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ABSTRACT 

Non-negative matrix factorization (NMF) is an established method of performing audio 

source separation. Previous studies used NMF with supplementary systems to improve 

performance, but little has been done to investigate perceptual effects of NMF parameters. The 

present study aimed to evaluate two NMF parameters for speech enhancement: the short-time 

Fourier transform (STFT) window duration and divergence cost function. Two experiments were 

conducted: the first investigated the effect of STFT window duration on target speech intelligibility 

in a sentence keyword identification task. The second experiment had participants rate residual 

noise levels present in target speech using three different cost functions: the Euclidian Distance 

(EU), the Kullback-Leibler (KL) divergence, and the Itakura-Saito (IS) divergence. It was found 

that a 92.9 ms window duration produced the highest intelligibility scores, while the IS divergence 

produced significantly lower residual noise levels than the EU and KL divergences. Additionally, 

significant positive correlations were found between subjective residual noise scores and objective 

metrics from the Blind Source Separation (BSS_Eval) and Perceptual Evaluation method for 

Audio Source Separation (PEASS) toolboxes. Results suggest longer window durations, with 

increased frequency resolution, allow more accurate distinction between sources, improving 

intelligibility scores. Additionally, the IS divergence is able to more accurately approximate high 

frequency and transient components of audio, increasing separation of speech and noise. 

Correlation results suggest that using full bandwidth stimuli could increase reliability of objective 

measures.  
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1.0 INTRODUCTION 

1.1 Purpose of the Study 

The purpose of this study was to determine if common parameters used in audio source 

separation algorithms affect the perceptual qualities of speech separated from noise. Non-negative 

Matrix Factorization (NMF) was used to perform audio source separation of speech with additive 

noise mixtures. Two experiments were conducted to examine different NMF parameters: first, the 

effect of the short-time Fourier transform (STFT) window duration on separated speech 

intelligibility was assessed. Second, the effect of the divergence cost function used on the level of 

residual noise present in separated speech was examined through both objective measurements 

and a subjective evaluation.  

 
1.2 Research Question and Hypothesis 

The research question for the first experiment was, “does the STFT window duration used for 

NMF speech enhancement affect the intelligibility of the enhanced speech?” The null hypothesis 

was, “there is no significant difference in intelligibility of speech when using different STFT 

window durations for NMF speech enhancement.” It was predicted that longer window durations 

with greater frequency resolution will improve separation and result in greater intelligibility. For 

the second experiment, the research question was, “does the divergence cost function used in 

NMF speech enhancement have a significant effect on the perceived level of residual noise?” The 

null hypothesis was, “the divergence cost function used will not cause perceptible changes in 

residual noise levels.” It was predicted that the Itakura-Saito cost function, which is commonly 

used for speech processing, will provide the most noise reduction. 
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1.3 Significance of the Study 

Results from this study will provide insight as to the perceptual effects of the STFT window 

duration and divergence cost function within source separation algorithms on the separated 

sources. Previous studies implementing NMF focused on developing supplementary systems to 

improve separation performance but failed to evaluate the effects of NMF’s internal parameters. 

Other studies have acknowledged the potential impact of using different window durations or cost 

functions from a purely objective standpoint without subjective quality evaluations. This study 

aims to reveal the influence of window duration and cost function on perceived speech 

enhancement performance and to provide clarity for parameter selection decisions in practical 

source separation applications. 
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2.0 PRIOR ART 

2.1 Algorithm Description 

Audio source separation is a method of decomposing a mixture of distinct audio sources into 

its individual components. NMF [1] has become one of the more popular algorithms for 

performing audio source separation and has been used in many applications including music 

remixing [2], noise removal [3, 4], automatic speech recognition [5, 6] and speech enhancement 

[7, 8]. Many studies have sought to improve separation performance by augmenting NMF with 

auxiliary data [9, 10] or deep neural networks [11 - 13]. However, there has been limited research 

exploring the effects of NMF’s base parameters on the perceived quality of separation.    

NMF approximates a non-negative matrix V of dimensions n x m as the product of two other 

non-negative matrices W and H where W has dimensions n x r and H has dimensions of r x m, 

such that: 

  

𝑽",$ ≈ 𝑾",'𝑯',$ 

(1) 

In audio applications, V is typically the magnitude spectrogram of an audio mixture containing 

multiple sources with n frequency bins and m time intervals. The rank r is selected such that r < 

min(n, m) to create a compressed version of V that will reveal latent structure in the mixture [1, 

14]. W contains the spectral basis functions for the individual sources within the mixture, while H 

contains the time-activation gains for each basis function. In this way, linear combinations of the 

rows of W and the columns of H can be used to extract individual sources within V. Figure 1 

illustrates the NMF approach to source separation. Here, the sources in V are two harmonic series 

which are each represented by a single basis function and corresponding time-activation gain. The 

rank r is 2 since the mixture is approximated by two pairs of basis functions and activation gains. 
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Figure 1. Visual example of NMF source separation. 

 
Figure 2 shows a block diagram of the audio source separation process using NMF. V is 

obtained by taking the magnitude of the mixture’s STFT. NMF can then be applied to generate 

W and H approximation matrices. The basis functions and activation gains for each source are 

then used to create a series of masking filters (mask) which can be used to extract each source 

from the original mixture. The phase information from the mixture is then used for the inverse 

STFT to convert the sources back into the time domain. 

 
Figure 2. Block diagram of audio source separation using NMF [15]. 



2.0 PRIOR ART 
 

 
 

11  

W and H can be computed by minimizing the divergence of their product from V. A 

divergence cost function is used to quantify the divergence. The objective of NMF then is to find 

values for W and H such that their product has minimal divergence from V, more formally:  

 

𝑚𝑖𝑛𝑾,𝑯	-.𝐷(𝑽 ∥ 𝑾𝑯) 

(2) 

where D is the cost function evaluated between V and WH. Three common cost functions 

based on the Bregman Divergence family are typically used in NMF source separation: the 

Euclidian Distance (EU), the Kullback-Leibler (KL) Divergence, and the Itakura-Saito (IS) 

Divergence [16]. These cost functions are calculated as shown: 

𝐷34(𝑉 ∥ 𝑊𝐻) = 	9(𝑉",$ −𝑊𝐻",$);	
",$

 

(3) 

𝐷<=(𝑉 ∥ 𝑊𝐻) = 	9>𝑉",$ log>
𝑉",$
𝑊𝐻",$

B − 𝑉",$ +𝑊𝐻",$B
",$

 

(4) 

𝐷DE(𝑉 ∥ 𝑊𝐻) = 	9>
𝑉",$
𝑊𝐻",$

− log>
𝑉",$
𝑊𝐻",$

B − 1B
",$

 

(5) 

 
Here, “WHn,m” represents the product of W and H indexed at n, m, and “log” is the natural 

logarithm. In all three cases, element-wise calculations are summed over all n, m to produce the 

total divergence. These cost functions can be rearranged into multiplicative update rules which 

can be applied iteratively to W and H to minimize the total divergence from V, provided that W 

and H are non-negative [17]. W and H are typically initialized with random non-negative values. 

