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Modeling the thermosphere as a driven-dissipative
thermodynamic system
W. R. Frey1,2, C. S. Lin3, M. B. Garvin2, and A. O. Acebal2

1Air Force Weather Agency, Offutt Air Force Base, Bellevue, Nebraska, USA, 2Department of Engineering Physics, Air Force
Institute of Technology, Wright-Patterson Air Force Base, Dayton, Ohio, USA, 3Space Vehicles Directorate, Air Force Research
Laboratory, Kirtland Air Force Base, Albuquerque, New Mexico, USA

Abstract Thermospheric density impacts satellite position and lifetime through atmospheric drag.
More accurate specification of thermospheric temperature, a key input to current models such as the High
Accuracy Satellite Drag Model, can decrease model density errors. This paper improves the model of Burke
et al. (2009) to model thermospheric temperatures using the magnetospheric convective electric field as
a driver. In better alignment with Air Force satellite tracking operations, we model the arithmetic mean
temperature, T1/2, defined by the Jacchia (1977) model as the mean of the daytime maximum and nighttime
minimum exospheric temperatures occurring in opposite hemispheres at a given time, instead of the
exospheric temperature used by Burke et al. (2009). Two methods of treating the solar ultraviolet (UV)
contribution to T1/2 are tested. Two model parameters, the coupling and relaxation constants, are optimized
for 38 storms from 2002 to 2008. Observed T1/2 values are derived from densities and heights measured by
the Gravity Recovery and Climate Experiment satellite. The coupling and relaxation constants were found to
vary over the solar cycle and are fit as functions of F10.7a, the 162 day average of the F10.7 index. Model results
show that allowing temporal UV variation decreased model T1/2 errors for storms with decreasing UV over
the storm period but increased T1/2 errors for storms with increasing UV. Model accuracy was found to be
improved by separating storms by type (coronal mass ejection or co-rotating interaction region). The model
parameter fits established will be useful for improving satellite drag forecasts.

1. Introduction

The thermosphere is defined as the neutral part of the Earth’s upper atmosphere from roughly 95 to 1000 km
above sea level. Hundreds of low-Earth orbit satellites operate at these altitudes. The ability to predict satellite
position depends on accurate thermospheric density characterization [Marcos et al., 2006]. Since thermospheric
temperature is used as a parameter in existingmodels to determine densities [Wise et al., 2012], amore accurate
specification of temperature can be used to improve density forecasts. As the thermosphere becomes more
crowdedwith low-Earth orbit satellites and space debris the potential consequences of inaccurate forecasts are
becomingmore significant. Recent events illustrate these consequences. The risk posed to operational satellites
by space debris was illustrated in 2009 when the Iridium 33 satellite was destroyed by a collision with the
non-operational Cosmos 2251 satellite [Burke et al., 2010]. There have been several instances where the risk of
collision with debris has forced the crew of the International Space Station to take emergency actions to
ensure their safety [Weimer et al., 2011]. Improved characterization of the thermospheric environment is
necessary to increase space object tracking accuracy and allow satellite operators and manned spaceflight
missions to anticipate and avoid collisions [Wright, 2007].

Variations in thermospheric density impact satellite orbit trajectories through variations in drag. The
acceleration due to atmospheric drag is given by

adrag ¼ CD
Asc
Msc

� �
ρV2 (1)

where ASC andMSC are the cross-sectional area and mass of the spacecraft, respectively, ρ is the neutral mass
density of the atmosphere, and V is the spacecraft velocity relative to the neutral atmosphere. The drag
coefficient CD depends on the angle of flow to the spacecraft surface, the ratio of the temperatures of the
spacecraft surface and the local atmosphere, and the ratio of the mean mass of atoms in the atmosphere to
those on the spacecraft surface [Cook, 1965].
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Accurate and continuous observations of thermospheric density have become readily available since 2002
from the Gravity Recovery and Climate Experiment (GRACE) [Tapley et al., 2004] satellite. Densities are derived
from an on-board accelerometer that measures the electrostatic force needed to maintain a proof mass at
the center of a cage located within 2mm of the spacecraft’s center of mass. Since the spacecraft and the
proof mass respond to gravity in the same way, the changes in the electrostatic force needed to maintain the
proof mass position reflect the spacecraft’s response to non-gravitational forces such as thermospheric drag
[Bruinsma and Biancale, 2003]. The availability of reliable in situ thermospheric density measurements allows
relevant comparisons with current modeled densities as well as “ground truth” data with which to test new
methods of modeling the thermospheric environment.

