
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2005 

Mixing Effects of Pylon-aided Fuel Injection Located Upstream of Mixing Effects of Pylon-aided Fuel Injection Located Upstream of 

a Flameholding Cavity in Supersonic Flow a Flameholding Cavity in Supersonic Flow 

Daniel R. Montes 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Aerospace Engineering Commons 

Recommended Citation Recommended Citation 
Montes, Daniel R., "Mixing Effects of Pylon-aided Fuel Injection Located Upstream of a Flameholding 
Cavity in Supersonic Flow" (2005). Theses and Dissertations. 3672. 
https://scholar.afit.edu/etd/3672 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3672&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F3672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3672?utm_source=scholar.afit.edu%2Fetd%2F3672&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MIXING EFFECTS OF PYLON-AIDED FUEL INJECTION LOCATED 
UPSTREAM OF A FLAMEHOLDING CAVITY IN SUPERSONIC FLOW 

 
 

THESIS 
 
 

Daniel R. Montes, Second Lieutenant, USAF 
 

AFIT/GAE/ENY/05-M12 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 



 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the U.S. 

Government. 

 



AFIT/GAE/ENY/05-M12 

 

MIXING EFFECTS OF PYLON-AIDED FUEL INJECTION LOCATED 
UPSTREAM OF A FLAMEHOLDING CAVITY IN SUPERSONIC FLOW 

 
 

THESIS 

 
Presented to the Faculty 

Department of Aeronautics and Astronautics 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Aeronautical Engineering 

 

 

Daniel R. Montes, B.S. Astronautical Engineering 

Second Lieutenant, USAF 

 

March 2005 

 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 



 

 

AFIT/GAE/ENY/05-M12 

 

MIXING EFFECTS OF PYLON-AIDED FUEL INJECTION LOCATED 
UPSTREAM OF A FLAMEHOLDING CAVITY IN SUPERSONIC FLOW 

 
 
 
 

Daniel R. Montes, B.S. Astronautical Engineering 

Second Lieutenant, USAF 

 
 

 
 
 
 
 
 
 



 

AFIT/GAE/ENY/05-M12 

Abstract 

 The Air Force Research Lab (AFRL), Propulsion Directorate, Wright-Patterson 

Air Force Base, Ohio is conducting ongoing research into propulsive efficiency in 

supersonic ramjet (scramjet) technology.  One current focus of this research is the 

usefulness of flameholding cavities implemented in the supersonic hydrocarbon-fueled 

combustion chamber.  Because good mixing and proper cavity-core interaction lead to 

more efficient combustion, methods of optimizing fuel/air mixing both within and 

upstream of the cavity are investigated.  In a cooperative effort with the Air Force 

Institute of Technology (AFIT), AFRL provided a supersonic (Mach 2) wind tunnel 

outfitted with an existing cavity design.  A circular injection port was placed upstream of 

the cavity, and a series of three pylons (medium, tall, wide geometries) were in turn fitted 

just upstream of the port to improve mixing and penetration of the fuel into the core 

airflow.  The main goals of this experiment were to characterize the mixing ability of 

injected fuel with the core flow as it propagated downstream of the pylon and to analyze 

the effects, if any, of this mixing strategy on cavity flow and overall efficiency compared 

to a no pylon case.  The experiment was a non-reacting mixing study.  Measurements 

were obtained from pressure transducers, Planar Laser-Induced Fluorescence (PLIF), and 

Mie scattering visualization.  Of the three pylon geometries tested, the wide pylon (1.6 jet 

diameters wide, 4 diameters high) provided a 135% increase in penetration.  The taller 

pylon improved penetration as well (190% increase) but incurred a large loss penalty.  

All pylons lifted the fuel from the injector to prevent flashback, and all pylons 

demonstrated equivalent or better mixing potential than the flat reference.
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MIXING EFFECTS OF PYLON-AIDED FUEL INJECTION LOCATED 

UPSTREAM OF A FLAMEHOLDING CAVITY IN SUPERSONIC FLOW 
 
 

I.  Introduction 

 

Background 

A key area of study to advance supersonic combustor development is the 

characterization of cavity-based fuel injection and flameholding.  Cavity-based 

flameholders are commonly found in hydrocarbon-fueled scramjet combustors, but low 

residence time and interactions with disturbances in the main air flow (i.e., shock trains 

or shock-boundary layer interactions) raise issues on which detailed information is 

largely unavailable in the existing literature.1

One area of interest to the Air Force concerns the creation of disturbances in the 

main flow by the use of small pylon devices.  Provided that aerodynamic drag and shock 

losses are minimized, injection behind a pylon has many advantages.  Combined with 

injection, the shock-jet interactions created by these devices cause vorticity via baroclinic 

torque and cross-stream shear and may improve mixing.2  This concept may be applied to 

an upstream pre-injection mechanism that aims to provide a well mixed flow over a 

downstream cavity.  Injection behind pylons also causes an increase in the penetration 

height of the fuel for a given dynamic pressure ratio, defined later. 

The penetration effect serves to conceivably enhance mixing, shorten the isolator 

and combustor (the two components of a dual mode scramjet combustion system), and 

possibly simplify the fuel control system.  The effect also lifts fuel out of the boundary 
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layer, a technique that prevents flashback (ignition of fuel that has been seeded into the 

subsonic boundary layer) as has been shown in the case of liquid injection.3

A pylon was aligned streamwise with an ordinary circular injector so that focus 

on the fuel jet as it propagates downstream could be easily emphasized and understood.  

Straightforwardness and reusability of the hardware was another consideration in the 

design.  Reproducibility of this experiment and follow-on trials should be simple by the 

use of the visualization techniques and non-dimensional standards established in this 

investigation.  In fact, AFRL/PR follow-on studies have begun to take results and 

existing hardware from this research and apply them to dedicated cavity-core interaction 

and combustion experiments. 

Three pylon sizes with several injection pressures as well as a no pylon baseline 

were employed in this experiment.  The hardware was installed with injection 

immediately behind the pylon and at a distance of 0.9L (cavity lengths) upstream of the 

cavity employed by Gruber et al.1   Each pylon is a thin triangular wedge with a 30o 

inclination angle.  Optimal pylon heights, widths, and pylon distances from injection 

were determined from previous computational research4 and correlate with sizes used in 

prior experimentation.2-3  The investigation included measuring the effects of penetration 

height and width, shock effects, mixing effectiveness and pressure profiles. 

The downstream flameholding cavity was an existing design utilized by the Air 

Force Research Laboratory, Propulsion Directorate (AFRL/PRAS).  The cavity is 

recessed from the surface with a 90-degree rearward-facing step and a trailing edge is 

configured with a 22.5-degree ramp. 
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Aim of Experimental Investigation 

The purpose of this research is to aid the ongoing effort to improve combustion 

efficiency in hydrocarbon fueled scramjet engines.  By employing a flameholding cavity 

in the supersonic flow, this issue may be divided into three parts, namely: mixing fuel 

into the core airflow (freestream), mixing and igniting fuel in the cavity flameholder, and 

coupling these two processes to provide complete combustion.  This experiment focused 

mainly on the first task.  A look at the coupling effect is also briefly covered in the 

investigation. 

The method chosen in this research for injecting and mixing was to use a pylon 

device affixed to the injection surface just upstream of the injection port, acting as a 

barrier to the high velocity air flow.  This creates a tiny low pressure area in the region of 

the fuel jet, which aids in jet penetration.  Vorticity and other effects created by the pylon 

perturbing the airflow influence the mixing of the jet with the freestream.  Thus, one of 

these small pylons could be used to improve the mixing and penetration of a single fuel 

jet into a supersonic core flow.  By placing the configuration upstream of the cavity, the 

mixed flow can subsequently be observed in front of the flameholder.  The ultimate intent 

of this experiment was to gauge the effectiveness of using this injection method for 

supersonic mixing and to obtain information that leads to the design of practical 

combustor configurations containing complex combinations of pylons and cavities. 
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Research Objectives 

Four hardware inserts (three containing pylons, one containing no pylon as a 

reference) were tested at three injection pressures.  The object of this research was to 

determine the following: 

 
   1)  The effect of pylons on basic jet geometries, such as penetration 

height, plume width (as seen from an end, or spanwise, view), floor 

separation, and cross-sectional area, as compared to the no pylon case, and 

the preventability of flashback. 

   2)  Affected mixing potential, in the form of visible structures and 

measured standard deviation intensity and turbulent mixing area. 

   3)  The effect of pylons on the supersonic airflow (such as bow shocks 

and pressure distribution) as compared amongst each other and against the 

pure jet with no pylon. 

   4)  Changes in freestream behavior upstream of and above the 

flameholder, suggesting cavity shear layer interaction  

   5)  Behavior in dual mode (high back pressure) conditions. 

 

Hardware from this experiment may be used in various configurations to support 

follow-on investigations (including combustion studies). 
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II.  Literature Review 

 

Scramjet Combustion: Overview 

 

“Man’s search for higher speeds, as for flight itself, is 

limited by the propulsion system required for the task.” 

(McClinton et al.)5 

 

Supersonic combustion research for use in supersonic and hypersonic airbreathing 

propulsion has been actively underway in the United States for over forty years.  The 

effort to successfully employ high speed propulsion systems is slowly becoming a reality, 

as organizations such as NASA have publicly demonstrated.6  However, the design and 

optimization of these systems are still experiencing stages of component concept testing.  

Mission requirements must be balanced with an integrated engine system consisting of 

the inlet and isolator, combustor, nozzle, airframe, fuel type, and cooling mechanism.7  

Each of these components has a body of dedicated research attached to it. 

The ramjet concept is valid for flight speeds in the range 2 < M∞ < 6.  The inlet 

section of this engine type compresses and slows the air to subsonic velocities during 

internal flow (including into the combustor).  However, at higher speed flight regimes 

(M∞ > 4), compression of the working fluid to subsonic flow can result in static 

properties rising to the point where disassociation losses would take place and the fluid 

temperature would be too high for effective hydrocarbon combustion.  Figure 1 and 

Figure 2, obtained from www.aviation-history.com, demonstrate the basic design of a 
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ramjet engine, and its supersonic equivalent, the scramjet, which encompasses the same 

flow and propulsion concepts as a ramjet but retains supersonic flow throughout the core 

of the engine.7 

 

 

Figure 1.  Ramjet layout 

 

 

Figure 2. Scramjet layout 

 

Problems arise when the flow is kept supersonic through the core.  The low 

residence time of flow in the combustor section (~1 ms) is not conducive to achieving 

full, efficient combustion at the relatively slow hydrocarbon kinematic rates.  The short 

time span also does not leave enough opportunity for full mixing of injected fuel and core 

airflow, which is the necessary precursor to effective ignition and flameholding.8  

Applying complex core geometry adjustments to solve these issues results in drag 
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penalties incurred from the nature of introducing radical disturbances into supersonic 

flow and from allowing too much surface area inside the engine.  Thus, sometimes at the 

expense of not attaining complete mixing, the combustor length must be kept as short as 

possible.7 

Recent mission requirements (for both manned flights and high speed missiles) 

have led to the call for a dual mode scramjet.  This engine type operates in the full flight 

regime of both a ramjet and scramjet, and utilizes the combination of a complex inlet 

geometry and a dual mode combustor.  The engine core consists of a constant area 

isolator section followed by a diverging combustion section.  The isolator section is 

designed to manage the complex shock train structures that form to slow down the core 

flow when the engine is operating at lower flight velocities, as discussed at length by 

Billig.9  In this flight regime, injection and combustion occur downstream of the isolator 

(as combustion farther upstream would cause a high enough pressure rise to possibly 

unstart the inlet).  The thermally choked flow propagates through the diverging portion 

and exhaust, once again supersonic.10-11  In the high velocity mode this engine injects in 

the isolator section that is completely supersonic, taking advantage of the extended 

residence time for mixing.  Figure 3 highlights this concept. 

 

 

 Figure 3.  Dual mode scramjet layout 
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Issues arise with creating an injection and combustion scheme that is robust 

during both flight conditions.  Hydrocarbon fuels are generally preferred for military 

applications due their higher densities and thus lower fuel tank size.  The combustion 

characteristics of this fuel require fast and efficient mixing, as discussed above.  When 

particularly in the faster flight regime, the dual mode engine suffers greatly when the core 

contains complicated injection obstructions that aim to improve the mixing and/or 

combustion.12  The complexities of three-dimensional combustion and its effect on 

pressure, shock trains, and mixing is the subject of past and current studies.13-16  Research 

has since progressed toward the development of recessed cavity geometries that impose 

tolerable disturbances to the main flow.  Prolonged residence time of airflow through one 

of these cavities coupled with proper injection can establish a stable flameholder adjacent 

to the core, supersonic flow. 

Cavity Flameholders 

Supersonic cavity flameholders were developed in the early 1990’s, although 

cavities have existed in subsonic engines for some time and continue to be investigated.17  

Scramjets with cavity flameholders have been developed and demonstrated in operational 

flight tests.18  The current optimal design for flameholding consists of a recessed 

rearward-facing step, the cavity floor, and a ramp that angles back into the main 

combustor floor.  A shear layer forms between the main flow and the cavity.  The angled 

nature of the rear wall prevents acoustic oscillations that result when the shear layer 
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reattaches and impinges the surface.  Figure 4 demonstrates this geometry and shows the 

shear layer effects when injection or disturbances occur upstream of the cavity. 

 

 

Figure 4.  Flameholding cavity example with shear layer emphasized (from Ref. 18) 

 

 

Figure 5.  Rectangular cavity design experiencing shear layer impingement (from Ref. 18) 

 

Cavities can be designed to be various shapes and sizes, and thus are not used 

only for flameholding purposes.  Another form of open cavity does not employ a rear 

ramp but simply takes a rectangular shape, as seen in Figure 5.  This form of cavity 

contains large pockets of subsonic flow, generally at the cost of unstable resonance.  The 

oscillations from this type of cavity may be useful for mixing purposes, a long as a design 

balance is achieved between thrust and additional drag.19-21  While this is not always the 

case as cavity size, geometry, and flight conditions govern this complex behavior, past 

studies have aimed to understand and predict how these cavities behave and how to take 
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advantage of the resonant behavior.22  More modern research has investigated how to 

reduce unwanted oscillations in a cavity designed for flameholding.23-24

Another variation of cavity geometry is the closed cavity.  This is one in which 

the shear layer has ample distance with which to reattach on the cavity floor, negating the 

need for a back wall found in open cavities.  The simplest example is a single rearward 

facing step.  Although this method provides a recirculation zone, the combustion 

advantage gained is not as high as the open cavity design; both incur the same drag 

penalty due to the presence of the step.18   

Designing open cavities with geometric advantages for stable recirculation is the 

preferred direction for current research in supersonic flameholding.  Gruber and Hsu 

show results based on differing cavity length to depth (L/D) ratios, ramp angles, and total 

cavity size.25  Ignition, fueling, and sustained combustion in a stable flameholding cavity 

continue to be the focus of current research.  While fuel injection into the core flow does 

not alone provide efficient flameholding, it is still considered for its mixing potential, and 

various methods exists for achieving this, as discussed in the following section.  The 

future of effective scramjet combustion lies in combining a robust cavity flameholder 

with an upstream mixing system that employs cavities, innovative injection schemes, or 

both.26-27 

Fuel Injection and Mixing 

There exist volumes of research and theory on subsonic and supersonic fluid 

injection and interactions.  The value of sensible fuel injection strategies employed 

upstream of a flameholding cavity is that adequate mixing and dispersion on the fuel into 
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the freestream can be achieved before it is ignited over the cavity.  The challenge lies in 

attaining suitable penetration and mixing potential with as minimal a drag penalty as 

possible. 

Above M∞ ≈ 10, fuel momentum becomes increasingly important in contributing 

to the thrust of a scramjet, and drag penalties from obtrusive injection cannot be ignored.  

Injection of fuel in this regime must be in the streamwise or near-streamwise direction.9  

At slower flight velocities (such as the one in the current investigation), fuel injection 

may occur at an off-axial angle or even in the transverse direction in order to enhance 

penetration. 

Scramjet combustor effectiveness is measured by thrust potential.  In a qualitative 

non-combustive study, this can be narrowed down to mixing potential and fuel 

penetration.28  Mixing is difficult to predict, as current visualization systems provide 

insight into the large scale turbulent structures that encourage macromixing.  Because 

chemical reactions take place at the molecular levels, mixing (and hence combustion) 

potential must be determined by inferring the presence (or opportunity for) micromixing.  

Devices that introduce strong vorticity into the freestream for the purpose of stretching 

fuel/air interaction area may actually diminish the ability for the intended small scale 

interactions to take place because of strong centrifugal action.8

The simplest injection scheme is transverse injection from a flush injector.  An 

underexpanded jet enters the main flow and experiences an expansion contained by a 

barrel shock, followed by a normal shock (Mach disc).  The spread of the jet creates a 

separation region within which fuel and air interact via turbulent structures.  A relatively 
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strong detached bow shock appears upstream of the injection port.  An illustration is seen 

in Figure 6. 

