
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2005 

Noise Estimation in the Presence of BPSK Digital Burst Noise Estimation in the Presence of BPSK Digital Burst 

Transmissions Transmissions 

Susan E. Bettison 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Applied Mathematics Commons, and the Signal Processing Commons 

Recommended Citation Recommended Citation 
Bettison, Susan E., "Noise Estimation in the Presence of BPSK Digital Burst Transmissions" (2005). 
Theses and Dissertations. 3715. 
https://scholar.afit.edu/etd/3715 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholar.afit.edu%2Fetd%2F3715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F3715&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3715?utm_source=scholar.afit.edu%2Fetd%2F3715&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOISE ESTIMATION IN THE PRESENCE OF 
BPSK DIGITAL BURST TRANSMISSIONS 

 
THESIS 

 

Susan Elizabeth Bettison, Second Lieutenant, 
USAF 

AFIT/GAM/ENC/05-03 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
 
 
 
 
 
 
 
 

   



The views expressed in this thesis are those of the author and do not re�ect the o¢ cial

policy or position of the Department of Defense or the United States Government.



AFIT/GAM/ENC/05-03

Noise Estimation in the Presence of BPSK Digital Burst Transmissions

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Ful�llment of the

Requirements for the Degree of

Master of Science in Applied Mathematics

Susan Elizabeth Bettison, B.S.

Second Lieutenant, USAF

March 2005

Approved for public release; distribution unlimited



AFIT/GAM/ENC/05-03

Noise Estimation in the Presence of BPSK Digital Burst Transmissions

Susan Elizabeth Bettison, B.S.

Second Lieutenant, USAF

Approved:

Lawrence K. Chilton (Chairman) Date

Jay E. Apisa (Member) Date

Richard K. Martin (Member) Date



AFIT/GAM/ENC/05-03

Abstract

This research explores noise estimation techniques in an attempt to improve upon a

previously developed digital burst transmission Binary Phase Shift Keyed (BPSK) demod-

ulator. The demodulator success is dependant on the accuracy of the estimate of Power

Spectral Density (PSD) of the unknown noise. Given a discrete time signal transformed

into the frequency domain, the research seeks to determine if it is possible to e¤ectively

estimate the PSD of the unknown noise. The demodulator was developed using a new sig-

nal model for digital burst transmissions based on linear spectral subspace theory. Using

this model and the redundancy properties of BPSK digital burst transmissions, �ve noise

estimation techniques will be presented and tested. The success of the methods will be

reported in two ways, �rst, the e¤ect the new noise PSD estimates have on the success of

the demodulator and second, a comparison to the actual PSD of the noise.
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Noise Estimation in the Presence of BPSK Digital Burst Transmissions

I. Introduction

Digital burst transmission signals are all around us, everyday. An example everyone

has seen is a digital cell phone. As communication techniques become increasingly secure,

exploitation di¢ culties increase. Not only do problems exist when trying to exploit non

friendly communications, but in cooperative communications. If successful, the application

of this research will be helpful in both scenarios.

1.1 Problem De�nition

A fundamental problem in all signal processing has always been the estimation of the

noise received with any transmitted signal. The more that is known about the noise, the

more e¤ective any signal processing algorithm will be. Using linear subspace theory, a new

demodulation algorithm was developed in (11). Existing signal processing techniques did

not fully apply to the digital burst transmission signal processing problem (11) thus a new

approach was needed. The linear subspace theory research resulted in a new demodulation

algorithm which outperformed all other existing demodulation techniques, for digital burst

transmissions, including Binary Phase Shift Keyed (BPSK) modulated signals (11). The

drawback of the technique is that it performs best when an a priori estimation of the noise

environment is known, and a colored noise environment increases the success even further

(11). This was the initial motivation for this research. However, to jump directly into the

colored noise problem is not feasible since colored noise environments are generally unpre-

dictable. Thus, the white noise estimation problem is a logical starting point. Although

the white noise estimation problem is unlikely to immediately improve the performance of

the demodulation technique, it provides a starting point for the colored noise estimation

problem or even adaptive noise estimation techniques.

The new demodulation algorithm provided a solution to a problem, but also presented

additional problems to be solved. The problem of note for this thesis is the estimation of

the Power Spectral Density (PSD) of the noise since the demodulation technique presented
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Figure 1.1 Diagram of BPSK Signal Model Construction

in (11) uses this form of the noise. Comprehension of the problem begins with the signal

model and the demodulation technique or �lter developed in (11). The signal model for

BPSK signals used in this thesis is:

x(t) = ARe(

Ns�1X
n=0

dn (t� nTs � �)ei(2�fct+�))| {z }
s(t) the signal

+ n(t)
the noise and interference

: (1.1)

Here, A is the signal gain; Ns is the number of symbols transmitted; dn are the transmitted

data symbols;  (t) is the pulse shape; Ts is the symbol duration; � is the time the �rst

symbol arrives or delay; � is the phase of the carrier frequency; and fc is the carrier

frequency in Hertz.

This signal model is the same model used in the development of the new demod-

ulation technique based on linear subspace theory (11). Since the original goal was to

improve this technique, this is the signal model that will be used throughout the thesis. A

received signal has two parts, the originally transmitted signal and the noise. Obviously,

the more that is known about a received signal, the easier the separation between what

was originally transmitted and the noise becomes. If all of the parameters of a received

signal are known the only unknown portions are the transmitted symbols, dn, and the

noise, n(t): Unfortunately, since noise environments can be austere, accurately estimating

these two parameters can be di¢ cult, if not impossible. Gisselquist presents a technique

for estimating the dn in (11), but n(t) remains unknown. Without a good estimate of n(t)

the estimation of the data symbols will most likely be inaccurate. Using the �lter presented

in (11) by Gisselquist, and the properties of the signal model also presented in (11), �ve

estimation techniques for n(t) are presented here. These techniques are unique because

2



they are implemented using techniques based on Gisselquist�s linear subspace approach.

Prior to Gisselquist�s research, signal processing techniques for BPSK and other Pulse Am-

plitude Modulated (PAM) digital signals was based on stationary or cyclostationary signal

processing (11). Provided the techniques presented here are su¢ ciently robust, they will

be an excellent starting point for the larger colored noise estimation problem and for the

adaptive noise estimation problem. Even if not successful, they should provide direction

for future noise estimation techniques.

1.2 Organization

This thesis begins with an in depth explanation of the signal model, the properties

used in estimating the PSD of the noise, a description of relevant existing statistical signal

processing models and �nally an overview of the demodulation technique presented by

Gisselquist. Chapter III presents the methods used to estimate the PSD of the noise based

o¤ the explanations in Chapter II, and Chapter IV explains the results when tested in

simulations. The last chapter, Chapter V draws some conclusions regarding the success of

the noise estimation techniques.

3



II. Background

This chapter presents an explanation of digital burst transmission signals, a summary of

relevant statistical signal processing models, an optimal �ltering technique for the rele-

vant statistical signal processing models, and �nally presents the minimum mean square

error �lter that suggested the need for noise estimation in the presence of digital burst

transmission signals.

The working signal model is a signal with a general modulation type of Pulse Ampli-

tude Modulation (PAM), but more speci�cally, Binary Phase Shift Keyed (BPSK) modu-

lation. The received signal in time may be represented by equation 1.1. This signal model

has many properties that existing statistical signal processing models did not adequately

exploit (11). Because of this, Gisselquist established a statistical signal processing model

for burst transmission signals and then developed a Minimum Mean Square Error (MMSE)

�lter which exploits more of the characteristics than previous �lters. This �lter produced

the best symbol recovery results to date, given the noise estimate used in the construction

of the �lter was accurate in shape and scale (11). The relevant statistical signal processing

models will be presented, then the chapter will �nish with the derivation of Gisselquist�s

MMSE �lter, presenting some results obtained using his �lter on simulated BPSK signals.

2.1 Burst Transmission Signals

Burst transmission signals have many unique properties that distinguish them from

other types of signals. The �rst and most important, is that they are not in�nite in time.

In fact they are very time limited, and more uniquely, the times when the signal is active

may or may not be of all the same duration. This section presents a basic PAM signal

model, an explanation of the subspace that describes it, the speci�cs of a BPSK signal

model that exists in this subspace, and �nally the distribution of a burst transmission

signal is derived.

2-1



2.1.1 Pulse Amplitude Modulated Signal Model. The received signal in time may

be represented by (11),

x(t) = ARe(

Ns�1X
n=0

dn (t� nTs � �)ei(2�fct+�))| {z }
s(t) the transmitted signal

+ n(t)
the noise and interference

: (2.1)

The parameters in this signal model are de�ned in Section 1.1.

In this thesis, the signal is analyzed in the frequency domain for two reasons. First,

stationary signals which are correlated in time become uncorrelated in frequency for suf-

�ciently long observation times (11, 18). Second, the unknown terms in � and � become

constant multipliers in the frequency domain, making them easier to work with. When it

comes to signal processing in the frequency domain, there are two statistics of interest that

have been studied extensively by others; these statistics are the �rst and second moments

(11). The �rst moment is the expected value, or the mean, and is assumed to be zero for

both the signal and noise terms. The second moment, or the variance, is more interesting

and is where many of the di¤erentiating characteristics of signals are found. The variance

of a signal depends on how the signal is de�ned (11). If the signal is time-limited then the

in�nite time Fourier transform X(f) of the signal x(t);

X(f) ,
Z 1

�1
x(t)e�i2�ftdt; (2.2)

converges. With a time limited signal, both the signal and noise are assumed to have zero

mean and the variance of X(f) is1 EfjX(f)j2g: If the signal is of in�nite length, the Fourier

transform will not always converge (17, 11). Because of this, an alternate method must

be used to describe the variance of an in�nite time signal. This alternate method is the

Power Spectral Density (PSD), Sx(f), and is de�ned as (17):

Sx(f) , lim
T!1

1

T
EfjXT (f)j2g (2.3)

where XT (f) is the time limited Fourier transform of x(t);

1The notation Ef�g is used throughout to refer to the expected value of its argument.
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XT (f) ,
Z T

2

�T
2

x(t)e�i2�ftdt (2.4)

Thus the PSD can be used to describe the distribution of the power in a signal, as a

function of frequency (11). Additionally, a nice property of uncorrelated signals is that the

PSD of the received signal Sx(f) is the sum of the PSD of the transmitted signal, Ss(f),

and the PSD of the noise, Sn(f)(11, 23):

Sx(f) = Ss(f) + Sn(f): (2.5)

This is very useful in both Gisselquist�s algorithm development and the methods used in

this thesis to estimate the PSD of the noise. The PSD of a burst transmission signal or

more generally a pulse amplitude modulated (PAM) signal is2 (9):

Ss(f) =
A2

4Ts
j	(f � fc)j2Efjdnj2g (2.6)

Here, 	(f) is the Fourier transform of the pulse function  (t). Ts is the symbol duration.

fc is the carrier frequency in Hertz, and dn are the transmitted data symbols. A received

PAM transmission signal with a �nite number of symbols, Ns, is described by equation

2.1.