Changes in neutral density are driven by changes to the energy input to the thermosphere. The main
energy inputs to the thermosphere are solar radiation in the EUV portion of the spectrum and energy
transferred from the solar wind to the thermosphere through the magnetosphere in the forms of Joule
heating and particle precipitation [Knipp et al., 2004]. Empirical thermospheric models such as MSIS (Mass
Spectrometer and Incoherent Scatter Radar) [Picone et al., 2002], DTM (drag temperature model) [Bruinsma
et al., 2012], and Jacchia [Jacchia, 1977] have generally tried to capture these inputs using combinations
of solar proxies, such as the F10.7 index, and geomagnetic indices such as the Ap index. The High Accuracy
Satellite Drag Model (HASDM) [Storz et al., 2005] uses the E10.7 index from the SOLAR2000 model [Tobiska
et al., 2000] to account for solar EUV radiation while ingesting observed drag data from a set of calibration
satellites to create spatially varying density corrections in near real time. More recently the Jacchia-Bowman
2008 (JB2008) model [Bowman et al., 2008] has improved on this empirical approach by including satellite
observations of UV radiation and switching to the disturbance storm time (Dst) index to quantify energy
input during storm conditions.

While the performance of empirical density models has improved during geomagnetic quiet conditions,
errors during geomagnetic storming conditions have remained stubbornly high: up to 30% higher than
during quiet time [Marcos et al., 2010]. During geomagnetic storms energy input to the thermosphere from
the magnetosphere, specifically via Joule heating, can become dominant over EUV radiation [Knipp et al.,
2004;Wilson et al., 2006; Fuller-Rowell and Solomon, 2010]. The geomagnetic indices used by empirical models
do not fully capture the magnitude or temporal variation of this energy input [Moe and Moe, 2011] which
contributes to the increase in errors during storm time. Knipp et al. [2013] showed this specifically for a set of
storms in 2004 and 2005 where the Dst index did not properly describe the rapid changes occurring in the
thermosphere during storm time.

Recent work has moved away from using geomagnetic indices in an effort to improve model performance,
especially during storm time. Choury et al. [2013] used artificial neural networks (ANN) to predict exospheric
temperatures that were fed back into DTM to improve density predictions. Others have focused on more
directly quantifying energy input from the magnetosphere by using solar wind data. Fedrizzi et al. [2012]
used the CTIPe (coupled thermosphere-ionosphere-plasmasphere electrodynamics) model [Millward et al.,
2001] driven by solar wind data to generate Joule heating rates. The CTIPe Joule heating was compared to
observed thermospheric densities to create a Joule heating index that was shown to improve empirical
model neutral density forecasts. Burke [2007] showed that the cross polar cap potential is well correlated
with density during storm time. Liu et al. [2010] used solar wind data to calculate the magnitude of the
merging electric field, a quantity closely correlated to the polar cap potential defined as the electric field
present in the region of the magnetosphere’s tail where magnetic reconnection takes place. This was
used along with the F10.7 index in a linear equation to generate storm time densities. The results were
shown to match storm time density changes observed by the CHAMP (Challenging Minisatellite Payload)
satellite [Bruinsma et al., 2004].Weimer et al. [2011] used the W05 model [Weimer, 2005] and interplanetary
magnetic field (IMF) data to calculate corrections to the global nighttime minimum exospheric
temperature, ΔTc, which is done in JB2008 using the Dst index. Analysis showed that computing ΔTc using
IMF data instead of Dst produced an improved correlation with observations and could be used in JB2008
to improve accuracy.

This paper builds on the work of Burke et al. [2009] who used neutral density observations from the
GRACE satellite along with the Jacchia [1977] (J77) model [Jacchia, 1977] to calculate the total energy
content of the thermosphere, Eth, as the sum of the thermal and gravitational potential energy. The
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magnitude of the dawn-to-dusk convective electric field in the inner magnetosphere, εVS, was modeled
using observed solar wind data. According to Burke [2007], εVS may be represented as ΦPC/2RELY, where
ΦPC is the cross polar cap potential, RE is Earth’s radius, and LY refers to the equatorial distance from
Earth’s center to the magnetopause along the dawn or dusk meridian in units of RE. See Burke et al.
[2009] for details of computing εVS. Burke et al. [2009] show that Eth decays to pre-disturbance levels
when εVS drops to pre-disturbance levels and the rate of decay, at least for two cases, was the same.
The e-fold relaxation time of Eth, τ, was calculated to be 6.5 h. This behavior matches that of a driven-
dissipative system. Burke et al. [2009] applied a driven-dissipative approach to model Eth using εVS as the
driver. Since Eth is closely related to the orbit averaged exospheric temperature (T∞), T∞ can also be
modeled in this way.

