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ABSTRACT 

 

Existing research has demonstrated that forest management practices (e.g., 
clear-cutting, planting) can dramatically impact animal communities. This is 
particularly the case with amphibian populations due to their sensitivity to 
microhabitat alterations. However, few studies have investigated the manner 
by which forest management practices impact the abiotic variables most 
relevant to healthy amphibian populations. In this study we investigated how 
spatially localized forest management practices (i.e., at the scale of hundreds of 
meters) alter the microhabitat variables that have been shown important to 
amphibian population distributions. We assessed the relationship between 
forest composition and microhabitat abiotic variables across three localities 
with differing management histories in Lumpkin County, Georgia. Site A 
consisted solely of systematically distributed planted pines, Site B was 
composed of planted pine and mixed hardwoods, and Site C contained only 
mixed hardwoods. To quantitatively assess these differences in forest 
composition, we conducted a point-centered quarter tree survey at each locality 
and measured ambient temperature, soil temperature, air humidity, light 
intensity, and soil pH daily over a 60-day period. Our results indicate that soil 
moisture and pH differ across these localities. These data suggest that even at 
highly resolved spatial scales, forest management practices can dramatically 
impact the suitability of microhabitats for amphibian populations. This 
localized impact should be considered more broadly, but especially in regions 
with particularly dense amphibian populations. 
 
Keywords: forest management, forest composition microhabitat, abiotic 
variables 

 
INTRODUCTION 

 

Research focused on amphibian population dynamics in response to forest management 
practices has largely concentrated on short- and long-term changes in taxonomic 
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diversity and abundance (deMaynadier and Hunter 1995; Loehle et al. 2005; Wolf et al. 
2016). Amphibian population level changes in relation to habitat alterations have been 
linked to dominant tree species and stand age (Loehle et al. 2005), as well as degree of 
amphibian detectability (Wolf et al. 2016).  

Other studies have focused on the underlying mechanisms of these broad scale 
patterns. It has been demonstrated that the alteration of tree composition within a forest 
can negatively impact amphibian populations through loss of habitat or canopy cover 
and/or changes in leaf litter composition, soil chemistry, and forest floor dynamics 
(Anderson and Johnson 2018; Bondi et al. 2016; Connette and Semslitsch 2015; Homyack 
and Haas 2009; Morneault et al. 2004; Reichenbach and Sattler 2007; Riedel et al. 2007; 
Rota et al. 2017; Semlitsch et al. 2009; Waldick et al. 1999). Otto et al. (2013) found that 
the proportion of downed woody materials in timber harvest systems is positively 
correlated with amphibian counts. Yavitt and Williams (2015) assessed the effect of tree 
species on soil conditions (particularly microbial activity) and found 1) evergreen leaves 
decay at much slower rates than those from deciduous trees, and 2) soil associated with 
gymnosperms produces almost twice the quantity of methane than do soils dominated by 
angiosperms. Finally, Wyman and Jancola (1992) found that amphibian density and 
diversity was lower in more acidic habitats with some amphibian species actively avoiding 
low pH environments. This interplay of all of these factors creates a framework for 
amphibian microhabitats and can thereby influence their spatial distribution (de 
Maynadier and Hunter 1995; Mourneault et al. 2004).  

The southern Appalachian Mountains represent a biodiversity hotpot for amphibian 
populations, with 76 species of salamanders, frogs, and toads (Bishop and Haas 2009). 
These temperate mountain environments provide a heterogeneous landscape and 
subtropical microclimates, which together create an ideal setting for the success of many 
amphibian species (McLeod 2017; Richmond et al. 2009). Miller et al. (2018) identified 
an important connection between abiotic variables and amphibian distribution, and 
suggested that future studies need to be focused at the scale that amphibians encounter 
in their environment. Therefore, highly resolved environmental data collected from 
across dynamic ecosystems could be the key to understanding the factors that most 
directly contribute to amphibian population vulnerability.  In this study, we attempted to 
better understand spatial and temporal variation in abiotic conditions across three sites 
in Lumpkin County, Georgia, with varying levels of historical disturbance. More 
specifically, we: 1) quantitatively assessed variability in soil moisture, soil pH, soil 
temperature, air temperature and humidity across sites, and (2) explored the relationship 
between these abiotic variables and the composition of the localized tree community 
within each study site. 
 

