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Abstract

Visual Odometry (VO) is the estimation of a camera’s motion between sequential

image pairs. Many traditional and Deep Learning (DL) VO methods have already

been researched, including the use of Convolutional Neural Networks (CNNs) for

VO. Monocular, ground-based VO is of particular importance for environments where

satellite-based navigation systems are not available. While CNNs can estimate frame-

to-frame (F2F) motion even with monocular images, additional inputs can improve

VO predictions. In this thesis, a FlowNetS-based [1] CNN architecture estimates

VO using sequential images from the KITTI Odometry dataset [2]. For each of

three output types (full six degrees of freedom (6-DoF), Cartesian translation, and

transitional scale), a baseline network with only image pair input is compared with

a nearly identical architecture that is also given an additional rotation estimate such

as from an Inertial Navigation System (INS).

The inertially-aided networks show an order of magnitude improvement over the

baseline networks when predicting rotation. The y component rotation prediction

errors decrease from a baseline Root Mean Squared Error (RMSE) of 0.09058 deg to

an INS-aided RMSE of 0.01447 deg. However, the aided RMSE is still worse than the

INS input RMSE of 0.00268 deg. INS-aiding does not necessarily help the translation

predictions either with a maximum z translation RMSE improvement of only 0.003

meters on the test set. A full-trajectory analysis gives similar results for the rotation

prediction errors, but the translation errors are much larger. When predicting trans-

lation, the baseline networks actually perform better than the INS-aided networks in

most cases. The INS-aided neural networks are also tested for sensitivity to angular

random walk (ARW) and bias errors in the sensor measurements.
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Improved Ground-Based Monocular Visual Odometry Estimation using

Inertially-Aided Convolutional Neural Networks

I. Introduction

1.1 Problem Background

Visual Odometry (VO) is a vital area of research because it can obtain a navigation

estimate even when Global Positioning System (GPS) data is not available. Satellite-

based navigation systems transmit position information using radio frequency signals.

Because of this, GPS and other Global Navigation Satellite Systems (GNSSs) can be

jammed or spoofed. Beyond malicious attacks on GPS, building materials or water

can attenuate radio signals making them unobtainable in some urban, indoor, and

underwater environments. Mars lacks a satellite constellation entirely. Thus, while

satellite-based systems clearly provide the most accurate position information, other

navigation methods are necessary for times when GPS is not available.

Vision-based navigation and VO in particular provide such alternatives, albeit

with some drawbacks. Most importantly, VO uses cameras instead of relying on re-

ceiving radio signals, so it cannot be jammed like GPS. Traditional optical cameras

also do not send signals into the environment so they cannot be detected like RADAR,

SONAR, or LIDAR sensors. Visual Odometry (VO) is the calculation of a camera’s

ego-motion from one image frame to the next image frame in a sequence. Many meth-

ods to obtain these frame-to-frame (F2F) movements have been developed [5, 6, 7, 8].

Traditional indirect methods extract image features and match them between image

frames. These image features can be interesting pixel locations or calculated optical

1



flow vectors that track the movement of pixel intensities [9]. VO algorithms then use

image geometry and changes in perspective to calculate the camera’s motion. In addi-

tion to indirect methods, direct VO methods minimize photometric consistency error

in the pixel intensity values to determine the camera’s movement between frames

[8, 9]. More recently, researchers have used Deep Learning (DL) models like Convo-

lutional Neural Networks (CNNs) [10, 11, 12] and Recurrent Convolutional Neural

Networks (RCNNs) [9, 13, 14] to digest sequential images and estimate VO.

While VO methods produce promising results in specific environments, vision-

based navigation does have major drawbacks. For instance, sunlight, shadows, weather

effects, and seasonal changes can all inhibit or invalidate the VO results. Also, in cer-

tain environments like aerial navigation over the ocean, there may be too few features

for the VO calculation. Even with these drawbacks, VO is still a useful navigation

method.

Beyond these environment-based drawbacks, two-dimensional (2D) images do not

include absolute scale information. Traditional VO algorithms using a monocular

camera system can fully determine three-dimensional (3D) rotation and the direc-

tion of the translation, but not the absolute magnitude (scale) of the translational

movement. However, the system can determine absolute scale when it is given some

external sense of scale. Stereo camera systems successfully inject absolute scale into a

VO system using a known baseline distance between the cameras [15, 16, 17, 18, 19].

However, all stereo systems degenerate into a monocular system when features in the

scene are at much greater distances than the baseline separation distance between the

cameras. Monocular systems can still learn a sense of scale over time though using

methods like stadiometry, parallax, or depth from defocus.

Many researchers have used DL for monocular VO [9, 11, 12, 13], but very few

have considered the use of Inertial Navigation System (INS) aiding in neural networks.

2



Of the ones that have, most use a Recurrent Neural Network (RNN) to interpret the

Inertial Measurement Unit (IMU) data before they are combined with the transformed

images [14, 20].

1.2 Research Objectives

This thesis considers the use of inertial aiding for CNNs estimating monocular,

ground-based VO. The main goal is to determine if aiding a CNN with rotation

estimates helps the network obtain a more accurate VO estimate. The system learns

to predict the absolute scale of the camera’s motion through statistical training of a

neural network. Each DL model is trained and evaluated using the KITTI Odometry

dataset [2]. Three different types of network outputs are considered: full six degrees

of freedom (6-DoF) estimation, 3D Cartesian translation estimation, and translation

magnitude (scale) estimation. For each of the three output types, two models are

trained: one with INS aiding and one without. These six models are evaluated and

compared to determine the effect of INS aiding on VO estimation.

1.3 Assumptions

In order for the neural networks to learn translational scale estimation in this the-

sis, two constraints are employed. First, the KITTI Odometry dataset includes the

true position and orientation of the vehicle. Without this data, supervised learning

could not be used to train the neural networks in this thesis to estimate absolute

translation. Second, the dataset was collected using the same camera setup through-

out. The camera was kept in the same position relative to the vehicle and by extension

relative to the ground. This serves as a sort of baseline distance that constrains the

relative scale of the images. Since the relative image scale is constrained and the

absolute scale is known from the truth data, the absolute scale of this dataset can be

3



inferred from the images using supervised learning. However, because the training

relies on this fixed relationship between the height of the camera and the absolute

scale of the truth data, the DL models would not necessarily be able to predict VO

accurately, without retraining, for a dataset with a different baseline or camera focal

length.

1.4 Document Overview

A review of relevant research and background information is given in Chapter II.

This includes a survey of VO estimation methods in Section 2.2, and overviews of

coordinate notation and INS errors in Sections 2.3 and 2.4, respectively.

Chapter III covers the methodology used for experimental setup and evaluation.

An overview of the data contained in the KITTI Odometry dataset can be found

in Section 3.2 along with specifics on how the data was pre-processed for this thesis.

The architectures of the CNN and VO estimation models are described in Section 3.3.

Each model was trained with the parameters described in Section 3.4. The overall

procedure for this thesis is summarized sequentially in Section 3.5.

The results of the training and evaluation methods are given in Chapter IV. Sec-

tion 4.2 shows the training and validation results for the four CNN selection models.

The training and evaluation results of the six VO models are displayed in Section 4.3

and the effect of INS aiding is analyzed. A full trajectory evaluation in Section 4.4 is

used to visualize the integrated results of the VO estimation. Section 4.5 details the

effect of errors in the INS aiding input on the prediction outputs of the trained DL

models.

Finally, the conclusions are given in Chapter V. This includes a summary of the

results and their significance in Section 5.1 and a recommendation for future work in

Section 5.2.
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II. Background and Literature Review

2.1 Overview

This chapter provides an brief review of other research literature related to Visual

Odometry (VO) (Section 2.2). This includes traditional feature-based VO methods

(Section 2.2.3) as well as more recent Deep Learning (DL) methods (Section 2.2.4).

In addition to the literature review, this chapter also introduces the background

information necessary to understand this thesis. It presents an overview of coordinate

frames and notation (Section 2.3), including special Euclidean group (SE(3)) matrices,

and a brief explanation of Inertial Navigation System (INS) errors (Section 2.4).

2.2 Visual Odometry (VO)

The term ”Visual Odometry” was popularized by [16]. Wheel odometry uses

the number of wheel rotations and the known radius of the wheel to determine the

velocity of a ground vehicle [6]. Similarly, VO uses sequential images from a camera

to determine the camera’s change in position. When the camera or cameras used for

this task are fixed to an object, the VO can be used to describe the movement of the

object.

Compared to other navigation methods, VO has many advantages. The main

advantage over GPS is that VO does not rely on radio signals to obtain a navigation

solution. This means that VO cannot be jammed or spoofed like satellite-based

methods. The camera’s used for VO also do not emit any detectable energy, unlike

sound or LIDAR sensors. VO has an advantage over wheel odometry because its

accuracy is not degraded when travelling over rough terrain [6]. The relative cost of

cameras is also much less than some navigation sensors [7, 8]. In addition, given the

necessary configuration and conditions, a VO system can be used to get a full six
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degrees of freedom (6-DoF) navigation solution that describes both the rotation and

translation of the camera’s movement.

While VO has many advantages, it does have some important drawbacks. Optical

cameras used for VO require adequate lighting in the scene, mostly stationary objects

in the scene, and sufficient overlap in the field of view from one image to the next [6].

Because of these effects, weather or other visibility distance restrictions can reduce

the accuracy of or completely inhibit the VO calculation. In addition, the frame rate

of the camera must be high enough to ensure that there is adequate overlap between

images even when the camera is moving at its fastest or when it is turning. The

trade-off is that a higher number of frames increases the amount of drift error in the

overall trajectory, making a larger distance between images preferable. This must be

balanced with the necessity of overlap in the field of view.

2.2.1 Camera Calibration

The type of camera calibration depends on the mathematical camera model being

used. The most common camera model, and the one used in this thesis, is the

pinhole model (shown in Figure 1). A discussion of the catadioptric projection and

spherical camera models can be found in [6]. Camera calibration is used to the

remove distortion effects of the camera lens, so that the correspondence between the

two-dimensional (2D) image plane and the three-dimensional (3D) environment is

accurate. The camera calibration can be used to remap pixels from a distorted image

to pixels in an undistorted image. This allows for accurate geometric calculations

to be made based on the idea that the camera is a single point looking out from

behind the image plane. Under this assumption, each pixel value in an image can be

considered a measurement of the amount of light entering the camera at a specific

range of angles relative to the principle point. The principle point is the place usually

6



Figure 1: Pinhole camera model diagram taken from [3]. The camera coordinate
frame shown on the right side of the diagram is facing the scene and looking through
the image frame. This coordinate system is the same one used to express the pose
coordinate frames in the KITTI Odometry dataset [2]

in the center of the image plane where the light coming into the camera is at both a

vertical and horizontal angle of 0. This camera calibration is also necessary for using

epipolar geometry and the essential matrix method for computing camera movement

[6].

For stereo systems, the images also need to be rectified. According to [7], image

rectification remaps the pixels in the stereo image pair so the epipolar lines of the

left and right image are horizontal and aligned with one another. This makes feature

correspondences between the stereo image pair easier to find [7].

2.2.2 Scale Estimation

While 2D images do not have absolute scale, they do include relative scale infor-

mation. Images can be used to determine the 3D rotation and direction of translation.

However, the magnitude of the translation cannot be calculated without an external
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source.

Many researchers use stereo camera systems to solve the scale estimation issue

[15, 16, 17, 18, 19]. In this case, two cameras are placed at a fixed baseline distance

apart from one another. Since these cameras are facing the same direction, the dis-

tance to features that appear in both cameras can be determined proportional to the

baseline separation distance between cameras. Since this baseline distance is known,

the absolute scale of the camera’s motion can be fully determined. While stereo cam-

era systems can produce good results, they do require precise timing to synchronize

the two cameras and calibration and rectification to compare camera perspectives. In

addition, when the features in the scene are much further from the cameras than the

baseline distance between the cameras, the stereo system degenerates into a monocu-

lar system. This occurs because the perspective differences between the stereo images

are indistinguishable.