Burke et al. [2009] treated T∞ as the result of two independent energy contributions, UV irradiance and the
solar wind. During storm time the UV contribution was considered constant (850 K), and the rate of change in
the orbit-averaged T∞ was modeled using a differential equation.

dT∞ SW

dt
¼ αεVS � T∞ SW

τ
(2)

In equation (2) T∞SW is the solar wind contribution to T∞, α is an empirical coupling constant accounting
for coupling of the energy input from the solar wind through the magnetosphere, and τ is the empirical
relaxation constant, taken to be 6.5 h. By solving equation (2) numerically with the Euler method and
comparing results with GRACE data, Burke et al. [2009] obtained a value for the coupling constant.
This model produced exospheric temperature values that agreed well with GRACE data. Burke [2011]
analyzed a larger sample of storm periods and determined a unique coupling constant value for each
storm period while keeping the relaxation constant fixed at 6.5 h. The value of the coupling constant
was found to vary over the solar cycle and was fit well as a function of F10.7a, the 162 day average of the
daily F10.7 index.

We built on the pioneering work of Burke et al. [2009] to model thermospheric temperatures using solar EUV
irradiance and the magnetospheric electric field as drivers. By extending Burke’s approach, a more rigorous
test of the applicability of the driven-dissipative system model is obtained resulting in a more accurate,
generalized model of thermospheric temperature. The remainder of this paper is structured as follows.
Section 2 details the methodology used to develop the model formulation of this study, and section 3
presents the results of the updated model. Section 4 contains a discussion of main findings, compares the
results with earlier work, and validates the model by applying it to test storms outside the original sample.
Finally, section 5 presents a summary.

2. Methodology
2.1. The Jacchia [1977] Model

Because the J77 model [Jacchia, 1977] is an important part of this study a brief overview of its relevant
features is provided here. J77 is a static empirical model developed using thermospheric densities
inferred from satellite drag and mass spectrometer measurements. The mesopause is assumed to be
at an altitude of 90 km with a temperature of 188 K and a mass density of 3.43 g*cm�3. Model
temperatures rise as a function of altitude from a minimum value at 90 km passing through an inflection
point at 125 km and increasing asymptotically to a given exospheric temperature, T∞. T∞ uniquely
defines the temperature profile. Once the temperature profile is determined, densities are calculated by
integrating the thermal diffusion equation

dni
ni

¼ �mig
R�T

dz � dT
T

1þ aið Þ (3)

where the index i denotes the ith species, n is the number density,m is the mass, g is gravity, a is the thermal
diffusion coefficient, T is the temperature, and R* is the universal gas constant. The J77 model includes six
species: N2, O2, O, Ar, He, and H. The total mass density at a given altitude can be calculated by simply
summing the product nimi over all species [Wise et al., 2012]. Through this process, tables are produced that
give density profiles for a given exospheric temperature input.
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T∞ is a local parameter and at a given instant the
global distribution of T∞ includes a nighttime
minimum, T0, and a daytime maximum, TM, in
opposite hemispheres. The arithmetic mean of
T0 and TM is referred to as the arithmetic mean
temperature, T1/2. If T1/2 is known, the local T∞
can be computed for any location on the globe
using the relationship

T1=2 ¼ T∞
D δ;φ;Hð Þ (4)

The conversion factor D is a function of solar
declination angle (δ), latitude (φ), and solar hour
angle (H) and given by

D ¼ 1þ c1
δ
ε
sin ϕð Þ þ c2 f Hð Þ � 1

2

� �
cos ϕð Þ (5)

where:

f Hð Þ ¼ cos3
1
2
Hþ βð Þ

� �
þ c3 cos 3 Hþ βð Þ þ χ½ �

c1 ¼ 0:15; c2 ¼ 0:24; c3 ¼ 0:08; β ¼ �60o; ε ¼ 23:44o; χ ¼ �75o

The hour angle H is simply local standard time converted to an angle counted from local noon via the formula:

H ¼ local time hð Þ � 12ð Þ � 15o (6)

It is important to emphasize that T1/2 describes the arithmetic mean of T0 and TM at a given instant and not
the mean of the diurnal extremes in a given location’s T∞ over a 24 h period. T1/2 varies on time scales shorter
than 24 h, for example it could vary over the roughly 90min time period of a GRACE orbit and can be used
to determine the global distribution of T∞ at any given time. The global nature of T1/2 is useful as it allows
energy inputs to the thermosphere to be accounted for by calculating their impact on T1/2.

