
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2020 

Pedestrian Navigation using Artificial Neural Networks and Pedestrian Navigation using Artificial Neural Networks and 

Classical Filtering Techniques Classical Filtering Techniques 

David J. Ellis 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Artificial Intelligence and Robotics Commons, and the Navigation, Guidance, Control, and 

Dynamics Commons 

Recommended Citation Recommended Citation 
Ellis, David J., "Pedestrian Navigation using Artificial Neural Networks and Classical Filtering Techniques" 
(2020). Theses and Dissertations. 3618. 
https://scholar.afit.edu/etd/3618 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F3618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=scholar.afit.edu%2Fetd%2F3618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=scholar.afit.edu%2Fetd%2F3618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3618?utm_source=scholar.afit.edu%2Fetd%2F3618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


PEDESTRIAN NAVIGATION USING
ARTIFICIAL NEURAL NETWORKS AND
CLASSICAL FILTERING TECHNIQUES

THESIS

David J. Ellis, Captain, USAF

AFIT-ENG-MS-20-M-018

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENG-MS-20-M-018

Pedestrian Navigation using Artificial Neural Networks and Classical Filtering

Techniques

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

David J. Ellis, B.S.E.E.

Captain, USAF

March 19, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENG-MS-20-M-018

Pedestrian Navigation using Artificial Neural Networks and Classical Filtering

Techniques

THESIS

David J. Ellis, B.S.E.E.
Captain, USAF

Committee Membership:

Joseph A. Curro, Ph.D
Chair

Aaron J. Canciani, Ph.D
Member

Clark N. Taylor, Ph.D
Member



AFIT-ENG-MS-20-M-018

Abstract

The objective of this thesis is to explore the improvements achieved through us-

ing classical filtering methods with Artificial Neural Network (ANN) for pedestrian

navigation techniques. ANN have been improving dramatically in their ability to

approximate various functions. These neural network solutions have been able to

surpass many classical navigation techniques. However, research using ANN to solve

problems appears to be solely focused on the ability of neural networks alone. The

combination of ANN with classical filtering methods has the potential to bring bene-

ficial aspects of both techniques to increase accuracy in many different applications.

Pedestrian navigation is used as a medium to explore this process using a localization

and a Pedestrian Dead Reckoning (PDR) approach.

Pedestrian navigation is primarily dominated by Global Positioning System (GPS)

based navigation methods, but urban and indoor environments pose difficulties for

using GPS for navigation. A novel urban data set is created for testing various

localization and PDR based pedestrian navigation solutions. Cell phone data is col-

lected including images, accelerometer, gyroscope, and magnetometer data to train

the ANN. The ANN methods are explored first trying to achieve a low root mean

square error (RMSE) of the predicted and original trajectory. After analyzing the

localization and PDR solutions they are combined into an extended Kalman Filter

(EKF) to achieve a 20% reduction in the RMSE. This takes the best localization

results of 35m combined with under performing PDR solution with a 171m RMSE to

create an EKF solution of 28m of a one hour test collect.
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Pedestrian Navigation using Artificial Neural Networks and Classical Filtering

Techniques

I. Introduction

1.1 Pedestrian Navigation

Navigation is an integral part of many technologies civilization has become reliant

on it. Current technologies rely heavily on Global Positioning System (GPS) for a

relatively precise solution to this problem. However, GPS signals can be challenged

or denied by obstacles or buildings in indoor or urban environments. These gaps have

led to a variety of proposed solutions for navigation in both of these environments.

Some of the approaches that have been researched include Bluetooth Low Energy

(BLE) [3], Wireless Fidelity (WIFI) [4], radio frequency (RF) [5], and image based

approaches [6]. Two fundamental building blocks of navigation that will be explored

in this research are localization and dead reckoning. Although these techniques are

old, new methods and algorithms are constantly being researched to achieve the best

results. Within these types of environments the primary mode of transportation is

walking. The localization and dead reckoning solutions are discussed from a pedes-

trian navigation perspective.

Localization methods are extremely varied from star tracking to using signals for

triangulation. One approach that is very relatable to how a human localizes them-

selves is landmark detection within a scene. Humans are taught to understand objects,

locations, and a multitude of other tasks through sight from a young age. While hu-

mans understand images with relative ease, computers algorithms have not developed
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enough capabilities to achieve complex tasks in the past. Image recognition software

has been developing and improving for decades with significant progress made from

Artificial Neural Networks (ANNs) in recent years. With new advancements to ANNs,

computational capabilities, and readily available imaging technology on the average

person image based localization can prove reliable. These three items are important

because ANN techniques have shown reliable results in many benchmark image pro-

cessing problems. In order for the ANN to be able to train it needs a lot of data to

create a generalized solution. With the increase in imaging devices around the world

and social media platforms the amount of images for training have skyrocketed. Al-

though even with enough data ANNs and the techniques used to employ them take

huge computational demands. In the past computers would not have the computa-

tional capacity to handle all of the calculations needed to process large images and

train the number of weights in large ANNs. With these three improvements image

based ANN have become a prominent technique for image processing.

Dead reckoning navigation has long been utilized in systems such as maritime,

aerial, and ground navigation. Many of the old uses of dead reckoning relied on

simple techniques such as monitoring speed and time of travel. Within the last century

inertial measurement units (IMUs) were developed to create a self contained system

that can be utilized on almost any system providing acceleration and gyroscopic

information. IMU sensors come in various degrees of performance capabilities from

navigation to consumer grade. These sensors drastically differ in price and accuracy.

ANNs are not only able to handle image based information, but are also highly capable

in handling sequential information. In order for these models to operate they require

data and in the two cases just discussed that comes in the form of images and IMU

data. Cell phones are one of the most common pieces of technologies the that people

own. Additionally, the majority of cell phones contain the required sensors to collect
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images and IMU data that is needed for these pedestrian navigation solutions.

Although ANNs have proven successful there are still many solutions that exist.

Classical filtering techniques have been in development and use in navigation for

decades. These algorithms take in sensor data and are able to estimate a smoother

signal from the sensor. In addition to just a single sensor these filters have the

ability to take in multiple sources of information to provide the best estimation of

a navigation solution. Even with the best sensors, noise and errors invariably creep

into any solution. This noise has the potential to creep into any ANN or traditional

methods. Additionally ANN do not create a 100% accurate solution. The networks

themselves have error in their output. The use of classical filters in navigation has

the potential to minimize these errors and create a robust navigation solution.

1.2 Problem Statement

Classical filtering methods have long been the standard for increasing reliability

and smoothing out sensor information for navigation. Within the last decade research

has been exploding utilizing new advancements in ANN technology. However, much

of this research looks to solve problems with ANNs as the only solution. This work

tries to explore the problem of pedestrian navigation using multiple ANN in combi-

nation with classical filtering techniques. By fusing classical filtering techniques with

advancements in ANN, the solutions have the potential to create a more robust and

better performing algorithm than either method on its own. Different techniques and

neural network architectures are first explored to try to achieve the best results on

the specific data set used for training. Metrics needed for the extended Kalman Filter

(EKF) are obtained from the results from these neural networks and then additional

tests are computed analyzing the fused results.
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1.3 Assumptions

This work is not trying to create the best performance metrics for pedestrian navi-

gation. It looks to utilize a new urban environment data collection with low precision

positioning to test the viability of different techniques for localization and Pedestrian

Dead Reckoning (PDR). With these models tested results are compared between the

ANN solutions separately and those fused together with an EKF. Additionally, the

techniques in this research assumes the data set collection remains in a flat two di-

mension plain. It’s important to mention all neural network models took advantage

of previously developed layers through TensorFlow[7] and Keras[8].