 
MATERIALS & METHODS 

 

We collected data daily in three localities at Lumpkin County, Georgia for a seven-week 
period beginning on 14 May 2018 and ending on 28 June 2018. Sites A and B are located 
in the Hurricane Creek Research Property (HCRP) owned by the University of North 
Georgia (Figure 1). Hurricane Creek, a tributary of the Etowah River, flows through the 
center of this property. The HCRP has undergone historical logging and clear-cutting 
practices and was subsequently replanted with Pinus taeda (loblolly pine) approximately 
80 years prior to the study. Site A is approximately 50 m from Hurricane Creek and from 
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Figure 1. Geographical setting of this study; A) Location of sampling sites in Lumpkin County, Georgia, 
southeast United States; B) Tree species identification and density. 
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Site B, which is in the riparian zone of the creek approximately 10 m from the bank. Site 
A is at the center of the clear-cut area at HCRP and is therefore the most 
anthropogenically-disturbed site in this study. Given its proximity to Site A, we 
considered Site B as moderately disturbed. Site C is approximately 400 m from the 
location of Sites A and B, situated 30 m from the Etowah River and is a mixed hardwood 
riparian forest with few pine trees and lacks a history of forest management alteration. 
Importantly, Site C is completely isolated from the previously logged location (Site A and 
B), making it the least disturbed of the three study sites. 

We implemented a point-centered quarter method tree survey modified from Mitchell 
(2015) to investigate differences in forest composition patterns at Sites A, B, and C. First, 
we located a center point for each site and traversed five randomly generated distances 
(up to 25 m) along a north-south transect away from this center point. We divided each 
sampling point along the transect into 4 quarters and recorded and measured the nearest 
tree in each quarter. Measurements included distance to the tree, species identification, 
and diameter at breast height (DBH; approximately 130 cm from ground level). We 
required a minimum circumference of 12.5 cm DBH for inclusion in the survey. This 
method used an importance value index (IVI) of each tree species in each sampling area. 
The IVI is a summative measure that describes the importance of a particular species to 
the overall forest composition based upon: (1) the number of individuals of that species 
seen divided by the total number of trees observed (relative density), (2) the density of 
each species in relation to the average area taken up by that species (relative dominance), 
and (3) the number of times each species is sampled in relation to other observed species 
(relative frequency). 

We measured five abiotic variables at Sites A, B, and C daily throughout the sampling 
period. Variables measured include ambient temperature, percent humidity, soil 
temperature, soil pH, and soil moisture levels (on a 1–8 scale). Ambient temperature and 
percent humidity were measured using a Springfield vertical thermometer and 
hygrometer (Taylor Precision Products) installed at each of the three sampling sites. We 
used a series of electronic probes at a depth of 10 cm to gather the remaining 
measurements. The probes used include General Tools MMD4E Moisture Meter (General 
Tools and Instruments LLC) for measuring soil moisture, Simply Silver Rapitest 1835 
Luster Leaf Digital 3–way Soil Analyzer (Luster Leaf Products) for measuring soil pH and 
soil temperature, and a Yoyomax Soil Test Meter (Yoyomax Inc) for measuring soil 
moisture. 

Forest composition analyses were completed in Microsoft Excel. All analyses of abiotic 
variables at Sites A, B and C were completed in R (version 3.1.1) using a one-way analysis 
of variance (ANOVA), and Tukey Honest Significant Differences (HSD) analyses. 
Differences in abiotic variables were considered significant at the P < 0.05 level. It should 
be noted that reference to significance in the following sections refers to statistical 
significance. 
 

