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Modeling NAPL dissolution from pendular rings in idealized
porous media
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1Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, U.S. Environmental
Protection Agency, Ada, Oklahoma, USA, 2Department of Civil and Environmental Engineering, U.S. Air Force Academy,
USAF Academy, Colorado, USA, 3Department of Systems Engineering and Management, Air Force Institute of Technology,
Wright-Patterson Air Force Base, Ohio, USA, 4Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, Michigan, USA

Abstract The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time
frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and
assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites
might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for
estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL
resides as pendular rings around the contact points of porous media idealized as spherical particles in a hex-
agonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-
water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to
the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical
means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an
organic-wet system. A comparison of the predictions from this theoretical model with predictions from
empirically derived formulations from the literature for water-wet systems showed a consistent range of val-
ues for the mass transfer rate coefficient, despite the significant differences in model foundations (water
wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system
conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.

1. Introduction

Nonaqueous phase liquid (NAPL) contamination at subsurface sites presents a persistent source of dissolved
phase contamination, which can drive the site’s remediation strategy and time to cleanup [US EPA, 2003;
Christ et al., 2005]. When released, NAPL migrates downward to and often below the water table (depending
on its density and the fluctuations of the water table) where it can become immobilized in discontinuous
forms or in high saturation pools [Mercer and Cohen, 1990; Kueper et al., 1993]. The discontinuous forms may
be single-pore or multipore blobs, or pendular rings depending on the porous media geometry and wett-
ability characteristics. Although NAPLs are often assumed to be nonwetting relative to the aquifer solids,
the partitioning and sorption of trace constituents in the NAPLs (e.g., surfactants, organic acids, and bases)
can lead to organic-wetting conditions [Powers and Tamblin, 1995; Lord et al., 1997a, 1997b; Zheng and
Powers, 1999; Dwarakanath et al., 2002; Ryder and Demond, 2008]. Soil systems containing complex NAPLs,
such as coal tars and creosotes, are often organic wetting [Hugaboom and Powers, 2002; Birak and Miller,
2009]. If the system is organic wetting, the residual NAPL may be distributed as pendular rings surrounding
the contact points of soil grains. In such scenarios, the dissolution of the NAPL from pendular rings can
become a dominant factor in long-term site management.

The dissolution of the NAPL in the subsurface is a function of the interfacial area between the NAPL and aque-
ous phase, the concentration gradient that is the driving force for mass transfer from the NAPL surface to the
bulk aqueous fluid, and the diffusion coefficient across the boundary layer [Weber and DiGiano, 1996]. A vari-
ety of studies have focused on different aspects of the dissolution process, including the influence of the
aqueous and NAPL saturation geometry on interfacial mass transfer [Knutson et al., 2001; Culligan et al., 2004;
Cho and Annable, 2005; Brusseau et al., 2006], the fitting of laboratory dissolution measurements to develop
empirical models [Miller et al., 1990; Imhoff et al., 1994; Powers et al., 1994b], and the employment of pore-
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scale models to delineate the influence of pore structure on the rate of mass exchange [Reeves and Celia,
1996; Held and Celia, 2001; Dobson et al., 2006]. These studies, however, generally assume that the porous
medium is hydrophilic and that the NAPL configuration is in the form of spherical blobs immobilized in pore
bodies [Gvirtzman and Roberts, 1991]. However, as Dwarakanath et al. [2002] point out, such assumptions
ignore the field evidence of altered wettabilities at waste sites. The five systems contaminated with NAPL that
Dwarakanath et al. [2002] investigated were mixed wet to oil wet; none were water wet. Thus, the dissolution
of a wetting NAPL, distributed as pendular rings surrounding the contact points of soil grains, needs to be
considered as a feasible scenario that may be encountered in the field.

The rate of dissolution depends on the interfacial area between the NAPL and the aqueous phase. Reeves and
Celia [1996] presented a pore-scale network model that explored the relationship between capillary pressure
(Pc), water saturation (Sw ), and liquid-liquid (water (w)-NAPL (n)) specific interfacial area (Anw ). The network
model conceptualized the porous medium as a cubic lattice (pore bodies) connected by uniformly distributed
biconical tubes, which allowed a direct computation of the interfacial geometry including the radius of the
pore throat menisci. Simulation results demonstrated a well-behaved Pc-Sw -Anw relationship [Hassanizadeh
and Gray, 1993], implying that direct estimates of Anw could be obtained from the Pc-Sw relationship. Based
on the earlier work of Hassanizadeh and Gray [1993], Held and Celia [2001] developed a computational pore-
scale model that included mass transfer and explicitly tracked the liquid-liquid interfaces, enabling a more
accurate investigation of local and effective mass transfer coefficients. Furthermore, by including nonwetting
phase snap-off and retraction of NAPL from the pore body to the pore throats, they more closely simulated
conditions that may be present in systems with a significant quantity of NAPL immobilized as pendular rings.
A thermodynamically based model for predicting two-fluid interfacial area within a porous medium as a func-
tion of fluid phase saturation and saturation history was presented by Grant and Gerhard [2007], which is an
extension of the thermodynamic model developed by Leverett [1941]. More recently, Porter et al. [2010] used
thermodynamic considerations which suggested that Anw is proportional to the work of fluid displacement as
estimated by the area under the Pc-Sw curve [Leverett, 1941] to examine the dependence of Anw on Sw . How-
ever, these thermodynamically based approaches estimated the NAPL-aqueous phase specific surface area
indirectly and, therefore, did not require knowledge of the NAPL morphology.