1.4 Thesis Outline

The remaining thesis covers four main sections of information. Chapter II contains

relevant information to understand the techniques used to complete analysis on this

subject. Chapter III discusses the process of data collection, data processing, ANN

design, and EKF design. Chapter IV covers the results of the various experimentation.

Finally a summary concludes this documentation outlining the results and providing

additional work to be done on this topic in the future.
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II. Background and Literature Review

2.1 Overview

This section provides background methods used in this research described in Chap-

ter III. This chapter will cover key concepts in Global Positioning System (GPS),

reference frames, vision navigation, Artificial Neural Networks (ANNs), state estima-

tion, and filtering. In addition to information on these topics, descriptions on a few

key alternative pedestrian navigation technologies are explored to include signals of

opportunities (SoOP) and step counting methods.

2.2 Process Knowledge

2.2.1 Global Positioning System

GPS has become the preeminent form of localization and forms the basis of most

navigation solutions. It is a satellite based radio positioning system that provides

three dimensional positioning and velocity data as well as precise timing for a variety

of tasks worldwide. The spacing of the satellites are arranged in six orbital planes

to have general visibility by any receiver while maintaining on average six satellites

within sight. Standard receivers in cellular phones utilize the Standard Positioning

Service (SPS) signal which has a reduced capability when compared to the Precise

Positioning Service (PPS). During normal operating conditions the SPS has a 95%

accuracy to be within 12.8m and a 99.94% accuracy to be within 30m of the actual

position at any point in the GPS coverage [9]. Whether using SPS or PPS the position

data is calculated by trilateration of measurements from the satellites in view.
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2.2.2 Reference Frames and Transformations

In order for GPS to provide accurate positions around the earth it utilizes a refer-

ence frame known as WGS-84. The reference frame plots the earth on an ellipsoidal

coordinate system with the earths center of mass defined as (0,0,0). The standard

includes constants for the earths ellipsoidal coordinate system, gravitational model,

and magnetic model. The coordinates for this system are latitude(ψ), longitude(λ)

and altitude above the reference ellipsoid(h) in meters and are showcased in Figure

1. This model has been updated and aligned extremely closely to the international

terrestrial reference system as well. This alignment creates a common reference frame

for analysis allowing different technologies to communicate with minimal conversions

needed. Earth centered earth fixed (ECEF) is another common reference frame used

in this research. The ECEF is very similar to the WGS-84 model except ECEF uses

x,y,z instead of latitude,longitude, and altitude. The coordinate systems and their

relationship are shown in Figure 1. In order to calculate the transition from WGS-84

to ECEF equations 1 - 6 are used where a is the equatorial earth radius, b is the polar

radius, f is the flattening parameter, e is eccentricity of the earth, N is the distance

from the surface to the Z-axis along the ellipsoid normal, and x,y,z are the ECEF

coordinates[10].
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Figure 1: Ellipsoid ECEF coordinate system

f =
a− b
a

(1)

e = sqrt(2f − f 2) (2)

N =
a√

1− e2sin2(φ)
(3)

x = (N + h)cos(ψ)cos(λ) (4)

y = (N + h)cos(ψ)sin(λ) (5)

z = (
b2

a2
N + h)sin(ψ) (6)

These common reference frames are used for a wide variety of calculations on the

earth, but when working on navigation problems that only traverse a small area it

can make mathematically and computationally more sense to convert to a north, east,

down (NED) reference frame. This thesis works on a relatively small scale in the range

of hundreds of meters making the conversion from a global ECEF to a local NED

reference frame beneficial. The NED frame can be seen in Figure 2 where it utilizes a

Cartesian coordinate system as well. The origin is placed on the surface of the earth
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at any specified point. The x axis points to the north pole, y axis runs parallel to the

longitude line, and z axis points towards the center of the earth. Within the NED

reference frame the data is collected in its own reference frame known as the body

frame. The body reference frame sets the cell phone as the center of another Cartesian

coordinate system with the cell phone displayed horizontally. In this body frame the

y direction points outwards from the front facing camera and x points perpendicular

to y, and z points down towards center of the earth. This body frame moves within

the NED reference frame.

Figure 2: NED reference frame

In order to correlate these three reference frames a series of matrix multiplica-

tions by direct cosine matrices (DCM) are used. DCMs create a rotation from one

coordinate frame to another. In certain coordinate transformations a translation is

also needed. The calculations from WGS-84 have already been shown so the ECEF

to NED DCM is showcased in equation 7. One important aspect to note is that the

DCM utilized the NED origin reference point in terms of latitude, longitude, and

height above ellipsoid. Latitude and longitude is a more common initialization for-

mat so the DCM from ECEF to NED uses ψ and λ as a base for conversion instead
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of ECEFx,y,z. The translation from the ECEF origin to the NED origin just uses

equation 1-6 to obtain x,y, and z for that specific spot on the map.


−sin(ψ)cos(λ) −sin(ψ)sin(λ) cos(ψ)

−sin(λ) cos(λ) 0

−cos(ψ)cos(λ) −cos(ψ)sin(λ) −sin(ψ)

 (7)

The conversion from the NED to the body frame requires both a translation from the

NED origin to the center of the body and a rotation to align with the body frame. The

rotation uses the DCM in equation 8 where angles are based off of roll(φ), pitch(θ),

and yaw(ψ).


cos(ψs)cos(θS) cos(θs)sin(ψs) −sin(θs)

cos(ψs)sin(φs)sin(θs)− cos(φs)sin(ψs) cos(φs)cos(ψs) + sin(φs)sin(ψs)sin(θs) cos(θs)sin(φs)

sin(φs)sin(ψs) + cos(φs)cos(ψs)sin(θs) cos(φS)sin(ψs)sin(θS)− cos(ψs)sin(φs) cos(φs)cos(θs)

 (8)

2.2.3 State Estimation

Within the study of control theory the concept of state-space representation

utilizes mathematical models to represent various states of systems and processes

(plants). States can be categorized into either discrete or continuous. The state-

space utilizes inputs, outputs and state variables to attempt to control or observe

a state. The state space models the current state based on the previous state and

any measurement inputs into the system. A simplified example of this process could

be trying to monitor and control the speed of an airplane. The airplane might be

modeled with three states: plane velocity, thrust, and wind speed. Velocity would be

calculated based on the thrust and wind speed. Sensors are used to provide a more

accurate measurement of the desired state, but still introduce errors. Probabilistic

mathematical models are an important tool used to represent many system dynamics
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and real world phenomenon. These models help to predict the next states of a system

or estimate how much error a sensor may have in its measurement. The mathematical

model used to represent these systems is generally a linear time invariant system and

measurement equation:

xk+1 = Axk + Buk + wk (9)

zk = Cxk + Duk + vk (10)

Where x represents the state vector, the subscript k is the discrete time index of the

system, A is the contribution of the current state to the next state, uk is the input,

z is the measurement, C shows the relationship between the current state and the

measurement, D shows how the system inputs relate to the measurement, w is the

error introduced to the current state, and v is the system error that relates to the

measurement. The observed value in this system helps to maintain more accurate

representation of the states and correct for the noise. One common method to model

error in the systems is to use Gaussian Markov Processes shaping filter.

