
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2005

Combat Identification with Sequential Observations, Rejection Combat Identification with Sequential Observations, Rejection

Option, and Out-of-Library Targets Option, and Out-of-Library Targets

Timothy W. Albrecht

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Albrecht, Timothy W., "Combat Identification with Sequential Observations, Rejection Option, and Out-of-
Library Targets" (2005). Theses and Dissertations. 3642.
https://scholar.afit.edu/etd/3642

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3642&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F3642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3642?utm_source=scholar.afit.edu%2Fetd%2F3642&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

COMBAT IDENTIFICATION WITH SEQUENTIAL

OBSERVATIONS, REJECTION OPTION, AND OUT-OF-LIBRARY

TARGETS

DISSERTATION

Timothy W. Albrecht, Major, USAF

AFIT/DS/ENS/05-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this dissertation are those of the author and do not reflect

the official policy or position of the United States Air Force, Department of Defense

or the United States Government.

AFIT/DS/ENS/05-03

COMBAT IDENTIFICATION WITH SEQUENTIAL

OBSERVATIONS, REJECTION OPTION, AND

OUT-OF-LIBRARY TARGETS

DISSERTATION

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Operations Research

Timothy W. Albrecht, B.S., M.S.

Major, USAF

September 2005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/DS/ENS/05-03

COMBAT IDENTIFICATION WITH SEQUENTIAL

OBSERVATIONS, REJECTION OPTION, AND

OUT-OF-LIBRARY TARGETS

Timothy W. Albrecht, B.S., M.S.
Major, USAF

Approved:

//Signed// 6 Sep 2005

Dr. Kenneth W. Bauer Jr.
Committee Chairman

Date

//Signed// 6 Sep 2005

Dr. Mark E. Oxley
Committee Member

Date

//Signed// 6 Sep 2005

Dr. John O. Miller
Committee Member

Date

//Signed// 7 Sep 2005

Dr. Steven C. Gustafson
Dean’s Representative

Date

Accepted:

//Signed// 8 Sep 2005

Dr. Robert A. Calico Jr.
Dean, Graduate School of Engineering and Management

Date

iv

AFIT/DS/ENS/05-03

Abstract

Combat target identification (CID) is the process by which detected objects

are characterized pursuant to military action. Errors in CID such as mis-labeling

targets and non-targets carry significant costs. Fusing data from multiple sources

and allowing a rejection, or non-declare, option can improve CID error rates.

This research extends a mathematical framework that selects the optimal

sensor ensemble and fusion method across multiple decision thresholds subject to

warfighter constraints. The formulation includes treatment of exemplars from target

classes on which the CID system classifiers are not trained (out-of-library classes),

and it enables the warfighter to optimize a CID system without explicit enumeration

of classifier error costs.

A time-series classifier design methodology is developed and applied, resulting

in a multi-variate Gaussian hidden Markov model (HMM) with a specially con-

structed hidden state space. The extended CID framework is used to compete the

HMM-based CID system against a template-based CID system. The assessment

uses a real world synthetic aperture radar (SAR) data collection comprised of ten

in-library target classes and five out-of-library target classes. The framework evalu-

ates competing classifier systems that use multiple fusion methods, including neural

network fusion and label fusion, varied prior probabilities of targets and non-targets,

varied correlation between multiple sensor looks, and varied levels of target pose

estimation error. Also, an on-line target pose estimator is developed using prin-

cipal component analysis of masked target SAR images. This estimator validates

experimental assumptions on target pose prior to classification.

The CID system assessment using the extended framework reveals larger fea-

sible operating regions for the HMM-based classifier across experimental settings.

In some cases the HMM-based classifier yields a feasible region that is 25% of the

v

threshold operating space versus 1% for the template-based classifier. Similar perfor-

mance results are obtained for rule-based label fusion and the more complex neural

network fusion and are explained by the new ability to independently set classifier

thresholds with the label fusion method.

vi

Acknowledgements

Dissertations are not researched and written by the student in a vacuum.

It is fitting to recognize for posterity those people who collaboratively influenced,

assisted, molded, and refined this research into the final product printed here.

The most important decision a student makes is the choice of research advisor.

Dr. Ken Bauer combines the much sought after qualities of experience, energy,

and vision. I am grateful he took me on as his student and guided me through

the program. I am also grateful to my research committee, Drs. Mark Oxley, J.

O. Miller, and Steven Gustafson, for lending their time, support, and critical eye

throughout this research effort.

I would also like to thank the sponsors of this research, AFOSR, ACC/DR and

AFRL/SN, and recognize the significant role Mr. Chuck Sadowski played in framing

the CID problem.

Construction forced AFIT’s PhD students into temporary office space; the

infamous BARF trailer. The office move coincided with an initiative to get AF

members back into shape. Both actions were fortuitous for the 2005 PhD class: not

only did we become pretty good ultimate frisbee players, but we also benefitted from

the synergistic effect of belonging to a close-knit multi-disciplined research group.

I’d like to express my gratitude to those ENS PhD students who went before

me and whose sage advice helped in innumerable ways. Lance, Steve, Todd, and

especially Trevor, thank you for easing the pain of coursework, research, and writing.

And finally, I owe a special “thank you” to my wife for her patience, love,

and support, and to our sons whose lives at the other end of my life’s spectrum

provide wonderful distraction and relief from the absorbing state that is dissertation

research.

Timothy W. Albrecht

vii

viii

Table of Contents

Page

Abstract . v

Acknowledgements . vii

List of Figures . xiii

List of Tables . xvii

1. Introduction . 1

1.1 Background . 1

1.2 Problem Statement . 5

1.3 Scope . 7

1.4 Approach . 8

1.5 Contributions . 9

1.6 Organization . 12

2. Background . 13

2.1 Hidden Markov models 13

2.1.1 Introduction 13

2.1.2 Literature . 13

2.1.3 Theory . 15

2.2 High range-resolution radar 36

2.2.1 Introduction 36

2.2.2 Literature . 36

2.2.3 HRR Processing 37

2.2.4 MSTAR Program 38

2.2.5 SAR Chip . 38

ix

Page

2.2.6 SAR Chip Manipulation 41

2.3 Model selection . 43

2.3.1 Introduction 43

2.3.2 Literature . 43

2.3.3 Likelihood criterion 44

2.3.4 Akaike’s information criterion 46

2.3.5 Bayesian information criterion 48

2.3.6 Method of cross-validation 50

2.4 Classifier fusion . 50

2.4.1 Introduction 50

2.4.2 Literature . 51

2.5 Summary . 55

3. HMM Classifier Development 57

3.1 Introduction . 57

3.2 Introductory HMM Classifier 57

3.2.1 Methodology 58

3.2.2 Results . 60

3.3 Model Selection with HMMs 60

3.3.1 Complexity in Discrete HMMs 60

3.3.2 Complexity in Continuous HMMs 64

3.3.3 Multi-dimensional Gaussian Data 68

3.4 Development of HMM-based CID System 71

3.4.1 Data and Features 72

3.4.2 HMM Topology 77

3.4.3 Fusion Approaches 78

3.4.4 Development Results 80

3.5 Summary . 91

x

Page

4. CID Optimization Formulation 93

4.1 Definitions . 93

4.2 ROC and confusion matrix analysis 95

4.3 Extended mathematical programming CID optimization

formulation . 101

4.3.1 Decision variables 101

4.3.2 Performance Measures 103

4.3.3 Formulation 109

5. Application of extended CID framework 113

5.1 Introduction . 113

5.2 Data description . 114

5.2.1 Features . 116

5.3 Classifiers . 122

5.3.1 HMM-based classifier 122

5.3.2 Template-based classifier 126

5.4 Methodology . 127

5.4.1 Test sequence generation 128

5.4.2 Classifier testing 129

5.4.3 Classifier post-processing 130

5.4.4 Fusion methods 134

5.4.5 Prior knowledge of target aspect 136

5.4.6 Target class prevalence 141

5.4.7 Correlation of observations 141

5.5 Extended CID optimization framework 141

5.5.1 Formulation 142

5.5.2 Performance Measures 143

5.6 Results . 146

xi

Page

5.6.1 Initial results 147

5.6.2 Designed experiment results 156

6. Contributions and Future Research 188

6.1 Research contributions 188

6.1.1 Literature review 188

6.1.2 Development of HMM-based classifier 189

6.1.3 Extended CID framework 189

6.1.4 Development of out-of-library methodology . . 189

6.1.5 Development of target pose estimator 190

6.1.6 Application of extended CID framework . . . 190

6.1.7 Evidence of independent threshold setting in fused

system . 191

6.2 Future research . 192

Appendix A. List of Abbreviations 194

Appendix B. MATLAB code . 196

B.1 run script.m . 196

B.2 build train.m . 199

B.3 train HMM.m . 200

B.4 build trainANN.m . 202

B.5 train ANN.m . 205

B.6 build test.m . 208

B.7 test HMM.m . 211

B.8 test ANN.m . 213

B.9 test outlibrary.m . 215

References . 220

Vita . 228

xii

List of Figures
Figure Page

1. CID Problem . 2

2. Notional CID System . 5

3. HMM trellis diagram . 17

4. HMM forward variable αi(n) 20

5. HMM backward variable βi(n) 21

6. HMM ξij(n) variable . 23

7. Target photograph, T-72 . 39

8. SAR chip magnitude and phase data 39

9. Baseline SAR chip . 41

10. Transformed SAR chip . 42

11. Removal of Taylor windowing 42

12. Range profiles . 43

13. Fusion rules, Abstract-level 52

14. Fusion rules, Rank-level . 53

15. Fusion rules, Measurement-level 53

16. Example gene sequences . 59

17. DNA sequence results . 60

18. HMM complexity experiment flowchart 62

19. Discrete HMM complexity results 1 64

20. Discrete HMM complexity results 2 65

21. Discrete versus Gaussian HMM complexity results 67

22. Continuous HMM complexity results 1 68

23. Continuous HMM complexity results 2 69

24. Multi-variate Gaussian Data 70

25. Multi-variate Gaussian results 71

xiii

Figure Page

26. HMM experiment flowchart 72

27. Example target images and SAR chips 73

28. Available and interpolated HRR signatures 74

29. HRR-based features sets . 76

30. Fusion Methodologies . 80

31. Discrete HMM max-value features results 82

32. Discrete HMM FFT features results 83

33. Discrete HMM fused results 84

34. Left-right model diagram . 85

35. Gaussian HMM fused results, unknown target aspect 87

36. Gaussian HMM fused results, with prior target aspect knowledge 88

37. Mulit-dimensional Gaussian left-right model diagram 89

38. Multi-dimensional Gaussian HMM fused results, unknown tar-

get aspect . 90

39. Multi-dimensional Gaussian HMM fused results, with prior tar-

get aspect knowledge . 90

40. AIC for multi-dimensional Gaussian HMM 91

41. Notional ATR System . 94

42. Rejection region with thresholds 97

43. ROC curves with declaration rate 98

44. Confusion matrix, Friend Enemy Neutral classes 98

45. Confusion matrix, multiple hostile classes 100

46. Confusion matrix, with out-of-library records 100

47. Out-of-library labeling methodology 108

48. ATR System Overview . 114

49. Max value within HRR range bin window 119

50. HRR-based feature data (in-library targets) 121

51. HRR-based feature data (out-of-library targets) 122

xiv

Figure Page

52. Multi-dimensional Gaussian left-right model diagram 125

53. DCS experimental flowchart 128

54. DCS experiment labeling process 133

55. Fusion methods . 135

56. Image processing flowchart 138

57. Example chips, target aspect estimation 140

58. Error distribution, target aspect estimation 140

59. Initial results, surface plots, HMM neural fusion 150

60. Initial results, surface plots, template neural fusion 151

61. Initial results, surface plots, mean fusion 153

62. Co-located and independent sensors 157

63. Results, surface plots, prior aspect knowledge 160

64. Results, surface plots, target class prior probabilities 163

65. Results, surface plots, observation length 168

66. Results, surface plots, sensor correlation 171

67. Optimal thresholds, label fusion 172

68. Optimal thresholds, label fusion II 173

69. Optimal thresholds, label fusion III 174

70. Combined results, co-located sensors, ±22.5◦ target aspect knowl-

edge . 176

71. Combined results, co-located sensors, ±37.5◦ target aspect knowl-

edge . 178

72. Combined results, co-located sensors, no target aspect knowledge 180

73. Combined results, independent sensors, ±22.5◦ target aspect

knowledge . 182

74. Combined results, independent sensors, ±37.5◦ target aspect

knowledge . 184

75. Combined results, independent sensors, no target aspect knowl-

edge . 186

xv

Figure Page

76. Image processing flowchart 190

77. Differential results, co-located sensors, no target aspect knowl-

edge . 191

78. Optimal thresholds, label fusion 192

xvi

List of Tables
Table Page

1. Forward variable calculations 26

2. Backward variable calculations 26

3. Gamma variable calculations 27

4. MSTAR SAR chip header information 40

5. Experimental settings for two-class complexity experiment us-
ing discrete HMMs . 63

6. Experimental settings for two-class complexity experiment us-
ing continuous HMMs . 66

7. Experimental settings for two-class complexity experiment us-
ing multi-variate Gaussian HMMs 69

8. Initial MP Formulation of CID Optimization Framework . . . 102

9. DCS target types . 115

10. DCS training data . 117

11. DCS test data . 118

12. Prior aspect distribution for HMM ATR 137

13. Initial results, system comparison 148

14. Initial results, system comparison II 152

15. Designed experimental settings 156

16. Results, prior aspect comparison, HMM case 159

17. Results, prior aspect comparison, template case 161

18. Results, target class prior probabilities 162

19. Results, observation length comparison, HMM case 165

20. Results, observation length comparison, template case 166

21. Results, sensor correlation comparison, template case 169

xvii

Combat Identification with Sequential Observations, Rejection

Option, and Out-of-Library Targets

1. Introduction

1.1 Background

The research reported in this dissertation stems from a study of pattern recog-

nition applied to modern warfare. Two thousand years ago the Chinese military

philosopher Sun Tzu wrote, “if you know the enemy and know yourself, you need

not fear the results of one hundred battles [1].” Thus, perfect knowledge of your

enemy, his assets and their location coupled with knowledge of your own assets, lo-

cations, and capabilities provide the military leader an undeniable advantage over

his adversary.

United States Armed Forces doctrine, and US Air Force (USAF) doctrine in

particular, have made the ancient truism the official practice of the US military.

USAF doctrine document AFDD 2-1, entitled Air Warfare, relates that if an enemy’s

key targets can be found and identified, then air power can be applied [2]. Thus,

identifying, or classifying, a target is a critical link in the kill chain that begins with

finding a target, includes engaging the target, and ends with assessing the outcome

of the engagement. The US military defines combat identification (CID) as

the process of attaining an accurate characterization of detected objects
in the joint battlespace to the extent that high confidence, timely appli-
cation of military options and weapons resources can occur [3].

Figure 1 depicts the CID problem from the combat pilot’s perspective. The true

nature of the entities sharing the battlespace is unknown. Here CID characterizes

those entities using information from a variety of sources. The goal of CID is to max-

imize operational effectiveness by neutralizing the enemy with an efficient allocation

1

Figure 1. The real combat identification problem: battlespace characterization
from the combat pilot’s perspective. Figure originally presented by Mr.
Charles Sadowski, ACC/DRSA [4].

of combat resources while minimizing friendly casualties [4]. Friendly casualties may

result from either enemy or friendly fire, commonly called fratricide. By improving

CID performance, friendly casualties are reduced on both fronts: fewer enemy to

engage friendly units, and fewer mis-identified friendly units.

Doctrinal links with CID can be found in joint and Air Force doctrine. In

Joint Vision 2020 the Chairman of the Joint Chiefs of Staff provides a template for

the transformation of the US Armed Forces. In this document CID impacts three

of four operational concepts: precision engagement, dominant maneuver, and full

dimensional protection [5].

The US Armed Forces recognize the principles of war as fundamental guidance

for the application of military power. They are listed and defined in Joint Warfare

of the Armed Forces of the United States, JP 1, the capstone joint warfare doctrine

document [6]. Accurately identifying targets in a timely manner supports the prin-

ciples of offense, economy of force, and surprise, thus affording an advantage over an

adversary without a similar capability.

2

Among the seven tenets of aerospace power which complement the principles

of war and reflect the evolution of airpower, Air Force doctrine lists decentralized

execution of air and space power. Decentralized execution is

the delegation of execution authority to responsible and capable lower-
level commanders to achieve effective span of control and to foster dis-
ciplined initiative, situational responsiveness, and tactical flexibility. It
allows subordinates to exploit opportunities in rapidly changing, fluid
situations. [7]

Improved target recognition systems allow operators to respond quickly and provide

greater flexibility in their responsiveness.

Air Force Basic Doctrine, AFDD 1, lists six distinctive capabilities, or areas of

expertise, of the Air Force. Of these six distinctive capabilities, Global Attack and

Precision Engagement are directly impacted by improvements to target recognition

systems. Global Attack refers to the “ability of the Air Force to attack rapidly and

persistently with a wide range of munitions anywhere on the globe at any time [7].”

Precision Engagement refers to air and space power’s ability “to apply discriminate

force precisely where required [7].”

At a more detailed level of airpower application, AFDD 1 lists seventeen key

operational functions of the Air Force. Of those listed, improved target recognition

systems positively impact the following functions:

• Strategic Attack, defined as offensive action conducted by command
authorities aimed at generating effects that most directly achieve
national security objectives by affecting the adversary’s leadership,
conflict-sustaining resources, and strategy

• Counterair, defined as operations that attain and maintain a de-
sired degree of air superiority by the destruction, degradation, or
disruption of enemy forces

• Counterland, defined as air and space operations against enemy land
force capabilities to create effects that achieve JFC (Joint Forces
Commander) objectives

• Countersea, defined as functions that extend Air Force capabilities
into a maritime environment

3

• Surveillance and Reconnaissance, defined as systematically observ-
ing air, space, surface, or subsurface areas, places, persons, or things,
by visual, aural, electronic, photographic, or other means . . . designed
to provide warning of enemy initiatives and threats and to detect
changes in enemy activities [7]

The last function listed above, Surveillance and Reconnaissance, is covered

more fully in two top-level Air Force doctrine documents: AFDD 2-5.2, Intelligence,

Surveillance, and Reconnaissance Operations [8], and AFPAM 14-210, United States

Air Force Targeting Guide [9], where AFDD 2-5.2 outlines the principles and doctrine

for intelligence, surveillance, and reconnaissance (ISR), and AFPAM 14-210 explains

the principles and concepts of targeting, a core Air Force discipline which integrates

intelligence information about targets with operational information about friendly

objectives, capabilities, and doctrine.

Both documents describe the process of information fusion. The ISR-derived

information from many sources is combined, evaluated, and analyzed in a process

called fusion. Fusion is listed as one of eleven ISR principles in AFDD 2-5.2 [8],

and AFPAM 14-210 defines fusion as the process of combining multi-source data

into intelligence necessary for decision making and highlights fusion as a guiding

principle in the targeting process.

While identifying and defining fusion as an important principle in intelligence

gathering and processing, neither document provides guidance for carrying out multi-

source fusion. Indeed, intelligently automating the fusion of information from mul-

tiple sources, or sensors, would improve ISR operations by making more accurate

target identifications and would speed the targeting timeline by lessening reliance on

human interpretation.

The Air Force places great emphasis on the importance of recognizing and

fostering technological advances in order to improve warfighting capabilities. The

AFDD 1 describes Technology-to-warfighting, one of three Air Force core competen-

cies, as follows:

4

As a leader in the military application of air, space, and intelligence,
surveillance, and reconnaissance technology, the Air Force is commit-
ted to innovation to guide research, development, and fielding of unsur-
passed capabilities. Just as the advent of powered flight revolutionized
joint warfighting, recent advances in low observable technologies; space-
based systems; manipulation of information; precision; and small, smart
weapons offer no less dramatic advantages for combatant commanders.
The Air Force nurtures and promotes its ability to translate our technol-
ogy into operational capability to prevail in conflict and avert technolog-
ical surprise. [7]

Research in the area of target recognition systems fits directly under the umbrella

of this core competency of the Air Force and is supported by Joint and Air Force

doctrine.

1.2 Problem Statement

With sound doctrinal support for research in the area of CID explained in

Section 1.1, this section details problems addressed by this dissertation. A notional

CID system is shown in Figure 2. Observations through time of a region of interest

are made by two sensors, s1 and s2. Sensor data D is processed into features F

which are then classified into labels L before being fused into final labels Lfinal.

Figure 2. Notional CID system with two sensors evaluating observations through
time t = T .

Air Force doctrine stipulates that the targeting process must gather infor-

mation to reach a desired level of labeling confidence prior to making a shoot deci-

5

sion [8, 2]. Two paths to improved classifier confidence are temporal fusion, or fusion

of sequential observations, and sensor fusion, or fusion across sensors. Both fusion

methods attempt to improve classification performance by combining information

contained in multiple observations. With temporal fusion the classification system

processes a sequence of event observations. Observations may be autocorrelated

and additional observations may provide information beneficial to the classification

process, or they may confuse the classifier, producing undesirable results.

Fusion of multiple sensors is considered when designing multiple classifier sys-

tems (MCS). The architect must design both an ensemble of classifiers and a fusion

rule with which to combine the individual classifier outputs. The MCS performance

depends on an ensemble whose classifiers make disjoint errors (i.e., classifier A and

classifier B errors occur in non-overlapping areas of the feature space), and a fusion

rule which takes advantage of relative strengths of the constituent classifiers [10].

Given a CID system, the warfighter requires a label-space that is less rigid than

forced-decision [4]. A forced-decision classifier trained to recognize objects in class

A, B, C, or D maps every test record into one of four possible classes. Warfighters

require that a reject option be given to the classifier which allows it to opt against

the forced-decision label and for a “non-declaration” label.

Thus, the warfighter requires at least a trichotomous label space for the CID

system. Using the example above, data class A is labeled “hostile”, data classes B,

C, and D are labeled “friend”, and when the classifier does not achieve the desired

labeling confidence it applies the third label, “non-declared”.

Optimizing classifiers with a reject option has been studied [11, 12, 13, 14], but

invariably the optimal decision boundaries rely on a set cost rule for classifier errors.

Laine’s research [15] proposes a methodology for optimizing a rejection-capable CID

system without explicit error costs. Thus the warfighter does not specify the relative

cost of a fratricide incident versus collateral damage versus a successful engagement.

6

One useful extension of the trichotomous label-space of a rejection-capable

CID system is the incorporation of an “out-of-library” label. A CID system can be

thought of as a simple classifier trained on exemplars from a specified set of target

classes. The union of the target classes constitutes the library of the classifier. An

exemplar is said to be “in-library” if it is from a target class which the classifier

has been trained to recognize, and it is “out-of-library” otherwise. It is likely that a

fielded CID system will encounter targets in out-of-library classes [4].

The goals of this research include the development of a robust, time-series MCS

for use in an extended CID optimization framework that includes both a rejection

option and in-library and out-of-library discrimination. In addition, the effects of

data correlation in a temporally-fused MCS, data prevalence, and extended operating

conditions are examined. Also, means of performance assessment are developed.

For the foreseeable future air operations will require timely acquisition of and

precise engagement against targets regardless of environmental conditions while mini-

mizing collateral damage. This research focuses on the sensor processing and decision

making parts of the kill chain.

1.3 Scope

The scope of research for this dissertation includes the methodology used to

design a temporally-fused MCS in a CID setting. Much attention in the Department

of Defense has been paid to the development of a family-of-systems (FOS) networked

together to provide a joint service CID capability [16]. Some of these FOS systems

are cooperative identifiers, such as transponders which identify friendly forces by

producing a certain signal. This research considers non-cooperative means of target

classification.

Specifically, the research presented here uses synthetic aperture radar (SAR)

imagery of ground targets collected from an airborne sensor. The imagery has been

7

pre-processed to present the researcher with a detected target in each image. Thus,

the focus is not target detection, but rather target classification.

This research advances the field of pattern recognition by developing a temporally-

fused, multiple classifier CID system using hidden Markov models (HMMs) operat-

ing on features drawn from SAR images of ground targets taken at various aspect

angles. Sequencing the target observations by aspect angle generates a temporal

sensor-target relationship. A real world application is classification of ground tar-

gets by an airborne sensor in a multi-look, or sequence of observations, setting with

an unknown relative initial aspect angle of target to sensor.

This research also explores the impact of extended operating conditions (EOCs)

on CID systems. Sensor observation of a specific ground target presents different

signatures depending on the sensor-target orientation, target class variant, target

articulation, and the surrounding clutter environment. A ground vehicle has different

signatures when observed head-on versus from its flank. Similarly, a turreted target

has different signatures if its barrel is in-line with the body versus rotated askew the

body. The EOCs are real-world considerations which degrade classifier performance

due to variations in the target. Synthesized data typically adds white noise to the

signature that masks the target, while EOCs present targets whose signatures vary

from the in-library exemplars.

1.4 Approach

The first step of the research process is a review of the pertinent literature and

is presented in Chapter 2. Four areas are reviewed:

• Hidden Markov models as time series classifiers and their theory and applica-

tion

• High range-resolution radar signature processing and its use in target recogni-

tion

8

• Model selection as discussed in information theory literature

• Multiple classifier systems, sensor fusion, and other CID issues

The review highlights current research efforts, develops supporting theory, and points

to areas that contribute to this dissertation research.

Next, the temporally-fused CID system is designed using a heuristic method-

ology to specify the model. The methodology focuses on classifier performance while

selecting model complexity and structure. In addition, the CID system incorporates

an in-library versus out-of-library discriminator designed using a separate heuristic

methodology focused on two-class separability. The out-of-library discriminator is

used to extend Laine’s CID optimization framework [15] by including both an “out-

of-library” label and the associated warfighter constraint used in optimizing the CID

system.

By exploring separate design methodologies, the research finds robust archi-

tectures that perform well in an EOC setting, where the in-library target data is sig-

nificantly different from the in-library training data and may include out-of-library

exemplars.

1.5 Contributions

Contributions from this dissertation research are in the following areas:

• Development of an HMM-based time series classifier

• Extension of Laine’s CID optimization framework to include out-of-library per-

formance

• Development of an out-of-library classification methodology

• Development of a target pose-estimation methodology using principal compo-

nent analysis

9

• Application of the extended framework to a multi-class ATR experiment that

competes the HMM-based classifier against a template-based classifier

• Development of the framework to allow classifiers to make reject, or not declare,

decisions, to test classifiers against out-of-library records, and to measure the

performance of three different fusion methods

• Development of evidence for independent optimal threshold settings for label

fusion

A comprehensive review of the literature covers the theory and development

of hidden Markov models. The application of HMMs to ATR problems using high

range-resolution radar signatures as features is described in Sec. 2.1.3.10, and it

reveals limitations in treatment of prior knowledge of target aspect, inclusion of a

rejection option, and performance considering out-of-library targets. Other research

areas covered in the literature review include model complexity in HMMs, multiple

classifier fusion, rejection theory, and Laine’s CID optimization framework.

Chapter 3 describes the development of an HMM-based time series classifier.

Ultimately, the methodology results in a multi-dimensional Gaussian HMM operat-

ing on HRR-derived feature data. The model takes as input a sequence of feature

data ordered by target aspect angle. The model establishes a relation between the

observation distribution associated with each hidden state and the signature of the

target within a range of aspect angle.

Chapter 4 extends Laine’s CID optimization framework by including an out-

of-library performance measure. The framework retains the desired characteristic of

allowing trade-off analysis without explicit classification error costs.

Section 4.3.2.5 describes a methodology whereby a classifier assigns an esti-

mated posterior probability of out-of-library class membership to a test record. This

methodology is implemented as a post-processing step after the classifier trained on

in-library classes has adjudicated the test record. The methodology produces the

10

estimated out-of-library posterior probability as a function of the in-library class

posterior probabilities produced by the classifier.

Section 5.4.5 develops a method to estimate target aspect angle based on a

target mask of a SAR image. The method uses principal component analysis to find

the major axis of the target mask. An initial experiment finds pose estimation error

to be roughly 11◦.

Chapter 5 details the application of the extended CID framework to an ATR

experiment using DCS radar SAR data. The experiment competes an HMM-based

system (a derivative of the Chapter 3 system) against a template-based classifier.

The extended framework allows the systems to be compared inclusive of warfighter

constraints, rejection option, and out-of-library target records. Results show that the

HMM-based system provides the warfighter with better and more robust performance

across a variety of experiment settings, including fusion rule, hostile/friend class

prevalence, observation length, and prior knowledge of target aspect angle. Also, the

size of feasible region in the threshold space provides a simple comparative measure of

classifier robustness, and performance surfaces efficiently communicate performance

information and trade-space.

Laine’s research [15] has shown that independent thresholding for each classifier

prior to applying a label fusion rule allows improved performance over the application

of single thresholding after the fusion of classifier outputs. Section 5.6.2.5 shows

that independent thresholding enables each classifier to use optimal thresholds in

different locations in the threshold space. This added flexibility allows the label

fusion method to combine a classifier whose threshold setting allows it to perform

well in one performance measure, but poorly elsewhere, with a second classifier whose

threshold setting allows it to perform well in another performance area.

11

1.6 Organization

The remainder of the document is organized as follows:

Chapter 2 provides background instruction, describes key supporting areas of

the proposed research, and provides a review of the current literature. The support-

ing research areas include: hidden Markov models (their theory and application),

high range-resolution radar profiles (their processing and use in automatic target

recognition (ATR)), model selection and model complexity as discussed in informa-

tion theory, and the design of multiple classifier systems (or sensor fusion).

Chapter 3 describes a heuristic approach to the design and development of an

HMM-based classifier. First, an example application of an HMM-based classifier to

sequences of genetic data is given. Next, model selection theory is applied in the

choice of HMM design. Finally, a series of refinements to the HMM design are made

with regard to assumptions and proven performance.

Chapter 4 describes the proposed classifier and CID framework extension, and

the proposed HMM-based classifier is presented as part of an extended CID optimiza-

tion framework which includes both a rejection option and out-of-library exemplars.

Chapter 5 considers application to DSC data and a competitor, where the

proposed classifier is compared to a template-based classifier using SAR data from

a 2004 collection within the extended CID framework.

Chapter 6 presents a summary of findings, discusses research contributions,

and proposes future research areas stemming from this work.

12

2. Background

This chapter reviews pertinent literature, provides background information, and is

organized by research area. First, hidden Markov models as time series classifiers are

introduced, related literature is reviewed, and supporting theory is shown. Second,

high range-resolution radar as a source of classification features is covered. Third,

model selection in the context of information theory is defined and related literature

is reviewed. Finally, basic concepts and taxonomies of sensor fusion and multiple

classifier systems are covered.

2.1 Hidden Markov models

2.1.1 Introduction

An important aspect of combat identification (CID) is the incorporation of tem-

poral target observations into the classification process. In his dissertation Fielding

proves that given a sequence of observations in which there is a provable dependency,

the entropy of the joint observations is less than the entropy of the individual obser-

vations [17]. Thus, a classifier operating on the greater source of information (less

entropy) will have equal or greater classification power than single-look methods.

A review of the pattern recognition literature in search of time series classifiers,

or classifiers which incorporate data order, yields hidden Markov models (HMMs)

as the primary classifier for the research presented here. In the following sections

hidden Markov models are introduced, their mathematical development is given, and

HMM applications in the field of automatic target recognition are reviewed.

2.1.2 Literature

Hidden Markov models fit into a broad class of statistical signal models which

also includes Gaussian processes, Poisson processes and Markov processes. These

13

models seek to characterize a signal as a parametric random process whose param-

eters can be estimated (or determined) in a well-defined manner [18]. HMMs are

statistical representations of time series data. An HMM is used to represent prob-

ability distributions given a sequence, or many sequences, of observations. The

fundamental property of HMMs is the assumption that the sequence of observations

is a noisy function of a Markov chain which is not directly observed, or hidden.

The literature contains several HMM tutorial articles and texts. Rabiner’s

tutorial on HMMs [18] is widely cited and gives an introduction to HMMs applies

them in a speech recognition application. A more recent article on HMMs and their

development is in Ghahramani’s paper [19]. A small section introducing HMMs in

Duda and Hart’s classic pattern recognition text [20] is useful for its diagrams.

Two texts wholly dedicated to HMMs are useful in researching the variety

of specialized HMMs and their applications. Elliott’s text [21] focuses on signal

processing applications of HMMs, and MacDonald’s text [22] focuses on discrete-

valued time series applications. Both provide excellent mathematical development

for HMMs.

A history of HMMs begins with their introduction as probabilistic functions of

Markov chains in Baum and Petrie’s 1966 paper [23]. Later, Baum, Petrie, Soules,

and Weiss introduced a method to calculate the conditional probability of a state

given a sequence of observations [24]. In the same paper, they showed how to effi-

ciently estimate the parameters of an HMM. The algorithm, called alternately the

Baum algorithm, the Baum-Petrie algorithm, or the Baum-Welch algorithm, is the

expectation maximization algorithm of Dempster, Laird, and Rubin [25] applied to

HMMs. Local convergence of the algorithm was proved [24], and later work [26, 27]

proved the consistency and asymptotic normality of the maximum likelihood esti-

mators of the HMM parameters.

Ephraim and Merhav provide a well-referenced overview of HMMs and their

applications [28]. HMMs have been applied in a number of research areas. State

14

of the art speech recognition engines employ HMMs [18, 29, 30, 31] to match spo-

ken word with stored language. The vast amounts of data generated in efforts to

map genetic material are sorted by structure and purpose in an area of study called

computational biology, and HMMs play a major role in the effort [32, 33, 34]. Ex-

amples of pattern recognition applications of HMMs are found in Arica [35] and

Cai [36] where HMMs are used for character recognition, Hu [37] where HMMs are

employed to classify facial emotions, and Krishnamurthy [38] where HMMs process

signal information in the presence of noise. Gader [39] applies HMMs with ground

penetrating radar to classify mine types.

2.1.3 Theory

This section draws from several sources in developing HMM notation, param-

eterization, and mathematical development. Rabiner [18] and Ghahramani [19] pro-

vide outstanding tutorials on HMMs and their applications. Bilmes [40] and El-

liott [21] provide helpful development of HMM algorithms and their convergence

theory.

2.1.3.1 Definition and notation

The notation follows the stochastic literature, specifically Kulkarni’s stochastic

system analysis text [41], and a blend of HMM notation as found in Elliott’s text [21]

and Rabiner’s HMM tutorial [18].

In developing the theory of HMMs we begin with a stochastic process {Xn, n ≥
0}, where Xn denotes the state of the system at time n and where for all n ≥ 0, Xn

is a random variable taking values in set S. We further assume {Xn, n ≥ 0} is a

discrete-time Markov chain (DTMC) with finite state space S such that

1. for all n ≥ 0, Xn ∈ S with probability 1,

15

2. P{Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0} = P{Xn+1 = j|Xn = i} for all

n ≥ 0 and i, j ∈ S, which is the first order Markov property.

Next we introduce the idea of time-homogeneity. A DTMC is time-homogeneous

when the conditional probabilities P{Xn+1 = j|Xn = i} are independent of time,

n ≥ 0, for all i, j ∈ S.

In an HMM the finite-state space, time-homogeneous DTMC {Xn, n ≥ 0} is

hidden and can only be observed through an additional stochastic process, {Yn, n ≥
0}, which is a sequence of conditionally independent random variables with the

conditional distribution of Yn depending on the hidden DTMC {Xn, n ≥ 0} only

through the state at time n, Xn. In a discrete HMM the state space of Yn is finite.

Thus the discrete-time stochastic process {(Xn, Yn), n ≥ 0} forms a hidden

Markov model where {Xn, n ≥ 0} is a hidden time-homogeneous DTMC with finite

state space and {Yn, n ≥ 0} is an observation sequence dependent on the state of

the hidden DTMC at time n.

2.1.3.2 Parameterization

To parameterize a discrete HMM a stochastic transition matrix, A = [aij],

where aij = P{Xn+1 = j|Xn = i}, is used to represent the hidden Markov chain. In

addition to the hidden state transition matrix, A, an observation distribution matrix,

B, is defined by [bji] = P{Yn = i|Xn = j} where each observation Yn of the sequence

{Yn, n ≥ 0} is one of Q possible values. Finally, the parameterization of a discrete

HMM must include an initial state distribution, πi = P{X0 = i}, which provides

the starting point for the hidden Markov chain. Thus, a discrete HMM with S

hidden states and Q observation states is parameterized by a hidden state transition

matrix, A = [aij] ∈ R
S×S, an observation distribution matrix, B = [bji] ∈ R

S×Q, and

an initial state distribution, π ∈ R
S. The complete set of parameters for a given

16

Figure 3. Trellis diagram of a discrete HMM with 4 hidden states, 4 observation
symbols {y1, y2, y3, y4}, and sequence length T . Here A is the hidden
state transition matrix and governs the progression of the hidden Markov
chain, B is the observation distribution matrix and governs the sequence
of observed symbols, and π is the initial state distribution and governs
the starting state of the hidden Markov chain.

model is written, λ = (A,B, π). Figure 3 provides a schematic representation of

hidden Markov model parameterization and functioning.

2.1.3.3 Basic HMM problems

Rabiner discusses three basic problems associated with HMMs. The following

derivations with slight modification to the notation can be found in his tutorial [18]:

• Evaluation Given a model λ evaluate the probability P{Y |λ} of producing

a specified observation sequence of length T , Y ∈ {Yn}T
1 . Note that we have

adjusted the time index to begin at n = 1 so that a sequence from time n = 1

to n = T is of length T and not T + 1.

