic effects of ionization zones and
use full radiative transfer (Stein & Nordlund 2000; Freytag et al.
2012; Trampedach et al. 2013b). The majority of 3DRHD simula-
tions have been of the Sun and other solar-like stars (Robinson et al.
2003; Beeck et al. 2012; Tanner et al. 2016; Chiavassa et al. 2018;
Collet et al. 2007), but there have also been realistic simulations of
Subgiants (Robinson et al. 2004), M-Dwarfs (Ludwig et al. 2002;
Wedemeyer et al. 2013),Betelgeuse (Freytag et al. 2002), F stars
such as Procyon (Robinson et al. 2005) and others (Kitiashvili et al.
2016).

While the global models must include the effects of rotation,
the local models of "realistic convection" typically do not. This is
because for most stars being studied (Mathur et al. 2011), the con-
vective timescales in the computational domain are tiny compared
to the rotation period of the star. For example, solar granules have
lifetimes of about 10 minutes, while the Sun takes 25 days to spin
once. The importance of rotation associated with such flow, can be
estimated from the ratio of this turnover time to the rotation period,
which for solar granules is about 3 × 10−4. Under such conditions
the Coriolis terms in the Navier-Stokes equations will be insignif-
icant compared to the other momentum terms. The importance of
the centrifugal force can be estimated by RΩ2/g, where R,Ω and g,
are the radius, external rotation rate and acceleration due to gravity
at the top of the star. For the Sun, this parameter is ≈ 10−5, so the
centrifugal force can also be ignored in local models of the Sun.

If the star is spinning fast enough, granules should start to
feel rotation. This paper described a set of simulations of rapidly
spinning stars that have rotation periods that are about an order of
magnitude greater than the eddy turnover time. As an example, for
a simulation of δ-Scuti, the estimated turnover time for a granule
is about 30 minutes, while the observed rotation period can be as
short as 6 hours (Solano & Fernley 1997; Molenda-Zakowicz et al.
2009). Under these conditions, rotation cannot be ignored.

2 MODEL DESCRIPTION

Our numerical code solves the fully compressible Navier-Stokes
equations with radiative transfer. Details of the non-rotating version
are provided in Tanner et al. (2012, 2016) (and references therein).
The code is an updated version of the code used in Robinson et al.
(2003, 2004) and is based on the code written by Kim & Chan
(1998). Here, we outline its basic ingredients and key features
among recent improvements.

A 3D model is characterized by its surface gravity, chemical
composition, and effective temperature, although only the former
two properties can be directly set in a simulation. To produce a 3D
RHD simulation, we begin with a stratification extracted from a 1D
stellar model. The initial stratification is taken from a 1D stellar
model computed using MLT which is then relaxed to a steady state

that is consistent with the realistic convective dynamics and radiative
transfer. In this work, we use the 1D stellar evolution code YREC
(Demarque et al. 2008) to obtain the initial stratification, but this
does not affect the final relaxed state of the simulation, which can
be characterized by the chemical composition, surface gravity, and
effective temperature. As a result of the inadequacy of MLT, the
relaxed state of a 3D RHD simulation is not consistent with the
stratification from the initial MLT model, and consequently, the
radiative flux may converge to a value that differs from the 1D
model. Since it is determined from the radiative flux, the effective
temperature is a computed property of a relaxed simulation, and we
cannot set this as an input constraint. The simulations presented in
this paper are for a δ Scuti-type star with log g and logTeff of 4.21
and about 3.81, respectively (the Sun has values of 4.44 and 3.76).

Due to the very large range of scales in a stellar convection
zone (e.g. 19 pressure scale heights for the Sun), the computational
domain that is used is typically a tiny box, or thin shell, located at
the top of the convection zone. The box has a width equal to that
of a few granules and is deep enough so that further increases in
depth do not alter the flow structure, with the top of the box lo-
cated at least 1 pressure scale height (HP) above the photosphere.
In this region, HP is about 500km. The depth of the domain is
important because boundary effects can be reduced (though never
eliminated) by increasing the vertical extent until quantities within 1
HP of the upper and lower boundaries remain unchanged, if further
increases are made. The vertical walls are periodic and the hori-
zontal walls are impenetrable (closed box). To help reduce large
horizontal velocities (and shocks) in the low density layers near the
top of the box, a no-slip boundary condition is imposed at the top
of the box, while the bottom of the box is stress free. By compar-
ing different 3D radiation hydrodynamics simulations, Kupka et al.
(2005) and Kupka (2008), showed that the effect of the top bound-
ary on the underlying convection is felt only within a pressure scale
height of the top. The effect of no-slip versus slippy top was tested
for simulations of the Sun in Robinson et al. (2003). It was found
that the boundary condition at the top had little impact on the dy-
namical or thermal structure of the superadiabatic layer. A more
recent comparison between the CO5BOLD, MURaM (Vögler et al.
2005) and Stagger codes (Nordlund & Galsgaard 1995) was made
by Beeck et al. (2012). Again, even though the codes use different
numerical schemes and the runs are for different resolution, different
top boundary conditions and different domain sizes, the dynamical
and thermal structure below the photosphere look almost the same.