2.2.4 Gaussian Markov Process

There are a variety of different types of mathematical models for complex systems

and errors. Many simple random processes that occur can be modelled as an additive

Gaussian white noise (AWGN). This type of model allows for multiple different noise

sources to combine together to be modelled as a single source. The model has a

Gaussian distribution and uniform power across the frequency band. In some cases

models are unknown and it’s desired to generate an empirical autocorrelation and a

mathematical model that matches it. For these cases collecting empirical data and

utilizing linear shaping filters becomes a useful modelling tool. One set of models are

called Gaussian Markov Processes. These models contain Gaussian distributions only
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storing information of the last state. One model that is important in this research is

an Exponentially time-correlated or First Order Gaussian Markov (FOGM) process.

This model produces an autocorrelation function(Ψ) shown in equation 11 where σ2

is the variance and τ is the time the data will de-correlate to 36.8% of its starting

value. This model is useful in a variety of band-limited noises[11]. These linear

models of system noise are extremely important in converting linear systems into

more complicated systems.

Ψxx(τ) = σ2e−|τ |/T (11)

2.2.5 Filtering

Filtering methods are an important tool used in a variety of controls and navi-

gation algorithms. An extremely common filter in navigation is the Kalman filter.

The Kalman filter is a state space method of utilizing minimum mean square error to

estimate new states from previous states and measurements [12]. The Kalman filter

assumes a linear system as well as AWGN. The Kalman filter can be broken into

three different sections. The dynamics model using state space representation can be

written as [11]:

xk = Fxk−1 + Buk + Gwk (12)

zk = Hxk + vk (13)

Equation 12 and 13 are the same as the linear time invariant equation 9 and 10 in

section 2.2.3. The naming convention used for these equations are different in navi-

gation literature. Where xk, B, u, wk, z, and vk are all the same from the previous

equations. The A matrix is re-written as F , C is re-written as H , D is not used and

omitted [12]. The filter predicts the state by using the measurement and covariance

11



to propagate the dynamics equations forward using the following equations[11]:

x̂k|k−1 = Fkx̂k−1|k−1 (14)

Pk|k−1 = FkPk|k−1Fk + Qk (15)

x̂k|k−1 is the current estimate of the state given the previous state and P̂k|k−1 is

the current covariance of the state given the previous covariance. The final output is

determined by the Kalman filter update equations which are [11]:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1 (16)

x̂k = x̂k|k−1 + Kkx̂k−1|k−1[zk −Hx̂k|k−1] (17)

P̂k = P̂k|k−1 −Kk[HPk|k−1] (18)

These final equations update the estimated state and covariance matrix based off

the Kalman gain K. This set of equations help to propagate forward a system’s state

based off of measurements, signal covariances, and previous states. Although these

mathematical models are extremely important in characterizing pedestrian navigation

there are a variety of different types of measurement update techniques.

2.2.6 Vision Navigation

Vision navigation is a multifaceted topic with various techniques and algorithms

used to accomplish the goal of navigating an environment using images. Some of

the key aspects of image navigation include object detection, scene mapping, object

motion, visual odometry, and localization. These techniques require the images to be

processed in a way that creates geometric links from the imagery to the real world.
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At the source of vision navigation is the image type that is used.

2.2.6.1 Images

In the basic sense an image can be represented as a matrix with each value rep-

resenting an intensity of some value. A variety of imaging techniques are available

depending on the goal such as x-rays, ultra sound, and radar. However, most stan-

dard images are created by utilizing three wavelengths from the visible light spectrum

red, green, and blue (RGB). This format creates three separate intensity matrices on

a scale from 0 to 255 of the three colors. When combined in various intensity values

most of all the other colors a human can see are able to be captured in this informa-

tion. One popular processing technique for images is to convert them into gray scale.

Gray scale images converts the three RGB matrices into a single matrix. Analysis

on images in this thesis is either done with RGB or gray scale images and will be

denoted as such.

2.2.6.2 Image Processing

The most common image processing tool in relation to vision navigation is feature

and descriptor detection. The features are utilized to identify items within an image

without having to understand the full context of the image. This is important due

to the fact computers only see the images as a set of matrices and don’t inherently

see contextual cues humans have evolved and trained to understand. Features can

be as simple as an edge detection algorithm to more advanced algorithms like scale

invariant feature transform (SIFT). SIFT is one of the most popular techniques of

determining features and descriptors written by David Lowe[13]. This technique uses

a method called difference of Gaussian blurs creating minima and maxima within

the scene which are denoted as the key-points or features. These key points are
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partially invariant to translation, rotation, and scaling. The descriptor takes into

consideration key information surrounding each key-point. Eight bin histograms of

the magnitude and orientation values are taken. These histograms are obtained from

four by four sub-regions of a sixteen by sixteen matrix around the key-point. These

magnitudes and orientation are sampled, rotated, and Gaussian weighting applied to

the create a 128 bit vector of information. This descriptor vector creates additional

information about the key-point that helps make key-points robust from artifacts

such as illumination [13]. Calculating these features and descriptors from an image

hundreds to thousands of points can be discovered to uniquely identify a keypoint from

any other. From these features and descriptors a variety of things can be done such as

key feature matching to match images and triangulation for video odometry. These

techniques require a breadth of fundamental knowledge on the overall procedures as

well as specific techniques for each algorithm. One way to to either increase the

efficiency of techniques like this or completely circumvent them is to utilize machine

learning.

2.2.7 Machine Learning

Machine learning is large field of mathematics, technology, computer science, and

algorithms that try to develop different techniques to map mathematical function

approximations to real world data or phenomenon. Machine learning utilizes applied

statistics to estimate complicated functions with a decreased emphasis on proving

confidence intervals[14]. Many of the statistical methods have been around since be-

fore computers, but are limited in what they can represent. Some of these methods

include linear regression, logistic, and quadratic discriminant analysis to name a few

[15]. These models are able to represent small dimensional problems that have fun-

damentally known and understood models. Advancements were made in the form
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of decision trees, support vector machines, and nearest neighbors [15] to expand the

scope of machine learning algorithms and their use cases. Many of these algorithms

can handle regression problems or classification problems and have been able to solve

a variety of problems and are still a primary solution for many problem sets. However,

some of the major advancements in machine learning in the last decade comes from

research on ANNs.

2.2.8 Artificial Neural Networks

ANNs are a form of deep machine learning. They are a method of stacking a large

number of small mathematical nodes called perceptrons together in various ways.

The goal of these networks is to approximate a function that maps a nonlinear trans-

formation from some input to an output. Some of the key concepts of these ANNs

include the perceptron, Activation functions, regularization, training, and the cost

function. This list is nowhere near comprehensive of the items needed to fully under-

stand neural networks, but gives a broad enough coverage for this thesis. Additional

resources can be obtained by reading Goodfellow et-al[14], Chollet [1], or any number

of neural network papers referenced.

Generally speaking neural networks most fundamental component is matrix mul-

tiplication and addition. Each neural network output(z) layer is the dot product of

an input tensor(x) and weight tensor(w) and a bias(b) term as shown in equation 19.