The update rules for each cost function are shown below: 
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𝐸𝑈:								𝑊 ← 𝑊 ⋅
𝑉𝐻L

𝑊𝐻𝐻L 					,					𝐻 ← 𝐻 ⋅
𝑊L𝑉
𝑊L𝑊𝐻 

(6) 

𝐾𝐿:								𝑊 ← 𝑊 ⋅
𝑉
𝑊𝐻𝐻

L

1𝐻L 					,					𝐻 ← 𝐻 ⋅
𝑊L 𝑉

𝑊𝐻
𝑊L1  

(7) 

𝐼𝑆:								𝑊 ← 𝑊 ⋅

𝑉
(𝑊𝐻); 𝐻

L

1
𝑊𝐻𝐻

L
					,					𝐻 ← 𝐻 ⋅

𝑊L 𝑉
(𝑊𝐻);

𝑊L 1
𝑊𝐻

 

(8) 

 
Here, “1” denotes a matrix of ones with dimensions n x m, and “T” indicates matrix 

transposition. The dot operator “×” indicates element-wise multiplication. Remaining 

multiplications are computed by matrix multiplication. All division and exponential operations are 

performed elementwise. Derivations for these update rules can be found in [18]. Once W and H 

are optimized, a masking filter is applied for each source to extract them from the mixture. The 

generalized Wiener mask is commonly used and is calculated as follows: 

 

𝑀R =
𝑊R𝐻R
𝑊𝐻  

(9) 

Here, 𝑀R is the mask for source i, 𝑊R  are the basis functions for source i, and 𝐻R are the time-

activation gains for source i. Multiplication is done by matrix multiplication and division is 

performed elementwise. Each masking filter can then be applied to V  by performing elementwise 

multiplication before converting back to the time domain. 

NMF can operate under three primary conditions: unsupervised, semi-supervised and fully 

supervised. In the unsupervised case, basis functions are generated blindly based on inherent 

structure in the mixture with no constraints based on prior information about the sources. 
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Complex sources such as speech or noise require multiple basis functions to represent them [19], 

and unsupervised separation provides no way to control which basis functions correspond to a 

specific source, making separation of complex sources difficult [20]. Supervised separation, on the 

other hand, uses isolated training information to develop a set of basis functions for the sources 

within a mixture prior to separation. Fully supervised separation provides training information for 

all sources within the mixture, while semi-supervised separation provides training information for 

some but not all sources. These basis function sets can then be concatenated together to create a 

trained W  matrix for the entire mixture. The trained W is then left unchanged during the 

separation algorithm while the activation gains are updated using the multiplicative updates. Basis 

functions for any untrained sources are initialized randomly and are updated during algorithm 

convergence. Supervised training allows the number of basis functions for complex sources to be 

controlled in a way that leads to straightforward separation. 

2.2 Objective Parameters 

Considerable research has been conducted on the perceptual relevance of objective 

measurements for assessing separation performance [21 - 25]. Two predominant objective metric 

toolboxes for evaluating source separation performance are the Blind Source Separation 

Evaluation (BSS_Eval) toolbox [26] and the Perceptual Evaluation method for Audio Source 

Separation (PEASS) toolbox [21]. BSS_Eval measures performance using Signal-to-Noise Ratio 

(SNR)-based energy ratios to evaluate different types of separation quality degradation such as 

Source-to-Distortion Ratio (SDR), Source-to-Interference Ratio (SIR), Source-to-Artifacts Ratio 

(SAR), and source Image-to-Spatial distortion Ratio (ISR). PEASS uses an auditory perception 

model to generate perceptually based metrics including Overall Perceptual Score (OPS), 

Interference-related Perceptual Score (IPS), Target-related Perceptual Score, and Artifact related 

Perceptual Score (APS). Correlation tests between objective metrics and subjective ratings thus 
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far have been inconclusive. Cano, FitzGerald, and Brandenburg [22] compared objective measures 

from both BSS_Eval and PEASS toolboxes with subjective ratings of separated music signals 

using two separation algorithms. Subjective results were obtained from 4 separate Multiple 

Stimulus with Hidden Reference and Anchors (MUSHRA) tests in which participants were asked 

to rate stimuli based on overall quality, artifact distortions, interference from other sources, and 

target source distortion. It was found that none of the objective metrics in either toolbox provided 

significant correlations with subjective scores. Additionally, a majority of the objective metrics had 

mild correlations. Ward, Wierstof, Mason, Grais, and Plumbley [24] conducted a similar study, 

comparing subjective results obtained from two separate MUSHRA tests against BSS_Eval and 

PEASS metrics. Stimuli were created from 23 different separation algorithms. Participants were 

asked to rate stimuli based on sound quality relating to the presence of artifacts and distortions, 

and on the interference relating to loudness of non-target instruments. APS was found to have 

strongest correlation with sound-quality while SIR had the strongest correlation for interference. 

The remaining metrics, however, exhibited a wide range of correlation. These inconsistencies 

indicate that current objective metrics do not sufficiently predict subjective separation 

performance and are therefore insufficient in determining perceptual separation quality. 

2.3 STFT Window Duration and Cost Function  

While research has been limited, previous studies have hinted at the STFT window durations 

effect on NMF performance. Smaragdis [14] found that increasing the STFT window duration 

from 8 ms to 64 ms using a sampling rate of 16 kHz can improve objective separation performance 

by up to 2.5dB, with a slight dip in performance above 64 ms. However, metrics used to evaluate 

performance are not standard in source separation literature and therefore do not compare directly 

to similar studies. Miller, Tarr, and Bulla [27] found that altering the STFT window duration used 

in NMF source separation produced significant detectable differences in a speech enhancement 
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task using an ABX methodology. Window durations examined were 11.6 ms, 23.2 ms, 46.4 ms, 

and 92.9 ms at a sampling rate of 44.1 kHz. Shorter window durations were found to contain high 

levels of audible digital artifacts, while longer durations caused smearing of high frequency 

content. Further studies aimed to find ideal window duration lengths for optimal speech 

intelligibility and quality in speech synthesis applications [28, 29]. Ideal window durations were 

found between 15-64 ms at a sampling rate of 16 kHz, although these studies only used the 

magnitude component with random phase information for speech synthesis. These studies suggest 

that window duration may affect the intelligibility of separated speech when using NMF. 