More recent work has continued to refine these pore-scale approaches. For example, Bear et al. [2011] ana-
lyzed the analytical solutions to the Young-Laplace equation presented by Melrose [1966] and Orr et al.
[1975] using a geometrical approach and idealized wetting-nonwetting interfacial morphologies (e.g.,
nodoid, catenoid, negative unduloid, cylinder, positive unduloid, sphere, and positive nodoid). However,
their work elucidated the influence of morphology on the Pc-Sw relationship, not on interfacial area. The
work of Rubinstein and Fel [2013] concentrated on the topology of pendular rings bridging two solid surfa-
ces and derived an elegant set of equations in parametric form for the curvature, volume, and surface area
as a function of the fluid filling angle. However, they did not attempt to apply these equations to the phe-
nomenon of pendular ring dissolution.

This work focuses specifically on modeling the dissolution from NAPL distributed as pendular rings in the
subsurface in organic-wetting systems. A set of novel, exact solutions to the Young-Laplace equation for a
porous medium idealized as spherical particles in a hexagonal close packing was developed to quantify the
pendular ring surface area and volume as a function of the NAPL saturation. Volume averaging yielded mac-
roscopic quantities for NAPL saturation and interfacial area per unit volume of the porous medium, which
when coupled with a pore-scale transport model based on Hagen-Poiseuille flow in a capillary tube, gave a
rate coefficient quantifying mass transfer from the NAPL to the aqueous phase. Regression functions were
also developed to enable simpler calculations of the NAPL dissolution rate coefficient based on the analytic
solutions for the pendular ring interfacial area and the diffusive flux across the NAPL-water interface in a
capillary tube. This new function employs the NAPL saturation, solid particle radius, and contact angle as
well as a modified Peclet number to estimate the mass transfer rate coefficient for NAPL dissolution.

2. Model Development

2.1. Pendular Ring Surface
Quantifying NAPL dissolution requires a specification of the interfacial area between the NAPL (n) and
the aqueous (w) phases. Here the porous medium is idealized as spheres arranged in a hexagonal
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close packing, which has a coordination number of 12 (Figure 1a). Figure 1b depicts the hexagonal
unit cell surrounding the center spherical particle. This unit cell is composed of eight regular tetrahe-
drons (Figure 1c) and six square pyramids (Figure 1d), which dictate the shape and volume of the
residual NAPL.

It is assumed that the residual NAPL resides as the wetting fluid distributed as pendular rings surrounding
the contact point between two soil particles (Figure 2a). The shape of a pendular ring surrounding the con-
tact point between two spheres can be described by the Young-Laplace equation as [Rey, 2000]:

rr � n̂52Dp (1)

where n̂ is the outward unit normal vector for the pendular ring surface, r is the NAPL-water interfacial ten-
sion, and Dp is the pressure difference (pNAPL2pwater) across the interface due to the surface curvature. The
general solution to (1) in a three-dimensional space has the form f ðx; y; zÞ50 and the outward unit normal
vector for this surface may be written as:

n̂5
fx x̂1fy ŷ1fz ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2
x 1f 2

y 1f 2
z

q (2)

where fx5@f=@x, fy5@f=@y, fz5@f=@z, and (x̂; ŷ; ẑ) are the unit vectors in Cartesian space.

However, given that the pendular ring resides at the contact point between two soil particles and is gener-
ally assumed to have a surface symmetric about a line connecting the centers of these two particles (Figures
2b and 2c), the surface is more readily described in cylindrical coordinates as a function r5f ðzÞ, which upon
substitution into equation (1) yields:

Figure 1. (a) Closed hexagonal packing cluster containing 13 spheres (coordination number 5 12), (b) a triangular orthobicupola compris-
ing a hexagonal unit cell, made up of (c) regular tetrahedrons containing sections of four spheres and (d) square pyramids containing
sections of five spheres.
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1

rð11r02Þ1=2
2

r00

ð11r02Þ3=2
5

Dp
r

(3)

where r05@f=@z and r005@2f=@z2. Figure 2c shows that the pendular ring radius (r) ranges from r5rp to
r5rc , where rp is the radius of the pendular ring at z50, and rc is the radius of the pendular ring at z5zc , i.e.,
where the pendular ring contacts the surface of the spherical particle with a contact angle hc , measured
through the NAPL. This contact angle is an experimentally quantifiable thermodynamic property, and is
assumed to be known and single valued for a specific solid-liquid-liquid combination. These two constraints
on the pendular ring surface:

r5rp; z50 (4a)

@r
@z

5tanðhf Þ; z5zc (4b)

where hf is the angle between the z axis and the line tangent to the pendular ring surface passing through the
point (zc; rc) (as shown in Figure 2c), provide the boundary conditions necessary for the solution of equation (3).
To facilitate the solution of equation (3) subject to equations (4a) and (4b), equation (3) was transformed to:

1
rr0

@

@z
r

ð11r02Þ1=2

" #
52k (5)

Figure 2. (a) Pendular ring at the contact point between two spherical particles, (b) cross section of a pendular ring cut along the r direc-
tion, (c) pendular ring in two-dimensional cylinder coordinates. Note that the actual shape of a pendular ring in three dimensions is the
object generated by revolving about the z axis as shown in Figure 2b.