The tensor can be thought of as just a multidimensional array of any given size. For

example a vector is just a one dimension (1D) tensor and a matrix is a two dimension

(2D) tensor.

z = w ∗ x + b (19)

The output of this dot product is passed through an activation function(a) which is

generally non-linear. This non-linear activation function allows the networks to learn
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non-linear aspects of the data. There are a variety of different types of non-linear

activation functions that could be used. Three will be focused on in this research

and include the rectified linear unit (ReLU) [16], described and shown in Figure 3,

the sigmoid, described and shown in Figure 4, and the hyperbolic tangent function

(tanh), described and shown in Figure 5. The tanh and sigmoid function are relatively

similar but have different slopes and bottom range values. The ReLU function has

become the most used activation function in modern deep learning models, but is not

a catch all and certain problems perform better with other activation functions [14].

Figure 3: Graphical representation of a ReLU function. This functions mathematical

notation is written as a(z) = max(0, z)
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Figure 4: Graphical representation of a sigmoid function. This functions mathemat-

ical notation is written as a(z) = 1
1+e−z

Figure 5: Graphical representation of hyperbolic tangent function. This functions

mathematical notation is written as a(z) = e2z−1
e2z+1

These mathematical equations underlay the basics of the feedfoward portion of

ANN. However, the primary advantage of using ANN is their ability to adjust the

weights based off of some desired cost function. The cost function is utilized to create

a real target value that measures the performance of the neural network. Similar to

the activation function there is a wide range of different cost functions(J) available

depending on the desired output of the neural network. Mean squared error (MSE)

was chosen as the cost function for the majority of models due to them being regression
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based. MSE is an L2 based cost function to measure performance where the error is

calculated from equation 20. MSE takes the average difference between the sum of

the squared difference between the predicted value and the true value.

MSE; J =
1

n
Σn
i=1(Yi − Ŷi)2 (20)

Once the cost function is assessed the network determines a gradient of the cost

function in relation to the weights and bias of each layer. This gradient is determined

through a method called Backpropagation. Backpropagation is a fast algorithm that

utilizes the partial derivatives of the cost function in relation to the weights and bias

to calculate the gradient starting from the output layer back through the network to

the first hidden layer. The partial derivative of the cost function with respect to the

weights of a single layer can be shown in equation 21. The bias equation is the same

as equation 21 except instead of the weights w there is a bias b.

dJ

dW2

=
dJ

da2

da2
dz2

dz2
dw2

(21)

When propagating the partial derivatives back through additional layers this first

partial derivative can be reused as shown in equation 22. The ability to reuse the

partial derivatives from previous layers and only recalculate the current layers par-

tial derivative is how the back propagation method is able to calculate the gradient

quickly.

dJ

dw1

=
dJ

da2

da2
dz2

dz2
da1

da1
dz1

dz1
dw1

(22)

These calculations will continue on until the gradient has been found for all hidden

layers. The final gradient vector of all the weights and biases is shown in equation 23

[14].
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−∇J =



dJ
dw0

dJ
db0

dJ
dw1

dJ
db1

...

dJ
dwn

dJ
dbn



(23)

With the gradient determined the weights can be updated and trained. The

weights are trained based off of optimizer algorithms that utilize gradient decent

based methods. Three different optimizers are used throughout this research in-

cluding stochastic gradient decent (SGD) [17][18], root mean squared propagation

(RMSProp)[19], and ADAM [20]. SGD takes the gradients of the layers determined

from back-propagation and multiplies them by some learning rate (α). The weights

are then updated by moving the weights in this desired direction. The function is

trying to optimize each weight and find the lowest minimum value and steps closer

to that minimum based on the gradient. Data is randomly sampled from the entire

data set and updates the weights based off of the results of a given batch. In SGD

that batch size is a single sample and the weights are updated after every sample.

Implementations of SGD in this research had the added functionality of a momentum

term to adjust the speed of change as well. This allows the signal to change faster

when previous changes to the weights are high or slower if the changes are small. Op-

timizers are also driven based off of an adjustable learning rate. Depending on how

large the learning rate is the algorithms may prevent the function from obtaining an

optimal solution. This can happen by either having to low of a learning rate and

getting stuck in a local minimum or to large of one and over correcting and never
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obtaining the lowest minimum of the solution. RMSProp takes the basic model of

SGD and tries to correct the learning rate as it progresses through the training. It

accomplishes this by dividing the learning rate by an exponentially decaying average

of the gradients. Adaptive moment estimation (ADAM) can be seen as an extension

of the SGD optimizer as well. It utilizes both a momentum term and an adaptive

learning rate to try to converge on the optimal solution faster. These topics make up

the majority of information on how to actually train a neural network. These can be

adjusted to improve optimization however the remaining ANN topics are not required

to be used in a neural network, but can help improve optimization of a ANN.

Regularization is a process used to try to prevent overfitting [21]. Overfitting

occurs when the machine learning algorithm learns the training set too well and has

a hard time generalizing to cases outside of the data it already learned. Two common

regularization techniques used in ANN design are batch normalization and dropout.

Batch normalization normalizes the outputs of a previous layer before entering the

inputs of another. Normalizing these weights speeds up the system, reduces reliance

on low learning rate, and redistributes the outputs into a normalized range for the

new input [22]. The normalization is based off of a running average of the data

provided into the batch normalization layer. Dropout takes a different approach in

that it randomly drops out weights and their connections during training. This is an

attempt to reduce the neural network from creating strong similarities or co-adaptions

during training[23]. Two types of dropout have been developed for recurrent layers.

Originally dropout would only affect recurrent networks units at specific time steps.

Current methods employ an approach that uses variational inference based dropout

techniques [24]. This allows dropout to occur randomly at the input, output, and

recurrent connections.

Another method for producing better results is taking into consideration the ini-
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tialization of the weights. The network models require some initialization point of

the weights. One of the most popular methods is called Glorot normal initialization

[25]. This method draws samples based off of a truncated normal distribution about

zero. The distributions standard deviation takes into consideration the number of

input weights and output weights. Another popular weight initialization exists where

weights are initially trained on a large data set and then transferred to the desired

data set. This technique of pretraining weights is called transfer learning [26]. Trans-

fer learning has the potential to reduce the size of the new data set needed in order

to reach an optimal solution. Additionally, many of the pictures the networks are

pretrained on may not exist in the new data set which will help create a more gener-

alized solution. The items discussed underline the basic concepts of ANNs; however,

there are two neural network layer structures that require additional information due

to their importance to this research.

2.2.9 Convolutional Neural Networks

Two dimensional convolutional neural network (CNN)s are an important sub-

branch of ANNs designed to handle matrix like data. The layer implements convo-

lution inspired function to find important statistical relationships within data being

analyzed. The modified convolution operation operates by sliding a matrix kernel

across the input and taking the dot product of the two matrices. A 2D representation

of this dot product operation can be seen in Figure 6
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Figure 6: kernel based convolution method employed by convolution layers.