In the deeper, more opaque regions (optical depth of τ > 104),
radiative transfer is modeled by the diffusion approximation. How-
ever, in the shallower regions, such as the superadiabatic layer,
photon mean free paths are not small enough to use the diffusion ap-
proximation. HereQrad , the energy transferred by radiation, is com-
puted as Qrad = 4κρ(J-B) where κ is the Rosseland mean opacity,
and the mean intensity J is computed by using the generalized three-
dimensional Eddington approximation of Unno & Spiegel (1966).
This formulation is exact for isotropic radiation in a gray atmo-
sphere, and without requiring local thermodynamic equilibrium,
the Eddington approximation describes the optically thick and thin
regions exactly (Rutten et al. 1995). A detailed comparison between
using the 3D Eddington and ray integration for radiation has been
done by Tanner et al. (2012) who concluded that as far as convection
below the surface is concerned, there are only minor differences in
the dynamics or thermal structure between simulations using ray
integration or 3D Eddington.

The code is numerically stable for stars with surface gravity
similar to that of the Sun or higher surface gravities, as well as some-
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Simulating the outer layers of rapidly rotating stars 3

Figure 1. The f -plane geometry.

what hotter stars like F-type stars; no additional artificial viscosity
is needed to stabilize the code. The subgrid-scale model employed
is the one from Smagorinsky (1963).

2.1 Adding rotation: the f plane box

To include rotation, we employ the f -plane approximation
(Pedlosky & Robertson 1988). In our configuration, f is defined
as 2Ωsinθ, where θ is co-latitude. The geometry is shown in Fig.
1.The computational domain can be thought of as a tiny part of a
spherical shell at a particular co-latitude. The assumption of con-
stant f is good, provided the box size is small compared to the radius
of the star, which is indeed the case of our simulations. In the right
handed Cartesian geometry that we use, the x direction is towards
the equator, y is in the zonal direction and the z direction is radially
outwards. This means gravity g is in the negative z direction).

The f -plane configuration has been used to simulate rotat-
ing turbulent convection (Brummell et al. 1996; Chan 2001, 2007),
and convectively generated vortices in Jovian planets Chan & Mayr
(2013). All of these f -plane simulations are for idealised polytropic
stratifications with input fluxes many orders of magnitude greater
than the solar flux. The current application is different in that it is of
realistic surface convection which contains both shallow and deep
convection.

2.2 Non-dimensional units

Physical quantities are scaled by their value at a reference level
located near the top of the box. For instance, velocity is scaled by

the isothermal sound speed, cs = (ptop/ρtop)
1/2, and time by d/cs,

where d is the depth of the box. In such units, the external angular
velocity, Ω, is scaled by cs/d.

2.3 Centrifugal and Coriolis Forces

Results presented in this paper are for an f -plane box located at the
equator (θ = π/2, f = 2Ω). In this configuration, the centrifugal
force is in the opposite direction to gravity and can be included by
simply subtracting RΩ2 (where R is the radius of the star) from
the uniform gravitational acceleration. As Ω points along the −x

direction, there will be two non-zero components of the Coriolis

force, −(2Ωvz)ŷ and (2Ωvy)ẑ, where vy , vz , ŷ and ẑ are the zonal
and vertical velocities and unit vectors in the y and z direction,
respectively.

2.4 Turbulent fluid properties

Following the notation employed by Chan (2001), any turbulent
fluid quantity q can be split into a mean and a fluctuating part,

q = q(z) + q′(x, y, z, t). (1)

The overbar represents a combined horizontal and temporal average,
i.e.

q(z) =
1

t2 − t1

t2
∫

t1

(

1
(LxLy)

∫

qdxdy

)

dt. (2)

t1, is a time after the system has reached a self-consistent thermal
equilibrium (the thermal adjustment time). Lx and Ly are the hori-
zontal widths of the box in the x and y direction respectively. The
time required for statistical convergence is t2 − t1.