• Decoding Given a model λ and an observations sequence Y ∈ {Yn}T
1 , find the

best state sequence X ∈ {Xn}T
1 that explains Y .

17

• Learning Given an observation sequence, or set of observation sequences,

{Y }, parameterize an HMM, λ∗ = (A,B, π), such that it is the most likely

model to have produced the given data. This amounts to training an HMM

given observation data.

2.1.3.4 Evaluation Problem

The first HMM problem seeks to find the probability of producing an observa-

tion sequence of length T , Y ∈ {Yn}T
1 , given a model, λ = (A,B, π). The probability

of producing an observation sequence Y = Y1Y2 . . . YT given a hidden state sequence

X ∈ {Xn}T
1 with X = X1X2 . . . XT and the model, λ = (A,B, π) is

P{Y |X,λ} =
T

∏

n=1

P{Yn|Xn, λ} =
T

∏

n=1

bXn,Yn
, (1)

where bji ∈ B, the observation distribution matrix. Thus P{Y |X,λ} = bX1Y1bX2Y2 . . . bXT YT

which can be joined with the probability of a hidden state sequence given a model,

P{X|λ} = πX1aX1X2aX2X3 . . . aXT−1XT
to yield the joint probability of an observation

sequence and a hidden state sequence given a model

P{Y,X|λ} = P{Y |X,λ} · P{X|λ}. (2)

By summing over all hidden state sequences, the exact formulation for P{Y |λ} is

P{Y |λ} =
∑

all X∈{Xn}

P{Y |X,λ} · P{X|λ}

=
∑

all X1X2...XT∈{Xn}

πX1bX1Y1 · aX1X2bX2Y2 · · · aXT−1XT
bXT YT

. (3)

While this process yields an exact solution, it requires an intractable number of

calculations, 2T · ST , where T is the sequence length and S is the number of hidden

states in the Markov chain. A recursive algorithm, called the forward procedure,

18

reduces the number of necessary calculations to a manageable level and provides an

efficient means of calculating P{Y |λ}.

The forward variable, αi(n), is defined as the probability of observing a partial

sequence to time n and being in hidden state i at time n given a model λ, or

αi(n) = P{Y1Y2 . . . Yn, Xn = i|λ}. (4)

Each αi(n), 1 ≤ n ≤ T, can be defined recursively given an initial αi.

1. Initialization step: αi(1) = πibiY1 which is the probability of starting in state i

and observing Y1.

2. Inductive step: αj(n + 1) =
[

∑S
i=1 αi(n)aij

]

bjYn+1 which is the probability of

being in state j at time n + 1 and observing the sequence Y1Y2 . . . Yn+1. The

bracketed portion describes the probability of arriving at state j at time n + 1

from state i at time n. By necessity the Markov chain must be in one of S

states at time n. Summing αi(n) over S states accounts for all possible one-

step starting points at time n. Multiplying by bjYn+1 concludes the inductive

step by incorporating the probability of being in state j at time n + 1 and

observing yn+1.

3. Termination step: P{Y |λ} =
∑S

i=1 αi(T) where T is the observation sequence

length.

The recursive algorithm reduces the computational complexity of finding P{Y |λ}
from 2T · ST to S2T . Figure 4 uses the trellis schematic to illustrate calculation of

the forward variable.

19

Figure 4. Diagram illustrating the hidden Markov chain propagation from time n
to n + 1 for the forward variable. The process begins in state i, one
of S states, and transitions according to the state transition matrix,
A = [aij], to state j.

2.1.3.5 Decoding Problem

The backward variable is similar to the forward variable and plays a role in the

solution to the second HMM problem: given a model λ and an observations sequence

Y ∈ {Yn}T
1 , find the state sequence X ∈ {Xn}T

1 that best explains Y .

The backward variable βi(n) is defined as the probability of observing a partial

sequence from time n + 1 to time T given a model λ and that the model is in state

i at time n, or

βi(n) = P{Yn+1Yn+2 . . . YT |Xn = i, λ}. (5)

Again, three steps are used efficiently calculate P{Y |λ} using the newly defined

backward variable (see Fig. 5):

1. Initialization step: βi(T) = 1 which arbitrarily assigns a probability of 1 to

each partial sequence.

2. Inductive step: βi(n) =
∑S

j=1 aijbjYn+1βj(n + 1) which is the probability of

observing the partial sequence Yn+1Yn+2 . . . YT given the model and that the

20

Figure 5. Diagram illustrating the hidden Markov chain propagation from time n
to n + 1 for the backward variable. The process begins in state i and
transitions according to the state transition matrix, A = [aij], to state
j, one of S states.

model is in state i at time n. The product aijbjYn+1 gives the probability

of making a single time-step transition from state i to state j and observing

Yn+1. Multiplying further by βj(n+1) incorporates the recursive element which

accounts for the remaining sequence steps. Summing over the S possible states

accounts for the S possible one-step end states from time n to time n + 1.

3. Termination step: P{Y |λ} =
∑S

i=1 βi(1)πibiY1

An additional variable, γi(n), is needed to solve the second HMM problem,

where γi(n) is defined as the probability of being in state i at time n given the

observation sequence Y ∈ {Yn}T
1 and the model λ, or

γi(n) = P{Xn = i|Y, λ}. (6)

Note that,

P{Xn = i|Y, λ} =
P{Y,Xn = i|λ}

P{Y |λ} =
P{Y,Xn = i|λ}

∑S
j=1 P{Y,Xn = j|λ}

, (7)

21

and with the following use of the forward and backward variables,

αi(n)·βi(n) = P{Y1Y2 . . . Yn, Xn = i|λ}·P{Yn+1Yn+2 . . . YT |Xn = i, λ} = P{Y,Xn = i|λ},

we can write

γi(n) =
αi(n) · βi(n)

∑S
j=1 αj(n) · βj(n)

. (8)

Then, to solve the second HMM problem and find the sequence of the individually

most likely hidden states, {X∗
n} = X1X2 . . . XT , we make the following comparison

at each step of the sequence

Xn = i such that i = argmax
1≤i≤S

[γi(n)] for 1 ≤ n ≤ T. (9)

2.1.3.6 Learning Problem

The third and most complicated HMM problem seeks to update the model

parameters, λ = (A,B, π), to maximize the probability of the observation sequence

given the model. The most commonly-used algorithm for this task is the Baum-

Welch algorithm [23, 24]. Its derivation is shown here in two separate ways: first,

following the notation used thus far, and second, in notation more appropriate to

expectation maximization studies.

An additional variable, ξij(n), is needed to solve the third HMM problem (see

Fig. 6). It is defined as the joint probability of being in state i at time n and being

in state j at time n + 1 given an observation sequence and a model, or

ξij(n) = P{Xn = i,Xn+1 = j|Y, λ}. (10)

Expanding the definition using the given observation sequence gives

ξij(n) =
P{Xn = i,Xn+1 = j, Y |λ}

P{Y |λ} . (11)

22

Figure 6. Diagram illustrating the hidden Markov chain propagation from time n
to n + 1 for ξij(n) incorporating the forward and backward variables.

Incorporating the forward and backward variables gives

ξij(n) =
αi(n) · aijbjYn+1 · βj(n + 1)

P{Y |λ} . (12)

Summing over all possible one-step state transitions yields

ξij(n) =
αi(n) · aijbjYn+1 · βj(n + 1)

∑S
i=1

∑S
j=1 αi(n) · aijbjYn+1 · βj(n + 1)

. (13)

Finally, given an observation sequence Y and summing γi(n) and ξij(n) over

time (i.e. over the entire sequence length T) yields the following results:

1. Given Y ,
∑T

n=1 γi(n) is the expected number of visits to state i and, conversely,

is also the expected number of transitions away from state i.

2. Given Y ,
∑T−1

n=1 ξij(n) is the expected number of transitions from state i to

state j.

3. The expected relative frequency spent in state i at time n = 1 forms an update

to the initial hidden state distribution, π,

π̂i = γi(1). (14)

23

4. The expected number of transitions from state i to state j relative to the

expected number of transitions away from state i forms an update to the hidden

state transition matrix A,

âij =

∑T−1
n=1 ξij(n)

∑T
n=1 γi(n)

. (15)

5. The expected number of times the observation i is observed while in state j

relative to the expected number of visits to state j forms an update to the

observation distribution matrix B,

b̂ji =

∑T
n=1 δYn=iγi(n)
∑T

n=1 γi(n)
. (16)

For an initial parameterization of the model λ0 and for a given an observation se-

quence Y , updating the model using the above equations yields a new model λ̂ that

is more likely than λ0 to have produced the observation sequence. By iteratively

applying the update equations, Baum et al. have shown that the model achieves

a local maximum in the likelihood function of the parameterized model given the

observation information [23, 24].

2.1.3.7 Example Problem

Given a two-state, discrete HMM, λ = (A,B, π), parameterized by the hidden

state transition matrix

A =





0.9 0.1

0.1 0.9



 , where [aij] = P{Xn+1 = j|Xn = i}, (17)

24

the observation distribution matrix

B =





0.89 0.11

0.11 0.89



 , where [bji] = P{Yn = i|Xn = j}, (18)

and the initial state distribution vector

π =





0.5

0.5



 , where [πi] = P{X0 = i}, (19)

find γi(n) = P{Xn = i|Y, λ}, defined as the probability of being in state i at time n

given the observation sequence

Y = (2, 2, 2, 1, 1, 2, 2, 2)

and the above model λ = (A,B, π). First, note that γi(n) can be written in terms

of the forward and backward variables

γi(n) =
αi(n) · βi(n)

∑S
j=1 αj(n) · βj(n)

.

Second, determine the best estimate of the sequence of hidden states given the obser-

vation sequence Y . The forward variable is defined as αj(n+1) =
[

∑S
i=1 αi(n)aij

]

bjYn+1 .

Table 1 iterates through the forward variable calculations.

The backward variable is defined as βi(n) =
∑S

j=1 aijbjYn+1βj(n+1). Table 2 iterates

through the backward variable calculations.

To find the probability of being in state i at time n given the model λ and the

observation sequence Y = (2, 2, 2, 1, 1, 2, 2, 2), the forward and backward variable

25

Table 1. Forward variable calculations

n α1(n) α2(n)

0 = 0.5 = 0.5
1

[

0.9 · α1(0) + 0.1 · α2(0)
]

· 0.11 = 0.055
[

0.1 · α1(0) + 0.9 · α2(0)
]

· 0.89 = 0.455
2

[

0.9 · α1(1) + 0.1 · α2(1)
]

· 0.11 = 0.0103
[

0.1 · α1(1) + 0.9 · α2(1)
]

· 0.89 = 0.3613
3

[

0.9 · α1(2) + 0.1 · α2(2)
]

· 0.11 = 0.005
[

0.1 · α1(2) + 0.9 · α2(2)
]

· 0.89 = 0.2904
4

[

0.9 · α1(3) + 0.1 · α2(3)
]

· 0.89 = 0.0299
[

0.1 · α1(3) + 0.9 · α2(3)
]

· 0.11 = 0.0288
5

[

0.9 · α1(4) + 0.1 · α2(4)
]

· 0.89 = 0.0265
[

0.1 · α1(4) + 0.9 · α2(4)
]

· 0.11 = 0.0032
6

[

0.9 · α1(5) + 0.1 · α2(5)
]

· 0.11 = 0.0027
[

0.1 · α1(5) + 0.9 · α2(5)
]

· 0.89 = 0.0049
7

[

0.9 · α1(6) + 0.1 · α2(6)
]

· 0.11 = 0.00032
[

0.1 · α1(6) + 0.9 · α2(6)
]

· 0.89 = 0.0042
8

[

0.9 · α1(7) + 0.1 · α2(7)
]

· 0.11 = 7.7 · 10−5
[

0.1 · α1(7) + 0.9 · α2(7)
]

· 0.89 = 0.0034

Table 2. Backward variable calculations

n β1(n) β2(n)

8 = 1 = 1
7 0.9 · 0.11β1(8) + 0.1 · 0.89β2(8) = 0.188 0.1 · 0.11β1(8) + 0.9 · 0.89β2(8) = 0.812
6 0.9 · 0.11β1(7) + 0.1 · 0.89β2(7) = 0.0909 0.1 · 0.11β1(7) + 0.9 · 0.89β2(7) = 0.6525
5 0.9 · 0.11β1(6) + 0.1 · 0.89β2(6) = 0.0671 0.1 · 0.11β1(6) + 0.9 · 0.89β2(6) = 0.5236
4 0.9 · 0.89β1(5) + 0.1 · 0.11β2(5) = 0.0595 0.1 · 0.89β1(5) + 0.9 · 0.11β2(5) = 0.0578
3 0.9 · 0.89β1(4) + 0.1 · 0.11β2(4) = 0.0483 0.1 · 0.89β1(4) + 0.9 · 0.11β2(4) = 0.0110
2 0.9 · 0.11β1(3) + 0.1 · 0.89β2(3) = 0.00576 0.1 · 0.11β1(3) + 0.9 · 0.89β2(3) = 0.00936
1 0.9 · 0.11β1(2) + 0.1 · 0.89β2(2) = 0.0014 0.1 · 0.11β1(2) + 0.9 · 0.89β2(2) = 0.0075

calculations of Tables 1 and 2 are used to calculate

γi(n) = P{Xn = i|Y, λ} =
αi(n) · βi(n)

∑S
j=1 αj(n) · βj(n)

.

Table 3 shows the resulting probabilities with boldface indicating the more likely

state at time n. Thus, the best estimate of the sequence of hidden states given the

observation sequence is

{Xn}8
1 = (S2, S2, S2, S1, S1, S2, S2, S2).

26

Table 3. Gamma variable calculations

n γ1(n) γ2(n)

1 0.02243 0.97757

2 0.01731 0.98269

3 0.07015 0.92985

4 0.51604 0.48396
5 0.51604 0.48396
6 0.07015 0.92985

7 0.01731 0.98269

8 0.02243 0.97757

2.1.3.8 Learning Problem using Expectation Maximization (EM)

In this section an EM approach is taken toward parameter re-estimation of a

discrete HMM. The goal is to maximize the likelihood (or in this case log-likelihood)

function L by finding the maximum likelihood estimates (MLE) of the model param-

eters λ given the complete data (i.e., the observation data Y and the hidden state

sequence X). The likelihood function with complete data is

L(λ) = log P (Y,X|λ).

However, we have incomplete data in the case of the hidden Markov model: we do

not know the true hidden state sequence, X. We seek to maximize the posterior

probability of the parameters λ given the observation data Y , marginalizing over the

missing state sequence data X:

λ̂ = argmax
λ

log

(

∑

X

P (Y,X|λ)

)

.

Finding the MLE for λ by maximizing L(λ) directly can be difficult to compute

(log of a large sum). A simplification makes use of Jensen’s inequality, which states

E [f(X)] ≤ f(E[X])

27

for X a random variable and f a concave (e.g. log) function defined over at least

the range of X, which changes the log of large sum to a sum of logs. Thus, given an

arbitrary distribution F (X) over the hidden variables

log
∑

X

P (Y,X|λ) = log
∑

X

F (X)
P (Y,X|λ)

F (X)
(20)

≥
∑

X

F (X) log
P (Y,X|λ)

F (X)
(21)

=
∑

X

F (X) log P (Y,X|λ) −
∑

X

F (X) log F (X) (22)

= Q(λ, F). (23)

The EM algorithm [25] provides an iterative approximation method which

alternates between maximizing Q with respect to F while holding λ fixed and max-

imizing Q with respect to λ while holding F fixed:

1. Set p = 0 and choose λp, the initial HMM parameter estimates.

2. Perform the expectation step:

Fp+1 ← argmax
F

Q(λp, F) (24)

3. Perform the maximization step:

λp+1 ← argmax
λ

Q(λ, Fp+1) (25)

4. Replace p with p + 1 and repeat steps 2 through 4 until a stopping threshold

is reached.

Finding Fp+1 in step 2 begins with

Q(λp, F) =
∑

X

F (X) log P (Y,X|λp) −
∑

X

F (X) log F (X) (26)

28

and maximizing over F . To do this the Lagrangian

Q̃ = Q + γ (1 −
∑

X

F (X)),

is introduced. Determining its derivative

∂Q̃

∂F
= log P (Y,X|λp) − log F (X) − 1 + γ

and setting it equal to zero yields

0 = log P (Y,X|λp) − log F (X) − 1 + γ

log F (X) = log P (Y,X|λp) − 1 + γ

F (X) = P (Y,X|λp) · eγ−1. (27)

Summing over X yields

∑

X

F (X) = 1 = eγ−1
∑

X

P (Y,X|λp)

eγ−1 =
1

P (Y |λp)
, (28)

and substituting Eq. 28 into Eq. 27 gives

F (X) =
P (Y,X|λp)

P (Y |λp)
= P (X|Y, λp). (29)

29

When Fp+1 is set to P (X|Y, λp), Eq. 26 becomes

Q(λp, Fp+1) = Q(λp, P (X|Y, λp))

=
∑

X

P (X|Y, λp) log P (Y,X|λp) −
∑

X

P (X|Y, λp) log P (X|Y, λp)

=
∑

X

P (X|Y, λp) · log
P (Y,X|λp)

P (X|Y, λp)

=
∑

X

P (X|Y, λp) · log P (Y |λp)

= log P (Y |λp) ·
∑

X

P (X|Y, λp)

= log P (Y |λp) · 1

= log P (Y |λp)

= L(λp). (30)

Thus, the maximum in step 2 is obtained by setting Fp+1(X) = P (X|Y, λp),

where the bound becomes an equality with the objective Q(λp, Fp+1) = L(λp). The

maximum in step 3 is found by maximizing the first term of Eq. 22, since the second

term does not depend on λ. Thus

λp+1 ← argmax
λ

∑

X

P (X|Y, λp) log P (Y,X|λ) (31)

The sequence λ0, λ1, . . . , λp, for p ≥ 0, yields nondecreasing values of the likelihood

function that converge to a local maximum. Thus Q forms a lower bound of the

likelihood function L. The EM algorithm ascends the likelihood function in the

parameter space.

In the following steps we evaluate Eq. 31 by summing over all X ∈ {XT} to

define the incomplete-data Q function in terms of the complete-data:

Q(λ, Fp+1) =
∑

X

P (X|Y, λp) log P (Y,X|λ) (32)

30

Given a particular state sequence X = x0x1 . . . xT ,

P (Y,X|λ) = πx0

T
∏

n=1

axn−1xn
bxnyn

.

Substituting back into the Q function, and simplifying yields

Q(λ, Fp+1) =
∑

X

P (X|Y, λp) log

(

πx0

T
∏

n=1

axn−1xn
bxnyn

)

=
∑

X

log πx0 · P (X|Y, λp) +
∑

X

[

T
∑

n=1

log axn−1xn
bxnyn

]

· P (X|Y, λp)

=
∑

X

log πx0 · P (X|Y, λp) +
∑

X

[

T
∑

n=1

(

log axn−1xn
+ log bxnyn

)

]

· P (X|Y, λp)

=
∑

X

log πx0 · P (X|Y, λp) +
∑

X

[

T
∑

n=1

log axn−1xn

]

· P (X|Y, λp) + · · ·

∑

X

[

T
∑

n=1

log bxnyn

]

· P (X|Y, λp). (33)

Taking each term of Eq. 33 in turn, the parameters of the HMM are optimized.

Taking the first term and finding the marginal expression at time n = 0 gives

∑

X

log πx0 · P (X|Y, λp) =
S

∑

i=1

log πi · P (x0 = i|Y, λp),

where S is the number of hidden states. To optimize, a Lagrange multiplier γ is used

and the added stochastic constraint
∑S

i=1 πi = 1 is enforced:

∂

∂πi

(

S
∑

i=1

log πi · P (x0 = i|Y, λp) + γ

(

S
∑

i=1

πi − 1

))

= 0.

Solving for πi yields

πi = P (x0 = i|Y, λp). (34)

31

The second term of Eq. 33 becomes

∑

X

[

T
∑

n=1

log axn−1xn

]

· P (X|Y, λp) =
S

∑

i=1

S
∑

j=1

T
∑

n=1

log aijP (xn−1 = i, xn = j|Y, λp).

Applying a Lagrange multiplier and the constraint
∑S

j=1 aij = 1 and solving yields

aij =

∑T
n=1 P (xn−1 = i, xn = j|Y, λp)
∑T

n=1 P (xn−1 = i|Y, λp)
. (35)

The third term of Eq. 33 becomes

∑

X

[

T
∑

n=1

log bxnyn

]

· P (X|Y, λp) =
S

∑

j=1

T
∑

n=1

log bjyn
P (xn = j|Y, λp).

Applying a Lagrange multiplier and the constraint
∑Q

i=1 bji = 1 (where Q is the size

of the discrete alphabet) and solving yields

bji =

∑T
n=1 P (xn = j|Y, λp)δYn=i
∑T

n=1 P (xn = j|Y, λp)
, (36)

where the δ-function contributes only when the nth observation matches the ith

symbol of the observation alphabet. Note that the parameter re-estimation equa-

tions of the EM development (Eqns. 34, 35, and 36) match those of the previous

development (Eqns. 14, 15, and 16) with the subtle difference of indexing time at

n = 0 to T instead of n = 1 to T + 1.

2.1.3.9 Extension to Continuous Observation Space

To this point, development of HMM theory uses a discrete observation space,

i.e., a discrete probability density associated with each hidden state models the

observations. For problems where observations are continuous signals, a method

must be used to quantize the signals into a discrete space. This process may degrade

32

model performance by losing information through quantizing. A useful extension of

the discrete HMM is one with continuous observation densities.

Previously, the observation distribution matrix B is defined by [bji] = P{Yn =

i|Xn = j}, where each observation Yn of the sequence {Yn, n ≥ 0} is one of Q

possible values. In the continuous case, researchers typically use a finite mixture of

Gaussians to approximate any finite, continuous density function [18]. A continuous

observation probability with M mixture components and S states has the form

bj(Y) =
M

∑

k=1

cjkΨ(µjk, Σjk) for 1 ≤ j ≤ S, (37)

where Y is the observation sequence, cjk is the kth component mixture in state j,

and Ψ is the Gaussian kernel for the kth component mixture in state j with mean

µjk and covariance Σjk. The kernel is

Ψ(µjk, Σjk) =
1

(2π)d/2|Σjk|1/2
exp

[

−1

2
(x − µjk)

′Σ−1
jk (x − µjk)

]

. (38)

The following constraints must be satisfied by the mixture components:

M
∑

k=1

cjk = 1 for 1 ≤ j ≤ S (39)

cjk ≥ 0 for 1 ≤ j ≤ S, 1 ≤ k ≤ M, (40)

leading to a probability density function that integrates to one over the observations

∫ ∞

−∞

bj(Y)dY = 1 for 1 ≤ j ≤ S. (41)

2.1.3.10 HMMs in Automatic Target Recognition

This section reviews applications in the literature of HMMs to target recogni-

tion, specifically using high range-resolution radar (HRR) signatures as the source of

33

classifier feature data. The purpose is to highlight encouraging results while noting

the assumptions and limitations of each experiment.

A series of Air Force Institute of Technology (AFIT) research efforts [42, 17,

43] applied HMMs to pattern recognition problems using features based on HRR

signatures. DeWitt [42] processed HRR signatures produced by a synthetic CAD-

based Xpatch R© model using the Prony technique. The feature vectors produced by

the Prony technique describe scattering centers of the target. These feature vectors

were quantized using a k-means method in order to apply a discrete HMM. DeWitt

considered a two-class problem with prior knowledge of target aspect and azimuth to

within ±5◦. To test classifier robustness, Gaussian noise was added to the training

data.

Fielding [17] compared discrete and Gaussian-mixture HMMs in an effort to

classify sequences of 2-D images of 3-D objects. A five-class problem of ground tar-

gets with additive noise was studied. Feature data was derived from the coefficients

of low-frequency Fourier transformed CAD-based target images. Prior knowledge of

target aspect angle was ±45◦. In the discrete case a clustering method was used to

quantize the data. Fielding found that the continuous HMM performed better than

the discrete HMM in general but not at all experiment design points.

MacDonald [43] applied Gaussian-mixture HMMs operating on low-frequency

spectral components of Fourier transformed HRR signatures. He studied a three-

class problem of airborne targets. The research found that forcing a relationship be-

tween the hidden states and target orientation improved classification performance.

The process resulted in an observable Markov process rather than a hidden one. It

was unclear how training and testing data were segregated (if at all).

Another series of inter-related research, separate from the above listed AFIT

research, focused on HMM-based time-series classification [44, 45, 46, 47, 48]. Runkle

compared discrete versus Gaussian-mixture HMMs in classifying submerged objects

34

using features extracted from sequences of acoustic waveforms and demonstrated the

marked benefit of using continuous HMMs [44, 45].

Bharadwaj and Runkle applied continuous HMMs with linear density distri-

butions in the observed feature space [46]. The study used two airborne targets

modeled by Xpatch R© with features extracted via matching pursuits.

Liao and Runkle applied HMMs to ground target identification using features

extracted from SAR-based HRR signatures [47, 48]. In both papers the RELAX

algorithm [49] was used to extract point scatterer features from HRR signatures of

sequenced SAR data of ten target classes from the Moving and Stationary Target

Acquisition and Recognition (MSTAR) data collection (covered in Section 2.2).

Other research has been reported in the area of HMMs using HRR signatures

for target classification. Paul implemented a hybrid classifier using an eigen-template

to score HRR signatures prior to being input to discrete HMM classifiers [50]. His

study used MSTAR data with four targets, but appears to have used the same data

to train and test the hybrid classifier.

In Kottke et al. [51] and Nilubol et al. [52, 53] a Radon transformation on seg-

mented two-dimensional SAR images was used to produce rotation and translation-

independent features. These features were ordered, clustered, and input to class-

specific discrete HMMs for classification.

Additionally, Jacobs et al. [54], Zhou et al. [55], and Pei et al. [56] each imple-

mented HMM-based classifiers acting on sequenced HRR signatures.

Evidence of success in applying HMMs to the problem of sequential observation

target classification warrants further study. A review of the literature shows several

areas of potential research:

• use collected SAR data instead of synthetic data to best capture realistic op-

erating conditions

• use multi-class target sets with greater than five target classes

35

• use a methodology to design HMM structures that is supported by model

selection and information theory

• include a rejection option for classifier labeling

• study of out-of-library performance for HMMs

• study the impact of prior knowledge of initial target pose

• study classifier performance when constrained by warfighter preferences

2.2 High range-resolution radar

2.2.1 Introduction

Target recognition of moving targets based on SAR imaging poses a challenge

due to blurring from target motion while forming the synthetic aperture. Recent

research [57, 58, 59] points to high range-resolution radar (HRR) as a possible ap-

proach for recognizing moving targets. Here, HRR refers to a radar operating in a

specified bandwidth that is capable of producing high-resolution returns with signif-

icantly enhanced target to clutter (and noise) ratios through Doppler filtering and

clutter cancellation. Returns from HRRs form focused range (or one-dimensional)

profiles which identify specific target scattering centers. These scattering centers are

related to the physical geometry and material composition of the target and thus

form a means of identifying the target.

2.2.2 Literature

Several AFIT research efforts have studied HRR signatures and their use in

target classification. In addition to DeWitt[42] and MacDonald[43] as described in

Section 2.1.3.10, Meyer’s PhD research [60] studied invariant features drawn from

sequenced HRR signatures and applied a template-based classifier.

36

Zumwalt’s master’s thesis [61] used XPatch R©-derived HRR signatures of air-

borne targets as the feature source. Zumwalt proposed a multinomial pattern match-

ing classifier which out-performed baseline linear and quadratic classifiers.

HRR-based target recognition research outside of AFIT includes Williams [57,

58, 59] and proposes template-based ATR algorithms using HRR-derived features.

Mitchell [62] introduced a statistical feature based classifier acting on HRR profiles

of airborne targets. Shaw [63] used a template-based classifier with eigenvalues

associated with HRR profiles across aspect angle. Zajic [64] employed wavelets-

based features drawn from HRR profiles in a template scheme.

The research performed and reported here combines HMMs with HRR signa-

tures in a classification experiment. Fundamentally, an airborne radar illuminates

a ground target and the reflected radar information is collected and processed for

classification. Previous efforts have used features derived from HRR profiles in clas-

sifying airborne and ground-based targets, but fusing multiple HMMs operating on

HRR-derived features breaks new ground.

2.2.3 HRR Processing

This research uses complex SAR data contained in two collections, MSTAR [65]

and DCS. Processing of the SAR data is required to form HRR signatures. This

section describes the required steps.

• The target in the SAR chip is segmented (outlined) from background clut-

ter using a target-sized mask to simulate doppler filtering (MSTAR contains

stationary targets).

• The SAR image formation process in the cross-range dimension is reversed.

• Cross-range inverse FFTs are applied to obtain range signatures collected over

the synthetic aperture.

37

• The complex range/angle data is de-weighted in angle using an inverse Taylor

window over the valid data.

• Each range bin is magnitude-detected and normalized by the mean power in

the signature to remove automatic gain control and range effects.

• The pixels are averaged in azimuth to form the HRR profile.

Of the SAR imagery used in the research of Section 2.1.3.10, the most realistic

studies used HRR signatures derived from MSTAR SAR data.

2.2.4 MSTAR Program

The conversion process begins with the SAR chip. The example chip is taken

from the MSTAR publicly-available data set, a subset of Collection 1 taken Sep

1995 at the Redstone Arsenal, Huntsville, AL by the Sandia National Laboratory

(SNL) STARLOS sensor, operating at X-band in one foot resolution spotlight mode.

The collection was jointly sponsored by DARPA and AFRL as part of the MSTAR

program.

The example SAR chip is of a T-72 main battle tank, serial number 812 (1 of 3

T-72 tanks imaged in the publicly-available data set), 17 degree angle of depression,

and an aspect angle of 345.8 degrees. Figure 7 shows a photograph of the T-72

target.

2.2.5 SAR Chip

This section discusses MSTAR target chip image files. Target chips are sub-

images extracted from MSTAR target-type full scene images. MSTAR target chips

consist of an ASCII Phoenix header followed by a section of 32-bit floating point

magnitude data and a section of 32-bit floating point phase data (in polar complex

format). Target chip image data is calibrated in units of meters for magnitude data

38

Figure 7. Photograph of the target T-72 main battle tank.

and radians for phase data. Figure 8 shows the raw magnitude and phase chip data

in grayscale form.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1

2

3

4

5

6

Figure 8. Magnitude (on the left) and phase (on the right) information from the
example T-72 MSTAR SAR chip. Both are 128 by 128 pixels in size.
Pixel information is shown through a 256-level grayscale.

The Phoenix header is the standard ASCII data header included with all

MSTAR image files. MSTAR target chip Phoenix headers contain general and

sensor-specific information. Table 4 contains the complete header information from

the example MSTAR SAR chip.

39

Table 4. MSTAR SAR chip header information

PhoenixHeaderLength: 1975 MeasAimpointLongRef: ‘E’
PhoenixSigSize: 133047 MeasAntennaLat: 34.6533

PhoenixSigNum: 1 MeasAntennaLong: -86.6551
PhoenixHeaderCallingSequence: ‘’ MeasAircraftHeading: 41.6016

HeaderVersionNumber: ‘2CM’ MeasAircraftAltitude: 1.4808e+003
native header length: 0 RadarMode: ‘mode 5 - spot light’

Filename: ‘hb03787.0016’ SensorCalibrationFactor: 42.9960
Chip MD5 CheckSum: ‘d721d2b842fe498

a9f3ccb67c797fac9’ RadarPosition: ‘bottom’
ParentScene: ‘hb03787’ Range3dBWidth: 0.3013

Site: ‘redstn’ CrossRange3dBWidth: 0.3229
NumberOfColumns: 128 SceneCenterRefLine: 40

NumberOfRows: 128 X Velocity: 39.4570
TargetType: ‘t72 tank’ DataCollectors: ‘Sandia National Lab’

TargetSerNum: ‘812’ CollectionDate: 19950902
TargetAz: 345.7742 CollectionTime: 82205

TargetRoll: -0.5911 CollectionName: ‘hb’
TargetPitch: 359.6368 SensorName: ‘Twin Otter’
TargetYaw: 35.0758 Classification: ‘UNCLASSIFIED’

DesiredDepression: 17 MultiplicativeNoise: ‘-10 dB’
DesiredGroundPlaneSquint: -90 AdditiveNoise: ‘-32 to -34 dB’

DesiredSlantPlaneSquint: -90 CenterFrequency: ‘9.60 GHz’
DesiredRange: 4500 CrossRangeWeighting: ‘-35dB Taylor’

DesiredAimpointLat: 34.6781 RangeWeighting: ‘-35dB Taylor’
DesiredAimpointLong: 86.6874 DynamicRange: ‘64 dB’

DesiredAimpointElevation: 166 Bandwidth: ‘0.591 GHz’
DesiredAimpointLatRef: ‘N’ RangeResolution: 0.3047

DesiredAimpointLongRef: ‘W’ CrossRangeResolution: 0.3047
MeasDepression: 17.0938 RangePixelSpacing: 0.2021

MeasGroundPlaneSquint: -91.5775 CrossRangePixelSpacing: 0.2031
MeasSlantPlaneSquint: -91.5078 AverageImageCalFactor: 0.9708

MeasuredRange: 4475 Polarization: ‘HH’
MeasAimpointLat: 34.6781 TargetSeasonalCover: ‘only growing vegitation’

MeasAimpointLong: 273.3092 TargetWaterContent: ‘dry’
MeasAimpointElevation: 165.3860

MeasAimpointLatRef: ‘N’

40

2.2.6 SAR Chip Manipulation

The original complex SAR chip is formed by combining the 128 by 128 mag-

nitude information with the 128 by 128 phase information:

Corig = Mei·P ,

where M is the matrix containing magnitude information and P is the matrix con-

taining phase information. Figure 9 shows the 128 by 128 pixel complex modulus
√

X2
real + X2

imaginary.

R
an

ge
 →

Cross−range →

Figure 9. Combining the magnitude and phase information results in the baseline
complex SAR chip.

To obtain the phase histories, or range profiles, several steps made in forming

the MSTAR images are undone. The MSTAR images are formed by taking a 2-D

inverse FFT of the Taylor-windowed, zero-padded phase history data on a rectan-

gular grid. To undo these steps, the 2-D FFT of the 128 by 128 complex pixel chip

described above is taken, then the transformed signal is shifted so that the small fre-

quencies occur in the center. Figure 10 shows the resulting 2-D signal of the example

MSTAR SAR chip.

41

20 40 60 80 100 120

20

40

60

80

100

120

Figure 10. Mesh plot of the magnitude of the 2-D signal for the MSTAR sample
chip. A grayscale image of the same signal is shown on the right.

A noticeable band of near-zero values appears at the border of the 2-D signal

seen in Fig. 10. This band is assumed to be a result of zero-padding, and a 14 pixel

wide band is removed from the perimeter of the signal, leaving the 100 by 100 signal

shown in Fig. 11. Next, a process is undertaken to remove the Taylor windowing

implemented when the SAR data is collected. MSTAR uses a 35 dB Taylor window

with n̄ = 4. Figure 11 shows the described 2-D Taylor window.

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

Figure 11. A cropped 100 by 100 grayscale image of the magnitude of the signal
shown in Fig 10. In the middle is a 3-D plot of a Taylor window with
100 coefficients, a 35 dB sidelobe suppression level, and n̄ = 4, and on
the right is the cropped signal with the windowing removed.

Finally, the cropped unwindowed signal information, also called the phase his-

tory, is processed by a 1-D FFT along the range dimension to reveal the range profiles

42

shown in Fig. 12. The magnitude of these range profiles and the mean profile are

also plotted. Features are extracted from the 1-D mean range profile.

20 40 60 80 100

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100
Range →

M
ag

ni
tu

de

Mean HRR profile
HRR profiles

Figure 12. Taking a 1-D FFT of the cropped unwindowed signal of Fig. 11 results
in the range profile information shown in the left plot. On the right,
the individual range profiles (columns of left plot) are plotted in gray
with the mean profile shown in black. Features are extracted from the
mean profile.

2.3 Model selection

2.3.1 Introduction

One goal of the research is to develop a classifier using time-series models

that explain the change in HRR signatures of moving targets. Selecting a model

from among candidate models is the subject of this section. The choice should

not be based solely on goodness-of-fit, but should also consider model complexity.

An unnecessarily complex model may overfit a given set of data and generalize

poorly. Model selection methods trade-off goodness-of-fit with model complexity in

the search for the “best” model.

2.3.2 Literature

A review of the model selection literature yielded several survey papers [66,

67, 68] that treat the subject from a natural science perspective. The following

43

subsections on the various model selection techniques are derived from these sources

and Burnham and Anderson’s text [69].

Several papers specifically address estimation of the order of hidden Markov

models. The order of an HMM refers to the number of states in the hidden Markov

chain and is a measure of model complexity. Li et al. [70] use the Bayesian Informa-

tion Criterion (BIC) to specify the order of an HMM in a handwriting-recognition

application. Ryden [71] proposes a penalized likelihood estimator which can be used

with the BIC and the Akaike Information Criterion (AIC) to estimate the order of

an HMM. Ryden shows in a specified limit the estimator does not underestimate the

order.

2.3.3 Likelihood criterion

Three aspects determine inference from models according to Fisher [72]: (1)

model specification, (2) estimation of model parameters, and (3) estimation of pre-

cision. The Fisher likelihood theory assumes that the model specification is correct,

leaving only the parameters of the model to be estimated. In cases such as lin-

ear regression models, the parameters can be estimated using maximum likelihood

methods.