This convolution technique helps the model to learn features such as sparse inter-

actions, parameter sharing, and equivariant representations. Sparse interactions help

to define similarities within the data that only occur in a subset of pixels such as

edge detection. Parameter sharing is the effect of keeping the weights for the kernel

the same for an entire feature map to reduce the amount of weight parameters of the

system. Finally equivariant representation allows the system output to have transfor-
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mations appear that occured on the input data. These interactions drastically reduce

parameters and increase statistical efficiency. Additionally, as the layers interact with

further layers it links back to more and more of the initial nodes. This is one way

convolution layers maintain a large degree of connections to the input image without

requiring a direct connection. Most of the current progress in convolution layers is

done in 2D layers. These CNN layers employ a process taking different kernels and

sliding it across the input feature map creating a specified number of channels or fea-

ture maps. The kernels can learn to represent different types of attributes within an

image to optimize the solution. These attributes can be as simple as an edge detector

or as complex as determining a car. The kernel operations slide across the input im-

ages creating a feature response maps to determine if the image contains these filters

within the image. Comparing the kernel filters to the entire image helps the neural

network learn local patterns that are translation invariant. Additionally, a method

called pooling is used to down sample the data helping the networks learn spatial

hierarchies[1]. Maxpooling is the primary source of pooling and down samples the

feature map based off a maximum intensity of a n× n window. Another down sam-

pling method called stride can be used in conjunction with the pooling layers. Stride

moves the maxpooling window a specified number of cells for each operation. If the

stride is set to m it would reduce the feature map by 1
m

. Many of these attributes

of a CNN are demonstrated pictorially in Figure 7 where an input image is being

multiplied y a kernel to create a feature map and downsampled using Maxpooling

layers until the final desired outputs are formed.
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Figure 7: CNN pictorial representation. Showcases an Image and the kernel multipli-

cation into the feature maps. Also indicates the reduction of the feature maps until

the desired output with maxpooling layers

2.2.10 Recurrent Neural Networks

Where CNNs were made to understand spatially related data like images, RNNs

were made to understand sequential data. Recurrent Neural Networks (RNNs) use a

sequence of input data to produce output estimates either for a given sequence or for

each time step in a sequence. The length of the sequence data input into the neural

network is generally referred to as the lookback of the network. This takes the current

time step and looks back a specified number of inputs and the entire duration is input

into the network. Additionally, RNNs create a memory store to learn from past data

points. This is typically accomplish by using some sort of output bus similar to Figure

8 that maintains memory of past outputs or information to be used at later steps.

This helps to reduce the problem of older outputs becoming less important in training.

The mathematical notation can be seen in the computational graph in Figure 9. This

function takes an input x at each time step and is fed through some weight matrix

h to obtain an output o. The weights are then updated by some loss function L

corresponding to a training target y [14]. There are many different implementations

of RNNs using the memory store but the two most popular architectures are Long
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Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). Both LSTM and

GRU networks fall under the category of a gated unit which are help eliminate the

problem of the gradient used to train the weights either vanishing as back-propagation

works its way into early layers or explodes into extremely high numbers for specific

nodes [14].

Figure 8: Simple RNN Model [1]. Three cells of a single RNN unit are showcased.

The sequential inputs feed into each cell with an information bus moving forward

through the system as well as potential outputs.
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Figure 9: RNN computational graph showcasing the mathematical representation of

the RNN algorithm flow

The LSTM and GRU are RNNs primarily suited for solving sequential type data.

Additional information and clarification about LSTM layers can be found in Hochre-

iter et-al’s paper[27] and GRU can be found in Merri’s paper [28]. Both layer types

are designed to eliminate the problem of back-propagation gradient techniques values

gradually reducing to zero the earlier the layer occurs in the network by using gates.

The GRU utilizes a reset and an update gate as shown in Figure 10. This reduces the

number of operations needed for training and speeds up the model The LSTM basic

block can be seen in figure 11. This model has three gates the input, output, and

forget gate which are indicated by the sigmoid functions on the Figure. Each layer

type stores information from previous state and uses that memory to create better

predictions for the current state.
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Figure 10: A single GRU cell within the GRU units. Showcases the mathematical

notation as well as the internal mechanisms of each cell.

Figure 11: A single LSTM cell of a LSTM unit. Showcases the mathematical repre-

sentation of the model as well as all of the gate functions.

2.2.10.1 Temporal Convolution Network

1D Convolution layers are a way to take advantage of the convolution aspects on

sequential data. In general recurrent layers are the dominant solution to sequential

problems; however, 1D convolution layers have been shown to solve sequential data

as well[2]. 1D convolution layers operates by taking in the sequential data and having

a kernel operate on a set size of the data taking neighboring inputs to try to deter-

mine a solution. There are a variety of different methods and architectures that have
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shown success with 1D convolution layers. One specific architecture was developed

that has shown improved success in a variety of tasks. This architecture incorporates

1D convolution layers, batch Normalization, dropout, and activation function. The

convolution layers stack up on top of each other with a dilation of the kernel between

each layer increasing by a factor of 2n. This set up constitutes a Temporal Convolu-

tional Network (TCN) block and is shown in Figure 12. These TCN blocks can also

stack on top of each other to create larger and larger sequences. This block stacking

allows the output to access further information into the past and create a something

similar to memory in the system [2].

Figure 12: TCN block as outlined in [2]. Showcases important concepts such as

dilation and the layering of 1D convolution layers and their contribution to the overall

TCN block

2.2.11 Key Convolutional Neural Network Architectures

There are a number of models that have been developed and published to tackle

image classification problems. These models were designed to try to solve differ-

ent problems within neural networks at the time of their development. Most of the

neural network architectures compare results based on the ImageNet data set. This

data set consists of over fourteen million images to categorize one thousand different

classifications[29]. As these top models continue to improve and showcase high per-

formance results it’s advantageous to explore these models on additional data sets.

When using preexisting architectures the initialization of the parameters is impor-
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tant. Using transfer learning is common and many of the networks are available

pre-trained on the ImageNet data set. It’s important to give a brief overview of the

various models that were either replicated and adjusted or used as it was originally

designed in order to understand why one model might perform better than another.

2.2.11.1 VGG16

The VGG model explored the differences in a variety of neural network architec-

tures, but most notably the depth of layers. Authors Simonyan and Zisserman tested

six different layer depths ranging from 11-19 layers as showcased in Figure 13. More-

over, they took advantage of previous work testing filte kernel size and optimized to

three by three matrix filter kernels. The model used in this research is the VGG16-D

in Figure 13[30].
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Figure 13: The original six architectures tested under the VGG name. Model VGG16-

D is used in this paper for analysis

2.2.11.2 Residual network (ResNet)

The ResNet technique stacks residual blocks together making an extremely deep

network as noted in He’s paper[31]. These residual blocks copy the input data, pass

one copy through a series of convolution layers, and then adds the result of the

output of the convolution layers and the original copied input data together. In order

to make this work the input layer has to have the same dimensions as the output

of the convolution layers. These blocks are then stacked in series creating the deep
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networks. Creating a path that allows the input information to flow down allows the

information to continue to create useful connections without increasing the number

of weights of a model. Moreover, it gives paths back up the network keeping the

gradient from vanishing when it gets to earlier layers. The authors hypothesized that

if a neural network mapping could fit a function with a few stacked layers then it

could also learn a residual function. A graphical representation of the mapping from

input to output of a block is showcased in Figure 14. Multiple different variations

have been explored of the ResNet model with one of the highest performing being

the ResNet50[31].

