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Abstract 

 
The aerospace industry has a growing need for high temperature structural 

materials which can withstand extreme sustained loading for use in future reusable 

propulsion technologies .  This thesis examines one of these materials developed by the 

Materials and Manufacturing Directorate of the Air Force Research Lab (AFRL/ML), an 

oxide/oxide ceramic matrix composite (CMC), Nextel 610/monazite/alumina 

(N610/LaPO4/Al2O3).  This CMC consists of a porous alumina matrix reinforced by 

Nextel 610 fibers coated with monazite in a symmetric cross-ply (0o/90o/0o/90o)s 

orientation.  Monazite is an oxidation-resistant interfacial coating which was designed to 

inhibit oxidation and improve high temperature behavior. The material containing the 

uncoated fibers, N610/Al2O3, while able to withstand the high temperatures of 

combustion, did not however, display a level of creep resistance suitable for use. 

To characterize this material, monotonic tensile tests to failure and stress-rupture 

(creep) tests were performed at room temperature and at elevated temperatures between 

900oC and 1200oC.  Modulus, stress and strain were monitored during the tests to 

characterize failure mechanisms.  Residual strength of all specimens that survived 106 

seconds in creep was also characterized.  Microstructural analysis and optical microscopy 

were performed on all fracture surfaces.  N610/LaPO4/Al2O3 was found to have improved 

creep behavior over the material containing the uncoated fibers at elevated temperatures.  
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CREEP BEHAVIOR OF AN OXIDE/OXIDE COMPOSITE WITH MONAZITE 

COATING AT ELEVATED TEMPERATURES 

 
 

I.  Introduction 

 

Although composite materials are at the forefront of aviation technology, their origin 

can be traced back some 3,000 years ago to Ancient Egypt where straw was used as 

reinforcement in clay bricks for building purposes.  Composite materials were sought 

after for their strength as compared to monolithic materials. With the discovery of more 

durable construction materials like metals, the interest in organic fibers was lost. It wasn’t 

until the 1950s that the use of composite materials really began to rise with the advent of 

fiberglass, where glass fibers in a tough resin matrix could be produced on a large scale 

(8). 

Since the use of aluminum began in the 1920s, composites have been the most 

important materials adapted for use in aviation. Composites began their history in the 

aviation industry in the 1950s when fiberglass made up some two percent of the structure 

of the early Boeing 707s. The military began researching the use of composites in the 

1960s, investigating the possibility of using boron or graphite fibers in an epoxy resin for 

aircraft control surfaces. Production use of the boron-epoxy composites was first seen in 

the horizontal stabilizers of the Navy’s F-14 Tomcat (8). 

Since then, the use of composites has continued to grow and has become 

increasingly important in the aerospace industry where the search for stronger, lighter 

1 



materials is always the focus. Today, the interest of the aerospace industry is in materials 

which can withstand extreme loads at high temperatures. For those reasons, ceramic 

matrix composites (CMCs) have become the focus of investigation. They consist of 

ceramic fiber reinforcement in a ceramic matrix. While ceramics on their own are too 

brittle for use in aerospace applications, CMCs are engineered with significantly more 

toughness. Although CMCs are extremely strong and have the highest operating 

temperatures of any material, they are still susceptible to the harsh environment of the 

turbine engine in which oxidation occurs and becomes the primary failure mechanism. 

Oxide/oxide materials have been developed where both the fiber and matrix are 

oxide based ceramics, such as alumina, which are inherently oxidation resistant. While 

oxide/oxide CMCs do show increased oxidation resistance, they still do not perform up to 

the levels needed for production use in aerospace applications. To further increase 

oxidation resistance, investigation into various fiber coatings has taken place in recent 

years. One such coating under investigation is monazite. It provides a weak interface 

between the fiber and matrix which causes the fibers to debond in the presence of an 

approaching matrix crack. This allows the fibers to withstand the load as the matrix fails, 

prolonging the life of the composite. The present study investigates the use of monazite 

coating in a Nextel 610/Alumina composite and characterizes the creep performance of 

the composite at elevated temperatures.  

The sections to follow will describe this research effort. First, a brief review of 

CMCs will be conducted along with a discussion of pertinent research in this area. Then 

an overview of the material being tested, N610/LaPO4/Al2O3, will be presented. Next, the 

experimental techniques and apparatus used in this study will be explained. Then the 
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experimental results obtained through this research will be examined. Finally, concluding 

remarks and recommendations for future research will be given. 
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II.  Background 

 

This chapter begins with a broad introduction to the basics of ceramic matrix 

composites (CMCs).  A description of the characteristics of CMCs and their applications, 

especially those in the United States Air Force (USAF), will then be given.  Next, factors 

that currently limit the use of CMCs are described, focusing on oxidation at elevated 

temperatures.  Methods of inhibiting oxidation are then reviewed, including a discussion 

on the oxide/oxide class of CMCs and fiber coatings.  Then, a summary of most recent 

research in the area of ceramic matrix composites, especially oxide/oxide composites and 

Nextel oxide fibers, will be give.  Finally, the objective of this study will be explained, 

which is to investigate the creep behavior of the Nextel 610/monazite/alumina composite. 

Ceramic Matrix Composites 

Fibers 

Ceramic fibers provide high strength and high elastic modulus, along with high 

temperature capability. For these reasons, ceramic fibers are very important as 

reinforcements in high-temperature structural materials (9:37). Ceramic fibers are 

categorized primarily on the basis of fiber size. They are typically either produced as 

multifiber tows consisting of 100-1000 smaller diameter fibers (5-15 μm) or as larger 

monofilaments (50-100μm) produced individually. Monofilament fibers are produced 

mainly for use in metal matrix composites, which are matrix dominated, where the large 

diameters do not limit the composite by introducing flaws on the same scale as the fiber 
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diameter. In CMCs, the use of smaller diameter fiber tows causes a reduction in scale of 

microstructural defects associated with the fibers (28:15).  

Ceramic fibers can also be divided into non-oxide and oxide fibers. Non-oxide fibers 

are made up of primarily silicon carbide (SiC). Examples of SiC based fibers include 

Nicalon, Tyranno and Sylramic (31). Other non-oxide fibers are created using silicon 

nitride, boron carbide, and boron nitride (9:49). Oxide fibers are mostly alumina (Al2O3) 

based and may contain small amounts of SiO2. Some examples of those are the Nextel 

610, 650, and 720 fibers created by 3M or yttrium-aluminum garnet (YAG) created by 

General Atomics (31). Oxide fibers are designed to be inherently oxidation resistant. A 

drawback to oxide fibers is that they are currently extremely expensive. 

Table 1 below, from DiCarlo et al (14), summarizes the key properties needed in a 

continuous ceramic fiber for use as reinforcement in high temperature continuous-fiber 

ceramic matrix composite, along with the benefit gained from each property. 
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Table 1. Summary of Key Fiber Properties and CMC Benefits 

Fiber Property CMC Benefit 
• High Modulus • Improves CMC stiffness and        

  reduces   matrix stresses 
• High As-Produced Strength • Improves CMC toughness and  

  ultimate strength 
• High Thermomechanical Stability • Improves CMC as-fabricated  

  strength, CMC strength retention  
  and creep resistance during service 

• High Oxidative Stability • Improves CMC service life in  
  oxidizing environments 

• Small Diameter • Improves matrix strength and  
  facilitates fabrication of thin and  
  complex-shaped CMCs 

• Low Density • Improves CMC specific properties  
  for weight-sensitive applications  
  and reduces stresses in CMC  
  rotating components 

• Low Cost • Reduces CMC cost and improves  
  CMC commercial viability 

 

Matrix Materials 

Ceramic matrix materials possess the ability to withstand very high temperatures, 

which has made them very desirable for use in high temperature structural composites. 

Metallic super-alloys, designed for use in jet engines, can only withstand temperatures up 

to 800oC or as high as 1000oC with an oxidation resistant coating. Above that 

temperature is where ceramics are required. Ceramics are made up of one or more metals 

combined with a nonmetal such as oxygen, carbon, nitrogen, or boron. They are generally 

stoichiometric, or have a fixed ratio of cations to anions. Some examples of that include 

alumina (Al2O3), silicon carbide (SiC), and silicon nitride (Si3N4).  
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Ceramic matrix materials can be categorized into glassy (amorphous) or crystalline 

matrices (28:13). Crystalline ceramics require higher processing temperatures than glass 

ceramics, which can cause damage to fibers. Ceramics matrices have very high elastic 

moduli, low density and high strength. The major disadvantage of ceramic matrices is 

that they are extremely brittle. This along with low thermal and mechanical shock 

resistance has put the emphasis toward developing tougher ceramics. Glass ceramics have 

the ability to achieve high densities at low processing temperatures. High density means 

low porosity and better mechanical properties, while low processing temperatures 

reduces the amount of damage to fibers. However, glass-ceramics are not capable of 

withstanding as high a temperature as polycrystalline ceramics (31:2-2). 

Ceramic matrix materials can also be categorized as non-oxide and oxide matrices. 

Common non-oxide ceramic matrix material include silicon carbide, silicon nitride and 

titanium diboride. Oxide type ceramic matrix materials are most commonly alumina or 

zirconia. Oxide ceramics are inherently oxidation resistant, whereas non-oxide ceramics 

rely on a layer of silica (SiO2) to prevent oxidation. Susceptibility of the silica layer to 

environmental degradation is a big problem for non-oxide ceramics. 

Ceramic Fiber Coatings 

 In the earliest ceramic composites, fiber/matrix interfacial layers were formed by the 

degradation of the fiber. These layers were sufficiently weak and fractured from stress 

concentrations caused by approaching matrix cracks, protecting the fiber. The resulting 

debonding of the fiber and matrix allowed the composite to still carry a load while the 

matrix was cracking. However, environmental degradation of this interfacial layer has 
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limited the use of such composites (25:521). For this reason, the need arose to produce 

fiber coatings which would provide the weak fiber/matrix interface and also withstand 

environmental degradation. Oxide/oxide composites with sufficiently porous matrices 

have also shown the ability deflect matrix cracks and allow fiber/matrix debonding. In 

composites with dense matrices, interfacial coatings are necessary to provide the weak 

interface. 

Fiber coatings such as boron nitride (BN) and carbon have been widely used in 

ceramic composites; however, their use is limited because they readily oxidize at elevated 

temperatures. In recent years, the emphasis has been on developing oxide fiber coatings 

which are inherently oxidation resistant and still able to produce the weak fiber/matrix 

interface.   

Interfacial coatings also prevent degradation of the fiber through interaction with the 

matrix material. One example of that is Nextel 610 fiber which has show to degrade 

through interaction with a fine grained alumina matrix when sintered at 1200oC (23:667). 

Nextel 610/Alumina composites will be examined in this investigation. An oxide fiber 

coating which has exhibited weak bonding and chemical stability to alumina is monazite 

(LaPO4). This thesis will focus on the effect of monazite coating on the Nextel 610 fiber 

in an alumina matrix.  

The two most common morphological defects associated with fiber coating have 

been fiber bridging and incomplete fiber coverage. Figure 1 and Figure 2, from Davis et 

al (12), illustrate fiber bridging and incomplete fiber coverage respectively.  
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Figure 1. Fiber Bridging 

 

Figure 2. Incomplete Fiber Coating 

 

Fiber bridging occurs when coated fibers bond together in bundles and limit 

infiltration of matrix between fibers. When fiber coating coverage is incomplete, the 

ability of the coating to create a weak interphase is lacking and fiber matrix bonding 

occurs causing embrittlement of the composite (12:584). 

Fabrication of Ceramic Matrix Composites 

In general, CMCs are developed in a two stage process. First, a reinforcement phase 

is incorporated in to an unconsolidated matrix, followed by matrix consolidation. For 

composites containing coated fibers as reinforcement, an additional step is needed up 

front to coat the fibers. During the fiber incorporation stage, fibers must also be aligned. 

The most common technique for fiber incorporation is the slurry infiltration process. This 

process involves a fiber tow being passed through a tank containing slurry (matrix 

powder, carrier liquid and organic binder) and then wound onto a drum or take-up wheel 
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and dried. The resulting “tape” is then cut in sections, stacked in the desired fiber 

orientation and consolidated.  

Many techniques can be used to consolidate the matrix; however, hot pressing is the 

most commonly used of those techniques. Hot pressing produces composites with very 

superior quality provided the thermal mismatch between the elements of the composite is 

low. Cold pressing followed by sintering is another technique for consolidation. This 

process involves a lot of matrix shrinking during sintering and the resulting composite 

has a lot of cracks. Other techniques include melt infiltration, in situ chemical reaction, 

and sol-gel and polymer pyrolysis. Melt processing produces a virtually pore-free, high 

density matrix, but requires very high temperatures. In situ chemical reactions include 

chemical vapor deposition (CVD) and chemical vapor infiltration (CVI). Sol-gel and 

polymer pyrolysis techniques have been successful, but often yield high shrinkage and 

repeated impregnations are needed to produce a substantially dense matrix (9). 