 

 

Figure 6.  Profile view of a transverse jet injected into a supersonic cross-stream 

 

Several studies have characterized the development of the jet and described the 

strong counter-rotating vortices that form when the jet is observed from the end 

(spanwise) view.29-32  Papamoschou determined that penetration height is almost solely 

affected by the jet to freestream dynamic pressure ratio (q – also referred to as the 

momentum flux ratio) as opposed to jet Mach number (Mj) or pressure and density 

ratios.33  Gruber and Nejad showed that for a given injection fluid (e.g., helium or air), 

compressible shear layer mixing is consistent and depends on the convective properties of 

that fluid.34  This allows researchers to vary injection to more complicated schemes and 

compare output to a simple transverse jet, as long as the same jet fluid is used.  Figure 7 

illustrates the vortices that contribute to possible mixing and lifting of the fuel jet. 
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Figure 7.  Counter-rotating vortices observed downstream of transverse injection (from Ref. 32) 

 

Penetration and turbulent mixing potential can be directly affected in a transverse 

jet by varying q.  This method also increases drag and total pressure loss.  Orth et al. 

investigated varying injection angles, pressures, and injector shapes, and they confirmed 

this.35  Others have varied jet fluid types and densities.36  Parallel injection enhances 

thrust and diminishes the strong shock losses, at the cost of low penetration.37  This leads 

to the design of innovative injection schemes that aim to provide the same penetration 

capability and adequate mixing opportunity, but with lower losses.  Some of these are 

examined at length by Gutmark et al.38 and Drummond and Carpenter.39 

Murugappan and Gutmark recently conducted studies using a new transverse 

swirl injector to achieve higher penetration than a simple circular injector.40-41  Their 

results were successful; good mixing potential and penetration are achievable at the cost 

of more complicated injection control schemes and similar shock losses to transverse 

injection. 
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Vorticity may be initiated by introducing passive geometric disturbances into the 

freestream that cause shock interactions.  These devices must not cause large disruption 

of the flow that produce unwanted drag and also require complex cooling schemes at 

higher Mach numbers.12  Numerous studies, both theoretical and experimental, have 

investigated varieties of swept-ramp injectors, first proposed by Marble, which generate 

axial vorticity-enhancing shocks through series of ramps and troughs.42-51  Studies show 

that a strong local shock causes vorticity via baroclinic torque, a phenomenon attributed 

to differing density and pressure gradients.52-53  Cross-stream shear created by the 

presence of obtrusions also contributes to vorticity, in the form of a lifting force on the 

local fluid.  Figure 8 shows an example of two swept ramp configurations.  Although the 

compression ramp creates good large scale mixing interactions via vorticity, the 

expansion ramp is found to produce more efficient combustion because small scale 

mixing is not as hampered by centrifugal effects, as mentioned earlier. 

 

 

Figure 8.  Scramjet fuel injector compression and expansion ramps (from Ref. 8) 
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Because ramp configurations inherently contain a large surface area that adds to 

engine drag, the insertion of thin pylons upstream of a transverse injector has been 

suggested and examined.2-3  Results show that penetration is greatly improved without 

significant pressure losses as compared to transverse injection alone.  Further numerical 

studies have begun to propose optimal geometries for these pylons.4  The current research 

aims to investigate the use of these optimal pylon geometries and introduce imaging 

techniques that have not been applied to this configuration as of yet. 

Summary 

Mixing studies aim to find the functional balance between effective mixing and 

high penetration of fuel into the core flow of a combustor.  Combustion studies validate 

these ideas, although combustion itself changes mixing characteristics.  Although 

flameholding is possible directly behind a transverse jet due to shock boundary 

interactions, a cavity is more efficient.  Thus, injection alone is more useful for pre-

ignition mixing ahead of a cavity flameholder, which also serves to lift the shear layer.  

The more complex injection becomes, generally the more losses associated with it.  

Schemes that protrude injection ports into the freestream via struts or grids require too 

much cooling ability.  Swept ramps enhance mixing and penetration at the cost of surface 

area penalty. 

The use of small pylons in conjunction with transverse injection is aimed at 

enhancing penetration of fuel without diminishing mixing capabilities to a great extent.  

Transverse injection has been shown to produce combustible mixtures.  Fluid stretching 

vortices are thus desired (perhaps through baroclinic torque or cross-stream shear coupled 
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with the preexisting transverse jet structures), but not to such a great extent that micro 

mixing is not possible.  Using the same working fluid as simulated fuel injectant, it is 

possible to compare the effect of pylon-aided injection against ordinary transverse 

injection. 
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III.  Methodology 

 

Overview 

Four hardware inserts were designed for the purposes of this experiment.  After 

initial design these pieces were contracted out by AFIT for manufacturing and then 

shipped to AFRL for fit testing with existing hardware.  Seamless integration was 

required due to the nature of high pressure, high velocity flow and the need for accurate 

flow development and visualization in the wind tunnel.  The design of the inserts 

provides for maximum ease of installation and number of configuration possibilities with 

the existing hardware. 

The supersonic wind tunnel is located in Test Cell 19 of the Propulsion 

Directorate Building 18, AFRL, Wright Patterson AFB, Ohio.  AFRL permanent party 

and contracted personnel operate the facility, coordinate the scheduling of the various 

experiments that utilize the facility, and assist with hardware installation.  While 

technicians controlled the tunnel, the author worked with visualization experts to acquire 

the proper data once the appropriate condition was running. 

There were three pylons and one flat (no pylon reference) piece available for use 

in this experiment.  The pylons are of varying sizes.  Each insert contains an injection 

port and the respectively sized pylon at a set distance from the port; that distance depends 

on the size of the pylon (to be discussed later).  The flat insert contains only the injection 

port, and all four pieces contain the injection port in the same location.  The base plate, 

which contains the flameholding cavity, has two fixtures that may hold any of the four 

inserts.  One location is just upstream of the cavity, while the other is much farther 
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upstream.  The farther location was employed for the entire investigation.  This allowed 

ample distance for the mixing flow to develop before reaching the cavity.  Future studies 

may utilize combinations of these two locations.  A simple illustration of the setup is 

shown in Figure 9, with the arrow indicating direction of core flow, and the unused 

fixture location highlighted in white. 

 

 

Figure 9.  Basic hardware configuration showing pylon and flameholding cavity 

 

Pressure readings were obtained from taps on the top and bottom walls of the 

wind tunnel.  Simulated fuel injection was provided by a mixture of compressed air and 

flowmeter controlled nitrogen gas.  Windows on the side walls and top wall provided 

optical access for Mie scattering and PLIF visualization.  All data were stored on the 

respective measuring instrument’s hard drive and backed up on a common server, all 
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housed in Test Cell 19.  Visual software was used to further reduce data and present 

results. 

Test Facility 

Testing in this experiment was done in a Mach 2 flow environment supplied by a 

supersonic combustion research facility (Test Cell 19) located in the AFRL/PR Building 

18 complex.  The facility has been in operation since 1993.  All the general information 

in this section is summarized by Gruber et al.1 and further details may be found in the 

facility paper.54 

Wind Tunnel 

The wind tunnel employed by AFRL is capable of variable Mach number 

continuous flow and can produce a variety of test conditions.  It is able to deliver 

stagnation conditions (P0c and T0c) as high as 400 psia and 1660°R, and it produces 

nominal properties through the test section (Pc and Tc) of 7.35 psia and 525°R at Mc = 

1.98 (simulated flight velocity of M∞ = 4 – 5; much higher enthalpies are not attainable 

with this continuous flow facility).  Optical access of the test section is available through 

three fused silica windows: one on each side wall and another on the top wall.  The 

original design of the tunnel called for an additional end view window located 

downstream of the test section before the flow is diverted into the diffuser section.  Poor 

visualization through this window has resulted in all end view images now being 

collected through one of the side wall windows.  Figure 10 shows the component layout 

for the tunnel, noting that the end viewing window no longer exists. 
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Figure 10.  Windtunnel schematic (from Ref. 53) 

 

Source air is provided by a gas-fired heat exchanger and a series of reciprocating 

compressors and turbines.  Hot and cold inputs flow through a mixing section then a 

supply manifold that contains a pressure relief line.  When the tunnel is not in operation 

the constantly supplied air vents out through an exhaust valve and out a muffled vent line.  

This valve is closed and a main block valve opened to begin flow into the tunnel 

assembly. 

An expanding inlet in the form of a perforated cone distributes flow from the 

block valve to the settling chamber.  Within the chamber, mesh screens and sections of 

honeycomb condition the air prior to its acceleration through a converging-diverging 

supersonic nozzle.  Pressure and temperature readings are available from the chamber 

and provide approximate stagnation conditions.  Before the nozzle, flow is geometrically 

transitioned from the three dimensional circular settling chamber to a two dimensional 

rectangular section.  A two dimensional nozzle designed via method of characteristics 
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accelerates the flow to nominal conditions.  There exist five nozzles that can be alternated 

through the facility in order to accommodate various experiments.  The tunnel is capable 

of Mach 2 or Mach 3 flow at full or half test section height.  Mach 4.5 is attainable for the 

full test section height only.  Figure 11 shows the nozzle and test section configuration.  

Flow is from right to left. 

 

 

Figure 11.  Tunnel midsection 

 

The nozzle exit (Mach 2 flow, half test section configuration) is 2 inches high by 

6 inches wide, located where viewing becomes available through the side wall windows.  

Seen there is a constant area isolator 7 inches in length, followed by a divergent floor 

ramp almost 30 inches long; this ramp has a 2.5 degree slope.  The fused silica windows 

provide excellent optical opportunities and transmissive properties for the visualization 
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equipment.  Each side window provides access to the entire transverse dimension, while 

the top window allows viewing of half the spanwise dimension (window is 3 inches 

wide). 

The diffuser section utilizes water sprayed cooling to reduce exhaust temperatures 

to acceptable levels before air reaches the facility cooling system.  Pressures and 

temperatures are monitored and recorded in the control room through an assortment of 

static pressure taps and Type K thermocouples located along the sidewalls of the nozzle, 

the top and bottom walls of the test section including the cavity (pressure only), and 

throughout the diffuser section.  Pressure is read from the taps through a Pressure 

Systems Incorporated (PSI)® transducer board.  A detailed schematic of test section 

pressure tap placement is found in Appendix A. 

Cavity and Injection Setup 

The cavity section was installed along the first 12 inches of the bottom wall on the 

diverging ramp using a configurable base plate.  This plate and the other floor segments 

of the test section were installed into its frame with standard bolt fittings and sealed with 

silicon o-ring cord.  The cavity is designed to accommodate various injection schemes by 

the use of fuel ports both within and upstream of the cavity.  The cavity has a length (L) 

of 2.6 inches, and a depth (D) of 0.65 inches.  The measurement convention is illustrated 

in Figure 12.  The cavity is recessed in the floor with a 90 degree rearward facing step, 

and the trailing edge contains a 22.5 degree ramp.  L/D = 4. 
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Figure 12.  Cavity dimensions used by AFRL/PR 

 

The 12 inch base plate has four fixtures.  One houses the cavity floor and has the 

capability for interchangeable cavity ramps.  The other three fixtures are located in a 6 

inch section upstream of the cavity.  They are devoted to housing various hardware 

schemes, including the pylons used in this project.  A detailed diagram of the entire base 

plate, showing the cavity and the upstream fixtures (two of which were configured to 

hold pylons), is included in Appendix A.  A close up photograph of the cavity is shown in 

Figure 13.  The injection ports observed on the cavity ramp and the spark plugs in the 

cavity floor are used for combustion studies that were not covered by this specific 

research.1  The fixture used for housing the pylons is visible upstream of the cavity; it 

contains a circular slot, where any of the four pylon inserts may be installed (more detail 

in the following section). 
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Figure 13.  Cavity and hardware fixture (which houses the pylon inserts) 

 

The pylon inserts were pressure sealed into the fixture with a 7/8 inch o-ring.  The 

bottom of each insert was drilled with a 1/8 inch NPT (National Pipe Thread) fitting that 

enabled a fuel line to be attached for injection through the port behind the pylon.  Other 

injection and measurement ports capable of supporting numerous fueling schemes exist 

beneath the plate.  These can be seen in Figure 14, which also demonstrates the viewing 

range of the top window.  

Simulated fuel injection was achieved by a combination of analog valves and 

digital flow controllers.  Dry compressed air was provided by a facility high pressure 

system, while the nitrogen required for the PLIF measurements was provided from a 

pressurized bottle and was seeded into the dry air with a Tylan® 2925 series mass 

flowmeter and monitored by a Tylan® RO-28 controller. 
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Figure 14.  Top and bottom view of installed base plate 

 

The facility is capable of closing a pre-diffuser valve that enables the buildup of a 

high back pressure.  This provided simulation of dual mode conditions upstream of and 

over the cavity, in the form of a shock train inside the combustor and isolator.  Ignition 

capability and effective mixing are desired in this regime.16  Figure 15 shows a Schlieren 

image which demonstrates the back pressure condition over the cavity in comparison to 

fully supersonic flow.  Flow direction is designated by the arrows. 
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Figure 15.  Shock train condition (from Ref. 1) 

 

Hardware Design 

The pylon inserts used for this experiment were designed with simplicity and 

compatibility in mind.  Two of the fixtures located on the base plate upstream of the 

cavity were modified in order to allow pylon testing either far upstream or directly 

upstream of the flameholder.  While only the farther upstream fixture was used in the 

investigation, having the capability to place a pylon close to the flameholder is useful for 

follow-on experiments aimed at investigating the coupled effects of pylon injection and 

cavity combustion.  More detail on these experiments can be found in the 

recommendations section of this report. 

Inserts 

Of the three fixtures located upstream of the cavity, two were compatible with the 

pylon hardware inserts.  A rendering of the empty base plate and the two fixtures is 

shown in Figure 16, along with the dimensions of the fixture faces.  The larger is termed 

Fixture A, while the smaller is Fixture B.  The goal of designing pylon inserts was to be 

able to successfully deploy both a pylon and an appropriately distanced fuel port into 
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either Fixture A or B.  Manufacturing expense and simplicity dictated that an insert be 

compatible with both fixtures. 

 

 
Figure 16.  Cavity baseplate and the original fixtures that were modified to accept pylons 
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Several early designs were brainstormed and drawn using Rhinoceros® software.  

One of the more popular original ideas was to make Fixture B an insert in itself; this 

would call for different pylon pieces to be attached on top of the insert.  While no 

modifications would need to be made to Fixture B (since the insert was Fixture B), that 

only left the task of boring out a crevice in Fixture A which could receive the Fixture B 

piece as an insert.  Concerns with the difficulty in machining such a crevice and with the 

securing and sealing methods for the pylon attachments led to that idea being rejected.  

Rhinoceros® renderings of this concept are shown in Figure 17. 

 

 

Figure 17.  Early concept for pylon inserts showing Fixture B (left) and Fixture A (right) with crevice 

 

It was finally decided to design a small insert that contained both a pylon and an 

injection port (for sealing considerations) and which could be inserted into modified 

versions of Fixtures A and B.  Coincidentally, a change was made in design software to 

SolidWorks® for its availability in AFIT labs and use in the mainstream community.  The 

new inserts are circular and all contain a fuel port in the same location; the only thing that 
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differs with each insert is the pylon size and location relative to the injection port.  

Figures 18 and 19 show the inserts and the bored out fixtures, respectively. 

 

 

Figure 18.  Inserts containing no pylon and arbitrary pylon 

 

 

Figure 19.  Fixtures A and B modified to receive inserts 

 

The exact dimensions of the inserts are contained in Appendix A.  Figure 20 

shows a cross-sectional view of an insert with an arbitrarily sized pylon.  Injection 

diameter (d) in these experiments is 1/16 inch.  This port becomes a 1/8 inch hole before 

reaching the bottom of the insert, where an NPT is fitted for fueling.  The insert fits 
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snugly into either modified Fixture A or B and sealed with an o-ring.  This versatility 

allows two inserts to be used simultaneously if it is required in future experiments. 

 

 

Figure 20.  Cross-section of a pylon insert 

 

Fixture A alone was used in the investigation.  With the insert installed, the 

injection port center is located at a distance (Xf) of 2.3 inches upstream of the cavity step, 

resulting in Xf/d = 37 and Xf/L = 0.9.  If Fixture B were to be employed, Xf/d would 

equal 5.6 and Xf/L would be 0.1 (Xf = 0.35”).  These values will be summarized in the 

testing strategy section of this report. 
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Pylons 

Separate studies by Livingston and Segal and by Owens et al. established pylon 

geometries that were used for liquid injection experimentation.2-3  Gouskov et. al 

performed a numerical analysis of gaseous jet injection behind pylons, and the results 

from various geometries and injection distances were tabulated.4  All three of these 

studies estimated penetration height to equal about 1.5 times the pylon height.  Based on 

the top two configurations found to enhance fuel penetration height and using a wedge 

angle established by the liquid injection studies, three pylons were designed for this 

experiment.  Figure 21 shows a diagram of the pylon, injection port, and their geometric 

properties.  The streamwise (x), transverse (y), and spanwise (z) axes are labeled.  The 

origin of this coordinate system lies on the center of the injection port at the surface. 

 

 

Figure 21.  Pylon geometry shown with injection port and defined axis system 

 

Injection diameter (d) is 1/16 inch for all the cases that were tested.  Xp is the 

injection proximity to the pylon, measured from the pylon base to the centerline of 
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injection.  The three independent geometric parameters on the pylon were chosen as 

length, width, and height (l, W, and h, respectively).  The wedge angle (θ) is derived from 

l and h. 

The two parameters that were emphasized in the numerical study were Xp and W.  

Two pylons in this experiment were designed using the optimal case (Xp/d ≈ 2, W/d ≈ 1).  

One is termed the Medium (M) pylon and is 1/8 the height of the test section (0.25”).  

The larger pylon is termed Tall (T) and is 3/16 the height of the test section (0.375”); it is 

designed to differ from Pylon M only in length and height but preserve width and angle.  

The third pylon uses the second best case (Xp/d ≈ 3, W/d ≈ 1.5), and is termed the Wide 

(W) pylon.  It has the same length and height as Pylon M and has a higher Xp.  In all 

three pylons, Xp/W ≈ 2 and θ ≈ 30° as previous liquid fueling studies used the same 

approximate wedge angle in their geometries.  Pylon dimensions are presented in Table 

1. 