Suppose that a probability model g describes the probability distribution of

the data x given the model parameters θ and a model specification or type g, i.e.,

g(x|θ,model).

Also suppose that data is collected and a model is specified, but the model parameters

are unknown. Then the likelihood function can be used for parameter estimation:

L(θ|x,model).

44

The probability model and likelihood model differ by what is known and what is

sought. In the probability model, the parameters and the model are known. The

probability of a given event (the data) is sought. In the likelihood model the data and

the model are given, and estimates of the model parameters are sought. Thus the

roles of the data and the parameters are reversed for the probability and likelihood

models.

Burnham and Anderson [69] use a coin-flipping example to illustrate the like-

lihood concept. The experiment flips a coin n times and observes y heads. The coin

is assumed to be unbiased and the coin flips are assumed to be independent. The

binomial model is chosen to study the experiment. The likelihood function is

L(p|y, n, binomial) =

(

n

y

)

py(1 − p)n−y,

where p, the probability of a head, is the parameter of interest. One might calculate

the likelihood of many values of p and pick the most likely one as the best estimate

of p given the model. This is the maximum likelihood estimator and is found by

maximizing

log(L(p|y, n, binomial)) = log

(

n

y

)

+ y · log(p) + (n − y) · log(1 − p)

given n flips and y heads.

Likelihood ratio tests and maximum likelihood estimation are popular methods

of parameter estimation. Standard statistics texts such as Wackerly [73], Mood [74],

Hogg [75], and Bickel [76] treat the subject thoroughly.

45

2.3.4 Akaike’s information criterion

Kullback and Leibler [77] introduced a “distance” metric to compare two mod-

els f and g,

I(f, g) =

∫

f(x) log

(

f(x)

g(x|θ)

)

dx,

where I(f, g) denotes the information lost when g is used to approximate f . The

K-L distance is a fundamental quantity in information theory and is the basis for

model selection paired with likelihood inference [69].

The K-L distance can be rewritten as

I(f, g) =

∫

f(x) log(f(x))dx −
∫

f(x) log(g(x|θ))dx,

and, recognizing the two terms above as statistical expectations with respect to f ,

is

I(f, g) = Ex[log(f(x))] − Ex[log(g(x|θ))].

Key to the relative comparison of two models is the assumption that f refers to the

unknown “true” distribution and g is the approximating model. The “true” distri-

bution f , while unknown, remains constant, and Ex[log(f(x))] can be considered a

constant C when calculating a relative distance between f and g:

I(f, g) = C − Ex[log(g(x|θ))], or I(f, g) − C = −Ex[log(g(x|θ))].

Now (I(f, g) − C) becomes the relative distance between models f and g, making

(Ex[log(g(x|θ))]) a measure of interest for determining the best model. For instance,

46

given two models g1 and g2, if I(f, g1) < I(f, g2), then g1 is best. Also,

I(f, g1) − C < I(f, g2) − C

Ex[log(g1(x|θ))] < Ex[log(g2(x|θ))] and

I(f, g2) − I(f, g1) ≡ −Ex[log(g2(x|θ))] + Ex[log(g1(x|θ))].

Akaike’s seminal work [78] introduced a method of model selection using K-L

distance without the restriction of full knowledge of the “true” model f and the

parameters θ. In Akaike’s development the unique value of θ that minimizes the

K-L distance I(f, g) is unknown. At this value θ0 information loss is minimized, and

θ0 is found as with the maximum likelihood estimator θ̂. Thus the model selection

process shifts from minimizing known (θ0) K-L distance to minimizing estimated

K-L distance (θ̂) based on the expected value of the estimated parameters, or

EyEx

[

log(g(x|θ̂(y)))
]

,

where x and y are independent random samples from the same distribution and

the expectations are taken with respect to truth (f). Akaike showed that using

log(L(θ̂|data)), the maximized log-likelihood for each model gi given data, to esti-

mate K-L distance results in an upwardly biased estimate. He also showed that the

bias can be corrected by incorporating the number of estimable parameters K, which

can be considered a measure of complexity and hence a part of the classic tradeoff

between bias and variance as a result of underfitting or overfitting data. However,

Akaike’s development finds K as a simple expression of the asymptotic bias in the

log-likelihood as an estimator of EyEx

[

log(g(x|θ̂(y)))
]

. Thus, log(L(θ̂|data))−K is

an unbiased estimator of EyEx

[

log(g(x|θ̂(y)))
]

.

For K-L distance in the general case,

I(f, g) − C = −Ex[log(g(x|θ))],

47

and since the K-L distance is to be estimated using the MLE θ̂, the expectation of

both sides yields

Ey[I(f, g(x|θ̂(y))] − C = −EyEx[log(g(x|θ̂(y)))].

Substituting the above result for the corrected estimator gives

Ey[I(f, g(x|θ̂(y))] − C = − log(L(θ̂|data)) + K,

which, with rearrangement and inclusion of a factor of 2, yields the Akaike informa-

tion criterion

AIC = −2 · log(L(θ̂|data)) + 2K. (42)

2.3.5 Bayesian information criterion

Schwarz [79] presents an alternative to AIC,

BIC = −2 · logL(θ̂|data) + log(n) · K, (43)

where n is the number of models being considered. The difference between AIC and

BIC is the log(n) term.

The following derivation [69] shows the origin of the log(n) term. Given a

model gi the likelihood of parameter set θi (for K parameters θ is a vector of length

K) given the data is L(θi|x, gi). The prior probability for θi is denoted πi(θi). The

marginal likelihood is

gi(x) =

∫

gi(x|θi)πi(θi)dθi,

or the likelihood of model gi given the data and the prior probability distribution of

θi.

48

The marginal probability of the data is

∫

[

n
∏

j=1

g(xi|θ)
]

π(θ)dθ,

which is
∫

[L(θ|x, g)]π(θ)dθ, (44)

where x represents the data. As sample size increases the likelihood function near

the maximum likelihood estimator θ̂ can be approximated as

L(θ|x, g) = L(θ̂|x, g) · e− 1
2
(θ−θ̂)′V (θ̂)−1(θ−θ̂),

where V (θ̂) is the estimated K × K variance-covariance matrix of the MLE. This

form of the likelihood stems from the sampling distribution of the MLE becoming

multivariate normal as the sample size goes to infinity. Substituting the estimated

form of the likelihood back into Eq. 44 yields

L(θ̂|x, g)

∫

e−
1
2
(θ−θ̂)′V (θ̂)−1(θ−θ̂)π(θ)dθ.

As the sample size n goes to infinity, the approximation becomes exact, the likelihood

concentrates near θ̂, and the prior is effectively uniform, so π(θ) can be treated as

a constant. The integral is directly related to the underlying multivariate normal

distribution
∫

(2π)−K/2‖V (θ̂)−1‖1/2e−
1
2
(θ−θ̂)′V (θ̂)−1(θ−θ̂)dθ = 1,

where ‖ · ‖ is the determinant of a matrix. Using the normalizing constant yields

∫

[

n
∏

j=1

g(xi|θ)
]

π(θ)dθ ≈ L(θ̂|x, g)
[

(2π)K/2‖V (θ̂)−1‖−1/2
]

.

49

For a random sample, V (θ̂)−1 = nV1(θ̂)
−1, where V1(·) is independent of sample size.

Also, ‖nV1(θ̂)
−1‖ ≡ nK‖V1(θ̂)

−1‖. Thus

∫

[

n
∏

j=1

g(xi|θ)
]

π(θ)dθ ≈ L(θ̂|x, g)
[

(2π)K/2n−K/2‖V (θ̂)−1‖−1/2
]

.

Taking −2 times the log of the right hand side yields the BIC criterion

−2 log(L(θ̂|x, g)) + K log(n) − K log(2π) − log(‖V1(θ̂)
−1‖).

The last two terms are dropped because they are dominated asymptotically by the

order log(n) term and the order n log-likelihood term.

2.3.6 Method of cross-validation

The objective of cross-validation techniques is to evaluate model predictive

accuracy [67]. The standard arrangement divides available data into a training set

and a testing set. The training data is used to fit a model, resulting in a set of model

parameters, θ̂cal. Test data is used to measure the performance of the calibrated

model.

2.4 Classifier fusion

2.4.1 Introduction

One goal of this research is the application of an architecture-selection method-

ology for the design of a multiple classifier system. This section outlines basic con-

cepts and taxonomy associated with multiple classifier systems.

50

2.4.2 Literature

Multiple classifier system (MCS) literature can be divided into two groups:

MCS theory and MCS application. Roli leads a continuing research effort in MCS

theory; his fusion tutorial [10] is an excellent source for MCS concepts and taxonomy.

Roli and Giacinto’s book chapter [80] on design considerations for MCSs covers

tradeoffs in design of the classifier ensemble and the fusing mechanism.

Combining outputs from a set of different classifiers is one method for the

development of high performance classification systems. Roli and Giacinto believe

that

the rationale behind the growing interest in MCSs is that the classical
approach to designing a pattern recognition system, which focuses on the
search for the best individual classifier, has some serious drawbacks. The
main drawback is that the best individual classifier for the classification
task at hand is very difficult to identify, unless deep prior knowledge is
available for such a task. [80]

One key concept in MCSs is that of complementary discriminatory power of

classifiers. That is, the discriminatory information of one classifier may complement

another classifier. Both classifiers make mistakes, but the mistakes are not identical,

and so the combination of classifiers according to some rule will improve performance

over the individual classifiers.

The design of an MCS can be split into two parts: first, design of the classifier

ensemble, and second, design of the fusion function. The goal of the first part is to

create a set of complementary, or diverse, classifiers. The goal of the second part

is to create a mechanism that can exploit the complementary-ness of the classifiers

and optimally combine them. The Roli fusion tutorial highlights several of these

techniques [10].

Methods used to design the classifier ensemble assume a fixed decision function

and generate a set of complementary classifiers to achieve the best accuracy relative

51

Figure 13. At the abstract level of fusion each classifier outputs a class label for
each test record. A typical fusor is the majority vote scheme. Here three
classifiers assign class membership to a test record and the decision rule
chooses the final class membership.

to the decision function. Roli calls these methods coverage optimization methods,

and some examples are [10]:

• injecting randomness into the classifier training algorithm, e.g. neu-
ral networks with different initializations

• manipulating training data by partitioning the data set or creating
overlapping data sets

• manipulating input features, using feature selection methods and
feeding different features to different classifiers

• manipulating output features, partitioning the set of classes in dif-
ferent ways, then assign classifiers to work on a subset of the whole
class structure

Design of the combination function typically assumes a given set classifiers and

has a goal of finding an optimal combination of decisions from those classifiers. Roli

breaks down decision optimization into three groups: the abstract-level (see Fig. 13),

the rank-level (see Fig. 14), and the measurement-level (see Fig. 15).

The Dasarathy short course on multi-sensor fusion [81] lists two fusion tax-

onomies: one based on sensor ensemble configuration or architecture, and one based

on modes of input and output of the sensor ensemble. The first refers to how the

multiple classifiers are connected, whether series, or parallel, or some combination of

the two. The second taxonomy covers much the same ground as the Roli abstract–

rank–measurement levels of fusion.

52

Figure 14. At the rank level of fusion each classifier outputs an ordered list of
possible classes for each test record.

Figure 15. At the measurement level of fusion each classifier passes an output
vector to the fusor. The fusor combines the multiple outputs across
each vector element.

53

For Dasarathy the modes of fusion are divided into data-level, feature-level,

and decision-level. Further, Dasarathy shows that sub-classes within this taxonomy

are formed based on input to and output from the fuser. Data In – Data Out (DAI-

DAO) fusion occurs when data from similar sensors are combined using arithmetic

or logical operations; for instance, pixel intensities in multi-spectral image data.

An example of Features In – Features Out (FEI-FEO) fusion is the fusion of two

inputs, one an infrared sensor measuring cross-section, and the other a range radar

measuring target depth. The fused output is a volumetric feature of the target. The

most common fusion category is Features In – Decision Out (FEI-DEO). Here the

recognition tool accepts features, then makes a classification decision. At the top

level of fusion categories is Decisions In – Decision Out (DEI-DEO) fusion. Voting

schemes fit into this category.

Several recent applications of MCS in the area of pattern recognition include

Chan’s fusion of dualband forward-looking infrared (FLIR) target data [82]. Other

fusion applications include: Rizvi [83], which reports on various fusion techniques in a

FLIR ATR application, and Song [84], which studies biomedical image identification

using fused contextual information.

A series of AFIT master’s research investigated fusion methods, correlation

effects, and performance metrics [85, 86, 87, 88]. Storm [85] introduced a synthetic

fusion testing environment and studied the effects of data correlation on three fusion

techniques. Leap [86] extended Storm’s work by examining the effects of sample size

as well as correlation. Clemans [87] increased the number of classifiers in the ensemble

to three from two and searched for the optimal ensemble given various experiment

settings. Mindrup [88] extended Leap’s work by allowing a non-declaration option

from his classifiers, applying a cost function and finding the optimal fusion method.

A rejection, or non-declaration, parameter defines a region of class ambiguity

where a classifier labels test records “unknown” [89]. A Bayes-optimal decision rule

which assigns test records to the class with the maximum a posteriori probability

54

may be used. Rejection improves classification accuracy while decreasing misclassi-

fication errors by allowing the classifier to label “unknown” difficult-to-identify test

records [89].

Using a rejection option creates a tradeoff between improved classification per-

formance and the cost of gathering more information if a non-declaration is made.

Chow [89] finds that the optimal rejection threshold given costs for misclassifica-

tion, rejection, and correct classification are equivalent across data classes. Fumera

et al. [11] apply class-specific rejection thresholds to account for varying class prior

probabilities. Fumera proves that using multiple thresholds achieves equal or better

classification performance than using the single rejection threshold of Chow.

Several authors use a loss function to set classification and rejection rules in a

Bayes-optimal classification strategy (Chow [89], Devijver and Kittler [90], Fumera

et al. [11] and Haspert [91]). By minimizing a loss function, classifier performance is

optimized given set costs of rejection, classification errors, and correct classification

in equivalent units. Setting the relative costs for classification error and rejection

places the warfighter in the position of formally setting the cost of a fratricide incident

versus non-declaration versus correct identification; a position the warfighter may not

desire [4].

Laine’s AFIT PhD research [15] presents a CID framework with a reject op-

tion that optimizes classification performance without resorting to a cost-based loss

function.

2.5 Summary

This chapter presented relevant background for the investigation of an HMM-

based MCS in a CID application, and HMM theory and application were described.

Also, HRR signature processing and use in classification were covered, model selec-

55

tion theory was reviewed with specific attention to HMMs, and the fusion of multiple

classifiers and rejection theory were reviewed.

56

3. HMM Classifier Development

3.1 Introduction

This chapter considers the development of HMM classifiers operating on HRR

feature data. An introductory section illustrates the application of a simple HMM-

based classifier to sequences of genetic data. This example supports the theory of

the previous chapter.

Additionally, an implementation of model selection based on the theory pre-

sented in Chapter 2 using HMMs and synthetic data is presented.

3.2 Introductory HMM Classifier

This section presents an example of a discrete hidden Markov model used as

a data sequence classifier. The classification of four-state genetic codes of varying

lengths from two genetic groups, human and mouse, is investigated using discrete

HMMs employing different numbers of hidden states. The impact on classification

accuracy across numbers of hidden states is explored using test and validation data

sets [92].

In this application the complexity of HMMs is explored using the number of

hidden states. The hidden state space and observation state space are assumed to

be fully-connected. Hence, the Markov chain may transition from any state to any

state with probability greater than zero, and each state may produce any symbol

from the discrete observation alphabet with probability greater than zero.

The hidden state transition matrix A and the observation distribution matrix

B are initialized randomly before re-estimation using the Baum-Welch algorithm

given training sequences. The implementation of the algorithm in MATLAB R© uses

code from Murphy’s HMM toolkit [93].

57

3.2.1 Methodology

The initial concept of the project was to employ discrete HMMs to classify

genetic sequences into one of two classes. Through research on biological sequencing

in the Durbin’s text [94], and online at the University of California at Santa Cruz’s

(UCSC) Computational Biology website [95], a satisfactory set of data was found.

The classification data consists of 77 randomly selected pairs of aligned genetic

sequences of DNA from chromosome 10 of the mouse and human species. This

data suits the purpose of this effort for a number of reasons. First, the genetic

data describes two mammals and comes from identical locations on chromosome 10

of the respective DNA. Therefore, differences in the sequence data are a function

of the species and not of the genetic location (either within the chromosome or

across chromosomes). Second, the task of aligning the sequences has already been

accomplished; roughly, this means each sequence is of the same length. Any disparity

in length between the human and mouse pair is made up with space holders (later

removed) such that sub-sequences within the larger sequences are aligned at mutually

shared locations. Third, the data is naturally presented as a classification data set

with one record for a human sequence and another for its aligned mouse partner.

A series of transforms produces a set of useable inputs for the MATLAB R©

HMM functions. The original data as downloaded from the UCSC’s website consists

of 77 paired sequences of human and mouse DNA in a flat text file; example sequences

are shown in Fig. 16. The desired input to the MATLAB R©-based HMM functions

is a set of vectors representing the human sequence records and a set of vectors

representing the mouse sequence records. To reach this goal, the data is separated

into human and mouse data files, converted from text to integers, and converted into

sub-sequences based on the location of the space-holding characters. There are 687

sub-sequences for each class of data.

58

Figure 16. Example gene sequences from chromosome 10 of human and mouse
DNA.

The goal of the effort is to use HMMs, trained with sequences of known origin

(human/mouse), to classify “unknown” sequences into either the human or mouse

species. To accomplish this goal two HMMs are trained. One model is trained using

human sequences and one model is trained using mouse sequences. The classification

of a particular sequence results from a comparison of model likelihoods. Given a test

sequence, if the human model is more likely than the mouse model to have produced

the sequence, then the sequence is classified as human, with the converse true for a

mouse sequence.

While classifying unknown sequences is the goal, insight into the relationship

between model complexity and model performance is also sought. A series of exper-

iments is devised to explore this relationship. Two HMMs with n hidden states are

trained using 400 randomly-selected class-specific data records. For the experiment

performed here, n = [2 3 4 5 6 7 8 9 10 15 20 30]. Each HMM is

tested using 100 randomly selected records from each class of data. Class member-

ship is determined by comparing the likelihoods produced by the two class-specific

HMM classifiers when presented with a test record.

59

2 5 10 15 20 35 30

0.5

0.6

0.7

0.8

0.9

1

hidden states in model

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Figure 17. Plot of probability of correct selection versus number of hidden states.

3.2.2 Results

The experimental results (see Fig. 17) show that maximum classification ac-

curacy is achieved with three hidden states in the models. Performance drops off

rapidly as hidden states are added, indicating that a simple model (i.e., three hidden

states) is preferable to a more complex model.

This experiment shows that HMMs form a useful tool for classifying sequenced

discrete-valued data.

3.3 Model Selection with HMMs

This section investigates model complexity in HMMs using MATLAB R©. First,

discrete HMMs operating on discrete data are considered. Then, a comparison of

discrete and continuous HMMs operating on continuous data is performed. Finally,

a multi-variate Gaussian HMM is used to classify sequenced multi-dimensional data.

3.3.1 Complexity in Discrete HMMs

Discrete hidden Markov models have both a discrete state space and a discrete

observation space. The following experiment examines measures of complexity in a

60

discrete HMM-based classifier. The experiment applies various measures of complex-

ity to identify the most appropriate model given an ensemble of potential models.

Data is generated from a stochastic model of known complexity. The data is then

used to train and test a discrete HMM-based classifier. Based on classifier output,

a model selection technique is applied. Then a comparison is made between the

controlled user-defined data complexity and the suggested model complexity based

on model outputs.

The experiment includes the following steps:

• Choose experiment parameters. Here the parameters of the stochastic model

used to generate the data are specified.

• Generate training and testing data based on the parameter set

• Generate initial discrete HMMs of varying complexity

• Train the HMMs using a training data set

• Test the HMMs using a testing data set

• Reduce the HMM state space by one state and repeat the training/testing

sequence

The output of an experiment is a mean log-likelihood achieved by averaging the

log-likelihoods produced by the trained HMMs for each testing record. Thus as the

number of testing records increases, the better the estimator (mean log-likelihood)

for model performance.

Figure 18 shows the processes of the complexity experiment. The experiment

begins with a highly-complex discrete HMM (20 hidden states) and the complexity

is iteratively reduced by one state. The state to be removed is chosen based on its

relative probability of in-transitioning. This choice of rule is arbitrary. The decision

is made by summing over each column of the hidden state transition probability

matrix. The column sums are compared and the state associated with the min value

is chosen as the state to be removed.

61

Figure 18. HMM model complexity experiment set-up. Experimental parameters,
key functions with input/outputs listed, and looping constructs are
shown.

Data generation follows a die-rolling paradigm. A sequence of die rolls produces

a series of discrete observations. The stochastic data generation process uses 3 dice,

each with 5-sides. A transition matrix of a Markov chain defines the probability of

using a specific die with each die roll. An observation probability matrix defines

the die bias. Two classes of data are generated. Each class has a different Markov

chain transition matrix but uses the same observation distribution matrix. The data

generation process forms training and testing sequences by choosing a die, rolling

it, recording the result, and repeating the process to a user-defined sequence length

termination. Experiment and data generation settings are shown in Table 5.

Training data are used to train discrete HMMs of varying complexity (i.e.,

number of hidden states). Trained HMMs are given test sequences from both classes

of data. The class-specific discrete HMMs produce log-likelihoods when given test

sequences. These likelihoods are compared and class assignment is made according

to the most likely model.

Figures 19 and 20 show results from the discrete HMM complexity experiment.

A marked jump in classification accuracy occurs when discrete HMM classifiers of

order 3 (3 hidden states) are used. Classification performance remains relatively con-

62

Table 5. Experimental settings for two-class complexity experiment using discrete
HMMs

parameter class 1 class 2

Markov chain
transition matrix

[.2 .7 .1
.1 .3 .6
.4 .1 .5

] [.1 .1 .8
.7 .1 .2
.1 .6 .3

]

observation matrix
[.6 .1 .05 .2 .05

.05 .6 .1 .2 .05

.05 .1 .5 .15 .2

]

training records 100
training seq length 30
test records 1000
test seq length

[

5 10 15 20 25 30
]

replications 5

stant as model complexity increases. The Akaike and Bayesian information criterion

(AIC and BIC) concur on the appropriate model complexity (minimum at 3 hidden

states).

One measure of classifier performance is the Receiver Operating Characteristic

(ROC) curve. ROC curves have been applied to many dichotomous decision prob-

lems [96]. Alsing [97] reviews ROC curve analysis in automatic target recognition

research. A ROC curve is used to estimate classifier performance given test data.

Typically, a ROC curve shows the range of false-positive/true-positive coordinates

generated by varying a decision threshold from conservative to aggressive values.

A conservative setting minimizes the number of false-positives (or false alarms) at

the cost of reduced true-positive performance. An aggressive setting maximizes the

true-positive performance at the cost of increased false-positives.

Figure 20 plots several ROC curves for the discrete HMM classifier given dif-

ferent sequence lengths. A longer sequence length means that the classifier has

more observation data to consider before classification is made. The HMM classifier

63

2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sequence Length

HMM hidden states

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

30
25
30
15
10
5

2 4 6 8 10
96

98

100

A
ka

ik
e

In
fo

 C
rit

er
io

n

AIC

2 4 6 8 10
95

100

105

HMM hidden states

B
ay

es
ia

n
In

fo
 C

rit
er

io
n

BIC

Figure 19. Discrete HMM complexity experiment results. On the left, classifica-
tion accuracy results by sequence length across model complexity. On
the right, AIC and BIC measures for model selection.

which produces the ROC curves shown in Fig. 20 is of order 3 (i.e., “best” model

complexity).

The right-hand plot of Fig. 20 shows the distribution of observations in the

training data for each class of data. A statistical classifier that did not account for

the order of observation would have a difficult time distinguishing between the two

classes.

3.3.2 Complexity in Continuous HMMs

Continuous hidden Markov models have a discrete state space and a continuous

observation space. The following experiment examines measures of complexity in a

Gaussian HMM-based classifier, i.e., the observation space related to each hidden

state is distributed Gaussian. The experiment applies various measures of complexity

to identify the most appropriate model given an ensemble of potential models. Data

is generated from a stochastic model of known complexity. The data is then used to

train and test a Gaussian HMM-based classifier. Based on classifier output, a model

selection technique is applied. Then a comparison is made between the controlled,

64

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru

e
P

os
iti

ve

Sequence Length 30
25
20
15
10
5

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X

P
(X

)

Class 1
Class 2

Figure 20. ROC curves for various sequence length settings. Discrete probability
distribution for the 2 class problem.

user-defined data complexity and the suggested model complexity based on model

outputs.

The experiment includes the following steps:

• Choose experiment parameters. Here the parameters of the stochastic model

used to generate the data are specified.

• Generate training and testing data based on the parameter set

• Generate initial Gaussian HMMs of varying complexity

• Train the HMMs using a training data set

• Test the HMMs using a testing data set

• Reduce the HMM state space by one state and repeat the training/testing

sequence

The output of an experiment is a mean log-likelihood achieved by averaging the log-

likelihoods produced by the trained HMMs given each testing record. Thus as the

number of testing records increases, the better the estimator (mean log-likelihood)

for model performance.

65

Table 6. Experimental settings for two-class complexity experiment using contin-
uous HMMs

parameter class 1 class 2

Markov chain transition matrix
[.2 .7 .1

.1 .3 .6

.4 .1 .5

] [.3 .7 0
.4 .0 .6
.3 .4 .3

]

Gaussian observation matrix
[

1 2 5
1 2 .5

] [

1 2 5
1 2 .5

]

training records 100
training seq length 40

test records 1000
test seq length

[

5 10 15 20 25 30
]

discretization
[

5 10 30
]

replications 5

Data generation uses a Markov chain of 3 states to determine the observation

distribution from which the next observation is drawn. Table 6 shows the exper-

imental settings. For example, if the Markov chain is in state 1, the observation

is randomly drawn from a Gaussian distribution with mean = 1 and variance = 1.

Two classes of data are generated. Each class has a different Markov chain transition

matrix but uses the same observation distribution matrix.

Training data are used to train Gaussian HMMs of varying complexity (i.e.

number of hidden states). Trained HMMs are given test sequences from both classes

of data. The class-specific HMMs produce log-likelihoods when given test sequences.

These likelihoods are compared and class assignment is made according to the most

likely model.

Discrete HMMs are trained using the same continuous data after quantizing

using a k-means clustering algorithm. To compare performance of discrete versus

Gaussian HMMs, several quantization levels are used (k = 5, 10, and 30). When

k = 5 the discrete observation space has 5 symbols. Figure 21 shows classification

66

2 4 6 8 10

0.6

0.7

0.8

0.9

1

HMM hidden states

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

ghmm
dhmm 5
dhmm 10
dhmm 30

2 4 6 8 10

0.6

0.7

0.8

0.9

1

HMM hidden states

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

2 4 6 8 10

0.6

0.7

0.8

0.9

1

HMM hidden states

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

2 4 6 8 10

0.6

0.7

0.8

0.9

1

HMM hidden states

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

2 4 6 8 10

0.6

0.7

0.8

0.9

1

HMM hidden states

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

2 4 6 8 10

0.6

0.7

0.8

0.9

1

HMM hidden states

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Seq Length 5 Seq Length 10 Seq Length 15

Seq Length 20 Seq Length 25 Seq Length 30

Figure 21. Classification performance of the Gaussian and discrete HMM classifiers
at different sequence length settings. The discrete HMM classifier is
broken down into three quantization levels: 5, 10, and 30.

accuracy as a function of model complexity at a series of sequence length settings.

Notice the improved performance of the Gaussian HMM over the discrete HMM and

the marked peak at HMMs of order 3.

Figures 22 and 23 show results from the Gaussian HMM complexity exper-

iment. A marked jump in classification accuracy occurs with HMM classifiers of

order 3 (3 hidden states). Classification performance decreases as model complexity

increases. The Akaike and Bayesian information criterion (AIC and BIC) concur on

the appropriate model complexity (minimum at 3 hidden states).

Figure 23 plots several ROC curves for the Gaussian HMM classifier given dif-

ferent sequence lengths. A longer sequence length means that the classifier has more

observation data to consider before classification. The HMM classifier which pro-

duced the ROC curves shown in Fig. 23 is of order 3 (i.e., “best” model complexity).

67

2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sequence Length

HMM hidden states

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

30
25
20
15
10
5

2 4 6 8 10
121

122

123

124

125

126

127

128

129

130

131

HMM hidden states

In
fo

 C
rit

er
io

n
V

al
ue

BIC
AIC

Figure 22. Continuous HMM complexity experimental results. On the left, classi-
fication accuracy results by sequence length across model complexity.
On the right, AIC and BIC measures for model selection.

The right-hand plot of Fig. 23 shows the distribution of observations in the

training data for each class of data. A statistical classifier that did not account for

the order of observation would have a difficult time distinguishing between the two

classes.

3.3.3 Multi-dimensional Gaussian Data

This section uses synthetic, multi-variate Gaussian data to show the utility of

Gaussian HMMs in classifying sequenced, multi-variate data.

Table 7 lists the experimental parameters. Data is generated in a controlled

manner using a specified number of states (5). Data in each state is generated from

3-dimensional random normal distributions. The mean and variance of each normal

distribution depends on the state and data class.

Gaussian HMMs with 5 hidden states are trained using a sequence of samples

(10) from each 3-dimensional Gaussian observation state. Thus each observation

sequence is of length 50. Within an observation sequence the data is ordered by the

distribution state. For example, the first 10 observations in the sequence are from

68

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru

e
P

os
iti

ve

Sequence Length 30
25
20
15
10
5

−4 −2 0 2 4 6 8
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

X

P
(X

)

Class 1
Class 2

Figure 23. ROC curves for various sequence length settings. Continuous probabil-
ity densities for the 2 class problem.

Table 7. Experimental settings for two-class complexity experiment using multi-
variate Gaussian HMMs

parameter class 1 class 2

data mean by state
[0 1.5 3 4.5 6

0 0 0 0 0
0 0 0 0 0

] [.1 1.6 3.1 4.6 6.1
.1 .1 .1 .1 .1
.1 .1 .1 .1 .1

]

data std dev by state
[

.4 .4 .4 .4 .4
] [

.4 .4 .4 .4 .4
]

samples per state 10
training records 10

test records 100
mean separation settings

[

.1 .12 .15 .2 .25 .3
]

replications 5

69

−2 0 2 4 6 8−2
0

2
−2

−1

0

1

2

Mean separation = 0.1

−2 0 2 4 6 8−2
0

2
−2

−1

0

1

2

Mean separation = 0.12

−2 0 2 4 6 8−2
0

2
−2

−1

0

1

2

Mean separation = 0.15

−2 0 2 4 6 8−2
0

2
−2

−1

0

1

2

Mean separation = 0.2

−2 0 2 4 6 8−2
0

2
−2

−1

0

1

2

Mean separation = 0.25

−2 0 2 4 6 8−2
0

2
−2

−1

0

1

2

Mean separation = 0.3

Figure 24. Two classes of data shown at six different mean separation settings.

state 1, the next 10 are from state 2, etc. In this fashion an ordering is forced on

the data generation process. A sample of the two-class data is shown in Fig. 24.

Separate training and testing data are generated for each of the two data

classes. The data classes are defined by the mean and standard deviation of their

respective multi-variate Gaussian observation distributions. The experiment exam-

ines the ability of the Gaussian HMMs to distinguish between the two classes while

the separation between the means is decreased from 0.3 to 0.1.

Figure 25 shows classifier performance using ROC curves at each of the mean

separation settings. At the closest setting (0.1), the classifier narrowly outperforms

the chance line (diagonal line). Perfect classification occurs with mean separation of

0.3. The results of this experiment point the way to implementation of a multi-variate

Gaussian HMM in the application of CID using features from HRR signatures.

70

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru

e
P

os
iti

ve

Mean Separation .1
.12
.15
.2
.25
.3

Figure 25. ROC curves at six different mean separation settings.

3.4 Development of HMM-based CID System

One goal of the research is the development of a time-series classifier operating

on sequenced observations of targets. The hidden Markov model is the time-series

classifier. In the following subsections data, design, and fusion decisions related to

the implementation of an HMM-based classifier are described.

Figure 26 provides an experiment flowchart which shows the major processes

used in the development of the HMM-based classifier. Feature data is derived from

MSTAR SAR chips, and HMM classifiers are trained with class-specific data from

a segregated training data set. The trained HMMs process test data, and a fuser

combines the output from the class-specific HMMs and assigns class membership.

The following sections describe design options in the these areas: HRR-derived

features, HMM state space structure, HMM observation distributions, HMM train-

ing, HMM testing, and fusion rule.

71

Figure 26. Set-up for a standard HMM experiment using features derived from
MSTAR SAR chips and employing a fusion rule to combine outputs
from multiple HMM classifiers.

3.4.1 Data and Features

A time-series classifier using data derived from targets imaged at a series of

aspect angles may leverage aspect-dependent information in the effort to distinguish

targets.

The classifier development described here uses data from the MSTAR pro-

gram publicly-available data set [65], a subset of Collection 1 taken Sep 1995 at the

Redstone Arsenal, Huntsville, AL by the Sandia National Laboratory STARLOS

sensor (airborne), operating at X-band in one foot resolution spotlight mode. Three

types of ground targets are in the target set: T-72 main battle tank, and BMP-2

and BTR-70 armored personnel carriers. Figure 27 shows photographs and example

SAR images of the ground targets in the data collection.

The data is divided into two sets. The first is used for training and is collected

at a sensor-to-target depression angle of 17 degrees. The training set holds approxi-

72

Figure 27. Target images and SAR chips of T-72, BTR-70, and BMP-2 vehicles.

mately 230 SAR chips of each target type with each chip representing a SAR image

taken at a specific target aspect angle relative to the airborne sensor bore sight. The

test set is collected at a 15 degree depression angle, presenting a signature different

than the training set [98]. Approximately 195 SAR chips of each target type are in

the test set.

The SAR chips are processed according to the steps of Section 2.2.6. A mean

HRR signature is produced from each SAR chip. This signature, also called a pro-

file, is a vector of length 162. Ordering the profiles by the sensor-target aspect angle

creates a target HRR signature with respect to relative target azimuth. There are

holes in the aspect data; approximately 230 chips cover 360 degrees of target az-

imuth. Figure 28 displays the available HRR profiles of each target (first column),

the available profiles with missing data (second column), and interpolated profiles

(third column). Profile data is linearly interpolated to 1 degree resolution using the

available data, thus filling in the missing data and achieving a uniform spacing of

observation data across target type.

73

No. avail profiles

R
an

ge
 B

in
s

116 232
1

162

Target azimuth
90 180 270 360

1

162

Target azimuth
90 180 270 360

1

162

R
an

ge
 B

in
s

1

162

1

162

1

162

R
an

ge
 B

in
s

1

162

1

162

1

162

T−72

BTR−70

BMP−2

Figure 28. Available and interpolated HRR profiles for three MSTAR
target types. The training data have a 17◦ depression angle.

74

Several methods are used to reduce the dimensionality of the 162-element HRR

profile into manageable features. The first method is a simple maximum value rule

applied to a series of adjacent bin ranges of the HRR profile. Each SAR chip is

preprocessed (by the Sensors Directorate of AFRL) to place the target in the center

of the chip. Figure 28 shows that most of the variability in the HRR signatures is

confined to the middle region of the 162-element profiles. Further inspection showed

that peaks of significant magnitude in HRR signatures for the three targets are

located between range bins 62 and 100 of the 162-element profile. This range is

divided into 7 range windows; 62-67, 68-73, 74-78, 79-83, 84-88, 89-94, and 95-100.

The feature vector x is determined by the maximum values of the HRR profile within

each of the seven range windows:

x
(max)
i = argmax p [wi] for i = 1, 2, . . . , 7 (45)

where p is the HRR profile and wi is the ith range window of the HRR profile. A

mean value feature rule is also used and is designated x
(mean)
i .

The next feature set applies a discrete Fourier transform to the HRR profile:

x
(fft)
i =

N
∑

j=1

p(j)ω
(j−1)(i−1)
N for i = 1, 2, . . . , 6, (46)

where ωN = e (−2πi)/N and N = 162. Most information is captured in the low

frequencies of the transform, thus the feature vector retains only the first six values.

Another feature set is formed using principal component analysis (PCA). A

translation of the middle portion of the HRR profiles (bins 62-100) across 360 degrees

of aspect angle via principal component analysis reduces dimensionality from 39 to

10 when the first 10 principal components are retained. The component scores form

the new feature space.

75

Target azimuth

F
ea

tu
re

s

x(pca)

90 180 270 360
1

10

F
ea

tu
re

s

x(ff t)

1

6

F
ea

tu
re

s

x(max)

1

7

R
an

ge
 B

in
s

p

1

162

Figure 29. Full HRR profile (interpolated) and related feature sets for the
BTR-70 target. Training data for a 17◦ depression angle are
shown.

Given a 360 by 39 matrix, where each row is the middle portion of a full

HRR profile at a given aspect angle, let p be the mean-corrected matrix such that

pij = pij − µj where µj = (1/360)
∑

i pij. Proceeding down the columns increases

the aspect angle at which the HRR data are collected. Let C, a 39 by 39 matrix,

be the normalized, sample variance-covariance matrix of p. Let A be the matrix of

the eigenvectors associated with the ten largest eigenvalues of C. The component

scores which form the new feature space result from multiplying the mean-corrected

matrix p by A:

x(pca) = p A. (47)

Figure 29 shows the HRR-derived feature sets for the BTR-70 target. The

full profiles p are interpolated to 1 degree resolution in aspect. The feature sets

shown are: x(max), the maximum value within 7 range windows; x(fft), the first 6

frequencies of the discrete Fourier transform; and x(pca), the component scores after

translation using the first 10 principal components.