Two considerations must be observed when pairing together a matrix material with a 

fiber: thermal compatibility and chemical compatibility. High processing temperatures 

coupled with the low ductility of ceramics, lead to matrix (or fiber) cracking during 

cooling when a thermal mismatch is present. Thermal strain in a composite is 

proportional to ΔαΔT, where Δα is the difference between the linear coefficient of 

thermal expansion of the fiber and that of the matrix and ΔT is the change in temperature. 

Chemical compatibility prevents degradation at the fiber matrix interface at elevated 

processing and heat treating temperatures. Degradation can be caused by chemical 

reactions between the materials or phase changes in either component.   
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Properties of CMCs 

 Ceramic matrix composites offer a variety of attractive mechanical properties 

including high stiffness, high strength, low thermal expansion, and extremely high 

melting temperatures.  

In CMCs, relative elastic modulus values of the fiber and matrix, as the ratio of Ef/Em 

determines the amount of matrix microcracking. Failure strains for CMCs tend to be 

rather low compared to those of polymer matrix composites (PMC) or metal matrix 

composites (MMC). In both PMCs and MMCs, the failure strain of the matrix is much 

higher than that of the fiber. The situation is reversed in CMCs. In a PMC or MMC, the 

fibers fail first at their weak points and the composite fails at the location of the most 

fiber fractures. For CMCs two situations can occur. In strongly bonded CMCs, the fiber 

and matrix fail at the matrix failure strain, whereas in a weakly bonded CMC the matrix 

would start to crack, then the fibers would bridge the cracks and it would finally fail 

according to the failure strain of the fiber.  Since fibers are the stronger link in CMCs, the 

weaker interface is desirable (9). 

 Of particular interest to military applications of CMCs are low dielectric constant 

materials, such as oxides and nitrides, which allow absorption of RF energies in the radar 

wavelengths (9).  

Aerospace Applications 

The aerospace industry has been a major thrust in the research and development of 

ceramic materials. Among the areas of greatest interest in the benefits of ceramic 

materials are spacecraft, space communication, and propulsion technologies. Ceramics 
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are being sought after for their high specific strength, low specific weight, low thermal 

expansion, and their ability to retain strength at elevated temperatures. Ceramic matrix 

composites also offer improved damage tolerance over monolithic ceramics.  

Propulsion technologies are particularly interested in CMCs for their ability to 

improve thrust-to-weight ratios. This ratio can be increased by decreasing weight, 

increasing thrust, or both. The low specific weight inherent in CMCs allows for 

significantly lighter structures compared to those created from metal alloys. Achieving 

higher thrust values requires increasing turbine inlet temperatures. Technology advances 

over the past few decades have increased inlet temperatures to over 1300oC with the use 

of single crystal metal superalloys. In order to increase turbine inlet temperatures any 

further would require the use ceramics, especially those able to withstand environmental 

degradation at such high temperatures (32:2-11). 

The space environment experiences large temperature variations, between -160oC 

and 93oC, which become an obstacle when trying to maintain precise alignment of 

communication and sensor systems. The high stiffness and low thermal expansion 

coefficients of CMCs, makes them very attractive materials for use in space 

communication applications. High strength becomes secondary in the weightlessness of 

the space environment. An example of that is the mechanical arm of the space shuttle, 

which is made of graphite-epoxy composite. On earth the arm would not even be able to 

support its own weight of 411 kg, but in space it is designed to handle payloads of up to 

24,500 kg (34:5). Other space applications include portions of the space shuttle and 

future space planes, which need to withstand extreme temperatures. Space planes in 
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particular will fly at speeds and altitudes at which equilibrium temperatures are far hotter 

than those experienced by the space shuttle (34:1) 

An example of CMC applications in advances propulsion systems is the Integrated 

High Performance Turbine Engine Technology (IHPTET) program. This collaborative 

effort was started in 1987 between the Army, Navy, Air Force, NASA, DARPA and 

industry to double aircraft propulsion capability by 2005. The purpose of IHPTET is to 

meet future engine performance goals by the use of advanced materials, innovative 

structural designs, and improved thermodynamics. Among the accomplishments of 

IHPTET using CMCs are SiC/SiC composite liners for combustor walls, low and high 

pressure turbine vanes utilizing 3-D fiber architectures, hybrid bearing using ceramic 

elements, and C/SiC exhaust nozzles which require no cooling (33).  

Other aerospace applications of CMCs include F-16 afterburner flaps, rocket nozzle 

extensions, and rocket-engine thrust chamber components. Afterburner flaps in the 

General Electric F110 turbofan engine used in the F-16 experience temperatures in excess 

of 1000oC. Nickel based superalloy, Rene’ 41, has been used to create these flaps, but 

demonstrate excessive creep deformation resulting in shorter than intended life spans. As 

a replacement material, CMCs are being tested by the Air Force Research lab because of 

their ability to resist creep when exposed to temperatures above 1000oC for extended 

times (30: 2-13). Currently carbon/carbon nozzles are being use on the upper stage engine 

built by Pratt & Whitney for the Delta III launcher. The use of CMCs in thrust chambers 

not only reduces weight, but also provides resistance to thermal shock and stability to 

chemical attack from liquid propellants (29:410).  
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Oxidation 

Oxidation occurs in CMCs when they are exposed to the oxygen in air at elevated 

temperatures and is the biggest limiting factor in high temperature applications. The 

effect of oxidation is a shorter life at elevated temperatures and limitations on use at those 

temperatures. It is of particular concern in composites containing carbon where at 

elevated temperatures the carbon is eventually completely dissipated away in the form of 

carbon monoxide or carbon dioxide. This includes composites such as carbon/carbon 

(C/C), carbon/silicon carbide (C/SiC), and silicon carbide/silicon carbide (SiC/SiC). 

These composites have excellent high temperature strength, but they readily oxidize at 

high temperatures. In C/SiC composites a thermal mismatch between the fiber and matrix 

cause matrix cracks during the cool-down stage of processing. These cracks allow 

oxygen to reach and attack the fibers. SiC/SiC composites use a pyrolytic carbon fiber 

coating to allow fiber/matrix interface debonding. When the composite is loaded beyond 

the tensile strength of the matrix, the matrix will crack allowing oxygen to attack the 

carbon coating (30:24). Figure 3 is a schematic representation of the progression of 

oxidation of a coated fiber through a matrix crack (20). 
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Figure 3. Schematic Representation of Oxidation Progression through a Matrix Crack 

  

Oxidants, such as oxygen and water vapor, diffuse through an open matrix crack, 

oxidizing the sides of the crack and fiber coating as shown in Figure 3a. Next, the 

oxidation product begins the fill the crack area, reducing its width, as depicted in Figure 

3b. In Figure 3c, the crack has been sealed by oxidation products before the coating was 

oxidized, preventing significant damage to the fiber/coating/matrix interface. In other 
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cases, the coating may become breached by oxidation prior to the crack sealing and 

oxygen may still diffuse through the oxidation product of the fiber coating and continue 

to oxidize the fiber, as shown in Figure 3d (20). 

Composites containing carbon, boron nitride or SiC are all susceptible to 

embrittlement by the infiltration of oxygen through matrix cracks which attacks the 

fiber/matrix interface. The ability of the interface to enable debonding and crack bridging 

is severely inhibited by this oxidation. This process substantially limits the use of such 

composites at elevated temperatures, by requiring them to operate below the matrix 

cracking stress level. This deficiency has prompted the search for CMCs comprised of 

environmentally stable (oxidation resistant) oxide components (27:2077).  

Overcoming Oxidation 

The family of oxide/oxide composites has been developed to combat the issue of 

oxidation at elevated temperatures. Development of all-oxide composites has progressed 

along two separate microstructural design paths. The first method is based on producing a 

weak fiber/matrix interface. This method requires the use of stable oxide fiber coatings to 

create the weak interface between the fiber and a dense matrix. The second method 

utilizes the formation of a strong interface, but builds upon it by using a porous matrix to 

provide crack deflection paths. In the latter case, design and microstructural stability are 

critical. Matrices need to be sufficiently low in toughness to enable crack deflection, but 

still able to maintain strength. The objective is to produce a matrix with fine, uniformly 

distributed porosity (27:2077). The first method requires proven oxide interfacial 

coatings, such as monazite, which not only provide the weak interface, but are also 
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oxidation resistant and chemically stable with the composite constituents. The composite 

in this investigation will follow this approach by using a monazite coating on a Nextel 

610 fiber, comprised of over 99% alumina, in an alumina matrix.  

Previous Work 

Over the past few years, significant research has been accomplished in the area of 

oxide/oxide ceramic matrix composites.  

The potential for monazite to promote crack deflection was first demonstrated by 

Morgan and Marshall in 1995. Since then Monazite coatings have been tested on 

numerous fiber/matrix combinations. Chawla et al tested monazite coating on Saphikon 

(single crystal α-alumina) fibers in an alumina matrix (10). Their results showed that 

monazite coating was an effective method of creating weak interfacial bonds between 

monazite and alumina. Much research has been done using a monazite coated Nextel 610 

fiber in an aluminosilicate matrix. Cazzato et al (14), were also able to show that the 

monazite coating could produce a weak interface, however, they also observed decreased 

tensile strength and strain to failure in specimens with the monazite coating. This was 

attributed to the fiber coating technique and fiber bridging caused by clumped tows of 

coated fibers (7). Investigations have also been performed on monazite coated Nextel 

fiber tows, in an effort to determine the effect of various monazite precursors on fiber 

strength (4).  

Most of the recent research has focused on unidirectional composites, while it still 

remains a challenge to demonstrate monazites effectiveness as a weak interface material 

in 2-D laminated composites. Little investigation has been performed on cross-ply 
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laminated composites involving monazite coated fibers. Also, because of Nextel 720 

fiber’s improved creep resistance over the Nextel 610 fiber, a lot of research has been 

done with coated and uncoated N720 in both alumina and aluminosilicate matrices. N610 

fiber has also been investigated, primarily uncoated in aluminosilicate matrices. One 

extensively research composite of that nature was the General Electric Gen-IV. Results 

from Zawada et al (37) show fairly poor creep resistance of the N610 fiber which limited 

the composite’s use at temperatures above 1000oC.  

This investigation will focus on the Air Force Research Laboratory, Materials and 

Manufacturing Directorate developed N610/Monazite/Alumina composite. Keller et al 

(22) tested the effectiveness of monazite coating after long-term exposure to elevated 

temperatures. The investigation looked at both N610/Monazite and 

N610/Monazite/Alumina composites exposed to temperatures of 1100oC and 1200oC for 

varying lengths of time. Samples with uncoated fibers showed significant strength loss 

after short term exposure at 1200oC, while samples with monazite coated fibers showed a 

smaller initial reduction in strength, but remained constant through 1000 h at 1200oC. 

Push-out testing demonstrated that the matrix/monazite/fiber interface was weak and 

became weaker after longer-term thermal exposure (22).  

Little to no creep-rupture testing has been preformed on the cross-ply 

N610/Monazite/Alumina composite prior to this investigation.  

Thesis Objective 

The objective of this thesis will be to characterize the creep behavior of the Nextel 

610/Monazite/Alumina composite. As previously mentioned, oxidation is the largest 
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problem facing high temperature use of CMCs. It occurs when a composite is exposed to 

elevated temperatures for extended periods of time at certain stress levels. Creep-rupture 

testing, which involves sustained loading under elevated isothermal conditions, is the best 

way to demonstrate a composites ability to withstand oxidation and retain strength in 

high temperature applications. Resistance to creep at elevated temperatures is vital to the 

long term durability required for high temperature aerospace applications.  
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III.  Material and Specimen 

 

This section will discuss in detail the material under investigation. Nextel 

610/Alumina and Nextel 610/Monazite/Alumina will be compared and contrasted on both 

microstructure and material properties. The actual test specimens will then be discussed, 

including processing of the material, specimen shape and tabbing of the specimens. 

Nextel 610/Alumina vs. Nextel 610/Monazite/Alumina 

Nextel 610/Alumina and Nextel 610/Monazite/Alumina composites used in this 

investigation were developed by the Materials and Manufacturing Directorate of the Air 

Force Research Lab, AFRL/MLLN, located on Wright-Patterson Air Force Base, Ohio.  