The root mean square (r.m.s.) value of a quantity q is defined
as

q′′ = q2 − q2, (3)

while the correlation coefficient of two quantities q1 and q2, is
defined as

C[q′1q′2] =
q1q2 − q1 q2

q′′1 q′′2
(4)

The symbol 〈q〉 denotes averaging over the height, d, of the
box:

〈q〉 =
1
d

∫

q (5)

Statistical convergence has been verified by comparing each quan-
tity at different averaging times. If averaging over an additional 10
turnover times, did not change the value of a quantity by more than
1 %, then it was considered converged. For example, the mean zonal
velocity in the box, vy in case D is shown in Fig. 2. The zonal ve-
locity, vy = vφ − RΩ, where vφ is the equatorial tangential velocity
at a given point in the star. It has been averaged over 15, 20, 50 and
88 time units. For rotating deep efficient convection, the slope of
vy should be −2Ω (Chan 2001). As the deep layers take longer to
converge (due to the longer turnover times), once the slope of vy
versus depth is constant near the base, one can assume vy is close
to convergence in the rest of the box.

3 RESULTS

Table 1 lists some properties of the simulations. Columns 1-6 are
model identifier, rotational velocity vrot = RΩ, non-dimensional
angular velocityΩ∗, relative reduction in g due to centrifugal force,
r.m.s. velocity fluctuation and r.m.s. velocity, respectively. The r.m.s.
velocity fluctuation is computed as the depth average of v′′, where
v
′′
= (vx

′′2
+ vy

′′2
+ vz

′′2)1/2. The r.m.s. velocity is computed
similarly, but without subtracting the mean.

From v
′′, various non-dimensional turbulence parameters are

computed and presented in columns 7-9. The Coriolis number
(inverse Rossby number), Co, is defined as Co = Ωd/〈v′′〉. The
Reynolds numbers, Re, which compares the magnitudes of the in-
ertia and viscous terms, is defined as 〈v′′〉d/〈µ/ρ〉 (where µ and

MNRAS 000, 1–9 (2020)



4 Robinson, Tanner & Basu

Figure 2. Convergence of mean zonal velocity, vy . The plot is for case D.
Each line represents a different averaging times (in non-dimensional time
units). vy is converged after about 50 time units.

ρ are the subgrid scale dynamic viscosity and the density). The
Taylor number Ta, which compares the Coriolis and viscous terms,
is computed as (2Ωd2/〈µ/ρ〉)2.

3.1 Thermal structure

One measure of convective instability is the superadiabaticity, de-
fined as ∇ − ∇ad where ∇ = dlnT/dlnP and ∇ad is the adiabatic
temperature gradient. The total pressure is the sum of the gas, P
and turbulent pressure Pturb = ρ(v

′′
z )

2. For deep efficient convec-
tion, ∇ − ∇ad is slightly above zero (∼ 10−6 in the solar convection
zone), while for shallow inefficient convection it is of order unity.

Fig. 3 shows ∇−∇ad, plotted against LnP for the stellar model
(using MLT) that sets the initial conditions for the 5 simulations
described in Table 1. The superadiabaticity from 3D RHD simu-
lations is significantly different than that of the MLT model. This
difference is due to the realistic convective and radiative transport
near the surface.

Another characteristic that the MLT approximation of con-
vection does not account for is turbulent pressure. The turbulent
pressure as a fraction of by the gas pressure is plotted in Fig. 4 for
each of the simulations, while the turbulent pressure for the MLT
model is not shown because it is zero.

Comparing the MLT model with simulation A in figure 3, one
can see that the turbulent pressure has pushed the superadiabatic
layer (SAL) outwards by about 0.5HP from its original position.
The photospheric surface is moved out by a similar amount. Adding
rotation reduces the turbulent pressure, so that the SAL is not pushed
out quite as far. Simulations D and E have slightly higher SAL peaks
than B and C, signifying slightly less efficient convection.

3.2 Plumes

Fig. 5 shows an instantaneous vertical cross-section in the y-z plane
of temperature from simulations A, B and E. The cooler coherent
vertical structures (shaded) extending from the surface of the star
to lower heights are called plumes. They are generated by radiative
cooling at the photosphere. As the rotation is increased the vertical

Figure 3. Superadiabaticity versus LnP for the original stellar model (MLT)
and simulations A, B, C, D and E.