Because of this, monocular VO is another important area of study. Monocular

camera systems are cheaper and easier to use than stereo systems. They still require

adequate camera calibration to ensure that image features are geometrically accurate

regardless of where they appear in the image.

Monocular systems also require an adequate scale insertion method. Scale can be

determined in many ways. This is observable with humans as well as camera systems.

Even when a person only has one eye, absolute scale can be inferred from depth from

defocus, parallax, and stadiometry. Depth from defocus (or depth from focus) is

the relative increased blurriness of objects as they get further from the focal point

of the image. Parallax is the relative shift of objects due to change in perspective.

Objects that are further away will appear to shift at a slower rate than objects that are

close. Like stereo systems, parallax also degenerates when the relative shift changes of

features in the scene are indistinguishable because they are too far away. Stadiometry
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uses objects present in the images that have a known absolute scale. For instance,

if a tree with a known height is completely visible in an image, the absolute scale of

the image can be determined including the camera’s distance from the tree. With

ground vehicles, the camera is at a fixed height above the ground plane. This reduces

the amount of perspective change from frame to frame making the scale estimation

easier to calculate. Beyond these image-based methods, scale can also be inserted

into the system using data from an external sensor like a Global Positioning System

(GPS) receiver or an Inertial Measurement Unit (IMU). The main drawback of using

an additional sensor is that precise timing is required to synchronize measurements

from the external sensor with the camera images.

2.2.3 Traditional Visual Odometry Methods

Traditional VO methods can be categorized as feature based or appearance based.

Feature-based methods use the movement of interest keypoints in the image to deter-

mine camera motion. Appearance-based methods use the movement of pixel intensity

values. See [6, 7, 8] for more information on both feature-based and appearance-based

methods.

2.2.3.1 Feature-Based VO Methods

Feature-based indirect methods were first proposed in the early 1980s [6, 8]. These

methods rely on the extraction of features from the images to determine the camera’s

motion. This greatly reduces the complexity and computation time that would be

needed to analyze the entire image [6]. However, these methods can fail when feature

correspondences between images cannot be computed. For instance, this can occur

when the camera moves or rotates too much between frames.
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Feature-Based VO Pipeline Over time the traditional VO pipeline has

developed. Here is a summary of the pipeline taken from [9]:

1. Camera Calibration

2. Image Feature Extraction

3. Image Feature Matching

4. Outlier Rejection

5. Motion Estimation

6. Scale Estimation

7. Optimization

Camera Calibration See Section 2.2.1.

Sparse Feature Extraction Feature-based VO relies on feature detectors

and descriptors to extract and match points of interest between images. Feature ex-

traction identifies interesting aspects of an image. The identified features are usually

corners, blobs (large regions with similar color or brightness), or some other recogniz-

able element [7]. Extensive research has been done to ensure that extracted feature

keypoints (pixel locations) are useful for the VO process. Because features need to

be matched between images to recognize and track objects, good features should be

unique and identifiable regardless of perspective changes [7]. Some common feature

extractors are SIFT [21], SURF [22], BRISK [23], Harris-Laplace [24], FAST [25], and

MSER [26] [27]. Certain detectors work better in particular environments. For in-

stance, in urban environments where corners are prevalent, a blob detector like SIFT

may not work as well as a corner detector like FAST [7].

Feature Matching In order to match features, interest point descriptors

mathematically represent the region around a feature keypoint. These descriptors
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are then compared and said to identify the same feature if the two descriptions are

close enough. In this way, aspects of objects can be identified from multiple perspec-

tives. There are two main types of feature descriptors: binary and non-binary. Some

common feature descriptors are SIFT, SURF, BRISK, BRIEF [28] and FREAK [29].

Oriented FAST and Rotated BRIEF (ORB) [30] is a detector/descriptor method that

uses improved versions of FAST and BRIEF together. Some descriptors are specifi-

cally designed to work better with blob or corner detectors as well [7]. In general, the

best descriptor depends on the balance between accuracy and computational time.

For instance, the SIFT descriptor takes a long time to compute, but produces some of

the most stable feature descriptions for matching [7]. In addition to these traditional

feature detectors and descriptors, Deep Learning (DL) has also been used to identify

and describe feature keypoints [31, 32].

Common matching algorithms include brute-force, K-nearest neighbors, and FLANN

matching. Feature descriptions are compared using mathematical distance measures.

The higher the similarity between features, the lower the distance measure between

their descriptions will be. Common distance measures include Euclidean distance (L2-

Norm) and Manhattan distance (L1-Norm) for non-binary descriptors and Hamming

distance for binary descriptors.

Outlier Rejection The ratio test [21] can reject some mismatched features

using their descriptors. Relative locations of matched features can also be used to

reject mismatches. Matched feature keypoints can be used collectively to determine

image homography and estimate where a particular keypoint in one image should

appear in the other. If the relative locations of a matched keypoint pair vary greatly

from the majority, this pair can be rejected as an outlier. Random sample consensus

(RANSAC) [33] is a method that uses image homography for robust outlier rejection.

11



Motion Estimation With traditional VO methods, there are three main

ways that the camera’s motion is determined: 3D-to-3D, 3D-to-2D, and 2D-to-2D.

These are summarized in [6].

3D-to-3D This method uses triangulated feature points from two pairs of

images, typically two stereo pairs. Each pair of stereo images is used to triangulate the

location of feature points. The two sets of 3D feature point locations are then used to

determine the camera pose transformation (rotation and translation) that minimizes

the amount of error between one set of feature points and the transformed set of other

feature points. This calculated transform is then used as the VO estimate. In this

method, the relative translational scale is inherent in the pose calculation because 3D

feature locations are used.

3D-to-2D This method can be used by either stereo or monocular sys-

tems. To use this method, feature matches between three different images are neces-

sary. Two of the images, which can be from either a stereo image pair or a sequential

monocular image pair, are used to triangulate the 3D location of feature points. These

3D feature locations are then reprojected onto the frame of the third image and com-

pared with the actual feature keypoints in the third image. The transformation that

minimizes the reprojection error (the difference between the reprojected pixel loca-

tions and the actual pixel locations) is used as the VO estimate. This method is also

called perspective from n points (PnP) because it uses a given number (n) of points

for the reprojection error calculation. According to [16], this method is more accurate

than the 3D-to-3D method.

2D-to-2D This method calculates the essential matrix to determine the

amount of rotation and the direction of translation for the camera. The essential
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matrix describes the geometric relationship between two images taken with a cali-

brated camera. Using the epipolar constraint, a feature that appears in one image

perspective can be projected to another image perspective. The essential matrix is

calculated using this epipolar constraint. The essential matrix can then be used to

estimate the rotation and translation from one image to the next. The translation

from this calculation is the normalized direction of change in position. The relative

scale of the translation can then be calculated by triangulating 3D points that appear

in both images. The 3D distance between a pair of points in one image is divided

by the distance between the same points in the other image to determine the relative

scale. To improve the relative scale estimate, multiple scale values can be computed

for different pairs of points and the mean or median of these values can be taken.

Scale Estimation See Section 2.2.2.

Optimization Optimization methods are ways to overcome the drift errors

in scale estimation. One of the ways to do this is with a bundle adjustment which

minimizes reprojection error over a subset of the trajectory [6]. Another optimization

method is Simultaneous Localization and Mapping (SLAM). SLAM methods store

features of the environment in a map and adjusting the scale drift when a previously

identified object or feature is recognized (known as a revisit or loop closure) [6].

2.2.3.2 Appearance-Based VO Methods

Appearance-based VO methods consider the actual intensity values of the images

instead of extracting and matching feature keypoints [8].

Optical Flow According to [11], optical flow is a method of computing how

far a pixel moves from one image to the next. Dense optical flow determines the
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magnitude and direction of movement for every single pixel in the images. Sparse

optical flow only does this calculation for a subset of the pixels. Some optical flow

methods return the average flow for certain regions in the images. These optical flow

calculations can then be used to calculate the camera’s motion between perspectives

[8].

Traditional Optical Flow Calculations Many algorithms have been

developed for computing optical flow in images. Some common ones are Horn and

Schunck [34], DeepFlow [35], EpicFlow [36], and DeepMatching [37]. One of the

difficulties when relying on optical flow images for VO is the high computation time

needed to determine the pixel movements from normal image pairs. Because of this,

Deep Learning (DL) methods have been developed to accurately and quickly estimate

the optical flow values.

Optical Flow Estimation with CNNs Multiple papers have used DL

for optical flow estimation [1, 38, 39, 40]. In FlowNet [1], the authors developed

two Convolutional Neural Network (CNN) architectures. These architectures were

designed to produce an optical flow image from a pair of input images. According to

[38], FlowNet was a paradigm shift because up to this point no one had tried using

a simple CNN to do optical flow estimation. Both models in FlowNet used multiple

convolutional layers such that the image size decreased and the channel size increased

as the network progressed. FlowNetSimple (FlowNetS) used a single path that took

a stacked image pair as input. FlowNetCorr (FlowNetC) started with two separate

paths in a siamese structure that each took one of the images in the pair. Toward

the middle of FlowNetC, the two paths combined into a single path that led to the

output. In both networks, the convolutional part that gradually reduced the image

size was followed by an up-pooling section that increased the resolution of the optical
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flow image based on the learned motion representation. FlowNet 2.0 [38] improved

upon the FlowNet designs using a different training schedule, a stacked architecture

that included multiple layers of FlowNet models, and a small displacement network.

This architecture was able to greatly decrease the estimation error while running only

slightly slower than the original FlowNet models.

Direct Methods Direct VO methods rely on photometric consistency error

between the current image and the previous image to calculate the camera’s ego-

motion [8]. Photometric consistency uses the correlation of pixel intensity values

to determine the movement of subregions in the two images, and thus the overall

movement of the camera. Because direct methods do not extract features from the

images, they are able to take advantage of more available information. However, this

comes with a larger computational cost.

2.2.4 Deep Learning Visual Odometry Methods

In addition to the traditional methods for computing frame-to-frame (F2F) move-

ment, the power of Deep Learning (DL) has been applied to Visual Odometry (VO)

as well.

2.2.4.1 Ego-motion with CNNs

Early on in DL research for VO estimation, the problem was framed as a classi-

fication instead of a regression [10, 41]. Konda and Memisevic [10] proposed one of

the first DL methods for VO. They used two separate Convolutional Neural Networks

(CNNs) to process a small sequence of stereo images and output discretized estimates

of the velocity or the change in direction. The authors also tried to use a linear regres-

sion, but found that the results were better when they used classification. This may

have been due to the relatively small size of the CNN used [11]. While discretizing
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the predictions helps to reduce the necessary size of the CNN, it severely limits the

versatility and precision of the predictions.

In [42], the authors proposed a siamese CNN architecture that they used to es-

timate the 2D motion of a ground-based robot from depth images computed using

a light detection and ranging (LIDAR) 3D point cloud. The network consisted of

two streams of alternating convolutional and pooling layers that were combined using

dense (fully-connected) layers before making the actual VO predictions. The authors

tried many different variations on the architecture and the hyper-parameters.

Optical Flow Based In [43], three different CNN sub-architectures were

compared. The first CNN learned VO using a dense optical flow image. The second

CNN learned VO by considering each quadrant of the optical flow image individu-

ally. The third CNN, also known as P-CNN, used both of the other two CNNs and

combined the feature vectors before making a VO prediction.