2.2. Data Description

Burke [2011] used hourly solar wind data during a sample of 38 geomagnetic storm periods from 2002 to
2008 to test his model. The present study uses 1-min solar wind data to improve accuracy. Because 1-min
cadence solar wind data were not available for one event (Julian Date (JD) 168 to 170, 2003) used by Burke
[2011] this storm was replaced by one from JD 94 to 98, 2004. Outside this one exception, the same storms
considered by Burke [2011] are considered here.

Data from the GRACE A satellite [Sutton, 2011] were used to derive the “observed” exospheric temperature, T∞.
Tables of data from the J77 [Jacchia, 1977] model were generated using the formulation of D. L. Huestis [Jacchia,
1977 Atmospheric Model, 2002, http://nssdcftp.gsfc.nasa.gov/models/atmospheric/jacchia/jacchia-77/j77sri.for].
The output tables list densities as a function of altitude from300 to 1000 kmwith a resolution of 1 km for a given
exospheric temperature. Within J77 density increases as a function of exospheric temperature rather smoothly
at GRACE altitudes as shown in Figure 1. Therefore, to save computation time tables were generated with a
temperature resolution of 100 K for exospheric temperatures from 500 to 2000 K. The J77 tables were used to
create a 3-D data grid giving density for a specified T∞, altitude pair. The temperature and altitude ranges
chosen ensure that all of the observed GRACE data fit inside the data grid. With the grid as a basis, a density
can be generated using any specified T∞, altitude pair by interpolating between the data points. To generate
exospheric temperatures from observed GRACE heights and densities an iterative technique, the Nelder-
Mead simplex direct-search method [Lagarias et al., 1998], was used. Starting at an initial guess for T∞, here
800 K, the search method iterates over T∞ values until a T∞ is found that minimizes the relative error (to a
tolerance of 10�4%) between the observed density and the interpolated density when paired with the
observed altitude. Note that the temperature calculated here from GRACE data is not a physical temperature

Figure 1. Neutral density computed using the J77model [Jacchia,
1977] is plotted vs exospheric temperature (T∞) for altitudes
representative of the Gravity Recovery and Climate Experiment
(GRACE) satellite’s location from 2002 to 2008.
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but a model temperature only consistent with the J77 model. To follow more closely with current Air Force
satellite tracking operations,T∞ values were converted to T1/2 via equation (4). The GRACE-derived T1/2 data were
then orbit averaged. Orbit-averaged T1/2 values were used as the observed data themodel attempts to replicate.

2.3. Energy Inputs

The most variable source of energy for the thermosphere during geomagnetic storms is the solar wind which
couples to the thermosphere via the magnetospheric electric field, εVS. Using solar wind data from the
Advanced Composition Explorer (ACE) satellite, εVS can be calculated in near real time using a version of the
Volland-Stern model originally formulated by Ejiri [1978] and modified by Burke [2007]. This same procedure
was used in previous work [Burke et al., 2009; Burke, 2011; Frey, 2013]. ACE data were used to calculate εVS at
each minute during the storm periods. Interpolation was used to bridge short gaps in ACE data.

To account for the UV contribution to thermospheric temperatures the method of the J77 model was used
where the UV contribution to T1/2 (T1/2UV) is calculated via the formula

T1=2UV tð Þ ¼ 5:48 F10:7að Þ0:8 þ 101:8 F10:7ð Þ0:4 (7)

where F10.7 is the daily value of the F10.7 index and F10.7a is its 162 day averaged value.

2.4. Governing Equation

The time rate of change in T1/2 can be expressed as the sum of UV and solar wind contributions.

dT1=2
dt

¼ dT1=2UV
dt

þ dT1=2SW
dt

(8)

Just prior to storm time the thermosphere is taken to be at equilibrium with the time rate of change in T1/2
equal to zero and

T1=2 ¼ T01=2 ¼ T0
1=2UV þ T01=2SW (9)

Equation (9) expresses the pre-storm equilibrium arithmetic mean temperature (T 01/2) as the sum of the
equilibrium UV and solar wind contributions. Outside geomagnetic storming periods the UV contribution to
thermospheric energy is much larger than the solar wind contribution [Knipp et al., 2004] which indicates that
T 01/2UV >> T 01/2SW, suggesting the approximation T 01/2≈ T 01/2UV.