The noise and interference term represents a random process that is assumed to be

stationary, independent of the signal, and to have a PSD de�ned as Sn(f)(11). This thesis

focuses on developing an adequate method of estimating this PSD. Each of the terms in

equation 2.1 can be understood in the context of how the signal is created. As an example,

consider the signal example in Figure 2.1, an example of three transmissions created with

the model in equation 2.1 with the noise term set to zero. The bursts are created from a

sum of pulses,  (t� nTs � �). The �gure is a sum of three bursts all of di¤erent lengths.

The pulses are separated by Ts, and scaled by a system gain, A = 1; from their original

amplitude. A time delay � ; has shifted the signal to the right, and the phase, �; and the

2The assumption that the transmitted data symbols are uncorrelated or that Efdnd�mg = 0, for n 6= m
is made throughout this thesis.
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Figure 2.1 A Sum of Three BPSK Burst Transmissions

carrier frequency fc; are both zero. Each burst is itself a sum of pulses, one pulse for each

data symbol transmitted. The �rst burst has two data symbols, the second has eight and

the third, four. Each burst is separated by a time of four seconds. This is obviously a

very elementary example but illustrates what burst transmission signals might look like.

Although this �gure has three bursts, within the scope of this thesis, we will only be

concerned with estimating the noise in one burst ignoring the time before and after, when

the signal is inactive.

2.1.2 Burst Transmission Subspace and BPSK Signal Model Speci�cs. Gisselquist

took the principles of other statistical signal processing techniques and extended them so

they would be applicable to time-limited burst transmission signals. Next we will describe

in detail Gisselquist�s development of the signal model and the associated subspace, as

it plays a major role in the development of the processing technique. Other statistical

signal processing techniques assume in�nite time length signals as in the case of stationary

signals, or that the cyclic spectral density function, also known as the Spectral Correlation

Function, de�ned in equation 2.32 is known, as in cyclostationary signals. Neither of

these apply to burst transmission signals. Burst transmissions do have correlation in the

frequency domain, however it is not usually known. Further explanation of the di¤erences
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between burst transmission signals and these other statistical signal processing models will

be explained in Section 2.2.

In deriving a new statistical model for burst transmissions, Gisselquist �rst had to

establish the subspace that burst transmission signals exist in. Consider the set of all

functions de�ned over a �nite time containing the signal. This can be seen because the

signal is a linear combination of evenly spaced pulses weighted by the dn values. The pulses

then form the basis for the subspace where the signal resides. These two sets of vectors

span the subspace that contains PAM signals (11):

�ki =  (t� kTs � �) cos(2�fct+ �), k 2 Is
�kq =  (t� kTs � �) sin(2�fct+ �), k 2 Is

(2.7)

where Is is some �nite set of consecutive integers. The problem with this subspace is

that these basis vectors depend on the unknown delay, � , and the carrier phase, �; making

them di¢ cult to use in practice (11). To continue with the development, the signal must

be transformed into the frequency domain with the Fourier transform.

Burst transmission signals are time limited and thus fall within a �nite observation

time, t 2 (�T
2 ;

T
2 ): Although here the time limited Fourier transform is identical to the

in�nite time Fourier transform, the time limited transform is required since the noise may

or may not be time-limited (11). The time-limited Fourier transform of the received signal

is then (11):

XT (f) ,
Z T

2

�T
2

x(t)e�i2�ftdt (2.8)

De�ne NT (f) to be the time-limited Fourier transform of the noise and interference thus

the Fourier transform of

x(t) = ARe(

Ns�1X
n=0

dn (t� nTs � �)ei(2�fct+�)) + n(t) (2.9)
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becomes (11):

XT (f) = NT (f) +
A
2

Ns�1P
n=0

Re(dn)
R1
�1  (t� nTs � �)[ei2�fct+i��i2�ft + e�i2�fc�i��i2�ft]dt

+iA2

Ns�1P
n=0

Im(dn)
R1
�1  (t� nTs � �)[ei2�fct+i��i2�ft + e�i2�fc�i��i2�ft]dt

(2.10)

Since the scope of our problem is BPSK signals only, we can disregard the imaginary part

since the signal is purely real in the time domain. Now letting u = t�Ts� � ; and du = dt

we have (11):

XT (f) = NT (f)+
A

2
ei�

Ns�1X
n=0

cos(2�(f�fc)�)[dn cos(2�(f�fc)nTs)]
Z 1

�1
 (u) cos(2�(f�fc)u)du:

(2.11)

Continuing with substitutions, if we let the Fourier transform of  (t) be

	(f) ,
R1
�1  (t)e�i2�ftdt and the z-transform of the data symbols be

D(z) ,
Ns�1X
n=0

dnz
�n (2.12)

the function becomes (11):

XT (f) = NT (f) +
A

2
ei�e�i2�(f�fc)�	(f � fc)D(ei2�(f�fc)Ts) (2.13)

Two redundancies can be seen here. It is important to note that these are not redundancies

in the sense that they are exactly the same, but redundant because they contain the

same information as other locations. Since the information contained is the same in each

redundancy, knowing how these locations di¤er is what allows the signal processor to

exploit the redundancies. The di¤erences between these �rst two locations come from the

fact that D(ei2�(f�fc)Ts) is periodic (11) and the second from the fact that it is conjugate

symmetric.
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To see the redundancies, let Xs(f) , XT (f)� NT (f) and ignore the noise term for

now. The �rst redundancy is found between f and f + k
Ts

where k is any integer. For

two such frequencies (11),

24 Xs(f)

Xs(f +
k
Ts
)

35 = A

2
ei�e�i2�(f�fc)�

24 	(f � fc)

e�i2�
k�
Ts	(f + k

Ts
� fc)

35D(ei2�(f�fc)Ts) (2.14)

and the Fourier Transform of the data within the signal is completely redundant. This is

caused by the fact that the signal was created by linearly modulating an impulse stream

and thus D(ei2�(f�fc)Ts) is a periodic function of f (11). This was �rst noticed by Nyquist

(16) and later exploited by Berger and Tufts in their �lter development (11, 1, 26). The

implication, presented by Nyquist, is that any bandwidth larger than 1
Ts
contains redun-

dancies (11, 1). This is commonly referred to as the Nyquist Minimum Bandwidth of a

complex signal.

The second redundancy can be seen about the carrier frequency since the BPSK

signal is purely real, so the Z-Transform of a real sequence and the Fourier transform of a

real signal are both conjugate symmetric about zero (25). From this we have (11)

24 Xs(f)

X�
s (2fc � f)

35 = A

2
ei�e�i2�(f�fc)�

24 	(f � fc)

e�i2�	�(f � fc)

35D(ei2�(f�fc)Ts) (2.15)

This redundancy was �rst noticed by Nyquist yet not exploited by Tufts (11). When

combined with equation 2.14, this equation implies that the minimum bandwidth

of an underlying communications signal having real symbols is 1
2Ts
(11, 16) since a

smaller bandwidth would not completely contain these redundancies. From these

equations 2.15 ,2.14, a subspace can be described in frequency in which the under-

lying signal must lie (11). This subspace includes a periodic redundancy and, for

real-valued signals, a redundancy about the carrier as well (11). Consider a signal

constrained to lie within a baseband of jfcj � 1
Ts
, and having symbols in the BPSK
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Figure 2.2 Positioning of Redundancies in the Frequency Domain Vector

symbol set, D= f�1g. In this case the spectral redundancies associated with the

frequency f , provided � 1
Ts
� f � 1

Ts
can be written as (11)

26666664
Xs(f)

Xs(f +
1
Ts
)

X�
s (2fc � f)

X�
s (2fc � f � 1

Ts
)

37777775 =
Aei�e�i2�(f�fc)�

2

26666664
	(f � fc)

e�i2�
�
Ts	(f + 1

Ts
� fc)

e�i2�	�(f � fc)

e�i2�e�i2�
�
Ts	�(f + 1

Ts
� fc)

37777775D(e
i2�(f�fc)Ts)

(2.16)

It is easier to see with fc = 0; � = 0; and � = 0:

26666664
Xs(f)

Xs(f +
1
Ts
)

X�
s (�f)

X�
s (�f � 1

Ts
)

37777775 =
A

2

26666664
	(f)

	(f + 1
Ts
)

	�(f)

	�(f + 1
Ts
)

37777775D(e
i2�fTs) (2.17)

It is important to remember that the Xs(f) refers to the portion of the received signal due

to signal alone (11). The actual received signal includes corresponding noise terms and we

will use these redundancies of the received signal to estimate the received noise.

2.1.2.1 Compact Representation. While these equations describe redun-

dancies associated with one particular frequency, many frequency components are needed

to describe a signal of interest. Gisselquist states that it is readily proved that a complete

basis for the subspace of the signal requires a minimum of Ns elements for a real signal
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and not just the single vectors describing an arbitrary frequency f presented above (11).

The transition between a set of frequencies, instead of just one, is examined here. The

transition to vector notation is also explained.

In order to represent the whole frequency bandwidth containing the signal, we need

to sample the Fourier Transform of the signal across its bandwidth (11). If we let Nf be

the minimum number of samples required to span the Nyquist minimum bandwidth of

the signal, then for a real signal, i.e. D(ei2�(f�fc)Ts) when the dn are real, then Nf = Ns
2

samples are required. From the redundancy equations presented in the previous section,

every value of D(ei2�(f�fc)Ts) directly determines the signal component of m frequencies,

where m is determined by the bandwidth of the signal and the redundancy equations (11).

For the BPSK redundancy given in equation 2.16, m = 4; frequency samples are required

for each D(ei2�(f�fc)Ts) sample (11). This means that 4Nf complex frequency samples

are su¢ cient to describe the received signal across its entire frequency band (11). This is

equivalent to describing four copies of the signal�s Nyquist minimum bandwidth (11).

As for which 4Nf frequencies need to be chosen, the simplest option is just to uni-

formly sample all of the frequencies (11). These 4Nf frequencies are equally spaced and cen-

tered about the carrier frequency fc. Figure 2.2 shows where the redundancies occur within

the vector. The �rst of the Nf frequencies shall be denoted fc � 1
Ts
< f1; f2; f3; :::; fNf <

fc� 1
2Ts

and starts at the left in Figure 2.2. The remaining 3Nf frequencies are linear com-

binations of the �rst Nf frequencies. Let XT (f) be the Fourier transform of the received
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signal as in equation 2.13. The vector of these x , would look something like

x =

266666666666666666666666664

X(f1)
...

X(fNf )

X(fNf +
1
Ts
)

...

X(f1 +
1
Ts
)

X�(2fc � f1)
...
...

X�(2fc � f1 � 1
Ts
)

377777777777777777777777775

(2.18)

The second half of the signal is conjugated, this is due to the baseband redundancy given in

equation 2.15. The noise vector is de�ned identically, with the exception that it corresponds

to the noise and interference terms without the transmitted signal (11). Thus, both the

noise and signal vectors are of dimension 4Nf � 1 (11).

The data portion of the signal D(z) is organized into a similar vector d, with dimen-

sion Nf � 1 as follows (11):

d ,

26666664
D(ei2�(f1�fc)Ts)

D(ei2�(f2�fc)Ts)
...

D(e
i2�(fNf�fc)Ts)

37777775 : (2.19)

This data vector is shaped by a pulse weight matrix formed from the 	(fi � fc) terms in

the redundancy equations (11). This shaping matrix shall be referred to as 	, which is
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4Nf �Nf and is constructed as follows (11):

	 =

2666666666666666666666666666666666666666666664

	(f1 � fc) 0 � � � 0

0 	(f2 � fc) � � � 0
...