Water Resources Research 10.1002/2015WR016924

HUANG ET AL. MODELING NAPL DISSOLUTION FROM PENDULAR RINGS 8185



where k5Dp=ð2rÞ. Equation (5) can be readily integrated to give:

r

ð11r02Þ1=2
5kr21F (6)

where F is the integration constant, which is determined by applying the boundary condition equation (4b):

F5
rc

½11tan2ðhf Þ�1=2
2kr2

c (7a)

Given that hf 5hs2hc (where hs is the angle between the z axis and the line tangent to the sphere surface
passing through the point (zc; rc), as defined in Figure 2c):

tanðhf Þ5
tanðhsÞ2tanðhcÞ

11tanðhsÞtanðhcÞ
(7b)

based on the angle addition formula for the tangent function. Furthermore, tanðhsÞ is the slope of the line
tangent to the sphere surface at r5rc , which can be represented by:

tanðhsÞ5
1
rc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R22r2

c

q
(7c)

where R is the radius of the spherical particles. Employing equations (7b) and (7c), the integration constant
F may be rewritten as:

F5
rc

R
½rccosðhcÞ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R22r2

c

q
sinðhcÞ�2kr2

c (7d)

Thus, the solution to equation (6), using the form of the integration constant presented in equation (7d), is:ð r

rc

kr21F

½r22ðkr21FÞ2�1=2
dr5z1B (8)

where B is the second integration constant that can be determined using the boundary condition given in
equation (4a):

B5

ð rp

rc

kr21F

½r22ðkr21FÞ2�1=2
dr (9)

with rp still unknown. However, based on the pendular ring symmetry in the r-z plane, it is clear that an
extrema must be present at z50 and r5rp; thus, r050 at this location. Applying these conditions to equation
(6), the parameter rp is obtained by finding the roots of:

kr2
p2rp1F50 (10a)

giving:

rp5
1

2k
ð16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
124kF
p

Þ (10b)

The root selection for equation (10b) is determined by rp < rc as the NAPL is assumed to be the wetting
phase.

Thus, assuming k can be determined, the solution describing the surface of a NAPL pendular ring at the
interface connecting two solid spheres in r-z space is:

z5

ð r

rc

kr21F

½r22ðkr21FÞ2�1=2
dr2B (11)

Equation (11) involves three prescribed parameters: R, hc , and rc , and one parameter that needs to be deter-
mined, k. The parameter k has been shown to be the eigenvalue of equation (5) [Rubinstein and Fel, 2013],
which can be determined separately based on additional boundary conditions.
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2.2. Capillary Pressure-Saturation Relationship
Recognizing that the pressure difference across the pendular ring surface, Dp5pNAPL2pwater commonly
referred to as the capillary pressure pc , is given by Dp52rk, k can be determined by noting that when r5rc

in equation (11), zc52B, and because z5zc lies on the surface of the spherical particle:

zc5R2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R22r2

c

q
(12)

Combining equations (9) and (12) gives:

ð rp

rc

kr21F

½r22ðkr21FÞ2�1=2
dr1R2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R22r2

c

q
50 (13)

Equation (13) is an important condition that can be used to find a unique value for k that solves equation (3),
assuming that R, hc , and rc are known. Once k is known, the capillary pressure can be calculated. Rubinstein
and Fel [2013] demonstrated that for some combinations of R, hc , and rc , the eigenvalue k does not exist.
However, when k does exist as a solution to equation (13), this equation represents a theoretical relation-
ship between capillary pressure and saturation, as rc is a surrogate for NAPL saturation. Figure 3 displays the
solution to equation (13) in terms of pc as a function of the pendular ring radius for several values of the
contact angle hc .