Using equation (2) for the time rate of change of the solar wind contribution to T1/2 and substituting
T1/2SW = T1/2� T1/2UV, equation (8) becomes:

dT1=2
dt

¼ dT1=2UV
dt

þ αεVS tð Þ � T1=2 tð Þ � T1=2UV tð Þ
τ

(10)

Solving equation (10) using Euler’s method provides a model of T1/2 as a function of time.

T1=2 t þ Δtð Þ ¼ T1=2 tð Þ þ Δt
dT1=2UV

dt
tð Þ þ αεVS tð Þ � T1=2 tð Þ � T1=2UV tð Þ

τ

� �
(11)

A time step (Δt) of 1min was used to match the cadence of the ACE-derived magnetospheric electric field
data. Equation (11) shows that any solution for T1/2 depends on the way in which T1/2UV is treated. Two
different methods were tested in this study.

Method One: The simplest way to treat T1/2UV is to approximate it as the constant T01/2 through the storm
period and thus dT1/2UV/dt = 0. This is the method Burke et al. [2009] used in their original model. In method
one, T 01/2 was defined as the mean of the observed arithmetic mean exospheric temperature from the eight
GRACE orbits (≈12 h) prior to the storm start time.

Method Two: Both T1/2UV (t) and dT1/2UV/dt are considered to be time dependent.

To obtain values for T1/2UV(t), equation (7) was used to calculate a value for T1/2UV at 20 Coordinated Universal
Time each day and then interpolated to produce a value at each minute. Because T1/2UV as defined in
equation (7) is a modeled input, it does not always match the observed value of T 01/2, as defined in method
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one, at the beginning of the storm period. To remove this discrepancy a correction factor, equal to the
difference between the observed value of T1/2 and the modeled value of T1/2UV at the start the storm, was
added to the modeled value of T1/2UV at each time. Using the results of equation (7), the time rate of change
of T1/2UV was calculated for each minute during the storm period as:

dT1=2UV
dt

tð Þ ¼ T1=2UV next observationð Þ � T1=2UV prior observationð Þ
24h

(12)

Equation (12) results in a value for each minute during the storm period with units of K/h. The J77 formulation
for T1/2UV in equation (7) results in values for its time rate of change that are constant, but not necessarily zero,
for 24 h periods between F10.7 observations.

After modeled T1/2 values are calculated for each minute of the storm period the modeled values were orbit
averaged over the same time periods defined earlier by the GRACE orbits. The values of both α and τ were
considered constant through each storm period but were allowed to have different values for each storm
period and for each method. To determine the optimal value of α and τ for each storm period, the Nelder-
Mead simplex direct-search method [Lagarias et al., 1998] was used to minimize the relative root-mean-square
(RMS) error, defined by equation (13), between the observed andmodeled values of T1/2 by adjusting the values
of α and τ.

RelativeT1=2 RMSerror ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X TObserved1=2 � TModel
1=2

� �2

TObserved1=2

� �2

vuuuut (13)

Here T1/2
Observed denotes the orbit-averaged observed T1/2 values derived from GRACE data, T1/2

Model denotes
the orbit-averaged model T1/2 values using one of the methods described above, and N is the number of data
points, or orbits, during the storm period.

To summarize themethodology, this study builds on the approach of Burke et al. [2009] in the following areas:

1. We have modeled T1/2 in this study in place of T∞.
2. Energy input to the thermosphere from solar extreme ultraviolet (EUV) irradiance is allowed to vary

through each storm period.
3. A rigorous approach is applied to determine the optimal values for both the coupling and relaxation

constants.

3. Result

Table 1 lists the mean and standard deviation of α, τ, and the relative T1/2 RMS error for methods one and two.
Method two has mean α values lower than method one and mean τ values slightly higher. The mean relative
RMS error for method two is 10% less than that of method one. Table 1 also shows results produced using
the model of Burke [2011]. The results from Burke [2011] were produced using the α values listed by Burke
[2011] for each storm and a constant τ of 6.5 h. Both method one and method two produce mean relative
RMS errors lower than those from the model of Burke [2011].

Coupling constant (α) values range from roughly 17 to 68 (K/h)/(mV/m) for methods one and two with values
most frequently falling between 20 and 30 (K/h)/(mV/m). Higher α values amplify the impact of εVS on T1/2
in the model due to the term αεVS(t) in equation (10). Therefore, storms with larger temperature rises will
require higher α values. The α values for method two are slightly more closely spaced than those of
method one as evidenced by the slightly smaller standard deviation of 12.87 (K/h)/(mV/m) for method two vs.
13.90 (K/h)/(mV/m) for method one.