Figure 14: ResNet block showing the flow of data, activation function, and mathe-

matical operations done.

2.2.11.3 Wide residual network models

The wide residual network models were inspired by problems with deep residual

networks. The authors Zagoruyko and Komodakis[32] indicate the lack of necessity

forcing the gradient to flow through the residual blocks. They believed it could create

a scenario where certain blocks held all of the information and many others didn’t have

any useful information [32]. Wide residual networks have the problem of dramatically

increasing weights, but these weights can be trained in a parallel fashion to greatly

increase speed. The papers main objective was to test varying degrees of depths and
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widths of the neural network. Their base model consisted of alternating a two layer

convolution residual block and maxpooling layers six times. From the base model

the authors explored deepening the model by adding convolutional layers in each of

the residual blocks. Additionally, they tested increasing the feature maps created

from each convolution layer and different combinations of the two methods. Their

work found that by keeping a smaller depth, but increasing the width it had greater

performance when testing on ImageNet compared to the ResNet inspired models.

2.2.11.4 Inception and Xception

The Xception model is an architecture designed by Francois Chollet[33] which

extends the work and hypothesis of the Inception model [34]. The main hypothe-

sis for the Inception model is to separate the cross-channel correlations and spatial

correlations. This is due to the models being tasked with learning 2D image spa-

tial data and a channel dimension. The Inception model tries to separate these into

independent learning processes. The cross-channel correlation is handled by a 1x1

convolution layer and then mapping these into 3x3 and 5x5 convolution kernels. This

can be illustrated in Figure 15. The Xception model makes the assumption that the

cross-channel and spatial correlations can be learned completely separate from each

other. The Xception model is made up of 36 separable convolution layers with ReLU

activation layers and batch normalization. The model can be seen in Figure 16 taken

from the Chollet paper [33].
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Figure 15: base inception model

Figure 16: Xception model and image flow through. Note: after each convolution

layer a batch normalization layer exists, but is not shown
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2.3 Related Work

With some background information for understanding the fundamentals of the

work in this thesis out of the way, discussing potential alternative solutions is impor-

tant. Pedestrian navigation is a well studied field with different levels of investment

and maturation. Two different techniques will be examined including a localization

and Pedestrian Dead Reckoning (PDR) based method. The localization methods

explored fall under a category of solutions considered SoOP. In addition to SoOP

an image based navigation method is discussed. One of the most common PDR

algorithms utilizes inertial measurement unit (IMU) sensors for step counting and

heading algorithms. Finally two ANN solutions for localization and a PDR solution

will be explored to show alternative techniques. There are a quite few techniques for

localization as mentioned earlier. One group of techniques is considered SoOP which

include methods such as Bluetooth Low Energy (BLE) [3], Wireless Fidelity (WIFI)

[4], and other SoOP solutions [5]. SoOP has achieved various degrees of accuracy and

can be explored in the papers listed, but another method is more pertinent to this

research. Image processing techniques have long been explored for use in localization.

Image processing techniques utilize features and descriptors of an image to create

landmarks that are invariant to position in the scene. One of the most common types

of image feature detection is called SIFT as described in section 2.2.6.2, but addi-

tional exist such as Oriented FAST and rotated BRIEF (ORB) [35] and speeded up

robust features (SURF) [36]. One problem that arises from utilizing these methods is

processing speed and their inability to fully handle rotation. Additionally, the detec-

tion methods are not fully learning the features and are commonly mis-identified and

need reduction algorithms such as random sample consensus (RANSAC) [37]. These

feature based methods provide the benefit of not needing extremely large training sets

like ANNs. In addition to localization methods a step counting method is explored
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for PDR.

Step counting algorithms are fairly straight forward and easily implemented. This

technique generally utilizes at a minimum an accelerometer, but usually employs a

nine degree of freedom magnetic and inertial measuring unit (MIMU). This allows a

three degree of freedom accelerometer to determine when a step was taken based on

spikes in the sensor readings regardless of sensor orientation. The downside of this

technique is that it only provides the time duration between steps and the time a

step occurs. Human bio-metrics are required to calculate the step length. These are

generally averaged for individuals based on the impact magnitude and time between

impacts [38]. Secondly a three degree of freedom gyroscope and magnetometer are

used in order to track changes in orientation and heading. The orientation algorithms

generally have a high degree of drift and are not reliable for long periods of time. The

magnetometer data is prone to be noisy in areas with ferrous material. Finally,

barometric pressure sensors are generally utilized to increase accuracy of elevation

and can generally find results within one meter [38]. Figure 17 showcases the exact

point where an algorithm would classify the data as taking a step based off of its

received sensor values. Finally, all of these individual techniques are combined in

order to navigate using step counting. Step counting can be utilized for PDR, but

doesn’t accomplish localization. The errors in this type of solution compound on one

another and predicted positions drift over time.
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Figure 17: IMU data showcasing point of impact of a step and angular rotation

calculations

The first ANN localization solution discussed is for localization of a camera within

a scene. The method has been named PoseNet [39] and its designed to take images

of an urban scene and determine its 3D position and quaternion represented orien-

tation. The labels are created using a technique called structure from motion which

uses features in the images to create a 3D representation of the environment. The

image labels are then determined by matching the features to the scene. The authors

used transfer learning techniques with the GoogLeNet [40] architecture to solve the

problem. The classification outputs were adjusted to perform regression based loss

function based off the position and quaternion absolute error. This method was able

to achieve results within two meters and five degrees of the truth labels.

The second ANN localization solution tested in Dr. Curro’s disertation [41] uti-

lized information collected in two different unique data sets including indoor and

outdoor environments. Multiple different ANN techniques where employed to de-

termine a navigation solution using these frequencies. One method particularly im-

portant to this research is taking continuous trajectory points within the scene and

clustering them into discreet points. This puts all of the available positions into a few

categories. Having only a few categories allows the networks to employ classification
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based learning instead of regression. CNNs are generally trained to perform classifi-

cation and using this in conjunction with high performing classification models may

improve localization.

The ANN solution for the PDR as been named the Oxford data set. It’s a PDR

data collection of 158 sequences covering 42.587 km of IMU and magnetometer data.

The data was collected from five different users on four different cell phones inside

a small room using Optical Motion Capturing System (Vicon) for providing high

precision training labels. The training was tested with the phone in four different po-

sitions including in the hand, pants pocket, inside a briefcase, and inside a cart. This

provided various methods for testing different algorithms. The authors tried various

recurrent neural networks combinations to solve the PDR problem, but determined

a two layer LSTM network achieved the greatest results.
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III. Methodology

The research presented looks at testing the improvements achieved to Artificial

Neural Network (ANN) solutions using classical filtering techniques on a pedestrian

navigation problem. In order to use the filtering methods two different ANN tech-

niques are explored to solve pedestrian navigation. These ANN algorithms are trained

on a new urban data set. Cell phones were chosen as the tool to collect this data as

they have a robust technology suite and are widely available and used within society.