 

Table 1.  Pylon dimensions for Medium, Tall, and Wide geometries 

d = 0.0625 in Medium (M) Tall (T) Wide (W)

Height: h (in) 0.25 0.375 0.25

Length: l  (in) 0.43 0.65 0.43

Width: W (in) 0.07 0.07 0.1

Proximity: Xp (in) 0.14 0.14 0.2

Wedge Angle: θ (deg) 30.2 30 30.2

h/d 4 6 4

W/d 1.12 1.12 1.6

Xp/d 2.24 2.24 3.2  
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One hardware insert contained no pylon and is termed the Flat (F) insert.  This 

piece was used as a reference condition.  It was useful for obtaining baseline tunnel 

conditions (no injection) as well as simple transverse injection without pylon aid.  The 

piece may also be used as a plug should both modified Fixtures A and B be installed in 

the base plate.  Figure 22 shows a photograph of the F insert installed in Fixture B, as 

well as the three pylon inserts (M, T, and W).  A picture of the base plate configured with 

the Wide insert is shown in Figure 23. 

 

 

Figure 22.  The four hardware inserts (three pylons and one flat) 
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Figure 23.  Installed pylon (flow from right to left) 

 

Injection Characterization 

Three different fuel injection pressures (200, 100, and 50 psia total pressure) were 

tested with each hardware insert through the choked, circular nozzle located at Xf/L = 

0.9.  Depending on the type of visualization employed for a particular run, the simulated 

fuel was either dry air or a mixture of air seeded with nitric oxide (NO) laden nitrogen 

(N2).   Because it is important to characterize and monitor injection pressures, a discharge 

coefficient (CD) analysis was performed on each of the four inserts.  Once measurement 

error was corrected with the CD value for each port, a value for the dynamic pressure ratio 

(q) was obtained for every condition. 

Discharge Coefficient 

The assumption of fully isentropic processes through an injection port leads to 

some slight error when measuring properties of the injected jet, particularly pressure.  
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Friction losses and non adiabatic flow precede the choked jet.  Thus any jet 

characterization based on pressure (such as dynamic pressure ratio) may be slightly 

inaccurate due to experimental error if based on a direct pressure reading upstream of the 

port exit (in the tube).  If characterization is allowed to be based on another parameter 

that can be accounted for, such as mass flow rate ( m& ), more accurate interpretations may 

be made from the results. 

Measurements of pressure and temperature in the injection tube were obtained 

from trial injections and used to calculate a mass flow rate.  These calculated values of m&  

were compared to the real mass flow rate using a controlled Tylan® 2900 series mass 

flowmeter.  The ratio of these two results is the discharge coefficient (CD), which was 

used to calculate the dynamic pressure ratios for each injection pressure.  Appendix B 

goes through this process. 

Dynamic Pressure Ratio 

The dynamic pressure ratio is literally defined as 
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where γ is the ratio of specific heats of the fluid in question (taken in all cases to be 

approximately equal to 1.4 for core and jet flow), and jet properties are at the port exit. 

Core conditions (Mc ≈ 1.98 and Pc ≈ 6.77 psia) were gathered from 

experimentation.  Although Mj is known to be unity, a true value of Pj at the port exit 

cannot be measured; only tube readings are available.  An equivalent relation for q using 

mass flow rate as an alternative is 
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where A is the jet area (d2 π/4) and ρj may be calculated.  This relation allows the true 

mass flow rate, if known, to be used. 

The fuel jets were monitored using total pressure (P0j).  For each insert, total 

pressures of 200, 100, and 50 psia were injected behind the pylon.  In subsequent 

discussions, these will be identified as Pressures 1, 2, and 3 respectively.  These readings 

are not accurate as they are in the tube. In an analysis similar to the method discussed in 

the preceding section (and Appendix B), the true mass flow rate was found and q was 

calculated for each insert and each injection pressure.  Table 2 summarizes those values.  

The “uncorrected” values refer to the q that would be obtained if the tube pressure (using 

Equation 2) or uncorrected mass flow rate (using Equation 3) were to be used.  Either 

equation yields the same uncorrected value. 

 



 

Table 2.  Discharge coefficients and dynamic pressure ratios for the four inserts 

Pc = 6.77 psia Corrected q Uncorrected q
Poj (psia) Flat Medium Tall Wide

50 0.75 0.76 0.77 0.83 0.98

100 1.51 1.51 1.54 1.67 1.95

200 3.01 3.02 3.08 3.34 3.90

CD 0.879 0.880 0.888 0.925  

 

Visualization Techniques 

Instantaneous measurements of the fuel jet at various locations were obtained by 

both Mie scattering and Planar Laser-Induced Fluorescence of nitric oxide (NO-PLIF).  

Mie scattering is an imaging method that detects scattering signals from ice crystals 

naturally present in a flow field.  Past studies have taken great advantage of this 

technique for its clear and qualitative data.30  NO-PLIF is a method that detects laser-

excited NO molecules that are seeded into the simulated fuel jet.  Detailed information on 

this imaging method and a variety of sample results are presented by Lee et al.29  

Murugappan and Gutmark conducted experiments in the same facility as the present 

research using the same visualization equipment.40-41

Mie Scattering 

Mie scattering is simple in principle, because the source of scattering is already 

present in the flowfield; water vapor in the cold main flow naturally forms into small ice 

crystals.  Radiation in the form of a laser sheet produces strong scattering signals from 
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these particles which are captured by a camera; the pure simulated fuel jet emits a low 

signal because it is 100% dry compressed air.  Any perturbations to the core flow that 

increase temperature will also reduce the scattering proportionally to the reduction in ice 

crystal concentration.  Other studies performed the imaging with ice crystals in the 

injection instead of the core flow.30  In this experiment, Mie scattering produced images 

that qualitatively characterized the jet fluid, associated shocks, and boundary layer 

heating.  

NO-PLIF 

NO-PLIF relies on fluorescence to produce images that capture the presence of 

NO in the fuel jet (and thus capture the fuel jet).  Although this method is qualitative in 

nature, the species-specific images capture mixing developments that conventional visual 

methods and Mie scattering cannot reveal.29  The basic premise is that NO bombarded at 

a certain radiation wavelength (226.298 nm) by a laser sheet will cause electronic 

excitation.  A fraction (less than 1%) of the excited electrons is not quenched by 

unexcited molecules but instead radiatively decays to the ground state and emits photons 

of equivalent energy.  The resultant fluorescence is captured from the direction normal to 

the laser sheet by a camera imaging system described in the next section.  Dry 

compressed air seeded with a 1% NO in N2 mixture was used as the simulated fuel.  

Ideally the amount of nitrogen in the air was tuned to achieve a value of roughly 1,000 

ppm of NO in the total mixture.  A good value was confirmed by checking diagnostic and 

image readouts on the laser equipment, explained next.  The reason for varying this 

amount is to retain a relatively constant electronic quenching rate and mole fraction of 
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NO and produce a clear fluorescence signal for every hardware/injection configuration.  

The images themselves were not corrected for discrepancies in electronic quenching, 

collisional line broadening, laser coupling effects, or ground state population.  Although 

signal strength varies slightly with the above phenomena (which depend on core pressure 

and temperature), a decrease in signal intensity can be taken to represent a decrease in 

NO concentration and therefore mixing and dilution of the jet fluid with the freestream.  

Appendix C contains a calculation worksheet produced by Dr. Campbell Carter of AFRL 

that plots the negligible pressure and temperature effects on fluorescence.  As it is a self-

contained document, its symbol convention will not be defined or referred to in this 

report. 

Laser and Camera Equipment 

The same laser equipment and laser sheet radiation wavelength of 226 nm was 

used in the test facility to support both imaging methods.  The difference between Mie 

scattering and NO-PLIF, from an imaging standpoint, was the camera needed to be 

reconfigured to capture the differing signals. 

In order to access the NO A-X state transitions, the laser system consisted of a 

Lumonics Hyperdye dye laser and an injection-seeded Spectra Physics® Nd: YAG laser 

(GCR-170).  The second harmonic of the Nd: YAG was pumped into the dye laser.  The 

dye output was frequency doubled and then frequency mixed with residual IR output 

from the Nd: YAG using Inrad® Autotraker III’s to produce frequency mixed radiation at 

226 nm.  A sample signal was monitored on an oscilloscope to ensure good overlap of the 

laser and transition.  Using this, small adjustments were made to the dye laser grating 
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position to account for temperature variance on the signal.  The signal was also used to 

tune the amount of nitrogen mixed in air for the PLIF readings.  A picture of the two 

lasers is shown in Figure 24. 

 

 

Figure 24.  Laser equipment 

 

 The laser sheet was created using a plano-concave cylindrical lens (negative 50 

mm focal length) and a plano-convex spherical lens (1000 mm focal length).  The 

resulting sheet height was roughly 75 mm, and thickness is estimated at 250 – 300 μm.  

Scattering and fluorescence were both captured normal to the laser sheet using a 

Princeton Instruments® PIMAX intensified CCD (Charged Couple Device) Camera at a 

512 x 512 pixel resolution.  The camera was fitted with a 45 mm focal length f/1.8 

Cerco® UV lens.  For NO-PLIF measurements, a UG-5 filter was used to block scattering 
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at 226 nm and collect fluorescence from the (0,1), (0,2), and (0,3) bands.  This filter was 

not required for Mie scattering measurement.  For streamwise view (profile) images, the 

laser sheet was directed down through the top wall window and centered on the injection 

centerline; imaging occurred normal to the sheet through a side wall window.  For end 

views, the sheet was transmitted over the test section span through the side wall windows, 

and imaging took place from a side window as well.  The camera was positioned at an 

off-normal angle to the sheet, so the image needed to be corrected for blur.  This was 

achieved with a Scheimpflug mount, a device that allows adjustment of the CCD camera 

lens to allow focus correctly over the entire range of the off normal plane.  Figure 25 

shows the end view camera configuration as well as a comparison of the sheet 

orientations. 

 

 

Figure 25.  Laser sheet orientations with end view camera shown 

 41 



 

Testing Strategy 

Table 3 contains a summary of the relevant parameters used in the experiment.  

Each insert (F, M, T, W) was combined with the different injection pressures (1, 2, 3).  

The twelve hardware/pressure combinations are named F1, F2, F3, M1, M2, etc.  

Additionally, the wind tunnel was able to simulate a back pressure condition.  For the F2, 

M2, T2, and W2 configurations, the tunnel diffuser valve was partly closed to provide 

additional readings with the shock train condition over the cavity.  These conditions are 

labeled F2BP, M2BP, T2BP, and W2BP, respectively.  This brings the total number of 

unique conditions to sixteen.  The tunnel back pressure in the Tall case was higher in 

order to observe the effects of a shock train located farther upstream.  Visualization was 

obtained using Mie scattering and NO-PLIF on two orthogonal planes (profile and end 

view), and pressure information was collected and stored on the lab server.  Data were 

reduced using a combination of several imaging software programs (described later) for 

the pictures and Microsoft Excel® for the pressure information plots.  The full test matrix 

for the sixteen main cases is presented as Appendix D.  Two auxiliary runs were also 

made.  One was performed with zero injection behind the Medium pylon to compare 

shock heights against the injection cases using Mie imaging (further details are explained 

in the results section).  Another run was made with the Flat insert at zero injection to 

obtain baseline bottom wall pressure readings in the tunnel. 
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Table 3.  Summary of important testing parameters and nomenclature 

           

F Flat insert

M Medium insert

T Tall insert

W Wide insert

Injection 1 P0j = 200 psia

Injection 2 P0j = 100 psia

Injection 3 P0j = 50 psia

BP Shock train

Xf /d 37

Xf /L 0.9

q ~ 0.7 ― 3.3 injection dependant

Xp /d ~ 1 or 1.5 pylon insert
W/d ~ 2 or 3 dependant  

 

Laboratory Procedure 

Each of the four inserts was tested in Mach 2 cross-stream at three injection 

pressures.  The only hardware adjustment required between pylon changes was removal 

of one insert and installation of the next.  The average configuration swap time was 

fifteen minutes.  Tunnel properties were measured for each hardware configuration and 

injection pressure, and acquisition occurred on an AFRL internally developed system that 

uses standard computer components.  Later, these data were averaged and appropriate 

parameters plotted using a spreadsheet (Excel®) for use in analyzing flow efficiency.   

After an insert was installed and the facility was run up to nominal conditions, an 

injection pressure was applied and at least 20 readings were taken of the tunnel properties 
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and recorded onto the main server.  Images were then acquired.  Figure 26 shows the 

equipment configured for profile viewing.  For the end views, 8 locations were chosen, 

with 0 corresponding to fuel jet center as defined previously in the pylon section.  

Marching the laser sheet downstream (x direction), the distances are 0 (jet center), 0.25, 

0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 inches downstream of injection (x/d = 0, 4, 8, 12, 16, 20, 

24, 32).  A remotely controlled traversing table ensured both laser sheet and camera 

remained precisely coordinated.  After all readings were taken the injection pressure was 

changed and the process was repeated. 

 

 

Figure 26.  Streamwise (profile) view imaging setup 

 

When NO-PLIF was the imaging method being used, it was necessary to meter 

the mixture of NO laden N2 to obtain a clear and detailed fluorescence signal for a given 

injection pressure.  The percentage of nitrogen gas mixed into the injection air was 

monitored and varied between 5 and 20 percent (yielding the required 500 to 2,000 ppm 
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of NO in the total mixture).  Figure 27 shows the facility nitrogen metering system, 

which is controlled by a Tylan controller from the main control room.  Total mixture 

pressure for NO-PLIF and Mie scattering was adjusted by analog valves in the control 

room and digitally monitored. 

 

 

Figure 27.  Nitrogen mixing system 

 

Image Data Reduction 

Raw images acquired from the diagnostic equipment were stored as Princeton 

Instruments® (.spe) files.  They were saved as “unsigned 16-bit” at a size of 256 x 256 

super-pixels (reduced from the 512 x 512 capture resolution).  200 images were stored 
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per capture.  These files contain numerical values of fluorescence/scattering intensity per 

pixel.  Reducing these images to a presentable format involved 1) taking the means and 

standard deviations for each image set, 2) correcting for residual signals from the test 

section and laser sheet, 3) scaling the pertinent pixel values to a visible gray scale, 4) 

skew correcting and cropping each image to account for camera angle (in the end view 

cases), and 5) adding real dimensions. 

The software used for initial image reduction was developed internally by 

Innovative Scientific Solutions, Inc. (ISSI) and is called PDView© (version 4.21).  It is 

capable of basic image handling of many raw data types.  Each .spe file contains a set of 

200 readings from one hardware configuration at one injection pressure and one camera 

position.  Each reading produces an instantaneous image, which is useful for showing 

large scale turbulent structures.  All of the readings in one set may be sum averaged into 

mean images to trace fluid spread, or a standard deviation may be obtained to 

qualitatively observe turbulence and mixing potential.  Figure 28 demonstrates these 

functions.  Differences in brightness of the Mie images exist and are explained in further 

detail later. 
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Figure 28.  Example of conversion processes in PDView©

 

Averaged Mie scattering measurements produce thermally dependent images; the 

darker regions, which represent a lack of ice crystals, highlight the fuel jet, as well as 

viscous effects around shocks and boundary layers.  NO-PLIF averaged images display 

just the fuel jet; the lighter regions represent the presence of NO-PLIF and point to the 

fuel jet location.  The standard deviations for both Mie and NO-PLIF show the highest 

turbulence as lighter shades (stronger signal).  Reflections on the floor of the test section 

are visible in both types of imaging. 

Unwanted information existed in the form of residual signals from reflections off 

the hardware in the tunnel.  This background information was acquired separately while 
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the experiment was not running.  Additionally, a subset of information on the laser sheet 

intensities and inconsistencies was acquired and saved as a reference image.  Both 

background and reference information was gathered at each camera location.  Once the 

raw data from the fuel jet was averaged, the background image was subtracted from both 

the injection image and the reference reading.  Unfortunately this process did not always 

remove all hardware reflections, and the results section will show pylon edges clearly 

visible in some of the pictures.  After the background was subtracted, the mean jet image 

was then divided by the reference image, yielding a normalized image with unitless pixel 

values. Zero represents no fluorescence, and maximum fluorescence occurred anywhere 

from 0.01 – 2.50.  Standard deviation images did not go through the subtraction or 

division process because they measure dynamic changes in the jet that do not 

simultaneously occur in the hardware or the laser sheet.  Although the standard deviation 

pixel values were not normalized, 0 still represents no value while the maximum output 

can vary from 1000 – 3000. 

Applying the proper grayscale to each image was a tedious process that differed 

in Mie mean images, NO-PLIF mean images, and standard deviation images.  NO-PLIF 

means were the most straightforward.  PDView© contains an autoscale feature that 

automatically ranges the grayscale depending on the maximum and minimum pixel 

values found in the entire image.  Because the mean NO-PLIF signals were comprised 

solely from the fuel jet and there were few extraneous signals, the autoscale chose proper 

values almost every time.  Figure 29 below shows an example output of an image 

PDView© autoscaled. 
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Figure 29.  PDView© scaled mean NO-PLIF output (1.52 represents the maximum intensity for this image) 

 

Standard deviation images for NO-PLIF and Mie scattering contained 

respectively increasing outlying signals (created by uncorrectable hardware or laser sheet 

reflections) which diminished the autoscale capability in PDView©.  Often the scale had 

to be manually set to 0 on the lower bound and the necessary value on the upper bound 

that presented a clear image.  If the upper value was too low, the information “wrapped” 

around the scale, causing black blotches to appear where the highest signal intensity 

exists.  If the upper value was too high, a darkened or faded image was the result.  

Sometimes to produce clear Mie standard deviation images that highlighted the jet over 

other turbulent signals, the chosen upper bound value produced wrap around blotches in 

the boundary layer where intensity was highest.  This result was acceptable because the 

boundary layer presence was still visible. 