An objective analysis of NMF parameters including cost function was conducted in [30] to 

determine optimal parameters for separation of two simultaneous talkers. Sixteen combinations 

of overlapping male and female speech were tested. Bregman Divergence cost functions were 

evaluated using BSS_Eval metrics averaged over all talker combinations. It was found that the IS 

divergence had the best performance, although a subjective evaluation was not performed to verify 

results. Févotte, Bertin, and Durrieu [31] compared EU, KL, and IS divergences for pitch 

estimation of a short piano excerpt. IS basis functions were found to more accurately represent 

the pitches of individual notes, transient events, and piano pedal releases. It was also noted that 

the IS divergence is the most computationally expensive cost function. This simple application 

was intended to observe how basis functions evolve with different cost functions and shed light 

onto practical differences between them. However, the piano excerpt used had no interfering 

sources and the effect of cost function in a source separation application was not confirmed. 

Masking filters based on the KL and IS cost functions were proposed in [32] as an alternative to 

the generalized Wiener filter mask typically used. These filters were applied to three different 

source separation algorithms based on NMF. All algorithms were iteratively updated using both 

KL and IS cost functions and sources were separated using the KL, IS, and Wiener masks. PEASS 
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metrics revealed that none of the masks were able to outperform the others across all test 

conditions, though the proposed masks did increase performance in some cases. These unclear 

results are further obscured by the fact that none of the existing evaluation metrics are formally 

related to the cost function [33].  

2.4 Basis Functions 

Another important parameter in NMF audio source separation is the number of basis 

functions used to define each source. Previous studies have indicated that having too few basis 

functions results in poor approximation and generalization of sources, while too many basis 

vectors can lead to overfitting [30]. Smaragdis [14] observed a tradeoff between separation 

performance and number of basis functions in a multiple talker separation task. More basis 

functions led to higher suppression of undesired signals while fewer basis functions produced a 

decrease in residual noise. It was also noted that anywhere from 100-500 basis functions will 

provide a good estimate for speech signals. Mohammed and Tashev [34] conducted an empirical 

study analyzing basis functions in the range of 10 to 2,000. Using the Perceptual Evaluation of 

Speech Quality (PESQ) methodology to evaluate separation performance, it was found that more 

basis functions produced higher quality speech approximations with decreased variance. However, 

these values were taken by representing clean speech signals using NMF dictionaries, and not from 

speech separated from a noisy mixture. Furthermore, in order to maintain a compressed version 

of V as described in Section 2.1, the number of basis functions is restricted by the number of time 

frames and frequency bins in the spectrogram representation. In cases of signals with short 

duration or spectrograms created with short STFT window durations, 2,000 or more basis 

functions may not be practical. 
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2.5 Use of Full Bandwidth Stimuli 

Speech enhancement studies typically employ stimuli sampled at 20 kHz or less [3, 14, 30, 35, 

36], rejecting the upper octave of the audible frequency spectrum. Not only do these lower 

sampling rates reduce the amount of time-frequency data needed to approximate, but they also 

restrict subjective audio quality by band limiting the signal. Monson, Hunter, Lotto, and Story [37] 

presented a comprehensive review of studies investigating the effects of high frequency energy 

(HFE) on speech quality and intelligibility. These studies suggest that the inclusion of HFE 

between 8 and 22 kHz can improve both quality and intelligibility of speech, and that subjective 

evaluations of speech separation algorithms should use full bandwidth stimuli. Additionally, one 

of the few studies to find significant correlation between objective measures and subjective results 

used stimuli sampled at 44.1 kHz [25], which raises a question if full bandwidth audio increases 

the reliability of objective metrics to predict subjective results. 



 18 
 

3.0 METHODS 

Two experiments were conducted to determine the effects of NMF algorithm parameters on 

perceptual performance of source separation. Experiment 1 examined the effects of STFT 

window duration on speech intelligibility. Experiment 2 investigated how the cost function used 

affected the perceived level of residual noise after NMF speech enhancement. The following 

section describes the methodology for these experiments, including the participants, stimuli, 

procedures and experimental design. 

3.1 Experiment 1 – Effect of STFT Window Duration on Speech Intelligibility 

3.1.1 Participants 

Eleven graduate audio engineering students participated in this study (eight male and three 

female). Participants previously received critical listening training for at least one semester, and all 

had self-reported normal hearing. All participants were native English speakers. 

3.1.2 Stimuli  

Test stimuli for this experiment consisted of speech extracted from a mixture of speech and 

additive noise using NMF [19] with different STFT window durations. Window durations used 

were 11.6 ms, 23.2 ms, 46.4 ms, and 92.9 ms (corresponding to 512, 1024, 2048, and 4096 samples 

at a 44.1 kHz sampling rate respectively). Two noise sources were examined: speech shaped noise 

(SSN) generated using talkers from an Institute of Electrical and Electronic Engineers (IEEE) 

speech corpus [38] and a conversation “babble” from the Connected Speech Test (CST) [39]. 

MATLAB code used to generate SSN can be found in Appendix A. A total of 80 unique sentences 

(none which were used to generate SSN) randomly selected from the same IEEE speech corpus 

[38] spoken by four American-English talkers (two male talkers and two female talkers) were 

included in the test set. All sentences contained five keywords. Forty of these sentences used male 

talkers while the other 40 sentences used female talkers. Twenty sentences were used for each 
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individual talker. For each talker, 10 of the sentences were mixed with SSN at a SNRRMS of -6dB, 

and the remaining 10 were mixed with babble noise at the same SNR. Mixtures were then 

normalized to digital full scale. For each talker/noise source pairing, eight of the 10 sentences were 

processed by NMF using one of the window durations under test. Each window duration was 

used on two of the processed sentences in each group, such that each talker/noise source pairing 

had two sentences processed using a window duration of 11.6 ms, two using 23.2 ms, two using 

46.4 ms, and two using 92.9 ms. The remaining two sentences in each talker/noise source pairing 

were left unprocessed in order to establish a baseline intelligibility level to compare each window 

duration against. In total, across all talker and noise source pairings, there were 16 sentences for 

each window duration, as well as 16 unprocessed sentences.  

Ten additional unique sentences for training were included at the beginning of each test 

session. The training set included a combination of male and female speech mixed with SSN and 

babble equivalently to the test set described above. Two training sentences were processed with 

NMF using each of the test window durations while the remaining two training sentences were 

left unprocessed.  