In Flowdometry [11], the authors used FlowNetS to predict optical flow, then fed

that prediction to a separate FlowNet-based architecture that predicted the camera’s

motion in the stacked image pair. Because optical flow calculations can be compu-

tationally intensive, Flowdometry was an attempt to use deep learning to estimate

optical flow more efficiently for the purpose of VO.

The DeMoN network [39] used a stacked CNN architecture to predict depth,

camera ego-motion, optical flow, surface normals, and confidence matching. The

stacked CNN used an iterative process to improve each of its predictions. This network

took an image pair as input, but unlike VO networks, it did not require the images

to be taken at a specific interval or from a particular perspective. It avoided this

constraint because the depth was estimated in conjunction with the ego-motion. The

main network building block consisted of two stacked encoder/decoder convolutional

networks inspired by FlowNet [1]. The first network predicted optical flow based on
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the previous depth and camera motion predictions. The second network predicted

the depth map and camera motion based on that optical flow prediction. These

building blocks were configured with an initial prediction network block followed by

an identical iterative network block that reprocessed the predictions three times.

In [44], the authors used a CNN based on FlowNet 2.0 to determine the optical

flow between subsequent images then passed this data to another CNN to estimate

the camera’s motion between images. The network also learned an explainability

mask so that objects or features that could throw off the VO prediction would not be

included in the VO calculation.

ImageNet/ResNet Based The VLocNet [12] used a siamese CNN archi-

tecture for VO estimation. This architecture was based on a ResNet-50 architecture

[45]. In addition to the odometry network, an additional single-path CNN was used

to predict the global pose. The first part of the global pose network shared network

parameter weights with one of the streams in the VO network. This allowed for

multi-task learning of the camera’s motion at both a local image pair level and a

global trajectory level. This network predicted the full 6-DoF of the camera’s ego-

motion. The authors used a geometric consistency loss function to facilitate learning

both the rotation and translation, which have different units and scales. The network

tuned the loss function’s parameters during the training process. These parameters

weighted the rotation and translation loss components separately so that they had

a similar scale. VLocNet++ [46] built on the VLocNet architecture by adding a se-

mantic segmentation network. Because the semantic segmentation network shared

some parameters with the global pose network, parts of the image could be deemed

more useful or less useful for determining pose regression.
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2.2.4.2 End-to-End VO with Recurrent Convolutional Neural Net-

works (RCNNs)

The authors in [9] developed an end-to-end architecture that took in a sequence of

monocular images and used a combination of a CNN and a Recurrent Neural Network

(RNN) to predict the absolute pose of the camera in the sequence. The CNN they

used was a pre-trained FlowNetS [1] architecture without the up-pooling layers. The

network then fed the result from the CNN to a Long Short-Term Memory (LSTM)

RNN layer. This allowed the network to learn overall sequence (trajectory) informa-

tion in addition to the individual image pair movement determined by the CNN. In

addition to the pose estimation, the network also predicted estimation uncertainty

terms using unsupervised learning. In [13], the authors developed a RCNN architec-

ture based on VLocNet [12]. By adding LSTM layers in between the convolutional

layers and the dense layers, the network could better account for overall trajectory

information before predicting the camera’s pose.

2.2.4.3 Other Sensor Data and DL

While most VO with DL papers only use image-based inputs, some have tried

using inputs from other sensors as well [14, 20]. In VINet [14], the authors used a

RCNN structure that included a CNN architecture based on a pre-trained version

of FlowNetC [1]. In addition to image pairs that were fed to the CNN, the network

also took in raw IMU data. Because the IMU data was not synchronized with the

camera’s frame rate, an LSTM layer was used to condense the IMU information into

an inertial feature vector that was then concatenated with the visual feature vector

from the CNN. This combined visual/inertial feature vector was fed into another

LSTM RNN layer that produced a VO pose prediction for the image sequence. The

authors in [20], built on VINet [14] by exploring a different way of fusing the visual
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and the inertial feature vectors. Instead of a simple concatenation, they attempted

to train the network to learn a better feature vector combination method by inserting

fusion layers into the architecture.

2.2.4.4 Alternative Structures

Beyond CNNs or RCNNs, other DL structures have also been used for VO. In

[47], a Variational Auto-Encoder (VAE) was used to predict VO results. They found

that the VAE could be retrained to predict VO for different camera optic models. In

[48], multiple Generative Adversarial Network (GAN) layers were used to estimate

both depth and ego-motion.

2.3 Coordinate Notation

2.3.1 Coordinate Points

Coordinates are defined in reference to a specific set of axes. In a typical 3D

coordinate frame, each of the three axes are defined as orthogonal to each of the

other two axes. Thus, a point p expressed in the 3D origin frame (0) as the distance

from the origin to point p (0→ p) can be expressed as a vector t00→p of three numbers

(one for each axis x, y, z)

t00→p =


px

py

pz

 . (1)

The distance from point p to the origin can be expressed as the negative vector.

t0p→0 = −t00→p (2)
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2.3.2 Coordinate Frames

A coordinate frame is defined by a position and orientation relative to another

frame. If two coordinate frames α and β are located at the same position, but

their relative orientations are different, a point in α can be expressed in β’s frame

using a Direction Cosine Matrix (DCM) that transforms points from α to β. For 3D

coordinate frames, a DCM is expressed as a 3× 3 matrix (Rβ
α ∈ R3) where each row

identifies the weight of each original frame (α) axis value in the new frame (β) axis.

In addition, a DCM is orthogonal, meaning that its transpose is the same as its

inverse. Thus, given a DCM R0
α that transforms points from the α frame to the

origin frame, the DCM Rα
0 that transforms points in the opposite direction is,

Rα
0 = (R0

α)−1 = (R0
α)T . (3)

The point p, expressed in the origin frame (t00→p), can be expressed in the α

frame given the relative rotation and translation to the origin axis Rα
0 and tαα→0,

respectively.

tαα→p = Rα
0 t00→p + tαα→0 (4)

= tα0→p + tαα→0 (5)

2.3.3 Special Euclidean Group Matrices

Special Euclidean group (SE(3)) matrices are used to facilitate these coordinate

frame transformations. A SE(3) matrix takes the rotation and translation that define

a coordinate frame transformation and puts them together in a single square matrix

with an added lower row. This allows the resulting matrix to be used to transform
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homogeneous coordinate points with a single matrix multiplication. For example,

given the relative rotation and translation of the α frame to the origin frame Rα
0 and

tαα→0, respectively, the SE(3) matrix Tα
0 that translates points from the origin frame

to the α frame is,

Tα
0 =

 Rα
0 tαα→0

01×3 1

 . (6)

2.3.4 Coordinate Frame Conversion

The SE(3) matrix Tα
0 can be used to transform the point p to the α frame using

homogeneous coordinates t00→p.

t00→p =

t00→p

1

 =



px

py

pz

1


(7)

tαα→p = Tα
0 t00→p (8)

=

 Rα
0 tαα→0

01×3 1


t00→p

1

 (9)

=

Rα
0 t00→p + tαα→0

1

 (10)

=

tαα→p

1

 (11)

SE(3) matrices can also be multiplied to combine frame transformations. Given
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another SE(3) matrix Tβ
α that transforms points from the α frame to the β frame,

Tβ
0 = Tβ

αT
α
0 (12)

=

 Rβ
α tββ→α

01×3 1


 Rα

0 tαα→0

01×3 1

 (13)

=

Rβ
αR

α
0 Rβ

αt
α
α→0 + tββ→α

01×3 1

 (14)

=

 Rβ
0 tββ→0

01×3 1

 (15)

In addition, the inverse of a SE(3) matrix can be used to transform coordinates

in reverse. However, unlike DCMs the SE(3) matrix inverse is not the same as its

transpose.

T0
β = (Tβ

0 )−1 6= (Tβ
0 )T (16)

2.3.5 Spherical Coordinates

Spherical coordinates can be calculated from Cartesian coordinates using Equa-

tions (17), (18) and (19) [49]:

r =
√
x2 + y2 + z2 (17)

θ = arccos
(z
r

)
(18)

φ = arctan2
(y
x

)
(19)
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where r is the radius, θ is the inclination angle, and φ is the azimuth angle.

Cartesian coordinates can be calculated from spherical coordinates using Equa-

tions (20), (21) and (22) [49]:

x = r sin θ cosφ (20)

y = r sin θ sinφ (21)

z = r cos θ (22)

2.4 Inertial Errors

2.4.1 Bias Error

Angular bias error is a constant angular offset εbias in the gyroscope measurements

of an IMU. This is the average output of the gyroscope when it is not undergoing

any rotation [50]. Common units for angular bias error are degrees per hour (◦/hr).

Constant gyro bias errors cause an angular error θ which grows linearly with time

when integrated.

θ(t) = εbias · t (23)

2.4.2 Angular Random Walk Error

Angular random walk (ARW) or Thermo-Mechanical White Noise is the error

response due to white noise in the gyro measurements [50]. White noise with a

particular standard deviation σarw causes the standard deviation of the angular error

σθ to grow proportional to the square root of time.

σθ(t) = σarw ·
√
δt · t (24)
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where δt is the time in between samples.

Common units for the ARW term are degrees per square root hour (◦/
√
hr).

The standard deviation (strength) of the white noise causing the ARW error can be

calculated using the random walk noise term εarw and the sampling rate fsamp.

σarw =
εarw√
fsamp

(25)

2.5 Summary

This chapter explained the necessary background and literature review informa-

tion to understand this thesis. This included a review of research in VO, an overview

of coordinate frame transformations, and an explanation of INS errors. The next

chapter will explain the experimental setup and procedures.
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III. Methodology

3.1 Overview

The main task of this thesis is to analyze the effect of additional input information

given to a Convolutional Neural Network (CNN) estimating frame-to-frame (F2F)

Visual Odometry (VO). The KITTI Odometry dataset [2] is used for training and

evaluation. It includes undistorted and rectified image frame sequences taken from a

vehicle driving along roadways. These image frames are labeled with the true pose

(orientation and position) of the vehicle. A detailed explanation of the dataset and

pre-processing is given in Section 3.2.

For each of three VO output types, two Deep Neural Networks (DNNs) are consid-

ered: a baseline model and an Inertial Navigation System (INS)-aided model. Each

of the six models use the same CNN portion. The baseline models only take in image

pair inputs. The INS-aided models also have a dense (fully-connected) layer branch

that takes in rotation estimate inputs. The only differences between the three models

within each type is the number of VO outputs. Section 3.3 describes the neural net-

work architectures used in this thesis. The training parameters used in the networks

are given in Section 3.4. Finally, Section 3.5 outlines the procedure for training and

evaluation.

3.2 KITTI Odometry Dataset and Pre-Processing

3.2.1 Dataset Statistics

The KITTI Odometry dataset [2] includes 22 sequences of images. Four cameras

(two gray-scale, two color) were fixed to the top of a small car that was driven in

both urban and highway environments. The cameras were mounted such that the

pair of gray-scale cameras were side by side approximately 54 cm apart and facing
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Figure 2: Image taken from [4] of the vehicle setup used for the collection of the
KITTI Odometry dataset [2]. The diagram shows the locations of the GPS/IMU
sensors, four cameras, and Velodyne LIDAR. The left gray-scale camera axis (camera
0) is shown in red.

the front of the vehicle. Thus, the KITTI dataset could also be used with stereo VO

techniques, but this thesis only uses images from a single gray-scale camera. The

setup also included a Velodyne light detection and ranging (LIDAR) scanner. A GPS

receiver and an Inertial Measurement Unit (IMU) mounted to the vehicle were used

to determine the actual pose of the car. The vehicle setup for the KITTI Odometry

dataset is shown in Figure 2. The dataset also provides the camera calibration matrix

for each sequence.

Of the 22 data sequences, only the first 11 include the associated truth pose of the

vehicle. The truth poses of the other 11 sequences are not provided because they are

used to benchmark methods submitted to the KITTI Odometry administrators. The

number of image frames for the first 11 sequences are shown in Table 1. Of these 11,
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Table 1: Number of frames per camera for the first 11 sequences in the KITTI Odom-
etry dataset [2].