76

3.4.2 HMM Topology

A hidden Markov model λ is parameterized by the hidden Markov chain transi-

tion matrix A, an observation distribution matrix B, and an initial state probability

vector π. The design of an HMM involves several decisions regarding topology. Of

critical importance is the number of hidden states in the Markov chain, called the

order of the HMM. Given S states, the transition matrix is S×S. Thus, the number

of parameters in the HMM increases non-linearly with S.

The state space may be fully-connected, in which case each state transitions

to any other state in one step with probability greater than zero. Alternatively, the

connectivity of the state space may be restricted. A specific instance is the “left-

right” model, where a process in state i at time t is allowed only two options, either

remain in state i at time t+1 or transition to state i+1 at time t+1. Thus the state

transition matrix A has entries on the main and first diagonal with zeros elsewhere:

A =























.3 .7 0 0 0

0 .2 .8 0 0

0 0 .4 .6 0

0 0 0 .5 .5

.4 0 0 0 .6























.

Another topology decision is modeling of the observation space. A discrete

HMM employs a discrete observation space, called an alphabet, which consists of

Q symbols. A discrete observation probability matrix defines the probability of

producing a symbol given the state of the model. The matrix B has dimension

S × Q, and the number of parameters in the model grows linearly with Q.

A discrete HMM may be used to model continuous observation data, but the

data must be quantized using some method, typically a k-means clustering, into

77

a discrete alphabet. Information is lost during the quantizing process, but model

performance may not decrease substantially.

A Gaussian HMM assumes that the observation space is normally distributed,

and B is no longer an observation distribution matrix in the sense of the discrete

HMM. Instead, B contains the parameter pair µ and σ2 for the Gaussian associated

with each hidden state.

The feature sets considered in the following model development are multi-

dimensional. For instance, an observation vector in the maximum value feature

set x(max) has dimension 7. The assumed Gaussian observation space is multi-

dimensional, and a decision must be made to model the observations using seven

1-D HMMs, or one 7-D HMM, or some combination of lower-dimensioned HMMs.

The initial state distribution allows control of the initial state of the Markov

chain. By setting π to a uniform distribution over all states, no prior information is

inserted about the initial state.

Suppose, that a relationship must be forced between the hidden states and

the observation sequence, e.g., for the aspect angle of the ground target in the SAR-

derived observation data. As described above, the observations are ordered by aspect

angle beginning at 1 degree and ending with 360 degrees. If the observations are

assumed to be a function of the aspect angle of the target, i.e., when viewed from

a certain aspect window, the observations are from a specific state in the hidden

process. Thus, given an observation sequence that begins at a target aspect angle of

1 degree, the model can be forced to start in state 1 by setting the first element of

π to 1 with zeros elsewhere.

3.4.3 Fusion Approaches

In a basic HMM-based classifier, one model is trained for each class of data.

A test record of unknown class is evaluated by each class-specific HMM, producing

78

a log-likelihood, and class membership is assigned according to the greatest log-

likelihood. If the test record is of dimension n and the classification system uses

1-D HMMs, then for each class of data n HMMs must be trained. For a three class

problem such as that described above using 1-D HMMs operating on the maximum

value feature set x(max), the MCS consists of 3 × 7 = 21 HMMs. The output from

this bank of models must be fused to assign a final class label.

Figure 30 schematically describes majority vote and mean log-likelihood fusion

schemes. The MCS considers 1-D HMMs operating on two feature sets, where feature

sets can originate from separate sensors. As noted above, when using 1-D HMMs,

a model must be trained for every class of data and for every dimension of the

observation feature vector, where 1-D observation sequences (step 1) are evaluated

by the bank of trained HMMs (step 2) producing log-likelihoods (step 3).

Two methods are used to fuse within the feature set (i.e., produce a single

sensor class label). A majority vote scheme tallies the winning votes for each class-

specific model across the n dimensions of the feature set. Class membership is

assigned to the class with the greatest number of votes. A mean log-likelihood scheme

computes the mean output for each class across the n dimensions of the feature set.

Class membership is assigned to the class with the largest mean log-likelihood. The

process is repeated for the second feature set.

The same schemes can be used to fuse across the feature sets. If feature set 1

has dimension 7 and feature set 2 has dimension 6, then the voting scheme assigns

class membership by tallying across 13 dimensions. Likewise, the mean log-likelihood

scheme incorporates all 13 features before the final class assignment.

79

Figure 30. Fusion of multiple one-dimensional HMMs using a voting scheme and
mean log-likelihoods.

3.4.4 Development Results

3.4.4.1 Discrete HMM

This section describes a discrete HMM-based MCS used to classify sequenced

observations derived from MSTAR SAR data. The experiment described here is

derived from Albrecht and Gustafson’s conference paper [99]. The data consists of

SAR chips of three ground targets (T-72, BTR-70, and BMP-2) collected from an

airborne sensor. Each chip is a 2-D signature centered on a single target. Targets

are not occluded and ground clutter is minimal (light vegetation).

Target SAR chips are processed into HRR signatures, and the signatures are

then ordered by the relative sensor-target aspect angle. Features are extracted from

the HRR signatures. Sequences of features, ordered by increasing apsect angle, form

the observations used to train the discrete HMM-based MCS. Training data are

collected at a depression angle of 17◦ and testing data are collected at 15◦.

Two sets of features, representing information from two sensors to be fused

later, are extracted from target HRR signatures. The first feature set, called “bin

80

feature set” is the maximum value within the 7 HRR range windows of Section 3.4.1,

x(max). The second feature set is the discrete Fourier transform of the HRR signa-

ture, called “FFT feature set,” x(fft).

The observation data are quantized in order to apply discrete HMMs. A linear

quantization method is used to transform the continuous data into an alphabet with

Q symbols. This method maps feature data into Q uniformly spaced intervals based

on the minimum and maximum values of the training feature data. The state space

of the discrete HMMs is fully-connected and consists of S states.

The experiment explores classification performance by varying the number of

states in the discrete HMMs, i.e., S = 2, 3, . . . , 20, the length of the observation

sequence, and the method of fusing the component classifier outputs.

Figure 31 presents classification performance of the discrete HMM-based MCS

using only the bin feature set. Seven HMMs per target type are employed in the

MCS. The results shown in Fig. 31 reflect performance using HMMs with discrete

observation alphabets of 10 symbols (i.e., Q = 10). Not shown are results at Q = 30,

where performance dropped considerably below that seen with Q = 10.

Several trends are evident in the subplots of Fig. 31. First, as the observation

sequence length increases classification performance increases. This result follows in-

tuitively as the classifier is presented more information with a longer sequence length.

Second, a general downward trend in performance coincides with increasing model

complexity. Third, fusing the seven HMM outputs using the mean log-likelihood

rule results in significantly improved performance over the majority vote rule at

lower model complexity settings. Finally, the fusion rules perform better than their

components acting independently.

Figure 32 presents classification performance of the discrete HMM-based MCS

using only the FFT feature set. Six HMMs per target type are employed in the

MCS. The results shown in Fig. 32 reflect performance using HMMs with discrete

81

Bin Features

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 5

dHMM hidden states

T
ru

e
P

os
iti

ve

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 10

dHMM hidden states
5 10 15 20

0

0.2

0.4

0.6

0.8

1
Sequence Length 15

dHMM hidden states

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 20

dHMM hidden states

T
ru

e
P

os
iti

ve

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 25

dHMM hidden states
5 10 15 20

0

0.2

0.4

0.6

0.8

1
Sequence Length 30

dHMM hidden states

1
2
3
4
5
6
7
vote
loglik

Figure 31. Fusion of multiple one-dimensional HMMs using a voting scheme and
mean log-likelihoods operating on bin features.

observation alphabets of 10 symbols (i.e., Q = 10). Not shown are results at Q = 30,

where performance dropped considerably below that seen with Q = 10.

Several trends are evident in the subplots of Fig. 32. First, compared to the

bin feature set of Fig. 31, the FFT feature set performs poorly. There is insignificant

improvement as sequence length increase, and classifier performance is relatively

independent of model complexity. However, the fusion rules perform better than

their components acting independently.

Figure 33 presents classification performance of the discrete HMM-based MCS

using both feature sets. Thirteen HMMs per target type are employed in the MCS.

The results shown in Fig. 33 reflect performance using HMMs with discrete observa-

tion alphabets of 10 symbols (i.e., Q = 10). Not shown are results at Q = 30, where

performance dropped considerably below that seen with Q = 10.

82

FFT Features

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 5

dHMM hidden states

T
ru

e
P

os
iti

ve

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 10

dHMM hidden states
5 10 15 20

0

0.2

0.4

0.6

0.8

1
Sequence Length 15

dHMM hidden states

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 20

dHMM hidden states

T
ru

e
P

os
iti

ve

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 25

dHMM hidden states
5 10 15 20

0

0.2

0.4

0.6

0.8

1
Sequence Length 30

dHMM hidden states

1
2
3
4
5
6
vote
loglik

Figure 32. Fusion of multiple one-dimensional HMMs using a voting scheme and
mean log-likelihoods operating on FFT features.

Fusing both feature sets improves performance over using either feature set

alone. The trends in Fig. 31 can be seen in the fused performance. As the observation

sequence length increases classification performance increases. A general downward

trend in performance coincides with increasing model complexity. Fusing outputs

with the mean log-likelihood rule results in significantly better performance than the

majority vote rule at lower model complexity settings.

A random target classifier operating on 3 targets has a probability of correct

selection (PCS) of 33%. The HMM-based classifier used in this experiment peaked

at 94% PCS and typically operated between 70 and 80% at low model complexity

and small alphabet size settings.

83

Fused Features

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 5

dHMM hidden states

T
ru

e
P

os
iti

ve

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 10

dHMM hidden states
5 10 15 20

0

0.2

0.4

0.6

0.8

1
Sequence Length 15

dHMM hidden states

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 20

dHMM hidden states

T
ru

e
P

os
iti

ve

5 10 15 20
0

0.2

0.4

0.6

0.8

1
Sequence Length 25

dHMM hidden states
5 10 15 20

0

0.2

0.4

0.6

0.8

1
Sequence Length 30

dHMM hidden states

vote fft
vote bin
vote fused
loglik fft
loglik bin
loglik fused

Figure 33. Fusion of multiple one-dimensional HMMs using a voting scheme and
mean log-likelihoods across two feature sets.

3.4.4.2 Gaussian HMM

This section describes a Gaussian HMM-based MCS used to classify sequenced

observations derived from MSTAR SAR data. The experiment described here ex-

tends the discrete research of the previous section [99] and is derived from Albrecht

and Bauer’s conference paper [100]. As in the discrete case, the data consist of SAR

chips of three ground targets (T-72, BTR-70, and BMP-2) collected from an airborne

sensor. Each chip is a 2-D signature centered on a single target. Targets are not

occluded and ground clutter is minimal (light vegetation).

Two sets of features, representing information from two sensors to be fused

later, are extracted from target HRR signatures. The first feature set, called “bin

feature set” is the maximum value within 7 HRR range windows (see Section 3.4.1)

x(max). The second feature set is the discrete Fourier transform of the HRR signa-

ture, called “FFT feature set,” x(fft).

84

Figure 34. Observations in the feature space are linked to the observation distri-
butions of the hidden states.

The state structure employed in the experiment described is a left-right model.

The state transition matrix explicitly restricts transitions to two possibilities. First,

the process remains in the same state (i.e., jumps to itself at the next time step).

Second, the process transitions from a state to its adjacent neighbor. Using a left-

right model may link observations to the ordered transition between states as shown

in Fig. 34.

In a Gaussian HMM, observations from a given hidden state are distributed

normally with parameters µ and σ2, the mean and variance. The parameter re-

estimation algorithm used to train the Gaussian HMM requires an initial parameter

pair for each state distribution. Using the left-right model paradigm, each state is

initially assumed to cover observations within a certain aspect window. For example,

each state in a model containing 30 hidden states in the left-right state space initially

covers a 360/ 30 = 12 degree aspect window. The sample mean and variance of

observations in the training data corresponding to the aspect window are used to

initialize the Gaussian HMM state observation distribution parameters.

The experiment explores classification performance by varying the number of

states in the Gaussian HMMs, S = 10, 20, 30, 40, 60, 72, and 90, the length of the

observation sequence, and the method of fusing the component classifier outputs.

85

Figure 35 presents classification performance of the Gaussian HMM-based

MCS. Because of the relationship between the hidden states and the target aspect

angle, prior knowledge of the target pose can be used. In Fig. 35 no prior knowledge

is used for classification.

Several trends are evident in the subplots of Fig. 35. First, as the observation

sequence length increases classification performance increases. This result follows

intuitively as the classifier is presented more information with a longer sequence

length. Second, increased model complexity yields negligible performance improve-

ment. Third, fusing the seven HMM outputs using the mean log-likelihood rule

results in better performance than the majority vote rule across model complexity

settings.

Figure 36 presents classification performance of the Gaussian HMM-based MCS

with prior knowledge of target pose. The pose information is incorporated into the

model by specifying the initial state when testing an observation sequence. Given a

test sequence which begins with an observation of the target at 65◦ relative aspect

angle and a Gaussian HMM with 30 hidden states (each state initialized to cover a

12◦ window), the initial state probability vector π is set to zeros everywhere except

element 5, which is set to 1. Thus, the test sequence is evaluated with the hidden

process beginning in state 5.

Incorporating prior target pose information significantly improves classifica-

tion performance as seen in Fig. 36. Prior aspect knowledge also removes relative

performance benefits between the two fusion methodologies.

3.4.4.3 Multi-dimensional Gaussian HMM

This section describes a multi-dimensional Gaussian HMM-based MCS used

to classify sequenced observations derived from MSTAR SAR data. The experiment

described here extends the one-dimensional Gaussian HMM research of the previous

86

Fused Features

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 10

gHMM hidden states

T
ru

e
P

os
iti

ve

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 15

gHMM hidden states
20 40 60 80

0

0.2

0.4

0.6

0.8

1
Sequence Length 20

gHMM hidden states

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 25

gHMM hidden states

T
ru

e
P

os
iti

ve

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 30

gHMM hidden states
20 40 60 80

0

0.2

0.4

0.6

0.8

1
Sequence Length 40

gHMM hidden states

vote
loglik

Figure 35. Fusion of multiple one-dimensional Gaussian HMMs using a voting
scheme and mean log-likelihoods. No prior knowledge of target aspect
angle is used.

section. As in the previous cases, the data consist of SAR chips of three ground

targets (T-72, BTR-70, and BMP-2) collected from an airborne sensor. Each chip

is a 2-D signature centered on a single target. Targets are not occluded and ground

clutter is minimal (light vegetation).

Two sets of features, representing information from two sensors to be fused

later, are extracted from target HRR signatures. The first feature set, called “bin

feature set” is the maximum value within 7 HRR range windows (see Section 3.4.1)

x(max). The second feature set is the discrete Fourier transform of the HRR signa-

ture, called “FFT feature set,” x(fft). The state structure employed is a left-right

model as in the previous section.

In a multi-dimensional Gaussian HMM, observations from a given hidden state

are distributed multi-variate normally with parameters µ and Σ, the mean vector

and covariance matrix. The parameter re-estimation algorithm used to train the

87

Fused Features

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 10

gHMM hidden states

T
ru

e
P

os
iti

ve

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 15

gHMM hidden states
20 40 60 80

0

0.2

0.4

0.6

0.8

1
Sequence Length 20

gHMM hidden states

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 25

gHMM hidden states

T
ru

e
P

os
iti

ve

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 30

gHMM hidden states
20 40 60 80

0

0.2

0.4

0.6

0.8

1
Sequence Length 40

gHMM hidden states

vote
loglik

Figure 36. Fusion of multiple one-dimensional Gaussian HMMs using a voting
scheme and mean log-likelihoods. Prior knowledge of target aspect
angle as a function of the number of hidden states is used.

Gaussian HMM requires an initial parameter pair for each state distribution. Using

the left-right model paradigm, each state is initially assumed to cover observations

within a certain aspect window. For example, each state in a model containing 30

hidden states in the left-right state space initially covers a 360/ 30 = 12 degree aspect

window. The sample mean and covariance matrix of observations in the training data

corresponding to the aspect window are used to initialize the Gaussian HMM state

observation distribution parameters.

As seen in Fig. 37, the observation space is assumed to be multi-variate normal

with dimension 7, which covers the feature space of the first feature set, x(max). A

second multi-dimensional Gaussian HMM is used to model the second feature set,

x(fft) with dimension 6. Thus, for each target only two HMMs are needed versus 13

models for the case of Sec. 3.4.4.2.

88

Figure 37. Multi-dimensional observations in the feature space are linked to the
observation distributions of the hidden states.

With only two model outputs to combine, the majority vote fusion method is

not used. Instead, only the mean log-likelihood method is used. The experiment

explores classification performance by varying the number of states in the Gaussian

HMMs, S = 10, 20, 30, 40, 60, 72, and 90, and the length of the observation sequence.

Figure 38 presents classification performance of the multi-dimensional Gaus-

sian HMM-based MCS with no prior target aspect information. Several trends are

evident in the subplots of Fig. 38. First, as the observation sequence length increases

classification performance increases. This follows intuitively as the classifier is pre-

sented more information with a longer sequence length. Second, model performance

decreases with increased model complexity.

Figure 39 presents classification performance of the multi-dimensional Gaussian

HMM-based MCS with prior knowledge of the target pose. The pose information is

incorporated into the model as described in Sec. 3.4.4.2. Incorporating prior target

pose information improves classification performance. At the longest sequence length

setting near perfect classification is achieved.

Figure 40 shows Akaike’s information criterion (AIC) for the case of multi-

dimensional Gaussian HMMs. Each dashed line represents AIC versus number of

89

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 10

gHMM hidden states

T
ru

e
P

os
iti

ve

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 15

gHMM hidden states
20 40 60 80

0

0.2

0.4

0.6

0.8

1
Sequence Length 20

gHMM hidden states

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 25

gHMM hidden states

T
ru

e
P

os
iti

ve

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 30

gHMM hidden states
20 40 60 80

0

0.2

0.4

0.6

0.8

1
Sequence Length 40

gHMM hidden states

Power features
Bin features
Log−lik fusion

Figure 38. Fusion of multi-dimensional Gaussian HMMs using mean log-
likelihoods. No prior knowledge of target aspect angle is used.

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 10

gHMM hidden states

T
ru

e
P

os
iti

ve

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 15

gHMM hidden states
20 40 60 80

0

0.2

0.4

0.6

0.8

1
Sequence Length 20

gHMM hidden states

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 25

gHMM hidden states

T
ru

e
P

os
iti

ve

20 40 60 80
0

0.2

0.4

0.6

0.8

1
Sequence Length 30

gHMM hidden states
20 40 60 80

0

0.2

0.4

0.6

0.8

1
Sequence Length 40

gHMM hidden states

FFT features
Bin features
Log−lik fusion

Figure 39. Fusion of multi-dimensional Gaussian HMMs using mean log-
likelihoods. Prior knowledge of target aspect angle as a function of
the number of hidden states is used.

90

10 20 30 40 60 72 90
50

100

150

200

250

300

350

400

450

num hidden states

A
IC

target 1
target 2
target 3
mean

Figure 40. Akaike’s information criterion versus number of hidden states for the
multi-dimensional Gaussian HMM. Three dashed lines represent AIC
for target-specific models. The solid line is the mean AIC across target
models.

hidden states in a class specific model. Since the target set has three members, there

are three AIC lines. The solid line is the mean AIC across all three target types.

As the number of hidden states increases, the amount of information lost (AIC)

decreases, reaching a minimum at 72 hidden states. The AIC at 60 and 90 hidden

states is approximately equal to that of 72 hidden states.

The AIC suggests that an appropriate level of model complexity given the

training data used in the multi-dimensional Gaussian HMM experiment is either 60,

72, or 90 hidden states.

3.5 Summary

This chapter provides an introductory example of a discrete HMM applied in a

genetic sequence classification experiment. In addition, it applies model complexity

theory to the study of HMMs. Sections 3.3.1 and 3.3.2 apply AIC and BIC informa-

tion theoretic measures to discrete and continuous HMMs in a controlled experiment

91

to identify appropriate model complexity. In these experiments, data are generated

using Markov chains with 3 states. HMMs of varying complexity are trained and

tested, and resulting AIC and BIC measures are calculated. In each case AIC and

BIC concur that an HMM of order 3 is the best-suited model given the data.

Sections 3.4.4.1, 3.4.4.2, and 3.4.4.3 detail the development of discrete, 1-

dimensional, and multi-dimensional Gaussian HMMs for a ATR classifier using se-

quenced SAR data as input. Performance measures and model topology suggest

that a multi-dimensional Gaussian HMM with 60, 72, or 90 hidden states is most

appropriate given SAR-based feature data as in Sec. 3.4.1.

92

4. CID Optimization Formulation

This chapter presents a combat identification (CID) optimization formulation that

extends the CID framework proposed by Laine [15]. It begins by defining CID

and automatic target recognition (ATR) related terms. Next, CID analysis using

receiver operating characteristic (ROC) curves and confusion matrices is covered.

Finally, Laine’s framework is covered, and the extension to include out-of-library

methodology is presented.

4.1 Definitions

The following terms related to research in the area of CID and ATR are defined

prior to the presentation of the proposed extended framework.

ATD/R Automatic target detection and recognition refers to the process

of detecting a region of interest (ROI) where a target may reside.

The assumption in this research is that target detection has been

accomplished, an ROI is established, and target recognition is the

primary function.

ATR Automatic target recognition refers to the process of classifying ob-

jects in the ROI. In this research, ATR is performed with no human

in-the-loop. Figure 41 shows a notional ATR system which incorpo-

rates two sensors and a fusion rule to combine sensor output prior to

labeling the target.

CID Combat identification is the process of obtaining accurate charac-

terizations of detected objects in the joint battlespace to the extent

that high confidence and timely application of military options and

weapons resources can occur [3]. An ATR system may be part of a

CID system. A pilot’s eyes may be part of a CID system.

93

Figure 41. Notional ATR system with two sensors evaluating observations through
time t = T .

Clutter Clutter encompasses the set of naturally occurring objects that

degrade sensor performance. Examples of clutter include trees, rocks,

and vegetation.

Confuser Confusers are man-made objects which a sensor may confuse

with a true, in-library target. A decoy is an example of a confuser.

EOC Extended operating conditions are those variations of target pre-

sentation and environment which alter the sensed target signature

from that of the training signature. Examples of EOCs include turret

and barrel position of a tank, dense foliage versus sparse foliage, and

depression angle from airborne sensor to ground target.

In-library refers to target types present in the classifier training set.

Label is the output of a classifier, or multi-classifier ATR system, when

presented an ROI. Labels include “hostile,” “friend,” and “non-declare.”

Out-of-library refers to target types not present in the classifier training

set. The classifier has not been trained to recognize these targets.

ROI An ATR system is cued to a region of interest in order to classify

the target residing in the ROI.

94

Target class refers to a grouping of similar target types. The grouping

may depend on target intent (hostile, friendly, neutral), country of

origin (U.S., NATO, or China) or vehicle type (tank, missile launcher,

or truck).

Target type refers to classification based on high-fidelity physical prop-

erties of the target. Variants of the T-72 all fit within the T-72 target

type. Another main battle tank, the M-1A1 and its variants form

another target type.

4.2 ROC and confusion matrix analysis

Traditional ATR performance analysis uses ROC curves and confusion matrices

to estimate system performance [97]. ROC curves relate classification performance

by moving a threshold from conservative to aggressive settings. Typically, a ROC

curve shows the trade-off between true-positive and false-positive performance as a

function of a moving ROC threshold, θ ∈ [0, 1], from 0 to 1.

At each threshold setting true-positive and false-positive calculations are made

based on class posterior probabilities output by the classifier. Given a threshold θ

and two-class posterior probabilities, ppT (target) and ppF (friend), the classifier

labels test records according to:

label =







“target” if ppT ≥ θ

“friend” if ppT < θ
(48)

By comparing true class with classifier-assigned labels, true-positive and false-positive

metrics are derived. Plotting the true-positive and false-positive pairings for each

threshold setting produces a ROC curve.

Laine [15] introduces the idea of a ROC surface with the addition of a rejection

option. A third performance measure, probability of declaration Pdec, is added to

95

the two already in use, probability of true-positive, Ptp, and probability of false-

positive, Pfp. Here Pdec captures the number of records labeled “no declaration.”

The three measures are estimated as a function of the threshold θ such that

P̂tp = P̂tp(θ) , P̂fp = P̂fp(θ) , and P̂dec = P̂dec(θ) = 1 − P̂rej(θ), (49)

where P̂rej is the estimated probability of labeling “non-declaration.”

The ROC surface s is produced by varying θ over its range Θ:

s = s(θ) =
{ (

P̂tp(θ) , P̂fp(θ) , P̂dec(θ)
)

| θ ∈ Θ
}

, (50)

where the threshold θ now defines a rejection region. The center of the rejection

region is defined by θROC, and the rejection region half-width is given by θREJ. Thus,

the bounds on the rejection region are (θROC − θREJ , θROC + θREJ).

Labeling with a rejection option follows:

label =



















“target” for ppT > θROC + θREJ

“friend” for ppT < θROC − θREJ

“non-declare” for θROC − θREJ ≤ ppT ≤ θROC + θREJ

. (51)

Figure 42 depicts the labeling process given a rejection region. Two distributions

of classifier-produced posterior probabilities are given. Records of true target class

have higher posterior probabilities while true friend class have lower posterior proba-

bilities. The two distributions overlap, creating classification errors given a decision

boundary. By inserting a rejection region, the classifier declares only those records

with high likelihood of class membership [89]. Classification errors are reduced at

the expense of fewer declarations.

A ROC surface plots ROC curves across a third dimension which measures

classifier declaration performance. Declaration performance is a function of the width

96

Figure 42. Rejection region based on ROC and rejection thresholds applied to class
posterior probability.

of the rejection region; the wider the region, the more “non-declaration” labels,

resulting in a lower declaration rate. By varying the θROC and θREJ from conservative

to aggressive settings, a ROC surface is produced. Figure 43 provides an example

ROC surface. The plot shows decreased performance as declaration rate increases.

Analysis of CID system performance with confusion matrices yields a table

of classifier labeling versus truth given a set of test data and thresholds (θROC and

θREJ). Figure 44 is a confusion matrix for a system with four classifier labels (“en-

emy,” “friend,” “neutral,” and “non-declaration”) and three true target classes. Each

matrix entry represents test record labeling conditioned on true target class. For

example, the first row shows the number of true-enemy records labeled “Enemy,”

“Friend,” “Neutral,” and “Non-declare,” respectively. Reading horizontally indi-

cates how well the classifier identifies true-enemy records. A common horizontal

metric is the probability of true-positive, proportioned to the number of true-enemy

records labeled “Enemy” given that a declaration is made.

97

0

0.5

1

0
0.5

1

0

0.5

1

fp%dec

tp

Figure 43. Family of ROC curves measuring true-positive and false-positive per-
formance versus percentage of records declared. Points are experiment
measurements.

Figure 44. Confusion matrix with FEN classes and non-declaration option.

98

The columns of the confusion matrix indicate the true class of the records

given a specific label. For example, the second column shows the respective number

of true-enemy, friend, and neutral class records labeled “Friend” by the classifier.

Reading vertically indicates classifier accuracy when applying the “Friend” label.

One vertical metric is the fratricide rate; the number of “Enemy” labels applied to

true-friend records given that a declaration is made.

Figure 44 uses hatching to distinguish between performance measures. The

entries on the main diagonal reflect correct labeling of each true class of target.

Critical errors includes both mislabeling a true-enemy as “Friend” or “Neutral,”

and applying an “Enemy” label to a true-friend or neutral. Lesser errors have little

impact on warfighter decisions and include the cross-labeling of friend and neutral

records. If friends and neutrals are treated in the same fashion, then cross-labeling

errors are inconsequential.

Figure 45 shows a confusion matrix with two types of hostile targets and in-

troduces non-critical errors as another performance measure. The number of true

target classes remains the same by merging the friend and neutral classes due to the

low impact of cross-labeling error. The enemy class is sub-divided into target-of-the-

day (TOD) and other-hostile (OH) classes. This subdivision facilitates analysis of

non-critical errors, which occur when incorrect hostile targets are engaged or when

a weapons-target mismatch occurs. In either case, a suboptimal employment of

resources occurs without loss of friendly/neutral life.

Figure 46 expands the number of true target classes to four with inclusion

of an out-of-library class. Test records belonging to the out-of-library class are of

target types not included in the classifier training set. Critical errors in Fig. 45 are

similarly defined for Fig. 46. Non-critical errors expand to include mislabeling of

true out-of-library targets as “Target-of-the-day” or “Other hostile,” and labeling as

“Out-of-library” those target of true-target-of-the-day or other-hostile class.

99

Figure 45. Confusion matrix with multiple hostile classes and non-declaration op-
tion.

Figure 46. Confusion matrix with multiple hostile classes, out-of-library records,
and non-declaration option.

100

4.3 Extended mathematical programming CID optimization formula-

tion

Laine’s optimization framework [15] uses a mathematical programming (MP)

formulation to optimize CID systems without reference to fixed error costs. Non-

linear optimization of the decision space across classifier label mappings as a func-

tion of variable threshold settings provides a flexible objective function/constraint

set pairing to suit warfighter preferences. For example, one strategy might be to

maximize classifier true-positives while constraining the system to a maximum error

rate and a minimum declaration rate.

Table 8 gives an initial MP CID formulation which includes an out-of-library

performance measure. The initial formulation seeks to maximize the true-positive

rate of the CID system subject to several constraints. The true-positive rate (TPR)

is a measure of true-positives as a function of time or number of observations. The

motivation is to capture the benefit of additional observations when classifying time-

series data. Intuitively, a classifier performs better when given more (discriminatory)

information, and TPR seeks to quantify the performance benefit of additional ob-

servations.

4.3.1 Decision variables

Decision variables used in the MP framework are organized into three groups:

choice of fusion rule, choice of sensors, and choice of thresholds associated with the

sensors and fusion rule.

Using Laine’s notation [15], Fi is an indicator variable that describes use of

the ith fusion rule. Since the CID system under investigation fuses multiple sensors

with one fusion rule, only one of f fusion rules may be selected in the optimal

arrangement. Thus, Fi = 1 if the ith fusion rule is chosen and all other entries are

set to zero.

101

Table 8. Initial MP Formulation of CID Optimization Framework

Objective function MP formulation Impact

Maximize true posi-
tive rate

max TPR(x) maximize number of true
positives per look

Constraints

Critical error Ecrit < 0.02 upper bound on critical er-
ror performance measure

Non-critical error Encrit < 0.05 upper bound on non-critical
error performance measure

True positive Ptp > 0.9 lower bound on true positive
performance measure

Declarations Pdec > 0.7 lower bound on declaration
performance measure

Out-of-library Pool > 0.6 lower bound on out-
of-library performance
measure

102

The fusion rule employs the output from an ensemble of sensors, where Sj is

an indicator variable taking a value of 1 if sensor Sj is employed in the fusion scheme

and 0 if not. Constraints may be employed to limit the selection to a certain number

of sensors. For instance, the fused MCS must use at least one but not more than

three sensors.

The third group of decision variables are the thresholds related to the fusion

rule and component sensors. Using the index i to refer to the fusion method and j to

refer to the component sensor, θij is the threshold related to a specific CID system

decision using fusion rule i and sensor j. Example thresholds are the ROC threshold

θ0j
ROC and rejection threshold θ0j

REJ, which together define the rejection region at the

classifier level for classifier j (i = 0 indicates that the threshold is not used at the

fusion level).

4.3.2 Performance Measures

Given two competing CID systems, their performance is compared using esti-

mates of true performance. The following sections develop these estimated perfor-

mance measures (foregoing the estimator symbol ˆ).

4.3.2.1 True-positive

Horizontal analysis of confusion matrix entries produces performance estimates

of class labels given true class. Some flexibility exists in using true-positive as a

performance measure because the user identifies which class is the sought after target

class. For this example, target classes are defined in Fig. 46 as TOD, OH, FN, and

OOL with hostile targets TOD and OH as the target classes.

103

Thus an estimate for true-positive performance is the number of true-hostile

records labeled “Hostile” divided by the total number of true-hostile records:

Ptp = P (“TOD” ∪ “OH”|TOD ∪ OH)

=
num(“TOD”|TOD + “TOD”|OH + “OH”|TOD + “OH”|OH)

num(TOD eval + OH eval)
. (52)

Further refinement of the performance measure may restrict the calculation to

records on which a declaration is made by the classifier. This refinement accounts for

the added rejection option and resultant “non-declare” label. Here the calculation

is

Ptp = P (“TOD” ∪ “OH”|(TOD ∪ OH) ∩ declaration)

=
num(“TOD”|TOD + “TOD”|OH + “OH”|TOD + “OH”|OH)

num(TOD declared + OH declared)
. (53)

4.3.2.2 Critical error

Critical error calculation reverses the order of conditioning seen in the true-

positive calculation; instead of finding the probability of correct label given a true

class, critical error finds the probability of true class membership given a label.

Critical error calculation involves vertical analysis of the confusion matrix.

Using Fig. 46, critical error is

P (Ecrit) = P









P (“TOD” ∩ FN) ∪ P (“OH” ∩ FN) ∪
P (“FN” ∩ TOD) ∪ P (“FN” ∩ OH)



 | declaration



 . (54)

Simplification of Eq. 54 makes use of Bayes’ rule, and depends on class preva-

lence as defined by class prior probabilities. Let P (TOD), P (OH), P (FN), and

P (OOL) be the prior probabilities of the four true target classes, and let P (“TOD”),

P (“OH”), P (“FN”), P (“OOL”), P (“Non-declare”) be the unconditional system label

104

probabilities. Then

P (TOD) + P (OH) + P (FN) + P (OOL) = 1 (55)

P (“TOD”) + P (“OH”) + P (“FN”) + P (“OOL”) + P (“Non-declare”) = 1. (56)

The simplified P (Ecrit) calculation is then

P (Ecrit) =





P (“TOD”|FN)P (FN) + P (“OH”|FN)P (FN)+

P (“FN”|TOD)P (TOD) + P (“FN”|OH)P (OH)





1 − P (“Non-declare”)
, (57)

where P (“Non-declare”) is determined by the sum of the class-specific probability of

non-declaration:

P (“Non-declare”|TOD)P (TOD) + P (“Non-declare”|OH)P (OH)

+ P (“Non-declare”|FN)P (FN) (58)

+ P (“Non-declare”|OOL)P (OOL).

4.3.2.3 Non-critical error

As with critical error, non-critical error calculation reverses the order of con-

ditioning in the true-positive calculation. Non-critical error calculation involves ver-

tical analysis of the confusion matrix.

Some flexibility exists in choosing which classification errors constitute non-

critical errors. For this example, non-critical errors consider only cross-labeled hostile

targets (i.e., TOD labeled “OH” and OH labeled “TOD”), which is a reduced non-

critical error set from that shown in Fig. 46. Adjusting the non-critical error set

requires relatively simple modification to the following calculations:

105

P (Encrit) = P ((P (“TOD”|OH) ∪ P (“OH”|TOD)) | declaration) , (59)

which simplifies to a non-critical error calculation that incorporates prior class prob-

abilities, i.e.,

P (Encrit) =
P (“TOD”|OH)P (OH) + P (“OH”|TOD)P (TOD)

1 − P (“Non-declare”)
, (60)

where P (“Non-declare”) is determined by the sum of the class-specific probability of

non-declaration (see Eq. 75).

4.3.2.4 Declaration

The declaration performance measure captures the percentage of test records

which the CID system labels with one of the true class labels. The complementary

measure is the non-declaration performance measure. It tabulates the number of

records labeled “Non-declare” by the system:

Pdec = 1 − P (“Non-declare”)

= 1 −







P (“Non-declare”|TOD)P (TOD) + P (“Non-declare”|OH)P (OH)

+P (“Non-declare”|FN)P (FN)

+P (“Non-declare”|OOL)P (OOL)






. (61)

4.3.2.5 Out-of-library

The out-of-library performance measure is a true-positive labeling of “OOL”

given an OOL record using horizontal analysis of confusion matrix entries. For this

example, target classes are defined as in Fig. 46 (TOD, OH, FN, and OOL).

106

Thus, the estimate for the out-of-library performance measure is the number of

true-OOL records labeled “OOL” divided by the total number of true-OOL records

evaluated:

Pool = P (“OOL”|OOL)

=
num(“OOL”|OOL)

num(OOL eval)
. (62)

Further refinement of the performance measure may restrict the calculation to

records on which a declaration is made by the classifier. This refinement accounts for

the added rejection option and resultant “non-declare” label. Thus the calculation

is

Pool = P (“OOL”|OOL)

=
num(“OOL”|OOL)

num(OOL declared)
. (63)

The out-of-library labeling methodology is separate from the labeling method-

ology for in-library classes. Figure 47 shows a notional implementation of the out-of-

library labeling methodology. Focusing on a single sensor, observations of a region

of interest are made through time and passed to a feature processor to extract fea-

tures, which are the basis for classification. The classifier produces a 10-dimensional

class posterior probability vector. Based on feature observations, this vector is the

classifier’s best guess at class membership. The vector is 10-dimensional because the

classifier has been trained to recognize 10 in-library classes.