2.3. Pendular Ring Interfacial Area and Volume
To describe the surface of the pendular ring, which can then be used to find the interfacial area between
the NAPL and water, equation (13) is first solved to obtain k, which is then used to solve equation (11).
Equation (11) actually describes a curve. To obtain the pendular ring surface, this curve must be revolved

Figure 3. Capillary pressure (pNAPL2pwater ) as a function of pendular ring radius at the contact point (rc ) normalized to the solid particle
radius (R) for three different contact angles: hc530� , hc545� , and hc560� . rc is a surrogate for NAPL saturation.
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around the z axis, as shown in Figure 2b.
The volume of the pendular ring (VPR)
can thus be obtained by integration:

VPR52
ð zc

0
pfr22½R22ðz2RÞ2�gdz (14)

which, using equation (11), can be
rewritten as:

VPR52p
ð rc

rp

r2ðkr21FÞ
½r22ðkr21FÞ2�1=2

dr

22p R2zc2
1
3
ðzc2RÞ32

1
3

R3

� �
(15)

Likewise, the interfacial area between the NAPL and the aqueous phase, which is equivalent to the surface
area of the NAPL pendular ring (APR), can be obtained by evaluating the integral:

APR52
ð zc

0
2prð11r02Þ1=2dz (16)

which, using equation (11), can be rewritten as:

APR54p
ð rc

rp

r2

½r22ðkr21FÞ2�1=2
dr (17)

Equations (15) and (17) provide a means for quantifying the NAPL saturation and specific interfacial area,
respectively. Given the volume and interfacial area of a single pendular ring and the geometry of the pore
network, the individual volumes and areas can be summed to obtain an overall NAPL saturation and interfa-
cial area. Based on Figure 1, there are eight regular tetrahedrons and six square pyramids in a unit cell that
need to be summed over to obtain the overall unit cell behavior. Tables 1 and 2 give the formulas for com-
puting the geometric quantities related to regular tetrahedrons and square pyramids. Once computed, they
can be used to quantify the NAPL saturation, Sn, and specific interfacial area, Anw , according to:

Sn5
VNAPL

VU2VS
5

18ð2uff
T 1uff

P 1ufb
P Þ

20
ffiffiffi
2
p

2ð16XT 19XPÞ
VPR

pR3
(18)

Anw5
ANAPL

VU
5

9ð2uff
T 1uff

P 1ufb
P Þ

10
ffiffiffi
2
p APR

pR3
(19)

(For the definitions of the variables in equations (18) and (19), see Tables 1 and 2.) Figure 4 depicts the spe-
cific interfacial area, Anw given by equation (19), as a function of the NAPL saturation, given by equation
(18), for various solid particle radius (R) and contact angle (hc) combinations. The range of values of NAPL
saturation are typical of values found in the field [Kueper et al., 1993; Young et al., 1999] and are especially
relevant during the latter part of a NAPL source remediation. The calculations show that as R decreases, Anw

increases regardless of the value of the contact angle; thus, a smaller particle size implies a larger area of
contact between the NAPL and water, and higher
rates of interphase mass transfer. Such a depend-
ence has been demonstrated previously [Cho and
Annable, 2005; Dobson et al., 2006; Brusseau et al.,
2008].

2.4. Mass Transfer Rate Coefficient
The function describing the specific surface area of
pendular rings derived in the previous section can
form the basis for a theoretical quantification of
NAPL dissolution from pendular rings. Since the
interphase mass transfer is a function of the

Table 1. Geometric Properties of a Regular Tetrahedron and a Square
Pyramida

Property Regular Tetrahedron Square Pyramid

Volume VT 5 1
3

ffiffiffi
8
p

R3 VP5 1
3

ffiffiffiffiffi
32
p

R3

Solid angle XT 53arccosð1=3Þ2p XP54arctanð
ffiffiffi
2
p

=4Þ

Face edge face angle uff
T 5arccosð1=3Þ uff

P 5arccosð21=3Þ

Face edge base angle ufb
P 5arctanð

ffiffiffi
2
p
Þ

Volume occupied by solid V s
T 5 4

3 XT R3 V s
P5XP R3

Surface area of sphere ST 54XT R2 SP53XP R2

Number of pendular rings NT 5 3
p uff

T NP5 2
p ðuff

P 1ufb
P Þ

Number in a unit cell 8 6

aR 5 radius of the spheres making up the porous medium.

Table 2. Unit Cell Geometric Propertiesa

Parameter Equation

Total volume (VU ) 40
ffiffiffi
2
p
3 R3

Total volume of the solid (VS) ð32
3 XT 16XPÞR3

Porosity (h) 12 1
20
ffiffi
2
p ð16XT 19XPÞ

Total volume of the NAPL (VNAPL) 12
p ð2uff

T 1uff
P 1ufb

P ÞVPR

Total surface of the NAPL (ANAPL) 12
p ð2uff

T 1uff
P 1ufb

P ÞAPR

aR 5 radius of the spheres making up the porous medium.
VPR is given by equation (15); APR is given by equation (17).
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interfacial area where the dissolution is occurring, the interfacial area must also be incorporated in the
expression of the rate of dissolution [Powers et al., 1994a]. The rate of mass transport, Nd , may be given as
[Miller et al., 1990; Held and Celia, 2001]:

Nd5Anw Dm
@C
@n̂

5Anw klðCs2CiÞ (20)

where Anw is the specific surface area of NAPL, Dm is the bulk aqueous phase diffusion coefficient of the sol-
ute, C is the local aqueous concentration of NAPL associated with the NAPL surface, n̂ is the normal vector
of the interface between water and NAPL, Cs is the aqueous phase solubility of NAPL, Ci is the bulk aqueous
phase concentration of NAPL, and kl is the mass transfer coefficient. Investigators who have used a linear
difference in concentration as the driving force for NAPL dissolution have typically lumped Anw and kl

together to define a mass transfer rate coefficient a, where a5Anw kl , so that the mass transfer coefficient
and the specific interfacial area do not need to be determined independently [Miller et al., 1990; Imhoff
et al., 1994; Powers et al., 1994a].