Mean Mie images were difficult to scale manually even within PDView©, as 

unpredictable ice crystal scattering caused irregular pixel values, some of them negative.  
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The solution to this issue was to leave the autoscale turned on (to capture all the data, 

even the outliers) and export the images as bitmaps.  Using a freeware program called 

ImageJ (version 1.32j), these bitmaps were imported and histograms created.  The 

histogram shows every brightness value present and a pixel frequency for that value.  The 

brightness scale was then adjusted to surround the frequent middle values and exclude the 

outliers.  Figure 30 shows one such histogram. 

 

 

Figure 30.  Image histogram 

 

In the end view images (both Mie and PLIF) the camera angle required the use of 

the Scheimpflug mount to mitigate image blur (and intensity) due to off-normal imaging.  

This adaptation did not correct for perspective skewing.  Because the images acquired 

from this configuration were not truly end views, they needed to be skew corrected using 

a first order interpolation.  This adjustment preserved pixel intensity values (which were 

already corrected with the mount) and allowed accurate geometric measurements to be 

performed on the images.  The interpolation process had a mean squared error of 0.997 
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pixels for the Mie images and 1.300 pixels for the NO-PLIF images.  An example of the 

skew correction using the calibration dot cards can be seen in Figure 31.  Once the image 

was unskewed, a simple crop procedure was used to remove the floor and standardize the 

size of the images. 

 

 

Figure 31.  Skew correction example 

 

Determining real dimensions once all the above had been accomplished was 

simply a matter of measuring distances in pixels, then converting to any desired unit.  

The dots on the dot cards were ¼ inches in diameter, providing the necessary information 

for true distance measurement.  The Mie and the NO-PLIF images (as well as end view 

versus streamwise views) had different conversion factors due to differing camera zooms.  

Adobe Photoshop® (7.0) was used for dimensioning and final presentation of the images.
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IV.  Analysis and Results 

 

Overview of Data Measurement 

There were twelve hardware/injection configurations tested in a Mach 2 cross-

stream that produced sixteen total runs.  Each of these conditions was captured by the full 

suite of imagery described previously, with the exception that back pressure conditions 

were not imaged with Mie scattering (thermal shock effects melt the ice crystals).  In 

some end view cases, the last few distances (x/d = 20, 24, 32) were omitted due to 

complete mixing and a non-informative signal.  The profile view looked only at the 

Medium pylon and the Flat insert.  For this measurement the Medium pylon was also 

tested at a no injection condition (labeled M0) to characterize the effect of the pylon 

alone on the supersonic freestream.  In general, raw (instantaneous) images help to 

capture large scale turbulent structures that form at the interaction between the jet and the 

core flow, as well as development and unsteadiness of the bow shock and jet penetration 

through the boundary layer (Mie scattering only).  Mean images show average location, 

spread and penetration of the jet.  Standard deviations offer an estimate on mixing 

potential. 

Mie Scattering Data 

Mie scattering images offer interesting first-look data.  Visible in the profile view 

is the pylon (if installed), the jet fluid (when injected), and the shockwave developments 

(bow shocks) that occur from combinations of pylon and jet disturbances.  Standard 

deviations highlight these phenomena as well.  The end views were all acquired with 
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injection present.  Bow shocks are visible in these views as well, although their 

expanding boundaries were not captured by the range of the camera in the last few 

distances.  Measurements on shockwave heights were performed with the end view 

images. 

NO-PLIF Data 

This technique is useful as it displays information only where jet fluid exists.  

Although Mie scattering provides an outline of the jet, it is not nearly as detailed and 

concentration-correlated as NO readings.  Using the mean NO images, measurements 

were made on the maximum penetration height (yj) and maximum vertical and horizontal 

spreads (Δy and Δz, respectively).  The separation distance of the jet fluid from the test 

section floor is termed the floor gap (g) and was calculated as g = yj- Δy.  Jet area (Aj) 

was measured as the area in the mean images encompassed by at least 10% max intensity, 

in a manner similar to previous experiments.40  Mixing area (As) was gathered from the 

standard deviation images as the area encompassed by an intensity value of 70% or 

greater.  These two areas were determined by analyzing the histograms of each image and 

counting the appropriate number of pixels at a given brightness level percentage. 

For each individual image, the grayscale was adjusted so that pure white 

represents the maximum intensity at that laser sheet location.  This allows the jet 

structure to be accurately measured and observed.  Because NO-PLIF image intensity is 

directly correlated to concentration, plots are presented that show the decreasing 

maximum intensities as the laser sheet traverses downstream, normalized by the x/d = 0 

initial max intensity in each case.  This way image brightness and clarity, although not 
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predictors of fluid dilution, present a consistent illustration of jet geometry.  The two 

methods (image geometry mapping and intensity measurements) paint the full picture. 

Pressure Data 

Tunnel top and bottom wall static pressure readings are presented and 

comparisons are discussed for the sixteen main cases.  These readings tend to show slight 

pressure disturbances by the pylons, fuel jets, and shock impingements created by the 

cavity farther downstream.  In the back pressure conditions the shock train location was 

evident. 

NO-PLIF Intensity Reduction 

Tabulated values of the maximum intensity for each individual image for both 

mean and standard deviation cases are shown in Appendix E.  Starting at the jet center 

(x/d = 0), mean readings show a steady powered regression curve along the downstream 

direction.  The standard deviation images show a decrease, but with inconsistencies 

(namely at x/d = 4).  It is possible that maximum standard deviation does not occur 

immediately at x/d = 0.  Localized turbulence and mixing which affect the maximum 

standard deviation intensity of each image are going to cause the series of images not to 

exhibit steady decay behavior.  These trends are observed in all the inserts.  Figures 32 

through 35 show the mean readings (and trends), while Figures 36 through 39 show the 

standard deviation readings. 
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Figure 32.  Flat mean maximum intensity reduction 
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Figure 33.  Medium mean maximum intensity reduction 

 56 



 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 4 8 12 16 20 24 32

Slice Distance (x/d)

Pe
rc

en
t M

ax

T1
T2
T3
T2BP

  

(a) 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 4 8 12 16 20 24 32

Slice Distance (x/d)

Pe
rc

en
t M

ax

T1
T2
T3
T2BP
T1  Trend
T2  Trend
T3  Trend
T2BP  Trend

 

(b) 

Figure 34.  Tall mean maximum intensity reduction 
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Figure 35.  Wide mean maximum intensity reduction 
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Figure 36.  Flat standard deviation maximum intensity reduction 
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Figure 37.  Medium standard deviation maximum intensity reduction 
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Figure 38.  Tall standard deviation maximum intensity reduction 
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Figure 39.  Wide standard deviation maximum intensity reduction 
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When x/d = 32, the jet is about 95 percent diluted into the freestream for pylon 

injection as well as the no pylon (Flat) reference.  The standard deviation graphs show 

that all three pylon sizes show a higher intensity than the Flat reference at the farther 

downstream locations (x/d > 16).  At x/d = 32, the Wide pylon shows the most 

normalized intensity with 38%, indicating more global interaction compared to the other 

inserts.  At x/d = 4, injection pressure 1 shows a high standard deviation, sometimes of an 

equal or higher magnitude than at x/d = 0 (Medium and Wide cases).  The tall pylon, 

which extends higher into the freestream, does not show this trend because its large 

presence overcomes injection pressure effects.  When there is no pylon, injection pressure 

3 experiences the higher standard deviation.  This demonstrates that the shorter pylons 

have some effect on fluid interactions shortly downstream of injection when enough 

injection pressure is present.  The Tall back pressure condition standard deviation 

intensity increases from x/d = 8 to x/d = 16 while the other back pressure intensities do 

not because the shock train structures in the Tall case occur much farther upstream than 

in the other cases, as the pressure plots will demonstrate.  In summary, these charts show 

that in the flat case, large scale interactions diminish sooner, providing a fluid which only 

continues turbulent behavior within its local spread, as the images will show.  The pylons 

continue to interact with the core flow farther downstream, and the images will highlight 

the extent of local interactions. 

The extent of penetration and mixing potential will be determined from the visual 

images.  The images do not depict dilution, but they highlight the local geometry of the 

present jet fluid intensity. 
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NO-PLIF End View Results 

NO-PLIF end view images are presented in the following manner: Mean and 

standard deviation images are shown for the low back pressure cases.  Each image is 

grayscale adjusted to show white at its maximum intensity.  Discussion follows after each 

insert (F, M, T, W), then high back pressure images are shown followed by a separate 

discussion.  Subsequently, a comparative analysis using plots created from the geometric 

information is presented.  Refer again to Table 3 for nomenclature. 

Sample instantaneous images and tabulated geometrical data are presented in 

Appendix F.  The raw images may be referenced in order to grasp the nature of the 

complicated flow, especially at the interface between jet fluid and freestream flow.  

Those structures suggest a large mixing interface (seen with all cases) which is not 

evident from the averaged images.  These interfaces exist in the shock boundary layer, 

which previous research confirms.31  Large formations are a good indicator of mixing 

potential.  Further conclusions are drawn from standard deviation results. 

The Flat insert images are shown in Figures 40 through 42.  The Medium insert 

images are found in Figures 43 through 45.  The Tall case is presented in Figures 46 

through 48, the Wide case in Figures 49 through 51.  Finally, the shock train images are 

found in Figures 52 through 55. 

Injection pressure 1 refers to the 200 psia case, while injection pressures 2 and 3 

are 100 and 50 psia, respectively.
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 40.  (F1) NO-PLIF, Flat insert, injection pressure 1, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 40 (cont’d).  (F1) NO-PLIF, Flat insert, injection pressure 1, x/d = 12, 16, 20 
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 Mean g) x = 24d Standard Deviation 

 
h) x = 32 d 

 
Figure 40 (cont’d).  (F1) NO-PLIF, Flat insert, injection pressure 1, x/d = 24, 32 
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 41.  (F2) NO-PLIF, Flat insert, injection pressure 2, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 41 (cont’d).  (F2) NO-PLIF, Flat insert, injection pressure 2, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
Figure 41 (cont’d).  (F2) NO-PLIF, Flat insert, injection pressure 2, x/d = 24 
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 42.  (F3) NO-PLIF, Flat insert, injection pressure 3, x/d = 0, 4, 8 
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Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 42 (cont’d).  (F3) NO-PLIF, Flat insert, injection pressure 3, x/d = 12, 16, 20 
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When no pylon is installed, the jet exhibits the familiar behavior observed in 

previous research.32  At the jet injection location (x/d = 0),  the jet crowns as it quickly 

expands, and it is mostly concentrated near the floor.  The standard deviation at this 

location shows a large jet/core interaction over the top of the crown.  Figure 40 highlights 

this well.  The fluid then quickly develops into a lifted formation with counter-rotating 

edges.  The mean images show that most of the jet is concentrated in these areas, while 

the standard deviation illustrates the strong interaction around the side and bottom of the 

plume.  These areas of high interaction (bright white on the standard deviation images) 

are large and well defined at distances downstream. 

As injection pressure decreases from 200 to 50 psia, the formation of the jet into a 

final shape occurs sooner.  In the F1 case, the shape stabilizes at x/d = 20, although the 

size continues to increase (Figure 40(f)).  This happens around x/d = 16 for F2 (Figure 

41(e)) and x/d = 12 for F3 (Figure 42(d)).  The stronger influence of the freestream at 

lower q reduces penetration and spread but begins to influence the jet/freestream 

interaction farther upstream.  The higher the injection pressure the farther downstream 

the jet continues to develop and grow. 

Even at high q, some of the jet fluid settles near the floor, such as in Figure 40(h).  

This could result in fuel pooling in the boundary layer, a condition that can lead to 

flashback, especially in inlets.3  Assessment of this condition cannot be completed 

visually, but software which can create the jet boundaries for each case and measure the 

floor separation provides a better estimate for each case.  That is the subject of the section 

following the image collages.
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 43.  (M1) NO-PLIF, Medium insert, injection pressure 1, x/d = 0, 4, 8 
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Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 43 (cont’d).  (M1) NO-PLIF, Medium insert, injection pressure 1, x/d = 12, 16, 20 
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Mean g) x = 24 d Standard Deviation 

 
h) x = 32 d 

 
Figure 43 (cont’d).  (M1) NO-PLIF, Medium insert, injection pressure 1, x/d = 24, 32 
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 44.  (M2) NO-PLIF, Medium insert, injection pressure 2, x/d = 0, 4, 8 
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Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 44 (cont’d).  (M2) NO-PLIF, Medium insert, injection pressure 2, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
Figure 44 (cont’d).  (M2) NO-PLIF, Medium insert, injection pressure 2, x/d = 24 
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 45.  (M3) NO-PLIF, Medium insert, injection pressure 3, x/d = 0, 4, 8 
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Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 45 (cont’d).  (M3) NO-PLIF, Medium insert, injection pressure 3, x/d = 12, 16, 20 
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When flow is injected behind the Medium pylon, the jet is observed to crown, but 

with a small amount of NO penetrating past the interaction layer and into the freestream 

(above the pylon).  Figure 43(a) illustrates this.  The jet then immediately widens to a 

thickness greater than the pylon, with a high interaction zone in the base area.  By the x/d 

= 12 location, jet fluid has penetrated into the higher thin area seen before and is more 

concentrated there (Figure 43(d)).  The familiar counter-rotating formations are evident 

but begin to play less of a role, as the standard deviation shows the interaction zone 

shifting up to match the lift in jet concentration.  By x/d = 20, the majority of the jet fluid 

and interaction are in the upper area, which has become wider and more pronounced 

(Figure 43(f)). 

This three part process (immediate penetration and widening, transfer of fluid 

concentration away from the floor and counter-rotating areas, settling of the fluid in the 

now wide upper area) is observable in all three pylon configurations, as will be shown 

next with the last two pylons.  The process suggests that the pylons generally lift fuel 

from the floor and disperse it higher into the cross-flow, lessening the vortex generation 

(vortices reduce global mixing as intensity plots show, perhaps due to the centrifugal 

effect).  All pylons also serve to increase the penetration height and leave the fuel higher 

off the floor over the Flat case.  Again, a higher q causes the developments to continue 

occurring farther downstream.  For instance, the fluid settling occurs around x/d = 12 for 

M2 (Figure 44(d)) and x/d = 8 for M3 (Figure 45(c)). 

At low q the jet is significantly more lifted from the floor than is observed in the 

Flat case.  This is evident by comparing Figures 42(f) and 45(f).  This keeps fuel out of 

the boundary layer.
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 46.  (T1) NO-PLIF, Tall insert, injection pressure 1, x/d = 0, 4, 8 
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Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 46 (cont’d).  (T1) NO-PLIF, Tall insert, injection pressure 1, x/d = 12, 16, 20 
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Mean g) x = 24 d Standard Deviation 

 
h) x = 32 d 

 
Figure 46 (cont’d).  (T1) NO-PLIF, Tall insert, injection pressure 1, x/d = 24, 32 
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 47.  (T2) NO-PLIF, Tall insert, injection pressure 2, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 47 (cont’d).  (T2) NO-PLIF, Tall insert, injection pressure 2, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
Figure 47 (cont’d).  (T2) NO-PLIF, Tall insert, injection pressure 2, x/d = 24 
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 48.  (T3) NO-PLIF, Tall insert, injection pressure 3, x/d = 0, 4, 8 
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Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 48 (cont’d).  (T3) NO-PLIF, Tall insert, injection pressure 3, x/d = 12, 16, 20 
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Injection behind the Tall pylon shows immediate penetration past the crown such 

that the standard deviation shows a high initial level of development in the upper area.  

The crown does not have as defined of an interaction zone.  The base then begins to 

widen, although not as rapidly as in the Medium case.  At x/d = 12, seen in Figure 46(d), 

there is roughly an equal level of jet concentration and interaction between the upper and 

lower areas.  Here the shape distinctly shows what are almost two independent areas.  

Downstream, the jet as a whole continues to lift into the freestream.  Figure 46(g-h) 

shows that the counter-rotating flow begins to fade at x/d = 24, and by x/d = 32 more 

fluid is concentrated in the upper area.  This is the trend seen in the Medium case, but the 

Tall jet does not develop as quickly.  The Tall case shows much higher penetration into 

the freestream.  The upper and lower areas are more distinct and continue to develop on 

their own once formed.  This shows that the Tall geometry provides ample room for fuel 

dispersion initially and downstream, mainly because of its large presence.  It is still thin 

enough to allow vortex generating phenomena to affect the lower area of fuel. 

T2 shows a lower to upper transition and a stable formation occurring at x/d = 12 

and 20, respectively (Figure 47(d)(f)).  The x/d = 24 penetration height is equal to the 

height achieved at the same distance by the M1 case (Figures 47(g) and 43(g)), which 

shows how dramatically the Tall pylons affect penetration height.  T3 shows an 

established plume by x/d = 16 (Figure 48(e)).  All the Tall cases show a marked increase 

in penetration height, as well as a large jet cross-section.  Development begins to occur 

farther downstream than with the other pylons. 