Nextel 610 Fiber (N610) 

 The fiber reinforcement used to develop both composites under investigation is the 

Nextel 610 (N610) fiber developed by the 3M Corporation. It was developed in the mid 

90s to have uniquely high tensile strength and creep resistance. It is almost entirely made 

up of alumina, an oxide of aluminum. While most commercially available fibers contain 

silica or other non-crystalline phases, Nextel 610 is fully crystalline. N610 fibers are 

essentially pure (>99%) poly-crystalline alumina, α-Al2O3, and contains no glassy 

phases.  This improves creep resistance, as amorphous phases would become viscous at 

elevated temperatures. This also allows the fiber to retain its strength at high temperatures 

(1). Fully crystalline fibers containing high amounts of α-Al2O3 are also very chemically 
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stable which leads to environmental stability in corrosive atmospheres. Table 2 lists 

typical properties of the N610 fiber as reported by the manufacturer.  

 

Table 2. Properties of Nextel 610 Fibers 

Composition (wt %)   

Al2O3 >99 

SiO2 0.2 - 0.3 

Fe2O3 0.4 - 0.7 

Average Grain Size (μm) 0.1 

Filament Diameter (μm) 10 - 12 

Density (g/cm3) 3.88 

Tensile Elastic Modulus (GPa) 373 

Tensile Strength (MPa) 3100 
   

 

As seen from the table, the average grain size within the fiber is only 0.1 μm. In oxides 

with grains that small, creep rate is inversely proportion to grain size. Figure 4, from 

Johnson et al, is a Nextel 610 fiber showing its uniform, high density microstructure with 

grain size of ~100 nm (20).  
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Figure 4. Fine-grained Nextel 610 Fiber 

 

Nextel 720 is another commercially available fiber developed by 3M. It is made up of 

approximately 85% α-Al2O3 and 15% SiO2 forming α-Al2O3 /Mullite. Its mullite content 

with an average grain size of 0.5 μm leads to higher creep resistance. However, its lower 

content of alumina and larger overall grain sizes lend to a significantly lower tensile 

strength of 2100 MPa (2). Thus, fine grain size and high content of alumina are 

advantageous for high strength. Fine grained alumina does also have its drawbacks. At 

elevated temperature it is susceptible to large amounts of grain growth with cause loss of 

retained strength. Grain growth is inhibited in N720 by the addition of mullite which 

causes reduced grain boundary sliding allowing it to retain more strength at higher 

temperatures.  
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Alumina Matrix 

Al2O3 is also used as the matrix material for the composite under investigation. 

Alumina exists in only one stable form, α-alumina. It typically has strengths in the 300-

900 MPa range, depending on grain size. For crystalline alumina, the strength is around 

300 MPa, but is tougher than its amorphous counterpart due to inherent crack bridging 

ability. Additional properties include a modulus of 380 GPa and a coefficient of thermal 

expansion of 8.8 x 10-6/oC (26). As previously mentioned, alumina is an oxide of 

aluminum, and therefore oxidation resistant. At temperatures above 800oC, alumina has 

shown a friction coefficient of 0.40, the same as at temperatures below 200oC (38: 115). 

Low friction coefficient reduces friction with fibers during pull-out prolonging failure.  

 During the sintering stage of processing, shrinkage can occur at 1100oC, but 

actual sintering does not occur until 1400oC (38:112). The sintering temperature for the 

composite in this investigation was 1200oC, causing matrix shrinkage and microcracking 

in the matrix during processing. This is an inherent flaw in CMCs which require high 

processing temperatures.  

Monazite Coating 

In order to retain the oxidation resistance inherent in an oxide/oxide composite, 

oxide fiber coatings are most commonly used. Over the past 15 years, many oxidation 

resistant fiber-matrix interphase coatings have been investigated, and the most successful 

coating has been monazite, LaPO4. It was first investigated by Morgan and Marshall in 

1995 (22). They found LaPO4 to have a modulus of 133 GPa and a coefficient of thermal 

expansion of 9.6 x 10-6/oC (26). Monazite is an encompassing name for the lanthanide 
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phosphate class of compounds. Its success stems from the ability to create a high energy 

or “weak” interface with the alumina fiber. This allows the interface to debond readily in 

the presence of the stress intensity caused by a propagating crack. This process is referred 

to as “non-wetting”. Another benefit of monazite coating is relatively machinable and 

soft with a melting temperature of 2072oC (6:2793), well above the temperature range of 

the other composite elements. Monazite also proves to be chemically stable with alumina 

when it is present in a stoichiometric lanthanum-to-phosphate ratio (La:P ratio of 1:1). 

Nonstoichiometric monazite can severely degrade the fiber strength and affect the ability 

of the interface to debond. This has been one of the most significant obstacles to 

overcome in the coating process.  

The N610 fibers used in this investigation were coated with monazite using a sol-gel 

dip coating technique. This technique allows for better reproducibility of coating 

thickness and requires a low processing temperature. Low processing temperature 

reduces not only fabrication cost, but also the potential for coating degradation and 

interaction of the fiber and coating during processing (10).  Solution based precursors 

allow the stoichiometric ratio to be controlled accurately; however, obtaining continuous, 

uniform, bridge-free coatings proves difficult (20).   

Composite Microstructure 

Figure 5 is a schematic of the microstructural design of the 

Nextel610/Monazite/Alumina composite. The top image depicts both 90o (left-to-right) 

and 0o (out-of-the-page) plies. Tows of ~ 400 fibers are clearly visible in the 0o ply. 

Subsequent images within the figure depict higher magnification schematics of the 
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microstructure, showing both the coated fibers and the continuous network of alumina 

particles that make up the matrix. 

 

Fiber

Alumina
Monazite

Fiber

AluminaAlumina
MonaziteMonazite

 

Figure 5. Microstructural Design Schematic for Nextel 610/Monazite/Alumina 

 
 

Composite Fabrication 

Processing 

Nextel 610 fiber tows were desized in air at 1100oC and then coated with a monazite 

precursor solution at a rate of ~5 cm/s in an 1100oC furnace. The monazite sol was 

washed multiple times to remove any residual ions which could cause loss of fiber 

strength after coating. After coating, the fiber tows were filament wound onto a take-up 

wheel without any sizing used over the coating. Fibers were then drawn through a slurry 

and wound into a tape on a drum using an AFRL/MLLN developed filament winder. A 

schematic of the slurry infiltration process is shown in Figure 6 (9).  

 

25 



 

Figure 6. Schematic of Slurry Infiltration Process 

 

Slurry for uncoated fibers contained 15 vol% alumina powder (AKP-53, Sumitomo 

Corp.) and 85 vol% alumina sol (alumina nitrate + deionized water + citric acid + 

ethylene glycol), while the slurry for the coated fibers was 10 vol% alumina powder and 

90 vol% alumina sol. Monazite coating is thought to “soak up” more slurry . Fiber 

volume fractions were calculated by counting the number of wheel revolutions for a 

given tape width.  

The tape sections were then cut from the spool and stacked into a metal mold while 

still wet. The composite was laid up in an 8-layer symmetric cross-ply orientation of 

[(0o/90o)2)]s. Figure 7 shows a schematic representation of this cross-ply lay-up.  

 

26 



. . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . 0o

90o

0o

0o

0o

90o

90o

90o

. . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . 0o

90o

0o

0o

0o

90o

90o

90o

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . 0o

90o

0o

0o

0o

90o

90o

90o

 

Figure 7. Schematic Representation of (0o/90o/0o/90o)s Ply Lay-up 

 
 

The mold was then placed in a vacuum bag and a roughing pump was used to apply a 

vacuum. The bag was then placed on a Carver press containing heat platens and 

consolidated under ~1000 psig, with a maximum temperature of ~85oC. After several 

hours at this condition, the sample was removed and placed in a drying oven at ~100oC 

overnight. After drying, the sample was heat treated at 1200oC for 5 h in air. During the 

heating cycle, a one hour hold at low temperature was conducted to remove any residual 

organics in the matrix. Control samples, N610/Alumina, containing uncoated fibers were 

produced with the same procedure (21). 

During the cooling stage of processing, thermal mismatches amount the composite 

constituents cause then to shrink at different rates. Since the coefficient of thermal 

expansion of the matrix (8.8 x 10-6/oC) is larger than that of the fiber (7.9 x 10-6/oC) it 

shrinks faster causing microcracking to occur throughout the matrix of the composite. 

This is a common problem when processing ceramic composites. Extensive surface 

microcracking can be seen in a top view of an as-received test specimen, shown in Figure 
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8, while interlaminar matrix cracks can be seen in a side view of an as-received specimen 

shown in Figure 9.  

 

 

Figure 8. Surface Microcracking 

 

 

Figure 9. Interlaminar Microcracking 

 

 

Test Specimen 

Test specimens were cut from the composite panels by two methods throughout this 

investigation. Some specimens were cut using an abrasive water-jet machine at Kerf 

Wajerjet. These specimens were then cleaned using an ultrasonic bath, soaked in alcohol 

and finally dried in a oven to remove any residual liquid. Other specimens were cut using 

a diamond-grit cut/grinding approach at Bomas Machining, and were cleaned before they 

were returned.  

A specimen length of 126 mm (~5 in) was chosen as slightly shorter than the 6 in 

panel length obtained during composite production, to eliminate the non-uniform edges 

of the material due to hand lay-up of the plies. A reduced gage section (dogbone) shape 
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was chosen for test specimens to promote gage section failures during testing. Figure 10 

shows the exact specimen geometry. Circular insert shows fiber orientation and is not 

machined into the specimens. 
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Figure 10. Test Specimen Geometry 

 
 
 

 Test specimens used in both tensile and creep-rupture tests we tabbed using a glass-

fabric/epoxy material. Glass fabric/epoxy works well as a tabbing material because it is a 

more compliant material and reduces the stress concentration introduced by discontinuity 

at the tab end. It is also a very tough and fairly strong material which can absorb the 

surface damage caused by the hydraulic wedge grips (3).  The purpose of tabbing is 

twofold; first to transfer the load from the hydraulic wedge grips to the test specimen 

without causing stress concentrations due to uneven gripping surfaces, and second to 

protect the surface of the composite from damage by the grips. Specimen areas to be 
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tabbed and tab surfaces were cleaned using M-Prep Neutralizer. The tabs were then 

coated with an M-Bond Catalyst to ensure secure bonding of the tab to the specimen. 

Five drops of M-Bond Adhesive in a “X” pattern were used to bond the tab to the 

specimen. Pressure was applied for 15 seconds to evenly distribute adhesive and create a 

strong bond. An example of a tabbed specimen can be seen in Figure 11.  

 

 

Figure 11. Tabbed Test Specimen 
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IV.  Experimental Setup and Testing Program 

 

This section describes the equipment used to characterize the Nextel 

610/Monazite/Alumina composite, along with the procedures for testing and post-test 

analysis.  

Test Equipment 

Equipment used in testing falls into three main categories: Microstructural 

characterization equipment (discussed in Post Failure Analysis section), mechanical test 

apparatus, and high temperature equipment. 

Mechanical Test Apparatus 

 Four main pieces of equipment used in characterizing the Nextel 

610/Monazite/Alumina composite fall into this category. They included the servo 

hydraulic machine, the chilled water system, the extensometer, and the computer 

software. 

 The servo hydraulic machine utilized for all testing was a Material Test Systems 

(MTS) Corporation axial test system configured horizontally. Although this machine has 

a 25 kN (5500 lb) capacity, the highest load reached during testing was only 7.1 kN 

(1605 lbs). The machine utilized a pair of MTS 647.02A-01 Hydraulic Wedge Grips. The 

grips each contained a pair of interchangeable wedges with flat griping surfaces coated 

with a layer of surf alloy to prevent slipping of the test material. Each wedge contained 

an inlet and outlet to allow cooling water to pass through during testing and maintain a 
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suitable grip temperature. The grip pressure was controlled by an MTS 685.53 Hydraulic 

Grip Control attached to the test stand which is capable of pressures up to 20.7 MPa 

(3000 psi). Grip pressures varied from 3.5 to 8 MPa (500 - 1160 psi) during testing based 

on the maximum load required for each test, to prevent slipping. Grip pressure was also 

carefully chosen so that the specimen was not crushed when gripped. 

Prior to testing, the grips were aligned using an MTS 709 Alignment System 

consisting of an MTS 609 Alignment fixture fitted with twelve strain gages and MTS 709 

Alignment Software. The alignment specimen’s strain levels were zeroed out, and then 

gripped under no load. The position and rotation of the right grip was then adjusted using 

the alignment fixture until the strain levels were again close to zero. This procedure 

eliminated any bending or twisting stresses on test specimen caused by improper 

alignment of the grips. The MTS Alignment Fixture is shown in Figure 12.  