...
. . .

...

0 0 � � � 	(fNf � fc)

	(f1 +
1
Ts
� fc) 0 � � � 0

0 	(f2 +
1
Ts
� fc) � � � 0

...
...

. . .
...

0 0 � � � 	(fNf +
1
Ts
� fc)

	�(fc � f1) 0 � � � 0

0 	�(fc � f2) � � � 0
...

...
. . .

...

0 0 � � � 	�(fc � fNf )

	�(fc � f1 � 1
Ts
) 0 � � � 0

0 	�(fc � f2 � 1
Ts
) � � � 0

...
...

. . .
...

0 0 � � � 	�(fc � fNf � 1
Ts
)

3777777777777777777777777777777777777777777775

(2.20)

The contributions of � and � are grouped into a unitary and diagonal matrix R�, where �

refer to these complex phase values (11). R� is 4Nf � 4Nf and contains all of the complex

exponentials in the subspace equations and is a diagonal matrix as follows (11):

R� =

26666664
R11� 0 � � � 0

0 R22� � � � 0

0 � � � R33� 0

0 � � � � � � R44�

37777775 (2.21)
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where R11� =

26664
e�i2�(f1�fc)� 0 0

0
. . . 0

0 0 e
�i2�(fNf�fc)�

37775,

R22� =

26664
e�i2�(f1�fc)�e�i2�

�
Ts 0 0

0
. . . 0

0 0 e
�i2�(fNf�fc)�e�i2�

�
Ts

37775,

R33� =

26664
e�i2�e�i2�(f1�fc)� 0 0

0
. . . 0

0 0 e�i2�e
�i2�(fNf�fc)�

37775,

and R44� =

26664
e�i2�e�i2�(f1�fc)�e�i2�

�
Ts 0 0

...
. . .

...

0 0 e�i2�e
�i2�(fNf�fc)�e�i2�

�
Ts

37775 :
These exponentials depend on � and �, values which must be determined in order to

specify R�, but the utility of R� is that even without knowing these values the property

that3 Ry�R� = I exists, is quite useful and plays a role in Gisselquist�s algorithm (11).

Now we are only left with the amplitude scaling factor, A2 : Putting all these vectors and

matrices together the discrete Fourier transform of the received signal in vector form may

be expressed as (11):

x=
A

2
R�	d+n (2.22)

The dimensions of these terms are:

x : 4Nf � 1,

n : 4Nf � 1;

d : Nf � 1;

	 : 4Nf �Nf ;

R� : 4Nf � 4Nf .

These expressions make it simpler to manipulate the underlying redundancies in the follow-

3The notation xy is used throughout to refer to the conjugate transpose of a matrix or vector.
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ing sections (11). It should be stressed that R� is not fully speci�ed and so any algorithm

that uses this model must make assumptions or estimate the values of � and �.

2.1.3 The Distribution of a Burst Transmission Signal, x(t). In equation 2.22

there are three unknown quantities, n, �; and d: Proper statistical analysis will depend

on knowing whether each of these quantities is random or deterministic and if random,

what the distribution is (11). The goal of this research is to determine a way to estimate

PSD of the noise term. Gisselquist completed his estimate of x assuming the noise was

multi-variate Gaussian with zero mean and approximately diagonal covariance matrix Rn

(11),

(Rn)jj , E

8<:
�����
Z T

2

�T
2

n(t)e�i2�ftdt

�����
2
9=; � TSn(f): (2.23)

The approximation in equation 2.23 introduces a bias into Rn that comes from the noise

and is signi�cant when Sn(f) changes rapidly (11) in frequency. In his statistical model

he assumed this matrix was known. He assumed that T was large enough so that the bias

was negligible. This is where this research plays a role, in estimating this noise matrix

Rn: There is a constraint on the unknown parameter �; it is unknown, but must be a

deterministic parameter because if � were to be treated as random, x(t) would become a

stationary process and it is not because Ns is �nite. The remaining unknown quantity, d,

is usually determined by the modulation type. Prior to the z-transform, the probability

distribution of fdng is usually well speci�ed by the modulation type of interest, in this case

BPSK (11). In this scheme dn is chosen from a �nite set of elements, precisely f�1g: These

dns may be entirely independent, or they may have some known correlation (11) caused

by a repeating pattern within each burst transmission. They may be biased or uniformly

distributed (11). The correlation in this data sequence can be expressed spectrally as (11):

Sd(e
i2�f ) , lim

Ns!1

1

Ns
E

8<:
�����
Ns�1X
n=0

dne
�i2�Tsfn

�����
2
9=; (2.24)

Many communications systems transmit uncorrelated symbols leaving this value constant

(11). Either way, the probability distribution of fdng is known from the modulation
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parameters (11). The probability distribution of D(ei2�(f�fc)Ts), the z-transform of fdng,

is not so obvious (11). Since D(ei2�(f�fc)Ts) is constructed from a sum of random numbers,

it may actually be Gaussian for a large enough number of symbols, Ns, by the Central

Limit Theorem. If D(ei2�(f�fc)Ts) is truly Gaussian, all that is required to specify its

distribution is its mean, 0, for most modulation types of interest, and its variance, Rd = NsI

for statistically independent values of dn having unit magnitude (11). If the dn are not

statistically independent, an approximately diagonal matrix with elements

(Rd)jj � NsSd(e
i2�(fj�fc)Ts) (2.25)

may be used instead (11). Gisselquist introduces and proves the following theorem to

demonstrate that the Central Limit Theorem does apply as Ns !1, and identi�es when

the assumption that d is Gaussian is valid.

Theorem 1 Consider a message composed of Ns symbols dn, where dn is drawn randomly

from some �nite set of symbols, D, each having �nite energy. Assume also that the dn

have zero mean. Then the discrete time Fourier transform of the data, examined from any

angle, �, and any radian frequency, ! = 2�(f � fc)Ts;

Refei�D(ei!)g , Refei�
Ns�1X
n=0

dne
�i!ng, (2.26)

is asymptotically Gaussian as Ns ! 1 as long as E
n
Re
�
dne

i�e�i!n
	2o

> 0 for each n

(11).

In the case of BPSK transmissions the theorem applies everywhere except when � =

�
2 . The exception results in a discontinuity in the probability distribution of D(e

i2�(f�fc)Ts)

as Ns !1 (11). For this one exception, the probability distribution of D(ei2�(f�fc)Ts) will

be approximated as Gaussian and the discontinuity will be treated as if it were non-existent

(11). The approximation at this exception point does introduce bias, but it is minimal

enough not to cause concern, and so the approximation will be applied throughout this

thesis.

2-14



Putting all of these probability distributions together, and given that we are approx-

imating d as Gaussian, with variance Rd and mean 0, the probability density function of

a received BPSK signal can be written as4 (11):

f(x; d) = ( 12� )
4Nf+Nf

2 det jRnj�
1
2 det jRdj�

1
2

�ef� 1
2
(x�A

2
R�	d)yR

�1
n (x�A

2
R�	d)� 1

2
dyR�1d dg

(2.27)

When x is known or measured, this probability density function is referred to as the

likelihood function (11, 3). For �nite-time signals, all the statistics of interest are contained

within the second moment, for any particular observation length T , the second moment is

(11):

Ex;dfxxyg = Ed
n�

A
2R�	d

� �
A
2R�	d

�yo
+ En

�
nny
	

= A2

4 R�	Rd	
yRy� +Rn

(2.28)

Normalizing these components by the observation length T = NsTs, and assuming uncor-

related symbols, Rd = NsI; as explained in Section 2.1.3 (11),

1

T
Efxxyg = A2

4Ts
R�	Rd	

yRy� +
1

T
Rn (2.29)

produces the second moment. Since the signal contribution does not increase as time goes

to 1; taking the limit as T !1 is a trivial matter (11). Looking at the terms after such

a limit, the PSD of the transmitted signal is (11):

Ss(f) =
A2

4Ts
j	(f � fc)j2 : (2.30)

This is part of the PSD of the received signal:

Sx(f) = Ss(f) + Sn(f) (2.31)

The relevance of these subspace formulas is that the subspace in which the signal of

interest resides is smaller than the subspace typically used (11, 28, 15). Because of this, for

4A complete derivation of this probability density function can be found in Appendix A.
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knownR�, 	, andRn a projection operator can be created, P =R�	(	yR�1n 	)
�1	yRy�R

�1
n ,

which will project the received waveform onto the signal�s subspace (11, 20). Likewise, an

alternate projection operator, I�P, will project the received waveform onto a noise only

subspace (11). Gisselquist showed that a �lter for symbol estimation similar to this projec-

tion operator achieved the minimum mean square error (11), and will be derived in Section

2.5.

The next section will explore the relevant statistical signal processing models that

Gisselquist used in the development of his burst transmission signal statistical model,

optimal �ltering techniques and then goes on to describe the single sensor minimum mean

square error �lter that Gisselquist developed for symbol estimation.

2.2 Existing Signal Processing Methods

Convention in signal processing is to classify a signal of interest depending on not

just the characteristics of the signal but also by which characteristics were to be exploited.

When Gisselquist started his research burst transmission signals, he discovered that none

of the existing models adequately accounted for all of the characteristics he was interested

in exploiting (11). Thus, using the existing methodologies as a springboard, he de�ned

a new working signal model so that he could create a better processing algorithm. This

section describes the stationary and cyclostationary approaches to signal processing and

describes why neither of these approaches is adequate for burst transmission signals.

2.2.1 Stationary approach. The stationary approach to signal processing assumes

that the signal is stationary, meaning that its probability distribution function is indepen-

dent of absolute time (23). Thus only signals that are in�nite in length are truly stationary.

Research in the past has been based on signals of �nite length using the assumption that

it has a multivariate Gaussian probability distribution. So the received signals are treated

as Gaussian random vectors with elements independent in the frequency domain (13). In

this manner, the �rst two moments of the distribution are used to completely specify the

probability distribution. The �rst moment is the expected value, assumed to be zero, and

the second is speci�ed with the PSD of the signal. Thus, all the descriptive statistics
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(parameters) of the signal are contained in the power spectral density. If a PAM signal

were treated as stationary, the parameters � and � in equation 2.1 would not be of concern

since the statistics of stationary signals are independent of time and both of these para-

meters require a time reference (11). While this is a good thing, there still is the fact that

the exploitation methods associated with this model do not allow for the redundancies of

BPSK signals to be taken advantage of. So although there are bene�ts to modeling a PAM

or BPSK signal as stationary, it is not the best since much is lost when the redundancies

are ignored. Exploiting the redundancies and the fact that burst transmissions are time-

limited requires a di¤erent approach. Because of this, PAM signals cannot be truly be

modeled as stationary (22, 9).