Yet to obtain deeper insight into the process of NAPL dissolution, it is necessary to independently quantify
the mass transfer coefficient and specific surface area appearing in equation (20). In the previous section,
we derived a theoretical expression for the specific surface area Anw ; here we quantify the mass transfer
coefficient kl . The task of obtaining an analytical expression for kl is not trivial since the parameter depends
on several factors including fluid velocity, pore size, and solute diffusivity. As suggested by equation (20),
the mass transfer coefficient may be mathematically represented as:

kl5Dm
@C
@n̂

1
ðCs2CiÞ

(21)

Figure 4. Specific interfacial area between the NAPL and the aqueous phase as a function of NAPL saturation for various particle radii (R)
assuming (a) hc520� and (b) hc550� .
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To generate an analytic expression for kl , it is assumed that the porous medium can be represented as a bundle
of capillary tubes with the equivalent pore radius, Rc , and porosity, h, of the hexagonal unit cell, as conceptualized
in Figure A1. Then, using the approach developed in Appendix A, the mass transfer coefficient can be written as:

kl5
Dm

Rc
f ðPe0Þ (22)

where

f ðPe0Þ5 2a0
Mða011; 2; i

ffiffiffiffiffiffi
Pe0
p

Þ
Mða0; 1; i

ffiffiffiffiffiffi
Pe0
p

Þ
21

" #
i
ffiffiffiffiffiffi
Pe0
p

(23)

a05
1
2

2i
1
4

ffiffiffiffiffiffi
Pe0
p� �

(24)

Pe05
2vR2

c

DmDx
(25)

Rc5
40

ffiffiffi
2
p

48XT 127XP
hR (26)

Dx5
½60

ffiffiffi
2
p

23ð16XT 19XPÞ�ð16XT 19XPÞ2

22400p
R

h2 (27)

and Mð� � �Þ is the Kummer’s function of the first kind, v is the average pore fluid velocity, Dx is the character-
istic length over which the dissolution occurs, XT and XP are the solid angle of a regular tetrahedron and a
square pyramid, respectively (Table 1), and i5

ffiffiffiffiffiffiffi
21
p

. Using equation (22), equation (20) becomes:

Nd5Anw
Dm

Rc
f ðPe0ÞðCs2CiÞ (28)

Thus, the mass transfer rate coefficient, a, can be calculated as:

a5Anw
Dm

Rc
f ðPe0Þ (29)

2.5. Simplification of Theoretical Model for Calculation of Mass Transfer Rate Coefficient
Using equation (29) to find the mass transfer rate coefficient requires determining the parameters Anw ,
which requires solving the Young-Laplace equation, and the function f ðPe0Þ, which requires evaluating a
Kummer’s function [Pearson, 2009]. Hence, simpler relationships for calculating the interfacial area and the
function f ðPe0Þ would be useful for general calculations. The theoretical analysis of the pendular ring under-
taken here revealed that the relationship between Anw and hc describes a caternary curve and thus can be
described by a hyperbolic cosine function (cosh). Furthermore, if hc approaches 908, the curve describing
the pendular ring has a minimum curvature (and thus a minimum area), suggesting that a factor of hc2p=2
may be appropriate. Performing a series of regression analyses using MATLAB’s least squares fitting routine
between the solid particle radius R, NAPL contact angle hc , and NAPL saturation Sn as the independent vari-
ables, and calculated values of Anw obtained by solving equation (19) as the dependent variable, yielded:

Anw5
kcoshð2hc=p21Þ

R
Sb

n (30)

where k51:604 and b50:746 are the best fit values.

The function f ðPe0Þ is univariate with only a single independent variable, Pe0. Interestingly, the function f ðPe0Þ
appears to possess different forms for 0 � Pe0 � 1 and Pe0 > 1, and thus is perhaps better fitted with two differ-
ent power functions. Performing a series of regression analyses fitting f ðPe0Þ as the dependent variable yielded:

f 5
k1ðPe0Þc1 ; 0 � Pe0 � 1

k2ðPe0Þc2 1d2; Pe0 > 1

(
(31)
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where k150:227, c150:948, k250:482, c250:500, and d2520:260 are the best fit values. Figures 5a–5c
compare the values of the specific surface area of the NAPL calculated using equation (30) (fitted) and equa-
tion (19) (theoretically calculated), whereas Figure 5d shows f ðPe0Þ calculated using equation (31) (fitted)
and equation (23) (theoretically calculated). The goodness of fit between the fitted and calculated values
shown in this figure suggests that there is a minimal loss of accuracy in using the equations found by
regression, particularly if the contact angle is 208� hc� 708.