Moreover, using this type of equipment over other sources creates a solution that

has a minimal impact on preexisting structure and reaches a large percentage of the

population. After data collection the data processing is discussed. Methods for deter-

mining a valid pedestrian navigation solution are explored using ANN solutions based

on localization with imagery, Pedestrian Dead Reckoning (PDR) with accelerometer,

gyroscope, and magnetometer data. Finally, with both ANN solutions discussed the

method of combining both of these solutions with an extended Kalman Filter (EKF)

into a single solution is discussed. Workflow of the process follows figure 18.
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Figure 18: Algorithm Workflow from data collection through ANN testing and de-

ployment

3.1 Data Collection

As mentioned a cell phone was used to collect the data needed for analysis. Any

cell phone with the sensors mentioned should be capable of collecting the required

data, but the data in this research was obtained with a Samsung Galaxy S10. The sen-

sors in this phone are higher quality sensors within the commercial cell phone sensor

market. During data collection the inertial measurement unit (IMU) Micro-Electro-

Mechanical Systems (MEMS) components accelerometer, gyroscope, and magnetome-

ter, as well as GPS location, barometric readings, and mp4 videos were all collected

and stored for later analysis. All data was collected with the cell phone attached to

the same person using a chest harness and the front camera/screen facing outwards
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shown in figure 19. The data was collected in a two block radius within an urban

downtown environment over a three month period of time.

Figure 19: location of Chest harness worn during data collection.

3.2 Data Processing

All of the data was post processed and analyzed to create training data formatted

properly for the algorithm they are used in. Each session of collecting data was

processed into .hdf5 files because of the large storage capabilities and fast slicing of the

data. The mp4 videos are deconstructed into image frames taken at 30 hz and 640x480

pixel resolution. The images were stored in both a gray-scale and red, green, and blue

(RGB) format for testing different ANNs. No data augmentation was performed on

the images. However, due to the motion of the camera while walking images contained

rotation up to 30° off camera vertical axis, 45° rotation off camera horizontal axis, and
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image blurring through out the data set. This introduced rotation and smearing into

the training sets, mimicking what would be seen in a real world test. Each of the other

sensors have different update frequencies creating timing mismatches for each event

of data. The IMU, magnetometer, and Global Positioning System (GPS) sensor data

was interpolated at one hundredth of a second to provide consistent timestamps for

each input and output pair. For the images generated the GPS position information

and timing are interpolated to match image timestamps, geo-tagging the image data.

Interpolation starts at the sensor with the latest first timestamp and finishes at the

sensor with the earliest final time step. After interpolation it was important to note

the data was then scaled down to get the majority of values between -1 and 1. The

IMU and magnetometer data had the z-score taken which subtracts the mean and

divides by the standard deviation to create a Gaussian distribution centered about

the origin. The north and east positions and images were scaled down to make all

data between zero and one. The positions were scaled down by a factor of 400m and

the images were scaled down by a factor of 255.

The GPS coordinates are obtained in WGS-84 format using latitude, longitude,

and height from the ellipsoid and used to geo-tag both the PDR and localization

solutions as the supervised training results. Latitude and longitude format doesn’t

have a large degree of variation of values in a small reference frame so the GPS

coordinates are converted into a local North, East, Down reference frame. This is

important because neural networks train best when data sets have the greatest spread

between a negative one to one range. Topology of the collected data stays relatively

flat so for ease of computation the frame was flattened into just two dimensions North

and East. The North and East coordinates are then normalized between a zero and

one. During testing the GPS absolute error can’t be determined for any data point

because there was no known reference points for the collections. The relative error
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based on average distance travelled between each update was used to assess any

position error. It was assumed the error would take a Gaussian distribution and any

error greater than five σ of the mean was considered to be too large of a difference

between time steps and removed. Remaining data points were smoothed by a local

average, shown in equation 24. The average was taken over eleven time steps including

the current position, five before, and five after.

x =
1

n
Σn=5
n=−5xn (24)

In order to obtain the training targets for the PDR ANN the GPS positions need

to be converted into different metrics due too the sensor information. IMU sensor

calculates relative speed of change and rotations of the camera for a specific time

period. The magnetometer sensor tries to calculate a heading based solely on the

magnetic north pole of the earth. Neither of these sensors have the ability to sense

anything at a given position that will anchor it to a real world position. This also

eliminates the ability to use absolute velocity measurements in training as there isn’t

an easy or accurate way to calculate a true north or east velocity from the IMU

and magnetometer data. To account for this, the target output for the PDR models

use a relative position change calculating the distance(d) between two points and a

delta angle (φ) can be calculated for each time step. This creates a relative distance

traveled in a given time frame and can be found using equation 25. The change in

orientation from each time step can be calculated based off these two positions as well.

The angle θk in equation 26 and shown in figure 20 is first calculated as a reference

point to each position. Then φk is calculated for each time step using equation 27.

The desired angle φ and distance(d) are pictured in figure 20.

dk =
√

∆north2k + ∆east2k (25)

42



θk = atan2(∆northk,∆eastk) (26)

φk = θk − θk−1;φ0 = θ0 (27)

Figure 20: Position displacement used for PDR. d and φ are used as target outputs

and θ is used to calculate φ at each time step

The distance measurements for the PDR target output weren’t scaled as the inputs

already mentioned. Angle target outputs were modulated between -π and π as the

vast majority of the data is between negative one and one. The distance and angle

change were tested with changes at every time step as well as with a windowing effect

on the data. The windowing takes two points that are a specific time step apart and

calculates the total distance and angle change from these two positions. An example

of the windowing effect on the distance and angle change data can be seen in figure

21.
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Figure 21: The windowing effect of the output data. This takes data points a specific

time apart and calculates the total distance and angle change between the time steps

before sliding to the next iteration.

3.3 Neural Networks

Two different work paths exist for the neural network to include imagery based

localization and IMU and magnetometer based PDR. A variety of different ANN

architectures based on convolution layers are tested to achieve the best localization

results. Similarly, ANN structures based primarily on recurrent type layers are ex-

plored to solve the PDR navigation problem.

3.3.1 Neural Networks for localization

The localization models are all based on popular techniques and were each trained

and tested to determine the smallest localization error. Three different model archi-

tecture types were trained with a Glorot initialization[25]. These networks were being

optimized to the urban data set only and did not employ any transfer learning tech-

niques. These base models were differentiated into basic sequential, residual network,

and widenet overarching model types. In addition to these the Xception and VGG16

models were trained and tested on the current data set with weights initialized us-

ing transfer learning from the ImageNet data set. All localization neural networks

tested utilize a supervised learning method of training based on images geotagged

in a localized north, east, down (NED) reference frame. All of the models tested

utilized a variety of different hyper-parameters for batch Normalization, drop out,
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activation function, and optimization function to optimize the system to the lowest

mean squared error (MSE) and are explored in chapter IV.

3.3.1.1 Image Based Glorot Initialized Models

Three overarching model architectures were initialized using the Glorot method

that took advantage of different popular techniques in convolutional neural network

(CNN) architecture. All of the architectures these models are based off of provide

some different approach in trying to solve the image recognition problem. Addition-

ally, each model performed well on bench mark data sets showcasing their ability to

work. During testing a base model for each architecture type was chosen to provide

the smallest size to minimize computational requirements of the system. Testing then

expanded from there increasing various attributes and testing for various parameters

of the neural network. These base models consist of a convolution based sequential

feed-forward, residual network, and a wide-network system.