2.2.2 Cyclostationary. Another approach is to treat the signal as cyclostationary.

A cyclostationary signal is one whose probability distribution is a periodic or polyperiodic

function of time (23). Thus a cyclostationary signal is also one which is independent of

time and so ideally is of in�nite length. Here the time reference is also important since it

determines the phase of the period that the observation lies within (11). So the phase para-

meter, � is now unknown and must be estimated for any cyclostationary signal processing

algorithm (11). In order to use any classical statistical techniques, a probability distrib-

ution is needed to describe the signal. To date, an appropriate probability distribution

function has not been found for cyclostationary signals (10). Further, it has been observed

that digital signals are in general not Gaussian and therefore cannot be treated as such,

yet Gisselquist demonstrates that it is possible, and develops an algorithm based on this

demonstration, as explained in section 2.1.3. Without a known probability distribution, the

cyclostationary signal processor is left to use only the known moments to glean applicable

properties (11).

The advantage of cyclostationary signal processing lies in the moments of the signals

(11). Cyclostationary signals have the advantageous property that particular pairs of fre-

quencies are correlated while stationary signals exhibit no such correlation (6, 7, 18). This

correlation is identi�ed by the cyclic spectral density function or the spectral correlation

function (SCF) and is expressed (7),
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S�x (f) , lim
t!1

1

T
EfX�

T (f �
�

2
)XT (f +

�

2
)g (2.32)

where � is the cycle frequency, or the separation in frequency between two correlated pairs.

It corresponds to one of the time periods found in the probability distribution function

(11). Only man-made signals have the non-zero spectral correlations when � 6= 0. Of these

man-made signals, only a �nite number of values for � yield non-zero spectral correlations

(11).

Typical values of � that produce non-zero spectral correlations are zero, integer

multiples of the symbol rate k
Ts
, twice the carrier frequency 2fc, and linear combinations

of these (11, 9). For PAM signals, the cyclic spectral densities at integer multiples of the

baud rate, 1
Ts
; are known to be (11, 9),

S
k
Ts
s (f) = e�i2�

k�
Ts
A2

4Ts
	�(f � k

Ts
� fc)	(f +

k

Ts
� fc)Efjdnj2g (2.33)

PAM signals with real valued dn, as in BPSK signals, have a correlation at twice their

carrier frequency as was discussed in Section 2.1.2,

S2fcs (f) = ei2�
A2

4Ts
j	(f � fc)j2Efjdnj2g: (2.34)

When using these moments, one assumption must be made: only the signal of interest

is correlated at a particular value of �, implying that the chosen � is non-zero (11).

Then mathematically, the spectral density of the received signal, S�x (f), is identical to

the spectral density of the signal of interest, S�s (f) (11). This assumption justi�es the

philosophy that estimating this value will separate the signal of interest from the received

signal, and as such all the other noise and interference in the environment (11). This is

how signal selectivity is achieved and is the basis for cyclostationary signal processing. If

the estimate for � is non-zero, the signal is present (11, 8).

There are two big disadvantages when using this technique. The �rst is the noise, and

the second is that the cyclic correlation function is unknown and must be estimated (11).

The noise problem is that it increases the variance in any estimate of the cyclic correlation
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function, Ŝ�x (f) (11). Thus, despite the assumption that only signal will contribute, noise

variations can easily create other apparent contributions (11). The extra variation can

be dealt with by averaging the statistic over longer and longer observation periods while

requiring some amount of smoothness in the estimated SCF (11, 6). This is appropriate for

working with signals of exceptionally long durations buried in noise, but is not applicable

for short duration signals of interest, which is the category that burst transmissions fall

into (11).

Treating a PAM signal as a cyclostationary signal allows the redundancy property

to be taken advantage of, but assumes complete correlation in the frequency domain. This

assumption then allows the PSD of the transmitted signal to be estimated, not taking

into consideration the bias caused by the noise, since the noise contribution is assumed

zero. This is not applicable to burst transmission signals, since the correlation in the

frequency domain for burst transmission signals is not completely correlated, especially so

when dealing with bursts of di¤erent lengths, or when dealing with bursts that do contain

some sort of correlation between the transmitted data symbols.

2.3 A Better Signal Model for Burst Transmission Signals

Although each of these previously mentioned techniques has merit, they also have

some obvious disadvantages. Since the spectral correlation functions are only de�ned for

in�nite length signals, (11) none of the discussed methods apply completely to burst signal

transmissions and thus the noise estimation for each is not valid.

The table in Figure 2.3 is helpful in understanding the di¤erences between station-

ary and cyclostationary approaches of signal processing. The PSD of the signal can be

measured if the signal is stationary, but the noise contribution cannot be separated from

the signal. When a signal is considered cyclostationary the techniques focus on the places

where only the signal contributes, that is where the values of � are non-zero (11). By

measuring these properties and averaging them over time an estimate for the signal can be

obtained that is theoretically free of noise. The key here is that neither of these techniques

works for burst transmission signals since the Spectral Correlation Functions (SCF) are
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Figure 2.3 The Spectral Density Problem with Classical Burst Signal Analysis

only de�ned for in�nite length signals, making them inappropriate for time limited signals

(11).

The stationary approach is advantageous since some of the unknown parameters

disappear in the frequency domain, and since a probability distribution function is known.

Cyclostationary techniques account for more of the true characteristics of the

signal, making the methods that use them more accurate. The drawback lies in that cy-

clostationary techniques have no probability distribution function, making conventional

statistical methods di¢ cult to apply. The working signal model for burst transmission

signals allowed Gisselquist to apply classical statistical principles such as Maximum Like-

lihood Estimator (MLE) and likelihood ratios (11) in the development of a demodulator.

The next section brie�y discusses optimal �ltering techniques before presenting the deriva-

tion of Gisselquist�s Minimum Mean Square Error (MMSE) �lter.

2.4 Optimal Filtering

The application of Gisselquist�s research was focused on optimal �ltering. In the

development of Gisselquist�s �lter, the question of what �lter should be applied to get

the "best" results is answered (11). That is, he develops a �lter that obtains a reliable

estimate of the transmitted data symbols in the face of colored or white noise. Here we

are concerned with improving his �ltering process by obtaining a more reliable estimate of

the noise PSD since the PSD of the noise is an important part of the MMSE �lter. The
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Figure 2.4 The Structure of an Optimal Filter

optimal �lter to obtain the "best" results is known to consist of a matched �lter for white

noise, followed by a Tapped Delay Line (TDL) equalizer (11) as shown in Figure 2.4.

This optimal �lter is applicable regardless of the criteria used to de�ne "best" (5).

Speci�c to our purposes, "best" means obtaining the most reliable estimate of the original

data symbols. In this �gure, xBB(t) represents a signal with zero carrier frequency, fc = 0,

t is the time the sample is taken, and d̂n is the estimated symbol at the output of the �lter

(11). This section will follow the form of the �lter, �rst discussing matched �ltering and

then the combination of a matched �lter with equalization.

2.4.1 Matched Filtering. A matched �lter is de�ned as a unique �lter that

maximizes the signal-to-noise ratio of a known input (11). Common developments of this

are presented in (11, 24, 25, 27). In each development, the signal is assumed to be known,

for example s(t) = A (t) with a constant gain factor A (11). The �lter that maximizes

the signal-to-noise ratio in white noise is (11, 19, 25)

hMF (t) =  �(�t) (2.35)

in the frequency domain this �lter is

HMF (f) = 	
�(f) (2.36)

There are other developments such as (4) which extend this �lter to a colored noise

environment (11). The matched �lter is obviously the optimum �lter when only one data

symbol is transmitted, but not when multiple pulses are transmitted in succession (11) as in

a burst transmission signal. When multiple pulses are transmitted, the pulses may interfere
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with each other at the output of the �lter causing Intersymbol Interference (ISI)(11, 24).

Such interference is problematic when 	(f) has been designed and �xed in the transmitter,

prior to the estimation of Sn(f) (11).

2.4.2 Equalization. Removing the ISI is accomplished through the use of an

equalizer (11). Ericson proves, using the spectral redundancies inherent in a modulated

signal, that the optimal receiving �lter always consists of a matched �lter followed by a

Tapped Delay Line (TDL) equalizer (11, 5). This �lter can be implemented as a discrete

time �lter operating on the symbols that are sampled after the matched �lter (11). Using

this structure, there are two ways of applying a �lter, �xed and adaptive (11).

A �xed equalizer can be designed by minimizing the mean square error (MSE) be-

tween the output and the true symbols that were sent (11). Berger and Tufts present

one such Minimum Mean Square Error (MMSE) �lter for a PAM communication stream

(11, 1). First they modulated the communications signal as a sum of delayed pulses with

unknown weights (11),

s(t) =

1X
n=�1

dn (t� nTs): (2.37)

This is similar to the s(t) in equation 2.1 with the exception that burst transmission signals

have a limited number of data symbols, Ns. They derive their �lter from the PSD of the

noise, Sn(f), together with the PSD of the discrete pulse sequencefdng1n=�1; written as

Sd(e
i2�fTs) (11). They point out that this �lter is comprised of both a periodic and non-

periodic component,

H(f)MMSEBerger and Tufts

0BB@ Sd(e
i2�fTs)

1 + Sd(ei2�fTs)
A2

Ts

P1
n=�1

���	(f� n
Ts
)
���2

Sn(f� n
Ts
)

1CCA
| {z }

TDL Equalizer

	�(f)

Sn(f)| {z }
Matched Filter

(2.38)

where the periodic portion is the TDL equalizer, and the non-periodic portion is the

matched �lter (11). The periodic portion has periodicity 1
Ts
; making it a TDL equalizer

and matching Ericson�s prediction (11, 5).
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The second type of equalizer is an adaptive equalizer (11). These equalizers were

�rst demonstrated by Lucky (14) in 1966 and later studied by Haykin and many others

(11, 12, 2). The problem with these adaptive equalizers lies in their implementation, since

no knowledge of the noise PSD nor the true pulse shape is used (11). Without using the

noise PSD to �lter out narrow band interference, large amounts of interference may enter

into the system (11). Without using the true pulse shape, signal energy is arbitrarily lost

in the initial �lter (11). While the TDL equalizer may be able to reduce any resulting

distortion, it cannot fundamentally compensate for poor signal-to-noise conditions in the

received signal (11). Thus these systems are less than optimal, despite their practicality.

2.5 A Minimum Mean Square Error Filter for Burst Transmission Signals

The MMSE �lter has well known optimization properties, and is well de�ned when

the pulse shape and the noise PSD are de�ned (11). However, Berger and Tuft�s version of

the MMSE �lter does not exploit the extra spectral redundancies found in a BPSK signal

at bandpass frequencies discussed in Section 2.1.2 (11). Gisselquist created a MMSE �lter

that gives the "best" estimate of the dn provided the pulse shape is known and a reliable

estimate of the noise spectrum is available.