Figure 4. Turbulent pressure divided by gas pressure versus LnP for simu-
lations A, B, C, D and E.

extent of the plumes reduces. The effect is visible in the figure,
where plumes in the non-rotating simulation (top panel) extend
down to at least -3Mm below the surface, while for the rotating
cases (lower panels), they only reach a depth of about -2Mm. The
vertical correlation or mixing length are significantly reduced by
rotation.

3.2.1 Vertical scale of convective eddies

While the visual inspection of instantaneous snapshots is informa-
tive, to better understand what is happening in the turbulent flow
we need to look at statistics averaged over many turnover times.
Although there is no ‘mixing length’ in 3D RHD simulations, there
are several ways of measuring an equivalent quantity.

To estimate the length of a characteristic eddy, lz , we computed

MNRAS 000, 1–9 (2020)



Simulating the outer layers of rapidly rotating stars 5

Table 1. Dynamical Characteristics of Simulations

Model vrot (km/s) Ω
∗ (g − RΩ2)/g 〈v′′〉(km/s) 〈v2 〉

1/2
(km/s) Co Re Ta

A 0 0.0 1.0 4.72 4.86 0.0 2070 0.0
B 153 0.064 1.0 4.38 4.62 0.21 1760 5.5 × 105

C 153 0.064 0.9 4.31 4.51 0.21 1810 6 × 105

D 184 0.089 0.81 4.20 4.47 0.31 1865 1.3 × 106

E 307 0.128 0.61 3.98 4.42 0.46 1893 3.1 × 106

the spatial auto-correlation (equation 4) of the v
′
z field, and define

lz as the distance at which C[v′zv
′
z] falls to 0.5. If we assume that

the convective eddies have an aspect ratio of unity, then lz gives us
an idea of the size of the eddies in a turbulent fluid.

Fig. 6 shows lz for models A, B and C. Comparing Model A
and model B, one can see that rotation has much more impact on the
eddy size in the lower half of the domain. In the shallow regions, lz
is about 10 % smaller for model B compared to model A, whereas
in the deep layers, it is about 30% smaller. The effect of rotation on
eddy size is three times greater for deep efficient convection, than
it is for shallow inefficient convection. The reduction in correlation
length with depth is consistent with the decrease in penetration
depth of the plumes in the previous figure. In general, the size of the
eddies increases, until they are about one scale height from the base.
The drop off in eddy size near LnP = 15 is due to the approaching
impenetrable bottom surface.

Comparing simulations C and B illustrates the effect of the
centrifugal force on the eddy size. These two simulations have the
same Coriolis force, but g is 10 % lower in C relative to B to
account for the centrifugal force. The reduction in g between C and
B, results in an increase of lz of about 10 %. This is because lz is
proportional to the local scale height, HP which is ≈ RT/g, where
R and T are the universal gas constant and temperature, respectively
(Robinson et al. 2004; Magic et al. 2015).

Another convenient measure of the stellar mixing length
is the so-called ‘mass-mixing length’, lm, described in
Trampedach & Stein (2011). Using their equation for lm we com-
puted lm for the upflows as,

lm(z) =

�

�

�

dlnρ
dz
+

dlnvz
dz
+

dlnA

dz

�

�

�

−1
(6)

where A is the horizontal area occupied by upflows and over-
bars denote horizontal and time averages. Fig. 7 shows lz (solid
lines) and lm (long dashed lines), each divided by HP, versus depth.
While the lz depends on rotation, lm is almost the same for all five
simulations. Rotation does not appear to have any impact on the
mass mixing length.

3.2.2 Kinetic energy flux

Fig. 8 shows the flux of kinetic energy per unit mass by downdrafts
(dashed) and updrafts (solid) for simulations A-E. The quantity
plotted is vzK where K = 1/2(vx2

+ vy
2
+ vz

2). Comparing this
plot with the plot of the SAL (Fig 3), one can see that the flux of K
by upflows is strongest near the peak of the SAL (LnP = 11) and by
downflows is strongest near the base of the SAL (LnP = 12). The
flux by the downflows is about double that by the upflows. The effect
of rotation on the flux of K is quite significant. The peak downflow
and upflow of K drops by roughly 30% between model A and E.

3.3 Effect of rotation on shallow vs. deep convection

One of the robust features of efficient (deep) convection in f -planes
at the equator is the linear increase in mean zonal velocity, vy

with depth. In the study of deep convection by Chan (2001), the
slope was shown to be −2Ω∗ regardless of input flux or rotation
rate. The upper panel of Fig. 9 shows vy versus depth for the five
models. The closeness of the slope of vy to −2Ω∗ in the deep layers
indicates convergence. There is a clear distinction between deep
and shallow convection. In the deep region the slope of vy versus
depth is constant (and equal to −2Ω∗), while in the shallow layers
the zonal velocity is approximately constant.