The Tall pylon also noticeably lifts fuel off the boundary layer through the full 

range of injection pressures.
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 49.  (W1) NO-PLIF, Wide insert, injection pressure 1, x/d = 0, 4, 8 
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Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 49 (cont’d).  (W1) NO-PLIF, Wide insert, injection pressure 1, x/d = 12, 16, 20 
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Mean g) x = 24 d Standard Deviation 

 
h) x = 32 d 

 
Figure 49 (cont’d).  (W1) NO-PLIF, Wide insert, injection pressure 1, x/d = 24, 32 
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 50.  (W2) NO-PLIF, Wide insert, injection pressure 2, x/d = 0, 4, 8 

 

 97 



 

Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 50 (cont’d).  (W2) NO-PLIF, Wide insert, injection pressure 2, x/d = 12, 16, 20 
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Mean g) x = 24 d Standard Deviation 

 
Figure 50 (cont’d).  (W2) NO-PLIF, Wide insert, injection pressure 2, x/d = 24 
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 Mean a) x = 0 d Standard Deviation 

 
b) x = 4 d 

 
c) x = 8 d 

 
Figure 51.  (W3) NO-PLIF, Wide insert, injection pressure 3, x/d = 0, 4, 8 
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Mean d) x = 12 d Standard Deviation 

 
e) x = 16 d 

 
f) x = 20 d 

 
Figure 51 (cont’d).  (W3) NO-PLIF, Wide insert, injection pressure 3, x/d = 12, 16, 20 
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Injection behind the Wide pylon exhibits many of the characteristics now 

established by the Medium and Tall cases.  What sets the Wide configuration apart is the 

rapidness of jet penetration and initial upper area development.  Upon injection the jet 

fluid, as well as the interaction zone, quickly penetrate to a height much higher than the 

pylon height, and by x/d = 8 (Figure 49(c)) the transition from the lower to the upper area 

begins.  As the jet lifts quickly off the floor, it slowly establishes its final form, settling 

somewhere around x/d = 24 (Figure 49(g)).  This distance is larger than in the Medium 

case. 

The lower q values yield the same trends.  The transition begins at x/d = 8 for W2 

(Figure 50(c)), which is the same as W1.  This occurs very quickly at x/d = 4 in W3, 

shown in Figure 51(b).  The fluid settling occurs at x/d = 16 for W2 and x/d = 12 for W3 

(Figure 50(e) and 51(d), respectively).  All three injection pressures show the jet 

transitioning quickly and lifting from the floor, followed by a slow transition to the final 

form.  This is advantageous, for the pylon quickly infuses fuel up into the core flow and 

then allows it to mix (intensity plots show the most global interaction in the Wide case). 

A large floor gap is observed with the Wide pylon.  Fuel does not remain in the 

boundary layer.  Once again, this is related to preventing flashback. 

An interesting asymmetry is observed in the wide images, as clearly seen in 

Figure 49(h).  Mie scattering images, which will be referenced at a later time, confirm 

this phenomenon.  The most likely explanation is error in fabricating an even injection 

port or pylon.  This is only more confirmed by the shock train images below, which show 

the same behavior in the Wide case.  The discharge coefficient and distance from 

injection are also noted to be slightly different in the Wide insert.
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 Mean a) x = 0 d Standard Deviation 

 
c) x = 8 d 

 
e) x = 16 d 

 
Figure 52.  (F2BP) NO-PLIF, Flat insert, injection pressure 2, with shock train 
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 Mean a) x = 0 d Standard Deviation 

 
c) x = 8 d 

 
e) x = 16 d 

 
Figure 53.  (M2BP) NO-PLIF, Medium insert, injection pressure 2, with shock train 
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 Mean a) x = 0 d Standard Deviation 

 
c) x = 8 d 

 
e) x = 16 d 

 
Figure 54.  (T2BP) NO-PLIF, Tall insert, injection pressure 2, with shock train 
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 Mean a) x = 0 d Standard Deviation 

 
c) x = 8 d 

 
e) x = 16 d 

 
Figure 55.  (W2BP) NO-PLIF, Wide insert, injection pressure 2, with shock train 
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Shock train conditions were simulated with injection pressure 2 (100 psia).  An 

actual value for q was unobtainable for this condition due to the complex nature of this 

flow and a lack of pressure and velocity measuring capability directly over the injector.  

The Flat, Medium, and Wide inserts experience the same shock train position.  Pressure 

plots will demonstrate that the beginning of the formation occurs directly over the 

injection.  This region of slightly slower, more turbulent flow causes more dilution and 

better mixing of the jet fluid.  The most noticeable difference in fluid behavior with this 

condition is the increase in standard deviation activity.  The intensity plots show that in 

general, the fluid concentration and standard deviation strength are of lower values than 

the non-shock train cases, which means the jet is slightly more diluted and more mixed 

into the freestream.  Within the range of standard deviation behavior, the plumes from the 

Wide and especially the Medium pylon exhibit much more diverse interaction zones, 

covering almost the entire extent of the remaining visible fuel jet.  The Flat injection 

contains slightly larger interaction zones as well, but not as high as the pylons. 

The Tall case is tested with a higher back pressure, so the shock system is located 

farther upstream.  Pressure plots will show the Tall injection well within the shock train.  

Within the streamwise distances observed, the intensity plots show more dilution than the 

other three cases (Figure 34), but the standard deviation intensity actually increases 

farther downstream (corresponding to the x/d = 16 location in Figure 54).  The image 

shows a very large area with a high degree of local interaction.  Thus, the complicated 

flow within the shock train greatly enhances mixing even more so than the beginning of 

the shock train. 
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Geometric Comparison of Jet Behavior 

Table 4.  Pylon versus Flat measurements 
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Data on geometric jet parameters are plotted and presented in this section.  

Tabulated values for the entire range of testing are found in Appendix F.  The plots verify 

what is determined from the purely visual observations in the previous section.  The 

parameters presented are penetration height (yj/d), penetration height normalized by 

pylon height (yj/h), floor separation (g/d), horizontal jet spread or width (Δz/d), jet width 

normalized by pylon width (Δz/W), 10% or greater visible jet area (Aj/d2), and 70% or 

greater local standard deviation fraction (As/Aj).  As/Aj serves to predict the mixing 

potential for a given location (and its image intensity).  Although the value chosen for 

mixing area seems arbitrary, the important result is the comparison of the mixing to jet 

area ratio among different inserts.  That comparison will show similar trends regardless 

of the defined mixing area.  The jet border is defined at the 10% intensity value for all 

length measurements.  Although the image intensities decrease with streamwise marching 

(as discussed previously), the local interaction zones can still be characterized on a per 

image basis. 

Figures 56 through 62 contain the plots.  After each set a small discussion 

highlights the pertinent comparisons.  Each pylon’s maximum and minimum 

improvement over the Flat case for each injection pressure is presented in Table 4 (these 

occur at various streamwise locations).  In summary, for q ≈ 3.1, the Tall pylon creates a 

105% increase in penetration height and as much as a 34% reduction in jet width.  For q 

≈ 1.6, the same pylon causes a maximum yj increase of 155% and a 45% reduction in 

width.  At q ≈ 0.8, the Tall pylon causes up to a 190% height improvement and a 38% 

width reduction.  From the standpoint of fuel jet intensifying, the Tall pylon is the most 

effective, while in the back pressure case it is the Wide pylon.  Injection pressure 3 
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exhibits the largest jet height improvement for all pylons.  Injection pressure 2 causes the 

largest width reductions.  The Wide and Medium pylons display many similar trends in 

their maximum abilities.  This can be attributed to their physical size being very similar.  

The Wide pylon is better at providing penetration, whereas it has a slightly lower ability 

to shrink the lateral spread.  Both generally show smaller jet areas and interaction ratios 

than the Tall pylon (explained later).  These maximum and minimum data do not paint 

the full picture.  Further details are discussed with the streamwise plots shown next. 

Error in measuring the borders of the images could range up to 10 image pixels 

when measuring visually.34  This equates to about 1.7 jet diameters using the NO-PLIF 

conversion factor discussed in the data reduction section.  Using the histogram method of 

capturing only the brightness values above 10% (or 70% in the standard deviation case), 

the error reduces to 1 – 2 pixels (0.4 d).  The plots are presented without error bars to 

reduce clutter, noting that all the lines share the same error probability. 

 

 

 

 

 

 

 

 

 

 

 111 



 

Injection Pressure 1

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

x/d

yj
/d

Flat

Medium

Tall

Wide

Injection Pressure 2

0

2

4

6

8

10

12

0 5 10 15 20 25

x/d

yj
/d

 
   (a)      (b) 

Injection Pressure 3

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

x/d

yj
/d

 

Injection Pressure 2 (Shock Train)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18

x/d

yj
/d

 
   (c)      (d) 

Figure 56.  Penetration height (yj/d) for injection 1 – 3 and shock train 

 
The Tall pylon shows an overwhelming advantage in pushing the fuel jet into the 

freestream.  The Wide pylon has a slight advantage over the Medium, which actually 

contradicts the computational predictions by Gouskov et al which would have the 

Medium pylon providing a slightly higher penetration height.4  The Tall pylon has a 

diminished effect downstream in the back pressure case, but as the shock train occurs in a 

different location than in the other three cases, the Tall pylon will behave differently.  All 

pylons push the jet fluid out higher than Flat injection.  Introducing fluid high into the 

core flow will produce a larger fuel/air mixture over the cavity and may lift the cavity 

shear layer such as to transfer flameholder energy into the main stream. 
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   (c)      (d) 

Figure 57.  Penetration height with respect to pylon (yj/h) for injection 1 – 3 and shock train 

 

Only the three pylons are compared with this parameter.  The Wide pylon, which 

is the same height as the Medium pylon, shows a higher self normalized penetration 

height than its partner, except in the back pressure case.  Although the Tall provides more 

penetration height due solely to its size, design for minimum losses may dictate that a 

smaller pylon be used that exhibits a better yj/h.  This is more fuel efficient and incurs 

smaller shock losses.  At x/d = 16, the Wide and Medium pylons exhibit a self 

normalized penetration height of greater than 1.5 (the average value observed in previous 

studies).2-4  This plot again shows the slight advantage the wide pylon has compared to 

the Medium pylon, which makes it a better choice given they produce similar losses. 
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   (c)      (d) 

Figure 58.  Floor gap (g) for injection 1 – 3 and shock train 

 

Although visually the Flat case appears to lift much of the fuel completely away 

from the boundary layer, calculations based on the 10% max intensity consideration show 

that the effective floor gap is completely zero for the F3 and F2BP cases.  The jet lifts 

initially with the higher two injection pressures but then loses its gap farther downstream; 

this does not guarantee flashback prevention.  The Wide pylon is the most effective lifter.  

The Tall pylon loses its effectiveness as injection pressure is decreased, while the 

Medium loses effectiveness at higher q values.  Both the Medium and Wide pylons 

exhibit similar lifting characteristics with a shock train present, while the Tall loses 

effectiveness.  All the pylons provide good lifting mechanisms due to cross-stream shear. 
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   (c)      (d) 

Figure 59.  Width (Δz/d) for injection 1 – 3 and shock train 

 

Combined with plume height, width affects the area in which mixing potential 

may exist.  The Wide pylon produces only a slightly greater plume width, and only at 

lower q values.  The pylons all distribute the fuel vertically and do not allow it to remain 

spread out.  The Wide pylon shows its influence in the visual images, where its width 

prevents the free stream from causing the larger vortices seen in the thinner pylons.  The 

Tall pylon provides the thinnest spread, which corresponds to the jet being spread more 

so along the vertical (y) axis.  The Flat case, although it is not able to achieve the same 

penetration height as the pylons, visually shows a jet that is concentrated on the lower 

outer boundaries, giving it a larger horizontal spread.   
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   (c)      (d) 

Figure 60.  Width with respect to pylon (Δz/W) for injection 1 – 3 and shock train 

 

Normalizing jet width by pylon width results in the Medium pylon having a slight 

advantage over the Tall pylon in this measurement (both are the same width).  This 

confirms that the Tall pylon distributes fuel more vertically.  The wide pylon also lifts 

fuel into the upper area and does not allow it to spread very much in the spanwise 

direction.  Less of the injected fuel is directly exposed to the freestream, allowing it to 

penetrate and lift off the floor more than in the other pylons. 
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   (c)      (d) 

Figure 61.  Jet area (Aj/d2) for injection 1 – 3 and shock train 

  

The measurement of jet area is one composite means to qualitatively predict 

mixing potential.34  Intensity results show that the jet is fairly equally diluted into the 

freestream for all four geometries.  At the two higher injection pressures, the Flat case 

has a larger area than the pylons.  The Tall pylon provides the best area of the three 

pylons, and it overcomes the Flat injection at the lower q, as does the Wide pylon.  The 

back pressure plot demonstrates how the location of the shock train greatly influences the 

spread and presence of the jet.  Because the pylons have less local area but more global 

interaction (as intensity plots show), it can be supposed that fuel is also mixed into the 

freestream beyond the scope of the image.  The next plots show the local interaction. 
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   (c)      (d) 

Figure 62.  Local standard deviation area fraction (As/Aj) for injection 1 – 3 and shock train 

  

The area of high standard deviation (defined as 70% or greater max intensity) 

varies for the different cases.  Flat injection shows a slightly greater local interaction (and 

area).  According to intensity results, the standard deviation normalized intensity is 

higher for the three pylons over the Flat case at x/d > 16,  and injection pressure 1 gives 

the pylons more normalized standard deviation at x/d = 4.  At the lowest and highest 

injection pressures, the Tall pylon is close to the local capability of the Flat case.  At x/d 

> 16, the Tall pylon outperforms the other two other pylons.  None of the pylons exhibit 

as strong a vortex generation as the Flat case in the images.  This results in lower 

standard deviation in the above graphs.  More fuel is exchanged with the freestream. 
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Mie Scattering Results and NO-PLIF Profile View 

Appendix G contains supplemental Mie scattering images (instantaneous images 

in Figures G1 and G2 and end view images in Figures G3 through G14).  The raw images 

display the highly turbulent structures where the jet interacts with the freestream; the 

unsteadiness of the small bow shocks is also evident.  The mean and standard deviation 

end view images follow many of the same trends as the NO-PLIF images discussed 

above (including the skew observed in the Wide case), with the addition of visualizing 

the multiple small shocks that form around the jet and the pylons.  Also visible is the 

boundary layer, which takes the form of a darker region along the section floor, due to 

viscous effects which affect ice crystal concentration.  The thickness of the layer ranges 

around 1 – 2 d, and as the NO-PLIF images confirm, the jet fully penetrates through it. 

Shock Heights 

The Mie scattering end view images show the development of two (sometimes 

three) shock formations as the image marches downstream.  Table 5 displays the heights 

of the first two shocks for each case, based solely on visual estimation from the end view 

images.  The upper (I) shock emanates along the pylon edge, as profile images will 

demonstrate.  In the Flat case, this shock corresponds to the coincident bow shock that 

injection into the direct freestream creates.  A secondary shock (II) begins to form around 

the jet boundary and becomes observable around x/d = 8 – 12.  Shock widths were not 

measured due to a camera range that was too small to observe their full spanwise extent.  

The small range also resulted in some of the heights being unreadable in the larger shock 

(I) for injection pressures 1 and 2.  T3 did not have Mie imagery collected at x/d = 20. 
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Table 5.  Shock heights measured from Mie end view images 

F1 M1 T1 W1 F2 M2

x/d I II I II I II I II I II I II

0 6.5 9 10.5 9.5 5 8

4 11 12.5 14 13.5 9 12

8 14.5 16 17.5 16.5 12.5 5 15 7

12 18.5 7.5 19 9 20.5 9.5 20 9 16 7.5 18 9

16 21.5 9.5 22.5 11 23.5 13 23 12 19.5 10 21 11

20 11.5 25 14.5 14 14 23 12 24 13.5

24 14.5 16.5 16.5 16 25 14 15

32 19 20.5 21 20

T2 W2 F3 M3 T3 W3

x/d I II I II I II I II I II I II

0 10 8 4 7 9.5 6

4 13 12 8 10.5 12.5 10

8 16 15.5 7 11.5 5 14 6.5 16 13 7

12 19 9 18.5 9 14.5 7 17 8.5 18.5 9 16 8.5

16 22 11 21.5 11 18 9.5 20 10.5 22 11 20 10.5

20 24.5 13 24 13.5 21 12 23.5 13 23 13

24 15.5 15.5  

 

The Medium and Wide pylons create shocks that are slightly stronger than the 

Flat case.  The lower the injection pressure (3 being the lowest), the farther away from 

Flat values they become.  For injection pressures 1 and 2, the Wide pylon creates 

somewhat stronger shocks (than the Medium), and at injection pressure 3 the Medium 

creates the stronger shocks.  The Tall pylon generates the largest shock heights for all 
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injection pressures.  Based on only this data, the Tall pylon may not be a desirable 

geometry due to the overwhelmingly larger shocks it creates compared to the no pylon 

instance. 

Profile Views 

The following images are taken from the profile configuration, and each shows 

the general development of the jet in one picture.  Figures 63 through 66 show the 

comparison in shock formations between the F1, M1, M3, and M0 conditions.  The M0 

case (Figure 63) displays some small but prominent shocks forming in the area of the 

pylon. Most noticeable is a shock continuing off the upper tip of the pylon and remaining 

at roughly the same angle as the pylon (~30°).  This is termed shock I in the previous 

section. 

When fuel is injected at the low q value, it has no effect on the development and 

merely remains behind the tip shock.  When fuel is injected such as in the F1 case (Figure 

65), the resulting shock is higher than the pylon alone or the pylon with injection pressure 

3.  When the M1 case is applied (Figure 66), the fuel causes the tip shock to rise to 

approximately the same height as in F1 (actually slightly higher as Table 5 shows).  Thus, 

almost the same shock system occurs in F1 and M1, while M1 provides more fuel 

penetration.  These approximate shock heights correlate with the Mie scattering end view 

images.  Knowing that the Wide case produces similar shocks to the Medium pylon and 

similar penetration heights, both these options appear suitable over the Tall pylon. 
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Figure 63.  M0 case, Mie scatter profile view 

 

Figure 64.  M3 case, Mie scatter profile view 
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Figure 65.  F1 case, Mie scatter profile view 

 

Figure 66.  M1 case, Mie scatter profile view 
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The NO-PLIF profile views (Figures 67 through 72) provide a visual 

representation of intensity reduction as well as a side-by-side comparison for penetration 

height between the Medium and the Flat injection.  The Flat image correlates with other 

studies that observe similar jets under the same imaging methods.40  The barrel shock and 

mach disc are visible and can be compared to Figure 6.  The pylon injection closely 

resembles the trend observed in liquid jet pylon studies.2  The fluid is lifted beyond the 

height of the pylon and eventually settles at a certain height.  This higher presence of fuel 

may interact with the shear layer over the cavity, but current data cannot support any 

hypotheses concerning actual shear layer behavior.  For all three injection pressures, the 

pylon case outperforms the no pylon case by a noticeable margin. 