Additional NMF parameters used included fully supervised training, which most closely 

resembles the current state of the art in audio source separation [40]. The training used 30 

sentences from both talkers of the target gender – none of which were included in the test or 

training stimuli set – to train a set of basis functions for the target speech. Fifteen sentences from 

each talker of the same gender as the target speech were used for training. The associated noise 

source from each sentence (SSN or babble) was also used to train a set of basis functions for the 

noise in each mixture. The trained speech and noise basis functions were then concatenated 

together to form the trained W matrix used during NMF. Two hundred basis functions in total 

were used, 100 for the speech and 100 for the noise. The number of basis functions was chosen 
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to provide sufficient speech quality with relatively low computational cost. An IS cost function, 

which is known in the speech community for good perceptual properties [31], was used to perform 

iterative updates, and 100 update iterations were performed to create the time-activation 

approximation H. STFT representations were created using 50% overlapping time frames and a 

Hann window filter. All speech and noise files were 16-bit/44.1 kHz resolution. 

3.1.3 Experimental Design 

Tests were conducted via a MacBook Pro laptop computer running a MATLAB version 9.7 

[41] graphical user interface (GUI) and Shure SRH840 professional quality headphones in an 

acoustically controlled environment. A screenshot of the test GUI is shown in Figure 3. For each 

trial, participants listened to a noisy sentence and entered the sentence to the best of their ability 

in the “Response” text box. The independent variables for this experiment were the window 

duration used in NMF separation, the noise source (SSN or babble), and the different talkers and 

their gender (male or female). The dependent variable was the percent of correctly identified 

keywords in each sentence by the participant.  

 

Figure 3. Experiment 1 Test GUI used during experiment. 
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3.1.4 Procedure 

The experiment began with participants listening to a sample mixture of noisy speech in order 

to adjust their headphone sound level; once the participant set a headphone level, they were not 

allowed to change it during the experiment. The sample mixture was not included in the training 

or test stimuli set. Once they were satisfied with their headphone level, the experiment began. For 

each trial, a two-second pause occurred before a single automated playback of the test stimulus. 

Participants then typed the sentence they thought they heard into the text box on the GUI before 

proceeding to the next trial. Each trial used a unique sentence that only occurred once during the 

experiment to prevent participants from “learning” the sentences. The first 10 trials consisted of 

the training stimuli described above; the inclusion of training stimuli was unknown to the 

participants. Training was included to allow participants the opportunity to get acclimated with 

the test procedure and prevent erroneous errors caused by participants not being ready at the 

beginning of the experiment. A total of 80 test trials were conducted, each trial using one of 

sentences from the test set described above. Including the training, each participant completed 90 

trials with a minimum 1-minute break after every 30 trials. The experiment recommenced after 

each break once the participant was ready to proceed by pressing a “Proceed” button. Testing was 

completed over 1 test session which lasted approximately 30 minutes.  

3.2 Experiment 2 – Effect of Cost Function on Residual Noise Level 

3.2.1 Participants 

Participants included the 11 subjects from Experiment 1 plus an additional three participants 

(three female). While both experiments were evaluating NMF audio source separation, they 

employed unrelated psychophysical tests and were considered separate stand-alone experiments 

where no learning effect was expected between the two tests. All 14 participants were trained in 
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the same manner. However, no post-hoc tests were conducted to confirm consistency between 

the original participant group and the three new participants. 

3.2.2 Stimuli 

Stimuli for this experiment were created by processing speech with additive noise through 

NMF using different cost functions. Two different talkers from an IEEE speech corpus [38] (one 

male and one female) were mixed with two noise sources (SSN and babble) at an SNRRMS level of 

0 dB and then normalized to digital full scale for a total of four mixtures. Sentences used in this 

experiment did not appear in the stimuli set from Experiment 1. SSN and babble noise were the 

same as described in Section 3.1.2. Each mixture was then processed through NMF using three 

different cost functions – EU, KL, and IS – for a total of 12 test stimuli. Fully supervised training 

as described in Section 3.1.2 was implemented. One thousand basis functions in total were used, 

500 for the speech and 500 for the noise. Since this experiment used a small number of stimuli 

compared to Experiment 1, computational cost was not as much of a concern and therefore a 

greater number of basis functions were used to provide suitable speech quality. Additional NMF 

parameters consisted of a window duration of 46.4 ms, 50% overlapping frames with a Hann 

window filter, and 100 update iterations. All speech and noise files were 16-bit/44.1 kHz 

resolution. A webpage link to the stimuli used for this experiment can be found in Appendix B. 

3.2.3 Experimental Design 

Tests were conducted in two phases: a training phase and an evaluation phase. A screenshot 

of the training GUI is shown in Figure 4 and the evaluation GUI is shown in Figure 5. Tests were 

conducted via a MacBook Pro laptop computer running a MATLAB version 9.7 GUI [41] and 

Shure SRH840 professional quality headphones in an acoustically controlled environment. The 

independent variables for this experiment were the cost function used in NMF (EU, KL, or IS), 

the noise source (SSN or babble), and the gender of the talker (male or female). The dependent 
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variable was the subjective residual noise score assigned to the processed test stimuli on each trial. 

Participants completed one testing session which lasted approximately 10 minutes.  

 
Figure 4. Experiment 2 training phase GUI. 

 
Figure 5. Experiment 2 evaluation phase GUI. 



3.0 METHODS 
 

 
 

24  

3.2.4 Procedures 

The training phase aimed to familiarize participants with the stimuli in the experiment, the 

required task, and the test GUI. Training began by presenting participants with all of the test 

stimuli as well as their reference mixtures. Participants were allowed to play the stimuli as many 

times as they wanted to learn differences in the residual noise levels between stimuli and their 

references. When pressed, each playback button displayed a label at the top of the GUI indicating 

if that stimulus had “Low Residual Noise” or “High Residual Noise”. These labels provided 

participants with general guidelines of what constituted residual noise and established what they 

should be listening for during the evaluation.  It was emphasized to the participants that these 

were relative benchmarks used only to assist in understanding what constitutes residual noise, 

which was defined as “the interfering noise present in a speech signal after noise removal has been 

applied”. Once the participant was satisfied, four sample trials were conducted under the guidance 

and supervision of the researcher. These sample trials ensured that the participant understood the 

purpose and functionality of the test. Any questions or misunderstandings by the participant were 

addressed by the researcher before proceeding to the evaluation phase.  

The evaluation phase was based on the ITU-R BS.1116-3 standard subjective evaluation 

procedure [42]. For each trial, participants were presented with 3 stimuli labeled “A”, “B”, and 

“C”. “A” was always the reference mixture while “B” and “C” were randomly a hidden reference 

and one of the test stimuli. Participants were asked to rate the level of residual noise in “B” and 

“C” relative to “A” based on the values shown in Table 1. Participants correctly identified the 

hidden reference by scoring it 1.0 (Reference Level Noise). The test stimuli were scored based on 

the perceived level of residual noise present, with higher scores corresponding to lower levels of 

perceived residual noise. Degradations to speech quality or intelligibility that may occur during 
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NMF processing were not to be considered when rating test stimuli. A total of 24 double-blind 

trials were conducted, with each test stimulus presented twice.  