The �rst step for Gisselquist in the development of his MMSE �lter was to �nd the

d̂ that satis�es:

d̂(x)MMSE , argmin
d̂(x)

E
��
d̂(x)� d

�y �
d̂(x)� d

��
: (2.39)

The statistical solution to this minimization is the expected value of the conditional prob-

ability distribution or d̂(x)MMSE = Efdjxg which is known to minimize the mean square

error when an a-priori probability distribution for d is known (11, 21). Since d and x are

Gaussian, or treated as Gaussian, as explained in Section 2.1.3 the conditional probability

distribution of d given x is also Gaussian with mean (11),

Efdjxg = A

2

�
A2

2
(	yR�1n 	+R

�1
d

��1
	yRy�R

�1
n x, (2.40)
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Figure 2.5 Bandpass MMSE (Gisselquist�s) System Diagram

and variance (11),

Efddyjxg =
�
A2

4
(	yR�1n 	+R

�1
d

��1
. (2.41)

So the MMSE estimate of d is (11),

d̂(x)MMSE =

"
A

2

�
A2

2
(	yR�1n 	+R

�1
d

��1
	yRy�R

�1
n

#
x, (2.42)

which is an optimal �lter for recovering d. To see this we use the matrices provided in

Section 2.1.2.1 to calculate a new form of this �lter. This vector of data symbol estimates

will have dimension Nf � 1 and after simpli�cation and rearrangement look like (11),

D̂(ei2�(fj�fc)Ts) =

e�i�ei2�(fj�fc)�H(fj)XT (fj)

+e�i�ei2�(fj�fc)�ei2�
�
TsH(fj +

1
Ts
)XT (fj +

1
Ts
)

+ei�ei2�(fj�fc)�H�(2fc � fj)X�
T (2fc � fj)

+ei�ei2�(fj�fc)�ei2�
�
TsH(2fc � fj � 1

Ts
)XT (2fc � fj � 1

Ts
)

(2.43)

Then, expanding equation 2.42 to solve for H(f), we see that the minimum mean square

error �lter for BPSK modulation is (11)

HMMSE(f) =

A
2
	�(f�fc)
TsSn(f)

1 + A2

4
j	(f�fc)j2
TsSn(f)

+ A2

4

���	�f+ 1
Ts
�fc

����2
TsSn

�
f+ 1

Ts

� + A2

4
j	(fc�f)j2
TsSn(2fc�f) +

A2

4

���	�fc�f� 1
Ts

����2
TsSn

�
2fc�f� 1

Ts

�
(2.44)

for f 2 (fc � 1
Ts
; fc). The implementation of this �lter is illustrated in Figure 2.5.

To implement the �lter an estimate of the PSD of the noise must be obtained. Since

the received signal has both the transmitted signal and the noise intertwined as explained in
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Figure 2.6 A Sinc Function vs. Modi�ed Sinc

Section 2.1.1, methods to estimate the noise must be established. In Chapter III, methods

for estimating this noise are discussed and the success evaluated in Chapter IV.

2.6 Preliminaries

Gisselquist�s �lter is optimal in terms of mean square error when demodulating BPSK

burst transmissions (11), assuming a colored noise environment. This thesis is concerned

with estimating the PSD of white noise. The results will hopefully lead to e¤ective esti-

mation of colored noise. The �rst experiment generated a burst transmission signal as in

equation 2.1. The pulse shape used was a modi�ed Nyquist5 pulse shape, speci�cally a

modi�ed sinc:

 (t) =
1

Ts

�
sinc(

2t

Ts
� 1
2
) + sinc(

2t

Ts
+
1

2
)

�
: (2.45)

Although the sinc pulse is in�nite as a function of time, the magnitude decreases as

jtj increases, as can be seen in Figure 2.6. The advantage of the modi�ed Nyquist pulse can

also be seen in Figure 2.6 because the magnitude decreases even faster than the unmodi�ed

sinc. Figure 2.7 shows a burst transmission signal using the following parameters: A = 1;

fc = 1; � = 0, � = 0, Ts = 1, Ns = 64, and  (t) was as in equation 2.45. The equation

5For the purposes of this thesis sinc(t) = sin(�t)
�t

:
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Figure 2.7 BPSK signal with Ns = 64

plotted in Figure 2.7 is:

s(t) = Re(

63X
n=0

dn (t� n)ei(2�t)): (2.46)

This signal is then combined with white noise multiplied by a noise scale as follows:

x(t) = Re(

63X
n=0

dn (t� n)ei(2�t)) + (noise scale) n(t): (2.47)

The noise scale in the simulated received signal, x(t), was allowed to vary incrementally

from 10�1:5 to 101:5 while s(t) and n(t) remained the same. Thus the only variable allowed

to change was the noise scale. The noise PSD, Sn(f), used in the MMSE �lter was simply

white noise with a noise scale factor of 1: Thus the shape of the Sn(f) used in the �lter

di¤ered in both shape and scale from the actual Sn(f) in the simulated received signal.

For each noise scale increment, the received signal was processed using equation 2.43 and

symbol estimates, d̂n obtained. These d̂n were compared to the originally transmitted

symbols, dn; and the bit error rate (BER) recorded. The BER is de�ned as

BER =
Number of Incorrectly Identi�ed Symbols
Total Number of Transmitted Symbols

(2.48)

The success of the �lter is plotted as a function of the noise scale in Figure 2.8 and

BER, and in Figure 2.9 as a function of the Signal to Noise Ratio (SNR) in dB .

These �gures show two important results. First, as the noise scale increases, the

success of the �lter decreases. The second, when the noise scale used in the MMSE �lter
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Figure 2.8 BER vs. Noisescale for Unknown Scale and Shape of the Noise PSD

Figure 2.9 BER vs. SNR for Unknown Shape and Scale of the Noise PSD
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Figure 2.10 BER vs. Noisescale for Known Scale and Unknown Shape of the Noise PSD

Figure 2.11 BER vs. SNR for Known Scale and Unknown Shape of the Noise PSD

is close to the actual noise scale, the success increases. Likewise, the farther that the

noise scale used in the MMSE �lter is from the actual noise scale, the poorer the symbol

estimation results. This was further examined in a second experiment.

In the second experiment, the received signal was generated exactly as in the �rst

experiment. The di¤erence in the second experiment is that the PSD of the noise, Sn(f)

used in the MMSE �lter was constant, the constant being the noise scale used in the signal

generation. So the MMSE �lter has a correct estimate of the scale of Sn(f) but not of the

shape of Sn(f). The BER is low for noise scale values < 1, but then sharply increased as

the noise scale values increased as shown in Figures 2.10 and 2.11.

The important thing to note here is that the success drops o¤ rapidly when the noise

is much larger than the signal, most likely since the shape of the noise PSD, Sn(f) is

incorrect. This suggested the need for a third experiment.
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Figure 2.12 BER vs. Noisescale for Known Shape and Unknown Scale of the Noise PSD

Figure 2.13 BER vs. SNR for Known Shape and Unknown Scale of the Noise PSD

The third experiment was conducted identical to the �rst with the exception that

the PSD of the noise, Sn(f); used in the MMSE was the actual PSD of the noise used

in the simulated signal. That is, the Sn(f) used in the �lter had a shape identical to the

actual Sn(f), but the noise scale was incorrect. The exception being when the noise scale

equaled 1. The results of this third experiment were very similar to the �rst, indicating

that although the shape of the PSD of the noise, Sn(f); used in the �lter is important, it

may not be as important as the scale. These results can be seen in Figures 2.12 and 2.13.

These results show the importance of a good estimate of Sn(f) for use in the �lter,

thus providing the original motivation for this thesis. Although the improvement of the

MMSE �lter was the initial motivation for solving this problem, it will be shown in Chapter

IV, that even an estimate of Sn(f) that is correct in both shape and scale does not guarantee

the absolute success of the MMSE �lter. Thus the �lter is not a good way to indicate the
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success of a particular noise estimation technique. Since the MMSE �lter is optimized for a

colored noise environment it is not expected to be the best measure for evaluating a white

noise estimation technique.
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III. Theoretical Development

The noise estimation techniques presented in this thesis are based on two properties of

PAM signals. The �rst property is the fact that any received PAM signal can be expressed

in time as a sum of the transmitted signal and the noise as follows:

x(t) = s(t) + n(t) (3.1)

The problem is that the individual quantities of s(t) and n(t) are unknown. Since they are

unknown, exploitation becomes a problem that must be solved.

The noise estimation techniques are also based on the redundancies discussed in

Section 2.1.2. As stated these redundancies were discovered by Nyquist, exploited �rst by

Berger and Tufts, and then by Gisselquist in the development of his burst transmission

subspace theory (11). Gisselquist exploited these redundancies in the development of his

Minimum Mean Square Error (MMSE) �lter, which produced better results than any

previous work (11). It would seems that equation 3.1 would be the obvious choice to use

in combination with Gisselquist�s �lter, however, the results in Chapter 4 will show that

this is not the best approach to use, since the success of Gisselquist�s �lter depends on an

accurate a priori estimation of the Power Spectral Density (PSD) of the noise. Additionally,

it is not the best solution since Gisselquist�s �lter works best with colored noise, but gives

acceptable results with white noise when the noise scale is known (11). The �rst section in

this chapter explains the theory behind a method based on equation 3.1 and the following

sections provide better alternatives.

3.1 Method One: Subtract in Time

Equation 3.1 provides a seemingly simple solution to the noise estimation problem,

extract the transmitted signal from the received signal and only the noise will remain.

Gisselquist�s MMSE provides an estimate of the content of a BPSK signal which is described

in equations 2.43 and 2.44. This method proposes using this �lter on a received signal to

recover an initial estimate for the originally transmitted BPSK symbols. Since an a priori

estimate for the noise PSD is required, Sn(f), a small constant value is used, since the
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expected value of Gaussian white noise over an in�nite amount of time is known to be

constant. The received signal is processed as in Figure 2.5, providing an estimate for the

originally transmitted signals, call it d̂1. The pulse shape,  , gain, A, symbol length, Ts,

number of symbols, Ns; time of arrival, � ; and the phase of the carrier, �; are all assumed

to be known or previously recovered. dn is replaced with d̂1 in

s(t) = ARe(

Ns�1X
n=0

dn (t� nTs � �)ei(2�fct+�)) (3.2)

to create a new signal, ŝ1(t). The signal is then sampled to create a discrete form of ŝ1(t):

Then ŝ1(t) is subtracted from equation 3.1 giving:

x(t)� ŝ1(t) = s(t) + n(t)� ŝ1(t) = n̂1(t) (3.3)

The power spectral density of n̂1(t) is calculated and used in the MMSE �lter to obtain an

second estimate of the data symbols, d̂2. This estimate of the originally transmitted data

symbols is then used to construct a new signal estimate in the time, ŝ1(t), assuming the

pulse shape is known. Using the property presented in equation 3.1, ŝ2(t) is subtracted

from x(t) leaving n̂2(t): The noise estimate is converted into the frequency domain using

the DFT, the PSD calculated, and then Ŝn2(f) is used in the MMSE �lter to recover a

third estimate for the data symbols, d̂3, the process continuing until the d̂i converge. A

�ow chart for this method is illustrated in Figure 3.1.The method seems to be ideal, but

since the success of the original �ltering process depends on an accurate estimate of the

noise PSD, it will most likely not converge to the actual dn. Given that the �lter depends

on an accurate estimate of the noise PSD, it seems intuitive to use the received signal in

the noise estimation process. The remaining sections of this chapter do exactly that, and

combined with the redundancy property, seem to be better methods in the noise estimation

problem.

3.2 Methods Using the Signal Redundancies

Given that there are two properties discussed at length within this thesis, it seems

only natural that the ideal estimation techniques presented should take advantage of both.
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Figure 3.1 Flow Diagram for Method One: Subtract in Time

In this section, four di¤erent methods will be presented. All exploit the redundancy prop-

erties, and all will hopefully provide promising results for use in the MMSE �lter and in the

larger non Gaussian noise estimation problem. First, the development of the redundancies

as they apply to the PSD will be presented, and then an in depth explanation of each

method will follow.