Using the simplified forms for Anw (equation (30)) and f ðPe0Þ (equation (31)), the mass transfer rate coeffi-
cient may be written as:

a5
7:0Dm

R2 coshð2hc=p21ÞS0:746
n

0:227ðPe0Þ0:948; 0 � Pe0 � 1

0:482ðPe0Þ1=2
20:260; Pe0 > 1

(
(32)

3. Comparison of Theoretical Model to Other Formulations

Conventionally, a modified Sherwood number defined as Sh05ad2
50=Dm [e.g., Miller et al., 1990; Powers et al.,

1994a] can be used to calculate the mass transfer rate coefficient. Based on the formulation for a presented
in equation (29):

Sh05
4R2Anw

Rc
f ðPe0Þ (33)

Figure 5. Comparison between calculations of the NAPL specific surface area (Anw ) using equation (19) (solid line) and equation (30) (symbols) as a function of (a) particle radius (R), (b)
contact angle (hc ), and (c) NAPL saturation (Sn). (d) Comparison between the calculation of the function f (Pe0) using equation (23) (solid line) and equation (31).
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The form of the Sherwood number given in equation (33) is consistent with those derived using experimen-
tal studies and empirical models, yet has the advantage of providing a theoretical basis for the rate of
mass transfer that can be evaluated explicitly to show the dependence of a on Sn, v, R, and hc for an
organic-wetting system. For example, if Sn50:005, v53 m/d, R50:4 mm, and hc530� , a equals 14.33 1/day
(Figure 6a). Figure 6a illustrates that as the NAPL saturation increases, the mass transfer rate coefficient
increases due to the coincident increase in interfacial area available for mass transfer. However, the increase
in mass transfer rate coefficient is less pronounced in systems with larger solid particle radii due to the rela-
tively smaller increase in specific interfacial area as the NAPL saturation increases. Alternatively, equation
(29) can be used to examine the mass transfer rate coefficient as a function of saturation, contact angle,
and fluid pore velocity. Figure 6b presents a as a function of Sn for R50:4, v 5 3.0 m/d and values of hc rang-
ing from 158 to 508. This figure shows that, as the contact angle increases at a particular value of Sn, the
mass transfer rate coefficient decreases due to a decrease in interfacial area. Figure 6c shows a as a function
of Sn for R 5 0.4 mm, hc 5308, and v 5 1.0, 3.0, 10.0 m/d; this figure shows that, as the fluid pore velocity
increases, the mass transfer rate coefficient increases due to the more rapid removal of solute from the
interface between the NAPL and the aqueous phase.

The behavior of the mass transfer rate coefficient indicated in equation (32) is consistent with the power-
function relationships commonly employed in the literature for dissolution from nonwetting NAPL distrib-
uted as spherical blobs in the pore bodies [Miller et al., 1990; Powers et al., 1992, 1994a; Imhoff et al., 1994;
Bradford and Abriola, 2001]. The predictive capability of the model for calculating the mass transfer rate
coefficient as a function of the NAPL saturation and fluid velocity developed herein can be compared to
that of empirical dissolution models which have appeared in the literature. Table 3 gives three correlations
found in the literature [Miller et al., 1990; Imhoff et al., 1994; Powers et al., 1994a]. Figure 7 compares the mass

Figure 6. Mass transfer rate coefficient (in units of days21) as a function of NAPL saturation for (a) different solid particle radii, assuming a contact angle of 308 and an average fluid pore
velocity of 3 m/d, (b) different contact angles assuming a solid particle radius of 0.4 mm and an average fluid pore velocity of 3 m/d, and (c) different average fluid pore velocities assum-
ing a solid particle radius of 0.4 mm and a contact angle of 308.
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transfer rate coefficients calculated using
the models presented in Table 3 with
those calculated using the model pro-
posed here. The Miller et al. [1990] model
gives the largest values of a. The Powers
et al. [1994a] model gives smaller values
of a than both our model and that of
Imhoff et al. [1994], especially at higher
NAPL saturations. The model developed
here predicts faster mass transfer than
the model of Imhoff et al. [1994] at low
contact angles, though the prediction is
similar at larger contact angles (e.g.,
hc570�). This observation is especially
interesting since these empirical models
were developed in systems where non-
wetting NAPL blobs were distributed in
the pore bodies, while the model

developed here assumed a wetting NAPL phase, distributed as pendular rings at the soil contact points.
Despite these widely different conceptualizations of the distribution of the residual NAPL, the dissolu-
tion predictions of the model developed here are within the range of those previously presented in
the literature.