Table 1. Model Statistics

Mean α Std Dev α Mean τ Std Dev τ Mean Error Std Dev Error

Method 1 35.03 13.90 7.71 3.07 2.04% 0.94%
Method 2 34.65 12.87 8.25 3.05 1.84% 0.80%
[Burke, 2011] 36.07 17.00 6.50 0.00 3.62% 2.26%
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The relaxation constant controls how quickly
T1/2 recovers to near pre-storm levels after εVS
returns to normal. Stormswith a faster recovery
result in lower τ values. Relaxation constant
values ranged from roughly 3 to 15h for both
methods with values falling most frequently
between 5 and 7.5 h. The range in τ values
was significantly smaller than the range in α
values indicating that the recovery period
of geomagnetic storms is less variable than
the main phase. The spread in τ values was
similar for both methods, with standard
deviations just over 3 h.

Figure 2 shows the T1/2 results of themodel for
three storms out of the 38 storm sample. Both
the JD 204-210, 2004 coronal mass ejection
(CME)-driven storm (a) and the JD 350-356,
2007 co-rotating interaction region (CIR)-driven
storm (b) have decreasing UV contributions
over the storm periods. For both of these
storms method two clearly outperformed
method one. Allowing T1/2UV to decrease by
definition increases T1/2SW which results in
higher α values for method two. Decreasing
T1/2UV also results in higher τ values for method
two. During the relaxation period of a storm,
decreasing T1/2UV lowers the temperature
toward which the thermosphere recovers,
resulting in longer relaxation times.

Method twoproduced larger errors thanmethod
one for nine storms in the sample. Figure 2c
shows the results for one of these storms, the
CME storm from JD 250 to 252, 2002. Unlike the
two previous storms, here T1/2UV increases
throughout the storm period. This causes τ
for method two to be lower than method
one, resulting in the decreased accuracy near
the peak of the storm. In addition, method
two models the recovery phase of the storm
worse than method one because the
increasing T1/2UV increases the method two
modeled time rate of change of T1/2 during
a time when observed T1/2 is decreasing.

Robinson and Vondrak [1984] showed that
both the ion-electron production rate and
ionospheric conductance are correlated with
(F10.7)

1/2, leading Burke [2011] to suggest that
the thermosphere’s response to storm time
energy inputs varies over the solar cycle. To
test this α and τ values obtained with method
two were fit as functions of F10.7a. In Figure 3
all storm fits are shown in black, CME storm fits

Figure 2. Model results for (a) the coronal mass ejection (CME) storm
from Julian Date (JD) 204-210, 2004, (b) the CIR storm from JD 351-356,
2007, and (c) the CME storm from JD 250-252, 2002. For each storm,
the top plot shows observed GRACE T1/2 (red dots), along with model
T1/2 results for methods one (black) and two (green). The dotted black
line shows the result of the approximation T1/2UV(t)≈ T01/2 used in
method one, and the pink dotted line shows the T1/2UV(t) used for
method two. The bottom plot for each storm shows the electric field
values calculated fromAdvanced Composition Explorer (ACE) data as a
function of time. The red vertical line indicates the storm starting time.
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are shown in blue, and CIR storm fits are
shown in red for α (top) and τ (bottom). The
quadratic fit of α to (F10.7a)

1/2 for all storms,
shown in black, produces a correlation of
R=0.40. Fits for α as a quadratic function of
(F10.7a)

1/2 are also shown for CME storms
(blue) and CIR storms (red). The fit for α
limited to CME storms exhibits a very low
correlation, R= 0.12, and is nearly a straight
line. CME storms generally had higher α
values than CIR storms. In fact, all stormswith
α> 50 (K/h)/(mV/m) are CMEs, while all of
the storms with α< 25 (K/h)/(mV/m) are CIR
storms. CIR storms are fit much better as a
function of (F10.7a)

1/2 with a correlation of
R=0.60, much improved from the all-storms
fit. These results indicate that the
thermosphere responds differently to energy
inputs from CME and CIR-driven storms.