The proposed in-library/out-of-library discriminator takes the 10-dimensional

class posterior probability vector as input and produces an 11-dimensional class

posterior probability vector. The 11-D vector adds a posterior probability for the

out-of-library (OOL) class as a function of the 10-D in-class vector.

107

Figure 47. Out-of-library discriminator added to a two-sensor notional ATR sys-
tem evaluating observations through time t = T . Given ten in-library
classes, classifier outputs are 10-dimensional class posterior probabil-
ities. The out-of-library discriminator assigns an 11th posterior as a
function of the 10 in-library posteriors.

Given the 10-D in-class posterior probability vector

xpost = [ppTOD ppOH1 ppOH2 · · · ppFN5],

the discrimination function sorts the posteriors in descending order producing xord.

Assuming that the classifier identifies in-library targets well, a small subset of the

class posteriors are significantly larger than the remaining posteriors. In-library/out-

of-library discrimination results from a threshold setting based on the sum of a subset

of ordered posteriors.

Two threshold parameters are chosen through a nearly blind sub-optimization

routine. The parameters are the number of ordered (largest to smallest) posteriors

over which to sum θ
(1)
OOL, and the threshold against which the sum is compared θ

(2)
OOL.

The parameter values are chosen to ensure a minimum discrimination performance

given in-library and out-of-library records, hence the nearly blind description. For

108

example, the sub-optimization routine may determine a threshold θ
(2)
OOL based on the

sum of the second through sixth ordered posteriors, θ
(1)
OOL = 6. Thus given xord for a

sample test record, the discriminator compares

xool =

θ
(1)
OOL
∑

i=2

xord(i),

i.e., the sum of the second through sixth ordered posteriors for the test record with

the threshold θ
(2)
OOL, and it assigns the OOL posterior as a function of distance from

the threshold

ppOOL =







0 if xool < θ
(2)
OOL

f(xool − θ
(2)
OOL) if xool ≥ θ

(2)
OOL

.

If xool < θ
(2)
OOL, then the record is considered an in-library class and the posterior

probability for OOL is set to zero. If xool ≥ θ
(2)
OOL, then the record is an out-of-library

record and the posterior probability for OOL is set to a monotonically-increasing

function of the distance from the threshold:

f(d) =
2

1 + e−10d
,

where d = xool − θ
(2)
OOL. Since xool ∈ [0, 9/10] and θ

(2)
OOL ∈ [0, 1], d ∈ [0, 9/10]

and f maps d to [1, 1.999], where ppOOL is concatenated to the end of the 10-element

estimated posterior vector xpost and normalized to produce the estimated 11-element

posterior probability vector.

4.3.3 Formulation

Laine [15] lets x be a vector of decision variables defined in the MP formulation.

Some decision variables such as the fusion indicator variable are discrete, while others

are continuous. The MP formulation seeks to find the optimal x in the space of the

109

discrete and continuous decision variables given an objection function and limiting

constraints.

The structure of the MP formulation is flexible and can adapt to various objec-

tive functions and constraints per the goals of the warfighter or CID system analyst.

What follows are example formulations given the previous discussion.

110

Objective Function

max
x∈X

TPR(x) =
Ptp(x)

num looks
maximize true-positive rate (64)

Subject to:

Warfighter constraints

Ecrit < Π1 upper bound on critical errors

Encrit < Π2 upper bound on non-critical errors

Ptp > Π3 lower bound on true-positive performance

Pdec > Π4 lower bound on declaration performance

Pool > Π5 lower bound on out-of-library performance

Fusion rule constraint

f
∑

i=1

Fi = 1 select a single fusion rule

where Fi =







1 if ith fusion rule used

0 otherwise

Sensor selection constraint

s
∑

j=1

Sj ≤ s select from available sensors

s
∑

j=1

Sj ≥ 1 select at least one sensor

where Sj =







1 if jth sensor used

0 otherwise

111

Threshold constraints

θij ≥ 0 lower threshold constraint

θij ≤ 1 upper threshold constraint

where θij is the decision threshold associ-
ated with fusion rule i and sensor j. The
decision threshold may be θROC or θREJ.

Laine shows how budgetary constraints could be developed by applying a cost

function to the research and development, procurement, and maintenance of fu-

sion systems and sensors. Physical constraints, such as weight, space, and electro-

magnetic spectrum are also possible but not considered here.

112

5. Application of extended CID framework

In this chapter, the extended CID framework is exercised in a classification exper-

iment using DCS radar data. This experiment competes an HMM-based classifier

against a template-based classifier across a variety of experimental settings.

The chapter has the following sections: an introduction to the experiment, a

description of the experiment data, classifier definitions, the experimental methodol-

ogy, optimization framework, and experimental results. The results section is further

expanded to include post-optimality analysis with the implementation of a designed

experiment.

5.1 Introduction

The goal of this chapter is to apply the extended CID optimization framework

in an experiment using observation data of ground targets collected from an airborne

sensor. Two different classifiers compete within the framework across a variety of

experimental settings. Among these settings are:

• warfighter constraints such as minimum critical error rate

• threshold settings for the classifiers (ROC and rejection region thresholds)

• fusion methodology (no fusion, mean fusion rule, neural network fusion, and

boolean fusion)

• level of sensor independence

• observation sequence length

Figure 48 provides an overview of the ATR system. A region of interest is

observed in time by two sensors. These sensors may be co-located on the same

platform or located on separate platforms. The sensor data is processed into features

which are then used to classify a target into one of four classes: target-of-the-day

113

Figure 48. Overview of ATR system with two sensors sending observations through
time t = T to two classifiers whose outputs are fused into one of five
labels: Target-of-the-day (TOD), Other hostile (OH), Friend/Neutral
(FN), Out-of-library (OOL), or Non-declaration.

(TOD), other hostile (OH), friend/neutral (FN), or out-of-library (OOL). Should the

classifier not have enough confidence (determined by thresholds) to label a target as

belonging to one of the four classes, it applies a non-declare label.

5.2 Data description

The data set used in this experiment was collected May 2004 at Eglin Air Force

Base, Florida. The AFRL Sensor Data Management System released the data in re-

sponse to a data request through the website https://www.sdms.afrl.af.mil. The

collection used a General Dynamics DCS X-band synthetic aperture (SAR) radar

operating in spotlight mode aboard a medium-sized, twin-engined Convair 580. The

radar bandwidth was 640 MHz with a peak transmit power of 4 kW. The DCS radar

imagery was collected at a resolution of 1.0 ft in two channels; HH-polarization and

VV-polarization. All targets were stationary and imaged in an open area without

concealment using a spotlight mode, and SAR chips of individual targets were ex-

tracted from full spotlight scenes. The SAR chips used in this experiment had 256

x 256 pixels.

114

Table 9. DCS Collection target list by class with description and experiment labels.

Group Type Target description Tracks Wheels Gun Label

SCUD Single Large Missile N 8 N TOD
SMERCH MLRS Scud Confuser N 8 N OH1

Hostile SA-6 Radar Similar to SA-6 TEL Y 0 N OH2
T-72 Main Battle Tank Y 0 Y OH3

SA-6 TEL 3 Medium SAMs Y 0 N OH4

Zil-131 Medium Budget Truck N 4 N FN1
Friend and HMMWV Jeep like SUV N 4 N FN2

Neutral M113 Armored Personnel Carrier Y 0 Y FN3
Zil-131 Small Budget Truck N 4 N FN4
M35 Large Budget Truck N 4 N FN5

SA-8 TZM SA-8 Reload vehicle N 6 N OOL1
Out BMP-1 tank w/small turret Y 0 Y OOL2
of BTR-70 8-wheeled transport N 8 N OOL3

Library SA-13 turret SAMs Y 0 N OOL4
SA-8 TEL integrated radar exposed SAMS N 6 N OOL5

The DCS collection consists of two-dimensional X-band SAR imagery. Table 9

lists the 15 targets contained in the collection. Ten targets are in-library targets. The

classifiers are trained using feature data from these targets. The in-library targets are

grouped into two classes, hostile and friend/neutral. The SCUD is labeled “target-

of-the-day” (TOD) and is the focus of the ATR system. The remaining four hostile

targets are labeled “other hostile” (OH). The five friend/neutral target types are

labeled FN.

Five target types (SA-8 TZM, BMP-1, BTR-70, SA-13, and SA-8 TEL) are

grouped into the out-of-library class. The signatures of these target types are not

used to train the classifiers and are labeled OOL.

The DCS radar data is collected using HH and VV polarizations. In the two-

sensor experiment described above sensor 1 uses HH-polarized data and sensor 2

uses VV-polarized data.

115

Training and test data are segregated by depression angle from the airborne

sensor to the ground vehicles at the time of collection. Flight passes at approxi-

mately 3000 and 4000 ft. correspond to sensor depression angles of 6 and 8 degrees

respectively. Data from these flight passes constitute training data. Table 10 lists

the flight passes used for training data. Each flight pass images the complete target

set across 90 degrees of aspect angle. Multiple flight passes provide imagery across

360 degrees of target aspect angle.

Test data is collected at a depression angle of 10 degrees to form an extended

operating condition (EOC) relative to the training data. Flight passes corresponding

to 10 degrees of depression angle are made at approximately 5000 ft. of elevation.

Table 11 lists the flight passes used to form the test set.

5.2.1 Features

Once grouped into sets according to sensor (polarization, either HH or VV),

and training/test (6 and 8◦ depression angle for training and 10◦ depression angle

for test), the SAR chips are processed into HRR profiles per the steps outlined in

Section 2.2.6. These steps include:

• remove of Taylor windowing and oversampling in the DCS SAR chip

• apply inverse 2-D FFT

• convert to range domain

• form a mean HRR profile

Each 256 × 256 pixel SAR chip is processed into a 322-bin mean HRR profile.

Features are extracted from each profile according to a maximum-value-within-bin-

window rule. Each HRR profile is divided into 10 bin windows near the center of

the profile as shown in Fig. 49. These windows are defined by HRR bin ranges

as follows: 103-114, 115-126, 127-138, 139-150, 151-162, 163-174, 175-186, 187-198,

116

Table 10. Data Selected for Training with a Desired Depression Angle of 6 or 8
Degrees

Number Flight Pass Identifier Chips Looks per vehicle Desired dep angle

1 1 10 FP0110 690 46 6
2 1 11 FP0111 660 44 6
3 1 12 FP0112 660 44 6
4 1 13 FP0113 660 44 6
5 1 15 FP0115 690 46 8
6 1 16 FP0116 690 46 8
7 1 17 FP0117 690 46 8
8 1 18 FP0118 690 46 8
9 1 34 FP0134 690 46 8
10 2 12 FP0212 660 44 6
11 2 13 FP0213 660 44 6
12 2 14 FP0214 690 46 6
13 2 16 FP0216 690 46 8
14 2 17 FP0217 690 46 8
15 2 18 FP0218 690 46 8
16 2 19 FP0219 690 46 8
17 2 32 FP0232 660 44 6
18 2 33 FP0233 660 44 6
19 2 34 FP0234 690 46 6
20 2 35 FP0235 660 44 6
21 2 36 FP0236 660 44 6
22 2 37 FP0237 660 44 6
23 2 38 FP0238 690 46 6
24 2 39 FP0239 660 44 6
25 3 6 FP0306 660 44 6
26 3 7 FP0307 690 46 6
27 3 8 FP0308 690 46 6
28 3 9 FP0309 690 46 6
29 3 11 FP0311 690 46 8
30 3 12 FP0312 690 46 8
31 3 13 FP0313 690 46 8
32 3 14 FP0314 690 46 8

num looks per vehicle 1448
HH looks per vehicle 724
VV looks per vehicle 724
Total number of chips processed 21720

117

Table 11. Data Selected for Test with a Desired Depression Angle of 10 Degrees

Number Flight Pass Identifier Chips Looks per vehicle Desired dep angle

1 1 20 FP0120 660 44 10
2 1 22 FP0122 660 44 10
3 1 23 FP0123 690 46 10
4 1 25 FP0125 690 46 10
5 2 21 FP0221 660 44 10
6 2 23 FP0223 660 44 10
7 2 24 FP0224 660 44 10
8 2 26 FP0226 660 44 10
9 3 16 FP0316 660 44 10
10 3 18 FP0318 660 44 10
11 3 19 FP0319 660 44 10
12 3 21 FP0321 660 44 10
13 3 28 FP0328 690 46 10
14 3 29 FP0329 660 44 10
15 3 31 FP0331 660 44 10
16 3 32 FP0332 660 44 10
17 3 33 FP0333 660 44 10
18 3 34 FP0334 690 46 10
19 3 35 FP0335 690 46 10
20 3 36 FP0336 690 46 10

num looks per vehicle 892
HH looks per vehicle 446
VV looks per vehicle 446
Total number of chips processed 13380

118

Figure 49. A SAR chip of a target at a specific sensor-target orientation is pro-
cessed into an HRR profile. Features are derived from the profile by
taking the maximum value within 10 range bin windows.

199-210, and 211-222. The maximum value within each of the 10 bin windows is

saved as a feature. Thus dimensionality of each SAR chip is reduced from 256× 256

to 10.

The HRR feature data is then ordered by aspect angle. Each 10-dimensional

feature vector is derived from a target SAR chip and collected at a specific sensor-

target orientation. This orientation includes both the depression angle from the

airborne sensor to the ground vehicle and the relative aspect angle of the vehicle

to the sensor line-of-sight in the horizontal plane. Variation in the depression angle

separates the training and test data, and variation in the aspect angle determines the

target pose. Observing a sequence of ordered target poses mimics a moving target

or a stationary target and a moving sensor.

For a given target type the training data consists of 724 SAR chips processed

into 724 HRR feature vectors. The 10-dimensional feature vectors are ordered by

increasing aspect angle (from 1 to 360 degrees) and interpolated at 0.5 degree to

form the complete training feature data. Figure 50 shows the feature data from

119

the training data set for the 10 in-library target types with hostiles on the left and

friend/neutrals on the right.

Each subplot corresponds to a specific target type and displays the 720 in-

terpolated 10-D HRR feature vectors in order of increasing target azimuth (aspect

angle), where lighter colors correspond to greater magnitude and variation within a

target as azimuth changes is apparent. Also, differences between target types given

a 360 degree feature space representation are apparrent.

The time-series classifier used in this experiment acts on an ordered observation

sequence of HRR feature vectors. The sequence begins at a random starting azimuth

(aspect angle) and covers a subset of the 360 degree observations seen in Fig. 50.

Figure 51 shows feature data for the 5 out-of-library target types.

120

S
C

U
D

Z
il−

13
1

m
ed

S
M

E
R

C
H

H
M

M
W

V

S
A

−6
 R

ad
ar

M
11

3

T
−7

2

Z
il−

13
1

sm
al

l

S
A

−6
 T

E
L

Target azimuth
90 180 270 360

M
35

Target azimuth
90 180 270 360

Figure 50. HRR-based feature training data for 10 in-library target types.

121

S
A

−8
 T

Z
M

B
M

P
−1

B
T

R
−7

0
S

A
−1

3
S

A
−8

 T
E

L

Target azimuth
90 180 270 360

Figure 51. HRR-based feature test data for 5 out-of-library target types.

5.3 Classifiers

Section 5.2.1 describes how features are extracted from sensor data. Referring

to Fig. 48, the sensor data D is processed into feature data F which is then input to

a classifier c for labeling. This section describes the two types of classifiers used in

the ATR system, a HMM-based classifier and a template-based classifier.

5.3.1 HMM-based classifier

The HMM-based classifier follows closely the development of the multi-dimensional

Gaussian HMM of Section 3.4.4.3. For each target type, t ∈ {1, 2, 3, . . . , 10}, an

HMM λt is trained using sequences of 10-dimensional feature data. There are two

sets of HMMs in the classifier. One set classifies feature data from sensor 1 (HH-

polarized data) and is written λ1
t , while another classifier set operates on the VV-

polarized data of sensor 2, λ2
t . Thus the HMM-based ATR system under investigation

employs 20 HMMs operating on two streams of 10-dimensional time-series data.

122

A hidden Markov model λ is parameterized by the hidden Markov chain tran-

sition matrix A an observation distribution matrix B and an initial state probability

vector π. Design of an HMM includes several decisions regarding its topology. Of

critical importance is the number of hidden states in the Markov chain, called the

order of the HMM. Given S states, the transition matrix is S×S. Thus, the number

of parameters in the HMM increases exponentially with S.

The HMMs used in this experiment are of order 90. The state space is not

fully connected. To reduce the number of parameters and to more closely model the

relationship between observations sequenced by target aspect angle and the obser-

vation distributions of each hidden state, the HMM uses a left-right state space (see

Fig. 37). In a left-right model the Markov chain may remain in the same state or

advance to the adjacent state (to the right) at each discrete time step. The state

transition matrix A has entries on the main and first diagonal with zeros elsewhere,

reducing the non-zero parameters of A from S2 to 2S.

Another topology decision is the modeling of the observation space. The obser-

vation space for this experiment is the 10-dimensional HRR feature vector derived

from the HRR profile. A Gaussian HMM assumes the observation space is dis-

tributed multi-variate normal, where B1
t contains the parameter pair µ and Σ for

the multi-variate Gaussian associated with each hidden state for the HMM associ-

ated with target t and sensor 1 and where µ is a 10-d mean vector and Σ is the

10-d covariance matrix. Since the HMM has 90 hidden states, B1
t is a 2 × 90 array,

where the elements of the first column are the mean vector and covariance matrix

associated with multi-variate Gaussian observation space of the first hidden state

and where B2
t determines the observation distributions for the HMMs associated

with sensor 2 data.

123

Prior to training using the Baum-Welch re-estimation algorithm, each model

is given an initial parameterization such that

λs
t = (As

0, B
s
0, π),

where λs
t is the HMM for target t and sensor s, As

0 is the initial state transition

matrix, Bs
0 is the initial observation distribution array, and π is the initial state

distribution vector.

Initialization of the state transition matrix As
0 makes use of the left-right model

paradigm. The entries along the main and first diagonal are set to 0.5 and all other

entries are set to 0, where As
0 is a stochastic matrix with rows summing to 0.

The initial parameters for the observation distributions are also linked to the

left-right model. As shown in Fig. 52 each hidden state observation distribution

covers a window of target aspect angle. The elements of the initial observation

distribution array Bs
0 are found by determining the sample mean and covariance of

the feature vectors within the aspect window of each hidden state. Because each λs
t

has 90 states and the feature space includes observations from 1 to 360 degrees of

aspect angle, each state covers an aspect window of 4 degrees.

Given F s
t , the 10-dimensional feature data for target t and sensor s, the first

column of entries of the observation distribution array Bs
0 correspond to the mean

vector and covariance matrix of the feature data from aspect angle 1 through 4 and

are associated with the first hidden state

Bs
0(: , 1) =





µ1

Σ1



 =





mean(F s
t (: , 1:4))

cov(F s
t (: , 1:4))



 ,

124

Figure 52. Multi-dimensional observations in the feature space are linked to the
observation distributions of the hidden states. Note: features of dimen-
sion 7 are shown here; the DCS experiment uses features of dimension
10.

where the “:” notation indicates all elements of the specified dimension of the array.

The last column of Bs
0 is associated with the 90th hidden state and is

Bs
0(: , 90) =





µ90

Σ90



 =





mean(F s
t (: , 357:360))

cov(F s
t (: , 357:360))



 .

The initial state distribution allows the user to control the starting state of

the Markov chain. As described above, the observations are ordered by aspect angle

beginning at 1 degree and ending with 360 degrees. The observations are a function of

the aspect angle of the target; that is, when viewed from a certain aspect window, the

observations come from a specific state in the hidden process. Given an observation

sequence that begins at a target aspect angle of 1 degree, the model can be forced to

start in state 1 by setting the first element of π to 1 with zeros elsewhere. Therefore,

independent of target type t and sensor s the initial state distribution for the hidden

state space always begins in state 1,

πi =







1 for i = 1

0 otherwise
,

where i is the hidden state number.

125

With the HMMs initialized as described above, training ensues using the Baum-

Welch re-estimation algorithm of Sec. 2.1.3.6, whereby the initial parameters of the

HMMs are iteratively updated until a threshold is reached. Training records consist

of the entire 10-dimensional feature data F s
t for target t and sensor s. The train-

ing records begin with feature data at aspect angle 1, progress through the aspect

window, and end at aspect angle 360. Once trained, each HMM (λs
t) is ready to be

employed as a classifier in the experiment.

5.3.2 Template-based classifier

A competitor classifier using templates is described in this section. The classi-

fier follows Laine [15], Meyer [60], and Duda et al. [20] in using Mahalanobis distance

as a classification measure. Mahalanobis distance is

∆2 = (µ − x)TΣ−1(µ − x), (65)

where µ is the population mean, T denotes matrix transpose, Σ−1 is the inverse

covariance matrix of the population, and x is the test vector whose distance (squared)

from the population is ∆2.

Templates are formed using the 10-dimensional feature data for each target

t and each sensor s. The feature data is divided into 24 wedges of 15 degrees,

each covering the entire 360 degree aspect of the feature data. A sample mean and

covariance are taken from each of the 24 wedges forming a template array T s
t for

each target type t and each sensor s. Descriptive statistics for the wedges are used

to define the populations in the calculation of Mahalanobis distance.

The elements of the first column of the template array are determined by

finding the mean and covariance of the feature vectors within the first aspect wedge

126

(1 through 15 degrees of aspect angle)

T s
t (: , 1) =





µ1

Σ1



 =





mean(F s
t (: , 1:15))

cov(F s
t (: , 1:15))



 .

With the template arrays formed, each T s
t is ready to be employed as a classifier in

the experiment.

5.4 Methodology

At the heart of the extended CID optimization framework is the ATR sys-

tem which labels observation sequences of unknown target type with one of five

labels: target-of-the-day (TOD), other hostile (OH), friend/neutral (FN), out-of-

library (OOL), or non-declare (Non-dec). Table 9 lists the 15 target types used in

the experiment; 10 in-library types and 5 out-of-library types. This section describes

the process of classification given trained HMM and template classifiers.

An HMM-based classifier consists of 20 models λs
t , where t = 1, 2, . . . , 10 (in-

library target types) and s = 1, 2 (sensors). Given a target under test, each sensor

produces an observation sequence through a specific wedge of aspect angle. The

observation sequences are processed into sequences of features. Feature sequences

from sensor 1 are evaluated by the sensor 1 HMMs, λ1
t , and sensor 2 sequences are

evaluated by sensor 2 HMMs, λ2
t . Classifier outputs are post-processed according to

fusion rule and out-of-library discriminator before label thresholding occurs.

A similar process unfolds for the template-based classifier. The parameterized

template arrays T s
t are used to find a minimum Mahalanobis distance across target

type when given test data. Classifier outputs are post-processed according to a

fusion rule, an out-of-library assessment is made, and finally a label is assigned as a

function of ROC and rejection thresholding.

127

Figure 53. Experimental flowchart with HMM-based classifiers.

Figure 53 provides an experiment flowchart for the HMM case. The template

case is similar with the exception of the classifier training routine. The following

sections provide details of the classification methodology for the HMM-based and

template-based classifiers.

5.4.1 Test sequence generation

As described in Sec. 5.2, the DCS data are segregated into training and test

data as a function of depression angle. The data used to train the classifiers are

collected at a depression angle of 6 and 8 degrees, while the test data are collected

at 10 degrees. Test sequences are drawn from the ordered 10-dimensional feature

data resulting from processing SAR chips into HRR profiles and then applying the

maximum-value-within-bin-windows rule of Sec. 5.2.1. The same notation is used to

128

denote testing feature data as is used for training data, i.e., F s
t , but t = 1, 2, . . . , 15

indexes both in-library and out-of-library target types and s indexes sensors with

the understanding that while the notation is the same, the feature data is not.

One hundred test records are generated for each in-library target type (10)

and twenty test records are generated for each out-of-library type (5) for a total of

1100 test records. Let Y s
t be an array containing the test sequences from target

t = 1, 2, . . . , 15 and sensor s. Because the interest is in time-series classification,

each test record is an ordered sequence of feature observations. Each test record

begins at a randomly chosen aspect angle and includes a pre-determined number of

observations. For example, if the observation length is 10 degrees then each test

record y ∈ Y s
t begins at a randomly selected starting aspect angle and covers an

aspect window of 10 degrees. Thus each y is a subset of the full aspect feature data

for target t and sensor s. Each Y s
t contains test sequence data and is presented to

both HMM- and template-based classifiers for classification.

5.4.2 Classifier testing

Test records Y s
t are presented to the HMM-based and template-based classifiers

differently. The HMM-based classifiers λs
t are given the sequenced test data contained

in Y s
t . The methodology used in this experiment presents all 1100 sensor 1 test

records (Y 1
t for t = 1, 2, . . . , 15) to each sensor 1 HMM (λ1

t for t = 1, 2, . . . , 10). Each

record is evaluated by each HMM for a total of 11,000 evaluations. The process is

repeated for sensor 2 data.

Each test record is evaluated by 10 target-specific HMMs, producing 10 log-

likelihoods per the calculations of Sec. 2.1.3.4. Class membership can be assigned at

this point by choosing the model associated with the greatest log-likelihood among

the 10. In this experiment, assignment of class membership is delayed until classifier

output from both sensors is fused.

129

The template-based classifier is not a time-series classifier in the same sense as

the HMM. Instead of taking a sequence of observation data as input, the template-

based classifier takes a vector as input to the Mahalanobis distance calculation.

Given a test record y ∈ Y s
t that covers an aspect window of 10 degrees, the test

vector x is formed by finding the mean of y. As in the HMM case, there are 1100

test records (vectors) in the template case.

Each test vector is used to find the Mahalanobis distance from each 15 degree

aspect wedge of each target:

∆2 = (µ − x)TΣ−1(µ − x), (66)

where T s
t contains the µ and Σ for each aspect wedge of target t and sensor s.

The smallest Mahalanobis distance ∆min
t across the 24 aspect wedges for each

target t are collected for each test record. Class membership can be assigned at this

point by choosing the template associated with the smallest Mahalanobis distance

among the 10. In this experiment, assignment of class membership is delayed until

classifier output from both sensors is fused.

5.4.3 Classifier post-processing

Post-processing covers the steps from classifier output to classifier labeling.

Included in these steps are

• Conversion from classifier output to estimated posterior probabilities given a

test record

• Discrimination between in-library and out-of-library records given an estimated

posterior probability of membership in the 10 in-library target types

• Labeling of class as a function of the ROC and rejection thresholds

130

The post-processing steps are described for the simple case of a single sen-

sor without fusion. The HMM-based classifier system uses 10 models λ1
t t =

1, 2, . . . , 10, trained with feature data derived from sensor 1 (HH polarized SAR

chips). Given a test record y, the 10 models output 10 log-likelihoods. The log-

likelihoods are exponentiated and normalized to produce an estimated posterior

probability for each target type pp t for t = 1, 2, . . . , 10.

In the template-based classifier case, the min-distance results ∆min
t are mapped

to a [0, 1] interval using

zt =
1√
2π

e−1/2∆2
t (67)

and are then normalized across the 10 in-library target types into posterior estimates

pp t =
zt

∑10
i=1 zi

for t = 1, 2, . . . , 10. (68)

Whether derived from HMM or template outputs, the posterior estimates pp t

are processed by an in-library/out-of-library discriminator in the same fashion. The

purpose of the discriminator is to assign an 11th posterior as a function of the 10

posteriors contained in pp t. The 11th posterior determines the estimated probability

of membership in the out-of-library class.

Given the 10-D in-class posterior probability vector

xpost = [ppTOD ppOH1 ppOH2 · · · ppFN5],

the discrimination function sorts the posteriors in descending order, producing xord.

Assuming the classifier identifies in-library targets well, a small subset of the class

posteriors is significantly larger than the remaining posteriors. In-library/out-of-

library discrimination results from a threshold setting based on the sum of a subset

of ordered posteriors.

131

Two threshold parameters are chosen through a nearly blind sub-optimization

routine. The parameters are the number of ordered (largest to smallest) posteriors

over which to sum, θ
(1)
OOL, and the threshold θ

(2)
OOL. The parameter values are chosen to

ensure some minimum discrimination performance given in-library and out-of-library

records, hence the nearly blind description. For example, the sub-optimization rou-

tine may determine a threshold θ
(2)
OOL based on the sum of the second through sixth

ordered posteriors, θ
(1)
OOL = 6. Thus given xord for a sample test record, the discrim-

inator compares

xool =

θ
(1)
OOL
∑

i=2

xord(i),

the sum of the second through sixth ordered posteriors for the test record, with the

threshold θ
(2)
OOL and assigns the OOL posterior as a function of the distance from the

threshold

ppOOL =







0 if xool < θ
(2)
OOL

f(xool − θ
(2)
OOL) if xool ≥ θ

(2)
OOL

.

If xool < θ
(2)
OOL, then the record is from an in-library class and the posterior probability

for OOL is set to zero. If xool ≥ θ
(2)
OOL, then the record is potentially an out-of-library

record and the posterior probability for OOL is set to a monotonically-increasing

function of the distance from the threshold:

f(d) =
2

1 + e−10d
,

where d = xool − θ
(2)
OOL. Since xool ∈ [0, 9/10] and θ

(2)
OOL ∈ [0, 1], then d ∈ [0, 9/10]

and f maps d to [1, 1.999]. Finally ppOOL is concatenated to the end of the 10-

element estimated posterior vector xpost and normalized to produce the estimated

11-element posterior probability vector.

The final step is assigning one of five labels to the test record. The five la-

bels (TOD, OH, FN, OOL, or Non-declare) are assigned as a function of the 11-

dimensional posterior probability vector xpost and the threshold settings θROC and

132

Figure 54. Labeling process and measures of performance (MOP) for the DCS
experiment as a function of θROC and θREJ thresholds.

θREJ, which define the rejection region. Figure 54 provides a roadmap for the labeling

process.

As shown in the figure, the 11-dimensional posterior probability vector xpost

is converted to a four-class xclass and a two-class xhf posterior vector by summing

the posteriors related to the four true target classes (TOD, OH, FN, and OOL), and

finally separating the posteriors into two super-classes (H = TOD + OH, and FNO

= FN + OOL).

A rejection region is determined by θROC and θREJ. The two-class posterior

vector xhf is adjudicated with the rejection region, resulting in either a hostile dec-

laration, a friend/neutral/out-of-library declaration, or a “Non-declare” label. If a

hostile declaration is made, the associated four-class posterior vector xclass is adjudi-

cated to determine whether the test record is assigned a “TOD” or “OH” label. If a

friend/neutral/out-of-library declaration is made, the associated four-class posterior

133

vector xclass is adjudicated to determine whether the test record is assigned a “FN”

or “OOL” label.

Each test record is evaluated at a specific (θROC, θREJ) setting. A confusion

matrix is built using label versus truth for the test records at each threshold setting.

Performance measures are collected per the calculations of Sec. 4.3.2.

5.4.4 Fusion methods

The DCS experiment makes use of three different fusion methods to combine

the classifier outputs of the two sensors. The first two fusion methods, mean fusion

and neural network fusion, combine the classifier outputs prior to labeling. Rejection

region thresholding is applied to the fused 11-dimensional posterior vector xpost. In

the third case, label fusion, each classifier output is adjudicated by the rejection

region producing one of five labels (TOD, OH, FN, OOL, or Non-declare). Two sets

of labels are produced, one by classifier 1 and another by classifier 2. The labels are

fused according to a set of label rules that map all possible label pairs into a final

fused label. This section examines the three methods of fusion.

Figure 55 shows the process for the fusion methods with the simple mean fu-

sion rule on top. In the HMM case, given a test record, each set of sensor-specific

HMMs λs
t produces a 10-dimensional vector of log-likelihoods. The mean fusion

rule simply finds the mean of the two 10-dimensional log-likelihood vectors. The

10-dimensional mean vector is then exponentiated and normalized to produce a 10-

dimensional estimated posterior probability vector. After adding an 11th posterior

via the in-library/out-of-library discriminator, the posterior vector xclass is adjudi-

cated according to the rejection region thresholds, producing a final label.

In the case of template classifiers, the mean fusion rule is applied to the 10-

dimensional minimum Mahalanobis distance vectors ∆min
t associated with each sen-

sor. Here the mean of the two min-distance vectors is produced by the mean fusion

134

Figure 55. Fusion methods

rule. The mean vector is then mapped to the interval [0, 1] and normalized into a 10-

dimensional estimated posterior probability vector. After adding an 11th posterior

via the in-library/out-of-library discriminator, the posterior vector is adjudicated

according to the rejection region thresholds, producing a final label.

The neural network fusion method is similar to the mean fusion method. It

takes 10-dimensional classifier output from the two sensors and produces a single

fused 10-dimensional vector. Instead of a simple mean rule, the neural network

fusion rule employs a multi-layer perceptron neural network (MLPNN) to fuse the

two sets of inputs.

The MLPNN takes an input vector comprised of the two 10-dimensional clas-

sifier output vectors (either log-likelihood in the case of HMMs or min-distance for

the template case) concatenated to form a vector of length 20. The trained MLPNN

then maps the input vector to a 10-dimensional output vector whose entries are in

the range [0, 1].

135

The structure of the MLPNN used in the experiment has 20 input nodes, 40

hidden layer nodes, and 10 output nodes. A tansigmoid transfer function is used

for the hidden layer while a logsigmoid transfer function is used at the output layer.

The input data is pre-processed to the range [−1, 1].

Training of the MLPNN uses sequences from the training data set (6 and

8 degree depression angle) to produce output from the HMM and template-based

classifiers. These outputs are used as training input for the MLPNNs. The inputs

are targeted against the known true-class of the input vectors. MLPNN training

uses a gradient-descent method with momentum to determine network weights and

biases.

The final method is label fusion. As mentioned earlier, the label method com-

bines labels instead of classifier outputs. Figure 55 shows the label fusion process

and includes the set of label rules used in the experiment.

The threshold space used in the label fusion rule is quadratically larger than the

other fusion rules. This result follows from performing rejection region adjudication

for each classifier, which squares the number of threshold settings.

5.4.5 Prior knowledge of target aspect

One factor influencing classifier performance is prior knowledge of the target

aspect angle. In the case of the template-based classifier, prior knowledge of target

aspect angle reduces the number of aspect wedges involved in the minimum Ma-

halanobis distance calculation. If target aspect is known so that the target aspect

angle falls within a specific aspect wedge, then the min-distance calculation is re-

duced from 24 wedges per target to 1 wedge per target, decreasing the chance for

classifier error.

In Laine’s research [15], prior aspect knowledge is assumed to be within ± 22.5◦

due to target tracking information handoff to the ATR. Using this level of prior target

136

Table 12. Prior aspect distribution for HMM ATR

Number HMM States Aspect Wedge Half-Width States to cover ±22.5◦

90 4◦ per state ±2◦ 11 states (±22◦)
72 5◦ ±2.5◦ 9 states (±22.5◦)
60 6◦ ±3◦ 8 states (±24◦)
40 9◦ ±4.5◦ 5 states (±22.5◦)
30 12◦ ±6◦ 4 states (±24◦)
20 18◦ ±9◦ 3 states (±27◦)
10 36◦ ±18◦ 1 state (±18◦)

aspect information corresponds to 3 aspect wedges (3× 15◦ = 45◦) in the case of the

template-based classifier. Thus, when searching for the min-distance Mahalanobis

measurement, only the true wedge and its nearest neighbor on either side are used.

For the HMM-based classifier, ensuring a specific level of target aspect angle

knowledge is more problematic. The solution makes use of the relationship between

hidden states and aspect angle windows. Table 12 lists the number of states asso-

ciated with a ± 22.5◦ aspect window given that there are S states in the Markov

chain. As S increases, the number of states required to cover the aspect window

increases. For the case S = 90, 11 states are required to cover the aspect window.

Given a test sequence that begins at angle α and an HMM with 90 hidden states

such that each hidden state is associated with an aspect window of 4◦, α corresponds

to a specific aspect window and hence a specific hidden state called s∗. With perfect

prior knowledge of target aspect angle α, the HMM prior state distribution π used in

the evaluation of the test sequence sets π(s∗) = 1 and 0 elsewhere. With imperfect

knowledge, a uniform distribution is centered on π(s∗). For S = 90 and aspect

knowledge limited to ± 22.5◦ the uniform distribution covers 11 states centered on

π(s∗).

Analysis of the raw SAR image data reveals the ± 22.5◦ assumption to be

achievable through simple image analysis. Figure 56 shows the steps used in this

image processing analysis. The raw data is the collection of SAR chips of a specific

target type (T-72 tank), each collected at a specific sensor-target orientation. The

137

Figure 56. SAR chip image processing flowchart

SAR chips are ordered by target aspect angle, and each chip is processed according

to the following steps:

• The complex SAR chip is separated into its component real and imaginary

parts.

• Each sub-chip is filtered according to descriptive statics of the pixel values.

• A binary mask is created according to a boolean rule involving the filtered real

and imaginary sub-chips.

• The initial mask is manipulated using various image processing routines.

• A final binary mask is created.

• Principal component analysis (PCA) is performed on the binary mask to yield

a major axis of the mask which is used to estimate the target aspect angle.

• The true aspect angle is compared with the PCA-derived estimate.

138

The application of PCA to the pose-estimation problem begins with the binary

target mask B based on the 128×128 pixel complex SAR chip. Thus B is a 128×128

matrix with elements bij ∈ {0, 1}. Next, the row and column locations of the elements

of B where bij = 1 are placed in C, a n× 2 matrix, where n is the number of target

pixels in the target mask.