 

 

 

Figure 12. MTS 609 Alignment Fixture 
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An MTS model 661.20E-01 load cell, also with a 25 kN capacity, measured the load 

applied to the test specimen by the hydraulic piston. Figure 13 depicts the test stand with 

the servo hydraulic machine, the furnace, and the extensometer assembly.  

 

 

 

Figure 13. MTS Servo Hydraulic Machine 

 

 

 The machine supplying the cool water for grip cooling was a NESLAB model HX-

75 chilled water system. This system became extremely important during elevate 
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temperature testing to keep the grips cool while area surrounding the furnace was very 

hot. The chiller was connected to the test stand by rubber hosing and distributed to the 

wedges via 6.35 mm (1/4 in) outer diameter black plastic tubing after passing through a 

water pressure regulator at the top of the stand. The HX-75 pumped distilled water at 

9oC. This system was used during all high temperature testing, including temperature 

calibration runs. 

 Strain was measured with an MTS high temperature uniaxial extensometer model 

number 632.53E-14. It included two 3.5 mm diameter alumina rods with a 12.7 mm (0.5 

in) gage length and a cone-shaped tip for mounting on flat specimens. The extensometer 

can measure strains between +20 and -10% for a maximum specimen temperature of 

1200oC (2200oF) and can provide up to 300 g of contact force through spring tension. A 

heat shield is also part of the assembly to protect the extensometer and conditioning 

electronics. Figure 14 shows the extensometer assembly. An MTS calibrator model 

650.03 was used to calibrate the extensometer prior to testing.  
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Figure 14. MTS High Temperature Uniaxial Extensometer Assembly 

 

 

 The computer software used to control the servo hydraulic machine and furnace was 

MTS TestStar IV. Its Multi Purpose Testware (MPT) feature was used to program each 

type of test and acquire data during testing. The software allowed for completely 

automated testing and data acquisition. Figure 15 shows an example of an MPT test 

program used during a creep test. 
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Figure 15. MPT Creep Test Procedure 

 

 

High Temperature Equipment 

 Testing at elevated temperatures, which ranged between 900 and 1200oC, was 

accomplished by using a single zone Amteco Hot Rail Furnace System and a single zone 

MTS 653.01A High Temperature Furnace. The MTS furnace was only used for 1200oC 

tests and the Amteco furnace was used for the rest of the tests. Both furnaces were made 

up of two halves, each containing one silicon carbide heating element, mounted above 

and below the gripped specimen. Figure 16 shows the bottom portion of the Amteco 

furnace in place below the specimen.  
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Figure 16. Furnace in Place below Specimen 

 

 
The MTS furnace allowed for 19 mm of the specimen to be exposed to the elevated 

temperature, while the Amteco allowed 15 mm. The furnace chamber was made of a 

removable fibrous alumina insert, which was carved out to allow room for only the 

specimen and extensometer rods when the two halves are closed together. This allows for 

minimum heat loss during testing. The furnace was controlled by an MTS 409.83 

Temperature Controller unit. An S-type thermocouple mounted in the top half of the 

furnace provided a temperature feedback loop to the controller unit. Power was supplied 

to both furnace halves equally by the unit until the temperature sensed by the 

thermocouple matched that of the desired temperature in the chamber. 
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In order to calibrate the appropriate chamber temperature for a desire specimen 

temperature, a test specimen was fitted with two Omega Engineering, Inc P10R-015 0.38 

mm diameter S-type thermocouples. One thermocouple was mounted to the top of the 

specimen and the other to the bottom just off center to ensure continuity of the specimen 

temperature. S-type thermocouples were used for their ability to operate at high 

temperatures and accuracy at those temperatures.  Figure 17 shows a schematic of the  

 

Figure 17. Schematic of Temperature Specimen 

 

temperature specimen with the top thermocouple in view. The thermocouples were fed 

through a series of ceramic insulators to shield all but the tips and maintain separation 

between the wires. They were held in place with additional S-type thermocouple wire and 

bonded to the specimen using Zircar alumina cement. The temperature specimen was 

then baked just under 100oC for one hour to harden and remove any water from the 

cement. The ends of the thermocouples were positioned such that they could pass through 

the extensometer holes in the furnace chamber. 
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Test Procedures 

 Test procedures for both monotonic tension tests and creep tests are described below. 

In addition, procedures for calibrating and maintaining furnace temperatures are 

presented.  For all testing, including temperature calibrations, the first side of the 

specimen was mounted in the grips of the servo hydraulic machine under stroke control 

while the other was mounted under load control. Gripping under load control assures zero 

load on the specimen throughout the heating process despite thermal expansion of the 

material. The extensometer rods were then brought in contact with the specimen using 

spring tension and the strain value was zeroed out prior to testing.  

Test Temperature 

 In order to insure proper specimen temperature during all high temperature testing, 

the MTS furnace needed to be calibrated for each test temperature. This was done using 

the aforementioned temperature specimen along with an Omega Engineering, Inc. 

OMNI-CAL-8A-110 portable, two-channel temperature sensor. The temperature 

specimen was mounted in the grips with minimal grip pressure (~1 MPa). Once gripped 

the two halves of the furnace were closed around the specimen allowing the 

thermocouples to pass through the extensometer holes. The thermocouples were then 

hooked up to each channel of the temperature sensor to monitor specimen temperature on 

both the bottom and top surfaces.  

 Using the MPT software, the furnace temperature was raised to the desired specimen 

temperature at a rate of 1oC per second. When the furnace reached the programmed 

temperature, it was then adjusted manually until the readings from the two thermocouples 
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mounted to the specimen were as close to the desired temperature as possible. The 

furnace temperature was then allowed to stabilize and was further adjusted for an exact 

controller setting for each specimen temperature desired. Specimen temperature was 

found to reach equilibrium at approximately 15 minutes for all temperatures. At 

equilibrium the top and bottom thermocouples were within ± 2oC of each desired 

temperature. It was found that to reach a desired specimen temperature, the temperature 

of the furnace did not need to be as high. Table 3 below depicts the desired test 

temperatures along with their respective furnace controller settings. The asterisk on the 

controller setting for 1200oC indicates that it was found using the MTS furnace, while the 

rest were found using the Amteco furnace. 

 

Table 3. Temperature Controller Settings 

Specimen Temp 
(oC) 

Controller Setting 
(oC) 

1200 1259* 
1100 904 
1000 801 
900 714 

 

 

Monotonic Tension Tests 

 Monotonic tension tests to failure were performed on tabbed specimens of both the 

Nextel 610/Alumina and the Nextel 610/Monazite/Alumina. These tests were performed 

under stroke control with a constant loading rate of 0.05 mm/sec. This loading rate results 
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in failure in less than 60 seconds which minimizes time dependent behavior during 

elevated temperature tests (3). For high temperate tests, the specimen was heated at a rate 

of 1oC/sec, and then allowed a 15 min dwell time prior to load-up for the temperature to 

stabilize. During testing, data acquisition included load, strain, stroke, stroke command, 

stroke abs error and temperature. Tension tests were run at every test temperature to 

obtain information on baseline ultimate tensile strength (UTS), modulus of elasticity (E) 

and coefficient of thermal expansion (α). Ultimate tensile strength in MPa was obtained 

by dividing the maximum load value, in N, before failure by the specimen’s cross-

sectional area in mm.  Modulus values were calculated as the slope of the stress-strain 

curve over the 5-25 MPa stress range. Thermal strains were subtracted during data 

analysis to ensure that only mechanical strain was represented in the stress-strain curves. 

Creep – Rupture Tests 

 The main focus of this investigation was on creep-rupture behavior. Creep-rupture 

test were carried out in the following manner. Load rate for these tests was based on the 

linear portion of the stress-strain curves.  That portion of the curve was converted from 

stress vs. strain to load vs. time from which the slope was calculated to be 700 N/s (~160 

lb/s). All creep tests were then run under load control with that load-up rate until the 

maximum load for the test was reached. Maximum load was determined as the desired 

creep stress level multiplied by the individual specimen cross sectional area. Figure 18 

depicts the applied stress-vs-time profile for a given creep stress level and a 700 N/s load-

up rate. Data acquisition during creep test consisted of stroke, strain, load, load 

command, load abs error and temperature. The run-out condition for creep tests was 
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defined as survival of 100 h which represents the amount of time at maximum 

temperature for typical applications of this material.  
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Figure 18. Stress vs. Time Behavior for Creep Tests 

 

During creep-rupture testing, differences in elastic constants, creep rates, and stress-

relaxation behavior between the fiber and the matrix can cause a time dependent 

redistribution of stress. When creep is present, the creep resistance mismatch causes a 

higher stress in the component with higher creep resistance and a decrease in stress for 

the less creep resistant component. Figure 19, from Holmes and Wu (19), illustrates the 

stress redistribution in a 0o layer of a composite with a more creep resistant fiber, which 

is typically the case (19:194).  
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Figure 19. Stress Redistribution during Creep 

 

This phenomenon places great emphasis on the creep resistance and tensile strength 

of the fiber. This also illustrates what happens when the matrix begins to crack and the 

load is transferred to the fibers for continued survival during creep. 

Post Failure Analysis 

The post failure analysis consisted of microstructural analysis using a Scanning 

Electron Microscope (SEM), as well as optical microscopy. Microstructural analysis was 

conducted on both the virgin (untested) material and the fracture surfaces of the test 

specimens for comparison.   
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SEM Analysis 

 SEM analysis was accomplished using a FEI FP 2011/11 Quanta 200 HV Scanning 

Electron Microscope shown in Figure 20. This form of microscope bombards the 

specimen with electrons and builds an image from those electrons that are reflected. 

Since ceramic materials are not good conductors and tend to build up a charge of 

electrons which distorts the SEM image, the specimens were coated with a conductive 

layer of gold prior to analysis. The gold coating was applied using an SPI MODULE 

11430 Sputter Coater shown in Figure 21.  

 

 

Figure 20. FEI Quanta 200 HV Scanning Electron Microscope 
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Figure 21. SPI MODULE Sputter Coater 

 

The sputter coater uses positively charged argon gas ion plasma in a vacuum sealed 

chamber to strike a gold target knocking off the metal atoms which fall onto the specimen 

below. Prior to coating, the fractured specimen halves were cut down to a length that was 

usable in the SEM and mounted to an SEM test stand. Figure 22 below shows a coated 

specimen attached to a stand for use in the SEM.  
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Figure 22. Sputter Coated Specimen for SEM Analysis 

 

Optical Microscopy 

Optical Microscopy was performed using a Zeiss Stemi SV II Optical Microscope 

incorporating a Zeiss AxioCam HRc digital camera. Virgin material was examined at 

lower magnification to demonstrate inherent flaws in the composite due to processing. 

Fracture surfaces of tested specimens were viewed at varying levels of magnification to 

depict amounts of fiber pullout during failure, as well as for lower magnification images 

of the material’s post test microstructure.  
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V.  Results and Discussion 

 

This chapter will describe, in detail, the findings of this experimental investigation. It 

will begin with a brief discussion of thermal strain values calculated for all tests. Then 

there will be a discussion of the monotonic tension tests that were performed and the 

results of those tests. Finally, the creep test results will be presented and explained. 