Sequence Number of Frames
00 4541
01 1101
02 4661
03 801
04 271
05 2761
06 1101
07 1101
08 4071
09 1591
10 1201

the first ten sequences (00-09) were used for training and evaluation in this thesis. The

11th sequence (10), which has 1201 frames, was used for full trajectory evaluation and

visualization. Since images were only used in pairs of sequential frames, the number of

observations in each sequence is one less than the number of frames in that sequence.

In addition, only images from the left gray-scale camera (camera 0) were used. Thus,

there were a total of 21,990 observations. Each observation included an image pair,

a truth label defining the amount of rotation and/or translation between the two

images, and a simulated INS rotation estimate.

3.2.2 Image Pairs

3.2.2.1 Sequence Characteristics

The KITTI Odometry dataset consists of image sequences taken in urban, sub-

urban, and highway environments. A representative sample of the dataset images is

shown in Figure 3. The vehicle was driving forward the majority of the time, but

many sequences include significant turns as well. While there are slight changes in the

roll and pitch of the vehicle, the vast majority of the rotation changes in the dataset
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are in the yaw (heading). Similarly, the majority of the translational movement is in

the forward direction.

Figure 3: Respresentative sample of the images taken by Camera 0 in the KITTI
Odometry dataset [2].

3.2.2.2 KITTI Format

The images in KITTI Odometry dataset were collected at a 10 Hz framerate. Each

image is already undistorted and rectified. The pixel intensity values range from 0

to 255. The images given in the dataset are cropped versions of the raw collected

images. The image sizes are consistent within each individual sequence, but they vary

slightly from sequence to sequence. The image widths range from 1226 pixels to 1242

pixels. The image heights range from 370 pixels to 376 pixels. This is most likely due

to the image rectification.

3.2.2.3 Image Standardization

The images needed to be downsampled to reduce the number of calculations for

the neural network. However, because the image sizes between sequences were incon-

sistent due to the rectification process, downsampling could cause the principle point
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to be inconsistent from sequence to sequence. This could affect the VO estimation

because the geometric relationships between pixels would be inconsistent. Thus, the

image sizes needed to be standardized first.

To get a consistent size, the image size for each sequence was converted to normal-

ized image coordinates using the sequence’s camera calibration matrix. This allowed

the field of view for each sequence to be compared with the other sequences using

a consistent principle point. Equation (26) was used to convert a pixel coordinate

p = [xp yp]
T to a normalized coordinate n = [xn yn]T .

n = K−1p (26)

where K is the 3×3 camera calibration matrix and n = [xn yn 1]T and p = [xp yp 1]T

are the homogeneous normalized and pixel image coordinates, respectively.

For each image size, the corner pixel values were converted to normalized image

coordinates. These four corners created a rectangular region that represented the

field of view for that sequence. The field of view rectangles were plotted on the same

graph, and the middle region, where the rectangles overlapped, was chosen as the

standard image rectangle.

The standard rectangle corners were then converted back to pixel coordinates for

each sequence using Equation (27). These pixel coordinates were then used to map

the original image pixels to the standardized image size. The standardized images

had a height and width of 370×1226 pixels. This size was selected using the minimum

width and height across all of the sequences.

p = Kn (27)
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3.2.2.4 Image Downsampling

The standardized images were then downsampled using the Open-Source Com-

puter Vision (OpenCV) library [51] resize function with area interpolation. When

downsampling, area interpolation calculates the pixel values for the new image using

the weighted average of the corresponding region of pixels in the original image.

Two sizes of images were considered. The large size had a height and width of

320 × 1216 pixels. This was selected by taking the closest multiple of 64, as in [9],

that was less than the standard image size of 370× 1226. The small size with height

and width of 160 × 608 pixels was selected by halving each dimension of the large

image size.

3.2.2.5 Pixel Normalization

The pixels values in each image were normalized by compressing the original

integer range from 0 to 255 into a decimal range from 0 to 1 [52, pp. 101-102]. This

was done to aid in the training process of the neural network models because the

pixel distribution would not also have to be learned [53, 54].

3.2.2.6 Image Pair Composition

The image pair tensor was composed by taking two sequential single-channel gray-

scale image frames from a sequence and stacking them in the channels dimension.

Thus, for the smaller image size, the final tensor shape was (160× 608× 2).

3.2.3 Truth Labels

3.2.3.1 KITTI Format

The truth poses in the KITTI Odometry dataset were calculated using measure-

ments from a GPS/IMU system. They are given in a text file for each sequence. Each
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row corresponds to an image frame in the sequence. The 12 values in each row cor-

respond to the top 12 values in a special Euclidean group (SE(3)) matrix (from left

to right and top to bottom). The SE(3) matrix T0
i in row i of a particular sequence’s

text file will transform a position from the ith image’s frame to first (0th) image’s

coordinate frame (i.e. the coordinate frame at the sequence’s starting position). This

SE(3) matrix is shown in Equation (28).

T0
i =

 R0
i t00→i

01×3 1

 (28)

3.2.3.2 Vehicle/Camera Coordinate Frame

All coordinate frames are defined in camera coordinates. A camera coordinate

frame is located at the camera’s position with the z axis pointing out of the camera

directly toward the image principle point, the y axis pointing down toward the bottom

of the image perpendicular to the z axis, and the x axis pointing toward the right side

of the camera perpendicular to both the y and z axes. This is illustrated in Figure 1

and in the red coordinate frame in Figure 2. For the KITTI Odometry dataset, the

truth poses given are the pose of the left gray-scale camera (camera 0).

3.2.3.3 Convert from Absolute SE(3) to Relative Rotation, Trans-

lation, or Scale

Equation (29) was used to convert the given absolute frame transformations into

relative frame transformations. The SE(3) matrix Ti+1
i transforms coordinates from

the current frame (i) to the next frame (i+ 1).
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Ti+1
i = (T0

i+1)
−1T0

i (29)

= Ti+1
0 T0

i (30)

=

Ri+1
i ti+1

i+1→i

01×3 1

 (31)

Rotation To use the rotation Ri+1
i as a truth label, it was converted from a

Direction Cosine Matrix (DCM) to a rotation vector representation using the OpenCV

[51] Rodrigues function [3]. The Rodrigues formula transforms a 3×3 DCM into a 3×

1 rotation vector. A rotation vector is a combination of an axis-angle representation of

rotation. Axis-angle is expressed as an amount of rotation (angle) about a particular

unit vector (axis). The rotation vector is calculated by multiplying the angle value

and the unit vector axis. Thus, the rotation vector’s magnitude is the same as the

angle value, and its direction is the same as the axis vector. Because of the nature

of the Rodrigues function in OpenCV, the inverse rotation was required in order to

produce the desired result. This is shown in Equation (32).

φi+1
i = Rodrigues((Ri+1

i )−1) =


φx

φy

φz

 (32)

where φx, φy, and φz represent the respective axis components of the camera’s orien-

tation change in radians.

Translation The Cartesian translation ti+1
i+1→i was used directly in the truth

label. This is shown in Equation (33).
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ti+1
i+1→i =


x

y

z

 (33)

where x, y, and z represent the camera’s translation along each axis.

Scale The scale of the translation was determined by calculating the vector

magnitude of each Cartesian translation vector. The translation vector magnitude is

equivalent to the radius r value, as calculated in Equation (17), when the translation

is expressed in spherical coordinates (Section 2.3.5).

3.2.3.4 Truth Label Composition

There were three different neural network output types used in this thesis. With

the full six degrees of freedom (6-DoF) output, the truth label consisted of the three

rotation vector values φi+1
i calculated using Rodrigues [3] followed by the three Carte-

sian translation ti+1
i+1→i values. This is shown in Equation (34).

γ6DoF =

[
φx φy φz x y z

]
(34)

With the Cartesian translation output, the truth label consisted of the three values

in the translation vector ti+1
i+1→i. This is shown in Equation (35).

γtrans =

[
x y z

]
(35)

With the scale output, the truth label consisted of only the translation magnitude

r, as calculated in Equation (17). This is shown in Equation (36).

γscale =

[
r

]
(36)
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The truth data statistics are summarized in Table 2 for sequences 00-09 and

Table 3 for sequence 10.

3.2.3.5 Turns

Through visual inspection of the images, it was determined that a y rotation

component value greater than 1 degree produced a noticeable rotation change in the

images. In sequences 00-09 of the dataset, 4051 of the 21990 image pairs (18.4%)

have y rotation changes of greater than 1 degree. For sequence 10 of the dataset, 165

Table 2: Truth data statistics for KITTI Odometry [2] sequences 00-09. This includes
the mean, standard deviation, minimum and maximum values, and normalized min-
imum and maximum values for each output type. The rotation values presented are
the individual axis components of a rotation vector. The normalization of the data
is explained in Section 3.2.3.6.

Output Type Mean Std Dev Real Min Real Max Norm Min Norm Max
Rot X (deg/1000) -3.605 170.472 -1291.390 1324.998 -7.547 7.804
Rot Y (deg/1000) 16.669 996.844 -4775.337 4257.612 -4.826 4.274
Rot Z (deg/1000) 0.272 149.822 -1071.533 1146.135 -7.227 7.727

Trans X (mm) 1.123 17.808 -239.388 299.083 -13.848 17.155
Trans Y (mm) 17.828 17.754 -196.512 199.258 -12.105 10.262
Trans Z (mm) -965.973 438.729 -2738.502 17.445 -4.064 2.248

Trans Scale (mm) 966.810 437.969 0.542 2738.905 -2.212 4.070

Table 3: Truth data statistics for KITTI Odometry [2] sequence 10. This includes the
mean, standard deviation, minimum and maximum values, and normalized minimum
and maximum values for each output type. The rotation values presented are the
individual axis components of a rotation vector. The normalization of the data is
explained in Section 3.2.3.6.

Output Type Mean Std Dev Real Min Real Max Norm Min Norm Max
Rot X (deg/1000) 7.967 212.244 -936.705 1501.438 -5.466 8.839
Rot Y (deg/1000) 184.032 848.388 -1511.065 3897.035 -1.538 3.911
Rot Z (deg/1000) -0.605 166.840 -843.556 533.731 -5.690 3.598

Trans X (mm) 3.325 15.667 -127.401 66.611 -7.400 3.770
Trans Y (mm) 14.555 11.367 -21.764 103.889 -2.229 4.872
Trans Z (mm) -765.799 334.646 -1525.177 -11.567 -1.285 2.181

Trans Scale (mm) 766.265 334.471 12.147 1525.580 -2.186 1.286
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of the 1200 image pairs (13.8%) are turning observations.

3.2.3.6 Normalization

The goal of the output normalization was to scale the data such that each compo-

nent had a mean of 0 and a standard deviation of 1 [53, 54]. Because the evaluation

data could not be used for this normalization calculation, only values from the train-

ing set were used. Thus, the normalization parameters were the training set mean

and standard deviation of each output feature.

For example, the Cartesian translation output has three features: x, y, and z.

Thus, the normalization parameters included three mean (π) and three standard

deviation (σ) values. This is shown in Equations (37) and (38).

πtrans =

[
πx πy πz

]
(37)

σtrans =

[
σx σy σz

]
(38)

where πtrans and σtrans are the training mean and standard deviation vectors, respec-

tively.

The normalization parameters for both the truth and INS data are shown in

Table 4. These normalization parameters were applied to the truth labels using

Equation (39) and undone using Equation (40).

γnorm =
γorig − π

σ
(39)

γorig = (γnorm � σ) + π (40)
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Table 4: Geometric data normalization parameters calculated by taking the mean
and standard deviation of all training set values for each output feature. This allows
for easier training because the normalized input and output data has an approximate
a mean of 0 and a standard deviation of 1. The rotation values presented are the
individual axis components of a rotation vector.