Principal component analysis is then performed on the two-dimensional data of

C. First, the column-wise means are subtracted from the data, leaving the centered

data C0. Next, the normalized covariance matrix Σ of C0 is determined. Then the

eigenvectors x of Σ are found as solutions of

(Σ − λI)x = 0,

where I is the identity matrix and λ are the eigenvalues associated with the eigen-

vectors x. Since C0 is two-dimensional, the eigenvector associated with the largest

eigenvalue is the major axis of target mask pixels. Intersecting the major axis with

the target mask centroid yields the estimated target aspect angle. Figure 57 shows

a sequence of six SAR chips with the PCA-estimated and true target aspect angles.

The processing steps are repeated for each available chip. Figure 58 shows the

distribution of errors from the aspect angle estimation experiment. A mean error of

11.34 is within the assumed ± 22.5◦ accuracy of the previous discussion.

Pose estimation in the context of ATR is not new [101, 102, 103, 104, 105]. Two

approaches exist in research relative to pose estimation. The first employs adaptive

classifiers that must be trained before implemention. An example of this type of

pose estimator is a neural network [101, 103]. The other uses image processing

techniques to segment the target, then applies various criteria to estimate the target

pose [102, 104, 105].

139

error = 8.78 error = 8.93 error = 10.00

error = 8.87 error = 10.72 error = 15.63

estimated angle
true angle

Figure 57. Sequence of six T-72 SAR chips from the MSTAR publicly-available
collection with estimated and true angles indicated.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Error (degrees)

Mean 11.34

Std dev 6.4

Figure 58. Distribution of errors when estimating target azimuth using principal
component analysis on a target mask. Here 231 samples of the T-72
main battle tank from the MSTAR data collection (17 deg depression
angle, target identification SN812) are used.

140

5.4.6 Target class prevalence

The DCS experiment uses 100 test records of each in-library target type. Since

there are 5 hostile target types and 5 friend/neutral target types, the ratio of hostile

to friend/neutral is 1:1. One hundred additional records are used to test the clas-

sifiers against out-of-library target types. The ratio of in-library to out-of-library

target records is 10:1. These class prior probabilities impact classifier performance

by simulating operation in a target-rich, target-sparse, or target-friendly equivalent

environment.

The impact on system performance of varying target class prevalence is ex-

plored in the experiment of Sec. 5.6.2.

5.4.7 Correlation of observations

The DCS experiment assumes that both sensors are located on the same obser-

vation platform. Indeed, the DCS data are collected from the same sensor using two

polarizations. For the purposes of the experiment, the data are presumed to have

come from two different sensors located on the same platform. Thus, the starting

aspect angle of an observation sequence from sensor 1 results in the same starting

aspect angle for sensor 2. The observation data from sensor 1 and sensor 2 are corre-

lated in that they observe the target from a shared orientation across the observation

window.

The impact of altering sensor location on system performance is explored in

the experiment of Sec. 5.6.2.

5.5 Extended CID optimization framework

This section presents the formulation for the extended CID optimization frame-

work used in the DCS experiment and defines the pertinent performance measures.

141

5.5.1 Formulation

The formulation follows closely that presented in Sec. 4.3.3, where x is a vector

of decision variables defined in the MP formulation.

Objective Function:

max
x∈X

TPR(x) =
Ptp(x)

num looks
maximizes true-positive rate (69)

Subject to:

Warfighter constraints

Ecrit < 0.1 upper bound on critical errors

Encrit < 0.2 upper bound on non-critical errors

Ptp > 0.85 lower bound on true-positive performance

Pdec > 0.5 lower bound on declaration performance

Pool > 0.35 lower bound on out-of-library performance

Fusion rule constraint

f
∑

i=1

Fi = 1 select a single fusion rule

where Fi =







1 if ith fusion rule used

0 otherwise

142

Sensor selection constraint

s
∑

j=1

Sj ≤ s select from available sensors

s
∑

j=1

Sj ≥ 1 select at least one sensor

where Sj =







1 if jth sensor used

0 otherwise

Threshold constraints

θij ≥ 0 lower threshold constraint

θij ≤ 1 upper threshold constraint

where θij is the decision threshold associ-
ated with fusion rule i and sensor j. The
decision threshold may be θROC or θREJ.

5.5.2 Performance Measures

5.5.2.1 True-positive

The estimate for the true-positive performance measure is the number of true

hostile records labeled “hostile” divided by the total number of true hostile records

declared. This definition accounts for the added rejection option and the resultant

“non-declare” label. The calculation is

Ptp = P (“TOD” ∪ “OH”|(TOD ∪ OH) ∩ declaration)

=
num(“TOD”|TOD + “TOD”|OH + “OH”|TOD + “OH”|OH)

num(TOD declared + OH declared)
. (70)

143

5.5.2.2 Critical error

Critical error is

P (Ecrit) = P

((

P (“TOD” ∩ FN) ∪ P (“OH” ∩ FN) ∪
P (“FN” ∩ TOD) ∪ P (“FN” ∩ OH)

)

| declaration

)

. (71)

Simplification of Eq. 71 makes use of Bayes’ rule, and depends on class preva-

lence as defined by class prior probabilities. Let P (TOD), P (OH), P (FN), and

P (OOL) be the prior probabilities of the four true target classes, and P (“TOD”),

P (“OH”), P (“FN”), P (“OOL”), P (“Non-declare”) be the unconditional system label

probabilities, then

P (TOD) + P (OH) + P (FN) + P (OOL) = 1 (72)

P (“TOD”) + P (“OH”) + P (“FN”) + P (“OOL”) + P (“Non-declare”) = 1. (73)

The simplified P (Ecrit) calculation is

P (Ecrit) =

(

P (“TOD”|FN)P (FN) + P (“OH”|FN)P (FN) +

P (“FN”|TOD)P (TOD) + P (“FN”|OH)P (OH)

)

1 − P (“Non-declare”)
, (74)

where P (“Non-declare”) is determined by the sum of the class-specific probability of

non-declaration

P (“Non-declare”|TOD)P (TOD) + P (“Non-declare”|OH)P (OH)

+ P (“Non-declare”|FN)P (FN) (75)

+ P (“Non-declare”|OOL)P (OOL).

144

5.5.2.3 Non-critical error

As with critical error, non-critical error calculation reverses the order of condi-

tioning seen in the true-positive calculation. Non-critical error calculation involves

vertical analysis of the confusion matrix.

Some flexibility exists in choosing which classification errors constitute non-

critical errors. For this experiment, non-critical errors consider cross-labeled hostile

targets (i.e., TOD labeled “OH” and OH labeled “TOD”) and mis-labeling true

classes as out-of-library:

P (Encrit) = P













P (“TOD”|OH) ∪ P (“OH”|TOD) ∪
P (“OOL”|TOD) ∪ P (“OOL”|OH) ∪

P (“OOL”|FN)






| declaration






. (76)

This result simplifies to the following non-critical error calculation incorporating

prior class probabilities

P (Encrit) =







P (“TOD”|OH)P (OH) + P (“OH”|TOD)P (TOD) +

P (“OOL”|TOD)P (TOD) + P (“OOL”|OH)P (OH) +

P (“OOL”|FN)P (FN)







1 − P (“Non-declare”)
, (77)

where P (“Non-declare”) is determined by the sum of the class-specific probability of

non-declaration.

5.5.2.4 Declaration

The declaration performance measure captures the percentage of test records

which the system labels with one of the true class labels. The complementary mea-

sure is the non-declaration performance measure. It tabulates the number of records

labeled “Non-declare” by the system:

145

Pdec = 1 − P (“Non-declare”)

= 1 −







P (“Non-declare”|TOD)P (TOD) + P (“Non-declare”|OH)P (OH)

+P (“Non-declare”|FN)P (FN)

+P (“Non-declare”|OOL)P (OOL)






. (78)

5.5.2.5 Out-of-library

The out-of-library performance measure is a true-positive labeling of “OOL”

given an OOL record using horizontal analysis of confusion matrix entries. The

estimate for the out-of-library performance measure is the number of true OOL

records labeled “OOL” divided by the total number of true OOL records declared:

Pool = P (“OOL”|OOL)

=
num(“OOL”|OOL)

num(OOL declared)
. (79)

Vertical analysis of out-of-library performance (mis-labeling of true classes as

out-of-library) is included in the non-critical error performance measure, but may

also be defined as a second type of non-critical error per warfighter preference.

5.6 Results

Results are in two sections. The first provides initial results for a specific set

of experimental parameters. The second explores results of a designed experiment

where the experimental parameters are varied.

146

5.6.1 Initial results

The experiment settings for the initial results include the design of the HMM

and template classifier described in Sec. 5.3, the data processing and methodology

of Sec. 5.2 and Sec. 5.4, and the CID framework of Sec. 5.5.

The classifier design, data preparation, and experimental methodology, place

the two competing classifiers on equal footing. Both classifiers use the same 10-

dimensional feature data extracted and interpolated from HRR profiles of sequenced

SAR target images to train on the 10-class problem. Test sequences for the two

classifier types are drawn from the same SAR data set collected at a depression

angle of 10 degrees (versus 6 and 8 degrees for the training set).

Test sequences contain the same number of observations and are considered

taken from co-located sensors. There are an equal number of hostile target test

records and friend/neutral test records. The ratio of hostile to friend/neutral to

out-of-library test records is 5:5:1.

Post-processing classifier output is handled in an equivalent manner. Fusion

rules are applied the same way, and the out-of-library discriminator functions are ap-

plied the same way for the HMM-based classifier as for the template-based classifier.

Labeling the test records as a function of the ROC and rejection region thresholds

is performed in the same way for both classifiers.

Both classifiers are evaluated within the same CID optimization framework.

The objective function is the same; it maximizes true-positive performance as a func-

tion of number of sensor observations. The warfighter constraints are held constant

for both classifiers. The minimum true-positive performance is 0.85, he maximum

critical error rate is 0.1, the maximum non-critical error rate is 0.2, the minimum

declaration rate is 0.5, and the minimum out-of-library performance rate is 0.35.

The formulas for determining these performance measures, as shown in Sec. 5.5.2,

are applied in the same manner to both types of classifiers.

147

Table 13. HMM- and template-based system performance comparison

Classifier Fusion Percent feasible Mean feasible value Opt val

tp crit n-crit dec ool joint tp crit n-crit dec ool joint
0.85 0.1 0.2 0.5 0.35 0.85

HMM Sensor 1 0.50 0.99 0.50 0.75 0.72 0.23 0.96 0.01 0.09 0.84 0.58 0.91 0.9723
Sensor 2 0.50 0.99 0.32 0.75 0.75 0.07 0.94 0.04 0.04 0.84 0.65 0.91 0.9556

Mean 0.50 0.99 0.50 0.75 0.75 0.25 0.96 0.02 0.09 0.84 0.64 0.91 0.9625
ANN 0.42 0.79 0.37 0.73 0.70 0.06 0.99 0.03 0.05 0.78 0.62 0.98 1.0000
Label 0.62 1.00 0.85 0.53 0.50 0.12 0.98 0.02 0.07 0.66 0.51 0.92 1.0000

Template Sensor 1 0.36 0.92 0.40 0.75 0.60 - 0.98 0.05 0.07 0.83 0.48 - -
Sensor 2 0.36 0.87 0.40 0.75 0.65 0.01 0.98 0.05 0.06 0.82 0.53 0.87 0.8893

Mean 0.38 0.95 0.40 0.75 0.68 0.06 0.98 0.03 0.06 0.83 0.56 0.91 0.9557
ANN 0.37 0.51 0.35 0.68 0.67 - 0.98 0.06 0.06 0.81 0.58 - -
Label 0.40 0.98 0.69 0.43 0.20 - 0.99 0.03 0.06 0.67 0.38 - -

The threshold space over which system performance is examined is the same

for both types of classifiers. The ROC threshold θROC varies from 0 to 1 in 0.05

increments, leading to 21 settings. The rejection region half-width threshold θREJ

varies from 0 to 0.45 in 0.05 increments, leading to 10 settings.

Results for the initial system comparison are shown in Table 13. Performance

results are shown for both types of classifiers, HMM-based on top and template-

based on bottom. Given a type of classifier, the results are broken down by fusion

methodology: first, no fusion methodology is chosen and sensor 1 and 2 operate

as independent classifiers, second, a simple mean fusion rule, third, neural network

fusion, and finally boolean fusion.

Performance is measured in two ways. First, a measure of classifier robustness

is used. Percent feasible refers to the percentage of settings in the threshold space

that result in feasible performance given a certain warfighter constraint. For example,

referring to Table 13, of the 21 × 10 = 210 threshold settings for (θROC, θREJ), 50%

result in feasible performance for the true-positive warfighter constraint (Ptp > 0.85)

in the case of Sensor 1 acting alone with an HMM-based classifier.

148

This measure of robustness is applied to each of the five warfighter constraints

(true-positive, critical error, non-critical error, declaration, and out-of-library) in ad-

dition to the jointly feasible measure of robustness. In the joint case, the robustness

measure captures the percentage of the threshold space that produces feasible points

across all five constraints simultaneously.

The second measure of performance is the mean feasible value. The mean

feasible value is the average value among feasible points for a given performance

measure. Again, referring to Table 13, the mean feasible true-positive performance

for Sensor 1 acting alone with an HMM-based classifier is 0.96. The boldface values

located directly underneath the performance measure labels are the right-hand side

of the warfighter performance constraints. The mean jointly-feasible performance

value is mean true-positive value of the jointly-feasible points. The optimal value

is the maximum true-positive value of the jointly-feasible points. If there are no

feasible points a ‘-’ is placed in the table at that location.

Figures 59 and 60 provide an additional method to analyze system perfor-

mance. Figure 59 shows system performance for an HMM-based classifier system

employing an artificial neural network (ANN) fusion rule. Figure 60 shows system

performance for a template-based classifier system using a similarly-trained ANN

fusion rule.

Each figure contains six subplots which detail system performance for the five

warfighter performance measures plus a sixth subplot which shows joint performance

across the five measures. The xy plane in each subplot indicate the ROC and reject

threshold settings. The surface above represents system performance for a given

warfighter performance measure, such as true-positive rate. Dots are used to indi-

cate the threshold coordinate pairs where performance met the warfighter constraint

(feasible points).

The sixth subplot shows the threshold coordinate pairs that are jointly-feasible

across the five measures and plots them on the true-positive surface. The maximum

149

Max val 1.0000

Figure 59. Performance surfaces determined by ROC threshold and reject thresh-
old settings with feasible points shown for true-positive rate (top left),
critical error rate (top middle), non-critical error rate (top right), out-
of-library rate (bottom left), and declaration rate (bottom middle).
Bottom right uses the true-positive surface to show jointly-feasible
points with optimal point indicated. The system uses an HMM-based
classifier, co-located sensors, and a neural network fusion method.

150

Figure 60. Performance surfaces for template-based classifier at same settings as
HMM-based classifier of Fig. 59. Note the lack of jointly-feasible solu-
tions in the bottom-right subplot.

value of the jointly-feasible points is also indicated. This value corresponds to the

optimal value in Table 13.

5.6.1.1 Interpretation

Table 13 provides a concise collection of performance measures used to compare

both classifier types and the methods used to fuse classifier outputs. To compare the

classifier types, a mean value across fusion method is shown for both the robustness

measures and the feasible values in Table 14. Clearly, the HMM-based classifier

is more robust in the threshold space than the template-based classifier. Indeed,

15% of the threshold space yields jointly-feasible operating points for the HMM-

based classifier, while this value is only 1% for the template-based classifier. When

comparing the systems based on mean feasible performance measure values, the lack

of jointly feasible operating points brings the template-based mean value down to

151

Table 14. Comparison of mean performance for HMM- and template-based sys-
tems

Classifier Percent feasible Mean feasible value Opt val

tp crit n-crit dec ool joint tp crit n-crit dec ool joint
0.85 0.1 0.2 0.5 0.35 0.85

HMM 0.51 0.95 0.51 0.70 0.68 0.15 0.96 0.02 0.07 0.79 0.60 0.93 0.9781

Template 0.37 0.85 0.45 0.67 0.56 0.01 0.98 0.04 0.06 0.79 0.50 0.36 0.3690

0.36, while the HMM classifier performs at 0.93. The mean optimal value also favors

the HMM-based classifier at 0.9781 versus 0.3690.

When comparing fusion methods within a classifier type, some trends are ob-

served. Referring to Table 13, the boolean fusion method provides better than

average robustness for true-positive, critical error, and non-critical error, but its ro-

bustness lags for declarations and out-of-library feasibility. The mean performance

values for the boolean case follow a similar trend, strong in true-positive, critical er-

ror, and non-critical error, but weak in declarations and out-of-library performance.

The performance surface plots shown in Figs. 59 and 60 capture results for the

artificial neural network (ANN) fusion method for the HMM-based and template-

based cases respectively. The plots reveal an HMM advantage in robustness in the

critical error performance measure (middle subplot, top row). The HMM surface is

lower (less critical error), resulting in more feasible points (79% versus 51% for the

template-based classifier). The reduced feasible critical error space for the template-

based classifier is the limiting factor in determining the lack of jointly-feasible oper-

ating points.

Two more plots similar to Figs. 59 and 60 are given to show performance

surfaces for the case of the simple mean fusion rule. Figure 61 shows surface plots

for the HMM-based case and the template-based case.

Comparing the plots of Fig. 61 with those of Figs. 59 and 60 yields several

observations. First, a comparison of the surfaces for the HMM-based neural fusion

152

Max val 0.9625

Max val 0.9557

Figure 61. Performance surfaces determined by ROC threshold and reject thresh-
old settings. HMM-based classifier surfaces are shown above the line,
and template-based surfaces are shown below the line. Both experi-
ments use co-located sensors and a simple mean fusion method.

153

and mean fusion shows more feasible space in the true-positive, critical error, non-

critical error, and jointly-feasible surfaces for the mean fusion method. However,

the neural fusion method has a perfect 1.0 optimal solution versus the mean fusion

value of 0.9625 due to a more robust feasible space in the out-of-library performance

surface. Further, the mean fusion method produces performance surfaces exhibiting

sharp steps rather than the smooth contours of the neural network fusion. This

result stems from the neural network mapping from classifier outputs to a [0,1]

posterior space, producing a more evenly distributed posterior vector compared to

the exponentiated log-likelihood of the mean fusion rule, which produces posteriors

grouped tightly near either 0 or 1.

The template-based mean fusion performance surfaces shown below the line in

Fig. 61 reveal an improved feasible space for the critical error measure. The more

robust critical error feasible space allows several jointly-feasible solutions with an

optimal value of 0.9557.

General trends evident no matter the classifier type or fusion method include

trade-offs between the performance measures as a function of location within the

threshold space. The best true-positive performance occurs in the northwest corner

of the threshold space (looking down at the xy plane with (0,0) at southwest corner).

This location corresponds to a low ROC threshold (aggressive hostile declaration)

and a high rejection region threshold (large rejection region - only highly confident

records are labeled).

The out-of-library performance surface rises where the true-positive surface

falls, in the northeast corner of the threshold space. The best out-of-library perfor-

mance occurs when the ROC threshold is high (conservative hostile declaration) and

the rejection region is large. At this point very few hostile records are declared and

the true-positive surface is at 0 in each of the plots.

Critical error peaks are at the southwest and southeast corners, where the

rejection region nears 0 (few non-declarations) and the ROC threshold is near 0

154

(aggressive hostile declaration) or 1 (conservative hostile declaration). The saddle

shape of the performance surface reveals whether the classifier-fusion pairing is robust

in the critical error sense. If the saddle is low and flat (HMM-mean fusion), then the

critical error performance is good. If the saddle is high with large sides (template-

neural fusion), then the performance is poor.

Declaration performance is a function of the rejection region; the larger the

rejection region, the greater the number of non-declarations, and hence the lower

the declaration rate. The largest rejection region occurs when the ROC threshold is

at 0.5 and the rejection region half-width threshold is at 0.45. This result yields a

rejection region width of 0.9 centered at 0.5. Most plots reach a minimum declaration

performance at this location in the threshold space. The HMM-mean fusion plot of

Fig. 61, however, shows a relatively large declaration rate (approximately 0.8) at

(θROC, θREJ) = (0.5, 0.45). This result is explained by the tight grouping of posteriors

at 0 and 1 (outside the rejection window) resulting from the exponentiation of large

negative log-likelihoods from the HMM classifiers.

Non-critical error incorporates cross-labeled hostile types (“TOD” for OH,

“OH” for TOD) as well as in-library targets mis-labeled as out-of-library records.

Thus, the non-critical error surface is influenced by the true-positive and out-of-

library performance measures. In the northwest corner of the threshold space, true-

positive performance is excellent and out-of-library performance is poor. Many hos-

tile records are labeled correctly and few records are labeled as out-of-library. It is

not surprising that the non-critical error surface is at or near 0 for this corner of the

threshold space. As true-positive performance falls and more out-of-library labels

are made, the non-critical error surface climbs rapidly.

155

Table 15. Designed experimental settings

Design parameter Settings Purpose

Classifier type HMM-based competing classifiers
template-based

Fusion method Sensor 1 explore fusion methodologies
Sensor 2
simple mean fusion
ANN fusion
label fusion

Sensor location Co-located sensors explore correlation of
Independent sensors observations

Observation length short explore effects of fewer/more
medium observations
long

Target class prior 10:1 4:1 2:1 explore target rich versus target
probabilities (H:F) 1:1 1:2 1:4 sparse operating environments

1:10

Prior target aspect ±22.5◦ explore effects of more
knowledge ±37.5◦ accurate initial target aspect

none knowledge

5.6.2 Designed experiment results

The results shown and discussed in Sec. 5.6.1 correspond to specific experiment

settings. These settings include the prior probabilities of the target classes, the

location of the sensors, the number of observations in the test sequences, and the

level of prior knowledge of target aspect angle. For the initial experiment the prior

probabilities of the target classes are held at 1:1 for the hostile to friend/neutral

classes. Sensors 1 and 2 are co-located, meaning they observe the target from the

same orientation. The initial experiment assumes prior knowledge of the target

aspect angle to within ±22.5◦.

This section describes a designed experiment by expanding the settings used

in the initial experiment. Table 15 shows the designed experimental settings.

156

Figure 62. Co-located sensors on a single platform sweep out an observation win-
dow θ beginning at α and ending at β = α + θ. Independent sensors
are located on separate platforms and sweep out observation windows
θ1 = θ2 beginning at different starting angles α1 6= α2.

As in the initial experiment, CID systems based on two types of classifier are

in competition. The multiple classifier systems are fused using the same set of fusion

methods as the initial experiment.

The designed experiment includes an additional sensor location setting. Orig-

inally, the sensors are co-located. The designed experiment allows the sensors to

be located on different platforms, which means that the sensor-to-target orienta-

tion is no longer directly correlated. Rather, the observation sequences may begin

a different target aspect angles for each sensor, which corresponds to two sensors

simultaneously observing the same target from two different orientations as shown

in Fig. 62.

The medium observation length is that used in the initial experiment. The

designed experiment uses a reduced observation sequence (short) and an extended

observation sequence (long) to explore the effect of more observations on classification

performance. Intuitively, more observations means more data on which the classifiers

can act, which should reduce error. However, the feature data is a noisy function

of aspect angle, and a longer observation sequence may introduce more target class

confusion compared to a short observation sequence.

157

The warfighter is interested in CID system performance across a variety of

operational conditions. One of these conditions is the prevalence of hostile targets

relative to friendly or neutral objects. The initial experiment held the prior proba-

bility of the hostile classes equal to the prior probability of the friend/neutral classes

(1:1). The designed experiment explores various H:F prior probability settings and

their effects on performance. Table 15 lists these settings; they vary from a target

dense environment (10:1) to a target sparse environment (1:10).

The last designed experimental parameter is the level of knowledge of the target

initial aspect angle. Knowing a priori the target’s pose relative to the sensor means

searching a smaller template space for a match, thus reducing error. The initial

setting was knowledge within ±22.5◦ of the targets true initial aspect angle. This

assumption was verified by the pose estimation calculation of Sec. 5.4.5. The initial

setting is supplemented with a degraded setting (±37.5◦) and a setting where no

prior knowledge of the target’s initial aspect is used.

5.6.2.1 Prior knowledge of target aspect

This section discusses the impact of prior knowledge of target aspect based

on results for the HMM-based and template-based classifier systems. Table 16 and

Table 17 capture performance measures for an HMM-based system and a template-

based system, respectively. The results are obtained from an experiment with co-

located sensors, a medium observation length, and equal prior probabilities for hostile

and friend/neutral classes.

Within the HMM-based results (Table 16) one sees a slight trend down in

measures of robustness as the prior knowledge of target aspect worsens. The HMM-

based system achieves jointly-feasible solutions in every case but for Sensor 2 acting

independently in the ±37.5◦ case. For the template-based system (Table 17), jointly-

feasible solutions exist in only 9 of 15 cases, and of these the number of jointly-feasible

158

Table 16. Performance comparison of prior aspect knowledge for HMM-based clas-
sifier, co-located sensors, medium observation length, and equal priors

Aspect Fusion Percent feasible Mean feasible value Opt val

tp crit n-crit dec ool joint tp crit n-crit dec ool joint
0.85 0.1 0.2 0.5 0.35 0.85

±22.5◦ Sensor 1 0.50 0.99 0.50 0.75 0.72 0.23 0.96 0.01 0.09 0.84 0.58 0.91 0.9723
Sensor 2 0.50 0.99 0.32 0.75 0.75 0.07 0.94 0.04 0.04 0.84 0.65 0.91 0.9556

Mean 0.50 0.99 0.50 0.75 0.75 0.25 0.96 0.02 0.09 0.84 0.64 0.91 0.9625
ANN 0.42 0.79 0.37 0.73 0.70 0.06 0.99 0.03 0.05 0.78 0.62 0.98 1.0000
Label 0.62 1.00 0.85 0.53 0.50 0.12 0.98 0.02 0.07 0.66 0.51 0.92 1.0000

±37.5◦ Sensor 1 0.50 0.99 0.55 0.75 0.69 0.20 0.96 0.01 0.08 0.84 0.53 0.92 0.9855
Sensor 2 0.32 0.99 0.55 0.75 0.68 - 0.98 0.04 0.06 0.85 0.57 - -

Mean 0.50 0.99 0.55 0.75 0.68 0.19 0.96 0.02 0.06 0.84 0.57 0.90 0.9014
ANN 0.42 0.81 0.42 0.74 0.65 0.05 0.98 0.04 0.06 0.79 0.57 0.90 0.9567
Label 0.56 1.00 0.80 0.53 0.46 0.09 0.97 0.01 0.05 0.66 0.47 0.89 0.9186

none Sensor 1 0.50 0.99 0.50 0.75 0.75 0.25 0.96 0.04 0.10 0.84 0.56 0.92 0.9533
Sensor 2 0.32 0.92 0.50 0.75 0.70 0.02 0.97 0.06 0.09 0.84 0.63 0.87 0.8773

Mean 0.50 0.99 0.32 0.75 0.75 0.07 0.96 0.04 0.06 0.83 0.61 0.93 0.9499
ANN 0.38 0.84 0.44 0.74 0.65 0.03 0.98 0.06 0.07 0.81 0.60 0.88 0.9057
Label 0.62 1.00 0.85 0.39 0.45 0.10 0.98 0.02 0.07 0.66 0.47 0.91 0.9357

points is quite small (fewer than 5 points) versus the larger number for the HMM

case (20 - 30 points).

Figure 63 singles out the case where Sensor 1 acts independently with no prior

target aspect information. From Tables 16 and 17, one sees the share an optimal

solution value of approximately 0.95, but the HMM-based classifier outperforms the

template-based classifier when considering the size of the feasible regions. Focusing

on the surface plots of Fig. 63, one sees that the two-tiered true-positive surface of

the HMM-based classifier affords a larger feasible region (and larger jointly-feasible

region) than the template-based classifier. The critical error surface in the HMM

case is markedly better than the template case. Combined, the differences between

the HMM and template case for the true-positive, critical error, and non-critical

error feasible regions restrict the template-based jointly-feasible space to a single

point while giving the HMM-based classifier a jointly-feasible region that is fully

one-quarter of the threshold space.

159

Max val 0.9533

Max val 0.9564

Figure 63. Performance surfaces determined by ROC threshold and reject thresh-
old settings. HMM-based classifier surfaces are shown above the line,
and template-based surfaces are shown below the line. Sensor 1 perfor-
mance is with equal priors, medium observation length, and no prior
knowledge of target aspect.

160

Table 17. Performance comparison of prior aspect knowledge for template-based
classifier, co-located sensors, medium observation length, and equal pri-
ors

Aspect Fusion Percent feasible Mean feasible value Opt val

tp crit n-crit dec ool joint tp crit n-crit dec ool joint
0.85 0.1 0.2 0.5 0.35 0.85

±22.5◦ Sensor 1 0.36 0.92 0.40 0.75 0.60 - 0.98 0.05 0.07 0.83 0.48 - -
Sensor 2 0.36 0.87 0.40 0.75 0.65 0.01 0.98 0.05 0.06 0.82 0.53 0.87 0.8893

Mean 0.38 0.95 0.40 0.75 0.68 0.06 0.98 0.03 0.06 0.83 0.56 0.91 0.9557
ANN 0.37 0.51 0.35 0.68 0.67 - 0.98 0.06 0.06 0.81 0.58 - -
Label 0.40 0.98 0.69 0.43 0.20 - 0.99 0.03 0.06 0.67 0.38 - -

±37.5◦ Sensor 1 0.37 0.73 0.34 0.75 0.69 0.02 0.98 0.06 0.08 0.81 0.51 0.94 0.9532
Sensor 2 0.35 0.83 0.40 0.73 0.66 0.02 0.98 0.06 0.06 0.83 0.56 0.87 0.8832

Mean 0.38 0.80 0.37 0.75 0.68 0.04 0.98 0.04 0.07 0.81 0.55 0.93 0.9594
ANN 0.38 0.59 0.34 0.70 0.69 0.00 0.99 0.06 0.08 0.79 0.67 0.97 0.9746
Label 0.40 0.84 0.99 0.39 0.02 - 0.98 0.03 0.09 0.64 0.36 - -

none Sensor 1 0.36 0.54 0.32 0.71 0.70 0.00 0.98 0.05 0.07 0.80 0.65 0.96 0.9564
Sensor 2 0.33 0.49 0.35 0.69 0.66 - 0.99 0.06 0.07 0.81 0.60 - -

Mean 0.36 0.59 0.34 0.70 0.69 0.00 0.98 0.05 0.06 0.81 0.62 0.95 0.9450
ANN 0.35 0.74 0.39 0.71 0.62 - 0.98 0.07 0.08 0.80 0.53 - -
Label 0.38 0.77 0.73 0.31 0.43 0.00 0.99 0.03 0.07 0.64 0.48 0.88 0.9363

5.6.2.2 Target class prior probabilities

The designed experiment explores the effects of target class prior probabilities

across a range of settings from target dense (10:1) to target sparse (1:10). Table 18

shows comparative results for an HMM-based system and a template-based system

using a single sensor (Sensor 1) at the long observation length setting with prior

knowledge of the target aspect to within ±22.5◦. Results span the settings for target

class prior probabilities.

One notices that the template-based system is relatively robust to changes

in the prior probabilities of the target classes. The HMM-based classifier performs

well in the target rich environment, but there is a break point moving from equal

priors (1:1) to target sparse (1:2) and beyond, where the non-critical feasibility space

shrinks by half and eliminates all jointly-feasible solutions.

161

Table 18. Performance comparisons across target class prior probability settings:
Sensor 1, long observation length, and ±22.5◦ target aspect knowledge

Priors Percent feasible Mean feasible value Opt val

(H:F) tp crit n-crit dec ool joint tp crit n-crit dec ool joint
0.85 0.1 0.2 0.5 0.35 0.85

HMM 10:1 0.50 1.00 0.50 0.74 0.75 0.25 0.97 0.01 0.04 0.83 0.66 0.94 0.9884
4:1 0.50 0.99 0.50 0.74 0.75 0.25 0.97 0.01 0.06 0.81 0.66 0.94 0.9884
2:1 0.50 0.99 0.50 0.78 0.75 0.25 0.97 0.01 0.07 0.80 0.66 0.94 0.9884
1:1 0.50 0.99 0.50 0.75 0.75 0.25 0.97 0.00 0.09 0.84 0.66 0.94 0.9884
1:2 0.50 0.99 0.25 0.75 0.75 - 0.97 0.00 0.01 0.89 0.66 - -
1:4 0.50 0.99 0.25 0.75 0.75 - 0.97 0.00 0.01 0.93 0.66 - -

1:10 0.50 1.00 0.25 0.75 0.75 - 0.97 0.01 0.01 0.96 0.66 - -

Template 10:1 0.36 0.85 0.39 0.76 0.65 0.01 0.99 0.03 0.06 0.75 0.53 0.95 0.9500
4:1 0.36 0.89 0.39 0.76 0.65 0.02 0.99 0.04 0.06 0.77 0.53 0.94 0.9500
2:1 0.36 0.92 0.40 0.76 0.65 0.02 0.99 0.04 0.06 0.79 0.53 0.94 0.9500
1:1 0.36 0.91 0.40 0.75 0.65 0.02 0.99 0.04 0.06 0.82 0.53 0.94 0.9500
1:2 0.36 0.88 0.40 0.75 0.65 0.02 0.99 0.03 0.06 0.86 0.53 0.94 0.9500
1:4 0.36 0.77 0.41 0.74 0.65 0.02 0.99 0.02 0.07 0.89 0.53 0.94 0.9500

1:10 0.36 0.72 0.42 0.74 0.65 0.02 0.99 0.02 0.07 0.92 0.53 0.94 0.9500

Figure 64 shows the performance surfaces for target rich (10:1) and target

sparse (1:10) environments for the HMM-based single sensor system operating with

long observation sequences and ±22.5◦ target aspect knowledge. One sees the en-

croachment of the infeasible portion of the non-critical error surface as the target

priors shift from 10:1 to 1:10. The combination of decreased declaration performance

and infeasible non-critical error surface removes all jointly-feasible solutions.

Relative changes in target class prior probabilities do not effect performance

measures based on horizontal analysis of confusion matrices. Horizontal analysis

focuses on the number of true class records that are correctly labeled given that a

declaration is made. Thus, in an initial experiment with equal class prior proba-

bilities and a classifier estimated true-positive performance for a given target class

i of 90%, then 90 of 100 class i records are correctly labeled given a declaration is

made on every record. In a follow-up experiment using a target sparse class prior

probability of 1:10, 9 of 10 records from class i are correctly labeled. In either case

the estimated true-positive performance for class i for the classifier is 90%. Evidence

162

Max val 0.9884

Figure 64. Performance surfaces determined by ROC threshold and reject thresh-
old settings. HMM-based classifier surfaces for a target dense environ-
ment (10:1) are above the line; surfaces for a target sparse environ-
ment (1:10) are below the line. Sensor 1 performance, long observation
length, and ±22.5◦ target aspect knowledge are used.

163

of this result can be seen in the top and bottom subplots of Fig. 64 for true-positive,

out-of-library, and jointly-feasible (true-positive) performance surfaces. Whether the

class prior probabilities are 10:1 (above the line) or 1:10 (below the line), the surface

shapes do not change for these horizontal analysis performance measures.

Vertical analysis of the confusion matrix measures the probability of correct la-

beling, or how often correct given that a class i label is applied by the classifier. The

critical error, non-critical error, and declaration performance measures use vertical

analysis of the confusion matrices and are influenced by the class prior probabili-

ties. Evidence of this influence can be seen in the different surface shapes for these

performance measures in Fig. 64.

5.6.2.3 Observation sequence length

The designed experiment explores the effects of changing observation sequence

length. The initial experiment uses a medium observation sequence length setting

of 5◦ of target azimuth. A short observation length setting uses 2◦ of target azimuth

and a long setting uses 10◦.

Table 19 shows performance results for the various observation length settings

for an HMM-based system with co-located sensors, equal class prior probabilities,

and no prior target aspect knowledge. Table 20 shows results at the same settings

but for a template-based CID system.

Table 19 shows a general improvement in robustness with increased observation

sequence length. This result can be seen in the percentage of the threshold space that

is jointly-feasible. For the short observation length setting, only the boolean fusion

method shows any jointly-feasible settings. At the medium setting, all methods show

jointly-feasible solutions. At the long setting, the size of the jointly-feasible space

increases (except for Sensor 2, which suffered a decrease in non-critical feasibility),

with best performance occurring for the boolean fusion method.