Microstructural analysis will accompany each section 

Thermal Strain 

Thermal strain values were recorded in all elevated temperature tests and then used 

to calculate a coefficient of thermal expansion (CTE), α, value for each test. These results 

are summarized in Table 4. Coefficient of thermal expansion was evaluated by using the 

thermal strain equation shown below: 

 

Tth Δ⋅= αε         (1)   

 

where εth is thermal strain and ΔT is the temperature change in oC. Temperature change 

values were based on a consistent initial specimen temperature of 23oC for all tests.  
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Table 4. Linear Coefficient of Thermal Expansion Summary 

Specimen 
Number Material Test Type

Test 
Temperature 

(oC) 

εth 

(mm/mm)

α         
(10-6/oC) 

T1 N610/LaPO4/Al2O3 tensile 900 0.006966 7.943 
T2 N610/LaPO4/Al2O3 tensile 1000 0.007506 7.683 
T3 N610/LaPO4/Al2O3 tensile 1100 0.008493 7.886 
T4 N610/LaPO4/Al2O3 tensile 1200 N/A N/A 
T6 N610/Al2O3 tensile 1100 0.007936 7.369 
T7 N610/Al2O3 tensile 1200 0.009484 8.058 
C1 N610/LaPO4/Al2O3 creep 1200 0.009269 7.875 
C2 N610/LaPO4/Al2O3 creep 1100 0.008386 7.786 
C3 N610/LaPO4/Al2O3 creep 1100 0.008993 8.351 
C4 N610/LaPO4/Al2O3 creep 1100 0.008077 7.500 
C5 N610/LaPO4/Al2O3 creep 1100 0.009376 8.706 
C6 N610/LaPO4/Al2O3 creep 1000 0.007523 7.700 
C7 N610/LaPO4/Al2O3 creep 900 0.006902 7.870 
C8 N610/LaPO4/Al2O3 creep 900 0.006774 7.725 
C9 N610/LaPO4/Al2O3 creep 900 0.006721 7.663 
C10 N610/LaPO4/Al2O3 creep 900 0.006798 7.751 
C11 N610/LaPO4/Al2O3 creep 900 0.007355 8.387 
C12 N610/Al2O3 creep 900 0.006593 7.518 
C13 N610/Al2O3 creep 900 0.006805 7.759 

 

 

The average values for the coefficient of thermal expansion are 7.916 x 10-6/oC and 

7.676 x 10-6/oC, for N610/LaPO4/Al2O3 and N610/Al2O3 respectively. According to 3M, 

the linear coefficient of thermal expansion for the Nextel 610 fiber alone is 7.9 x 10-6/oC 

(29). Specimens with monazite coated fibers are allowed to fully expand via the weak 
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interface, whereas uncoated fibers become bonded to the matrix and thermal expansion is 

slightly inhibited. Specimen T4 was omitted from these calculations due to an 

extensometer slip. 

Monotonic Behavior 

 Monotonic tensile tests to failure were performed to determine baseline ultimate 

tensile strength (UTS) and modulus of elasticity (E) values at each temperature. 

Monotonic tensile test results are summarized in Table 5.  

 

Table 5. Summary of Monotonic Tensile Test Results 

Specimen 
Number Material 

Test 
Temperature 

(oC) 

UTS 
(MPa)

Ε          
(GPa) 

εf      
(%) 

Failure 
Location 

(inside/outside 
gage section) 

T1 N610/LaPO4/Al2O3 900 180.09 83.06 0.3115 inside 

T2 N610/LaPO4/Al2O3 1000 162.48 78.05 0.2783 inside 

T3 N610/LaPO4/Al2O3 1100 157.39 76.37 0.3441 inside 

T4 N610/LaPO4/Al2O3 1200 129.54 49.80 1.4251 inside 

T5 N610/Al2O3 RT 116.70 129.18 0.0943 inside 

T6 N610/Al2O3 1100 104.83 115.84 0.1078 inside 

T7 N610/Al2O3 1200 94.88 49.49 0.4613 inside 

 

 

For temperature up to 1100oC, failure strain (εf) exhibits no temperature dependence; 

while strength (UTS) and stiffness (E) decrease only slightly with increasing test 

temperature. At 1200oC tensile behavior is highly nonlinear and large losses in strength 

and toughness, along with much larger failure strains, are observed. Strength decreases 
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9.7% between 900oC and 1000oC, 3.1% between 1000oC and 1100oC, and 17.7% 

between 1100oC and 1200oC. Stiffness drops 6.0% between 900oC and 1000oC, 2.2% 

between 1000oC and 1100oC, and 34.8% between 1100oC and 1200oC. Stress-strain 

curves obtained are presented below in Figure 23 for N610/Monazite/Alumina and Figure 

25 for N610/Alumina. 

It is known that tensile behavior of a cross-ply composite is 0o fiber-dominated. 

Hence tensile stiffness of the composite can be approximated based on the stiffness of the 

fibers using the following relationship: 

 

 f
f

c E
V

E ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2
        (2)   

 

where Ec is the composite modulus, Vf is the fiber volume fraction, and Ef is the fiber 

modulus. Using an average fiber volume fraction of 48.7% and 41.8% for coated and 

uncoated fiber containing composites respectively, along with the RT modulus of 380 

GPa for N610, composite moduli of 92.5 MPa and 79.4 MPa can be calculated 

respectively. Stiffness values for uncoated fiber-containing specimens found in this 

investigation indicate that the matrix and transverse fibers (90o) also contribute to the 

composite stiffness by increasing it to 129.18 MPa at RT. Experimental stiffness values 

for coated fiber-containing specimens indicate that the presence of the monazite fiber 

coating reduces composite stiffness. 
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 Failure location refers to whether the test specimen failed inside or outside of the 

extensometer gage section. All tensile specimens in this investigation failed inside the 

gage section. 

Stress – Strain (σ − ε) Curves 

 Stress-Strain curves obtained for N610/Monazite/Alumina at 900, 1000, and 1100oC 

are shown in Figure 23.  
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Figure 23. Stress-Strain Curves for N610/Monazite/Alumina 

 

All curves display nearly linear elastic behavior initially. The stress-strain curves 

depart from linearity at ε ≈ 0.27% for 900oC, ε ≈ 0.22% for 1000oC, ε ≈ 0.15% for 
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1100oC, and ε ≈ 0.12% for 1200oC. Seemingly inelastic (non-linear) behavior seen in the 

curves is actually progressive matrix cracking and crack deflection. This mechanism is 

thought by Chou et al to start as a transverse crack (crack in a 90o ply), progress into a 

matrix crack (crack in matrix of 0o ply), and finally cause fiber/matrix debonding and 

sliding (11). At the point of initial deviation from linearity, matrix cracks form in either 

matrix-rich regions or 90o plies at lower stress levels than they would in a 1-D composite. 

Matrix cracks originating in 90o plies proceed through the composite by a tunneling 

mechanism (16:45). Figure 24 from Evans et al (16), shows how matrix crack growth 

occurs in 2-D CMCs. 

 

 

Figure 24. Crack Growth Mechanisms in 2-D CMCs 
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Inelastic deformation characteristics which enable the composite to retain strength in 

the presence of cracks are important to its attractiveness for use in high temperature 

applications. Crack deflection by the monazite coating causes the matrix and fibers to 

debond resulting in fiber pullout. During this process of continual matrix cracking, the 

load is transferred to the fibers prolonging composite failure. The amount of measured 

strain during this process was a function of the exact failure location in reference to the 

location of the extensometer rods on the specimen and how long the extensometer was 

able to maintain contact with the specimen. Fiber pullout is evidence that the monazite 

coating did create the desired week interface between the fiber and the matrix allowing 

cracks to be deflected and preserving strength at high temperatures. 

Due to the number of test specimens, a RT tensile test for N610/Monazite/Alumina 

was not conducted. However, an approximate tensile strength can be calculated from the 

average room temperature tow strength of 1.13 GPa for N610 fiber heat treated at 1200oC 

for 5 h presented by Keller et al (22:327). Normalizing the fiber tow strength for an 

average fiber volume fraction of 48.7% and a cross-ply orientation (~50% of fibers in 

loading direction), room temperature tensile strength would be approximately 275 MPa.  

  Stress-strain curves for N610/Alumina obtained at 23oC (RT) and 1100oC are 

shown in Figure 25, on the same strain scale as those for N610/Monazite/Alumina.  
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Figure 25. Stress-Strain Curves for N610/Alumina 

 
 

Up to 1100oC, the curves are nearly linear-elastic until failure with no evidence of 

non-linearity associated with fiber pullout. Only a small decrease in tensile strength 

between 1100oC and RT indicates that the composite is able to retain its strength at high 

temperatures. However, lack of fiber-pullout demonstrated that without the monazite 

coating, the fiber and matrix become bonded together during processing. This results in 

the lower tensile strength as compared to the monazite containing specimens, as matrix 

cracks are not deflected and propagate directly into the fiber causing failure at lower 

stress levels. Due to the number of test specimens, a 900oC tensile test wasn’t performed. 

Tensile strength for 900oC was estimated at 110 MPa between the RT and 1100oC values. 
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The effect of the monazite coating is more clearly seen in Figure 26, depicting stress-

strain curves for both composites at 1100oC.  
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Figure 26. Stress-Strain Curves at 1100oC 

 
 

It is seen that the stress level at which the stress-strain curve for 

N610/Monazite/Alumina specimen departs from linearity is approximately equal to the 

UTS for N610/Alumina specimen. In the coated fiber containing specimen, crack 

deflection by the monazite coating allows the fibers to absorb the load while the matrix is 

failing, thus perpetuating a much higher tensile strength. In the control specimen, the 
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matrix and fiber have become bonded and cracks are able to propagate straight through 

the fiber causing planar fracture surfaces with little to no fiber pullout. 

This behavior is supported in Figure 27, from DiCarlo et al (14), which depicts the 

ideal stress-strain behavior of a continuous fiber reinforced ceramic composite.  

 

 

Figure 27. Ideal Stress-Strain Behavior of a CMC 

 

The composite without the monazite coated fiber will fail at or just after the onset of 

matrix cracking due to the bonding of the fiber and matrix. Therefore the curve never 

departs the nearly linear portion shown above. However, the composite with the coated 

fibers which deflect matrix cracks, is able to sustain the load while the matrix continues 

to fracture, thus entering the nonlinear portion shown above. Upon the onset of fiber 

fracture, pullout begins. As mentioned previously, only small amounts of pullout are 
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visible in the above stress-strain curves, because the extensometer rods lose contact with 

the test specimen when fiber fracture occurs. 

Microstructure 

Fracture surfaces for N610/Alumina specimens obtained from monotonic tensile 

tests display nearly planar fractures at different locations in each ply. The location at 

which each ply failed corresponded to the location of the most fiber fractures within the 

ply. Tensile fracture surfaces are shown below for N610/Alumina at 23oC in Figure 28, 

1100oC in Figure 29, and at 1200oC in Figure 30. Specimen width is approximately 10 

mm for all specimens.  

 

 

Figure 28. Tensile Fracture 
Surface of N610/Alumina 
at 23oC 

 

Figure 29. Tensile Fracture 
Surface of N610/Alumina at 
1100oC 

 

Figure 30. Tensile Fracture 
Surface of N610/Alumina at 
1200oC 

 

Fracture surfaces at RT and 1100oC show only small amounts of uniformly 

distributed fiber pullout. Where present, pullout is mainly groups of bonded fibers vice 
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single filaments. Fiber bonding most likely occurred during processing, as room 

temperature fracture surfaces exhibit the same behavior. The amount of pullout seems to 

increase slightly with increasing test temperature between RT and 1100oC. Lack of fiber 

pullout also corresponds to the tensile curves for specimens at RT and 1100oC, by nearly 

linear behavior until failure. Failure of the matrix and fibers occur simultaneously in 

these specimens. Failure appears to start from surface flaws on both the top and bottom 

faces of the specimen, propagating inward until delamination occurs between the two 90o 

layers at the center. At 1200oC, the matrix is significantly weakened and matrix cracking 

begins at approximately 45 MPa. Since the test temperature is equal to that of the heat 

treatment temperature, fiber/matrix bonds created during processing are released. This 

allows fibers to debond from the matrix and regions of random fiber pullout are seen in 

Figure 30. Again failure appears to have started from two surface locations, propagating 

inward with delamination occurring between the first 90o layer and the second 0o layer. 

Delamination during fracture is more easily seen in side views of the fractures surfaces, 

depicted below at 23oC in Figure 31, 1100oC in Figure 32, and at 1200oC in Figure 33. 

Thickness is approximately 3 mm for RT and 1100oC specimens, and approximately 3.5 

mm for the 1200oC specimen. 
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Figure 31. Tensile Fracture 
Surface of N610/Alumina 
at 23oC (Side) 

 

Figure 32. Tensile Fracture 
Surface of N610/Alumina at 
1100oC (Side) 

 

Figure 33. Tensile Fracture 
Surface of N610/Alumina at 
1200oC (Side) 

 

The SEM image in Figure 34, of the specimen tested at 1100oC, shows a 

continuation of the delamination through the center of the composite. Figure 35 shows 

the delamination at higher magnification down the surface of fracture. 
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Figure 34. SEM Image Showing 
Delamination at 20x Magnification 

Figure 35. SEM Image Showing 
Delamination at 300x Magnification 

 

Fracture surfaces for N610/Monazite/Alumina specimens obtained from monotonic 

tensile tests also appear very similar to each other. In contrast to the N610/Alumina 

composite, fracture surfaces show extensive amounts of uniformly distributed fiber 

pullout. Pullout is also very brush-like and is almost entirely single fibers as opposed to 

groups of bonded fibers. Fracture surfaces for can be seen  for the test at 900oC in Figure 

36, 1000oC in Figure 37, 1100oC in Figure 38, and at 1200oC in Figure 39. 
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Figure 36. Tensile Fracture Surface of 
N610/Monazite/Alumina at 900oC 

 

Figure 37. Tensile Fracture Surface of 
N610/Monazite/Alumina at 1000oC 

 

Figure 38. Tensile Fracture Surface of 
N610/Monazite/Alumina at 1100oC 

 

Figure 39. Tensile Fracture Surface of 
N610/Monazite/Alumina at 1200oC 

 

 

 Addition of the monazite fiber coating clearly provided the weak interface between 

the fiber and matrix that was desired, allowing the fibers to debond readily. Tensile 

strength was increased significantly, as was strain to failure. Pullout length varies 

significantly across fracture surfaces. At the time of fracture, the fibers were supporting 

the entire load and finally failed at their weakest location. 
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 Side views of the tensile fracture surfaces indicate uniform pullout in each of the 

0o layers. They can be seen for tensile tests performed at 900oC in Figure 40, 1000oC in 

Figure 41, 1100oC in Figure 42, and at 1200oC in Figure 43. 