Table 1. Scale for residual noise level grading from ITU-R BS.1116-3 [42] 

Residual Noise Present Score 
No Residual Noise 5.0 
Some Residual Noise 4.0 
Moderate Residual Noise  3.0 
Considerable Residual Noise  2.0 
Reference Level Noise  1.0 

 
 

3.2.5 Objective Measurements 

Additionally, BSS_Eval and PEASS measurements were taken to objectively measure quality 

of target speech. In particular, the SIR from BSS_Eval and the IPS from PEASS were taken, since 

these particular metrics are associated with the level of interfering sources present in the extracted 

target signal. Since the task of this experiment involved participants rating the level of residual 

noise (interference) in speech (target signal), the interference-related SIR and IPS metrics most 

closely relate to the subjective results. SDR and OPS metrics were also included as an overall 

performance comparison with other source separation literature. SDR and OPS are associated 

with the overall quality of the extracted target signal and are commonly used in literature such as 

[21] and [30] to indicate general separation performance.
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4.0 RESULTS 

4.1 Experiment 1 

Figure 6 shows a histogram of the data distribution from Experiment 1. It can be seen that 

the data does not conform to a normal distribution. Consequently, non-parametric Friedman 

Analysis of Variance (ANOVA) and Wilcoxon signed-rank test were used to analyze the data from 

Experiment 1.  

 
Figure 6. Histogram of Experiment 1 data. 

 

Window duration was found to have a significant effect on the percent of correctly identified 

keywords, referred to herein as “intelligibility score” (c2(4,700) = 74.0, p < .001, hp
2 = .11). Figure 

7 shows a comparison of mean intelligibility scores for the window durations evaluated. The 

intelligibility scores were significantly higher with longer window durations when using a 
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Bonferroni-adjusted alpha level of .005 (.05 / 10) due to multiple comparisons (unprocessed 

speech vs. 46.4 ms (Z = 3.63, p < .001, r = .10); unprocessed speech vs. 92.9 ms  (Z = 5.77, p < 

.001, r = .06); 11.6 ms vs. 46.4 ms (Z = 4.38, p < .001, r = .08); 11.6 ms vs. 92.9 ms (Z = 5.73, p < 

.001, r = .08);  23.2 ms vs. 92.9 ms (Z = 4.48, p < .001, r = .09)). Differences between unprocessed 

speech and 11.6 ms (Z = 0.46, p = .646, r =.13), unprocessed speech and 23.2 ms (Z = 1.14, p = 

.255, r = .117), 11.6 ms and 23.2 ms (Z = 1.73, p = .084, r = .11), 23.2 ms and 46.4 ms (Z = 2.60, 

p = .009, r = .10) and 46.4 ms and 92.9 ms (Z = 2.23, p = .026, r = .13) were not significant. 

 

Figure 7. Effect of window duration on intelligibility scores. 

 

Analyses were also performed to investigate the effects of the noise source on intelligibility 

scores. The type of interfering noise (SSN or babble) was found to have a significant effect on 

intelligibility scores (c2(1,439) = 90.1, p < .001, hp
2 = .20). Figure 8 shows a comparison of mean 

intelligibility scores between noise sources across window durations. SSN mixtures showed steady 
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improvement in intelligibility scores as window durations increased, while intelligibility scores of 

babble mixtures remained relatively consistent for shorter window durations with substantial 

increases for longer window durations. Babble sentences also had a higher intelligibility scores 

than SSN sentences across all window durations.  

 
Figure 8. Effect of window duration and noise source on intelligibility scores.  

 

Talker type also had a significant effect on intelligibility scores (c2(3,657) = 83.19, p < .001, 

hp
2 = .13). Figure 9 shows mean intelligibility scores of different talkers used in the experiment. 

Here, it can be seen that male talkers had significantly lower intelligibility scores than female talkers 

when using a Bonferroni-adjusted alpha level of .0083 (.05 / 6) due to multiple comparisons (Male 

1 vs. Female 1 (Z = 6.10, p < .0083, r = .13); Male 1 vs. Female 2 (Z = 7.80, p < .0083, r = .11); 

Male 2 vs. Female 1 (Z = 4.57, p < .0083, r = .20); Male 2 vs. Female 2 (Z = 7.21, p < .0083, r = 
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.11). Differences between Female 1 and Female 2 were not significant (Z = 2.15, p = .031, r = 

.28). Male 1 scored the lowest mean intelligibility and Female 2 had the highest. 

 
Figure 9. Effect of talker on intelligibility scores. 

 

Figure 10 shows talker intelligibility scores across window duration. Male 1 was the most 

difficult to understand in the unprocessed case but achieved comparable intelligibility scores to 

other talkers with window durations above 23.2 ms. Female 2 had the highest intelligibility for all 

window durations except 11.6 ms, while Female 1 did not appear to have a clear relationship 

between window duration and intelligibility.  

 



4.0 RESULTS 
 

 
 

30  

 
Figure 10. Effect of window duration and talker on intelligibility scores. 

 

4.2 Experiment 2 

Since this experiment used repeated trials, there was some inherent variability in participant 

responses. To account for any unreliable participants whose responses had higher than average 

variability amongst all participants, the difference in subjective residual noise score between 

repeated trials was calculated for all participants over all 12 test stimuli. Mean and standard 

deviations were then calculated for all participant differences across each of the 12 test stimuli. A 

given participant’s responses were deemed to have high variability if the difference between their 

scores for a given stimulus was greater than two standard deviations of the differences for that 

stimulus. It was found that two participants (P10 and P13) had high variability in their responses 

for 50% or more of the test stimuli, while the remaining participants had high variability on 33% 

or less of the test stimuli. Therefore, the results from participants P10 and P13 were deemed 
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unreliable and their data were excluded from the following data analysis. Table 2 summarizes 

differences between individual participant results. Differences with high variability as defined 

above are denoted with an underscore, while participants P10 and P13 are highlighted in bold.  

 

Table 2. Difference in scores between repeated trials for all participants (columns) and test 
conditions (rows). 