Figure 3 (bottom) shows τ as a function of
F10.7a for all storms (black), CME storms
(blue), and CIR storms (red) using method
two data. Again, a quadratic least squares fit
was constructed of τ as a function of (F10.7a)

1/2.
The correlation of R=0.53 for all storms is
higher than the correlation for α. The best fit
curves for both storm types are similar, with
correlations of R=0.47 and R=0.51 for CIRs
and CMEs, respectively. The correlations
are worse for both storm types than the
correlation of the all storms fit indicating that
the relaxation times for different storm types
depend similarly on F10.7a. In general, τ values
are higher for CIR storms. All storms with
τ> 11h are CIR driven.

The model was run with method two procedures for all 38 storms using α and τ values determined via the
quadratic equations shown in Figure 3. Table 2 shows the mean T1/2 relative RMS errors, calculated using
equation (12), that result from optimal α and τ values for each storm, along with relative RMS errors that result
from the all storms fit, CME fit, and CIR fit α and τ values. Column 2, labeled All Storms Mean, shows that the
mean T1/2 RMS error increased from 1.84% to 3.15% for all 38 storms when using the all storms fit α and τ
values. For CME and CIR storms errors increased over the optimal values, though not drastically, when both
the all storms fit and the storm specific fit was applied. For both storm types, the storm type specific fit values
of α and τ produced a lower average RMS error than the all storms fit. Applying best fit curves to determine α
and τ for each storm also created more spread in the relative T1/2 RMS error values. Table 2 shows standard

Figure 3. (Top) Coupling constant (α) and (bottom) relaxation constant
(τ) as functions of F10.7a. Best fits of α and τ as quadratic functions of
(F10.7a)

1/2 are shown. CME storms are shown in blue, CIR storms in
red. The black line shows the best fit applied to all storms.

Table 2. Relative T1/2 RMS Error Results Using Best Fit α and τ Values With Method Two

All Storms CME Storms CIR Storms

Mean Std Dev Mean Std Dev Mean Std Dev

Optimal α and τ 1.84% 0.80% 2.17% 0.83% 1.67% 0.75%
All storms fit α and τ 3.15% 1.68% 4.37% 2.00% 2.52% 1.06%
CME-fit α and τ 4.01% 1.77%
CIR-fit α and τ 2.24% 1.01%
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deviations of the relative RMS error for each of the different fits. In all cases, the standard deviation increased
over the value for the optimal α and τ case.

4. Discussion

Burke [2011] determined α values for 37 of the 38 storms considered in this study. To compare Burke’s [2011]
results with current results, the α values in Burke [2011] need to be divided by the J77 conversion factor given
in equation (5) to account for the fact that he modeled T∞ instead of T1/2. The storm average conversion
factor was generally near 0.95. The average value is simply obtained by calculating the conversion factor for
each GRACE data point and then taking an average. The mean and standard deviation of the converted α
values from Burke [2011] are shown in Table 1. Also, note that Burke [2011] has a mean error (3.62%) higher
than our method one (2.04%) even though both assumed constant UV contribution to temperature. Both the
α values and errors from Burke [2011] differ from those found in the present study. There are several reasons
for the difference. First, Burke [2011] assumed that τ was constant over all storms. Allowing τ to change
between storms impacts the value of α. In addition, Burke [2011] used 1-h averaged solar wind data to
calculate εVS values and a time step of 1 h when applying equation (10) rather than the 1min time step used
here. Further, in this study the Nelder-Mead simplex direct-search method was applied in order to rigorously
determine the best α and τ values. By running multiple versions of the model and isolating each procedural
difference it was determined that the procedure to determine α and τ values for each storm has the biggest
impact on the results and significantly decreases model errors.

The method that produced the lowest error for a given storm was dependent on the nature of the change
(either increasing or decreasing) in T1/2UV over the storm period. Method two produced the lowest errors for
27 of the 28 storms with decreasing T1/2UV, while method one produced the lowest errors for eight out of the
ten storms with increasing T1/2UV. This likely indicates that the effects of temporal T1/2UV variation have not
yet been fully modeled.

The results of the model using best fit α and τ values, shown in Table 2, indicate that relatively low errors can
be obtained usingmodel parameters determined without prior knowledge of storm time T1/2 values as would
be required in a real-timemodeling scenario. To test this conjecture themodel with best fit α and τ values was
applied to two storms, one CME and one CIR, outside the original sample. Due to the constraints of GRACE
data availability, both test storms were within the same time frame of the original storms (2002 to 2008). Test
storms were selected based on the availability of ACE data needed to calculate storm time εVS values.