 

 

 

Figure 40. Tensile 
Fracture Surface of 
N610/Mon/Alumina 
at 900oC (Side) 

 

Figure 41. Tensile 
Fracture Surface of 
N610/Mon/Alumina 
at 1000oC (Side) 

 

Figure 42. Tensile 
Fracture Surface of 
N610/Mon/Alumina 
at 1100oC (Side) 

 

Figure 43. Tensile 
Fracture Surface of 
N610/Mon/Alumina 
at 1200oC (Side) 

 

 

Failure of the 90o plies are basically planar and occurred at or near the same level in 

the composite. Matrix cracks could have propagated through each layer deflected around 

the fibers by the monazite coating and, in some cases, traveled along a debonded fiber 

socket causing failure in the next transverse ply at a slightly different level. Specimens 

that show 90o layer failures at very different levels indicate multiple flaws could have 

caused the separation in failure planes. 
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 On a microscopic scale, the extensive pullout of the N610/Monazite/Alumina 

composite can be seen to clearly contrast the planar fracture surfaces of the 

N610/Alumina composite. Figure 44 shows an SEM image of the fracture surface for the 

N610/Alumina, while Figure 45 shows the fracture surface for the 

N610/Monazite/Alumina specimen. Both specimens were tested at 1100oC.  

 

 

Figure 44. Tensile Fracture Surface of 
N610/Alumina at 1100oC at 300x Mag. 

 

Figure 45. Tensile Fracture Surface of 
N610/Mon/Alumina at 1100oC at 160x Mag. 

 

  

Deep holes indicate location of pullout from the opposite half of the specimen. The 

specimen with monazite coated fibers shows large differences in fiber pullout lengths, 

while the specimen with the uncoated fibers fracture at approximately the same length 

with some groups of fibers pulled out slightly. 
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Further magnification (500x) of the N610/Alumina specimen tested at 1100oC, 

depicts a group of fibers bonded together. This fiber bridging, shown in Figure 46, 

inhibits the infiltration of matrix material during processing and leads to embrittlement, 

as seen from the corresponding linear stress-strain curve. Particles of matrix and coating 

that are still bonded to the fiber after pullout can also be seen in the image. 

 

 

Figure 46. Tensile Fracture Surface of N610/Alumina at 1100oC at 500x Mag. 
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Still further magnification of N610/Monazite/Alumina fracture surfaces, show fiber 

pullout holes, which can be seen in Figure 47 and Figure 48.  

 

Figure 47. SEM Image shows Fiber Pullout 
Holes in N610/Mon/Al at 1200x Mag. 

Figure 48. SEM Image shows Fiber Pullout 
Holes in N610/Mon/Al at 1200x Mag. (2) 
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Creep Behavior 

Creep-Rupture (Stress-Rupture) tests were performed at temperatures of 1200, 1100, 

1000 and 900°C. Creep-rupture test results are summarized in Table 6.  

 

Table 6. Summary of Creep-Rupture Test Results 

Creep Stress Level Specimen 
Number 

Test 
Temperature 

(oC) (MPa) (% UTS) 

Creep 
Strain 

(%) 

Time to 
Rupture 

(s) 

Failure 
Location 

(inside/outside 
gage section) 

C1 1200 104 80.00 3.110 56.5 inside 
C2 1100 40 25.42 7.662 50,432 inside 
C3 1100 80 50.83 3.365 1,452 inside 
C4 1100 100 63.54 1.585 360 inside 
C5 1100 120 76.25 0.703 75 inside 
C6 1000 80 49.24 0.049 63,060 inside 
C7 900 80 44.42 0.040 522,365* inside 

C8 900 120 66.63 0.044 432,175* inside 

C9 900 130 72.19 0.047 40,655 inside 

C10 900 140 77.74 0.035 54,075 inside 

C11 900 150 83.29 0.026 805 inside 

C12 900 73 66.36 0.060 350,055 inside 

C13 900 80 72.73 0.033 19,995 inside 

* Runout (defined as surviving 100 h in creep) 

 

 

As previously presented in Table 4, specimens C1-C11 are N610/Monazite/Alumina 

composites, while C12 and C13 are N610/Alumina composites. 
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 Initial creep-rupture test performed at 1200°C indicated a very poor creep life of only 

56.5 seconds. Test temperature was then lowered to 1100°C and a full family of creep-

rupture test was performed at varying creep stress levels. Creep performance at 1100°C 

was determined to still be undesirable for any intended application. Test temperature was 

again lowered to 1000°C and a scoping test was performed at a creep stress level of 80 

MPa to determine if creep behavior would be acceptable. While significantly longer 

creep life (63,060 s) was obtained versus the same creep stress level at 1100°C (1,452 s), 

it was still not at an acceptable level for stress level of only ~50% UTS. Therefore, test 

temperature was lowered again to 900°C. A full range of creep stress levels were 

investigated at this temperature and creep life was found to be acceptable with runouts 

occurring at creep stress levels of 80 and 120 MPa.  

Creep of Nextel 610 Fiber 

Tests performed by Wilson and Visser indicate that the N610 fiber is able to retain 

70% of its room temperature strength at test temperatures up to 1000°C (34), thus making 

1000°C the fiber’s maximum use temperature. This temperature limit is observed in the 

composite also, as creep life at temperatures above 1000oC is extremely poor. These 

results will be presented in the sections that follow. 

Effect of Creep Stress Level 

Only one stress level was tested at 1200oC due to the extremely short creep life, even 

for 80% UTS. The creep-rupture curve can be seen in Figure 49. 
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Figure 49. Creep of N610/Monazite/Alumina at 1200oC 

 

Though the test lasted less than a minute, small regions of both primary and tertiary 

creep can be seen. The curve transitions from primary creep to secondary creep after only 

2 s and remains nearly linear until about 2 s before failure when the creep rate begins to 

accelerate and a transition to tertiary creep is observed. A large amount of strain 

accumulation was observed, corresponding to a large amount of measured fiber pullout. 

Creep-rupture curves at 1100oC and stress levels of 40, 80, 100, and 120 MPa are 

shown in Figure 50. The time scale of the plot has been truncated to more clearly view 

the curves for stress levels above 40 MPa. The arrow at the end of the visible portion of 

the 40 MPa curve indicates that the curve continues past 2000 s.  
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Figure 50. Creep of N610/Monazite/Alumina at 1100oC 

 

Curves at all creep stress levels contain small regions of both primary and tertiary 

creep. Larger stress levels demonstrated larger creep rates and smaller failure strains. 

Although not visible in the figure, the 40 MPa test failed at 50,432 s and 7.66% strain. 

Strain accumulation at this stress level indicates premature failures at higher stress levels 

which have higher creep rates. If “allowed” to continue at those rates, failure strains 

would be greater for larger stress levels. This is seen at 75 s, the rupture time for the 120 

MPa test, where the 40 MPa stress level had only accumulated ~0.02% strain, while the 
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80, 100, and 120 MPa tests have accumulated 0.18% strain, 0.21% strain, and 0.70% 

strain respectively.  

The creep-rupture curve obtained at 1000oC with a creep stress of 80 MPa can be 

seen in Figure 51.  
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Figure 51. Creep of N610/Monazite/Alumina at 1000oC 

 

 Creep life is significantly improved at this temperature with a 4,343% increase over 

the observed creep life at 1100oC for the same stress level. Again the curve shows a 

region of primary creep with a transition to secondary creep occurring at approximately 

10,000 s. The curve then remains nearly linear until just before failure when a small 

region of tertiary creep is observed. In addition, much less creep strain was accumulated 
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compared to what was seen at 1100oC. Although the increase in creep life is significant 

from that of 1100oC, for a stress level corresponding to less than 50% UTS, it is still not 

sufficient for extended use at this temperature.  

 Creep-rupture curves for 900oC are shown in Figure 52. Again, at the creep stress of 

80 MPa a runout was achieved, and the test was interrupted after 164 h. 
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Figure 52. Creep of N610/Monazite/Alumina at 900oC 

 

A runout was also achieved at a creep stress of 120 MPa, which was interrupted after 

approximately 120 h. Again, the time scale has been truncated to more easily see curves 

for the higher stress levels. All curves show regions of primary and secondary creep; 
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however, only the tests that failed showed regions of tertiary creep. The 150 MPa stress 

level curve displays an extremely short region of primary creep and transitions to 

secondary creep rapidly. A small amount a tertiary creep is also seen is this test, just 

before failure. Tests at stress levels of 80 and 120 MPa remained nearly linear until the 

test was stopped at the indicated time. Strain accumulation is still in the range or 0.00-

0.05%, as in the 1000oC tests.  

Again, creep life has significantly improved with an 828% (at the time the test was 

stopped) increase at the 80 MPa creep stress level. Failure of the composite at a creep 

stress of 130 MPa and a runout at a creep stress of 120 MPa indicates that the operating 

limit at 900oC lies between those stress levels. Therefore applications at this temperature 

must not exceed 120 MPa, or 66.63% UTS, in order to maintain a sufficiently long creep 

life.  

 Creep-rupture tests were also performed at 900oC on the N610/Alumina composite at 

creep stresses of 73 and 80 MPa. Those curves can be seen in Figure 53, on the same 

scale as the results for the N610/Monazite/Alumina at 900oC.  
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Figure 53. Creep of N610/Alumina at 900oC 

 

Number of test specimens limited the creep testing on the N610/Alumina composite 

to just two stress levels. Creep life at a stress level of 80 MPa was fairly short, only 

surviving 19,995 seconds (5.6 h). Significant improvement in creep life is seen at a stress 

level of 73 MPa, as this test survived 350,055 s (97.2 h), just short of the runout criterion. 

Therefore the use range of the N610/Alumina composite is limited to at or below a stress 

level of 73 MPa, or 66.36% UTS. This is almost exactly the same range as the 

N610/Monazite/Alumina composite in % UTS. However, the ability of the monazite 

coated fibers to increase the UTS of N610/Monazite/Alumina by nearly 64%, allows the 

composite to operate under significantly higher loads at the same temperature. This is 
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clearly seen in Figure 54 which shows the creep-rupture curves for both composites at 

900oC and creep stresses of 80 MPa. 
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Figure 54. Creep at 900oC, 80 MPa 

 

The N610/Alumian specimen only survived 19,995 s, while the 

N610/Monazite/Alumina specimen reaches 522,365 s before being stopped. This is a 

minimum of a 2,612% increase in creep life at this creep stress level. Creep strain 

accumulation is about the same for both composites, with the N610/Monazite/Alumina 

specimen showing slightly more creep strain which can be attributed to the propagating 

matrix cracks and associated fiber pullout not seen with the N610/Alumina specimen. 
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 A comparison at similar creep stress levels in % UTS is shown in Figure 55. 

Neglecting the higher UTS of the N610/Monazite/Alumina composite, an increase in 

creep life can still be seen at the same % UTS stress level.  
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Figure 55. Creep at 900oC, ~65% UTS 

 

At creep stresses of ~65% UTS, creep life is still increased by a minimum of 23.5% 

with the addition of the monazite coating. Creep strain accumulation at this stress level is 

similar for both composites. A region of tertiary creep is seen in the N610/Alumina 

curve, resulting in slightly more strain accumulation by that composite at failure. The 
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N610/Monazite/Alumina curves stays nearly linear until the test was stopped, as 

previously mentioned. 