In Chan (2001) the −2Ω∗ shear was explained by conservation
of angular momentum. We will briefly repeat their explanation. To
conserve angular momentum, the angular velocity of fluid parcels
moving outwards will decrease and that of parcels moving inwards
will increase. Consider the effect of only the Coriolis force on a
fluid parcel moving upwards or downwards at the equator (where
all quantities are in non-dimensional units):

dvy

dt
∼ −2Ωvz (7)

∆vy

∆t
∼ −2Ω

∆z

∆t
(8)

∆vy

∆z
∼ −2Ω (9)

This explains why vy decreases with a slope of -2Ω∗ inwards
for deep efficient convection. However, for shallow convection, we
find that vy is roughly constant, so that

∆vy

∆z
∼ 0 (10)

The change in slope signals the transition from shallow ineffi-
cient convection (granulation) to deep efficient convection. Without
the SAL, the vy would have a constant -2Ω∗ variation with depth
throughout the domain.

The analysis in section 3.2.1 showed that the eddy size is
weakly dependent on rotation in the shallow layers. It is restricted
by the granulation. This is why for shallow convection, lz is similar
for rotating and non-rotating convection. However, in the deeper
layers lz is significantly reduced by rotation. In the deep layers fluid
parcels are not controlled by the upflow/downflows associated with
the SAL, they are free to feel the full effect of rotation. The lower
panel of Fig. 9 shows the mean vertical velocity as a function of
depth. When the mean vertical velocity is high, the zonal velocity
is constant. When the mean vertical velocity is small (below LnP =
13), the zonal velocity decreases inwards with a slope of -2 Ω∗.

MNRAS 000, 1–9 (2020)
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Figure 5. Snapshots of the upper part of a vertical cross-section of temper-
ature field for Ω∗

= 0 (upper panel), 0.064 (middle panel) and 0.128 (lower
panel). These are taken from models A, B and E. Dashed lines shows the
T = Teff surface across each slice, and depth is measured with respect to the
meanTeff surface. The principle effect of rotation is to reduce the penetration
depth of the plumes.

3.4 Discussion

Why don’t the fluid parcels in the shallow layers appear to conserve
angular momentum as they move radially inwards or outwards? The
Coriolis force acts throughout the fluid, but in the shallow regions
its effect on the vertically moving fluid parcels is much weaker than
it is in the deeper layers. The shallow layers, which are occupied
by the granules, move more like a rigid body with little variation
with depth. This type of ‘rigid-body rotation’ was suggested by
Foukal & Jokipii (1975), as a feature of the near-surface shear layer
in the Sun. They estimated that neither the drag produced by vis-
cosity nor the drag from magnetic flux tubes, were large enough
to fix the rotation velocity in the upper layers/photosphere, and
that some other mechanism was responsible. In the recent simu-
lations of the near surface shear layer by Matilsky et al. (2019),
they describe ‘rotationally unconstrained’ fluid as being associated

Figure 6. Vertical eddy size, lz , versus LnP for models A, B and C. Cori-
olis force does not appear to affect the near-surface eddy sizes, while the
centrifugal force reduces the eddy size at all depths. The effect of rotation
is more pronounced in the deeper regions of efficient convection.

Figure 7. Mass mixing length (l = lm , long dashes) and eddy size (l = lz ,
solid) divided by local pressure scale height. Rotation has a large effect on
eddy sizes (especially in the deeper layers), but no effect on mass mixing
length.

with fast down-flowing plumes. In our simulations, these ‘rotation-
ally unconstrained’ fluid parcels are at the depths occupied by the
strongest upflow and downflows.

4 SUMMARY AND CONCLUSIONS

Rotation is typically ignored in simulations of granulation in the
outer layers of stars. This is a reasonable assumption, provided the
star does not spin too fast. If it does, then rotation weakens the
turbulent vigor, which lowers the superadiabatic layer. In addition,
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Figure 8. Flux of kinetic energy per unit mass for models A, B, C, D and
E. The updrafts and downdrafts are represented by solid and dashed lines,
respectively

even though rotation is the same throughout the box, its effect is
much weaker in the shallow layers compared to the deeper layers.
To conserve angular momentum, the angular velocity of the parcel
should increase as it moves radially inwards towards the rotation
axis (or equivalently to the bottom of the f -plane box). However, in
our simulations we find that the angular velocity is approximately
constant over the first 2 scale heights below layer (SAL) and then
linearly increases inwards. Fluid parcels moving towards the rotation
axis do not increase their angular velocity until they are below the
SAL. We attribute this restriction on angular velocity to the strong
vertical motions associated with the SAL. It appears that the short-
scale faster overturning motions in the SAL are too quick to be
significantly affected by the Coriolis force.