Stimulus P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 
1 0.8 0.6 0.2 0.0 0.3 0.1 0.1 0.4 0.9 0.4 1.8 0.1 1.3 0.3 
2 0.3 1.0 0.5 0.1 0.6 1.3 0.4 0.7 0.1 1.2 0.3 0.4 0.9 0.5 
3 0.7 0.1 0.3 0.0 0.6 0.5 0.5 0.5 0.1 0.2 0.5 0.3 1.7 0.3 
4 0.8 0.3 0.3 0.9 0.5 1.2 1.0 0.1 1.3 0.9 0.4 0.5 0.8 0.4 
5 0.3 0.0 0.9 0.0 0.2 0.0 0.4 0.1 0.0 2.1 0.0 0.0 0.2 0.3 
6 1.2 0.2 0.4 0.0 0.6 0.1 0.4 0.1 0.2 0.8 0.4 0.9 0.1 0.6 
7 0.2 0.5 0.2 1.9 0.2 0.5 0.3 0.7 0.7 0.6 0.6 0.0 0.3 0.9 
8 0.4 0.0 0.9 0.1 0.4 0.9 0.9 0.5 0.9 0.3 0.7 0.6 2.6 0.1 
9 0.3 1.4 0.3 0.0 0.0 0.5 1.0 0.3 0.2 0.7 0.1 0.9 0.7 0.8 
10 0.3 0.9 0.0 0.0 0.1 0.6 0.9 1.0 0.1 1.1 0.4 0.4 0.8 0.2 
11 0.2 0.2 1.2 0.0 0.4 0.9 0.0 0.6 0.7 0.0 0.1 0.0 1.2 0.5 
12 0.9 0.1 1.6 1.0 0.7 0.5 1.1 0.6 0.8 1.3 0.1 0.0 1.1 0.6 
 

 

Figure 11 shows a histogram of the data distribution from Experiment 2. It can be seen that 

the data generally follows a normal distribution. Therefore, parametric ANOVA and t-tests were 

used to analyze the data. 
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Figure 11. Histogram of Experiment 2 data. 

 

Cost function had a significant effect on residual noise scores (F(2,1) = 24.9, p < .001, hp
2 = 

.15). Figure 12 shows mean residual noise scores for different cost functions used in the 

experiment. Here, it can be seen that the IS divergence had significantly higher residual noise 

scores than the EU or KL divergences when using a Bonferroni-adjusted alpha of .017 (.05 / 3) 

due to multiple comparisons (IS vs. EU (t(95) = 7.08, p < .017, d = .78); IS vs. KL(t(95) = 6.35, p 

< .017, d = .71)). Differences between EU and KL were not significant (t(95) = 0.87, p = .386, d 

= .08).  
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Figure 12. Effect of cost function on subjective residual noise score. 

 

The type of interfering noise also had a significant effect on subjective residual noise scores 

(F(2,1) = 100.3, p < .001, hp
2 = .26). Figure 13 shows residual noise scores of noise type across 

divergence cost functions. Here, we can see that babble noise mixtures were given higher residual 

noise scores for all cost functions, with the interaction effect between cost function and noise 

source not significant (F(2,1) = 2.57, p = .078, hp
2 = .02). 
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Figure 13. Effect of cost function and noise source on subjective residual noise score. 

 

The effect of talker gender on residual noise scores was not significant (F(2,1) = 2.90, p = 

.090, hp
2 = .01). Figure 14 shows talker residual noise scores across cost functions. Here, we can 

see that there is a significant interaction effect between cost function and talker (F(2,1) = 6.86, p 

< .05, hp
2 = .05). Residual noise scores were higher for the Female talker using the EU and KL 

divergences, but the Male talker had higher residual noise scores when using the IS divergence. 
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Figure 14. Effect of cost function and talker gender on subjective residual noise score. 

 

Analyses were also performed to examine the interaction of cost function, talker, and noise 

source. The interaction effect of noise and talker was significant (F(2,1) = 1.79, p = .042, hp
2 = 

.02), while the cost function, talker, noise interaction effect was not significant (F(2,1) = 1.79, p = 

.169, hp
2 = .01). Figure 15 shows the residual noise scores of each talker-noise source pair across 

cost functions. For all cost functions, the SSN mixtures have the lowest residual noise scores while 

Male SSN mixtures have the lowest scores for EU and KL divergences. The residual noise scores 

for Male SSN with the IS divergence appear to be comparable to both babble noise mixtures using 

an IS divergence. 
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Figure 15. Effect of cost function, talker, and noise source on subjective residual noise score. 

 

Objective measures from the BSS_Eval and PEASS toolboxes were additionally computed for 

the stimuli in this experiment. Table 3 lists the objective and subjective scores of all test stimuli 

used in the experiment. For all objective metrics, higher values indicate better performance. The 

highest values for each objective metric are indicated in bold. Mean subjective residual noise 

scores were included to perform correlation analysis between subjective and objective results. 
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Table 3. Comparison of BSS_Eval, PEASS, and mean Subjective scores for all stimuli 

Stimuli 
BSS_Eval PEASS Subjective 

Residual Noise 
Scores SDR (dB) SIR (dB) OPS (%) IPS (%) 

Male SSN EU 2.8 3.8 26 25 2.35 
Male SSN IS 6.0 8.2 30 43 3.50 
Male SSN KL 3.1 3.9 25 23 2.27 
Male BAB EU 3.6 13.0 24 89 2.90 
Male BAB IS 3.4 16.2 24 89 3.83 
Male BAB KL 5.0 14.8 23 88 3.34 
Female SSN EU 3.4 2.4 8 12 2.57 
Female SSN IS 3.8 3.1 30 25 2.95 
Female SSN KL 3.3 2.5 8 10 2.59 
Female BAB EU 5.1 15.5 22 88 3.69 
Female BAB IS 5.3 16.7 21 86 3.77 
Female BAB KL 5.4 15.5 15 87 3.57 

 
 

Pearson correlations were performed between the subjective scores and the interference-

related objective metrics SIR and IPS, as well as overall quality metrics SDR and OPS. Significant 

strong correlations were found between subjective scores and SIR (r(10) = .86, p < .001), between 

subjective scores and IPS (r(10) = .80, p < .005), and between subjective scores and SDR (r(10) = 

.75, p = .005). Correlation between subjective scores and OPS were mild and not significant (r(10) 

= .18, p = .570). Figure 16, Figure 17Figure 18, andFigure 19 show scatter plots and best fit 

correlation lines for subjective residual noise scores vs. SIR, IPS, SDR, and OPS metrics 

respectively. The SIR, IPS, and SDR metrics all had strong correlations with the subjective residual 

noise scores suggesting that these metrics were effective in predicting perceived quality based on 

objective scores. The OPS metric, however, had only a mild correlation with subjective residual 

noise scores and was not as effective at predicting perceived quality scores. 
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Figure 16. Scatter plot of subjective residual noise scores vs. SIR metrics. 