Since both the Fourier transform and the PSD are linear when dealing with burst

transmission signals, the sum property presented in Section 2.1.1 can be easily extended

into the frequency domain. It is known that the Fourier transform of equation 3.1 is:

XT (f) = NT (f) +
A

2
ei�

Ns�1X
n=0

e�i2�(f�fc)� [dne
�i2�(f�fc)nTs ]

Z 1

�1
 (u)e�i2�(f�fc)udu: (3.4)

As presented in Subsection 2.1.3 the PSD of the transmitted signal, Ss(f), is of the form:

A2

4Ts
j	(f � fc)j2Efjdnj2g: To simplify this equation, let Efjdnj2g = Sd(f) and k = A2

4Ts
;

resulting in:

Ss(f) = kj	(f � fc)j2Sd(f): (3.5)

Removing the carrier frequency by moving it to fc = 0 results in:

Ss(f) = k j	(f)j2 Sd(f) (3.6)
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This is summed with the PSD of the noise Sn(f) to give (11, 23):

Sx(f) = Ss(f) + Sn(f): (3.7)

Sx(f) has the same redundancy properties presented in Section 2.1.2 and its vector is of

the form:

Sx(f) =

266666666666666666666666664

Sx(f1)
...

Sx(fNf )

Sx(f1 +
1
Ts
)

...

Sx(fNf +
1
Ts
)

S�x(2fc � f1)
...
...

S�x(2fc � fNf + 1
Ts
)

377777777777777777777777775

(3.8)

The redundancies for a given frequency, fi 2 (fc � 1
Ts
; fc); occur at Sx(fi); Sx(fi + 1

Ts
);

S�x(2fc � fi); and S�x(2fc � fi +
1
Ts
): It is important to note that at these locations, the

information is the same, not the actual values. The PSD of the transmitted signal can be

further broken down into the PSD of the transmitted symbols and the magnitude of the

Fourier Transform of the pulse shape. Both are scaled by a constant, k = A2

4Ts
, where A is

the gain of the received signal and Ts is the symbol duration. In this section the constant

value, k, and the pulse shape are assumed to be known. The �rst step in all the methods

will divide by the magnitude of the pulse shape and the constant, k, to give:

Sx(f)

k j	(f)j2
= Sd(f) +

Sn(f)

k j	(f)j2
(3.9)

That division occurs for each redundancy at a corresponding location in the pulse shape.

Also, keep in mind that each piece has the same data, thus the Sd(f) are all assumed to

be the same regardless of the frequency. The explanation will continue using the following
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notation,

F(f) =
Sx(f)

k j	(f)j2
= Sd(f) +

Sn(f)

k j	(f)j2
(3.10)

When referring to the redundancies, they will be called F (f j), where j = 1; 2; 3; 4: Specif-

ically f1 refers to the values having the form Sx(fi), f2 refers to the Sx(fi + 1
Ts
) values,

f3 the values at S�x(2fc � fi); and f4 the values at S�x(2fc � fi + 1
Ts
), i 2 [1; Nf ].

The redundancies and the sum in equation 3.1 are the two properties exploited in

this section when obtaining an estimate for Sn(f). The estimation techniques are similar,

but have important di¤erences that will hopefully produce distinct results. Thus, although

repetitive, each method will be explained starting from equation 3.10. Which method to

use should be based on the known and unknown parameters of the received signal and

what the estimate will be used for. The explanation of each method will begin at this

point.

3.2.1 Subtraction of the Smallest Redundancy. There are two methods that use

the smallest redundancy value to extract an estimate for Sn(f): Starting with equation

3.10, F (f) is evaluated at f1; f2; f3; and f4: The smallest F (f j) in absolute value is

selected. The smallest of the four values will have the smallest value for Sn(f) since the

Sd(f) are the same at each location. Call this new vector of smallest values: Ŝdsmall(f).

This vector of smallest values is used in the following two methods.

3.2.1.1 Subtraction Before Pulse Shape Multiplication. If we subtract this

vector, Ŝd(f); from the values in equation 3.9 we will get:

Sx(f)

k j	(f)j2
� Ŝdsmall(f) = Sd(f)� Ŝdsmall(f) +

Sn(f)

k j	(f)j2
(3.11)

At this point (Sd(f) � Ŝd(f)) is assumed to be small, so the remaining values are the

estimates for the PSD of the noise, divided by k j	(f)j2. To obtain Ŝn(f), equation 3.11

is multiplied by k j	(f)j2 resulting in:

Sx(f)� Ŝdsmall(f)k j	(f)j
2 = Ŝn(f) (3.12)
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Figure 3.2 Diagram of Subtraction of Minimum Redundancy before Pulse Shape Multi-
plication

The degree of correctness of this estimation will be demonstrated and measured in Chapter

IV.

3.2.1.2 Subtraction After Pulse Shape Multiplication. If we �rst multiply

this vector, Ŝd(f); by k j	(f)j2, and then subtract this value from equation 3.7 we will get:

Sx(f)� k j	(f)j2 Ŝdsmall(f) = Ŝn(f) (3.13)

The method di¤ers in where the subtraction occurs. Instead of subtracting in the manner of

equation 3.11, the vector of smallest values, Ŝdsmall(f); is multiplied by the magnitude of the

pulse shape, the scalar k, and then subtracted from equation 3.7. Again Sd(f)� Ŝdsmall(f)

is assumed to be small, so the remaining value, is Ŝn(f) is the estimate for the PSD of the

noise. Thus, subtracting before or after multiplication by the pulse shape produces the

same result, Ŝn(f):

3.2.2 Subtraction of the Average Redundancy. For the methods that subtract

the average redundancies, we start with equation 3.9. These methods take the four

redundancies: F(f) = Sx(f)

kj	(f)j2 = Sd(f) +
Sn(f)

kj	(f)j2 ; called F (f
j), where j = 1; 2; 3; 4 and
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Figure 3.3 Diagram of Subtraction of Minimum Redundancy after Pulse Shape Multi-
plication

averages them to obtain:

Faverage(f) =

1
4

�
Sd(f

1) + Sn(f1)

kj	(f1)j2 + Sd(f
2) + Sn(f2)

kj	(f2)j2 + Sd(f
3) + S�n(f

3)

kj	�(f3)j2 + Sd(f
4) + S�n(f

4)

kj	�(f4)j2
�

(3.14)

The Sd(f) are the same so we can simplify this to:

Faverage(f) =
1

4

�
4Sd(f) +

Sn(f
1)

k j	(f1)j2
+

Sn(f
2)

k j	(f2)j2
+

S�n(f
3)

k j	�(f3)j2
+

S�n(f
4)

k j	�(f4)j2

�
(3.15)

Faverage(f) = Sd(f) +
1

4

�
Sn(f

1)

k j	(f1)j2
+

Sn(f
2)

k j	(f2)j2
+

Sn(f
3)

k j	�(f3)j2
+

Sn(f
4)

k j	�(f4)j2

�
(3.16)

Faverage(f) = Sdaverage(f) +
1

4

4X
k=1

Sn(f
k)

k j	(fk)j2
(3.17)

From this point the average methods start.
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Figure 3.4 Diagram of Subtraction of the Redundancy Average before Pulse Shape Mul-
tiplication

3.2.2.1 Subtraction Before Pulse Shape Multiplication. Subtracting Faverage(f)

from F(f) leaves:

F(f)� Faverage(f) =

Sd(f) +
Sn(f)

kj	(f)j2 �
�
Sdaverage(f) +

1
4

4P
k=1

Snaverage (f
k)

kj	(fk)j2
�
=

3
4
Sn(fj)

kj	(fj)j2 �
1
4

P
k 6=j

Snaverage (f
k)

kj	(fk)j2

(3.18)

As in previous methods following multiplication by k
��	(f j)��2 yields:

Ŝn(f) = k j	(f)j2F(f)� Faverage(f) =
3

4
Sn(f

j)� 1
4

X
k 6=j

Snaverage(f
k)

j	(fk)j2
��	(f j)��2 (3.19)

This is the estimate of the PSD of the noise, Sn(f), based on the average of the redun-

dancies. This method completely eliminates the constant k; which seems very promising.

A �ow chart of this method can be seen in Figure 3.4. The degree of correctness of this

estimation will be demonstrated and measured in Chapter IV.
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Figure 3.5 Diagram of Subtraction of the Redundancy Average after Pulse Shape Multiplication

3.2.2.2 Subtraction After Pulse Shape Multiplication.

Faverage(f) = Sd(f) +
1

4

4X
k=1

Sn(f
k)

k j	(fk)j2
(3.20)

Starting again with the above equation, we �rst multiply by the pulse shape and

constant and then subtract Faverage(f)k
��	(fk)��2 from the original Sx(f) to obtain the

estimate for Sn(f):

Faverage(f)k
���	(fk)���2 =  Sd(f) + 1

4

4X
k=1

Sn(f
k)

k j	(fk)j2

!
k
���	(fk)���2 (3.21)

Finally, we subtract this not from equation 3.10 but from equation 3.7 to obtain:

Sx(f)� Faverage(f)k
���	(fk)���2 = Ŝn(f) (3.22)

Again, Sd(f) � Ŝdaverage(f) is assumed to be small, so the remaining value, Ŝn(f); is the

estimate for the PSD of the noise. A �ow chart for this method is presented in Figure

3.5. Thus, subtracting before or after pulse shape multiplication produces the same result,

Ŝn(f).
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IV. Analysis by Simulation

As observed at the end of Chapter II, the success of the �lter when no characteristics of

the noise are known decreases dramatically when the noise scale exceeds the scale of the

transmitted signal. Thus it seems logical that one method of testing should be to test the

success of the demodulator at various noise levels. The results in this chapter are presented

in two sections. The �rst section presents the e¤ect the noise PSD estimates have on the

demodulation success of the MMSE �lter, reviewed in Section 2.5. As noise levels increase,

the ability to accurately recover the originally transmitted data symbols is measured. The

second section presents a comparison between the actual and estimated PSDs of the noise.

As explained, the noise estimation problem has two important goals. First, can these

methods accurately measure the scale of the noise? Second, can they obtain an accurate

estimate of the noise shape? It is important to note that the noise estimates do not give

actual noise content as it exists in the time domain, but rather estimates of the PSD of the

noise, since this is the form of the noise that the �lter presented in Chapter II and other

signal processing methods use.

4.1 Impact on Demodulation

The demodulation technique, Gisselquist�s Minimum Mean Square Error �lter, can

serve not only for measuring noise estimation success, but as part of the algorithm to

estimate the noise. This section is organized into two subsections, the �rst presents the

results of Method One: Subtract in Time, and the second exploits the signal redundancies

in the estimation algorithms. The measure of success in this section is the Bit Error Rate

(BER) as the noise scale is incrementally increased or in the �rst method compared to

iterations.