The largest improvement in penetration height in these examples is in the M3 case 

(Figure 72).  Visually there is a clear improvement of over 100%.  Table 4 confirms this 

with a maximum value of 138% increase. 

Shocks are barely visible in these profile images, both averaged and raw (see 

Appendix F for raw image).  This occurs because the UG-5 filter employed for NO-PLIF 

does not completely block out all the scattering at 226 nm.  The shocks that are clearly 

visible in the Mie images therefore make themselves slightly apparent in the PLIF 

pictures. 
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Figure 67.  F1 case, NO-PLIF profile view 

 

 

Figure 68.  M1 case, NO-PLIF profile view 
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Figure 69.  F2 case, NO-PLIF profile view 

 

 

Figure 70.  M2 case, NO-PLIF profile view 
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Figure 71.  F3 case, NO-PLIF profile view 

 

 

Figure 72.  M3 case, NO-PLIF profile view 
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Wall Pressure Data 

Graphs of wind tunnel wall pressure are presented as Figures 73 through 82.  

They represent the static pressure captured by the taps in the top and bottom walls of the 

test section.  The test section floor is sketched in all the graphs, highlighting the location 

of the cavity and pylon in each case with respect to the taps.  Reference data for the plots 

is found in Appendix H. 

Injection both in the Flat case and behind pylons has a large effect on the floor 

pressure downstream of the injection site, as seen by comparing Figure 73 with the other 

plots.  While bottom wall tap #6 shows an increase in baseline static pressure right before 

the flow reaches the cavity, the injection cases cause this pressure to drop and remain 

relatively lower over the cavity.  The same effect is carried through the cavity region and 

seen downstream of the cavity in bottom tap #11, which also has a marked decrease in 

static pressure when injection is used. 

Injection results show that the top wall taps of interest are #11, #12 – #14, and 

#16.  For any given insert, static pressure is injection pressure independent until tap #11 

(located at x/d = 38.5, approximately over the 90 degree cavity step).  Here the tap shows 

a higher static pressure at the injection 1 case (q ≈ 3.1).  Over the cavity (taps #12 – #14), 

injection 2 and 3 (q ≈ 1.6 and 0.8 respectively) become dominant in increasing static 

pressure, with injection 1 having the lowest effect.  At tap #16 (x/d = 118, beyond the 

cavity), injection 1 again produces the highest static pressure.  When comparing different 

inserts, the cavity area is also of interest.  For injection 1, tap #11 (at the cavity leading 

edge) experiences the highest static pressure increase with the T then W insert, followed 
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by a smaller effect by the M then F configuration.  Injection 3 sees the inserts having an 

effect in the opposite order (F, M, W, T), but this time over the cavity at tap #12.  

Injection 2 shows consistent static pressures in front of and over the cavity that are 

independent of the insert chosen.  For all three injections, tap #16 exhibits the original 

dependence observed in tap #11 (static pressure increases in the progression F, M, W, 

and T).  To summarize, the areas over the front cavity step and also downstream of the 

cavity experience higher static pressure with the Tall (and Wide) inserts and at q equal to 

3.1, while the areas over the main cavity have a higher static pressure increase from the 

Flat insert at the lower q values.  These observations may be related to bow shock effects 

on the top surface. 

The bottom wall individual taps of interest (noting that tap #5 is disconnected in 

the installation diagram and thus does not appear on the plots) are #9 – #10, #15 – #16, 

and #19 – #20.  The first observation is that there is hardly any dependence on the type of 

insert along the entire bottom wall; both the Flat and the three pylon configurations 

produce the same bottom wall pressures for a given injection.  Only injection pressures 

make an impact, which is observed on the taps listed above.  These affected taps are all 

located downstream of the cavity.  Taps #9, #15, and #19 show the highest static pressure 

with injection 1, while taps #10, #16, and #20 produce the lower static pressure with 

injection 1.  This implies that once a certain q is reached (between 1.6 and 3.1), injection 

pressure effects are observed on the bottom wall downstream of the cavity.  Also of 

interest is the sharp pressure rise between taps #11 and #12 seen in all cases (located at 

2.7 L downstream of the end of the cavity).  This and the small oscillatory pressure 

variations show that the cavity is creating impingent pressure effects farther downstream. 
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The last few pressure taps on the top wall show the beginning of the cavity-caused 

phenomena described above.  When graphed together (top of Figure 82), the top wall is 

seen to experience cavity-caused pressure changes about 1.7 L before the bottom wall.  

The top wall pressure taps run out before the sharp pressure rise (shown by the bottom 

wall instrumentation) is detected. 

The back pressure comparison plot (bottom of Figure 82) shows that both top and 

bottom wall are equally affected when the shock train moves over the cavity.  The Tall 

pylon back pressure condition encounters the shocks farther upstream than the other 

inserts.  This explains why the T2BP image data shows different trends than the other 

back pressure images. 
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Figure 73.  Baseline pressure readings on bottom wall 

 130 



 

Flat Insert, Top Wall Pressure
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Flat Insert, Bottom Wall Pressure
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(b) 

Figure 74.  Flat insert wall readings at each injection pressure 
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Medium Insert, Top Wall Pressure
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Medium Insert, Bottom Wall Pressure
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(b) 

Figure 75.  Medium insert wall readings at each injection pressure 
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Tall Insert, Top Wall Pressure
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Tall Insert, Bottom Wall Pressure
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(b) 

Figure 76.  Tall insert wall readings at each injection pressure 
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Wide Insert, Top Wall Pressure
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Wide Insert, Bottom Wall Pressure
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(b) 

Figure 77.  Wide insert wall readings at each injection pressure 
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200 psia Injection, Top Wall Pressure
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200 psia Injection, Bottom Wall Pressure
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(b) 

Figure 78.  Injection pressure 1 wall readings for each insert 
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100 psia Injection, Top Wall Pressure
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100 psia Injection, Bottom Wall Pressure
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(b) 

Figure 79.  Injection pressure 2 wall readings for each insert 
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50 psia Injection, Top Wall Pressure
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50 psia Injection, Bottom Wall Pressure
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(b) 

Figure 80.  Injection pressure 3 wall readings for each insert 

 137 



 

Flat Insert, Top and Bottom Wall
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Figure 81.  Top and bottom wall comparison for Flat injection 
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Figure 82.  Tap readings for the different inserts during high back pressure flow 
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Summary of Data Collected 

The following results have been presented in this paper in the various forms 

detailed: 

A)  Intensity reductions – Figures 32 through 39, Appendix E

B)  NO-PLIF end views – Figures 40 through 55 

C)  End view geometry – Figures 56 through 62, Table 4, Appendix F

D)  Mie scattering end views – Appendix G

E)  Bow shock characterization – Table 5

F)  Mie scattering Medium / Flat profile view – Figures 63 through 66 

G)  NO-PLIF Flat / Medium profile view – Figures 67 through 72 

H)  Pressure data – Figures 73 through 82, Appendix H

 

Total time devoted in the laboratory collecting raw data was estimated at 20 hours 

over three sessions. 
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V.  Conclusions and Recommendations 

 

Experiment Overview 

Three pylons were installed in turn upstream of a transverse circular injector in 

order to qualify any improvements that they made on fueling.  Tests were conducted in a 

Mach 2 flow environment within a test section simulated to act like a supersonic 

combustor.  The injection took place upstream of a cavity flameholder similar in design 

to cavities employed in functional scramjets.  Data was acquired both visually and 

through the use of static pressure measurements.  Twelve configurations were tested in 

“scramjet” mode with completely supersonic flow.  Four configurations were tested with 

back pressure increased so that shock trains formed and simulated “ramjet” mode.  Two 

additional readings (one baseline with no obstructions and one with a pylon obstruction 

but no injection) were also conducted. 

Results have been presented as a compilation of images, tables and plots that 

characterize jet properties seen in the images, image intensity comparisons, and tunnel 

wall pressure trends.  This data correlates with past experiments that studied penetration 

behind pylons and presents some interesting findings concerning optimal pylon 

geometry. 

Synopsis of Results 

Mean intensity plots showed that the jet mixes into the freestream fairly 

consistently with a 95% dilution by the last streamwise readings.  Standard deviation 

intensities demonstrated that more interaction was taking place in the farfield with pylons 
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than without (it was highest in the Wide case).  With a high enough injection pressure, 

pylons created a high intensity of standard deviation directly downstream of injection. 

Raw images from both the Mie scattering and the NO-PLIF runs display large, 

turbulent structures that demonstrate a considerable opportunity for mixing interaction.  

This information is not intuitive from the averaged images. 

Flat injection showed solid development of counter-rotating vortices, a wide 

profile, the largest jet area, and the most local standard deviation 

Medium pylon injection creates an initially wide jet, and the vortices are not as 

much an influence.  Fluid eventually moves to the top formation.  The higher the 

injection pressure the longer it takes to develop.  The Medium pylon causes the most jet 

width normalized by pylon width.  At then higher injection pressures it has the lowest 

floor clearance of the three pylons. 

The Tall pylon immediately penetrates past the crown, but development of the 

remainder of the average structure is slower than the other pylons.  This pylon is a very 

effective fuel penetrator that causes the highest vertical penetration and width reduction 

of all the inserts.  It provides a considerable floor clearance (only behind the Wide pylon) 

and contains the same or better jet area as the Flat case.  The Tall also creates a 

significant amount of local standard deviation. 

The Wide pylon demonstrates immediate penetration followed by a very slow 

development relative to the other pylons.  Its causes very high fuel heights when 

normalized by pylon height, and the second largest total fuel height.  Injection behind this 

pylon quickly lifts from the floor, suggesting a significant baroclinic torque or cross-

stream shear effect.  The floor gap is the highest of the pylons in the farfield.  This pylon 
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also exhibits medium to low standard deviation compared to the other inserts, suggesting 

that its vortices are not as much as an influence. 

The shock train, on the average, increased the standard deviation and vertical and 

lateral spread of all injection cases.  The more upstream the shock train (or the more 

within the shock train that injection occurs), the higher the standard deviation, both 

locally and on the intensity scale.  Mixing potential is high in this regime. 

The Medium and Wide pylons create similar bow shock magnitudes that are 

slightly higher than the Flat injection.  The Tall pylon causes much larger shocks.  High q 

injection behind the Medium pylon produced almost as low shock heights as the same q 

injection with no pylon.  Low q injection behind the Medium pylon did not affect the 

shock heights present when there was no injection.  The pylon effectively shielded the 

entire jet, allowing it to achieve high penetration. 

The Tall pylon increased top wall static pressure ahead of and behind the cavity at 

high injection pressures, while the Flat insert increased the top wall pressures directly 

over the cavity at low injection pressures.  In general, the highest q raised the static 

pressure before and aft of the cavity, while the lowest injection pressure raised static 

pressure directly over the cavity. 

Along the bottom wall pylon type had no effect, but higher injection pressures 

show oscillatory static pressure effects downstream of the cavity, possibly caused by 

cavity shock interactions. 
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Conclusions of Research 

All the pylons provided more penetration and less lateral spread than the Flat 

injection.  All the pylons lifted the fuel off the floor at all values of q, suggesting that 

flashback is preventable using this injection method.  The pylons showed less local 

standard deviation activity (seen in the images), but intensity plots show that all the 

pylons were interacting with and diluting into the freestream at the same level or more 

than in the Flat case. 

The Tall pylon was designed to be of a larger scale than the other two pylons.  It 

was based on the optimal geometry obtained from a computational study.  The greater 

size of this pylon (more than its shape) is what effected the large penetration height.  

Unfortunately, h/d = 6 created stronger shocks than the other three cases.  Based on shock 

heights alone, the Tall incurred between a 10 – 50% additional drag penalty compared to 

the smaller pylons.  Pylon height should be kept to a value of 4 d or below to minimize 

losses. 

The Wide pylon was the best performer overall.  It lifted the fuel jet away from 

the boundary layer quickly and established a good penetration height.  In the shock train 

case it provided the greatest penetration effect.  This pylon was designed with the second 

best geometry suggested by computational research but performed better than the 

Medium pylon of the same height (designed with the optimal suggested geometry).  

Further profile analysis would probably yield a similar shock trend as exhibited by the 

Medium pylon, as suggested by end view shock measurements. 

The lowest q resulted in fuel being completely shielded behind the pylons and 

having no additional effect on shock losses.  This injection pressure achieved the most 
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drastic pylon aided fuel height increase over Flat injection.  The Wide pylon at the low q 

(0.83) enhanced penetration height by 135% (105% for q = 1.67, 70% for q = 3.34). 

Pressure readings demonstrated that the larger pylon (Tall) as well as the highest 

injection pressure caused the highest pressure increases upstream of the cavity, 

suggesting a possible loss parameter.  These pressure changes might have an important 

effect on the cavity shear layer.  The cavity itself experiences pressure variations even 

without the high back pressure condition.  High q injection upstream of the cavity is 

communicated through this area and measures downstream, another indication that higher 

injection pressures affect the shear layer. 

Mixing potential was present through observations of the raw images, as well as 

evidenced by the vortices observed in all the cases.  The pylons showed a higher standard 

deviation intensity but had less developed counter-rotating vortices than the Flat case, 

suggesting that the structures, although they contribute to local interaction, do not 

promote as much dilution and freestream exchange, as intensity plots confirm. 

Significance of Research 

This experiment has shown that pylons are a viable option for injecting fuel and 

preventing flashback, and from a first look additional losses with the Wide and Medium 

pylons are minimal.  Lower injection pressures experience the best enhancement and 

cause the least pressure and shock disturbances.  This knowledge may lead to 

experiments that aim to optimize injection strengths and pylon shapes and sizes to 

provide excellent mixing potential.  The road ahead will combine pylon injection, cavity 
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injection, and ignition to attempt to couple these systems into a single combustion 

strategy. 

Recommendations for Future Action 

More research has to be conducted to visualize and characterize the effect of 

pylon-aided injection over the flameholding cavity.  This could be achieved with 

traditional visual systems such as Schlieren or shadowgraph, as well as more intricate 

pressure tap placement in the cavity region. 

A more in depth shock analysis may be performed with current image data, or 

with reruns that position the camera to capture more of the shock formations.  Standard 

deviations from the Mie scattering and NO-PLIF images could also be compared to 

observe what overlap exists. 

A computational fluid dynamics (CFD) analysis is in order to further characterize 

the intricate formation that occurred behind pylon injection and observed with end view 

NO-PLIF imagery and to verify that the Wide pylon is indeed more optimal than the 

Medium for increasing penetration height.  This could be combined with a concentration 

study to quantify mixing behind pylons and over the cavity and elimination of fuel 

existence on the floor. 

A pitot rake should be employed to measure total pressure losses and begin to 

quantify efficiency comparisons between different pylons.  A method to calculate q in 

shock train conditions would also be desirable. 

Any of the inserts may be installed at the original location used for this study or in 

Fixture B just upstream of the cavity to be used in combustion studies.  These studies 
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would attempt to lift the shear layer out of the cavity and seed the air stream above it with 

mixed fuel/air. 

Further in the future, the pylons may be combined with non-circular/transverse 

injectors (e.g., angled or swirled) to create complex mixing and penetration effects which 

could be used in conjunction with reactive studies. 

Summary 

This study aims to contribute to the development of more efficient fueling 

strategies for dual-mode scramjet combustors.  The Air Force has a high interest in 

optimizing these engines, and the current research has yielded conclusions that favorably 

impact this goal.  This research also confirmed the usefulness of the imaging equipment 

utilized and demonstrated its potential.  The value of computational studies was also 

validated, as hardware design would not have been possible without a theoretical starting 

point.  Follow-up studies and additional data analysis will be performed after the writing 

of this report in preparation for several conference presentations later this year. 
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Appendix A – Hardware Specifics  

 

 

Figure A1.  Pressure tap placement in test section 
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Figure A2.  Detailed cavity section with insert points highlighted 

 

Note: Fixtures A and B (which are compatible with pylon inserts) install into 

“Injector Block 2” and “Injector Block 3”, respectively. 
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Figure A3.  Pylon insert dimensions
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Appendix B – Injection Equations 

 

Discharge Coefficient 

The discharge coefficient (CD) is a mass flow rate loss parameter attributed to any 

particular injector.  During a CD evaluation, Tylan® equipment is integrated into the 

injection line to measure true flow rates in standard liters per minute (SLPM).  A standard 

liter is a volumetric liter converted by the following expression: 
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where ρstd is standard atmospheric density (1.185 kg/m3 in SI units) and ρj is calculated 
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assuming SI units again.  In this method a “true” value of mass flow rate is acquired. 

The real experiment does not utilize a flowmeter.  To simulate actual experiment 

measurements, injection pressure and temperature are measured concurrently with the 
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Tylan® readings.  With knowledge that the nozzle is choked and a value for injection area 

(A), the mass flow parameter may be used to calculate mass flow rate using uncorrected 

temperature and pressure information (from the tube): 
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where the standard properties for air at room temperature are assumed for the specific gas 

constant (R) and the ratio of specific heats (γ). 