 
Figure 17. Scatter plot of subjective residual noise scores vs. IPS metrics. 
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Figure 18. Scatter plot of subjective residual noise scores vs. SDR metrics.  

 

Figure 19. Scatter plot of subjective residual noise scores vs. OPS metrics. 
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5.0 DISCUSSION 

5.1 Experiment 1 

This experiment is a continuation of a previous study on the effect of STFT window duration 

on NMF performance [27]. The objective of the present study was to determine if the STFT 

window duration used in NMF speech enhancement had any effect on intelligibility of enhanced 

speech. Based on the preceding analysis, the null hypothesis can be rejected since the window 

duration was found to have a significant effect on intelligibility scores. Additionally, it was found 

that both noise source and the sentence talker had significant effects on intelligibility.  

The STFT window duration was found to have a significant effect on mean intelligibility 

scores. Figure 7 reveals a general trend that as window duration increased so did the intelligibility 

scores. The STFT is known for a rigid trade off in time-frequency resolution, and the increased 

frequency resolution of longer window durations allows more precise spectral basis functions 

leading to improved separation and intelligibility scores. Shorter window durations also suffer 

from the presence of audible digital artifacts [27], resulting in a slight decrease of intelligibility 

scores from unprocessed speech when using a window duration of 11.6 ms. The observed trend 

raises the question: “if window durations continued to increase, would intelligibility scores likewise 

increase?” Longer window durations reduce temporal resolution and would likely begin to hinder 

intelligibility scores by smearing HFE often found in speech consonants. Paliwal and Alsteris [43] 

also noted that window durations longer than approximately 100 ms, when relying solely on 

magnitude information, lead to a reduction in intelligibility. The reduction in temporal precision 

with longer window durations suggests that eventually the window duration will reach a point 

where the intelligibility scores begins to decrease. The effect of window durations larger than 92.9 

ms on intelligibility could be a topic of future research. 
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The type of interfering noise was also found to have a significant effect on intelligibility scores, 

with sentences in babble noise having significantly higher intelligibility scores than SSN. NMF is 

able to achieve improved separation performance when sources have minimal overlap in the time-

frequency domain [14, 30]. For this experiment, SSN was generated using talkers from the same 

speech corpus used to create the test stimuli. Consequently, the spectrum of SSN more closely 

resembles the target speech than the babble noise does. The stationary characteristics of SSN also 

provide consistent masking effects, whereas the babble noise time-frequency characteristics are 

more variant with fewer masking effects, resulting in better intelligibility scores of target speech in 

the presence of babble noise even in the unprocessed case. Figure 20 shows spectrograms of the 

babble noise and SSN. It can be seen that the SSN has constant high energy up to 10 kHz, while 

babble noise has notable dips in amplitude between 2.5-10 kHz. 

 

Figure 20. Spectrogram of SSN (left) and babble noise (right). 
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Finally, it was determined that sentences with female talkers had significantly higher mean 

intelligibility scores than those with male talkers. Extensive research has been conducted on 

intelligibility differences between male and female speech, with Bradlow, Toretta, and Pisoni [44] 

similarly finding that female speech is more intelligible than male speech. One possible reason 

could be differences in the fundamental frequency and fundamental frequency range of male and 

female speech, with female talkers typically having higher fundamental frequencies [44, 45]. 

However, it has been shown that these attributes have little correlation with listener intelligibility 

[46, 47]. The higher fundamental frequencies of female speech also produce higher harmonic 

frequencies. When looking at the noise spectrograms in Figure 20, most of the energy resides in 

the low frequencies, suggesting that harmonics in female speech may suffer fewer masking effects 

than in male speech, which could contribute to higher intelligibility scores. However, since the 

original mixtures were normalized to digital full scale prior to NMF processing, the RMS amplitude 

of each mixture varied slightly. The variation in RMS amplitudes may have had an inadvertent 

impact on the degree that masking effects impacted intelligibility scores.  

Figure 10 reveals that female talkers produced relatively high intelligibility scores for window 

durations below 23.2 ms while male talkers had relatively low intelligibility scores for these shorter 

window durations. One explanation could be that the reduced temporal resolution of longer 

window durations causes smearing of speech high frequency harmonics, which are useful in 

maintaining intelligibility of consonants particularly for female speech [48]. With shorter window 

durations, the increased temporal resolution preserves these high frequency harmonics which 

could contribute to the increased intelligibility scores of female talkers, even in the presence of 

audible digital artifacts. Figure 10 also reveals that each talker had peak mean intelligibility scores 

at different window durations, for example Female 1 intelligibility scores were highest at 11.6 ms 

while Female 2 intelligibility scores were highest at 46.4 ms. The variation in best window duration 
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for each talker could suggest that different optimum window durations exist for different talkers. 

These differences in optimum window duration could also be attributed to inherent variations in 

the stimuli used for the present study. Further research is needed to understand the interaction 

effect of different talkers and window duration on intelligibility of extracted speech. 

5.2 Experiment 2 

The objective of this experiment was to determine if the divergence cost function used to 

approximate audio sources in NMF had an effect on the level of residual noise in the target speech. 

Based on the preceding analysis, the null hypothesis for this experiment can be rejected since the 

cost function was found to have a significant effect on subjective residual noise levels. The type 

of interfering noise was also found to have a significant effect on subjective residual noise levels, 

while talker gender did not have a significant effect.   

Three divergence cost functions were considered in the present experiment: the Euclidian 

Distance (EU), the Kullback-Leibler (KL) divergence, and the Itakura-Saito (IS) divergence. The 

IS divergence was found to provide the lowest residual noise levels amongst the three cost 

functions. While all cost functions investigated belong to the Bregman divergence family and share 

similar characteristics, the IS divergence is the only one that exhibits the property of scale 

invariance [31]. Scale Invariance indicates that both small and large amplitude time-frequency bins 

of the mixture V contribute equally to the total cost as calculated in Equation 5. Specifically, a 

poor approximation for low-amplitude bins will cost the same as a poor approximation for high-

amplitude bins. Deviations between the input mixture and approximation for low-amplitude time-

frequency bins are then optimized more effectively during algorithm convergence, resulting in 

greater precision of low-amplitude input components in the approximation. The EU and KL 

divergences do not exhibit scale invariance, and therefore poor approximations of high-amplitude 

bins are more heavily weighted in the cost calculations from Equations 3 and 4 than low-amplitude 
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bins.  In audio signals, the amplitude of harmonic frequencies in complex signals decrease 

exponentially as frequency increases [31, 49]. The IS divergence optimizes approximations of these 

high frequency components more than the EU or KL divergences, resulting in more effective 

separation and therefore lower residual noise levels. 

One trade off of the scale invariance property is the production of audible digital artifacts. 