Table 3 shows from left to right the year, start day, end day, and storm type for each test storm. Then α and τ
values along with T1/2 RMS errors are shown for the optimal case (minimum T1/2 RMS error) as well as with the
all storms and storm type specific best fits applied. For both test storms, the best fit values of α and τ
produced reasonable results. For the JD 308 to 309, 2003 CME the relative T1/2 RMS errors produced using the
all storms fit and CME-fit α and τ values are more than double the optimal error, but they are also less than the
best fit average errors for CME storms in the original sample (Table 2). Similarly, for the CIR test storm, the
relative T1/2 RMS errors produced using the all storms fit and the CIR fit α and τ values are also less than or
equal to the average errors for CIR storms in the original sample with the CIR storm fit producing lower errors
than the all storms fit. These results indicate that the best fit α and τ values are reasonable even outside the
original sample and could be used without any prior knowledge of the geomagnetic storm to be modeled.
We have used GRACE data for the test storms in order to allow for more direct comparisons with the earlier
work of Burke et al. [2009] and Burke [2011]. In future work it will be useful to further validate these results
using other satellite density data, for example CHAMP accelerometer data.

The errors produced by method two of the driven-dissipative model are of similar magnitude to published
results of other recent models [Choury et al., 2013;Weimer et al., 2011]. The ANN model of Choury et al. [2013]

Table 3. Test Storm Data

Optimal All Storms Fit Storm Type Fit

Year Start Day End Day Storm Type α τ RMS (%) α τ RMS (%) α τ RMS (%)

2003 308 309 CME 39.01 4.46 0.98 45.54 6.47 2.89 46.42 5.50 2.17
2004 42 45 CIR 28.74 8.56 1.05 44.99 6.81 2.52 42.46 5.98 1.43
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produced temperature errors of 1.6% and 1.31% for the years of 2004 and 2008, respectively, when compared
to GRACE data. These errors include both periods of storming and quiet conditions. Weimer et al. [2011]
reported average errors resulting from calculations using the W05 model of 0.97% to 3.28%.

The temperatures calculated in our paper are model temperatures consistent with the J77 model. The GRACE
density derived from Sutton [2011] could potentially still have a small unknown bias even after careful
removal of known satellite attitude biases (private communication with E. K. Sutton). In such a case T1/2
deduced from the GRACE data would be affected by a scale factor γ due to density bias such that T1/2 = γ TU1/2,
where is TU1/2 is the unbiased value. Substitution of this definition into equation (10) yields that the α value
would be affected by a factor of 1/γ while the τ value remains unchanged.

The driven-dissipative model could be used currently in conjunction with observations from an upstream solar
windmonitor such as the ACE satellite to produce temperature predictions with 30–60min of lead time. After its
launch in early 2015, the Deep Space Climate Observatory (DSCOVER) satellite will monitor solar wind velocity,
density, and magnetic field conditions at the Sun-Earth L1 Lagrangian point. This will continue to provide a
reliable source of solar wind data crucial for our model and other space weather forecasting applications into
the future. With more development, the driven-dissipative approach could be integrated with solar wind
models to provide forecasts with greater lead times and improve the accuracy of satellite drag models.

5. Summary

This paper has presented results from a driven-dissipative system model of thermospheric temperatures
based on the work of Burke et al. [2009]. Several improvements were made to the model with the goal of
increasing accuracy and investigating the impact of some of the simplifying assumptionsmade in the original
formulation. The improved model produced lower mean T1/2 RMS errors than the model developed
previously by Burke [Burke et al., 2009; Burke, 2011]. It was demonstrated that the impact of UV temporal
variation in the driven-dissipative model was significant. Allowing the time rate of change of T1/2UV to be
nonzero decreases the mean RMS error for estimating thermospheric temperature when T1/2UV is decreasing.
When T1/2UV increases over the storm period the model performs better by ignoring the T1/2UV temporal
variation. This may imply that the effects of T1/2UV temporal variation have not yet been adequately modeled.
Further study will need to remedy this deficiency. Values of the two empirical parameters in the driven-
dissipative model, the solar wind-magnetosphere coupling constant and the thermospheric relaxation
constant, exhibit solar cycle dependence and can be determined as functions of the F10.7 solar irradiance proxy.
This provides a convenient way to determinemodel parameters without any prior knowledge of a geomagnetic
storm. Model accuracy was also found to be improved by separating storms by type (CME or CIR). The general
applicability of themodel and the model parameter fits established here will be useful to improve the density
forecasts necessary to increase space object tracking accuracy in order to avoid spacecraft collisions.
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