 Experimental error is going to yield a value for m&  greater than the true Tylan® 

measured value.  The discharge coefficient is therefore 

 

 

 
calculated

true
D m

mC
&

&
=  (B4) 

 

 

and each injector will have a unique value for it.  An average is usually taken from the 

same pressures used in real testing; this is a way to check for consistency over the range 

of injection conditions that will be in the experiment.  Figure B1 shows the configuration 

used to find CD. 
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Figure B1.  Discharge coefficient test setup 

 

Dynamic Pressure Ratio 

The same equations used to derive the discharge coefficient can also be applied to 

the dynamic pressure ratio development.  The three injection pressures used for each 

insert are measured as total pressures (P0j) in the tube.  Because each insert has its own 

CD value, there are twelve total values of q calculated.  The values of q for this 

experiment are found in Table 2.  If CD were not considered, only three q values would 

result (presented as uncorrected values).  The first step in calculating the dynamic 
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pressure ratio is to reduce the measured tube total pressures to static pressures with 

knowledge that the nozzle is choked: 
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Temperature is a measured quantity; thus, reapplying Equation B3 yields a 

calculated value for m& . A simple rearrangement of Equation B4 allows the true m&  to be 

determined: 

 

 truecalculatedD mmC && =⋅  (B4-ii) 

 

This value for m&  may be used in Equation 3, rested below, to determine the 

dynamic pressure ratio, q. 
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An interesting thing to note is that the injection temperature (Tj) has no effect on 

q.  It only affects the mass flow rate of the fuel jet.



 

Appendix C – Laser Imaging Addendum 
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Appendix D – Test Matrix 

 
Table D1.  Test matrix 

Run Hardware
Back 

Pressure
Injection 
Pressure Instrument Run Hardware

Back 
Pressure

Injection 
Pressure Instrument

1 Flat Low 1 Pressure 9 Tall Low 1 Pressure

Flat Low 1 Mie Tall Low 1 Mie

Flat Low 1 NO-PLIF Tall Low 1 NO-PLIF

2 Flat Low 2 Pressure 10 Tall Low 2 Pressure

Flat Low 2 Mie Tall Low 2 Mie

Flat Low 2 NO-PLIF Tall Low 2 NO-PLIF

3 Flat Low 3 Pressure 11 Tall Low 3 Pressure

Flat Low 3 Mie Tall Low 3 Mie

Flat Low 3 NO-PLIF Tall Low 3 NO-PLIF

4 Flat High 2 Pressure 12 Tall High 2 Pressure

Flat High 2 NO-PLIF Tall High 2 NO-PLIF

5 Medium Low 1 Pressure 13 Wide Low 1 Pressure

Medium Low 1 Mie Wide Low 1 Mie

Medium Low 1 NO-PLIF Wide Low 1 NO-PLIF

6 Medium Low 2 Pressure 14 Wide Low 2 Pressure

Medium Low 2 Mie Wide Low 2 Mie

Medium Low 2 NO-PLIF Wide Low 2 NO-PLIF

7 Medium Low 3 Pressure 15 Wide Low 3 Pressure

Medium Low 3 Mie Wide Low 3 Mie

Medium Low 3 NO-PLIF Wide Low 3 NO-PLIF

8 Medium High 2 Pressure 16 Wide High 2 Pressure

Medium High 2 NO-PLIF Wide High 2 NO-PLIF
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Appendix E – NO Intensity Values 

 
Table E1.  Mean image maximum intensity values 

F1 F2 F2BP F3
x/d intensity normalized intensity normalized intensity normalized intensity normalized

0 1.52 1.000 2.05 1.000 1.95 1.000 1.69 1.000
4 0.44 0.289 0.4 0.195 0.3 0.178
8 0.22 0.145 0.19 0.093 0.12 0.062 0.14 0.083

12 0.12 0.079 0.12 0.059 0.09 0.053
16 0.1 0.066 0.1 0.049 0.04 0.021 0.07 0.041
20 0.1 0.066 0.1 0.049 0.08 0.047
24 0.08 0.053 0.08 0.039
32 0.06 0.039

M1 M2 M2BP M3
x/d intensity normalized intensity normalized intensity normalized intensity normalized

0 1.51 1.000 2.04 1.000 1.63 1.000 1.88 1.000
4 0.36 0.238 0.34 0.167 0.26 0.138
8 0.19 0.126 0.2 0.098 0.07 0.043 0.15 0.080

12 0.14 0.093 0.13 0.064 0.1 0.053
16 0.11 0.073 0.11 0.054 0.04 0.025 0.08 0.043
20 0.13 0.086 0.12 0.059 0.08 0.043
24 0.11 0.073 0.1 0.049
32 0.08 0.053

T1 T2 T2BP T3
x/d intensity normalized intensity normalized intensity normalized intensity normalized

0 1.09 1.000 1.74 1.000 1.58 1.000 1.78 1.000
4 0.29 0.266 0.29 0.167 0.21 0.118
8 0.13 0.119 0.13 0.075 0.03 0.019 0.1 0.056

12 0.08 0.073 0.09 0.052 0.07 0.039
16 0.07 0.064 0.08 0.046 0.02 0.013 0.06 0.034
20 0.08 0.073 0.08 0.046 0.07 0.039
24 0.08 0.073 0.07 0.040
32 0.06 0.055

W1 W2 W2BP W3
x/d intensity normalized intensity normalized intensity normalized intensity normalized

0 1.48 1.000 1.72 1.000 1.52 1.000 1.6 1.000
4 0.37 0.250 0.29 0.169 0.23 0.144
8 0.2 0.135 0.17 0.099 0.13 0.086 0.12 0.075

12 0.14 0.095 0.11 0.064 0.08 0.050
16 0.12 0.081 0.09 0.052 0.04 0.026 0.06 0.038
20 0.13 0.088 0.1 0.058 0.06 0.038
24 0.11 0.074 0.08 0.047
32 0.08 0.054  
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Table E2.  Standard deviation image maximum intensity values 

F1 F2 F2BP F3
x/d intensity normalized intensity normalized intensity normalized intensity normalized

0 943 1.000 1143 1.000 1067 1.000 972 1.000
4 849 0.900 1114 0.975 1012 1.041
8 680 0.721 734 0.642 515 0.483 518 0.533

12 503 0.533 481 0.421 345 0.355
16 374 0.397 389 0.340 175 0.164 273 0.281
20 302 0.320 301 0.263 210 0.216
24 249 0.264 244 0.213
32 197 0.209

M1 M2 M2BP M3
x/d intensity normalized intensity normalized intensity normalized intensity normalized

0 899 1.000 877 1.000 1619 1.000 705 1.000
4 898 0.999 788 0.899 496 0.704
8 604 0.672 509 0.580 263 0.162 369 0.523

12 437 0.486 394 0.449 296 0.420
16 381 0.424 338 0.385 130 0.080 260 0.369
20 339 0.377 299 0.341 221 0.313
24 318 0.354 278 0.317
32 261 0.290

T1 T2 T2BP T3
x/d intensity normalized intensity normalized intensity normalized intensity normalized

0 598 1.000 678 1.000 1086 1.000 664 1.000
4 565 0.945 638 0.941 429 0.646
8 403 0.674 366 0.540 153 0.141 224 0.337

12 273 0.457 280 0.413 205 0.309
16 251 0.420 221 0.326 182 0.168 163 0.245
20 211 0.353 197 0.291 148 0.223
24 195 0.326 175 0.258
32 180 0.301

W1 W2 W2BP W3
x/d intensity normalized intensity normalized intensity normalized intensity normalized

0 682 1.000 643 1.000 842 1.000 599 1.000
4 774 1.135 553 0.860 475 0.793
8 525 0.770 430 0.669 352 0.418 344 0.574

12 444 0.651 361 0.561 280 0.467
16 375 0.550 315 0.490 187 0.222 221 0.369
20 340 0.499 272 0.423 179 0.299
24 303 0.444 231 0.359
32 266 0.390  

 

Note: Highlighted regions show higher than expected standard deviation intensities.
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Appendix F – NO-PLIF Image Data Supplement 

 
Figure F1.  Instantaneous NO-PLIF profile view, Medium pylon 

 

 
 Flat Medium 

 
 Tall Wide 

Figure F2.  Instantaneous NO-PLIF end view images (x/d = 16) 

 

 161 



 

 

Table F1.  F1 geometry 

F1 x = 0 d 4 8 12 16 20 24 32

yj (inches) 0.26 0.38 0.42 0.47 0.49 0.52 0.53 0.57

yj/d 4.17 6.09 6.70 7.48 7.83 8.26 8.52 9.13

Δy (inches) 0.26 0.32 0.39 0.46 0.48 0.52 0.53 0.57

Δy/d 4.17 5.13 6.26 7.30 7.74 8.26 8.52 9.13

g/d 0.00 0.96 0.43 0.17 0.09 0.00 0.00 0.00

Δz (inches) 0.32 0.50 0.58 0.62 0.66 0.67 0.71 0.74

Δz/d 5.13 8.00 9.30 9.91 10.61 10.78 11.30 11.91

Aj (in2) 0.06 0.13 0.18 0.22 0.25 0.29 0.29 0.35

Aj/d2 16.61 32.50 45.47 55.64 63.76 73.38 74.76 88.85

As/Aj 0.09 0.39 0.35 0.30 0.41 0.38 0.39 0.43  

 

Table F2.  F2 geometry 

F2 x = 0 d 4 8 12 16 20 24

yj (inches) 0.19 0.29 0.34 0.37 0.40 0.42 0.43

yj/d 3.04 4.70 5.39 5.91 6.35 6.70 6.87

Δy (inches) 0.19 0.27 0.33 0.37 0.40 0.42 0.43

Δy/d 3.04 4.26 5.22 5.91 6.35 6.70 6.87

g/d 0.00 0.43 0.17 0.00 0.00 0.00 0.00

Δz (inches) 0.23 0.41 0.45 0.48 0.51 0.53 0.58

Δz/d 3.74 6.52 7.22 7.74 8.09 8.43 9.22

Aj (in2) 0.04 0.09 0.12 0.14 0.17 0.18 0.20

Aj/d2 9.02 21.91 30.13 36.29 42.59 46.27 51.61

As/Aj 0.23 0.36 0.30 0.37 0.38 0.33 0.42  
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Table F3.  F3 and F2BP geometry 

F3 x = 0 d 4 8 12 16 20 F2BP x = 0 d 4 8

yj 
(inches) 0.14 0.23 0.26 0.29 0.33 0.33

yj 
(inches) 0.21 0.40 0.62

yj/d 2.26 3.65 4.17 4.70 5.30 5.30 yj/d 3.39 6.35 9.91
Δy 
(inches) 0.14 0.23 0.26 0.29 0.33 0.33

Δy 
(inches) 0.21 0.40 0.62

Δy/d 2.26 3.65 4.17 4.70 5.30 5.30 Δy/d 3.39 6.35 9.91

g/d 0.00 0.00 0.00 0.00 0.00 0.00 g/d 0.00 0.00 0.00
Δz 
(inches) 0.19 0.32 0.36 0.39 0.42 0.45

Δz 
(inches) 0.24 0.52 0.67

Δz/d 3.04 5.04 5.74 6.26 6.70 7.13 Δz/d 3.91 8.35 10.70

Aj (in2) 0.02 0.05 0.07 0.09 0.11 0.12 Aj (in2) 0.04 0.16 0.34

Aj/d2 5.18 13.99 19.11 24.14 28.85 31.11 Aj/d2 9.82 41.05 85.82

As/Aj 0.42 0.29 0.34 0.44 0.46 0.46 As/Aj 0.38 0.33 0.24  

 

Table F4.  M1 geometry 

M1 x = 0 d 4 8 12 16 20 24 32

yj (inches) 0.43 0.55 0.62 0.65 0.67 0.70 0.72 0.75

yj/d 6.96 8.87 9.91 10.43 10.70 11.22 11.48 12.00

yj/h 1.74 2.22 2.48 2.61 2.67 2.80 2.87 3.00

Δy (inches) 0.43 0.49 0.57 0.60 0.62 0.66 0.68 0.74

Δy/d 6.96 7.91 9.04 9.57 9.91 10.52 10.87 11.83

g/d 0.00 0.96 0.87 0.87 0.78 0.70 0.61 0.17

Δz (inches) 0.26 0.44 0.40 0.46 0.48 0.47 0.50 0.56

Δz/d 4.09 7.04 6.43 7.39 7.74 7.57 8.00 8.96

Δz/W 3.65 6.29 5.75 6.60 6.91 6.75 7.14 8.00

Aj (in2) 0.07 0.14 0.19 0.21 0.24 0.26 0.28 0.32

Aj/d2 18.77 35.09 47.69 53.61 60.84 65.69 71.27 82.93

As/Aj 0.06 0.18 0.34 0.38 0.29 0.22 0.19 0.22  
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Table F5.  M2 geometry 

M2 x = 0 d 4 8 12 16 20 24

yj (inches) 0.39 0.48 0.52 0.55 0.57 0.59 0.61

yj/d 6.17 7.65 8.35 8.78 9.04 9.48 9.74

yj/h 1.54 1.91 2.09 2.20 2.26 2.37 2.43

Δy (inches) 0.39 0.44 0.47 0.49 0.51 0.54 0.55

Δy/d 6.17 7.04 7.57 7.91 8.09 8.61 8.87

g/d 0.00 0.61 0.78 0.87 0.96 0.87 0.87

Δz (inches) 0.18 0.25 0.30 0.34 0.39 0.41 0.45

Δz/d 2.96 4.00 4.78 5.39 6.17 6.52 7.13

Δz/W 2.64 3.57 4.27 4.81 5.51 5.82 6.37

Aj (in2) 0.05 0.09 0.11 0.13 0.15 0.17 0.18

Aj/d2 11.76 22.59 28.70 33.91 38.44 42.65 46.71

As/Aj 0.11 0.17 0.23 0.29 0.25 0.27 0.22  

 

Table F6.  M3 and M2BP geometry 

M3 x = 0 d 4 8 12 16 20 M2BP x = 0 d 4 8

yj 
(inches) 0.34 0.40 0.43 0.46 0.48 0.49

yj 
(inches) 0.39 0.65 0.84

yj/d 5.39 6.43 6.87 7.30 7.65 7.91 yj/d 6.26 10.43 13.39

yj/h 1.35 1.61 1.72 1.83 1.91 1.98 yj/h 1.57 2.61 3.35
Δy 
(inches) 0.34 0.38 0.39 0.39 0.41 0.42

Δy 
(inches) 0.39 0.56 0.64

Δy/d 5.39 6.09 6.17 6.26 6.52 6.70 Δy/d 6.26 8.96 10.17

g/d 0.00 0.35 0.70 1.04 1.13 1.22 g/d 0.00 1.48 3.22
Δz 
(inches) 0.14 0.21 0.26 0.30 0.34 0.36

Δz 
(inches) 0.18 0.48 0.58

Δz/d 2.26 3.30 4.09 4.78 5.39 5.83 Δz/d 2.87 7.65 9.22

Δz/W 2.02 2.95 3.65 4.27 4.81 5.20 Δz/W 2.56 6.83 8.23

Aj (in2) 0.03 0.06 0.07 0.09 0.11 0.12 Aj (in2) 0.05 0.21 0.29

Aj/d2 7.92 15.12 19.12 23.08 27.15 30.58 Aj/d2 13.38 54.20 75.30

As/Aj 0.19 0.37 0.26 0.28 0.24 0.25 As/Aj 0.08 0.31 0.33  
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Table F7.  T1 geometry 

T1 x = 0 d 4 8 12 16 20 24 32

yj (inches) 0.54 0.64 0.71 0.77 0.78 0.79 0.80 0.85

yj/d 8.61 10.17 11.39 12.35 12.43 12.61 12.78 13.57

yj/h 1.43 1.70 1.90 2.06 2.07 2.10 2.13 2.26

Δy (inches) 0.54 0.56 0.64 0.69 0.70 0.71 0.72 0.79

Δy/d 8.61 8.96 10.17 11.04 11.22 11.39 11.57 12.70

g/d 0.00 1.22 1.22 1.30 1.22 1.22 1.22 0.87

Δz (inches) 0.21 0.33 0.40 0.45 0.46 0.47 0.49 0.52

Δz/d 3.39 5.30 6.35 7.13 7.30 7.48 7.83 8.35

Δz/W 3.03 4.74 5.67 6.37 6.52 6.68 6.99 7.45

Aj (in2) 0.07 0.13 0.18 0.21 0.25 0.27 0.29 0.34

Aj/d2 18.54 32.49 46.65 54.91 62.88 68.56 74.99 86.53

As/Aj 0.05 0.19 0.23 0.39 0.28 0.31 0.43 0.25  

 

Table F8.  T2 geometry 

T2 x = 0 d 4 8 12 16 20 24

yj (inches) 0.48 0.57 0.63 0.66 0.66 0.68 0.70

yj/d 7.74 9.13 10.00 10.52 10.61 10.96 11.13

yj/h 1.29 1.52 1.67 1.75 1.77 1.83 1.86

Δy (inches) 0.48 0.52 0.57 0.59 0.58 0.61 0.61

Δy/d 7.74 8.35 9.04 9.39 9.30 9.74 9.83

g/d 0.00 0.78 0.96 1.13 1.30 1.22 1.30

Δz (inches) 0.16 0.22 0.26 0.30 0.34 0.37 0.40

Δz/d 2.52 3.57 4.17 4.78 5.48 5.91 6.43

Δz/W 2.25 3.18 3.73 4.27 4.89 5.28 5.75

Aj (in2) 0.04 0.09 0.12 0.14 0.16 0.17 0.19

Aj/d2 11.41 22.03 30.53 36.17 40.75 43.65 48.56

As/Aj 0.16 0.11 0.18 0.22 0.33 0.26 0.25  
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Table F9.  T3 and T2BP geometry 