Effect of Test Temperature 

 By comparing creep-rupture curves at the same creep stress levels, measured in MPa, 

the effect of temperature on creep life can be determined for that stress level. Figure 56 

shows curves for N610/Monazite/Alumina at a stress level of 80 MPa at test temperatures 

of 900, 1000, and 1100oC. Creep-rupture curves for specimens C3, C6, and C7 are 

displayed. 
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Figure 56. Creep of N610/Monazite/Alumina at 80 MPa Creep Stress 
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The creep time scale has again been truncated in order to see all curves clearly. As 

seen in the figure, there is a dramatic increase in creep life with decreasing test 

temperature. Creep life increases by 4,343% from 1100oC to 1000oC and by a minimum 

of 828% from 1000oC to 900oC. The increase in creep life between 1100oC and 900oC is 

at least 35,976%. Creep strain accumulation also reduces significantly when moving from 

1100oC to 1000oC, decreasing 98.5% from 3.365% strain to 0.049% strain. Creep strain 

reduces only another 18.4% between 1000oC and 900oC. The total decrease in strain 

between 1100oC and 900oC is 98.8%. 

Creep-rupture curves for N610/Monazite/Alumina at temperatures of 1100 and 

900oC for a creep stress of 120 MPa are shown in Figure 57. Creep-rupture curves for 

specimens C5 and C8 are displayed. 
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Figure 57. Creep of N610/Monazite/Alumina at 120 MPa Creep Stress 

 

Again, significant increase in creep life and decrease in creep strain is observed for 

this creep stress level from 1100oC to 900oC. Creep life increased by at least 576233%, 

while creep strain decreased by 93.7% from 0.703% strain to 0.044% strain. At this creep 

stress level, change in temperature had a much greater impact on creep life than at the 80 

MPa creep stress level. The reduction in creep strain was similar for both stress levels. 

Next, the effect of temperature is investigated based on creep stress levels in terms of 

% UTS, so it is independent of the UTS for each composite. Figure 58 shows creep-

rupture curves at temperature of 1100 and 900oC for a creep stress of ~65% UTS. Creep-

rupture curves for specimens C4 and C8 are displayed. 
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Figure 58. Creep of N610/Monazite/Alumina at ~65% UTS Creep Stress 

 

 In this case, creep life increased by at least 120,882% and creep strain decreased by 

97.2%. While the composite did not perform well at 1100oC at ~65% UTS, it does 

however, perform well at 900oC at the same stress level with a runout at that temperature. 

 Figure 59 shows the effect of temperature at a stress level of ~80% UTS. Creep-

rupture curves for specimens C1, C5, and C10 are displayed. 
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Figure 59. Creep of N610/Monazite/Alumina at ~80% UTS Creep Stress 

 

Between temperatures of 1200oC and 1100oC, creep life only increases by 32.7%. 

Creep strain decreases 77.4% over the same temperature change, but is still fairly large 

for applications of this composite. Further decrease in temperature from 1100oC to 900oC 

yields an increase in creep life of 72,100% from 75 s to 54,075 s and a decrease in creep 

strain of 95% from 0.703% strain to 0.035% strain. While this is a significant 

improvement in creep life, it is still only 54,075 s (15 h) and is not sufficient to support 

applications of this composite at this level of creep stress. 
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Creep – Rupture Curves 

 Creep stress, in MPa, is plotted versus time to rupture for N610/Monazite/Alumina at 

test temperatures of 900oC, 1000oC, 1100oC, and 1200oC in Figure 60.   
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Figure 60. Creep Stress (MPa) vs. Time to Rupture for N610/Monazite/Alumina 

 

At 1100oC, no creep stress limit can be determined as all test failed short of the 

runout criteria. If the trend line were extended, the composite would reach the 100 hr 

limit at a creep stress of approximately 20 MPa. Creep lives at this temperature are far 

too short for any extended application.  At 900oC, failure at a creep stress 130 MPa and 

runout at a creep stress of 120 MPa, puts the creep stress limit at approximately 120 MPa 
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for this temperature. While large increases in creep life can be seen with decreasing 

temperature, it is not until 900oC that the composite demonstrates sufficient creep life at 

high enough stress levels to withstand any practical application at that temperature. 

Therefore, the operating limit of this composite is seen to be 900oC at stresses below 120 

MPa. This corresponds to data from Johnson et al (20), which shows that the single 

filament strength of the N610 fiber begins to decay significantly after 900oC. Between 

900oC and 1200oC, N610 loses approximately 56% of its tensile strength (20:32).  

Figure 61 displays the same creep stress versus time to rupture points, but with creep 

stress represented in % UTS.  

 

0

20

40

60

80

100

120

1 10 100 1000 10000 100000 1000000

Time to Rupture (s)

C
re

ep
 S

tre
ss

 (%
 U

TS
)

900°C
1000°C
1100°C
1200°C

N610/Monazite/Alumina

UTS Values

 

Figure 61. Creep Stress (% UTS) vs. Time to Rupture for N610/Monazite/Alumina 
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At 1100oC, the 100 h runout criteria would be met at approximately 13% UTS. By 

decreasing test temperature to 900oC, the creep stress limit has been raised to 

approximately 67% UTS. This much larger stress operating regime would allow the 

composite to be used in many high load applications at or below 900oC.  

Figure 62 compares the creep stress versus time to rupture points for both 

N610/Monazite/Alumina and N610/Alumina at 900oC, with stress in MPa.  
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Figure 62. Creep Stress vs. Time to Rupture at 900oC (Stress in MPa) 
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Much of the improvement in creep life at this temperature can be attributed to the 

sizable increase in strength afforded by the addition of the monazite fiber coating. At a 

creep stress of 80 MPa, the additional of the monazite fiber coating increases creep life 

by at least 139.5 h (2612%). The increase in strength allows the N610/Monazite/Alumina 

composite to operate at lower % UTS stress levels than the N610/Alumina composite, 

when at the same creep stress in MPa. A creep stress limit for N610/Alumina cannot be 

accurately predicted from just two test points; however, it is significantly lower than that 

of the N610/Monazite/Alumina. 

Figure 63 shows the same creep stress versus time to rupture points, but this time 

stress is displayed in % UTS. 
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Figure 63. Creep Stress vs. Time to Rupture at 900oC (Stress in % UTS) 
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 With the effect of the increased tensile strength unseen in this representation, the 

N610/Monazite/Alumina still shows increased creep life at the same % UTS stress levels. 

For example, at approximately 72% UTS, creep life is increased by 5.74 h (203%) and at 

approximately 66% UTS it is increased by 22.8 h (123%). 

Creep Strain Rate vs. Creep Stress Level 

 Minimum creep strain rates where reached in all creep-rupture tests. Those 

results are summarized in Table 7. Creep rates are plotted versus creep stress for 

N610/Monazite/alumina at 900, 1000, 1100 and 1200oC in Figure 64.  

 

Table 7. Summary of Creep Rate Results 

Creep Stress Level Specimen 
Number Material 

Test 
Temperature 

(oC) (MPa) (% UTS) 

Creep Rate   
(s-1) 

C1 N610/LaPO4/Al2O3 1200 104 80.00 5.0315E-04 
C2 N610/LaPO4/Al2O3 1100 40 25.42 1.4153E-06 
C3 N610/LaPO4/Al2O3 1100 80 50.83 2.1112E-05 
C4 N610/LaPO4/Al2O3 1100 100 63.54 2.4577E-05 
C5 N610/LaPO4/Al2O3 1100 120 76.25 7.9016E-05 
C6 N610/LaPO4/Al2O3 1000 80 49.24 4.5900E-09 
C7 N610/LaPO4/Al2O3 900 80 44.42 1.0723E-09 
C8 N610/LaPO4/Al2O3 900 120 66.63 3.2733E-09 
C9 N610/LaPO4/Al2O3 900 130 72.19 1.2971E-09 
C10 N610/LaPO4/Al2O3 900 140 77.74 3.8377E-09 
C11 N610/LaPO4/Al2O3 900 150 83.29 1.3574E-07 
C12 N610/Al2O3 900 73 66.36 5.5174E-10 
C13 N610/Al2O3 900 80 72.73 6.9087E-09 
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 Creep rates increased with both increasing stress level and decreasing test 

temperature. At a creep stress level of 80 MPa, creep rate decreased four orders of 

magnitude (99.97%) between 1100oC and 1000oC, but only decreased by less than one 

order of magnitude (76.64%) between 1000oC and 900oC. 

 Creep or stress exponent (n) values were determined from the creep rate vs. creep 

stress data using the temperature-independent Norton-Bailey equation:  

 

nAσε =&        (3)   

 

where ε&  is minimum creep strain rate, A is a pre-exponential constant, σ is the creep 

stress level. These values are shown next to there corresponding data in each figure. 

 Figure 64 depicts minimum creep strain rate plotted against creep stress for the 

N610/Monazite/Alumina composite at temperatures of 900oC, 1000oC, 1100oC, and 

1200oC. 
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Figure 64. Creep Rate vs. Creep Stress for N610/Monazite/Alumina 

 

 The composite’s stress exponent at 1100oC (3.4925) is extremely close to that of the 

fiber alone at 1100oC (3.3219), which demonstrates the fiber dominance during the creep 

process. However, the composite exhibits higher strain rates than the fiber alone for the 

same stress levels. This may be attributed to fiber degradation during processing which 

reduces creep resistance. The line depicting a strain rate corresponding to 1% strain in 

1000 h (2.78 x 10-9/s), indicates an allowable threshold value for extended use at elevated 

temperatures. At 900oC, the composite operates around the threshold value, while at 

higher temperatures the creep rates are too high for practical use. 
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 Figure 65 displays creep rate vs. creep stress data plotted for both composites at a 

test temperature of 900oC.  
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Figure 65. Creep Rate vs. Creep Stress at 900oC 

 

Both composites show strain rates in approximately the same range. The stress 

exponent for N610/Alumina (27.602) is over five times that of N610/Monazite/Alumina 

(4.9831). This can partially be attributed to the fact that the N610.Alumina composite 

was only tested in the 66-73% UTS range, while the N610/Monazite/Alumina was tested 

in the 44-83% UTS range. If plotted over the same stress range, in % UTS, both materials 

would show similar high stress exponents. Strictly looking at stress level in MPa, the 
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N610/Monazite/Alumina composite is able to perform better at significantly higher stress 

levels. This again, can be attributed to the ability of the monazite coating to increase the 

strength of the composite by nearly 64%. 

Residual Properties 

Monotonic tensile tests to failure were performed on both of the runout specimens at 

900oC to obtain residual properties. These results are summarized in Table 8.  

 

Table 8. Summary of Residual Properties 

UTS Modulus, E Specimen 
Number Test Type 

(MPa) (% Retained) (GPa) (% Retained) 
εf       

(%) 

T1 Tensile 180.09 N/A  83.06 N/A  0.3115

C7 Creep                
(80 MPa for 164 h) 173.10 96.12 80.02 96.34 0.2800

C8 Creep                
(120 MPa for 120 h) 164.52 91.35 74.94 90.22 0.2870

 

 

Figure 66 shows the stress-strain curves for both runout specimens along with the 

original 900oC stress-strain curve obtained via tensile test to failure. 
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Figure 66. Stress-Strain Curves for Residual Tensile Tests 

 

Both specimens retained a significant amount of tensile strength and elastic modulus. 

Similar amounts of loss are seen for both strength and modulus for each specimen. 

Greater losses are seen in the specimen that was exposed to the higher creep stress level. 

The specimen that was exposed to the lower creep stress level accumulated less strain at 

failure. This may be due to the longer exposure of 164 h to elevated temperature 

compared to 120 h for specimen C8. 

 Such small amounts of loss in strength and stiffness, along with the small amounts of 

creep strain accumulation, demonstrate the composite’s ability to perform well even after 

100+ h at 900oC.  
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Microstructure 

Images of fracture surfaces of the N610/Monazite/Alumina composite at all 

temperatures and creep stress levels display large amounts of uniformly distributed fiber 

pullout. Fibers pulled out as single filaments or as small bundles in all cases. 

The fracture surface for the creep test performed at 1200oC with a stress level of 

103.6 MPa can be seen in Figure 67 and from the side in Figure 68. Specimen width is 

approximately 10 mm and thickness is approximately 3 mm.  

 

 

Figure 67. Creep Fracture Surface of 
N610/Monazite/Alumina at 1200oC 

 

Figure 68. Creep Fracture Surface of 
N610/Monazite/Alumina at 1200oC (Side) 

 

The side view shows failures occurred at different levels in each ply. Mechanisms 

for failure are depicted back in Figure 24.  

For tests at 1100oC, fiber pullout length in N610/Monazite/Alumina specimens is 

directly proportional to the creep stress level. Pullout length increases with increasing 

stress level; however, creep strain at failure is inversely proportional to pullout length. 

The fracture surfaces for the N610/Monazite/Alumina specimens tested in creep at 
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1100oC are shown in Figure 69 from a creep stress of 40 MPa, in Figure 70 from a creep 

stress of 80 MPa, in Figure 71 from a creep stress of 100 MPa, and in Figure 72 from a 

creep stress of 120 MPa. Specimen widths are all approximately 10 mm.  