Output Type Mean Std Dev
INS Rot X (deg/1000) -5.138 170.478
INS Rot Y (deg/1000) 15.174 992.711
INS Rot Z (deg/1000) 0.198 148.333
True Rot X (deg/1000) -5.106 170.441
True Rot Y (deg/1000) 15.161 992.657
True Rot Z (deg/1000) 0.209 148.302

True Trans X (mm) 1.131 17.368
True Trans Y (mm) 17.681 17.695
True Trans Z (mm) -964.118 436.659

True Trans Scale (mm) 964.942 435.901

where γnorm is the normalized truth label, γorig is the original truth label, π is the

training mean vector, σ is the training standard deviation vector, and� is an element-

wise multiplication.

3.2.4 Simulated INS Rotations

The KITTI dataset does include raw IMU measurements, but they are not time

synchronized with the images. Thus, to reduce complexity, simulated INS rotations

were created by adding Gaussian errors to the true rotations. First, a typical angular

random walk (ARW) error (εarw = 0.5 deg/
√
hr) was taken from the NovAtel HG1700

IMU datasheet [55]. This, along with the KITTI sampling rate of fsamp = 10 Hz [2],

was used to determine the strength (σarw) of Gaussian noise needed using Equa-

tion (25) in Section 2.4.

σarw =
εarw√

3600 · fsamp
≈ 0.002635 deg (41)

To create the simulated INS rotations, this strength value was added to each of
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the truth rotation vectors (φi+1
i ) according to Equation (42).

INSi+1
i = φi+1

i +
π

180
σarwn (42)

where φi+1
i is the true rotation vector from frame i to frame i + 1, σarw is the ARW

strength computed in Equation (41), and n is a 3×1 sample of white Gaussian noise.

These INS values were normalized in the same way as the truth labels, as described

in Section 3.2.3.6. The normalization parameters for the INS data are shown in

Table 4.

The statistics for the INS rotations are very similar to the truth rotation statistics

shown in Tables 2 and 3. The RMSE values for the INS data compared to the truth

data for various subsets of the KITTI Odometry dataset are shown in Table 5. These

RMSE values can be used to determine if the INS-aided neural network models predict

more accurate rotation values than the input INS rotations they are given.

Table 5: INS data Root Mean Squared Error (RMSE) values for different subsets of
the KITTI Odometry dataset [2]. The rotation values presented are the individual
axis components of a rotation vector.

Output Type Train Set Val Set Test Set Seqs 00-09 Seq 10
Rot X RMSE (deg/1000) 2.644 2.621 2.633 2.638 2.700
Rot Y RMSE (deg/1000) 2.646 2.625 2.682 2.647 2.641
Rot Z RMSE (deg/1000) 2.645 2.650 2.648 2.647 2.636
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3.3 Model Architectures

The main machine learning task for this thesis is to use supervised learning of

input images and rotation estimates to regress a camera’s movement (whether full

6-DoF, just Cartesian translation, or translational scale). CNNs were used to account

for the spatial nature of the images. The CNN design was taken from [1, 9].

Recurrent Convolutional Neural Networks (RCNNs) have been demonstrated to

produce good results for VO because they can consider global trajectory information

[9, 13]. However, it is not yet clear how to use RCNNs with other sensor fusion

techniques like Kalman filters. Thus, this thesis focuses on CNN-based techniques

that consider one image pair at a time.

3.3.1 CNN Architectures

Two different CNN architectures were considered along with two image sizes for

each. Both of these architectures were inspired by the convolutional portion of the

FlowNetSimple CNN [1] as used in [9]. Both have the same structure, and the only

difference is the channel size for each layer. The models were implemented using

TensorFlow 1.14.0 [56] in the Keras 2.3.1 framework [57, 52].

3.3.1.1 FlowNet

The FlowNet CNN architecture is based on the convolutional portion of FlowNet-

Simple [1]. It uses nine convolutional layers each followed by a Rectified Linear Unit

(ReLU) activation, except the last. The kernel size starts at 7× 7 and gradually de-

creases to 3×3. Zero padding is used so that the image size in the current layer is not

reduced unless a stride operation is used [9]. Certain layers include a stride 2 which

reduces the image size by half in each dimension. The first layer has a channel size of

64. Every time a stride 2 is used, the channel size in the next layer is doubled. Oth-

38



Table 6: FlowNet [1] CNN architecture for a small input image size of (160×608×2)

Layer Activation
Kernel

Size
Zero

Padding
Stride Image Size

Number
of Channels

Input 160× 608 2
Conv1 ReLU 7× 7 3 2 80× 304 64
Conv2 ReLU 5× 5 2 2 40× 152 128
Conv3 ReLU 5× 5 2 2 20× 76 256

Conv3 1 ReLU 3× 3 1 1 20× 76 256
Conv4 ReLU 3× 3 1 2 10× 38 512

Conv4 1 ReLU 3× 3 1 1 10× 38 512
Conv5 ReLU 3× 3 1 2 5× 19 512

Conv5 1 ReLU 3× 3 1 1 5× 19 512
Conv6 Linear 3× 3 1 2 3× 10 1024
Dense1 ReLU 3× 10 128

erwise, the channel size stays the same. The nine convolutional layers are followed by

a dense (fully-connected) layer with 128 channels and a ReLU activation. The total

number of trainable parameters for the FlowNet model is 14,731,200. With the larger

images, the final dense layer has a shape of (5 × 19 × 128). With the small images,

the final dense layer has a shape of (3 × 10 × 128). This information is summarized

in Table 6.

3.3.1.2 FlowNet-Half

The FlowNet-Half architecture is exactly the same as the FlowNet architecture

given in Table 6 except with half the number of channels for each layer, including the

dense layer. The total number of trainable parameters for the FlowNet-Half model is

3,685,344.

3.3.2 VO Model Architectures

Six different VO architectures are compared in this thesis—two for each of the

three output types. Other than the number of outputs and an extra dense (fully-

connected) layer in the INS aiding case, the two different types of architectures do
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Figure 4: Abstract design and flow of data for all VO networks explored in this thesis.
Decisions that separate cases (whether INS aiding is used and the type of output) are
shown with red trapezoids.

Table 7: Characteristics of the six VO models based on decisions shown in Figure 4

Decisions Model Characteristics
Aided? Output Type? Name Inputs Outputs

No
Full 6DoF 6DoF-Baseline

Image Pairs
Only

3D Rotation & 3D Translation
Trans Only Trans-Baseline 3D Cartesian Translation

Scale Scale-Baseline Magnitude of Translation

Yes
Full 6DoF 6DoF-INS-Aided

Image Pairs &
INS Rotations

3D Rotation & 3D Translation
Trans Only Trans-INS-Aided 3D Cartesian Translation

Scale Scale-INS-Aided Magnitude of Translation

not differ. The abstract overall design of the networks used in this thesis is shown in

Figure 4.

3.3.2.1 Baseline Architecture

The baseline architecture only takes in image pair input. The image pairs are fed

into the CNN architecture. The output from the CNN is put through a global average

pooling layer that condenses the information in each channel into a single dimension.

This result is then fed into a dense layer that performs linear regression for each of

the outputs. Thus, the size of this layer is the same as the number of outputs. An

example of this architecture for the full 6-DoF output with the small image size is

shown in Figure 5.
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Figure 5: Baseline model architecture diagram for full 6-DoF VO prediction.

With the FlowNet CNN and small image input, the total number of trainable

parameters for the baseline networks is 14,731,974 for the full 6-DoF model, 14,731,587

for the Cartesian translation model, and 14,731,329 for the translational scale model.

3.3.2.2 INS-Aided Architecture

Like the baseline architecture, the INS-aided architecture also takes in the image

pairs and feeds them to the CNN architecture. In addition to this, it takes in the three

rotation vector components of the rotation estimate and feeds them to a dense layer

with a size of 16 and a ReLU activation. The output of this layer is then concatenated

with the global average pooled output from the CNN and passed through another

dense layer with 128 channels. This extra dense layer is added to allow the network

to determine the fusion of the CNN vector and the INS-aiding vector. The result of

this dense layer is then passed to the regression layer that estimates the output values.

An example of this architecture for the full 6-DoF output with the small image size

is shown in Figure 6.

With the FlowNet CNN and small image input, the total number of trainable
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Figure 6: INS-aided model architecture diagram for full 6-DoF VO prediction.

parameters for the aided networks is 14,750,598 for the full 6-DoF model, 14,750,211

for the Cartesian translation model, and 14,749,953 for the scale model.

3.4 Training

3.4.1 Training-Validation-Test Split

To facilitate proper training and evaluation procedures, the 21,990 observations

were randomly divided into a test and non-test set. The non-test set was then ran-

domly divided into a training set and validation set. Of the total observations, 3,298

(15%) were used as the test set, 4,398 (20%) were used as the validation set, and the

remaining 14,294 (65%) were used as the training set. The training set was used to fit

each neural network model to the data, the validation set was used for model selection

and hyper-parameter tuning, and the test set was used for final model comparison

and evaluation.
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3.4.2 Training Parameters

Loss Function The loss function used was Mean Squared Error (MSE). This

increasingly penalizes incorrect values the further away they get from the truth. The

scale and Cartesian translation models simply used the MSE as the loss function. In

the 6-DoF models, the loss function calculated the translation and rotation MSEs

separately because of the difference in units. Some have found that scaling the two

MSE values to have a similar magnitude can produce good results [58, 12]. Since in

this thesis, the MSE values were already scaled because of the normalization of the

inputs and outputs (Section 3.2.3.6), the two MSE values were simply added together.

Optimizer The optimizer used for all training was the RMSProp [59] opti-

mizer implemented in the Keras framework [57]. RMSProp is an implementation of

stochastic gradient descent that also includes a variable learning rate.

Learning Rate The initial learning rate for each model was 0.0001. In

addition, the learning rate was reduced by a factor of 0.1 after the training loss did

not change more than 0.0001 for 10 epochs.

Initialization All of the model parameters were initialized to the default

values in the Keras framework [57]. The convolutional and dense (fully-connected)

layer kernels were initialized with Glorot Uniform [60] data. The convolutional and

dense layer biases were initialized with zeros.

3.5 Procedure

The procedure followed in this thesis began by pre-processing the KITTI Odom-

etry dataset [2] to obtain image pairs and truth labels as described in Sections 3.2.2

and 3.2.3. The INS rotations were then simulated by adding ARW errors to the true
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rotations as described in Section 3.2.4. In the final pre-processing step, the image

pairs, truth labels, and INS rotations were normalized according to the procedures

discussed in Sections 3.2.2.5 and 3.2.3.6. These dataset observations were divided

into a training, validation, and test set according to Section 3.4.1.

After the data was prepared, the CNN architecture that would be used in each of

the VO prediction models needed to be selected. Each VO model used the same CNN

so that their performance could be compared. Four CNN architectures were examined:

two architecture sizes and two input image sizes. These are explained in detail in

Section 3.3.1. The four models were trained to fit the training set observations. For

each of the four model types, the training epoch with the lowest validation loss was

used for CNN selection. Using these CNN selection epochs, the CNN architecture

with the lowest validation RMSE was used in the subsequent VO models. The CNN

selection process and results are shown in Section 4.2.

Six VO models were used to analyze the performance effect of INS aiding. The

differences are explained in Section 3.3.2 and summarized in Figure 4 and Table 7.

These models were trained to fit the training set. Similar to the CNN selection, the

best epoch was selected for each VO model type based on the lowest validation loss.

These best epochs were used in each of the evaluation comparison methods. The

evaluations in Sections 4.3.2 and 4.5 used the test set observations. The evaluations

in Section 4.4 used the sequence 10 observations.