RESULTS 
 

Vegetation survey data indicated a spectrum of tree composition at Sites A, B, and C 
ranging from loblolly pine dominant to mixed hardwood dominant (Table I, Figure 1). 
Site A consisted primarily of loblolly pines, Site B was dominated by mixed hardwood 
trees and loblolly pines, and Site C was composed primarily of mixed hardwoods (Table 
I). In site A, loblolly pine density had an IVI of 234.56, with the second highest being 
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Table I. Point-quarter importance value index (IVI) for each sampling site 

Site A Site B Site C 

Species IVI Species IVI Species IVI 

Pinus taeda (loblolly 
pine) 

234.6 
Pinus taeda 

(loblolly pine) 
129.8 

Liriodendron tulipifera 
(poplar) 

106.3 

Liriodendron 
tulipifera (poplar) 

 
38.4 

Liriodendron 
tulipifera 
(poplar) 

84.3 
Carpinus caroliniana 

(musclewood) 
58.9 

Betula nigra (river 
birch) 

 
9.8 

Pinus echinata 
(shortleaf pine) 

32.4 
Acer rubrum (red 

maple) 
30.7 

Pinus echinata 
(shortleaf pine) 

 
8.8 

Ligustrum sinenese 
(Chinese privet) 

18.7 
Ilex opaca (American 

holly) 
27.4 

Platanus occidentalis 
(American 
sycamore) 

8.5 
Liquidambar 

styraciflua (sweet 
gum) 

12.7 
Liquidambar 

styraciflua (sweet 
gum) 

21.6 

  Carya glabra 
(pignut hickory) 

9.3 
Prunus serotina (black 

cherry) 
20.1 

  Halesia carolina 
(Carolina 
silverbell) 

6.5 
Oxydendrum arboreum 

(sourwood) 
13.4 

  Cornus florida 
(flowering 
dogwood) 

3.7 
Fraxinus americana 

(white ash) 
8.8 

    Tilia heterophylla 
(white basswood) 

6.6 

    Halesia carolina 
(Carolina silverbell) 

6.0 
 

 
 
Liriodendron tulipifera (yellow poplar) at 38.36. In site B, loblolly pine IVI was lower 
(129.8), with the yellow poplar still as the second highest IVI (84.26). In site C, yellow 
poplar and Carpinus caroliniana (musclewood) had the two highest IVI, totaling to 
106.34 and 58.94, respectively. Summary data are reported in Table II. Raw daily abiotic 
data are plotted in Figure 2. We collected soil moisture on fewer days than other variables 
due to a moisture probe malfunction. The ANOVA analysis indicated that soil pH and soil 
moisture were significantly different across the Sites A, B, and C (Table III). Tukey HSD 
post hoc results indicated significant differences in soil moisture and pH between Sites A 
and B, with soil moisture approaching significant differences between Sites A and C (p = 
0.08). Figure 3 depicts daily measurements of abiotic variables across sites A, B, and C. 
 

DISCUSSION 
 

Due to their unique ecology and physiology (cutaneous respiration), amphibian 
population dynamics provide early indications of declining environmental conditions 
(Welsh and Ollivier 1998). Generally, our results suggest that two of the variables most 
important to amphibian communities (i.e., soil moisture and soil pH) can vary 
significantly at even extremely localized spatial scales (i.e., tens of meters). 

Existing studies indicate that the introduction of pine species acidifies underlying soil 
conditions (Coile 1933; Millar 1974; Sariyildiz et al. 2005). Site A, dominated by loblolly 
pine (IVI = 234.56), had the greatest amount of historical disturbance (clear cut for timber 
harvest), and we hypothesize that the replanting of loblolly pines likely lowered soil pH. 
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Figure 2. Abiotic variables; A) Variables found to be consistent (not significantly different) across sites 
(air temperature, percent humidity, soil temperature); B) variables found to be significantly different 
(soil moisture, soil pH) across sites. 