 

 

Figure 69. Creep Fracture Surface of 
N610/Mon/Alumina at 1100oC, 40 MPa 

 

Figure 70. Creep Fracture Surface of 
N610/Mon/Alumina at 1100oC, 80 MPa 

 

Figure 71. Creep Fracture Surface of 
N610/Mon/Alumina at 1100oC, 100 MPa 

 

Figure 72. Creep Fracture Surface of 
N610/Mon/Alumina at 1100oC, 120 MPa 

 

Side views of these fracture surfaces can be see in Figure 73 from a creep stress of 

40 MPa, in Figure 74 from a creep stress of 80 MPa, in Figure 75 from a creep stress of 
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100 MPa, and in Figure 76 from a creep stress of 120 MPa. Specimen thicknesses are all 

approximately 3.6 mm.  

 

 

Figure 73. Creep 
Fracture Surface of 
N610/Mon/Alumina 
at 1100oC, 40 MPa 
(Side) 

Figure 74. Creep 
Fracture Surface of 
N610/Mon/Alumina 
at 1100oC, 80 MPa 
(Side) 

 

Figure 75. Creep 
Fracture Surface of 
N610/Mon/Alumina 
at 1100oC, 100 MPa 
(Side) 

 

Figure 76. Creep 
Fracture Surface of 
N610/Mon/Alumina 
at 1100oC, 120 MPa 
(Side) 

 

Fiber pullout is evenly distributed among each of the 0o plies, although lengths vary 

between plies. Even though fibers experience maximum stress values at the plane of the 

matrix crack (16:27), they fail at a different location. Fiber failure location depends on 

many factors, including internal flaws, sintering with the matrix, and 

degradation/oxidation. 

Fracture surface at 1000oC with a creep stress of 80 MPa can be seen in Figure 77, 

with a side view in Figure 78. Specimen thickness is approximately 10 mm and thickness 

is approximately 4mm. 
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Figure 77. Creep Fracture Surface of 
N610/Monazite/Alumina at 1000oC  

 

Figure 78. Creep Fracture Surface of 
N610/Monazite/Alumina at 1000oC (Side) 

 

 

Again, the fracture surface is covered with uniformly distributed fiber pullout. 

Transverse plies failed at very different heights, which can barely be seen in the picture. 

Pullout length is again fairly long for a small creep strain at failure, as in the 1100oC 

tests. 

Fracture surfaces for the N610/Monazite/Alumina specimens tested in creep at 

900oC are shown in Figure 79 from a creep stress of 80 MPa, in Figure 80 from a creep 

stress of 120 MPa, in Figure 81 from a creep stress of 130 MPa, in Figure 82 from a 

creep stress of 140 MPa, and in Figure 83 from a creep stress of 150 MPa. Side views can 

be seen in Figure 84 – Figure 88. Specimen widths are all approximately 10 mm and 

thicknesses are approximately 4.2 mm. 
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Figure 79. Creep Fracture Surface of 
N610/Mon/Alumina at 900oC, 80 MPa 

 

Figure 80. Creep Fracture Surface of 
N610/Mon/Alumina at 900oC, 120 MPa 

 

Figure 81. Creep Fracture Surface of 
N610/Mon/Alumina at 900oC, 130 MPa 

 

Figure 82. Creep Fracture Surface of 
N610/Mon/Alumina at 900oC, 140 MPa 

 

Figure 83. Creep Fracture Surface of 
N610/Mon/Alumina at 900oC, 150 MPa 
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Figure 84. Creep Fracture 
Surface of 
N610/Mon/Alumina at 
900oC, 80 MPa (Side) 

 

Figure 85. Creep Fracture 
Surface of 
N610/Mon/Alumina at 
900oC, 120 MPa (Side) 

 

Figure 86. Creep Fracture 
Surface of 
N610/Mon/Alumina at 
900oC, 130 MPa (Side) 

 

Figure 87. Creep Fracture 
Surface of 
N610/Mon/Alumina at 
900oC, 140 MPa (Side) 

Figure 88. Creep Fracture 
Surface of 
N610/Mon/Alumina at 
900oC, 150 MPa (Side) 

 

 

 

Fracture surfaces show randomly distributed and bundled regions fiber pullout at all 

stress levels except 150 MPa. Test time for the creep stress of 150 MPa was two orders of 

magnitude lower than those at 130 and 140 MPa, and three orders of magnitude lower 
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than those at 80 and 120 MPa. Longer exposure to elevated temperature, in tests at lower 

than 150 MPa stress levels, may have caused the fibers to sinter together causing the 

bundled pullout. Length of fiber pullout does not show any dependence on stress level.  

On a microscopic scale, fractures surfaces all display the same characteristics from 

every temperature and stress level. Generally, they show planar fracture across the 90o 

plies and randomly distributed lengths of fiber pullout. Pullout is seen as both single 

filaments and in bundles with no dependence on temperature or stress level. Micrographs 

produced using the SEM will thus be discussed in a general sense referring to all creep 

tests.  

Figure 89 shows a good example of crack deflection, where a surface crack caused 

the matrix to fail, but was deflected after propagating through only a few of fibers in the 

tow. Also seen in the picture is the lack of matrix infiltration into the fiber tows. Matrix 

material builds up on the outer surface of the composite, but does not work its way in 

between the fibers. This is caused by bridging of the fibers due to the presence of 

monazite coating. The monazite fills the spaces between the fibers not allowing the 

matrix to penetrate.  
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Figure 89. SEM Image showing Crack Deflection at 200x Magnification 

 

At 1000x magnification the debonding of the fiber can barely be seen as gaps 

between the pulled out fibers and the matrix material. Residue of the monazite coating 

and small bits of matrix are still attached to the fiber surfaces. Figure 90 is a close up of 

the matrix/fiber interface showing crack deflection. Figure 91 is a view of just the pulled 

out fibers showing coating and matrix particles still attached to the fibers. 
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Figure 90. SEM Image shows Crack 
Deflection at 1000x Magnification 

Figure 91. SEM Image shows Pulled Out 
Fibers at 1000x Magnification 

 

Debonding of the fiber from the matrix can clearly be seen in Figure 92, where the 

fibers have pealed away from the matrix material. Figure 93 shows a surface flaw that 

propagated inward causing a large bundle of fibers to debond and pullout, leaving a large 

hole. Other fibers, still attached to the matrix material, pulled out as a bundle as well 

from the opposite direction. 
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Figure 92. SEM Image shows Fiber/Matrix 
Debonding at 600x Magnification 

 

Figure 93. SEM Image shows Surface Flaw 
and Fiber Pullout at 600x Magnification 

 

 

Figure 94 and Figure 95 both show regions of extensive fiber pullout. Even though 

the fibers are bunched up in a tow, pullout lengths still vary greatly within the tow 

showing that the monazite coating has prevented the fibers from sintering together at 

elevated temperatures. The pictures also show small regions of bundled fibers which have 

fractured along the same plane and may have become sintered together allowing a crack 

to propagate straight through the bundle. Some sockets resulting from pullout can also be 

seen in both images as holes from single fibers or from bundles which pulled out 

together. 
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Figure 94. SEM Image shows Fiber Pullout 
at 150x Magnification 

Figure 95. SEM Image shows Fiber Pullout 
at 150x Magnification (2) 

 

Figure 96 shows a region of fibers adjacent which have fractured along the same 

plane as the adjacent 90o ply. Again matrix volume is higher at the edge of the ply and 

fibers are much more sparsely distributed.  
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Figure 96. SEM Image shows Planar Fracture in a 0o Ply at 300x Magnification 

 

For N610/Alumina specimens tested in creep at 900oC, fracture surfaces also 

resemble tensile fracture surfaces. Fiber pullout is less uniformly distributed than in 

tensile test specimens, with plies displaying mostly planar fractures at different levels. 

Figure 97 shows the fracture surface for the specimen with a creep stress of 73 MPa, with 

side view in Figure 98. Figure 99 shows the fracture surface for the specimen with a 

creep stress of 80 MPa, with side view in Figure 100. Specimen widths are approximately 

10 mm and thicknesses are approximately 3 mm. 
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Figure 97. Creep Fracture Surface for 
N610/Alumina at 900oC, 73 MPa 

 

Figure 98. Creep Fracture Surface for 
N610/Alumina at 900oC, 73 MPa (Side) 

 

Figure 99. Creep Fracture Surface for 
N610/Alumina at 900oC, 80 MPa 

 

Figure 100. Creep Fracture Surface for 
N610/Alumina at 900oC, 80 MPa (Side) 

 

  Microstructural images of fracture surfaces also look like those from tensile test. 

Large sections of planar fracture can be seen with small amounts of fiber pullout. Figure 

101 shows a few sections of perfectly planar fractures surrounded by sections where large 

bundles of fibers have been pulled out together.  Three plies can be seen in the lower 

magnification image in Figure 102, having fracture at the dame level. Some areas show 

bundles of fibers that have been pullout out where there is less matrix material. 
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Figure 101. SEM Image shows Planar 
Fracture Surfaces at 300x Magnification 

 

Figure 102. SEM Image shows Planar 
Fracture Across 3 Plies at 160x 
Magnification 
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VI.  Concluding Remarks 

 

Conclusions 

Results have shown that the addition of monazite coating to the fibers of the 

N610/Alumina composite has significantly increased its performance in both monotonic 

tension and creep at all test temperatures and creep stress levels. In addition by 

significantly increasing the tensile strength, the monazite fiber coating has allowed the 

composite to operate at higher stress levels than the N610/Alumina composite alone. 

Extensive fiber pullout in both tensile and creep test fracture surfaces indicates the 

monazite coating is providing the weak fiber/matrix interface needed to cause the fibers 

to debond readily from stress intensities caused by oncoming matrix cracks. While the 

monazite coating has improved creep resistance by a large amount, the composite only 

exhibits acceptable creep behavior for 900oC or below. At that temperature it can achieve 

a creep life of at least 100 h for creep stresses at or below 67% of its tensile strength. This 

corresponds with Johnson et al, who say that “the diffusional creep of the fine grain 

oxides is simply too high at temperatures above ~900oC to be useful” (20:33) 

Recommendations 

Fine grained oxide fibers, such as Nextel 610, have been shown to exhibit high 

strength, but poor creep resistance when compared to Si-based non-oxide fibers. 

However, recently developed fibers, such as Nextel 720, have demonstrated adequate 

creep resistance between 1000oC and 1200oC (20:47), with the benefit of inherent 
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oxidation resistance. The increased creep resistance of N720 fibers is better than that of 

other oxide fibers due to its mullite content (~55 vol%), which is a secondary phase 

existing as needles (elongated grains) surround the alumina grains. Both the presence of a 

secondary phase and the elongated grains have shown to improve creep resistance 

(20:33). Creep is inhibited by the resistance to the sliding motion of grains during creep. 

Uninhibited grain motion produces crack-like cavities and wedge shaped flaws. Increased 

test temperature and stress level enhance this damage process (32:349).  

In recent years, N720 fibers have been tested mainly in aluminosilicate matrices, 

which is more creep resistant than a pure alumina matrix (27). A type of aluminosilicate 

that has shown promise as a matrix material in recent years is Mullite (3Al2O3·2SiO2). 

Mullite and N720 fibers (which contain mullite grains), used together would produce a 

composite with very little thermal mismatch, with coefficients of thermal expansion of 

5.3 x 10-6/oC and 6 x 10-6/oC respectively (9). This would result in less microcracking 

during processing of the composite.  

Creep resistance could be improved by the addition of monazite fiber coating, shown 

by Boakye et al not to degrade the N720 fiber at temperatures up to 1200oC. Monazite 

coated N720 fibers also showed increased strength over uncoated fibers at 1200oC heat 

treatments (6:2800).  

A N720/Monazite/Mullite composite would possess much better creep resistance 

than the N610/Monazite/Alumina; however further research would need to be in order to 

increase the strength of the N720 fiber. Although the room temperature strength of the 

N720 fibers is less than that of the N610 fibers, at 1200oC the single filament strength of 

N720 is ~1450 MPa, while the strength of N610 is only ~830 MPa (20:32). N720 
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becomes the stronger fiber at approximately 950oC, which is the temperature regime for 

use of CMCs. Similar targeted flaw reduction techniques, used to produce the high 

strength in the N610 fiber could be used to increase the strength of N720 fibers. Further 

efforts would need to be made to determine the effect of the larger grain size of N720, 

and flaw population on creep resistance. N720 fibers also provide a cost benefit over 

N610 fibers of $88/kg ($44/kg for > 455kg) (20:47). 
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