Since the IS divergence equally penalizes all differences between V and WH, there is greater 

separation of speech and noise, and therefore a larger portion of noise is removed. However, 

speech and noise are both broadband signals with substantial overlap of time-frequency energy, 

which means that not all of the noise can be separated from target speech. The removal of 

additional noise means that there are more discontinuities in the time-frequency domain for the 

residual noise, which result in audible digital artifacts in the form of musical noise, introducing a 

distorted robotic effect in the extracted speech. The introduction of audible digital artifacts is not 

as prevalent when using the EU or KL divergence, however there is more residual noise present 

as the results of this experiment have shown. 

Another difference between cost functions is their convexity properties. Both EU and KL 

divergences have been shown to be convex with respect to either W or H, while the IS divergence 

does not have guaranteed convexity [50]. The IS divergence is then more prone to local minima 

and therefore not converging to the best approximation. From Figure 15, we see that the Male 

SSN, Male babble, and Female babble sentences with the IS divergence were able to achieve high 

mean subjective residual noise scores. For Female SSN, however, the IS divergence had similar 

mean residual noise levels as EU and KL, suggesting that it was unable to converge to the best 

approximation. The lack of a guaranteed global minima with respect to W or H implies that the 

IS divergence is prone to variability in separation performance. 
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The type of interfering noise was found to have a significant effect on residual noise levels, 

with babble mixtures having lower residual noise levels than SSN mixtures. As discussed in Section 

5.1, babble noise had fewer masking effects than SSN, allowing easier separation of target speech 

and interfering noise. Since there was not a significant interaction effect between noise and cost 

function, improved separation was achieved for babble mixtures compared to SSN mixtures for 

all three cost functions.  

Talker gender was found to not have a significant effect on residual noise, but the interaction 

of gender and cost function was significant. Figure 14 reveals fairly consistent subjective residual 

noise scores for the Female talker across all three cost functions, with IS having an improvement 

of only 0.23 over EU and 0.28 over KL. However, the effect of cost function on the Male talker 

is more substantial, with the IS divergence improving subjective residual noise scores by 1.04 over 

EU and 0.87 over KL. Févotte et. al. [31] showed that the IS divergence is able to more accurately 

represent transients and low amplitude time-frequency bins of the mixture which occur primarily 

at high frequencies. In the Female speech-noise mixtures, the high frequency harmonics and 

transients of the target speech are not masked as heavily and therefore all three divergence 

functions are able to minimize deviations between the mixture and trained speech basis functions, 

providing similar residual noise levels. Since the IS divergence is better at minimizing these 

deviations, the slight improvement in noise reduction compared to the EU and KL divergences is 

logical. With male speech mixtures, however, speech high frequencies and transients are more 

heavily masked by the noise and differences between the mixture and trained speech basis 

functions are larger. The EU and KL divergences do not penalize these high frequency differences 

as much, and therefore are unable to separate high frequency speech and noise as effectively as 

the IS divergence. The ability of the IS divergence to effectively separate the low-amplitude high-

frequency components in speech leads to the large improvement in subjective residual noise scores 
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observed for male speech using the IS divergence as observed in Figure 14. However, as discussed 

in Section 5.1, the variation of mixture RMS amplitudes prior to NMF processing due to full scale 

normalization may have had an inadvertent impact on the degree to which masking effects 

impacted residual noise scores. 

Finally, a correlation analysis was performed between the SIR, SDR, IPS, and OPS objective 

metrics and the subjective residual noise scores. Significant strong positive correlations were found 

for SIR, SDR and IPS, indicating that for this experiment these metrics were good predictors of 

subjective scores. OPS only had a mild correlation which was not significant. As detailed in Section 

2.2, source separation literature has provided mixed results on the validity of these metrics as tools 

to evaluate subjective separation performance. It was noted in Section 2.5 that significant 

correlations were found between objective metrics and subjective scores by Kornycky et. al. [25] 

when high-quality, full-bandwidth audio sampled at 44.1 kHz was used. The current study similarly 

used sampling rates of 44.1 kHz resulting in significant strong correlations between objective 

metrics and subjective scores. While OPS did not result in strong correlation with subjective 

scores, the current study asked listeners to rate stimuli based on the level of interfering noise 

present in target speech. OPS is intended to quantify overall quality of separated sources, and as 

discussed above the IS divergence is able to remove more noise but also introduces audible digital 

artifacts that can degrade overall quality. The fact that subjective scores in the current study were 

not based directly on overall quality of separated speech could explain why correlations were only 

mild. The strong significant correlations of the interference-related metrics SIR and IPS are a 

promising outcome suggesting that high quality audio may be necessary to improve the reliability 

of objective measures, however more research is needed to confirm the interaction of audio 

sampling rate with the correlation of subjective and objective metrics for source separation.  
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6.0 CONCLUSIONS 

The goal of this study was to determine the perceptual effects of the STFT window duration 

and cost function used in NMF audio source separation. It was found that the STFT window 

duration had a significant effect on the mean intelligibility score of speech separated from noise. 

Additionally, it was found that the cost function had a significant effect on the perceived level of 

residual noise in separated speech. The results of the present study provide evidence to the 

importance of these parameters on source separation performance and suggest that researchers 

and engineers must use care when selecting parameters for a specific source separation task. The 

findings of this study can be used to improve the perceptual performance of robust source 

separation algorithms utilizing NMF for source decomposition. These findings may also apply to 

similar source separation techniques that utilize time-frequency signal representations and 

approximations generated from divergence cost functions. Furthermore, it was observed that 

common source separation objective parameters had significant positive correlation with 

subjective residual noise scores in Experiment 2 when full bandwidth audio sampled at 44.1 kHz 

was used. This suggests that, when using high quality audio stimuli, objective metrics could be 

more accurate in predicting subjective performance than when using audio at lower sampling rates. 

Further research should be conducted to verify the relationship between audio sampling rate and 

the correlation of objective metrics to subjective ratings.  
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APPENDICES 

Appendix A – Speech Shaped Noise 

MATLAB Code used to generate Speech Shaped Noise can be found at the following link: 

https://www.mathworks.com/matlabcentral/fileexchange/55701-speech-spectrum-shaped-

noise 

SSN was generated using 2 sentences from each talker in the IEEE speech corpus used for 

Experiment 1 and Experiment 2 [38]. The same SSN was used for both experiments. None of the 

sentences used to create SSN were used in any of the training or test sets implemented in either 

of the experiments from the present study. 

Appendix B – Experiment 2 MATLAB Code and Stimuli 

MATLAB Code and Stimuli from Experiment 2 can be found at the following link: 

https://rjmiller927.github.io/research/mastersThesis.html 
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