 
 

Table II. Summary statistics for five abiotic variables across three forest sites 

 Site A Site B Site C 

 n (𝒙) ± 𝜎 range n (𝒙) ± 𝜎 range n (𝒙) ± 𝜎 range 

Air Temp 
(°C) 

37 19.9 ± 2.8 14.0–25.0 37 20.6 ± 2.8 15.0–26.0 37 20.7 ± 3.2 14.0–27.0 

Humidity 
(%) 

37 75.5 ± 5.1 54.0–81.0 37 73.7 ± 5.5 56.0–81.0 37 73.5 ± 5.8 56.0–82.0 

Soil pH 37 6.8 ± 0.3 6–7 37 6.9 ± 0.2 6.5–7.4 37 6.8 ± 0.1 6.5–7.0 

Soil 
moisture 

(1–8) 
29 3.0 ± 1.1 1.0–5.0 29 1.8 ± 1.4 0.3–4.5 29 2.4 ± 1.1 1.0–4.0 

Soil temp 
(°C) 

37 20.3 ± 1.9 16.1–23.3 37 20.6 ± 2.0 16.7–23.9 37 20.3 ± 2.2 16.7–24.4 
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Table III. Resulting p-values for ANOVA and Tukey HSD of the abiotic 
variables considered in this study. The two sites included in each t test and 
Tukey HSD are listed in row one. Significant p-values are displayed as 
bolded (A = planted pine, B = mixed hardwood, C = Etowah). 

  Tukey HSD 

Abiotic Variable ANOVA A x B A x C       B x C 

Air temperature (°C) 0.40 0.50 0.44 0.99 

Humidity (%) 0.23 0.34 0.27 0.98 

Soil pH < 0.05 < 0.05 0.30 0.46 

Soil moisture (1–8) < 0.05 < 0.05 0.08 0.20 

Soil temperature (°C) 0.80 0.80 0.99 0.87  

 
 
It is important to remember the logarithmic nature of the pH scale whereby small 
differences represent changes in orders of magnitude. While Site A did not boast 
extremely acidic soil (Table III), it was significantly less than Site B and lower than Site 
C. Given the forest composition and its segregation from the HCRP (and therefore 
forestmanagement practices), logic would suggest that Site C would have the highest pH 
(i.e., most alkaline) values of the sites considered here. This was not the case in that Site 
B had a slightly more alkaline soil when values were averaged across the period we 
sampled. Intriguingly, however, Site C had the smallest range of pH values 
(approximately half of that of Site A and B). This could imply more stability in soil pH 
values at Site C, potentially making it more habitable for amphibian species.  

Soil water content has been demonstrated to control many different biogeochemical 
processes, including regulating soil microbial activity and pH. Specifically, as soil 
moisture increases, so does microbial activity and soil pH (i.e., becomes more alkaline; 
Robinson et al. 2008; Zhang and Wienhold 2002). Our data indicate that Site A had 
highest average soil moisture value and differed significantly from Site B and nearly 
significantly from Site C. There are a number of factors that could have contributed to this 
pattern. First, as Site A was almost exclusively composed of planted pine, the forest floor 
was covered with a thick layer of pine leaf litter (thicker than the ground debris at Sites B 
or C). Existing research indicates that evergreen leaves decay at a significantly slower rate 
than deciduous plant material (Yavitt and Williams 2015). We hypothesize that the 
greater accumulation of evergreen leaf material (as a result of slower decay rates) 
impeded soil water evaporation at Site A, thereby resulting in elevated soil moisture 
values relative to Sites B and C, which had lower amounts of leaf litter and therefore likely 
had higher soil moisture evaporation rates. The elevated soil moisture values of Site A are 
also intriguing given that this locality also had the most acidic soil. It is possible that the 
increased soil moisture at Site A served to prevent more acidic pH values. During warmer 
months (and therefore greater soil moisture evaporation), it is likely that Site A is 
characterized by even more acidic pH values. 

Our preliminary investigation of the impact of differing levels of forest management 
on abiotic microhabitat variables revealed some interesting patterns that could be further 
explored in future analyses. First (and most obvious), passive and active amphibian 
sampling techniques should be employed across Sites A, B, and C to assess abundance 
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and distribution in relation to the microhabitat patterns we describe here. Second, we 
recognize that the longevity of our sampling season was somewhat limited, so we 
recommend longer studies, particularly during the summer months, be conducted to 
further evaluate the relationship between forest composition, soil characteristics, and 
salamander abundance and distribution. Finally, more robust statistical analyses and 
modeling techniques could be employed in the evaluation of variation in the abiotic 
parameters described here. 
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