One way to test this hypothesis, is to compare the timescales
of fluid parcels in the shallow and deep layers, to the rotation period
of the box. A rough estimate for the timescale of an eddy is τeddy =

lz/vz , where lz is the eddy size and vz is the mean vertical velocity.
Taking values for model B directly from Fig. 6 and the lower panel
of Fig. 9, we find that in the shallow region, lz ∼ 2000 km and vz ∼ 1
km/s, implying τeddy ∼ 30 minutes, which is 24 times smaller than
the 12 hour rotation period. In the deep layers, lz ∼ 3000km and
vz ∼ 0.1 km/s, implying a timescale of about 8 hours, much closer
to the rotation period of the box. These estimates, though crude,
support the hypothesis that the external rotation rate of the box will
impact fluid parcels in the deeper layers much more than parcels just
below the surface of the star. This can also be expressed in terms
of a non-dimensional flow parameter called the Coriolis number
(or inverse Rossby number), Co =Ωτeddy. Rotational effects are less
prominent in the surface layers because Co is much smaller there.
The variation of vy with Co for a much larger range of Co values,
is described in Chan (2003)

Results that may be of interest to stellar modellers, are the effect
of rotation on the SAL, the turbulent pressure and the invariance
of the mass mixing length to rotation. The impact of rotation on
convection near the top of the star could affect the macro and micro
turbulence parameters computed from 3D simulations (Steffen et al.
2009), and particularly in hot stars, such as F stars with ultra thin

Figure 9. Non-dimensional vy (Upper panel) and vz (lower panel) versus
depth.

convection zones, the change in macroturbulence could impact the
interpretation of stellar spectra (Saar & Osten 1997). These results
are also relevant to convection in the outer layers of young active
stars which rotate much more rapidly (Brown et al. 2008).

The results described in this paper apply to realistic surface
convection at the equator. We have not yet examined different lati-
tudes nor examined the effect of a spherical shell geometry — since
the f -plane box has periodic boundary conditions, it is unable to
produce a realistic meridional circulation. However, out aim was to
study the effect of rotation on convection, and not large scale flows,
and our results show that there are measurable effects which can
impact stellar structure,
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5 APPENDIX: COMPRESSIBILITY

As the time step in the numerical schemes is limited by the time
for a sound wave to cross between two grid points (known as the
C.F.L. condition), to reach a steady state, requires a huge number of
timesteps. To ease this restriction, many of the global models use
“sound proof” equations such as the Boussinesq (Spiegel & Veronis
1960) or anelastic (Gough 1969) approximations, in modelling so-
lar differential rotation (Miesch et al. 2006; Featherstone & Miesch
2015). By comparing the momentum equation for the Boussinesq,
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anelastic and fully compressible models, one can see how baroclin-
icity is modelled in each system. Excluding rotation and viscosity
(to simplify the analysis), the momentum equation can be written
as

ρ
Dv

Dt
= −∇p′ − gρ′ek (11)

where p′ and ρ′ are the perturbation pressure and density (i.e. the
hydrostatic part has been removed), and the material derivative is

D

Dt
=

∂

∂t
+ (v · ∇). (12)

Depending on the particular choice of ρ in the inertia term one
obtains,

(i) the incompressible Boussinesq model: ρ = ρo : constant
reference state

(ii) the anelastic model: ρ = ρo(r) : spherically symmetric ref-
erence state

(iii) the fully compressible model: ρ = ρ(r, θ, φ, t) : full baro-
clinicity

For the anelastic approximation

∇ ×
∇p′

ρo(r)
= (0, ωθ

∗, ωφ
∗) (13)

where ωi∗ is related to vorticity production. In the anelastic model
there is zero contribution to radial vorticity production from the
pressure gradient term. It is unclear whether solar differential ro-
tation is being driven primarily from above or below the convec-
tion zone. If it is being driven by surface cooling, as suggested by
Cossette & Rast (2016) and Käpylä et al. (2017), then it might re-
quire a fully compressible model to reproduce features such as the
near surface shear layer.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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