164

Table 19. Performance comparison of observation sequence lengths for HMM-
based classifier, co-located sensors, equal priors, and no prior target
aspect knowledge

Obs Length Fusion Percent feasible Mean feasible value Opt val

tp crit n-crit dec ool joint tp crit n-crit dec ool joint
0.85 0.1 0.2 0.5 0.35 0.85

Short Sensor 1 0.44 0.99 0.31 0.76 0.68 - 0.95 0.07 0.08 0.83 0.55 - -
Sensor 2 0.26 - 0.26 0.75 0.74 - 1.00 - 0.03 0.84 0.54 - -

Mean 0.50 0.74 0.25 0.78 0.75 - 0.96 0.07 0.02 0.81 0.51 - -
ANN 0.35 0.72 0.42 0.71 0.56 - 0.98 0.06 0.08 0.82 0.45 - -
Label 0.60 0.97 0.62 0.39 0.51 0.11 0.97 0.06 0.07 0.67 0.46 0.88 0.9431

Medium Sensor 1 0.50 0.99 0.50 0.75 0.75 0.25 0.96 0.04 0.10 0.84 0.56 0.92 0.9533
Sensor 2 0.32 0.92 0.50 0.75 0.70 0.02 0.97 0.06 0.09 0.84 0.63 0.87 0.8773

Mean 0.50 0.99 0.32 0.75 0.75 0.07 0.96 0.04 0.06 0.83 0.61 0.93 0.9499
ANN 0.38 0.84 0.44 0.74 0.65 0.03 0.98 0.06 0.07 0.81 0.60 0.88 0.9057
Label 0.62 1.00 0.85 0.39 0.45 0.10 0.98 0.02 0.07 0.66 0.47 0.91 0.9357

Long Sensor 1 0.50 0.99 0.55 0.75 0.75 0.25 0.95 0.02 0.08 0.84 0.65 0.90 0.9342
Sensor 2 0.26 0.99 0.25 0.75 0.75 - 1.00 0.06 0.01 0.85 0.61 - -

Mean 0.50 0.99 0.50 0.75 0.75 0.25 0.94 0.03 0.08 0.84 0.71 0.89 0.9394
ANN 0.39 0.71 0.47 0.74 0.64 0.02 0.98 0.05 0.07 0.81 0.54 0.91 0.9129
Label 0.56 0.99 0.85 0.53 0.54 0.17 0.96 0.02 0.07 0.64 0.45 0.89 0.9652

165

Table 20. Performance comparison of observation sequence lengths for template-
based classifier, co-located sensors, equal priors, and no prior target
aspect knowledge

Obs Length Fusion Percent feasible Mean feasible value Opt val

tp crit n-crit dec ool joint tp crit n-crit dec ool joint
0.85 0.1 0.2 0.5 0.35 0.85

Short Sensor 1 0.32 0.37 0.29 0.70 0.70 - 0.99 0.07 0.07 0.80 0.53 - -
Sensor 2 0.31 0.29 0.32 0.70 0.68 - 0.99 0.07 0.07 0.79 0.53 - -

Mean 0.32 0.49 0.30 0.70 0.69 - 0.99 0.07 0.07 0.79 0.54 - -
ANN 0.34 0.21 0.37 0.67 0.63 - 0.98 0.08 0.09 0.82 0.54 - -
Label 0.34 0.59 0.67 0.29 0.36 0.00 0.99 0.05 0.09 0.63 0.48 0.89 0.9246

Medium Sensor 1 0.36 0.54 0.32 0.71 0.70 0.00 0.98 0.05 0.07 0.80 0.65 0.96 0.9564
Sensor 2 0.33 0.49 0.35 0.69 0.66 - 0.99 0.06 0.07 0.81 0.60 - -

Mean 0.36 0.59 0.34 0.70 0.69 0.00 0.98 0.05 0.06 0.81 0.62 0.95 0.9450
ANN 0.35 0.74 0.39 0.71 0.62 - 0.98 0.07 0.08 0.80 0.53 - -
Label 0.38 0.77 0.73 0.31 0.43 0.00 0.99 0.03 0.07 0.64 0.48 0.88 0.9363

Long Sensor 1 0.36 0.54 0.37 0.69 0.63 - 0.99 0.05 0.09 0.83 0.52 - -
Sensor 2 0.35 0.43 0.31 0.70 0.67 - 0.98 0.06 0.10 0.79 0.54 - -

Mean 0.38 0.52 0.30 0.71 0.69 - 0.98 0.04 0.06 0.78 0.58 - -
ANN 0.35 0.57 0.44 0.71 0.60 - 0.98 0.08 0.09 0.82 0.53 - -
Label 0.39 0.75 0.85 0.31 0.18 - 0.98 0.03 0.09 0.65 0.38 - -

166

Table 20 shows a general improvement in robustness from short to medium

observation sequence length. Notably, the critical error feasibility space improves

and the out-of-library performance improves, yielding jointly-feasible solutions for

three of the five fusion methods.

At the long observation sequence length setting, the template-based classifier

performance fell slightly in several areas, reducing the feasible space in those perfor-

mance categories and removing all jointly-feasible solutions. The additional informa-

tion gained from a longer observation sequence did not benefit the template-based

classifier. The mean vector and covariance matrix employed in the template-based

classification methodology may have been corrupted by additional noise contained

in the longer observation sequences.

Figure 65 shows the performance surfaces for the cases of short observation

length and long observation length for the HMM-based co-located sensors using

the mean fusion method, equal class prior probabilities, and no prior target aspect

knowledge. Marked improvement in the critical error, non-critical error, and out-of-

library surfaces is evident.

The critical error surface drops several percentage points and becomes almost

entirely feasible. The non-critical error surface drops and increases its feasible re-

gion. Non-critical error is the limiting factor for the short observation length lack of

jointly-feasible solutions. The improvement in non-critical feasibility creates a siz-

able jointly-feasible space at the long observation length. Out-of-library performance

improves, but not the size of the feasible region.

5.6.2.4 Sensor correlation

The last area explored by the designed experiment is the location of sensors.

Two settings are used; the first has the sensors co-located on a single platform, the

second has the sensors located on separate platforms. The co-located sensors produce

167

Max val 0.9394

Figure 65. Performance surfaces determined by ROC threshold and reject thresh-
old settings. HMM-based classifier surfaces for short observation
lengths are above the line, and surfaces for long observation lengths are
shown below the line. Co-located sensors, mean fusion method, equal
target class priors, and no prior target aspect knowledge are used.

168

Table 21. Performance comparison of sensor location for template-based classifier,
equal priors, long observation length, and no prior target aspect knowl-
edge

Sensors Fusion Percent feasible Mean feasible value Opt val

tp crit n-crit dec ool joint tp crit n-crit dec ool joint
0.85 0.1 0.2 0.5 0.35 0.85

Co-located Sensor 1 0.36 0.54 0.37 0.69 0.63 - 0.99 0.05 0.09 0.83 0.52 - -
Sensor 2 0.35 0.43 0.31 0.70 0.67 - 0.98 0.06 0.10 0.79 0.54 - -

Mean 0.38 0.52 0.30 0.71 0.69 - 0.98 0.04 0.06 0.78 0.58 - -
ANN 0.35 0.57 0.44 0.71 0.60 - 0.98 0.08 0.09 0.82 0.53 - -
Label 0.39 0.75 0.85 0.31 0.18 - 0.98 0.03 0.09 0.65 0.38 - -

Independent Sensor 1 0.37 0.52 0.33 0.71 0.70 0.01 0.98 0.06 0.06 0.80 0.61 0.96 0.9644
Sensor 2 0.34 0.46 0.29 0.71 0.70 - 0.98 0.06 0.09 0.78 0.57 - -

Mean 0.36 0.63 0.34 0.70 0.70 0.01 0.98 0.05 0.08 0.80 0.60 0.96 0.9571
ANN 0.35 0.62 0.30 0.73 0.72 0.01 0.98 0.07 0.06 0.79 0.64 0.94 0.9433
Label 0.39 0.80 0.67 0.26 0.39 0.01 0.99 0.03 0.07 0.63 0.47 0.91 0.9831

observations that begin and end at shared target azimuth points. The independent

sensors produce observation sequences of the same aspect window size but that begin

and end at different target azimuth points (see Fig. 62).

Table 21 shows performance results for the two sensor location settings for a

template-based system with equal class prior probabilities, long observation length,

and no prior target aspect knowledge.

Table 21 indicates an improvement in Sensor 1 performance which leads to

jointly-feasible solutions for the fused methods (mean, ANN, and boolean) in the

independent sensor case. The slight improvement in the size of the declaration and

out-of-library feasible spaces for Sensor 2 translates into benefits when fused with

Sensor 1. Performance gains can be attributed to the additional information resulting

from viewing the target from two different orientations (independent sensors) versus

a single orientation (co-located platform). If a single platform presents the target at

an orientation where poor target discrimination information exists, then co-located

sensor performance is poor. Given the same orientation for one of two independent

169

sensors, the second orientation may mitigate the poor performance by supplementing

information with greater discriminatory power from the second orientation.

Figure 66 shows the performance surfaces for the cases of co-located sensors

and independent sensors for the HMM-based system using the mean fusion method,

equal class prior probabilities, no prior target aspect knowledge, and long observation

sequence length.

Slight improvements in critical error, non-critical error, and out-of-library fea-

sibility spaces lead to several jointly-feasible solutions. The additional information

provided by independent sensors results in slight enhancement of the fused feasible

regions, leading to jointly-feasible solutions where none existed for the co-located

sensor arrangement.

5.6.2.5 Label fusion sensor thresholds

The surface plots used in the previous sections showed performance of all of

the fusion methods except label fusion. The label fusion methodology used in both

the initial and designed experiments employs a set of ROC and rejection region

thresholds for each classifier. The labeling of test records occurs at each classifier,

whereupon the labels are fused via a set of label fusion rules. In the case of the other

fusion methods, classifier outputs are fused and then labeled with a single application

of the ROC and rejection region thresholds. Thus, the label fusion method has a four-

dimensional threshold space, versus the two-dimensional space of the other fusion

methods.

Figure 67 shows the location in threshold space for classifiers 1 and 2 of the

optimal solution(s) when the label fusion rule is applied in the case of co-located

sensors with an HMM-based system.

For the target dense environments (10:1, 4:1, 2:1, and 1:1), the optimal thresh-

old settings remain the same. Classifier 2 thresholds are held at two locations, while

170

Max val 0.9571

Figure 66. Performance surfaces determined by ROC threshold and reject thresh-
old settings. Template-based classifier surfaces for co-located sensors
are above the line, and surfaces for independent sensors are below the
line. Mean fusion method, equal target class priors, no prior target
aspect knowledge, and long observation length are used.

171

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

Figure 67. Optimal threshold settings for classifiers 1 and 2 when label fusion is
applied. Subplots correspond to class prevalence settings for hostile to
friend/neutral ratios of 10:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:10 respectively.
A HMM-based system with co-located sensors, long observation length,
and prior target aspect ±22.5◦ is used.

classifier 1 thresholds vary widely in the threshold space. In the target sparse envi-

ronments the optimal threshold settings change. Indeed, in the case where hostile to

friend/neutral prior probability is 1:2, the optimal threshold locations for classifiers

1 and 2 separate, indicating the label fusion rule’s flexibility allows each classifier to

perform well in a different area.

Figure 68 shows optimal threshold settings for the case where there is no prior

target aspect knowledge. Behavior similar to Fig. 67 is seen, where optimal threshold

settings for each classifier occur at different locations for the target dense settings.

A much smaller jointly-optimal solution space exists due to reduced classifier per-

formance resulting from lack of prior target aspect information.

Figure 69 shows optimal threshold settings for the case where classifiers 1

and 2 are located on different platforms. Classifiers 1 and 2 are combined with

template-based classifiers acting on long observation sequences with prior target

aspect knowledge of ±37.5◦. Again, the optimal threshold settings change as the

172

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

Figure 68. Optimal threshold settings for sensors 1 and 2 when label fusion is ap-
plied. Subplots correspond to class prevalence settings for hostile to
friend/neutral ratios of 10:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:10, respec-
tively. A HMM-based system with co-located sensors, long observation
length and no prior target aspect knowledge is used.

hostile to friend/neutral prior probability ratio changes. Also, optimal threshold

settings for classifier 1 and classifier 2 occur in different locations.

The label fusion rule provides the multiple classifier system with greater flexi-

bility in setting its thresholds compared to the other fusion methods. This flexibility

allows the system to optimize sensor performance independently. The information

lost in using a relatively simple set of label fusion rules is compensated by the flexi-

bility inherent in the larger threshold space. As a result, label fusion performance is

comparable to that of the other fusion methods.

5.6.2.6 Combined results

Figures 70- 75 provide performance results across all settings within the de-

signed experiment. The performance results are presented using grayscale: lighter

shades are better, white is best, and black is worst.

173

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

Figure 69. Optimal threshold settings for classifiers 1 and 2 when label fusion is
applied. Subplots correspond to class prevalence settings for hostile
to friend/neutral ratios of 10:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:10, re-
spectively. A template-based system with independent sensors, long
observation length and prior target aspect ±37.5◦ is used.

A single figure has two subplots. The top subplot shows performance results for

an HMM-based system. The bottom shows results from a template-based system.

Each pair of subplots show results from the same designed experimental settings

for sensor location and prior knowledge of target aspect. Performance results within

each subplot explore experimental settings of observation length, fusion method, and

target class prior probabilities.

Using a single subplot as an example and starting down the left-hand side,

five different fusion methods are apparent: Sensor 1 acting independently, Sensor 2

acting independently, Sensors 1 and 2 fused with a mean fusion rule, Sensors 1 and

2 fused with a neural network fusion rule, and Sensors 1 and 2 fused using label

fusion. Within each of these fusion categories, performance is given by target class

prior probabilities, which are listed on the right-hand side of the subplot and cover

the settings 10:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:10 for hostile to friend/neutral target

class ratios.

174

Across the top of the subplot are the three observation length settings: short,

medium, and long. Within each observation length setting performance is captured

using the same criteria as the tables used earlier. These criteria include measures of

robustness for each performance category (labeled “robust” at the bottom), the mean

feasible values for each performance category, and the optimal jointly-feasible value.

The performance categories include true-positive, critical error, non-critical error,

declaration, out-of-library, and joint performance. These categories are repeated for

each observation length setting.

Figure 70 shows results for HMM-based (top) and template-based (bottom)

systems where the sensors are co-located and prior knowledge of target aspect is

±22.5◦. The best performance at this setting is the HMM-based system with neu-

ral network fusion. As observation length increases (reading from left to right),

jointly-feasible performance improves, attaining optimal solutions for nearly all class

prevalence settings.

175

Figure 70. Combined results for HMM-based (top) and template-based (bottom)
classifiers with co-located sensors and ±22.5◦ prior target aspect knowl-
edge

176

Figure 71 shows results for HMM-based (top) and template-based (bottom)

systems where the sensors are co-located and prior knowledge of target aspect is

±37.5◦. The degraded prior aspect knowledge affects the HMM-based system at

short observation lengths as evidenced by the large black jointly-feasible regions for

Sensor 1, Sensor 2, and label fusion. As observation length increases, the HMM-

based classifier system overcomes the degraded prior target aspect knowledge. With

neural network fusion at the longest observation length setting, performance is near

perfect at all but two class prevalence settings.

The template-based system fared better than the HMM system at the short

observation length setting. However, at the long observation length setting only a

few combinations yield jointly-feasible solutions. In both the HMM and template

cases the neural network fusion method outperformed its competitors.

177

Figure 71. Combined results for HMM-based (top) and template-based (bottom)
classifiers with co-located sensors and ±37.5◦ prior target aspect knowl-
edge

178

Figure 72 shows results for HMM-based (top) and template-based (bottom)

systems where the sensors are co-located with no prior knowledge of target aspect.

The degraded prior aspect knowledge affects the template-based classifier system

more dramatically than in Fig. 71. The HMM-based system provides good perfor-

mance at the medium and long observation length settings with label fusion proving

to be best.

179

Figure 72. Combined results for HMM-based (top) and template-based (bottom)
classifiers with co-located sensors and no prior target aspect knowledge

180

Figure 73 shows results for HMM-based (top) and template-based (bottom)

systems where the sensors are located on different platforms with prior knowledge

of target aspect ±22.5◦. Independent sensors improve feasibility at the short and

medium observation length settings for the HMM-based system compared to Fig. 70,

but reduced feasibility for the neural network fusion method, which had been the

best performer.

181

Figure 73. Combined results for HMM-based (top) and template-based (bottom)
classifiers with independent sensors and ±22.5◦ prior target aspect
knowledge

182

Figure 74 shows results for HMM-based (top) and template-based (bottom)

systems where the sensors are located on different platforms with prior knowledge

of target aspect ±37.5◦. Independent sensor improved performance levels over those

shown in Fig. 71, but no significant changes in feasibility are observed.

183

Figure 74. Combined results for HMM-based (top) and template-based (bottom)
classifiers with independent sensors and ±37.5◦ prior target aspect
knowledge

184

Figure 75 shows results for HMM-based (top) and template-based (bottom)

systems where the sensors are located on different platforms with no prior knowledge

of target aspect. Independent sensor improved performance levels over those shown

in Fig. 72. Significant improvement in jointly-feasible space occurred in the template-

based system at the long observation length setting

185

Figure 75. Combined results for HMM-based (top) and template-based (bottom)
classifiers with independent sensors and no prior target aspect knowl-
edge

186

A summary of the combined results notes the broad advantage in robustness

and performance measure values held by the HMM-based system over the template-

based system across experimental settings. The combination of HMM-based classi-

fiers and neural fusion produced the best results when sensors were co-located and

with some prior knowledge of target aspect available. With no prior aspect knowl-

edge the boolean fusion method performed best: its ability to set sensor thresholds

independently overcame its simple set of label fusion rules. With independent sen-

sors, the HMM-based system again proved to be best.

187

6. Contributions and Future Research

This chapter describes research contributions and suggests future research.

6.1 Research contributions

Contributions from this dissertation research are in the following areas:

• Development of an HMM-based time series classifier

• Extension of Laine’s CID optimization framework to include out-of-library per-

formance

• Development of an out-of-library classification methodology

• Development of a target pose-estimation methodology using principal compo-

nent analysis

• Application of the extended framework to a multi-class ATR experiment that

competes the HMM-based classifier against a template-based classifier

• Development of the framework to allow classifiers to make reject, or not declare,

decisions, to test classifiers against out-of-library records, and to measure the

performance of three different fusion methods

• Development of evidence for independent optimal threshold settings for label

fusion

6.1.1 Literature review

A comprehensive review of the literature covers the theory and development

of hidden Markov models. The application of HMMs to ATR problems using high

range-resolution radar signatures as features is described in Sec. 2.1.3.10, and it

reveals limitations in treatment of prior knowledge of target aspect, inclusion of a

188

rejection option, and performance considering out-of-library targets. Other research

areas covered in the literature review include model complexity in HMMs, multiple

classifier fusion, rejection theory, and Laine’s CID optimization framework.

6.1.2 Development of HMM-based classifier

Chapter 3 describes the development of an HMM-based time series classifier.

Ultimately, the methodology results in a multi-dimensional Gaussian HMM operat-

ing on HRR-derived feature data. The model takes as input a sequence of feature

data ordered by target aspect angle. The model develops relationships between the

observation distribution associated with each hidden state and the signature of the

target within a range of aspect angles.

6.1.3 Extended CID framework

Chapter 4 extends Laine’s CID optimization framework by including an out-

of-library performance measure. The framework retains the desired characteristic of

allowing trade-off analysis without explicit classification error costs.

6.1.4 Development of out-of-library methodology

Section 4.3.2.5 describes a methodology whereby a classifier assigns an esti-

mated posterior probability of out-of-library class membership to a test record. This

methodology is implemented as a post-processing step after the classifier trained on

in-library classes has adjudicated the test record. The methodology produces the

estimated out-of-library posterior probability as a function of the in-library class

posterior probabilities produced by the classifier. At some experimental settings the

out-of-library discriminator correctly identified 60% of out-of-library records.

189

Figure 76. SAR chip image processing steps lead to a target mask that is evaluated
using principal component analysis, resulting in an estimated target
pose.

6.1.5 Development of target pose estimator

Section 5.4.5 develops an on-line method to estimate target aspect angle based

on a target mask of a SAR image. The method uses principal component analysis to

find the major axis of the target mask. An initial experiment found pose estimation

error to be roughly 11◦. Figure 76 highlights the steps taken to estimate target pose.

6.1.6 Application of extended CID framework

Chapter 5 details the application of the extended CID framework to an ATR

experiment using DCS radar SAR data. The experiment competes an HMM-based

system (a derivative of the Chapter 3 system) against a template-based classifier.

The extended framework allows the systems to be compared inclusive of warfighter

constraints, rejection option, and out-of-library target records. Results show that the

HMM-based system provides the warfighter with better and more robust performance

across a variety of experiment settings, including fusion rule, hostile/friend class

190

Figure 77. Differential results across experimental settings with co-located sensors
and no prior target aspect knowledge. White portions indicate better
performance for HMM-based classifier, black portions indicate better
performance for template-based classifier, and gray indicates equal per-
formance.

prevalence, observation length, and prior knowledge of target aspect angle. Figure 77

shows that the HMM-based classifier (white) is preferred over the template-based

classifier (black) at a majority of experimental settings. Also, the size of feasible

region in the threshold space is shown to provide a simple comparative measure

of classifier robustness, and performance surfaces are shown to convey performance

information and trade-space efficiently.

6.1.7 Evidence of independent threshold setting in fused system

Laine’s research [15] demonstrates that independent thresholding for each clas-

sifier prior to applying label fusion allows improved performance over the applica-

tion of a single threshold after the fusion of classifier outputs. Section 5.6.2.5 shows

that independent thresholding yields optimal thresholds in different locations of the

191

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Rejection threshold half−width, θ
REJ

R
O

C
 th

re
sh

ol
d,

θ R

O
C

Sensor 1
Sensor 2

Figure 78. Optimal threshold settings for classifiers 1 and 2 when label fusion is
applied. Note settings occur in different locations for each classifier.

threshold space for each classifier. This added flexibility allows the label fusion

method to combine a classifier that performs well in one performance measure but

poorly elsewhere with a second classifier whose threshold setting allows it to perform

well in another area. Figure 78 shows an example of the optimal threshold settings

for two classifiers.

6.2 Future research

Two areas for future research follow.

1. This research chooses an arbitrary feature set from HRR signatures of the tar-

gets. The literature does not identify a method for determining an appropriate

number of features to extract from HRR profiles. The number of scattering

centers is most likely related to target type and signal-to-noise ratio in the SAR

image. Thus a feature saliency methodology could be developed to choose HRR

features.

2. Converting the output of multiple HMM classifiers to class posterior prob-

abilities allows the implementation of a Bayesian network that could learn a

Bayes-optimal combination of classifiers with respect to classification accuracy.

192

This concept could also be implemented at the feature level to determine an

optimal weighting of the selected features used in classification.

193

Appendix A. List of Abbreviations

ACC/DRSA Air Combat Command’s CID issues branch

AFDD Air Force Doctrine Document

AFIT Air Force Institute of Technology

AFPAM Air Force pamphlet

AFRL Air Force Research Laboratory

AIC Akaike’s information criterion

ANN Artificial neural network

ATD/R Automatic target detection and recognition

ATR Automatic target recognition

BIC Bayesian information criterion

CAD Computer-aided design

CID Combat identification

DAI-DAO Data in – data out fusion

DARPA Defense Advanced Research Projects Agency

DEI-DEO Decision in – decision out fusion

DNA Deoxyribonucleic acid

DTMC Discrete time Markov chain

EM Expectation maximization

EOC Extended operating conditions

FEI-DEO Features in – decision out fusion

FEI-FEO Features in – features out fusion

FFT Fast Fourier transform

FLIR Forward-looking infrared

FN Friend/neutral

FOS Family of systems

HMM Hidden Markov model

HRR High range-resolution radar

ISR Intelligence surveillance and reconnaissance

JFC Joint Forces Commander

JP Joint Publication

194

MCS Multiple classifier system

MLE Maximum likelihood estimator

MLPNN Multi-layer perceptron neural network

MP Mathematical programming

MSTAR Moving and stationary target acquisition and recognition

OH Other hostile

OOL Out-of-library

PCA Principal component analysis

PCS Probability of correct selection

ROC Receiver operating characteristic

ROI Region of interest

SAR Synthetic aperture radar

SNL Sandia National Laboratory

TOD Target of the day

TPR True-positive rate

UCSC University of California at Santa Cruz

USAF United States Air Force

195

Appendix B. MATLAB code

B.1 run script.m

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% this script will perform multiple runs of the HMM DCS Project

clear

close all

% disable warning messages

warning off all

% add path to m-files from HMM Toolbox

addpath ([pwd, ’\tools’])

%%%%%%%%%%%%%%%%%%%

% Data Structures %

%%%%%%%%%%%%%%%%%%%

ghmm_results = struct(’log_lik’,[]);

% structure to save log-likelihoods at each experiment setting

% ’ghmm_results(target,num_states,seq_length,feature_set).log_lik = ...

% [test records, label class]’

ool_results = struct(’log_lik’,[]);

% out of library test results

% ’ool_results(target,num_states,seq_length,feature_set).log_lik = ...

% [test records, label class]’

sensor_post = struct(’post’,[],’ool_post’,[]);

% structure to save posteriors from each sensor (i.e. feature set)

% at each experiment setting

% ’sensor_post(target,num_states,seq_length,feature_set).post = ...

% [test records, label class]’

loglik_post = struct(’post’,[],’ool_post’,[]);

% structure to save posteriors from mean loglik fused sensors at

% each experiment setting

% ’loglik_post(data_class,num_states,seq_length).post = ...

% [records label class]’

ann_post = struct(’post’,[],’ool_post’,[]);

% structure to save posteriors from ann fused sensors at

% each experiment setting

% ’ann_post(num_states,seq_length).post = ...

% [records label class]’

save([pwd,’\output’],’ghmm_results’,’ool_results’,’sensor_post’,...

’loglik_post’,’ann_post’)

init_hmm = struct(’prior’,[],’trans’,[],’mu’,[],’sigma’,[]);

196

% structure to save init ghmm parameters at each experiment setting

% ’init_hmm(target,num_states,feature_set).prior = []’

train_hmm = struct(’prior’,[],’trans’,[],’mu’,[],’sigma’,[]);

% structure to save trained ghmm parameters at each experiment setting

% ’train_hmm(target,num_states,feature_set).prior = []’

ann = struct(’net’,[]);

% structure to save trained ann fusor

% ’ann(num_states,seq_length).net’

ann_data = struct(’log_lik’,[],’post’,[]);

% data structure to hold training records, log-liks, and posteriors

% ’ann_data(target,feature_set,seq_length).log_lik = [record targetHMM]

% .post = [record targetHMM]’

save([pwd,’\param’],’init_hmm’,’train_hmm’,’ann’,’ann_data’);

%%%%%%%%%%%%

% Settings %

%%%%%%%%%%%%

settings = struct(’num_states’,[],’test_length’,[],...

’feature_sets’,[],’feature_num’,[],’targets’,[]);

save([pwd,’\data’],’settings’)

% ’-.num_states’ is the number of hidden states in the hidden

% Markov model; defines the complexity of the model.

% ’-.test_length’ is the number of observation in a single test record;

% here we have various settings, all less than or equal to the training

% sequence length.

% ’-.feature_sets’ name (and number) of feature sets in experiment

% ’-.feature_num’ number of features in each feature set

% ’-.targets’ name (and number) of target classes in experiment

settings.num_states = [10 20 30 40 60 72 90];

settings.test_length = [4 10 20];

settings.feature_sets = {’HH’,’VV’};

settings.feature_num = [10 10];

% order the target list with 1 TOD, 4 OH, and 5 FN

settings.targets = {’target_1’,’target_2’,’target_5’,’target_10’,...

’target_13’,’target_6’,’target_7’,’target_11’,...

’target_12’,’target_15’};

save([pwd,’\data’],’settings’,’-append’)

%%%%%%%%%%%%%

% Scripting %

%%%%%%%%%%%%%

for i = 1:size(settings.num_states,2) % hidden state loop

state = settings.num_states(i);

% clocking mechanism

tic

disp(’ ’)

197

disp([’begin train/test scripting at ’,int2str(state),...

’ states’])

% ’build_train’ builds training seq across 360 deg

build_train

% ’train_HMM’ trains hmms for each target type and each feature set at

% the given experiment settings

train_HMM(state)

t = toc;

disp([’trained at ’,int2str(state),’ states. Time = ’,...

num2str(t/60),’ mins’])

for k = 1:size(settings.test_length,2) % sequence length loop

seq_length = settings.test_length(k);

% clocking mechanism

tic

% ’build_trainANN’ builds train records for ANN fusor training

build_trainANN(state, seq_length)

% ’train_ANN’ trains ANN fuser using HMM outputs given sequences

% from training set

train_ANN(state, seq_length)

% ’build_test’ builds 100 test records of each target type for

% each feature set. the initial aspect angle of the records is

% chosen randomly and spans an interval of angles defined by

% ’seq_length’.

build_test(state, seq_length)

% ’test_HMM’ takes the test records and evaluates them using

% the trained HMMs.

test_HMM(state, seq_length)

% fuse HMM outputs using trained ANNs

test_ANN(state, seq_length)

% test trained HMMs using out-of-library records, fuse using ANN

% fuser, record results

test_outlibrary(state, seq_length)

t = toc;

disp([’tested at sequence length ’,int2str(seq_length),...

’. Time = ’,num2str(t/60),’ mins’])

end

end

198

B.2 build train.m

function build_train

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% ’build_train’ builds the training data sets for the HMMs

% load settings

load([pwd,’\data’],’settings’)

% settings.feature_sets = {’HH’,’VV’};

% settings.targets = {’target_1’,’target_2’,’target_5’,’target_10’,...

% ’target_13’,’target_6’,’target_7’,’target_11’,...

% ’target_12’,’target_15’};

% create data structure to store training records

train_records = struct(’data’,[]);

% train_records(target,feature_set).data = [target exemplar];

% build training sequence across 360 degrees of aspect angle

for target = 1:length(settings.targets) % num targets

for feature_set = 1:length(settings.feature_sets) % num feature sets

% load the appropriate feature set/target data into structure

% called ’data’

load_str = [pwd,’\trial8_data\’,’train_’,...

settings.feature_sets{feature_set}];

target_str = [settings.targets{target},’_’,...

settings.feature_sets{feature_set}];

data = load(load_str,target_str);

eval([’data = data.’,settings.targets{target},’_’,...

settings.feature_sets{feature_set},’;’])

for num_exemplar = 1:1%size(data,2) for case of multiple exemplars

temp_data = data(num_exemplar).feature;

train_records(target,feature_set).data = temp_data;

end % end exemplar loop

end % end feature set loop

end % end target set loop

save([pwd,’\data’],’train_records’,’-append’)

199

B.3 train HMM.m

function train_HMM(num_states)

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% ’train_HMM’ trains the HMMs used in the classification scheme.

% load the training data sequences and settings

load ([pwd,’\data’],’train_records’,’settings’)

% ’train_records(target,feat_set).data = [feature_dim obs];’

% settings.feature_sets = {’HH’,’VV’};

% settings.feature_num = [10 10];

% settings.targets = {’target_1’,’target_2’,’target_5’,’target_10’,...

% ’target_13’,’target_6’,’target_7’,’target_11’,...

% ’target_12’,’target_15’};

% load the ghmm parameter data structures

load ([pwd,’\param’],’init_hmm’,’train_hmm’)

% set aspect window bins according to number of hidden states

binwidth = round((360 - 1) ./ num_states);

xx = binwidth*(0:num_states); xx(1) = 1;

xx(length(xx)) = 360;

% create initial HMM matricies: the prior, the state transition

% and mu and sigma of observation distributions

for target = 1:length(settings.targets) % num targets

for feature_set = 1:length(settings.feature_sets) % num feature sets

% force training sequence to begin in state 1

init_hmm(target,num_states,feature_set).prior = ...

zeros(num_states,1);

init_hmm(target,num_states,feature_set).prior(1,1) = 1;

% create bi-diagonal hidden state structure

init_hmm(target,num_states,feature_set).trans = ...

zeros(num_states);

for i = 1:num_states

fwd_state = mod(i, num_states) + 1;

init_hmm(target,num_states,feature_set).trans(i,fwd_state) = 0.5;

init_hmm(target,num_states,feature_set).trans(i,i) = 0.5;

end

temp = train_records(target,feature_set).data;

% initialize mu and sigma by averageing and taking std of bin’d

% feature observations (determined by number of states)

200

for i = 1:num_states

init_hmm(target,num_states,feature_set).mu(:,i) = ...

mean(temp(:,(xx(i):xx(i+1))),2);

init_hmm(target,num_states,feature_set).sigma(:,:,i) = ...

diag(std(temp(:,(xx(i):xx(i+1))),0,2));

end

end % end feature set loop

end % end target loop

% train the hmms, one per target per feature set

for target = 1:length(settings.targets) % num targets

for feature_set = 1:length(settings.feature_sets) % num feature sets

[LL, train_hmm(target,num_states,feature_set).prior,...

train_hmm(target,num_states,feature_set).trans,...

train_hmm(target,num_states,feature_set).mu,...

train_hmm(target,num_states,feature_set).sigma,...

mu_history] = ...

learn_ghmm(num2cell(train_records(target,feature_set).data,[1 2]),...

init_hmm(target,num_states,feature_set).prior,...

init_hmm(target,num_states,feature_set).trans,...

init_hmm(target,num_states,feature_set).mu,...

init_hmm(target,num_states,feature_set).sigma,...

’max_iter’,10,’thresh’,1e-5,’verbose’,0,’cov_type’,’diag’);

end % end feature set loop

end % end target loop

save([pwd,’\param’],’init_hmm’,’train_hmm’,’-append’)

201

B.4 build trainANN.m

function build_trainANN(num_states, seq_length)

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% ’build_trainPNN’ takes sequence length as input and builds the

% training seq to be used to train the neural network fuser in the

% classification scheme also uses num_states to determine initial state

% for testing sequences (prior aspect knowledge case)

% load settings

load([pwd,’\data’],’settings’)

% settings.feature_sets = {’HH’,’VV’};

% settings.feature_num = [10 10];

% settings.targets = {’target_1’,’target_2’,’target_5’,’target_10’,...

% ’target_13’,’target_6’,’target_7’,’target_11’,...

% ’target_12’,’target_15’};

train_records_ann = struct(’record’,[]);

% train_records_ann(target,feature_set,record#).record =

% [feature_dim obs];

% create data structure to store test records

train_index = struct(’prior’,[]);

% train_index(target,state,seq_length,record).prior = column vector

% containing initial state distribution of each test record, revised to

% represent aspect knowledge to within +/- 22.5 deg independent of num of

% hidden states

% generate random starting aspect angles; create 200 start points per

% target type;

for target = 1:length(settings.targets) % num targets

num_exemplar = 1;%size(data,2); multi exemplar case

% pick random start points for ann training set

index = randperm(360);

ann_index = sort(index(1:100));%200));

% insert code to consider prior target azimuth knowledge

ang_cov = 360/num_states; % observation wedge covered by single state

ang_cov_half = ang_cov/2; % half-width

state_cov = round(22.5/ang_cov_half); % num states needed to cover 45 deg

state_prob = 1/state_cov; % uniform prior over number of reqd states

% builds a uniform distribution across the appropriate number of hidden

% states within the prior dist vector

for i = 1:size(ann_index,2)

202

temp = zeros(num_states,1);

est_state = floor((ann_index(i)-1)/ang_cov)+1;

if rem(state_cov,2) ~= 0 %odd num states

temp(est_state) = state_prob; % mid-point

for j = 1:(state_cov-1)/2

% lower half

if est_state - j <= 0

temp_index = mod(est_state - j + num_states,num_states + 1);

else

temp_index = est_state - j;

end

temp(temp_index) = state_prob;

% upper half

if est_state + j > num_states

temp_index = mod(est_state + j,num_states);

else

temp_index = est_state + j;

end

temp(temp_index) = state_prob;

end

else % even num states

for j = 1:state_cov/2

% lower mid-points

if est_state - j + 1 <= 0

temp_index = ...

mod(est_state-j+1+num_states,num_states+1);

else

temp_index = est_state - j + 1;

end

temp(temp_index) = state_prob;

% upper mid-points

if est_state + j > num_states

temp_index = mod(est_state + j,num_states);

else

temp_index = est_state + j;

end

temp(temp_index) = state_prob;

end

end

train_index(target,num_states,seq_length,i).prior = temp;

end

% build test sequences by target type (ann train set)

for i = 1:size(ann_index,2) % num test records per target type

% for each record, must choose from among exemplars of target class

tar_exemplar = randperm(num_exemplar);

tar_exemplar = tar_exemplar(1);

203

for feature_set = 1:length(settings.feature_sets) % num feature sets

% load the appropriate feature set/target data into structure

% called ’data’

load_str = [pwd,’\trial8_data\’,’train_’,...

settings.feature_sets{feature_set}];

target_str = [settings.targets{target},’_’,...

settings.feature_sets{feature_set}];

data = load(load_str,target_str);

eval([’data = data.’,settings.targets{target},’_’,...

settings.feature_sets{feature_set},’;’])

% data = data(tar_exemplar);

% pull full feature data into temp structure

temp = data.feature;

temp = [temp temp]; % account for possibility of wrapping around

% from 360 degrees back to 1

% crop to seq_length

temp2 = temp(:,ann_index(i):(ann_index(i) + seq_length-1));

train_records_ann(target,feature_set,i).record = temp2;

end % end feature set loop

end % end ann train sequence loop

end % end target type loop

save ([pwd,’\data’],’train_records_ann’,’train_index’,’-append’)

204

B.5 train ANN.m

function train_ANN(num_states, seq_length)

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% ’train_ANN’ feeds training records to the trained HMMs, produces

% log-likelihoods, converts to posterior probs, uses these posteriors to

% train an ANN fuser, and saves the trained ANN fusers.

% load the trained HMM parameters and ANN networks

load ([pwd,’\param’],’train_hmm’,’init_hmm’,’ann’,’ann_data’)

% ’train_hmm(target,num_states,feature_set).prior = []’

% ’apnn(num_states,seq_length).net’

% ’ann_data(target,feature_set,seq_length).log_lik = [record targetHMM]

% .post = [record targetHMM]’

% load the training sequences

load ([pwd,’\data’],’train_records_ann’,’train_index’,’settings’)

% ’train_records_ann(target,feature_set,record#).record =

% [feature_dim observation]’

% ’train_index(target,state,seq_length,record).prior = column vector’

% settings.feature_sets = {’HH’,’VV’};

% settings.feature_num = [10 10];

% settings.targets = {’target_1’,’target_2’,’target_5’,’target_10’,...