3.6 Summary

This chapter covered the experimental setup, KITTI Odometry dataset charac-

teristics, and neural network model designs. It also explained the training scheme,

dataset split, and model hyper-parameters. The next chapter will explain the model

evaluation methods and show the training and evaluation results.
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IV. Results and Analysis

4.1 Overview

This chapter begins by explaining how the Convolutional Neural Network (CNN)

used in the Visual Odometry (VO) models was selected based on training and valida-

tion set results (Section 4.2). The training of the six VO model types is then detailed

along with the selection of the best model epochs for evaluation (Section 4.3.1). The

best epochs are then compared using results from the test set observations (Sec-

tion 4.3.2). The overall test set errors are analyzed using Root Mean Squared Error

(RMSE), mean and standard deviation, histograms, and error value plots. The error

values on turning observations are also considered and compared with non-turning

observations. A full trajectory (sequence 10) is then used to visualize the results of

integrating the predictions from each model (Section 4.4). The RMSE values are also

analyzed for sequence 10. Finally, the sensitivity of the Inertial Navigation System

(INS)-aided networks to INS quality is shown (Section 4.5).

4.2 CNN Selection and Hyper-parameter Tuning

Four models were trained and analyzed to determine the appropriate CNN size for

the VO models. Two CNN types were considered: the full FlowNet [1] model and a

modified version of FlowNet with half the number of channels (FlowNet-Half). Each

CNN type was tested with large images (320× 1216) and small images (160× 608).

These differences are described in Sections 3.2.2.4 and 3.3.1. No INS aiding was used

for these tests, so each model only used a stacked image pair as input. The models

were trained using the RMSProp optimizer [59], an initial learning rate of 0.0001,

and a training and validation batch size of 20. While learning rate reduction was

active during training, the learning rate was not reduced for any of the models. The
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lack of learning rate reduction may indicate that further training or a larger initial

learning rate could have improved results. However, this was not noticed until after

the time for further training had passed. Multiple factors were considered to select

the best architecture: the number of epochs until the minimum validation loss was

reached, the lowest validation loss, and the lowest RMSE values for both rotation and

translation.

In addition to the four CNN selection models, other experiments were run with

initial learning rates of 0.00001 and 0.001. The initial learning rate of 0.0001 was

used because it was able to achieve a lower validation loss and reach the minimum

validation loss faster than the other learning rates considered. The Adam optimizer

[61] was tried as well, but the RMSProp optimizer performed better.

The training history for each of the four models is shown in Figure 7. This shows

that the full FlowNet model with small images reaches the minimum validation loss

faster than the other models. In addition, the validation loss is less noisy when small

images are used. This is probably because the number of input parameters is reduced.

The spikes in validation loss are lower when FlowNet is used. The FlowNet-Half

models probably did not perform as well because of the reduced capacity compared

to the full FlowNet models.

The four CNN model types were compared using their training epoch with the

lowest validation loss. The results on the validation set for each model are shown in

Table 8. The RMSE values for the rotation outputs are computed separately from

the translation outputs. The RMSE is calculated using Equations (43) and (44).

L2Norm(γtrue,γpred) =

√√√√ N∑
i=1

(γtrue,i − γpred,i)2 (43)

where γtrue is the true output vector, and γpred is the predicted output vector, and

N is the length of the output vectors.
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(a) FlowNet, Large Images (b) FlowNet-Half, Large Images

(c) FlowNet, Small Images (d) FlowNet-Half, Small Images

Figure 7: Training and validation loss history for CNN selection tests.

Table 8: Comparison of CNN selection model performance on the validation set data.
Smaller values are better.

Comparison Value
FlowNet FlowNet-Half

Large Images Small Images Large Images Small Images
Rotation RMSE (deg/1000) 180.59 144.73 175.62 155.65

Translation RMSE (mm) 74.96 63.67 73.03 69.50
Min. Validation Epoch 69 58 124 116
Min. Validation Loss 7.520 · 10−2 7.544 · 10−2 12.913 · 10−2 9.744 · 10−2

RMSE =

√√√√ 1

M

M∑
j=1

(L2Norm(Ytrue,j,Ypred,j))
2 (44)

where M is the number of observations, Ytrue,j is a row of the true output M × N
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matrix, and Ypred,j is a row of the predicted output M ×N matrix.

In addition, the minimum validation loss values are shown along with the epoch

number at which they appear. These are also indicated in Figure 7. The results clearly

show that the FlowNet model with small image inputs trains faster and achieves more

accurate prediction values. Thus, this CNN architecture is used in subsequent tests.

4.3 Model Aiding Evaluation

Each neural network model uses the FlowNet CNN (Section 3.3.1.1) to extract

motion information from the images. The baseline and INS-aided architectures are

described in Section 3.3.2.

4.3.1 Training

Both of the six degrees of freedom (6-DoF) models were trained for 300 epochs

with a training batch size of 20 and a validation batch size of 5. The translation

and scale output models were each trained for 200 epochs with the same batch size

parameters as the 6-DoF models. These epoch values were chosen to give each model

the opportunity to tune the parameters to the training set. The results for the model

training according to Section 3.4 are shown in Figure 8. While the training loss

decreases steadily, the validation loss is noisy and spikes frequently even toward the

end of training. This makes it difficult to know which training epoch will be best

for further comparison. The validation loss spikes are especially high for the baseline

6-DoF model shown in Figure 8a.

The 6-DoF models have the highest validation losses followed by the translation

and scale models, respectively. This is due in part to the fact that the 6-DoF models

use a different loss function than the normal Mean Squared Error (MSE) loss of the

translation and scale models, as explained in Section 3.4.2.
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(a) 6-DoF Baseline (b) 6-DoF INS-Aided

(c) Trans Baseline (d) Trans INS-Aided

(e) Scale Baseline (f) Scale INS-Aided

Figure 8: Training and validation loss history for the six VO models. Each learning
rate change decreases the learning rate by a factor of 0.1.
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(a) Rotation (b) Translation

Figure 9: RMSE of the rotation and translation magnitude for each training epoch of
the 6-DoF models. Each learning rate change decreases the learning rate by a factor
of 0.1.

The epochs where the learning rate changed are also shown in Figure 8. Figure 9

shows the actual RMSE values as training progresses for the 6-DoF models. Based

on the actual RMSE, it appears that the learning rate reduction factor of 0.1 was

too drastic. When the first learning rate reduction is applied, the noise in the RMSE

decreases dramatically, but the model does not improve much further. The plots for

the translation and scale output models show a similar effect.

In addition, the validation loss changes dramatically from epoch to epoch, but the

actual RMSE in Figure 9 is not as noisy. The noise in the RMSE also decreases as

training progresses, which is only slightly apparent in the corresponding validation

losses given in Figures 8a and 8b. This indicates that the noise in the loss values is

due to the MSE calculation on the normalized values. The input and output feature

values are normalized such that the mean and standard deviation of each component

over the entire training set are 0 and 1, respectively. For instance, the actual value

of the y component of rotation is much larger than the x component of rotation.

However, these values are normalized to be approximately the same scale in the loss

function. In fact, the normalized minimum and maximum values shown in Table 2 of
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Section 3.2.3.4 are larger for the axes with a smaller range. Thus, a relatively small

change in the x rotation appears large in the loss calculation.

After training, the model epochs with the lowest validation set loss were chosen for

evaluation on the test set. These epoch choices are shown in Table 9. Interestingly, the

INS-aided models all reach their minimum validation loss earlier than their baseline

counterparts. Typically, the INS-aided models have a lower validation loss as well,

except in the case of the scale output model.

4.3.2 Evaluation Results

Once the best VO model in each category was selected based on the minimum

validation loss, the six models were compared with one another and in pairs, i.e. each

baseline model was compared with the corresponding INS-aided model that produced

the same output type. In addition, all six models were compared using the scale of

the translation.

4.3.2.1 Overall Error

An average prediction value was considered for comparison to the VO model

predictions. First, the mean of all the test set observations was calculated for each

output feature (e.g. x rotation). Next, these mean values were used as a simplistic

guess of the camera’s motion in place of the neural network predictions. Finally, the

Table 9: Best VO model validation set performance. Smaller values are better.

Test Min. Validation Epoch Min. Validation Loss
6DoF-Baseline 179 26.511 · 10−3

6DoF-INS-Aided 109 4.112 · 10−3

Trans-Baseline 200 8.656 · 10−3

Trans-INS-Aided 114 5.720 · 10−3

Scale-Baseline 182 8.24 · 10−5

Scale-INS-Aided 132 14.50 · 10−5
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errors shown in Table 10 were determined by comparing these mean value predictions

with the true motion value for all test set observations. The RMSE in millimeters

was used for the translation outputs and the RMSE in thousandths of degrees was

used for the rotation outputs.

Each VO model epoch selected using the validation set loss was evaluated by

estimating the camera’s motion on the test set data. Up to this point, the test set

was not used for any training or model selection tasks. This was done so that the

results would be representative of performance on real-world data that was gathered

using a similar approach and environment to the KITTI dataset.

Each test set VO prediction was used to determine the RMSE for that model. The

RMSE results for the VO models are shown in Table 11. This includes the RMSE

values for each individual output and the combined RMSE magnitude value for both

Table 10: Test set RMSE results when the test set mean values are used as the VO
prediction for each output. The rotation values presented are the individual axis
components of a rotation vector. Smaller values are better.

Mean Prediction X Y Z Mag
Rot RMSE (deg/1000) 175.72 1010.62 155.85 1037.56

Trans RMSE (mm) 18.31 18.31 430.95 431.73

Table 11: Test set RMSE results for the six VO models. The rotation values presented
are the individual axis components of a rotation vector. Smaller values are better.

Test
Rotation (deg/1000)

X Y Z Mag
6DoF-Baseline 50.22 90.70 81.35 131.78

6DoF-INS-Aided 3.79 14.95 3.79 15.88

Test
Translation (mm)

X Y Z Mag
6DoF-Baseline 10.38 6.48 51.10 52.54

6DoF-INS-Aided 10.00 6.49 49.01 50.44
Trans-Baseline 10.81 6.24 47.41 49.02

Trans-INS-Aided 10.08 5.70 47.04 48.45
Scale-Baseline 37.92

Scale-INS-Aided 32.06
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the rotation and the translation outputs. These results show that the rotation RMSE

decreases by an order of magnitude when INS-aiding is used, both for the individual

components and the magnitude. While these results are positive, the amount of

rotation error in the simulated INS data (Table 5 in Section 3.2.4) is approximately

2.65 · 10−3 deg for each individual component, which is still less than the RMSE of

the aided prediction values shown in Table 11. Based on these results, if a similarly

accurate INS is available, the INS rotation measurement should be used instead of

the neural network rotation prediction.

The translation RMSEs are not as drastically different. In most cases, the net-

works that use aiding do better than their baseline counterparts, but not by much. In

general, the 6-DoF model RMSE values are larger than the translation model RMSE

values. The scale model RMSE values are smaller than either of the other two net-

work types. Thus, the network performs better when it only needs to predict fewer

Table 12: Test set error mean and standard deviation results for the six VO models.
The rotation values presented are related to the individual axis components of a
rotation vector. Mean values closer to 0 and smaller standard deviation values are
better.

Test
Rotation (deg/1000)

X Y Z
Mean Std Dev Mean Std Dev Mean Std Dev

6DoF-Baseline 4.855 49.99 4.898 90.58 3.779 81.27
6DoF-INS-Aided -0.394 3.77 -3.768 14.47 -1.217 3.59

Test
Translation (mm)

X Y Z
Mean Std Dev Mean Std Dev Mean Std Dev

6DoF-Baseline -0.125 10.38 0.201 6.48 0.494 51.10
6DoF-INS-Aided -0.056 10.00 -0.006 6.49 3.514 48.89
Trans-Baseline -0.165 10.81 0.336 6.23 0.039 47.41

Trans-INS-Aided 0.205 10.08 0.274 5.69 -0.062 47.05

Test
Scale (mm)

Mean Std Dev
Scale-Baseline -0.687 37.92

Scale-INS-Aided 0.636 32.06
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output values.