4.1.1 Method One: Subtract in Time. This method seemed to be the most

obvious, and possibly the most �awed. There may be other ways to estimate the noise

in the time domain, but only Subtract in Time is evaluated here. This approach was not

e¤ective as Figure 4.1 shows. The BER in this experiment did not converge, even after

�fty iterations. The initial estimate of the data symbols obtained using an arbitrary value
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Figure 4.1 Method One: Subtract in Time BER vs. Iteration Number

for the PSD of the noise, Sn(f), was the best estimate. The estimates seemed to �uctuate

wildly as the noise level increased. This is an indication that the method is not an adequate

solution to the PSD of the noise estimation problem. The formula used to calculate the

BER in this section and all following sections is:

BER =
Number of Incorrectly Identi�ed Symbols
Total Number of Transmitted Symbols

(4.1)

There are probably several reasons why this method is not successful. One reason may be

that the demodulation technique that the noise estimation is trying to improve is part of

the noise estimation algorithm. The next subsection implements algorithms that rely only

on information gleaned from the received signal. The next subsection also takes advantage

of more properties of the received signal and the processing occurs in the frequency domain,

for these reasons they hold more promise in accurately estimating the noise.

4.1.2 Methods Using the Signal Redundancies. The previous method did not

exploit the properties of the received signal to estimate the PSD of the noise and it is

likely that because of this, was not very successful. The results presented here use the

redundancies of the signal to estimate the noise PSD. An improvement in these techniques

is that they do not use the demodulation technique that they are trying to improve as part

of the noise estimation algorithms.
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Figure 4.2 BER vs. Noisescale, Subtraction of the Smallest Redundancy before Pulse Shape
Multiplication

4.1.2.1 Subtraction of the Smallest Redundancy. As explained in Section

2.1.2, BPSK signals have redundancy properties that can be exploited. Unfortunately the

results using the smallest redundancy were not as successful as expected in the improvement

of data symbol recovery. Section 3.2.1 explains that subtraction of the smallest redundancy

can occur at two points in the estimation algorithm. The results of each are presented here.

Subtraction of the Smallest Redundancy Before Pulse Shape Multiplica-

tion. This method improved the data symbol estimation algorithm, as can be seen if

we compare the results in Chapter II, Figures 2.8 and 2.9 with Figures 4.2 and 4.3. These

results are slightly better than using an arbitrary value for the PSD of the noise in the

demodulation algorithm. As the noise scale increased, the BER increased to a level no

better than random. Here the results are plotted in two ways, against the noise scale and

against the SNR. Future results will only have the BER versus the SNR.

Subtraction of the Smallest Redundancy After Pulse Shape Multiplication.

This variation of the previous method produced identical results which can be seen in

Figure 4.4. Hopefully it will be more successful in predicting the noise scale, which is

explored in the following section.

Although the methods that subtract the smallest redundancy didn�t have the positive

impact on the demodulation technique as hoped, it should not be taken as an indication

that the methods are invalid. Since the demodulation technique, the MMSE �lter, uses
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Figure 4.3 BER vs. SNR in dB, Subtraction of the Smallest Redundancy before Pulse Shape
Multiplication

Figure 4.4 BER vs. SNR, Subtraction of the Smallest Redundancy after Pulse shape Multipli-
cation

only a small portion of the observed noise spectrum, it is possible that the methods are

not applicable in those particular portions of the observed noise spectrum.

4.1.2.2 Subtraction of the Average Redundancy. Subtracting the minimum

redundancy in the previous two methods, did not improve the demodulator performance

as much as hoped. Instead of subtracting the minimum, the next two methods subtract an

average of the four redundancies, since they all contain the same information. Hopefully

these methods will provide a more positive impact on the demodulation success of the

MMSE �lter. As when subtracting the minimum, the subtraction of the average can occur

at two di¤erent places in the algorithm. Both variations are presented here.

Subtraction of the Average Redundancy Before Pulse Shape Multiplica-

tion. The results when subtracting the average of the redundancies before multiplying
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Figure 4.5 BER vs. SNR, Subtraction of the Average Redundancy before Pulse Shape Multi-
plication

Figure 4.6 BER vs. SNR, Subtraction of the Average Redundancy after Pulse Shape Multipli-
cation

by the pulse shape is shown in Figure 4.5. This produced an improvement over the method

that subtracted the minimum before multiplying by the pulse shape. Additionally these

results were better than using an unknown noise scale and unknown noise shape as can be

seen in Figure 2.9 in Chapter II.

This method improves the success of the demodulator, however the BER continues

to be high and �uctuate wildly when the SNR is high. The acceptable BER is system

dependent and so the measure of how well the methods work is dependent on the system.

Subtraction of the Average Redundancy After Pulse Shape Multiplication.

As seen in Figure 4.6 this method like the subtraction of the smallest redundancy meth-

ods provided identical results as subtracting before multiplication by the pulse shape.

The methods that subtract the average of the redundancies improved the success of

the demodulator which can be seen in Figure 4.7. The results using the methods that
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Figure 4.7 BER vs. SNR

subtract the average redundancies improved the success of the demodulator even when

the SNR exceeded -30 dB. This is promising since SNRs rarely exceed -40 dB. In Figure

4.7 it can be seen that the subtraction of the average redundancies is the most successful

as compared to subtracting the minimum redundancies and using an arbitrary noise SNR

value in the demodulator, which are the results labeled "Unknown".

The next section measures the success of the methods over the entire observed noise

spectrum, rather than just in the one small portion that the �lter uses for demodulation,

using the Mean Square Error (MSE) between the actual noise PSD and the estimated noise

PSD.

4.2 Comparison to Actual Power Spectral Density of the Noise

Improvement of Gisselquist�s MMSE �lter was the initial motivation for this research,

and it yielded positive results when subtracting the average of the redundancies. This

section examines the whole observed noise spectrum in an attempt to measure the success

of the previously explained methods. The two important characteristics of the PSD of

the noise, scale and shape, are examined and then a measure of the mean square error

between the actual PSD of the noise and the estimated PSD of the noise is presented.

Each technique captured a part of the characteristics we desire to estimate. Although they

were not completely successful individually, perhaps a combination of these methods may

prove to be an improvement.
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Figure 4.8 Results of Method One: Subtract in Time

4.2.1 Method One: Subtract in Time. Since this method uses the �lter in the

estimation process, the results are as expected, less than stellar. Not only did the method

fail to capture the correct noise scale, but the method did not obtain the correct shape

of the PSD of the noise. Figure 4.8 shows the estimated power spectral density of the

noise plotted next to the actual power spectral density of the noise. The �gure shows that

neither the scale nor shape of the noise is accurately estimated.

These results, like the results in the �lter improvement, probably stem from the

fact that the results we are looking for are in the frequency domain, while the processing

technique occurs in the time domain. Additionally, since the �lter is used in the estimation

algorithm, the estimate accuracy at best is only valid in the portions of the observed noise

spectrum that the demodulation algorithm uses. The following results do not rely on the

�lter, and thus may have more success in estimating the PSD of the noise, both in shape

and scale.

4.2.2 Methods Using Signal Redundancies. Although these methods were not all

successful in the improvement of the demodulation algorithm, they did show some promise

at least in some small portions of the observed noise spectrum. Perhaps this success can

be used to implement algorithms with a smaller observation period or algorithms that

combine one or more of the methods. Algorithms that use a smaller observation period

would use a portion of the burst transmission, instead of using the entire burst as these

methods do. These algorithms would account for rapid changes in the noise since the PSD

of the noise would be normalized over a smaller amount of time. These methods use the
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Figure 4.9 Estimated Noise PSD Using Subtraction of the Smallest Redundancy before Mulit-
plication by Pulse Shape

Figure 4.10 Zoomed in Estimated Noise PSD Using Subtraction of the Smallest Redundancy
before Mulitplication by Pulse Shape

entire burst to estimate the PSD of the noise, which tends to minimize the contribution of

the noise over the period. A smaller observation period would not do this.

4.2.2.1 Subtraction of the Smallest Redundancy. The hope for these meth-

ods was that the scale would be estimated accurately, which is in fact re�ected in the

results. A suggestion for improvement may be to use a smaller observation window as

previously suggested. The results can be seen in Figures 4.9, 4.10, and 4.11. Figure 4.9

shows the entire estimated noise spectrum, while Figure 4.10 shows a zoomed in picture.

When comparing Figure 4.10 with Figure 4.11 it can be seen that the methods accurately

estimated the shape and scale of the noise PSD in the center of the plot, but when com-

pared with Figure 4.11 examination of the outer edges shows that the method did not

accurately capture the scale of the actual noise PSD.
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Figure 4.11 Actual Noise PSD

Subtraction of the Smallest Redundancy Before Multiplication by Pulse

Shape. This method did not estimate the shape of the actual PSD of the noise with

accuracy, but did capture the correct scale at least in a portion of the estimated noise

spectrum. Since it was not very successful in �lter improvement, it can be assumed that

the estimated shape was not correct in the portions of the spectrum that the �lter uses.

Figure 4.12 presents the mean square error between the actual power spectral density

of the noise and the estimated power spectral density of the noise. This mean square error

was calculated in the following manner:

MSE , 1

N

NX
i=1

(pi � p̂i)2 (4.2)

where N is the number of points at which the noise was estimated, which equates to the

number of signal samples in both the time and frequency domains. The pi are the actual

values at each point in the noise spectrum and the p̂i are the estimated noise PSD values.

As expected, as the noise scale increases, the mean square error increases greatly. However

the MSE was very low when the noise scales were low.

Subtraction of the Smallest Redundancy After Multiplication by Pulse

Shape. For estimating the scale of the noise spectrum, this method is more promis-

ing than the previous method. These results can be seen in Figures 4.13, 4.14, and 4.15.

Although it produced BER results identical to the method that subtracts the smallest

redundancy before multiplication, it clearly does a better job of estimating the scale across

the entire observed noise spectrum. Again since this method did not improve the demodu-
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Figure 4.12 MSE vs. SNR, Using Subtraction of the Smallest Redundancy before Mulitplication
by Pulse Shape

Figure 4.13 Estimated Noise PSD Using Subtraction of the Smallest Redundancy after Mulit-
plication by Pulse Shape

lation as much as the average methods, it can be assumed that the estimation of the shape

was incorrect in the portions that the �lter employs. As in the previous method, Figure

4.13 shows the entire spectrum of the estimated noise PSD, Figure 4.14 shows a zoomed

in view of the estimated noise PSD and Figure 4.15 shows the actual noise PSD.

Figure 4.16 shows the same results as the previous method, re�ecting the increase in

the mean square error as the noise scale increased to a level beyond the transmitted signal.

Subtraction of the smallest redundancy does have a positive result. It accurately

estimates the shape of the noise in the center of the spectrum, and closely estimates the

noise scale on the outer portions of the spectrum. The methods that subtract the smallest

redundancies also achieve the smallest MSE as compared to the actual noise PSD.

4.2.2.2 Subtraction of the Average Redundancy. The expectation for this

method was that more of the actual noise shape would be captured since the subtraction

portion is a combination of the redundancies. They were not very successful in estimating
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Figure 4.14 Zoomed in Estimated Noise PSD Using Subtraction of the Smallest Redundancy
after Mulitplication by Pulse Shape

Figure 4.15 Actual Noise PSD

Figure 4.16 MSE vs. SNR Using Subtraction of the Smallest Redundancy after Pulse Shape
Multiplication
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Figure 4.17 Estimated Noise PSD Using Subtraction of the Average Redundancy before Pulse
Shape Multiplication

Figure 4.18 Zoomed in Estimated Noise PSD Using Subtraction of the Average Redundancy
before Pulse Shape Multiplication

the noise scale over the whole noise spectrum, but the shape resembles at least a portion

of the actual noise PSD.