According to Knutson et al. [2001], whether there is a dependence of the mass transfer rate on NAPL config-
uration is contingent on the Peclet number, defined in that study as Pe 5 vd/Dm, where d is the grain diame-
ter. Taking d 5 d50 and using the values from Table 3, Pe 5 22 for the simulations shown in Figure 7. This
value falls in the range of Pe where, based on the work in Knutson et al. [2001], changes in the mass transfer
rate coefficient are accounted for by variation in interfacial area, with only minor dependence on NAPL

Table 3. Empirical Correlations for Mass Transfer Rate Coefficients for NAPL
Dissolution From Nonwetting Gangliaa

Correlation Reference

a5 Dm
d2

50
12R0:75

e S0:6
n S0:5

c Miller et al. [1990]

a5 Dm
d2

50
340R0:71

e S0:87
n ðd50=LÞ0:31 Imhoff et al. [1994]

a5 Dm
d2

50
4:13R0:598

e d0:673U0:369
i ðSn=SniÞ0:667 Powers et al. [1994a]

aEquations have been rewritten for consistency in notation. Re is the Reyn-
olds number, defined as Re5vqw d50=lw , where v is the groundwater velocity
(5 3.78 m/d) [Powers et al., 1994a], qw and mw are the density and viscosity of
water, respectively (5 998 kg/m3 and 8.9 3 1024 N�s/m2, respectively), and
d50 is median grain diameter (5 0.45 mm; Wagner 50 sand [Powers et al.,
1994a]). Sc is the Schmitt number, defined as Sc5lw=ðDmqwÞ, where Dm is
the aqueous diffusion coefficient (5 8.8 3 10210 m2/s; value for trichloroeth-
ylene from Powers et al. [1994a]). L is the test column length (5 0.035 m;
approximately average column length in Powers et al. [1994a]). d is a normal-
ized grain size, defined as d5d50=dM , where dM is the diameter of a medium
sand grain (5 0. 5 mm), Ui is the uniformity index (5 1.45; Wagner 50 sand
[Powers et al., 1994a]); Sni is the initial NAPL saturation (5 0.134) [Powers
et al., 1994a].

Figure 7. Comparison of the mass transfer rate coefficient a obtained by equation (29) and literature models given in Table 3.
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configuration. The work presented here supports the conclusion that NAPL configuration is of lesser conse-
quence at such values of Pe. Even the significant differences in the distribution of NAPL residual based on
wettability, distributed either as blobs or as pendular rings, appear to be of secondary importance in calcu-
lating interfacial mass transfer under these conditions.

4. Conclusions

This work provides a theoretical means of calculating the rate of dissolution of NAPL in organic-wetting
situations where the NAPL is immobilized as pendular rings surrounding the contact point between
spherical soil particles. An exact solution to the Young-Laplace equation is presented assuming a hexago-
nal close packing of uniform solid spheres. The solution is presented in a novel form that yields an ana-
lytic pc-Sn relationship and facilitates the calculation of the pendular ring surface area and volume,
enabling the quantification of the NAPL specific interfacial area and saturation. In addition, an exact solu-
tion to the advection-diffusion equation describing the transport of a solute in an equivalent capillary
tube is presented, which, when coupled with the interfacial area, allows an analytic quantification of the
mass transfer coefficient. Using these analytic expressions, a simple equation was obtained by regression
to give the mass transfer rate coefficient as a function of the particle size (R), the contact angle (hc), and
the NAPL saturation (Sn

n), as well as a modified Peclet number (Pe0). Generally, correlations that have
been developed to compute the mass transfer rate coefficient do not include the contact angle, whereas
the model developed here does so explicitly. However, a comparison with empirically derived values for
mass transfer rate coefficients in water-wet systems where the NAPL is distributed as blobs in pore bodies
demonstrated that the values predicted here lie in the range of empirically derived values, despite the
significant differences in system conceptualizations. Thus, this work implies that at higher values of Pe,
differences in the rate of interfacial mass transfer can be accounted for by differences in interfacial area,
and variability in the configuration of the NAPL residual between water-wet and organic-wet systems is
of lesser importance.

Appendix A: Derivation of the Mass Transfer Coefficient (Equation (22))

For relatively simple cases of well-defined geometries under ideal conditions, analytical expressions for
the mass transfer coefficient describing NAPL dissolution can be derived. The porous medium can be con-
ceptualized as a set of capillary tubes with an equivalent pore radius and a porosity of a hexagonal unit
cell, with a stagnant layer of NAPL lining the inside of the tube (Figure A1). The water flows through the
capillary tube in accordance with the Hagen-Poiseuille law, with mass transfer occurring across the NAPL-
water interface. Assuming advection in the x direction and diffusion in the r direction, the steady state
transport of the dissolved NAPL in the aqueous phase is governed by:

@

@r
rDm

@C
@r

� �
2ru

@C
@x

50 (A1)

where Cðx; rÞ is the aqueous-phase con-
centration of dissolved NAPL, Dm is the
molecular diffusion coefficient, u is the
velocity of pore fluid, r is the coordinate
in the radial direction of the capillary
tube, and x is the coordinate in the axial
direction of the capillary tube. Based on
the Hagen-Poiseuille law, the velocity of
the pore fluid as a function of r may be
represented as [Bear, 1972]:

u52v 12
r2

R2
c

� �
(A2)

Figure A1. Capillary tube model for calculation of the mass transport coefficient.
The capillary tube has an equivalent pore radius Rc, defined by equation (A3),
and an inner surface covered by a stagnant layer of NAPL. Water flows through
the tube in accordance with the Hagen-Poiseuille law and dissolution occurs at
the surface of the NAPL annulus. The flow direction is aligned with the x axis.
The solute can advect in the x direction and diffuse in the r direction.
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where v is the average pore fluid velocity, Rc is the equivalent pore radius, typically expressed as:

Rc52h=As (A3)

where h is the porosity, As is the specific surface area of the solid particles, calculated as:

As5
1

20
ffiffiffi
2
p

R
ð48XT 127XPÞ (A4)

where XT and XP are the solid angles of a regular tetrahedron and square pyramid, respectively (see
Table 1). The calculation of an arithmetic mean of the concentration:

�CðrÞ5 1
Dx

ðDx

0
Cðx; rÞdx (A5)

over a characteristic length Dx in the direction of flow, calculated as the average pore volume �V p, divided
by the cross-sectional area of the capillary tube:

Dx5
�V p

pR2
c

(A6)

where

�V p5
1

21
ð16XT 19XPÞR3 (A7)

simplifies the problem. Applying equation (A5) to equation (A1) yields:

d2 �C
dr2

1
1
r

d�C
dr

2bðR2
c 2r2Þ�C o52bðR2

c 2r2ÞCi (A8)

where

b5
2v

DmR2
c Dx

(A9)

Ci is the influent concentration of NAPL at x 5 0, assumed constant over r (except at r 5 Rc, where Ci 5 Cs),
and equal to the concentration of dissolved NAPL in the bulk water entering the pore, CoðrÞ is the effluent
concentration of dissolved NAPL leaving the pore, which equals �CðrÞ. Substituting �CðrÞ for CoðrÞ, equation
(A8) can be rewritten as:

d2�C
dr2

1
1
r

d�C
dr

2bðR2
c 2r2Þ�C52bðR2

c 2r2ÞCi (A10)

The boundary conditions for equation (A10) are:

@�C
@r

50; r50 (A11)

�C5Cs; r5Rc (A12)

Using the following substitutions:

�C5exp 2i
1
2

ffiffiffi
b

p
r2

� �
wðzÞ (A13)

z5i
ffiffiffi
b

p
r2 (A14)

the homogeneous counterpart of equation (A10) becomes:

z
d2w
dz2

1ðb2zÞ dw
dz

2aw50 (A15)
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where

a5
1
2

2i
1
4

ffiffiffi
b

p
R2

c

� �
(A16)

b51 (A17)

This is a confluent hypergeometric equation known as Kummer’s equation and has the general solution:

w5AM ða; b; zÞ1 BU ða; b; zÞ (A18)

where A and B are the integration constants and Mða; b; zÞ and Uða; b; zÞ are the Kummer’s functions. Sub-
stituting equation (A18) into equation (A13), we obtain the general solution for the homogeneous counter-
part of equation (A10):

�C5exp 2i
1
2

ffiffiffi
b

p
r2

� �
½A Mða; b; zÞ1B Uða; b; zÞ� (A19)

Noting that �C5Ci is a specific solution of equation (A10), the general solutions for equation (A10) is:

�C5exp 2i
1
2

ffiffiffi
b

p
r2

� �
½A Mða; b; zÞ1B Uða; b; zÞ�1Ci (A20)

Based on the boundary conditions (A11) and (A12), B � 0 is required, and the final solution is:

�C5ðCs2CiÞ
expð2i 1

2

ffiffiffi
b
p

r2ÞMða; b; i
ffiffiffi
b
p

r2Þ
expð2i 1

2

ffiffiffi
b
p

R2
c ÞMða; b; i

ffiffiffi
b
p

R2
c Þ

1Ci (A21)

The mass flux JD across the NAPL-water interface becomes:

JD5Dm
d�CðRcÞ

dr
5DmðCs2CiÞ 2a

Mða11; b11; i
ffiffiffi
b
p

R2
c Þ

Mða; b; i
ffiffiffi
b
p

R2
c Þ

21
� �

i
ffiffiffi
b

p
Rc (A22)

Using the definition of the mass transfer coefficient given in equation (29), equation (A22) leads to:

kl5Dm 2a
Mða11; b11; i

ffiffiffi
b
p

R2
c Þ

Mða; b; i
ffiffiffi
b
p

R2
c Þ

21

� �
i
ffiffiffi
b

p
Rc (A23)

More conveniently, equation (A23) can be rewritten as:

kl5
Dm

Rc
f ðPe0Þ (A24)

where

f ðPe0Þ5 2a0
Mða011; 2; i

ffiffiffiffiffiffi
Pe0
p

Þ
Mða0; 1; i

ffiffiffiffiffiffi
Pe0
p

Þ
21

" #
i
ffiffiffiffiffiffi
Pe0
p

(A25)

a05
1
2

2i
1
4

ffiffiffiffiffiffi
Pe0
p� �

(A26)

Pe05
2vR2

c

DmDx
(A27)

Rc5
40

ffiffiffi
2
p

48XT 127XP
hR (A28)

Dx5
½60

ffiffiffi
2
p

23ð16XT 19XPÞ�ð16XT 19XPÞ2

22400p
R

h2 (A29)

where Pe0 is a modified Peclet number and f ðPe0Þ is a dimensionless function.
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