In addition to the RMSE, the mean and standard deviation of the errors for each

output were calculated. These results are shown in Table 12. In general, the INS-

aided networks did better than the baseline networks. The standard deviation values

correspond directly with the RMSE values shown in Table 11. Thus, in general the

standard deviation of the rotation errors decreases by an order of magnitude. Also,

the error mean values are generally close to zero and decrease in magnitude when

aiding is used. The main outlier to this effect is the z translation which has a larger

error mean when aiding is used.

The test set errors for each of the outputs of the 6-DoF networks are shown in

Figures 10 and 11. The baseline error distribution is compared with the INS-aided

error distribution. Likewise, the translation network outputs are shown in Figure 12

and the scale network output is shown in Figure 13a.
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(a) 6-DoF Test Error - Rotation X (b) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - 6-DoF Rotation X

(c) 6-DoF Test Error - Rotation Y (d) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - 6-DoF Rotation Y

(e) 6-DoF Test Error - Rotation Z (f) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - 6-DoF Rotation Z

Figure 10: Test set rotation errors for both the baseline and INS-aided 6-DoF VO
models. The rotation values presented are the individual axis components of a rota-
tion vector. 55



(a) 6-DoF Test Error - Translation X (b) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - 6-DoF Translation X

(c) 6-DoF Test Error - Translation Y (d) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - 6-DoF Translation Y

(e) 6-DoF Test Error - Translation Z (f) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - 6-DoF Translation Z

Figure 11: Test set translation errors for both the baseline and INS-aided 6-DoF VO
models.
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(a) Trans Test Error - Translation X (b) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - Trans model Translation X

(c) Trans Test Error - Translation Y (d) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - Trans model Translation Y

(e) Trans Test Error - Translation Z (f) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - Trans model Translation Z

Figure 12: Test set errors for both the baseline and INS-aided Cartesian translation
VO models.
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(a) Scale Test Error - Scale (b) Baseline (left) and Aided (right) Histograms Com-
pared with Gaussian Fit - Scale

Figure 13: Test set errors for both the baseline and INS-aided Scale VO models.

The error distributions show visual results consistent with the error statistics

already presented. The rotation errors in Figure 10 are drastically decreased when

INS-aiding is used. The translation output errors all appear generally the same

whether aiding is used or not. In addition, the baseline models show a correlation

between the true movement value and the sign of the prediction errors. The predicted

values have a smaller magnitude than the true values, especially as the true value

magnitude increases. This is apparent for the baseline model errors in the x and z

rotation (Figure 10) and the x and y translation plots (Figures 11 and 12). It appears

that the z rotation baseline error correlation is removed or drastically reduced when

aiding is used.

The error histograms in Figures 10-13a, show that the vast majority of the errors

are centered around zero. Thus, the outliers do not really affect the overall distri-

bution. In general, the rotation errors shown in Figure 10 get closer to a Gaussian

distribution when INS-aiding is used. On the other hand, the translation errors in

Figures 11-13a seem to only get slightly closer to a Gaussian distribution with the x

and y translations in Figures 11b, 11d, 12b and 12d being especially non-Gaussian.
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4.3.2.2 Turning vs. Non-Turning

In order to determine if the error effects were different when the vehicle was

turning or not turning, the RMSE, error mean, and error standard deviation values

were calculated for these cases as well. The test RMSE values of the turning and

non-turning image pairs are shown in Table 13. In general, the RMSE values are

larger for turning observations vs. non-turning observations. For both turning and

non-turning image pairs, the rotation predictions are better when INS-aiding is used.

For turning observations, the 6-DoF baseline network performed better than the aided

network. For non-turning observations, the aided networks did better in nearly every

case. These results are consistent with the overall RMSE results in Table 11. Overall,

when aiding is used, the rotation RMSE decreases by an order of magnitude while the

Table 13: Test set RMSE results on turning and non-turning image pairs for the six
VO models. The rotation values presented are the individual axis components of a
rotation vector. Smaller values are better.

Type Test
Rotation (deg/1000)

X Y Z Mag

Turn
6DoF-Baseline 53.27 166.58 104.54 203.75

6DoF-INS-Aided 3.97 19.73 4.24 20.56

Non-Turn
6DoF-Baseline 49.50 61.77 75.12 109.13

6DoF-INS-Aided 3.75 13.64 3.68 14.62

Type Test
Translation (mm)

X Y Z Mag

Turn
6DoF-Baseline 19.96 6.80 54.59 58.52

6DoF-INS-Aided 20.09 6.80 55.75 59.65

Non-Turn
6DoF-Baseline 6.49 6.41 50.27 51.09

6DoF-INS-Aided 5.60 6.42 47.36 48.11

Turn
Trans-Baseline 21.64 7.55 55.14 59.72

Trans-INS-Aided 20.51 5.74 57.51 61.32

Non-Turn
Trans-Baseline 6.12 5.90 45.48 46.26

Trans-INS-Aided 5.44 5.69 44.34 45.03

Turn
Scale-Baseline 47.15

Scale-INS-Aided 36.69

Non-Turn
Scale-Baseline 35.51

Scale-INS-Aided 30.92
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Table 14: Test set error mean and standard deviation results on turning and non-
turning image pairs for the six VO models. The rotation values presented are related
to the individual axis components of a rotation vector. Mean values closer to 0 and
smaller standard deviation values are better.

Type Test
Rotation (deg/1000)

X Y Z
Mean Std Dev Mean Std Dev Mean Std Dev

Turn
6DoF-Baseline 4.075 53.16 -2.748 166.69 5.421 104.48

6DoF-INS-Aided -0.366 3.96 -4.572 19.21 -1.244 4.06

Non-Turn
6DoF-Baseline 5.031 49.25 6.625 61.43 3.408 75.06

6DoF-INS-Aided -0.400 3.73 -3.586 13.16 -1.212 3.47

Type Test
Translation (mm)

X Y Z
Mean Std Dev Mean Std Dev Mean Std Dev

Turn
6DoF-Baseline 0.054 19.97 0.261 6.80 3.963 54.50

6DoF-INS-Aided -0.030 20.11 0.004 6.81 4.843 55.59

Non-Turn
6DoF-Baseline -0.165 6.49 0.188 6.41 -0.290 50.28

6DoF-INS-Aided -0.061 5.60 -0.008 6.42 3.214 47.26

Turn
Trans-Baseline -0.088 21.66 0.422 7.55 8.731 54.49

Trans-INS-Aided 0.980 20.50 0.279 5.74 5.635 57.28

Non-Turn
Trans-Baseline -0.182 6.12 0.317 5.90 -1.924 45.44

Trans-INS-Aided 0.029 5.44 0.273 5.68 -1.349 44.33

Type Test
Scale (mm)

Mean Std Dev

Turn
Scale-Baseline -10.303 46.05

Scale-INS-Aided -2.599 36.63

Non-Turn
Scale-Baseline 1.485 35.48

Scale-INS-Aided 1.366 30.89

translation RMSE only decreases slightly. The error mean and standard deviation

results shown in Table 14 show similar results to Table 13 and to Table 12.

4.4 Full Trajectory Evaluation

In addition to the test set, the models were also evaluated using all of sequence

10 from the KITTI Odometry dataset [2]. Each of the 1200 observations in the

sequence were given as input to the models. This allowed the individual predictions

to be integrated so that the each model’s performance over a full trajectory could be
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(a) 6-DoF Models

(b) Translation Models

(c) Scale Models

Figure 14: Bird’s-eye views of the predicted vehicle trajectories for sequence 10 of the
KITTI Odometry dataset [2].
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visualized. For each of the three output types, the full trajectory predictions were

compared with each other and with the true trajectory.

The full 6-DoF model results are shown in Figure 14a. It is immediately apparent

that the rotation predictions are much better with INS aiding, but translation errors

are not reduced by much. The translation model results are shown in Figure 14b

and the scale model results are shown in Figure 14c. Because there were no rotation

predictions for these model types, the true rotation is used for these plots. In addition,

for the scale models, the true translation direction angles are used to convert the scale

back into Cartesian coordinates.

The RMSE analysis methods that were run on the test set in Section 4.3 were

also run on the data from sequence 10. The mean prediction RMSE analysis table

for sequence 10 is shown in Table 15.

The RMSE results for the six neural network models are shown in Table 16 for

all of the observations and Table 17 for the turning and non-turning observations.

The sequence 10 rotation results are similar to the test set results (Tables 11 and 13).

However, the baseline model rotation errors are much higher for sequence 10. The

translation errors are also much higher for sequence 10, especially in the z axis. In

addition, the 6-DoF aided model did worse than the 6-DoF baseline model when

making translation predictions.

These results do not support the conclusion that INS aiding helps the translation

predictions in these neural network models. This could suggest that because the test

Table 15: Sequence 10 RMSE results when the sequence 10 mean values are used as
the VO prediction for each output. The rotation values presented are the individual
axis components of a rotation vector. Smaller values are better.

Mean Prediction X Y Z Mag
Rot RMSE (deg/1000) 212.24 848.39 166.84 890.31

Trans RMSE (mm) 15.67 11.37 334.65 335.21
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Table 16: Sequence 10 RMSE results for the six VO models. The rotation values
presented are the individual axis components of a rotation vector. Smaller values are
better.

Test
Rotation (deg/1000)

X Y Z Mag
6DoF-Baseline 83.22 210.38 116.69 254.56

6DoF-INS-Aided 3.75 18.44 3.61 19.16

Test
Translation (mm)

X Y Z Mag
6DoF-Baseline 13.47 9.46 170.96 171.75

6DoF-INS-Aided 12.96 10.20 260.63 261.16
Trans-Baseline 14.13 10.38 276.30 276.86

Trans-INS-Aided 12.94 10.80 277.51 278.02
Scale-Baseline 231.05

Scale-INS-Aided 206.68

Table 17: Sequence 10 RMSE results on turning and non-turning image pairs for the
six VO models. The rotation values presented are the individual axis components of
a rotation vector. Smaller values are better.

Type Test
Rotation (deg/1000)

X Y Z Mag

Turn
6DoF-Baseline 108.35 483.63 146.21 516.73

6DoF-INS-Aided 4.64 31.98 4.59 32.64

Non-Turn
6DoF-Baseline 78.47 118.44 111.27 180.46

6DoF-INS-Aided 3.59 15.21 3.43 16.00

Type Test
Translation (mm)

X Y Z Mag

Turn
6DoF-Baseline 29.41 6.73 163.33 166.09

6DoF-INS-Aided 28.54 8.50 255.73 257.46

Non-Turn
6DoF-Baseline 8.51 9.82 172.15 172.64

6DoF-INS-Aided 8.06 10.44 261.41 261.74

Turn
Trans-Baseline 30.11 8.35 235.23 237.30

Trans-INS-Aided 28.51 9.18 235.85 237.74

Non-Turn
Trans-Baseline 9.33 10.67 282.29 282.65

Trans-INS-Aided 8.04 11.03 283.58 283.91

Turn
Scale-Baseline 225.35

Scale-INS-Aided 176.78

Non-Turn
Scale-Baseline 231.94

Scale-INS-Aided 211.06
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set contained samples taken from in between the training set samples, the neural

networks could be using the learned distributions of the training set to interpolate

the test set predictions. Because no sequence 10 observations are used in the training

set, this interpolation is not possible.

For the turning and non-turning errors in Table 17, the rotation errors are lower

on the non-turning image pairs. This is to be expected as the amount of rotation is

also lower. With the exception of the x axis, the translation errors are higher when

the vehicle is not turning.