Subtraction of the Average Redundancy Before Multiplication by Pulse

Shape. This method almost captured the scale and the shape in the center of the

observed noise spectrum. This portion can be seen best in Figure 4.18. Figure 4.17 shows

that the scale estimate on the outer portion, which the �lter uses, is completely wrong.

However incorrect the scale is in these portions, the shape must be accurately captured

since the demodulation results were so successful. Figure 4.20 shows the mean square error

between the estimated and actual PSDs of the noise. It is calculated as in equation 4.2.

As expected because of the horrible scale error in the higher frequencies, the mean

square error increased dramatically as the noise scale increased.

Subtraction of the Average Redundancy After Multiplication by Pulse

Shape. Like the previous method, this method accurately captured the scale and
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Figure 4.19 Actual PSD Using Subtraction of the Average Redundancy before Pulse Shape
Multiplication

Figure 4.20 MSE vs. SNR Using Subtraction of the Average Redundancy before Pulse Shape
Multiplication

the shape in the center of the observed noise spectrum. Figures 4.21, 4.22, and 4.23 show

the results of this �nal method. Figure 4.21 shows that like the previous method, the scale

in the higher frequencies is completely of from the actual noise PSD. Figure 4.22 shows

that this method nearly captures the shape and scale in the center of the noise spectrum.

Like the previous method, subtraction of the average redundancy after multiplication by

the pulse shape is not very successful over the entire spectrum, this is re�ected in Figure

4.24.

The methods that subtract the average of the redundancies do not accurately capture

the scale of the actual noise PSD, but they did have the best success in improvement of

the demodulator success. Figure 4.25 shows a comparison of the MSE between all the

subtraction methods and the MSE using a noise PSD with unknown shape and scale. As

previously shown, the methods that subtract the average redundancies do not do a good

job of estimating the noise PSD over the whole noise spectrum. The methods that subtract

the minimum redundancies obtain a MSE about equal to using a noise PSD with unknown
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Figure 4.21 Estimated Noise PSD Using Subtraction of the Average Redundancy after Pulse
Shape Multiplication

Figure 4.22 Zoomed in Estimated Noise PSD Using Subtraction of the Average Redundancy
after Pulse Shape Multiplication

Figure 4.23 Actual Noise PSD

Figure 4.24 MSE vs. SNR Using Subtraction of the Average Redundancy after Pulse Shape
Multiplication
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Figure 4.25 MSE vs. Noise Scale Subtraction Methods Compared

shape and scale. Thus the best methods for estimating the noise PSD over the entire

spectrum are the methods that subtract the smallest redundancies.
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V. Conclusions/Recommendations

The initial goal of this research was to determine if an accurate estimate of the noise

power spectral density (PSD) could be obtained. The need for a solution to this problem

stemmed from research done by Gisselquist in (11). He created a minimum mean square

error (MMSE) �lter whose success depended on an accurate a priori estimate of the noise

PSD. His �lter is designed and works best in a colored noise environment (11). This

thesis tackled the white noise estimation problem, in the hopes of providing direction

for the colored noise problem. Five methods were developed and tested to determine if

they improved his �lter results. The methods were also measured against the entire noise

spectrum as well, since the �lter that Gisselquist created only employs a small part of the

noise PSD.

The estimation techniques can be improved and suggestions for further research are

included in this chapter following a summary of the results obtained. Overall the research

was a success as it provided a good starting point for further research.

5.1 Summary of Results

The methods tested included Subtraction in Time, and four other methods which

exploited the redundancies of the signal properties. The second group of methods included

the Subtraction of the Smallest Redundancy Before and After Pulse Shape Multiplication.

Finally the third group included Subtraction of the Average Redundancy Before and After

Pulse Shape Multiplication. The results of the Subtract in Time method were totally

unsuccessful. In fact, the results obtained using an arbitrary noise PSD in the �lter with

a random shape and scale provided better results than Subtract in Time. The methods

that used the smallest redundancy provided a slight improvement in the demodulator

performance, but were most successful in obtaining the most accurate estimate across

the entire noise PSD spectrum. The methods that subtracted the average redundancies

provided the best results. Not the best when compared to the actual entire noise PSD

spectrum, but in improvement of the MMSE �lter. This is a success since the most

important goal of this thesis was to improve the success of Gisselquist�s MMSE �lter.
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5.2 Future Work

As stated previously, Gisselquist�s �lter is optimal in a colored noise environment.

Because of this it is obvious that a suggestion for further work is to extend these methods

to the colored noise environment. Another area for continued research is the exploration

of why the subtraction of the average redundancy methods do not capture the scale of the

noise PSD in the higher frequencies. Perhaps if a more accurate estimate of the scale can

be obtained in this region, the success of the method can be improved further. A third area

to explore is combining these methods which only use an active signal with methods that

use observations when the signal is not active. When the signal is not active, only noise is

present, thus a good estimate should be possible when combined with the estimates of the

noise when the signal is present.

Overall, the methods presented in this thesis provide a good ground work for sev-

eral future estimation methods in both the colored and white noise environments. One

last suggestion for future work is to employ a smaller observation window combined with

adaptive �ltering. This would allow the noise PSD used in the �lter to perhaps capture

more of the noise characteristics in a smaller region, improving the success incrementally

as the observation time moves along.

5.3 Conclusion

Gisselquist created an excellent and new signal model for burst transmission signals.

Additionally he created an excellent demodulation technique based on this model. The

results presented in this thesis can hopefully be implemented so that the MMSE �lter can

be improved. The results show that the methods employed are successful in the white

noise environment. Hopefully future research can extend the methods and combine them

with other methods to further the improvement of Gisselquist�s MMSE �lter.
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VI. Appendix A Mathematica Notebooks

All the �gures in the thesis were generated using Mathematica. The notebooks are all

presented here. The �gures that each notebook produced are listed in the explanation

which precedes each notebook.

6.1 Data Generation

This notebook creates the variables needed for all subsequent experiments. It was not

used to generate any �gures. The �rst section creates the variables used in the signal gen-

eration process. The comments after each variable describe what the variable corresponds

to in the thesis.

This portion creates a random vector of white noise and calculates the PSD.

This portion generates the signal vector, adds the white noise and takes the discrete

Fourier Transform of the generated signal and noise combined.
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This portion creates the Minimum Mean Square Error Filter.

This portion accomplishes the recovery of the originally transmitted data symbols.
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6.2 Known Noise Scale

This �rst portion of the notebook creates the variables used throughout. Some are

recovered from data vectors created in the notebook "Data Generation." This notebook

was used to create Figures 2.10 and 2.11.
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This section tests the BER using a known noise scale. Notice that the PSD used in

the �lter is a constant, equal to the noise scale.

This section plots the results.
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6.3 Known Noise Shape

This �rst portion of the notebook creates the variables used throughout. Some are

recovered from data vectors created in the notebook "Data Generation." This notebook

was used to create Figures 2.12 and 2.13.
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This section tests the recovery rate using a known noise shape. Notice that the PSD

used in the �lter is identical to the noise used in the signal. The scale is the only thing

that varies.
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This section plots the results.

6-7



6.4 Unknown Shape and Scale

This �rst portion of the notebook creates the variables used throughout. Some are

recovered from data vectors created in the notebook "Data Generation." This notebook

was used to create Figures 2.8 and 2.9.
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This section tests the recovery rate using an unknown noise shape and scale.

This section plots the results.
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6.5 Subtraction of the Minimum Redundancy

6.5.1 Subtraction of the Minimum Redundancy Before Multiplication by Pulse Shape.

This portion of the Mathematica notebook creates the variables used throughout. Some

are recovered from data vectors created in the notebook "Data Generation." The vectors�

meaning is the same as in the �rst notebook. This notebook was used to create Figures

4.12 and 4.3.
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This section is the loop that tests each of the various noise scales, recovers data

symbols at each noise scale, and compares the actual PSD to the estimated PSD using

MSE.
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This section plots the results and stores them to be used in a comparison of all the

results.
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This notebook plots the estimated PSD and the actual PSD, the noise scale here is

�xed as 1 to get a good comparison of the noise. All of the variables are the same as in

the notebook "Data Generation." This notebook was used to create Figures 4.9, 4.10, and

4.11.
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This section plots the results.
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6.5.2 Subtraction of the Minimum Redundancy After Multiplication by Pulse Shape.

This portion of the Mathematica notebook creates the variables used throughout. Some

are recovered from data vectors created in the notebook "Data Generation." The vectors�

meaning is the same as in the �rst notebook. This notebook was used to create Figures

4.4 and 4.16.

6-18



This section is the loop that tests each of the various noise scales, recovers data

symbols at each noise scale, and compares the actual PSD to the estimated PSD using

MSE.
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This section plots the results and stores them to be used in a comparison of all the

results.
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This Mathematica notebook plots the estimated PSD and the actual PSD, the noise

scale here is �xed as 1. All of the variables are the same as in the notebook "Data

Generation."

It was used to create Figures 4.13, 4.14, and 4.15.
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This section creates the estimated noise PSD, plots the estimated noise PSD zoomed

out and zoomed in, and plots the actual noise PSD.
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6.6 Subtraction of the Average Redundancy

6.6.1 Subtraction of the Average Redundancy Before Multiplication by Pulse Shape.

This portion of the Mathematica notebook creates the variables used throughout. Some
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are recovered from data vectors created in the notebook "Data Generation." Each of these

experiments uses the same vectors. This notebook was used to create Figures 4.5 and 4.20.

This section is the loop that tests each of the various noise scales, recovers data

symbols at each noise scale, and compares the actual PSD to the estimated PSD using

MSE.
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This section plots the results and stores them to be used in a comparison of all the

results.

This Mathematica notebook plots the estimated PSD and the actual PSD, the noise

scale here is �xed as 1. All of the variables are the same as in the notebook "Data

Generation." This notebook creates Figures 4.17, 4.18, and 4.19.
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This section creates the estimated noise PSD, plots the estimated noise PSD zoomed

out and zoomed in, and plots the actual noise PSD.
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6.6.2 Subtraction of the Average Redundancy After Multiplication by Pulse Shape.

This portion of the notebook creates the variables used throughout. Some are recovered

from data vectors created in the notebook "Data Generation." Each of these experiments

uses the same vectors. This notebook was used to create Figures 4.24 and 4.6.
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This section is the loop that tests each of the various noise scales, recovers data

symbols at each noise scale, and compares the actual PSD to the estimated PSD using

MSE.
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This section plots the results and stores them to be used in a comparison of all the

results.

This Mathematica notebook plots the estimated PSD and the actual PSD, the noise

scale here is �xed as 1. All of the variables are the same as in the notebook "Data

Generation." This notebook creates Figures 4.21, 4.22, and 4.23.
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This section creates the estimated noise PSD, plots the estimated noise PSD zoomed

out and zoomed in, and plots the actual noise PSD.
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6.7 Comparison

The �nal notebook combines the results from all the previous notebooks and plots

them together. This notebook was used to create Figures 4.7 and 4.25.
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