T3 x = 0 d 4 8 12 16 20 T2BP x = 0 d 4 8

yj 
(inches) 0.41 0.49 0.52 0.54 0.55 0.57

yj 
(inches) 0.49 0.91 0.85

yj/d 6.52 7.83 8.35 8.61 8.87 9.04 yj/d 7.83 14.61 13.57

yj/h 1.09 1.30 1.39 1.43 1.48 1.51 yj/h 1.30 2.43 2.26
Δy 
(inches) 0.41 0.46 0.48 0.49 0.51 0.53

Δy 
(inches) 0.49 0.91 0.78

Δy/d 6.52 7.39 7.74 7.83 8.09 8.52 Δy/d 7.83 14.61 12.43

g/d 0.00 0.43 0.61 0.78 0.78 0.52 g/d 0.00 0.00 1.13
Δz 
(inches) 0.15 0.20 0.24 0.29 0.33 0.36

Δz 
(inches) 0.14 0.89 0.80

Δz/d 2.35 3.13 3.91 4.70 5.22 5.83 Δz/d 2.26 14.26 12.78

Δz/W 2.10 2.80 3.49 4.19 4.66 5.20 Δz/W 2.02 12.73 11.41

Aj (in2) 0.03 0.06 0.09 0.10 0.12 0.12 Aj (in2) 0.06 0.66 0.45

Aj/d2 7.33 16.32 22.34 26.72 30.37 31.80 Aj/d2 15.58 167.98 115.78

As/Aj 0.22 0.15 0.45 0.23 0.33 0.25 As/Aj 0.07 0.10 0.30  

 

Table F10.  W1 geometry 

W1 x = 0 d 4 8 12 16 20 24 32

yj (inches) 0.45 0.58 0.64 0.70 0.69 0.71 0.74 0.78

yj/d 7.13 9.22 10.17 11.13 11.04 11.39 11.91 12.43

yj/h 1.78 2.30 2.54 2.78 2.76 2.85 2.98 3.11

Δy (inches) 0.45 0.53 0.58 0.62 0.61 0.61 0.64 0.69

Δy/d 7.13 8.43 9.22 9.91 9.74 9.83 10.17 11.04

g/d 0.00 0.78 0.96 1.22 1.30 1.57 1.74 1.39

Δz (inches) 0.24 0.35 0.41 0.43 0.47 0.49 0.51 0.55

Δz/d 3.91 5.65 6.52 6.96 7.48 7.83 8.09 8.87

Δz/W 2.45 3.53 4.08 4.35 4.67 4.89 5.05 5.54

Aj (in2) 0.08 0.14 0.18 0.20 0.21 0.24 0.25 0.30

Aj/d2 19.56 34.87 45.56 51.67 54.98 60.33 65.17 76.08

As/Aj 0.13 0.14 0.35 0.27 0.22 0.21 0.21 0.18  
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Table F11.  W2 geometry 

W2 x = 0 d 4 8 12 16 20 24

yj (inches) 0.39 0.50 0.54 0.57 0.58 0.60 0.63

yj/d 6.26 8.00 8.61 9.13 9.30 9.57 10.09

yj/h 1.57 2.00 2.15 2.28 2.33 2.39 2.52

Δy (inches) 0.39 0.46 0.48 0.49 0.48 0.51 0.53

Δy/d 6.26 7.30 7.65 7.91 7.74 8.09 8.52

g/d 0.00 0.70 0.96 1.22 1.57 1.48 1.57

Δz (inches) 0.19 0.26 0.30 0.36 0.40 0.43 0.45

Δz/d 3.04 4.09 4.87 5.74 6.43 6.87 7.22

Δz/W 1.90 2.55 3.04 3.59 4.02 4.29 4.51

Aj (in2) 0.05 0.09 0.12 0.13 0.15 0.17 0.19

Aj/d2 12.66 23.80 29.63 34.35 38.68 42.83 47.62

As/Aj 0.28 0.32 0.26 0.23 0.24 0.24 0.22  

 

Table F12.  W3 and W2BP geometry 

W3 x = 0 d 4 8 12 16 20 W2BP x = 0 d 4 8

yj 
(inches) 0.33 0.41 0.44 0.47 0.49 0.51

yj 
(inches) 0.41 0.58 0.78

yj/d 5.30 6.52 7.04 7.57 7.91 8.17 yj/d 6.52 9.22 12.43

yj/h 1.33 1.63 1.76 1.89 1.98 2.04 yj/h 1.63 2.30 3.11
Δy 
(inches) 0.33 0.37 0.38 0.42 0.42 0.42

Δy 
(inches) 0.41 0.50 0.59

Δy/d 5.30 5.91 6.09 6.70 6.70 6.78 Δy/d 6.52 8.00 9.48

g/d 0.00 0.61 0.96 0.87 1.22 1.39 g/d 0.00 1.22 2.96
Δz 
(inches) 0.14 0.23 0.28 0.34 0.36 0.39

Δz 
(inches) 0.18 0.34 0.53

Δz/d 2.26 3.65 4.52 5.48 5.74 6.26 Δz/d 2.96 5.48 8.43

Δz/W 1.41 2.28 2.83 3.42 3.59 3.91 Δz/W 1.85 3.42 5.27

Aj (in2) 0.03 0.06 0.08 0.10 0.11 0.13 Aj (in2) 0.05 0.13 0.25

Aj/d2 8.25 15.77 20.76 26.09 28.64 32.82 Aj/d2 13.38 34.43 63.25

As/Aj 0.36 0.20 0.24 0.22 0.18 0.24 As/Aj 0.07 0.38 0.16
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Appendix G – Mie Scattering Image Data Supplement 

 
Figure G1.  Instantaneous Mie scattering profile view image, Medium pylon 

 

 
 Flat Medium 
 

 
 Tall Wide 

Figure G2.  Instantaneous Mie scattering end view images (x/d = 16) 
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Mean a) x = 0 d Standard Deviation  

 
 

 b) x = 4 d 

 
 

c) x = 8 d  

 
Figure G3.  (F1) Mie Scatter, Flat insert, injection pressure 1, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 
 

 f) x = 20 d 

   
Figure G3 (cont’d).  (F1) Mie scatter, Flat insert, injection pressure 1, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
 

 h) x = 32 d 

 
Figure G3 (cont’d).  (F1) Mie scatter, Flat insert, injection pressure 1, x/d = 24, 32 
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 Mean a) x = 0 d Standard Deviation 

 
 

 b) x = 4 d 

 
 

 c) x = 8 d 

 
Figure G4.  (F2) Mie scatter, Flat insert, injection pressure 2, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G4 (cont’d).  (F2) Mie scatter, Flat insert, injection pressure 2, x/d = 12, 16, 20 

 174 



 

 Mean g) x = 24 d Standard Deviation 

 
Figure G4 (cont’d).  (F2) Mie scatter, Flat insert, injection pressure 2, x/d = 24 
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 Mean a) x = 0 d Standard Deviation 

 
 

b) x = 4 d  

 
 

 c) x = 8 d 

 
Figure G5.  (F3) Mie scatter, Flat insert, injection pressure 3, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G5 (cont’d).  (F3) Mie scatter, Flat insert, injection pressure 3, x/d = 12, 16, 20 
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Figure G6.  (M1) Mie scatter, Medium insert, injection pressure 1, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G6 (cont’d).  (M1) Mie scatter, Medium insert, injection pressure 1, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
 

 h) x = 32 d 

 
Figure G6 (cont’d).  (M1) Mie scatter, , injection pressure 1, x/d = 24, 32  Medium insert
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 Mean a) x = 0 d Standard Deviation 

 
 

 b) x = 4 d 

 
 

 c) x = 8 d 

 
Figure G7.  (M2) Mie scatter, Medium insert, injection pressure 2, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G7 (cont’d).  (M2) Mie scatter, Medium insert, injection pressure 2, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
Figure G7 (cont’d).  (M2) Mie scatter, M ium insert, injection pressure 2, x/d = 24 ed
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 Mean a) x = 0 d Standard Deviation 
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Figure G8.  (M3) Mie scatter, Medium insert, injection pressure 3, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G8 (cont’d).  (M3) Mie scatter, Medium insert, injection pressure 3, x/d = 12, 16, 20 
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Figure G9.  (T1) Mie scatter, Tall insert, injection pressure 1, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G9 (cont’d).  (T1) Mie scatter, Tall insert, injection pressure 1, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
 

 h) x = 32 d 

 
Figure G9 (cont’d).  (T1) Mie scatter jection pressure 1, x/d = 24, 32 , Tall insert, in
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 Mean a) x = 0 d Standard Deviation 

 
 

 b) x = 4 d 

 
 

 c) x = 8 d 

 
Figure G10.  (T2) Mie scatter, Tall insert, injection pressure 2, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G10 (cont’d).  (T2) Mie scatter, Tall insert, injection pressure 2, x/d = 12, 16, 20 

 192 UAppendix G 



 

 Mean g) x = 24 d Standard Deviation 

 
Figure G10 (cont’d).  (T2) Mie scatter, Tall insert, injection pressure 2, x/d = 24 
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 Mean a) x = 0 d Standard Deviation 

 
 

b) x = 4 d  

 
 

 c) x = 8 d 

 
Figure G11.  (T3) Mie scatter, Tall insert, injection pressure 3, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
Figure G11 (cont’d).  (T3) Mie scatter ection pressure 3, x/d = 12, 16 , Tall insert, inj
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Figure G12.  (W1) Mie scatter, Wide insert, injection pressure 1, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G12 (cont’d).  (W1) Mie scatter, Wide insert, injection pressure 1, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
 

 h) x = 32 d 

 
Figure G12 (cont’d).  (W1) Mie scatte injection pressure 1, x/d = 24, 32 r, Wide insert, 
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 Mean a) x = 0 d Standard Deviation 

 
 

 b) x = 4 d 

 
 

 c) x = 8 d 

 
Figure G13.  (W2) Mie scatter, Wide insert, injection pressure 2, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G13 (cont’d).  (W2) Mie scatter, Wide insert, injection pressure 2, x/d = 12, 16, 20 
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 Mean g) x = 24 d Standard Deviation 

 
Figure G13 (cont’d).  (W2) Mie scatter, ide insert, injection pressure 2, x/d = 24 W
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 Mean a) x = 0 d Standard Deviation 

 
 

b) x = 4 d  

 
 

 c) x = 8 d 

 
Figure G14.  (W3) Mie scatter, Wide insert, injection pressure 3, x/d = 0, 4, 8 
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 Mean d) x = 12 d Standard Deviation 

 
 

 e) x = 16 d 

 
 

 f) x = 20 d 

 
Figure G14 (cont’d).  (W3) Mie scatter, Wide insert, injection pressure 3, x/d = 12, 16, 20 
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Appendix H – Wall Pressure Data 

 

Table H1.  Flat insert wall pressures (psia), including baseline (no injection) 

F1 F2 F3 F2BP Baseline
Tap Bottom Top Bottom Top Bottom Top Bottom Top Bottom

#1 7.66 7.43 7.64 7.41 7.63 7.40 7.62 7.45 7.83

#2 8.39 7.78 8.38 7.77 8.37 7.76 8.36 7.75 8.12

#3 7.59 7.83 7.58 7.80 7.58 7.79 7.56 7.83 7.91

#4 6.84 7.40 6.81 7.39 6.80 7.38 6.79 7.42 6.94

#5 7.86 7.85 7.84 7.73

#6 5.50 8.25 5.48 8.24 5.48 8.24 14.57 8.19 7.30

#7 5.40 7.87 5.38 7.86 5.38 7.86 14.43 7.86 5.42

#8 5.32 7.28 5.36 7.28 5.45 7.26 17.94 7.45 5.45

#9 6.12 6.28 5.80 6.26 5.70 6.26 19.63 8.96 5.57

#10 4.64 5.97 4.74 5.95 4.77 5.94 20.21 12.21 4.73

#11 3.77 6.11 3.80 5.91 3.83 5.91 20.76 13.76 6.05

#12 6.31 6.26 6.30 6.38 6.29 6.45 21.22 14.74 6.32

#13 5.48 5.97 5.54 6.01 5.57 6.01 21.70 16.00 5.26

#14 4.48 6.44 4.43 6.46 4.44 6.45 22.08 16.40 4.43

#15 4.42 5.12 4.27 5.09 4.33 5.07 23.16 17.34 4.27

#16 4.16 4.26 4.18 4.03 4.21 3.96 23.44 17.92 4.37

#17 4.18 4.23 4.20 23.72 4.18

#18 3.91 3.92 3.92 23.98 3.84

#19 4.87 4.70 4.51 24.21 4.77

#20 4.38 4.53 4.54 24.46 4.43

#21 4.11 4.12 4.20 24.71 4.16  

 

 

 205 



 

 

Table H2.  Medium insert wall pressures (psia) 

M1 M2 M3 M2BP
Tap Bottom Top Bottom Top Bottom Top Bottom Top

#1 7.67 7.43 7.67 7.41 7.68 7.42 7.66 7.48

#2 8.35 7.75 8.35 7.74 8.36 7.75 8.36 7.74

#3 7.60 7.80 7.58 7.80 7.59 7.82 7.56 7.85

#4 6.83 7.38 6.83 7.38 6.84 7.40 6.81 7.43

#5 7.83 7.83 7.84 7.69

#6 5.49 8.25 5.48 8.22 5.49 8.24 15.17 8.18

#7 5.38 7.85 5.37 7.81 5.38 7.82 15.01 7.86

#8 5.37 7.28 5.37 7.28 5.40 7.28 18.41 7.45

#9 6.07 6.26 5.77 6.26 5.71 6.28 20.10 11.17

#10 4.62 5.95 4.73 5.95 4.77 5.96 20.67 13.30

#11 3.76 6.33 3.79 5.91 3.84 5.91 21.21 14.50

#12 6.32 6.22 6.30 6.41 6.29 6.20 21.66 15.77

#13 5.45 5.93 5.51 5.98 5.57 6.01 22.13 16.50

#14 4.44 6.38 4.42 6.43 4.44 6.45 22.51 16.84

#15 4.43 5.12 4.27 5.09 4.31 5.09 23.59 17.93

#16 4.15 4.31 4.19 4.07 4.22 3.98 23.86 18.54

#17 4.23 4.22 4.20 24.14

#18 3.91 3.92 3.93 24.39

#19 4.87 4.70 4.56 24.61

#20 4.36 4.51 4.53 24.85

#21 4.10 4.11 4.20 25.09  
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Table H3.  Tall insert wall pressures (psia) 

T1 T2 T3 T2BP
Tap Bottom Top Bottom Top Bottom Top Bottom Top

#1 7.55 7.37 7.66 7.40 7.68 7.42 7.71 8.57

#2 8.20 7.59 8.27 7.66 8.36 7.75 11.84 10.76

#3 7.50 7.79 7.55 7.83 7.59 7.82 13.39 12.74

#4 6.87 7.35 6.84 7.35 6.84 7.40 15.79 13.66

#5 7.70 7.79 7.84 14.23

#6 5.46 8.12 5.48 8.17 5.49 8.24 18.67 14.59

#7 5.35 7.72 5.35 7.72 5.38 7.82 18.44 16.20

#8 5.32 7.18 5.37 7.24 5.40 7.28 20.74 17.29

#9 5.97 6.20 5.71 6.23 5.71 6.28 21.87 17.39

#10 4.56 5.98 4.71 5.96 4.77 5.96 22.27 18.05

#11 3.73 7.45 3.78 5.91 3.84 5.91 22.64 18.71

#12 6.24 6.12 6.26 6.32 6.29 6.20 22.95 19.01

#13 5.37 5.85 5.46 5.97 5.57 6.01 23.29 19.30

#14 4.39 6.23 4.38 6.35 4.44 6.45 23.57 19.98

#15 4.37 5.07 4.27 5.08 4.31 5.09 24.52 20.16

#16 4.09 4.51 4.17 4.19 4.22 3.98 24.77 20.77

#17 4.21 4.22 4.20 25.04

#18 3.86 3.90 3.93 25.27

#19 4.84 4.72 4.56 25.53

#20 4.32 4.49 4.53 25.75

#21 4.06 4.12 4.20 26.01  
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Table H4.  Wide insert wall pressures (psia) 

W1 W2 W3 W2BP
Tap Bottom Top Bottom Top Bottom Top Bottom Top

#1 7.68 7.43 7.70 7.44 7.70 7.45 7.70 7.51

#2 8.34 7.73 8.35 7.74 8.35 7.74 8.35 7.73

#3 7.56 7.82 7.57 7.83 7.56 7.82 7.56 7.84

#4 6.81 7.37 6.82 7.38 6.82 7.37 6.80 7.40

#5 7.85 7.87 7.88 7.78

#6 5.50 8.21 5.51 8.21 5.50 8.20 14.45 8.18

#7 5.38 7.77 5.38 7.77 5.37 7.78 14.24 7.85

#8 5.38 7.28 5.36 7.30 5.33 7.30 17.83 7.48

#9 6.07 6.26 5.80 6.27 5.70 6.26 19.53 8.24

#10 4.62 5.95 4.74 5.97 4.75 5.97 20.15 11.91

#11 3.76 7.30 3.81 5.91 3.86 5.91 20.72 13.53

#12 6.30 6.20 6.30 6.36 6.27 6.11 21.18 14.55

#13 5.44 5.88 5.51 5.97 5.55 6.00 21.66 15.77

#14 4.44 6.38 4.42 6.44 4.43 6.44 22.04 16.34

#15 4.41 5.14 4.28 5.13 4.31 5.12 23.20 17.20

#16 4.16 4.36 4.21 4.11 4.23 4.01 23.47 17.87

#17 4.23 4.24 4.22 23.78

#18 3.92 3.94 3.94 24.01

#19 4.89 4.74 4.58 24.27

#20 4.36 4.52 4.54 24.49

#21 4.11 4.13 4.21 24.75  
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