4.5 INS-Aided Model Sensitivity Tests

Each INS-aided network was tested for sensitivity to errors in the input rotation

values. Two different types of errors were evaluated: bias error and angular random

walk (ARW) or sensor error. Each type of error was applied to each component of

the true rotation separately. For instance, a bias error of a given strength was added

to the x component of the true rotation and then given as input to an INS-aided

model to produce the a set of VO predictions. Likewise, this was done for the y and z

components. These predictions were then subtracted from the true motion values to

obtain the amount of estimation error for each observation. The mean and standard

deviation of the output estimation errors were then calculated for each set of VO

predictions. By varying the strength of the bias or ARW error, the effect of the errors

on the VO estimation can be observed. This analysis helps to characterize the Inertial

Measurement Unit (IMU) quality needed to produce similar VO estimation results.

4.5.1 Bias Error Sensitivity

A bias error changes the INS measurements by a fixed offset. These can produce

significant drift in VO estimation because the bias error integrates over the number
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of samples. For the bias error sensitivity analysis, a fixed bias amount was added to

the true rotations in the test set. These noisy rotations were then given to the neural

network along with the corresponding image pairs to produce VO estimates. This

was done for all three of the INS-aided models. The means and standard deviations of

estimation errors at different bias strengths are shown in the right half of Figures 15,

16 and 17. Figure 15 shows the error standard deviation responses of the 6-DoF

rotation outputs. The translation error plots for each model are given with the mean

responses in Figure 16 and the standard deviation responses in Figure 17. According

to [55], the NovAtel HG1700-AG62 has a gyro rate bias drift of 5.0 deg/hr. It can be

clearly seen in the plots that this amount of bias error present in the rotation inputs

would not change the results of network training, even though the rotation estimates

used for training did not have any bias error.

(a) 6-DoF ARW - Rotation Std Deviation (b) 6-DoF Bias - Rotation Std Deviation

Figure 15: Rotation error sensitivity to ARW and bias errors for the INS-Aided 6-
DoF VO models. The rotation values presented are related to the individual axis
components of a rotation vector. The legend elements identify the INS axis to which
the error was applied and the output response shown, respectively.
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(a) 6-DoF ARW - Translation Mean (b) 6-DoF Bias - Translation Mean

(c) Translation ARW - Mean (d) Translation Bias - Mean

(e) Scale ARW - Mean (f) Scale Bias - Mean

Figure 16: Translation error mean sensitivity to ARW and bias errors for the INS-
Aided VO models. The legend elements identify the INS axis to which the error was
applied and the output response shown, respectively. In the mean plots, when a curve
ended negative, it was flipped across the x axis for ease of comparison.
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(a) 6-DoF ARW - Translation Std Dev (b) 6-DoF Bias - Translation Std Dev

(c) Translation ARW - Std Dev (d) Translation Bias - Std Dev

(e) Scale ARW - Std Dev (f) Scale Bias - Std Dev

Figure 17: Translation error standard deviation sensitivity to ARW and bias errors
for the INS-Aided VO models. The legend elements identify the INS axis to which
the error was applied and the output response shown, respectively.
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4.5.2 ARW Error Sensitivity

The ARW error is related to sensor noise. It is present even when the IMU is

stationary. This ARW error can be modeled using white Gaussian noise of a particular

strength. A sample of random Gaussian numbers was obtained using python’s numpy

library. The same seed value for generating the Gaussian noise was used for all of the

ARW tests so that they could be compared with one another. These noise values were

then multiplied by the a particular strength value and added to the true rotations.

Like with the bias sensitivity tests, the ARW error was only added to one rotation

component for each test so that the error effects in each axis could be observed. The

results are shown in the left half of Figures 15, 16 and 17. Like with the bias error, the

rotation error responses are given in Figure 15, the translation error mean responses

are given in Figure 16, and the translation error standard deviation responses are

given in Figure 17.

The NovAtel HG1700-AG62 [55] has an ARW error of 0.5 deg/
√

hr. This is the

strength of the error that was used during training for the INS-aided networks. It can

be seen that for most of the outputs, this amount of ARW error does not affect the

mean or standard deviation response. However, the rotation error standard deviations

shown in Figure 15a start changing significantly at approximately 1 deg/
√

hr error.

4.6 Summary

The results show that the validation loss noise during training made it difficult

to know which epoch was the best for further evaluation. This may have been due

in part to the normalization of the rotation and translation values. That said, the

aiding networks did better in general than the baseline networks on the test set,

especially when predicting rotation. However, the baseline networks did noticeably

better than the aided networks when predicting the sequence 10 translations. The
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test set translation results were not as stark and seem to show that there was only

marginal improvement when using aiding.
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V. Conclusions

5.1 Significance of Results

The Convolutional Neural Network (CNN) selection results show that larger input

images did not necessarily help with the Visual Odometry (VO) calculation. Because

the validation loss was noisy, this made it difficult to know which epoch was actually

the best. However, the noise in the validation loss did not seem to affect the actual

error which decreased steadily during training. In addition, the results indicate that

the learning rate reduction factor was too drastic because of the considerable lack of

further improvement once the learning rate was reduced. Unfortunately, this was not

noticed until after all models training and time was short.

The results of the Inertial Navigation System (INS)-aiding tests indicate that

aiding reduces errors in rotation estimation by nearly an order of magnitude when

compared with the baseline models. However, these errors are still larger than the

amount of error present in the aiding inputs. A different neural network may be able

to obtain rotation estimates that are better than the rotation input, but for these

models, the overall VO result would be better if the INS inputs were used directly as

the rotation estimate instead of the network’s rotation prediction.

For translation, the results are more varied. Overall, the INS-aiding seems to

improve the VO performance, but only slightly. However, The sequence 10 errors are

not consistent with this, showing that the baseline networks did better. In general,

when a network is estimating fewer outputs it performs better.

The results of plotting the error distributions show that when INS-aiding is used,

the rotation errors become more Gaussian in distribution. This is especially apparent

in the x and z rotation errors, but can also be seen in the y rotation errors. The

translation error distributions do not appear more Gaussian, especially for x and y
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translation. However, the z translation error distribution does appear slightly closer

to Gaussian when aiding is used. The translational scale distribution does not appear

Gaussian. These results seem to indicate that as the errors are reduced, they become

more Gaussian in distribution. This could help with modelling these errors when

fusing these neural network estimations with other navigation sensor measurements.

The results show that aiding a CNN with geometric inputs can improve the VO

estimation performance, but with some caveats. INS-aiding greatly improves rotation

estimates, but the output is not better than simply using the rotation given by the

Inertial Measurement Unit (IMU). The translation and scale estimation is not nec-

essarily improved by rotational aiding as can be seen in the only slight improvement

on the test set and detriment on sequence 10. Perhaps aiding with data related to

the translation would be able to produce better overall results. For instance, the

direction of translation calculated using Epipolar geometry could be used as input to

the network. The approach explored in this thesis may help to reduce drift in VO

solutions, but it needs to be used in conjunction with other sensors. This type of

CNN aiding should be considered further to determine the types of input data and

situations where it may be more useful.

5.2 Future Work

• Use pre-trained version of FlowNet [1], then fine-tune using transfer learning to

see if results improve. This would give insight as to whether a model pre-trained

for optical flow would be able to produce a better VO result.

• Use model architectures trained on the ImageNet database, then retrain to do

VO and see how results change.

• Try other types of input aiding (e.g. rotation or normalized translation calcu-
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lated with the essential matrix method, other sensor input, etc.).

• Use the CNN and image pair inputs to predict INS rotation errors instead of

the camera’s rotation. This may help to remove the INS errors improving the

overall rotation predictions.

• Use a larger dataset to improve statistical variance.

• Try varying the size of the dense (fully-connected) layer for the aiding branch.

• Use a less drastic learning rate reduction factor (e.g. 0.8 instead of 0.1).

• Use multiple types of aiding concurrently.

• Try other normalization techniques (e.g. do not normalize rotation or transla-

tion features and scale rotation and translation Mean Squared Error (MSE) in

the loss function instead).

• Remove rotation from images during pre-processing. This could be done by

taking the true rotation between two images and dividing it in half to determine

the amount that each image needs to be rotation to achieve the same orientation

perspective. This half-rotation would then be multiplied by the normalized

pixel coordinates to obtain the de-rotated images. Both images would then be

converted back into pixel coordinates and the overlapping region of the two

images could be determined. Because these perspective changes will reduce

the field of view for each image, the frame rate would need to be high enough

that there would still be adequate overlap between the two de-rotated images.

Once these de-rotated images are obtained, the images could be cropped to a

standard size such that the missing pixels produced by removing the rotation

are not used.
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• Remove the ground-based assumption that the camera is at a fixed height above

the ground. In order to account for this change, a measurement of the camera’s

height above the ground could be given to the neural network as well.
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2D two-dimensional. 2, 6, 7, 11, 16

3D three-dimensional. 2, 3, 6, 7, 11, 12, 16, 19

6-DoF six degrees of freedom. iv, viii, 3, 5, 17, 33, 38, 40, 41, 42, 48, 53, 54, 55, 56,

59, 61, 62, 64, 65, 1

ARW angular random walk. iv, 23, 24, 36, 37, 43, 64, 65, 66, 65, 68, 1

BRIEF Binary Robust Independent Elementary Features. 10

BRISK Binary Robust Invariant Scalable Keypoints. 10

CNN Convolutional Neural Network. iv, vi, ix, 1, 3, 4, 14, 15, 16, 17, 18, 19, 25, 38,

40, 41, 44, 45, 46, 48, 70, 71, 72, 1

DCM Direction Cosine Matrix. 19, 20, 22, 32

DL Deep Learning. iv, 1, 2, 3, 4, 5, 14, 15, 18, 19

DNN Deep Neural Network. 25

F2F frame-to-frame. iv, 1, 15, 25, 1

FAST Features from Accelerated Segment Test. 10

FLANN Fast Library for Approximate Nearest Neighbors. 11

FREAK Fast Retina Keypoint. 10

GAN Generative Adversarial Network. 19
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GNSS Global Navigation Satellite System. 1

GPS Global Positioning System. 1, 5, 8, 25, 30
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MSE Mean Squared Error. 42, 48, 50, 72
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OpenCV Open-Source Computer Vision. 29, 32
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PnP perspective from n points. 12

RADAR radio detection and ranging. 1

RANSAC random sample consensus. 11
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VAE Variational Auto-Encoder. 19

VO Visual Odometry. iv, vii, viii, ix, x, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 24, 25, 28, 38, 39, 40, 41, 44, 45, 48, 51, 52, 53, 55, 56, 57, 58,

59, 62, 64, 65, 66, 70, 71, 1

84



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

Improved Ground-Based Monocular Visual Odometry Estimation
using Inertially-Aided Convolutional Neural Networks

Watson, Josiah D, Mr.

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-072

Intentionally Left Blank

Distribution Statement A:
Approved for Public Release; distribution unlimited.

While Convolutional Neural Networks (CNNs) can estimate frame-to-frame (F2F) motion even with monocular images,
additional inputs can improve Visual Odometry (VO) predictions. In this thesis, a FlowNetS-based [1] CNN architecture
estimates VO using sequential images from the KITTI Odometry dataset [2]. For each of three output types (full six
degrees of freedom (6-DoF), Cartesian translation, and transitional scale), a baseline network with only image pair input
is compared with a nearly identical architecture that is also given an additional rotation estimate such as from an Inertial
Navigation System (INS). The inertially-aided networks show an order of magnitude improvement over the baseline when
predicting rotation, but the aided rotation predictions are still worse than the input rotations. Translation predictions
are not necessarily helped either. A full-trajectory analysis gives similar results. The INS-aided neural networks are also
tested for sensitivity to angular random walk (ARW) and bias errors in the sensor measurements.
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