% ’target_13’,’target_6’,’target_7’,’target_11’,...

% ’target_12’,’target_15’};

% send training records to trained HMMs; produce log-likelihoods

for target = 1:length(settings.targets) % class ’target’ data

for j = 1:length(settings.targets) % against class ’j’ trained hmms

for feature_set = 1:length(settings.feature_sets) % num feature sets

ghmm_ll = [];

for k = 1:size(train_records_pnn,3) % num test records

% insert code to force prior aspect knowledge

prior = ...

train_index(target,num_states,seq_length,k).prior;

% for no knowledge use

% prior = normalise(ones(num_states,1));

ghmm_ll(k) = ...

log_lik_ghmm(train_records_ann(target,feature_set,k).record,...

prior, ...

205

train_hmm(j,num_states,feature_set).trans, ...

train_hmm(j,num_states,feature_set).mu,...

train_hmm(j,num_states,feature_set).sigma);

end % test record loop

ghmm_ll = ghmm_ll’;

ann_data(target,feature_set,seq_length).log_lik(:,j) = ghmm_ll;

end % end feature set loop

end % end against j trained hmm loop

end % end data target type loop

% add truth to log-liks, build training set for ANN

data = [];

for feature_set = 1:size(ann_data,2) % num feature sets

temp_holder = [];

for target = 1:size(ann_data,1) % num targets

temp_holder = ...

[temp_holder ann_data(target,feature_set,seq_length).log_lik’];

end

% data ends up having (num_targets)*num_featuresets rows and

% num_targets*num_records columns

data = [data; temp_holder];

end % end feature set loop

% preprocess data to -1 1 range, save min/max for preprocessing testing

% data

[data min_d max_d] = premnmx(data);

num_records = size(train_records_ann,3);

truth = zeros(size(ann_data,1), size(ann_data,1)*num_records);

for i = 1:size(ann_data,1)

truth(i,((i-1)*num_records+1):(i*num_records)) = ones(1,num_records);

end

% build FFMLP net

net = newff([-1*ones(20,1) ones(20,1)], [40 10],...

{’tansig’,’logsig’});

% set parameters

net.trainFcn = ’traingdx’;

net.trainParam.epochs = 3000;

net.trainParam.show = NaN;

net.trainParam.goal = .00001;

% train net

[net tr] = train(net,data,truth);

206

% save net

ann(num_states,seq_length).net = net;

% save trained ANN fuser

save([pwd,’\param’],’ann’,’min_d’,’max_d’,’ann_data’,’-append’)

207

B.6 build test.m

function build_test(num_states, seq_length)

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% ’build_test’ takes sequence length as input and builds the

% testing data set to be used in the classification experiment

% also uses num_states to determine initial state for testing sequences

% (prior aspect knowledge case)

% load settings

load([pwd,’\data’],’settings’)

% settings.feature_sets = {’HH’,’VV’};

% settings.feature_num = [10 10];

% settings.targets = {’target_1’,’target_2’,’target_5’,’target_10’,...

% ’target_13’,’target_6’,’target_7’,’target_11’,...

% ’target_12’,’target_15’};

% create data structure to store test records

test_records = struct(’record’,[]);

% test_records(target,feature_set,record).record = [feature_dim observation];

test_index = struct(’prior’,[]);

% test_index(target,state,seq_length,record).prior = column vector

% containing prior distribution using prior aspect knowledge

% generate random starting aspect angles; create 100 start points per

% target type;

for target = 1:length(settings.targets) % num targets

num_exemplar = 1;%size(data,2); multiple exemplar case

% pick random start points for hmm_test set and pnn_train set

index = randperm(360);

hmm_test = sort(index(1:100));

% insert code to consider prior target azimuth knowledge

ang_cov = 360/num_states; % aspect angle wedge covered by single state

ang_cov_half = ang_cov/2; % half-width

state_cov = round(22.5/ang_cov_half); % num states needed to cover 45 deg

state_prob = 1/state_cov; % uniform prior over number of reqd states

% builds a uniform distribution across the appropriate number of hidden

% states within the prior dist vector

for i = 1:size(hmm_test,2)

temp = zeros(num_states,1);

est_state = floor((hmm_test(i)-1)/ang_cov)+1;

if rem(state_cov,2) ~= 0 %odd num states

temp(est_state) = state_prob; % mid-point

208

for j = 1:(state_cov-1)/2

% lower half

if est_state - j <= 0

temp_index = mod(est_state - j + num_states,num_states + 1);

else

temp_index = est_state - j;

end

temp(temp_index) = state_prob;

% upper half

if est_state + j > num_states

temp_index = mod(est_state + j,num_states);

else

temp_index = est_state + j;

end

temp(temp_index) = state_prob;

end

else % even num states

for j = 1:state_cov/2

% lower mid-points

if est_state - j + 1 <= 0

temp_index = ...

mod(est_state-j+1+num_states,num_states+1);

else

temp_index = est_state - j + 1;

end

temp(temp_index) = state_prob;

% upper mid-points

if est_state + j > num_states

temp_index = mod(est_state + j,num_states);

else

temp_index = est_state + j;

end

temp(temp_index) = state_prob;

end

end

test_index(target,num_states,seq_length,i).prior = temp;

end

% build test sequences by target type (hmm test set)

for i = 1:size(hmm_test,2) % num test records per target type

% for each record, must choose from among exemplars of target class

tar_exemplar = randperm(num_exemplar);

tar_exemplar = tar_exemplar(1);

for feature_set = 1:length(settings.feature_sets) % num feature sets

% load the appropriate feature set/target data into structure

% called ’data’

209

load_str = [pwd,’\trial8_data\’,’test_’,...

settings.feature_sets{feature_set}];

target_str = [settings.targets{target},’_’,...

settings.feature_sets{feature_set}];

data = load(load_str,target_str);

eval([’data = data.’,settings.targets{target},’_’,...

settings.feature_sets{feature_set},’;’])

% data = data(tar_exemplar);

% pull full feature data into temp structure

temp = data.feature;

temp = [temp temp]; % account for possibility of wrapping around

% from 360 degrees back to 1

% crop to seq_length

temp2 = temp(:,hmm_test(i):(hmm_test(i) + seq_length-1));

test_records(target,feature_set,i).record = temp2;

end % end feature set loop

end % end hmm test sequence loop

end % end target type loop

save ([pwd,’\data’],’test_records’,’test_index’,’-append’)

210

B.7 test HMM.m

function test_HMM(num_states, seq_length)

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% ’test_HMM’ evaluates the test records

% load the trained HMM parameters

load ([pwd,’\param’],’train_hmm’,’init_hmm’)

% ’train_hmm(target,num_states,feature_set).prior = []’

% load the test sequences

load ([pwd,’\data’],’test_records’,’test_index’,’settings’)

% ’test_records(target,feature_set,record#).record = [feature_dim obs]’

% ’test_index(target,state,seq_length).hmm = row vector

% settings.feature_sets = {’HH’,’VV’};

% settings.feature_num = [10 10];

% settings.targets = {’target_1’,’target_2’,’target_5’,’target_10’,...

% ’target_13’,’target_6’,’target_7’,’target_11’,...

% ’target_12’,’target_15’};

% load the output information

load ([pwd,’\output’],’ghmm_results’)

% ’ghmm_results(target,num_states,seq_length,feature_set).log_lik = ...

% [test records, hmm class]’

for target = 1:length(settings.targets) % class ’target’ data

for j = 1:length(settings.targets) % against class ’j’ trained hmms

for feature_set = 1:length(settings.feature_sets) % num feature sets

ghmm_ll = [];

for k = 1:size(test_records,3) % num test records

% insert code to use prior aspect angle information

prior = ...

test_index(target,num_states,seq_length,k).prior;

% for no knowledge use

% prior = normalise(ones(num_states,1));

ghmm_ll(k) = ...

log_lik_ghmm(test_records(target,feature_set,k).record,...

prior, ...

train_hmm(j,num_states,feature_set).trans, ...

train_hmm(j,num_states,feature_set).mu,...

211

train_hmm(j,num_states,feature_set).sigma);

end % test record loop

ghmm_ll = ghmm_ll’;

ghmm_results(target,num_states,seq_length,feature_set).log_lik(:,j) = ...

ghmm_ll;

end % end feature set loop

end % end against j trained hmm loop

end % end data target type loop

save([pwd,’\output’],’ghmm_results’,’-append’)

212

B.8 test ANN.m

function test_ANN(num_states, seq_length)

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% ’test_PNN’ feeds log-likelihoods produced by the HMMs when given test

% sequences, feeds the log-liks to the trained ANN fusers.

% load the trained ANN networks and preprocessing values

load ([pwd,’\param’],’ann’,’min_d’,’max_d’)

% ’ann(num_states,seq_length).net’

% load settings

load ([pwd,’\data’],’settings’)

% settings.feature_sets = {’HH’,’VV’};

% settings.feature_num = [10 10];

% settings.targets = {’target_1’,’target_2’,’target_5’,’target_10’,...

% ’target_13’,’target_6’,’target_7’,’target_11’,...

% ’target_12’,’target_15’};

% load the output of the HMM classifiers

load ([pwd,’\output’],’ghmm_results’,’ann_post’)

% ’ghmm_results(target,num_states,seq_length,feature_set).log_lik = ...

% [test records, label_class]’

% ’ann_post(num_states,seq_length).post = ...

% [records, label_class]’

% build test set for ANN

data = [];

for feature_set = 1:size(ghmm_results,4) % num of feature sets

temp_holder = [];

for target = 1:size(ghmm_results,1) % num targets

temp_holder = ...

[temp_holder ...

ghmm_results(target,num_states,seq_length,feature_set).log_lik’];

end

data = [data; temp_holder];

end % end feature set loop

% transform data to -1 1 range using min/max parameters

data = tramnmx(data,min_d,max_d);

temp = sim(ann(num_states,seq_length).net,data)’;

% convert from (num_states,seq_length) which is matrix with

% num_rows=num_targets*num_records_per_target and num_cols=num_targets,

213

% to (data_class, num_states, seq_length) which is matrix with

% num_rows = num_records_per_target and num_cols = num_targets

for data_class = 1:length(settings.targets) % index into data class

m = ...

size(ghmm_results(data_class,num_states,seq_length,1).log_lik,1);

ann_post(data_class,num_states,seq_length).post = ...

temp(((data_class-1)*m + 1):(data_class*m),:);

end

% save ANN fuser output

save([pwd,’\output’],’ann_post’,’-append’)

214

B.9 test outlibrary.m

function test_outlibrary(num_states,seq_length)

% Tim Albrecht

% AFIT/ENS

% Sep 2005

% ’test_outlibrary’ performs out of library record testing. It builds a

% set of 100 test records drawn from 5 out of library targets (20 records

% each).

% load settings

load([pwd,’\data’],’settings’)

% settings.feature_sets = {’HH’,’VV’};

% settings.feature_num = [10 10];

target_list = {’target_3’,’target_4’,’target_8’,’target_9’,’target_14’};

%%%

% generate test sequences from out of library targets %

%%%

% create data structure to store test records

ool_records = struct(’record’,[]);

% ool_records(target,feature_set,record).record = [feature_dim observation];

ool_index = struct(’prior’,[]);

% ool_index(target,state,seq_length,record).prior = column vector

% containing prior distribution using prior aspect knowledge

% generate random starting aspect angles; create 20 start points per

% target type;

for target = 1:length(target_list) % num targets

% pick random start points

index = randperm(360);

ool_test = sort(index(1:20));

% insert code to consider prior target azimuth knowledge

ang_cov = 360/num_states; % aspect angle wedge covered by single state

ang_cov_half = ang_cov/2; % half-width

state_cov = round(22.5/ang_cov_half); % num states needed to cover 45 deg

state_prob = 1/state_cov; % uniform prior over number of reqd states

% builds a uniform distribution across the appropriate number of hidden

% states within the prior dist vector

for i = 1:size(ool_test,2)

temp = zeros(num_states,1);

est_state = floor((ool_test(i)-1)/ang_cov)+1;

if rem(state_cov,2) ~= 0 %odd num states

temp(est_state) = state_prob; % mid-point

for j = 1:(state_cov-1)/2

215

% lower half

if est_state - j <= 0

temp_index = ...

mod(est_state - j + num_states,num_states + 1);

else

temp_index = est_state - j;

end

temp(temp_index) = state_prob;

% upper half

if est_state + j > num_states

temp_index = mod(est_state + j,num_states);

else

temp_index = est_state + j;

end

temp(temp_index) = state_prob;

end

else % even num states

for j = 1:state_cov/2

% lower mid-points

if est_state - j + 1 <= 0

temp_index = ...

mod(est_state-j+1+num_states,num_states+1);

else

temp_index = est_state - j + 1;

end

temp(temp_index) = state_prob;

% upper mid-points

if est_state + j > num_states

temp_index = mod(est_state + j,num_states);

else

temp_index = est_state + j;

end

temp(temp_index) = state_prob;

end

end

ool_index(target,num_states,seq_length,i).prior = temp;

end

% build test sequences by target type

for i = 1:size(ool_test,2) % num test records per target type

for feature_set = 1:length(settings.feature_sets) % num feature sets

% load the appropriate feature set/target data into structure

% called ’data’

load_str = [pwd,’\trial8_data\’,’ool_test_’,...

settings.feature_sets{feature_set}];

target_str = [target_list{target},’_’,...

settings.feature_sets{feature_set}];

216

data = load(load_str,target_str);

eval([’data = data.’,target_list{target},’_’,...

settings.feature_sets{feature_set},’;’])

% pull full feature data into temp structure

temp = data.feature;

temp = [temp temp]; % account for possibility of wrapping around

% from 360 degrees back to 1

% crop to seq_length

temp2 = temp(:,ool_test(i):(ool_test(i) + seq_length-1));

ool_records(target,feature_set,i).record = temp2;

end % end feature set loop

end % end ool test sequence loop

end % end target type loop

save ([pwd,’\data’],’ool_records’,’ool_index’,’-append’)

%%%

% test out of library sequences against in-library trained HMMs %

%%%

% load the trained HMM parameters

load ([pwd,’\param’],’train_hmm’,’init_hmm’)

% ’train_hmm(target,num_states,feature_set).prior = []’

% load the test sequences

load ([pwd,’\data’],’ool_records’,’ool_index’,’settings’)

% ’ool_records(target,feature_set,record#).record = [feature_dim obs]’

% ’ool_index(target,state,seq_length).prior = row vector

% settings.feature_sets = {’HH’,’VV’};

% settings.feature_num = [10 10];

target_list = {’target_3’,’target_4’,’target_8’,’target_9’,’target_14’};

% load the output information

load ([pwd,’\output’],’ool_results’)

% ’ool_results(target,num_states,seq_length,feature_set).log_lik = ...

% [test records, hmm class]’

for target = 1:length(target_list) % class ’ool target’ data

for j = 1:length(settings.targets) % against class ’j’ trained hmms

for feature_set = 1:length(settings.feature_sets) % num feature sets

ghmm_ll = [];

for k = 1:size(ool_records,3) % num test records

% insert code to use prior aspect angle information

prior = ...

217

ool_index(target,num_states,seq_length,k).prior;

% for no knowledge use

% prior = normalise(ones(num_states,1));

ghmm_ll(k) = ...

log_lik_ghmm(ool_records(target,feature_set,k).record,...

prior, ...

train_hmm(j,num_states,feature_set).trans, ...

train_hmm(j,num_states,feature_set).mu,...

train_hmm(j,num_states,feature_set).sigma);

end % test record loop

ghmm_ll = ghmm_ll’;

ool_results(target,num_states,seq_length,feature_set).log_lik(:,j) = ...

ghmm_ll;

end % end feature set loop

end % end against j trained hmm loop

end % end data target type loop

save([pwd,’\output’],’ool_results’,’-append’)

% fuse with trained ANN networks

% load the trained ANN networks

load ([pwd,’\param’],’ann’,’min_d’,’max_d’)

% ’ann(num_states,seq_length).net’

% load fused ann posteriors

load([pwd,’\output’],’ann_post’)

% build test set for ANN

data = [];

for feature_set = 1:size(ool_results,4) % num of feature sets

temp_holder = [];

for target = 1:size(ool_results,1) % num targets

temp_holder = ...

[temp_holder ...

ool_results(target,num_states,seq_length,feature_set).log_lik’];

end

data = [data; temp_holder];

end % end feature set loop

% transform data to -1 1 range using min/max parameters

data = tramnmx(data,min_d,max_d);

temp = ...

sim(ann(num_states,seq_length).net,data)’;

218

% convert from (num_states,seq_length) which is matrix with

% num_rows=num_targets*num_records_per_target and num_cols=num_targets,

% to (data_class, num_states, seq_length) which is matrix with

% num_rows = num_records_per_target and num_cols = num_targets

for data_class = 1:length(target_list) % index into data class

m = ...

size(ool_results(data_class,num_states,seq_length,1).log_lik,1);

ann_post(data_class,num_states,seq_length).ool_post = ...

temp(((data_class-1)*m + 1):(data_class*m),:);

end

save([pwd,’\output’],’ann_post’,’-append’)

219

References

1. S. Tzu, The Art of War, translated by Thomas Cleary, Shambhala Publications,
Boston, MA, 1988.

2. Department of the Air Force, Air Warfare, AFDD 2-1, Washington DC: HQ
USAF, 2000.

3. US Joint Forces Command, Capstone Requirements Document: Combat Iden-
tification, Norfolk VA: US JFCOM J-8, 2001.

4. C. Sadowski, “Combat identification: Where are we?.” AFIT OPER 596 Guest
Lecture, 2005.

5. Director, J-5, Joint Staff, Joint Vision 2020, Washington DC: JCS, 2000.

6. Director, J-7, Joint Staff, Joint Warfare of the Armed Forces of the United
States, JP 1, Washington DC: JCS, 2000.

7. Department of the Air Force, Air Force Basic Doctrine, AFDD 1, Washington
DC: HQ USAF, 2003.

8. Department of the Air Force, Intelligence, Surveillance, and Reconnaissance
Operations, AFDD 2-5.2, Washington DC: HQ USAF, 1999.

9. Department of the Air Force, USAF Intelligence Targeting Guide, AFPAM
14-210, Washington DC: HQ USAF, 1998.

10. F. Roli, “Fusion of multiple pattern classifiers,” in 8th National Conference of
the Italian Association of Artificial Intelligence, 2003.

11. G. Fumera, F. Roli, and G. Giacinto, “Reject option with multiple thresholds,”
Pattern Recognition 33, pp. 2099–2101, 2000.

12. G. Fumera, F. Roli, and G. Vernazza, “A method for error rejection in multiple
classifier systems,” in Proceedings of the 11th International Conf on Image
Analysis and Processing, pp. 454–458, 2001.

13. G. Fumera, I. Pillai, and F. Roli, “A two-state classifier with reject option for
text categorisation,” in 5th Int. Workshop on Statistical Techniques in Pattern
Recognition (SPR 2004), 3138, pp. 771–779, 2004.

14. G. Fumera and F. Roli, “Analysis of error-reject trade-off in linearly combined
multiple classifiers,” Pattern Recognition 37(6), pp. 1245–1265, 2004.

15. T. Laine, Optimization of Automatic Target Recognition with a Reject Option
Using Fusion and Correlated Sensor Data. PhD dissertation, Air Force Institute
of Technology, Wright-Patterson AFB, OH, 2005.

220

16. S. Pribyl, “Operations research approaches to capabilities analysis for com-
bat identification,” Master’s thesis, Air Force Institute of Technology, Wright-
Patterson AFB, OH, 2005.

17. K. Fielding, Spatio-Temporal Pattern Recognition using Hidden Markov Models.
PhD dissertation, Air Force Institute of Technology, Wright-Patterson AFB,
OH, 1994.

18. L. Rabiner, “A tutorial on hidden markov models and selected applications in
speech recognition,” Proceedings of the IEEE 77, pp. 257–285, 1989.

19. Z. Ghahramani, “An introduction to hidden markov models and bayesian net-
works,” International Journal of Pattern Recognition and Artificial Intelligence
15, pp. 9–42, 2001.

20. R. Duda, P. Hart, and D. Stork, Pattern Classification, John Wiley and Sons,
New York, NY, second ed., 2001.

21. R. Elliot, L. Aggoun, and J. Moore, Hidden Markov Models: Estimation and
Control, Springer, New York, NY, second ed., 1997.

22. I. MacDonald and W. Zucchini, Hidden Markov and Other Models for Discrete-
valued Time Series, Chapman and Hall/CRC, Boca Raton FL, first ed., 1997.

23. L. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite
state markov chains,” Annals of Mathematical Statistics 37, pp. 1554–1563,
1966.

24. L. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique oc-
curring in the statistical analysis of probabilistic functions of markov chains,”
Annals of Mathematical Statistics 41(1), pp. 164–171, 1970.

25. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” Journal of the Royal Statistical Society
Series B 39, pp. 1–38, 1977.

26. P. Bickel, Y. Ritov, and T. Ryden, “Asymptotic normality of the maximum-
likelihood estimator for general hidden markov models,” Annals of Statistics
26(4), pp. 1614–1635, 1998.

27. B. Leroux, “Maximum-likelihood estimation for hidden markov models,”
Stochastic Processes and their Applications 40, pp. 127–143, 1992.

28. Y. Ephraim and N. Merhav, “Hidden markov processes,” IEEE Transactions
on Information Theory 48(6), pp. 1518–1569, 2002.

29. G. Rigoll and D. Willett, “A NN/HMM hybrid for continuous speech recogni-
tion with a discriminant nonlinear feature extraction,” in Advances in Neural
Information Processing Systems, 1997.

221

30. E. Trentin and M. Gori, “A survey of hybrid ANN/HMM models for automatic
speech recognition,” Neurocomputing 37, pp. 91–126, 2001.

31. J. Bilmes, “Natural statistical models for automatic speech recognition,” Tech.
Rep. TR-99-016, International Computer Science Institute, 1999.

32. D. Kulp, D. Haussler, M. Reese, and F. Eeckman, “A generalized hidden markov
model for the recognition of human genes in DNA,” in Proceedings of the
Conference on Intelligent Systems in Molecular Biology, AAAI Press, 1996.

33. S. Eddy, “Profile hidden markov models,” Bioinformatics Review 14(9),
pp. 755–763, 1998.

34. V. Alexandrov and M. Gerstein, “Using 3d hidden markov models that explic-
itly represent spatial coordinates to model and compare protein structures,”
BMC Bioinformatics 5(2), 2004.

35. N. Arica and F. Yarman-Vural, “One-dimensional representation of two-
dimensional information for hmm based handwriting recognition,” Pattern
Recognition Letters 21, pp. 583–592, 2000.

36. J. Cai and Z.-Q. Liu, “Hidden markov models with spectral features for 2d
shape recognition,” IEEE Transactions on Pattern Analysis and Machine In-
telligence 23(12), pp. 1454–1458, 2001.

37. T. Hu, L. D. Silva, and K. Sengupta, “A hybrid approach of NN and HMM
for facial emotion classification,” Patten Recognition Letters 22, pp. 1303–1310,
2002.

38. V. Krishnamurthy, J. Moore, and S.-H. Chung, “Hidden markov model signal
processing in presence of unknown deterministic interferences,” IEEE Transac-
tions on Automatic Control 38(1), pp. 146–152, 1993.

39. P. Gader, “Hidden markov models for sensor fusion of EMI and GPR,” Tech.
Rep. DTIC ADA-422405, University of Missouri, Columbia, 2003.

40. J. Bilmes, “A gentle tutorial of the em algorithm and its application to param-
eter estimation for gaussian mixture and hidden markov models,” Tech. Rep.
TR-97-021, U.C. Berkeley, Department of Electrical Enginnering and Computer
Science, 1998.

41. V. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman and Hall,
London, first ed., 1995.

42. M. DeWitt, “High range resolution radar target identification using the prony
model and hidden markov models,” Master’s thesis, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, 1992.

43. A. MacDonald, “Classification of high range resolution radar returns using hid-
den markov and gaussian mixture models,” Master’s thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OH, 1999.

222

44. P. Runkle, P. Bharadwaj, L. Couchman, and L. Carin, “Hidden markov models
for multiaspect target classification,” IEEE Transactions on Signal Processing
47(7), pp. 2035–2040, 1999.

45. P. Runkle, L. Carin, L. Couchman, T. Yoder, and J. Bucaro, “Multiaspect
target identification with wave-based matched pursuits and continuous hidden
markov models,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 21(12), pp. 1371–1378, 1999.

46. P. Bharadwaj, P. Runkle, L. Carin, J. Berrie, and J. Hughes, “Multi-aspect clas-
sification of airborne targets via physics-based hmms and mathcing pursuits,”
IEEE Transactions on Aerospace and Electronic Systems 37(2), pp. 595–606,
2001.

47. X. Liao, P. Runkle, Y. Jiao, and L. Carin, “Identification of ground targets
from sequential hrr radar signatures,” in Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, pp. 2897–2900, 2001.

48. X. Liao, P. Runkle, and L. Carin, “Identification of ground targets from sequen-
tial high-range-resolution radar signatures,” IEEE Transactions on Aerospace
and Electronic Systems 38(4), pp. 1230–1242, 2002.

49. J. Li and P. Stoica, “Angle and waveform estimation via relax,” IEEE Trans-
actions on Aerospace and Electronic Systems 33(3), pp. 1077–1087, 1997.

50. A. Paul and A. Shaw, “Robust HRR radar target identification by hybridiza-
tion of HMM and eigen-template based matched filtering,” in Proceedings of
SPIE, 5094, pp. 278–289, 2003.

51. D. Kottke, P. Fiore, K. Brown, and J.-K. Fwu, “A design for HMM-based
SAR ATR,” in Proceedings of SPIE, 3370, pp. 541–551, 1998.

52. C. Nilubol, Q. Pham, R. Mersereau, M. Smith, and M. Clements, “Trans-
lational and rotational invariant hidden markov model for automatic target
recognition,” in Proceedings of SPIE, 3374, pp. 179–185, 1998.

53. C. Nilubol, R. Mersereau, and M. Smith, “An improved hidden markov model
classifier for SAR images,” in Proceedings of SPIE, 3720, pp. 113–122, 1999.

54. S. Jacobs and J. O’Sullivan, “Automatic target recognition using sequences
of high resolution radar range-profiles,” IEEE Transactions on Aerospace and
Electronic Systems 36(2), pp. 364–382, 2000.

55. D. Zhou, G. Liu, and J. Wang, “Spatio-temporal target identification method
of high-range resolution radar,” Pattern Recognition 33, pp. 1–7, 2000.

56. B. Pei and Z. Bao, “Radar target recognition based on peak location of HRR
profile and HMM classifiers,” in Proceedings of IEE Radar 2002 Conference,
pp. 414–418, 2002.

223

57. R. Williams, D. Gross, A. Palomino, J. Westerkamp, and D. Wardell, “1d HRR
data analysis and ATR assessment,” in Proceedings of SPIE, 3370, pp. 588–599,
1998.

58. R. Williams, J. Westerkamp, D. Gross, A. Palomino, T. Kaufman, and T. Fis-
ter, “Analysis of a 1-d HRR moving target ATR,” in Proceedings of SPIE,
3721, pp. 413–424, 1999.

59. R. Williams, J. Westerkamp, D. Gross, and A. Palomino, “Automatic target
recognition of time critical moving targets using 1d high range resolution radar,”
IEEE AES Systems Magazine April, pp. 37–43, 2000.

60. G. Meyer, Classification of Radar Targets Using Invariant Features. PhD dis-
sertation, Air Force Institute of Technology, Wright-Patterson AFB, OH, 2003.

61. M. Zumwalt, “Robust high range resolution radar for target classification,”
Master’s thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH,
2000.

62. R. Mitchell and J. Westerkamp, “Robust statistical feature based aircraft iden-
tification,” IEEE Transactions on Aerospace and Electronic Systems 35(3),
pp. 1077–1094, 1999.

63. A. Shaw, R. Vashist, and R. Williams, “HRR-ATR using eigen-templates with
noisy observations in unknown target scenario,” in Proceedings of SPIE, 4053,
2000.

64. T. Zajic, C. Rago, R. Mahler, M. Huff, and M. Noviskey, “Joint tracking, pose
estimation and target recognition using HRRR and track data: New results,”
in Proceedings of SPIE, 4380, pp. 196–206, 2001.

65. Sensor Data Management System, MSTAR Database, Air
Force Research Laboratory, Wright-Patterson AFB, OH.
http://www.mbvlab.wpafb.af.mil/public/sdms/additional.htm, 1995.

66. I. J. Myung, “The importance of complexity in model selection,” Journal of
Mathematical Psychology 44, pp. 190–204, 2000.

67. M. Forster, “Key concepts in model selection: Performance and generalizabil-
ity,” Journal of Mathematical Psychology 44, pp. 205–231, 2000.

68. A. Lanterman, “Schwarz, wallace, and rissanen: Intertwining themes in theories
of model selection,” International Statistical Review 69(2), pp. 185–212, 2001.

69. K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference,
Springer, NY, second ed., 2002.

70. D. Li, A. Biem, and J. Subrahmonia, “HMM topology optimization for hand-
writing recognition,” IEEE Int. Conference on Acoustics, Speech, and Signal
Processing (ICASSP) , pp. 1521–1524, 2001.

224

71. T. Ryden, “Estimating the order of hidden markov models,” Statistics 26,
pp. 345–354, 1995.

72. R. A. Fisher, “On the mathematical foundations of theoretical statistics,” Philo-
sophical Transactions 222, pp. 309–368, 1922.

73. D. D. Wackerly, W. M. III, and R. L. Scheaffer, Mathematical Statistics with
Applications, Duxbury Press, Belmont, CA, fifth ed., 1996.

74. A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory of
Statistics, McGraw Hill, NY, third ed., 1974.

75. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, Prentice
Hall, NJ, fifth ed., 1995.

76. P. J. Bickel and K. A. Doksum, Mathematical Statistics, Holden-Day, CA, 1977.

77. S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics 22, pp. 79–86, 1951.

78. H. Akaike, “Information theory as an extension of the maximum likelihood prin-
ciple,” in Second International Symposium on Information Theory, B. Petrov
and F. Csaki, eds., pp. 267–281, 1973.

79. G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics 6,
pp. 2:461–464, 1978.

80. F. Roli and G. Giacinto, Hybrid Methods in Pattern Recognition by H. Bunke
and A. Kandel, ch. 8: Design of Multiple Classifier Systems. World Scientific
Publishing, 2002.

81. B. Dasarathy, Multi-Sensor, Multi-Source Information Fusion: Architectures,
Algorithms, and Applications. International Society for Optical Engineering,
Defense and Security Symposium Short Course, SC149, 2004.

82. L. Chan, S. Der, and N. Nasrabadi, “Dualband FLIR fusion for automatic
target recognition,” Information Fusion 4, pp. 35–45, 2003.

83. S. Rizvi and N. Nasrabadi, “Fusion of FLIR automatic target recognition al-
gorithms,” Information Fusion 4, pp. 247–258, 2003.

84. X. Song, Y. Abu-Mostafa, J. Sill, H. Kasdan, and M. Pavel, “Robust im-
age recognition by fusion of contextual information,” Information Fusion 3,
pp. 277–287, 2002.

85. S. Storm, “An investigation of the effects of correlation in sensor fusion,” Mas-
ter’s thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH,
2003.

86. N. Leap, “An investigation of the effects of correlation, autocorrelation, and
sample size in classifier fusion,” Master’s thesis, Air Force Institute of Technol-
ogy, Wright-Patterson AFB, OH, 2004.

225

87. P. Clemans, “An investigation of the optimal sensor ensemble for sensor fusion,”
Master’s thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH,
2004.

88. F. Mindrup, “An investigation of the effects of correlation and autocorrelation
in classifier fusion with non-declarations,” Master’s thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OH, 2005.

89. C. Chow, “On optimum rejection error and reject tradeoff,” IEEE Transactions
on Information Theory IT-16, pp. 41–46, 1970.

90. P. Devijver and J. Kittler, Pattern Recognition – a Statistical Approach,
Prentice-Hall Int’l, London, 1982.

91. K. Haspert, “Optimum ID sensor fusion for multiple target types,” Tech. Rep.
D-2451, Institute for Defense Analysis (IDA), 2000.

92. T. Albrecht, “Hidden markov models for classifying genetic sequences.” AFIT
EENG 621 Pattern Recognition II, 2003.

93. K. Murphy, Hidden Markov Model Toolbox for
Matlab. Massachusetts Institute of Technology,
http://www.ai.mit.edu/∼murphyk/Software/HMM/hmm.html, 2003.

94. R. Durbin, Biological Sequence Analysis: probabalistic models of proteins and
nucleic acids, Cambridge University Press, Cambridge, UK, 1998.

95. University of California at Santa Cruz, Computational Biology,
http://www.soe.ucsc.edu/research/compbio, 2003.

96. J. Swets, R. Dawes, and J. Monahan, “Better decisions through science,” Sci-
entific American 283, pp. 82–87, 2000.

97. S. Alsing, The Evaluation of Competing Classifiers. PhD dissertation, Air Force
Institute of Technology, Wright-Patterson AFB, OH, 2000.

98. T. Ross, J. Bradley, L. Hudson, and M. O’Connor, “SAR ATR - so what’s the
problem? - an MSTAR perspective,” in Proceedings of SPIE, 3721, pp. 662–
672, 1999.

99. T. Albrecht and S. Gustafson, “Hidden markov models for classifying SAR
target images,” in Proceedings of SPIE, 5427, pp. 302–308, 2004.

100. T. Albrecht and K. Bauer, “Classification of sequenced SAR target images via
hidden markov models with decision fusion,” in Proceedings of SPIE, 5808,
pp. 306–313, 2005.

101. J. Principe, D. Xu, and J. F. III, “Pose estimation in SAR using an information
theoretic criterion,” in Proceedings of SPIE, 3370, pp. 218–229, 1998.

226

102. L. Voicu, R. Patton, and H. Myler, “Multi-criterion vehicle pose estimation for
SAR-ATR,” in Proceedings of SPIE, 3721, pp. 497–506, 1999.

103. Q. Zhao, J. Principe, V. Brennan, D. Xu, and Z. Wang, “Synthetic aperture
radar automatic target recognition with three strategies of learning and repre-
sentation,” Optical Engineering 39, pp. 1230–1244, 2000.

104. L. Kaplan and R. Murenzi, “Pose estimation of SAR imagery using the two
dimensional continuous waelet transform,” Pattern Recognition Letters 24,
pp. 2269–2280, 2003.

105. Y. Sun, Z. Liu, S. Todorovic, and J. Li, “Synthetic aperture radar automatic
target recognition using adaptive boosting,” in Proceedings of SPIE, 5808,
pp. 282–293, 2005.

227

Vita

Major Tim Albrecht was born in September 1971 in Bryan, Texas. He

attended high school in Papillion, Nebraska and graduated in 1989 from O’Fallon

Township High School in O’Fallon, Illinois. He studied electrical engineering at

Northwestern University in Evanston, Illinois graduating in June 1993 with a bach-

elor of science degree. He was commissioned into the US Air Force through ROTC

in June 1993 with subsequent assignments to the National Air and Space Intelli-

gence Center, Wright-Patterson AFB, Ohio and the Air Force Studies and Analyses

Agency, Pentagon, Washington DC. Maj Albrecht earned a master of science degree

in operations research from the Air Force Institute of Technology in 1999 and is cur-

rently a Ph.D. candidate at AFIT in operations research. He will be assigned to the

Air Force Logistics Management Agency, Maxwell AFB, Alabama upon completion

of his program. He is a member of MORS, INFORMS, Omega Rho, Tau Beta Pi,

and SPIE.

228

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

15–09–2005 Doctoral Dissertation Oct 2002 – Sep 2005

COMBAT IDENTIFICATION WITH SEQUENTIAL OBSERVATIONS,
REJECTION OPTION, AND OUT-OF-LIBRARY TARGETS

AFOSR grant #NMIPR045203616 ACC/DRSA

Albrecht, Timothy W., Major, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way, Building 641,
WPAFB OH 45433-7765

AFIT/DS/ENS/05-03

AFOSR/NM ATTN: Maj Todd Combs ACC/DRSA ATTN: Charles Sadowski
Stuite 325 Rm 3112 216 Hunting Ave, Rm 105
875 Randolph St Langley AFB VA 23665-2777
Arlington VA 22203-1768

AFOSR/NM, ACC/DRSA

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research extends a mathematical framework to select the optimal sensor ensemble and fusion method
across multiple decision thresholds subject to warfighter constraints for a combat identification (CID) system. The
formulation includes treatment of exemplars from target classes on which the CID system classifiers are not trained
(out-of-library classes) and enables the warfighter to optimize a CID system without explicit enumeration of classifier
error costs. A time-series classifier design methodology is developed and applied, yielding a multi-variate Gaussian hidden
Markov model (HMM). The extended CID framework is used to compete the HMM-based CID system against a
template-based CID system. The framework evaluates competing classifier systems that have multiple fusion methods,
varied prior probabilities of targets and non-targets, varied correlation between multiple sensor looks, and varied levels of
target pose estimation error. Assessment using the extended framework reveals larger feasible operating regions for the
HMM-based classifier across experimental settings. In some cases the HMM-based classifier yields a feasible region that is
25% of the threshold operating space versus 1% for the template-based classifier.

Combat identification; hidden Markov models; high range-resolution radar

U U U UU 245

Dr. Kenneth W. Bauer, Jr., (AFIT/ENS)

(937) 255–6565, ext 4328

	Combat Identification with Sequential Observations, Rejection Option, and Out-of-Library Targets
	Recommended Citation

	albrecht.dvi