The sequential model refers to the sequential layout of the convolution layers in a

feed-forward based system similar to the VGG16 model[30]. The base model of the

basic sequential type consists of six two dimension (2D) convolution layers alternating

with six maxpooling layers and finishing off with two dense layers. Different variations

of this model were trained with various hyperparameters. Most of the testing of this

models was in the feature map size and the amount of convolution layers between

maxpooling layers. Adjusting the size of the network creates more parameters and

greater feature maps to potentially learn additional features in the images.

The residual network inspired architectures are all based off of the fundamental

residual block showcased in the residual network (ResNet)50 model. The models gen-

erally consist of residual blocks stacked sequentially creating a deep network. Most

of the models inspired in this category were tested with variations of the block archi-
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tectures. The blocks were set up in varying sizes and arrays consisting of convolution

layers ranging from two to eight layers. Increasing the layers within the block in-

creases the amount of parameters that can adjust and train to those specific data

points and reduces the effects of the residual connection. This increases the chance of

the gradient vanishing and the network not being able to adjust the weights properly.

Architectures were also adjusted by adding various number of residual blocks before

completing a maxpooling layer. This creates larger number of weights at a given

spatial size, but keeps residual connections interval small. This allows the gradient

to be generated easier, but introduces more information from each previous block.

3.3.1.2 Image Based Transfer Learning Models

The models in this section utilized transfer learning technique to pre train all of

the network weights. Tests were completed using the Xception and VGG16 model

with various training methods. The ImageNet classification data set was used for

pretraining finding optimal weights to solve 1000 seperate classifications. The model

weights are downloaded from the keras library using the training methods described

in the models papers. The model is then converted from a classification network into a

regression network by replacing the bottom layers. In the Xception model from figure

16 section 2.2.11.4 the layers removed are all within the exit flow block. Everything

after the globalpooling layer is removed and replaced with two dense layers. For the

VGG network shown in figure 13 section 2.2.11.1 the last three fully connected layers

and the soft-max output are removed and a globalaveragepooling layer and two fully

connected dense layers are added. This eliminates the previous output layers that

are heavily trained on the previous data sets. The new layers will only be trained

on the current urban data set and will have a more focused output since it’s only

trained on the urban environment. The activation function for the additional layers
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were a rectified linear unit (ReLU) on the first dense layer and linear on the final

output layer. These added layers were trained on the current data set with all of

the pre-trained network weights for 20 epochs. Models were then retrained with the

urban data set by unfreezing layers in the model. Weights were unfrozen at multiple

different layers within each model, but were always done after a maxpooling layer to

keep spatial information the same. Mean square error was used as the loss metric

to train and track the error as the modeled trained. Additional information on the

models can be found from either Chollet [33] or Szegedy [34].

3.3.1.3 Classification Based Navigation

One final approach to improve localization results was used which includes a tech-

nique of clustering the trajectory points along the paths into discreet positions. This

was accomplished by using a kmeans clustering technique into 100 unique clusters.

The clusters centers were determined from the combination of all of the training data.

Once the center points were determined the kmeans algorithm placed each point to

its closest cluster. The cluster center point label was then used as a classification

problem with 100 unique labels. These labels were one hot encoded placing a one in

the correct cluster label and zeros every where else. The cluster points were weighted

to remove any uneven training. The weights were determined by the inverse of the

percent each label class obtained shown in equation 28. The ANNs tested using

this classification method were the VGG16, Xception, and WideNet model. The last

layer outputs were replaced with a softmax layer. Moreover, the loss function used

a categorical crossentropy and the single highest probability value was used to track

accuracy.

1
labels in category
total # of labels

∗ 100 (28)
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3.3.2 Pedestrian Dead reckoning

The PDR function was approximated with an ANN as well. Networks are orig-

inally designed and tested on the Oxford data set [42] and then tested on urban

data set. The majority of the networks chosen to try and solve this approximation

fall under the recurrent neural network architectures. Many of the architectures and

methodology used for this analysis are derived from research done by Chens-et-al [43].

Three different Recurrent Neural Network (RNN) layer types were utilized for training

including Long Short-Term Memory (LSTM),Gated Recurrent Unit (GRU), and Tem-

poral Convolutional Network (TCN). The LSTM and GRU layers were also trained

using a bidirectional approach analyzing the inputs from both directions. Training

of the networks was done with a supervised learning method feeding it the expected

input and output data. Two separate input data sets were tested for training. The

first utilized three axis gyroscope and accelerometer data and the second used 3 axis

gyroscope, accelerometer, and magnetometer data. The accelerometer and gyroscope

data were used in both scenarios as they provide cell phone orientation information.

Magnetometer data can be extremely noisy in an urban environment due to ferrous

materials in the building, vehicles, infrastructure, etc. However, the neural networks

are thought to either train around these anomalies or use them as additional infor-

mation to the velocities as they are passed. Additionally, magnetometers are widely

used in cell phone compass headings and the neural network may have been able to

learn heading information to improve the solution.
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Figure 22: Three variations of the PDR outputs. All Three models are given the

same inputs; however, the first one is the single output of the final step. The second

model only output a step for every input received and the final output was a single

sum of the entire time duration of input data.

The output target data for the PDR was analyzed three different ways as show-

cased in figure 22. Each method has the same input of time sequenced data of a

specified length. The first method outputs a distance and angle displacement for

each input. The second method only outputs the distance and angle change of the

last step. The final method outputs the total distance and angle change for the time

duration of the entire input. The RNN models, like the CNN models above, had vari-

ous parameter sweeps to dial in the best model with the lowest error. The parameters

that were tested were the number of layers, look back of sensor data, learning rate,

activation function, optimization function, batch size, number of epochs, and number

of hidden nodes. In addition to PDR and localization ANN solutions an EKF was

designed to combine both solutions into a single one.

3.3.3 Extended Kalman Filtering

The localization and PDR ANN solutions produce an estimated solution for lo-

calization and PDR based on real world sensors. These solution invariably have error
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from not only the sensors but the ANN algorithms as well. In order to compensate

and filter these errors an EKF is used. The EKF is similar to the Kalman filter

already explained in section 2.2.5, but the EKF can better handle nonlinear systems

with slight tweaks to the algorithm. The EKF state space model consisted of four

states including north position, east position, north velocity, and east velocity. The

state update equation showcasing the dynamics of the system and dynamics noise is

written in equation 29. No input is propagated into the state equation so matrix B

from equation ?? is left out. The dynamics matrix F of the system only updates the

position based off of the velocity.

x̂ =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0





Pnorth

Peast

Vnorth

Veast


+



0 0 0 0

0 0 0 0

0 0 σ2e
−|t|
τ 0

0 0 0 σ2e
−|t|
τ


(29)

Although there is no velocity component in the dynamics matrix there is velocity

dynamic noise which is modeled as a first order Gaussian Markov (FOGM). This

drives the velocity to zero if no updates are provided. This system relies heavily on

measurement updates to propagate forward and the trajectory motion would stall

after a short period of time without measurements. The localization outputs from

the CNN were used as measurement updates for the north and east EKF positions.

PDR results of position displacement and change were given an estimated current

orientation based on the current and previous estimated states of the EKF system.

This PDR change in angle was added to the orientation estimate and then the north

and east velocity components is determined for the time step and used as a mea-

surement update for the EKF. The measurement updates happened at two separate

frequencies and therefore each were given a separate two × four H matrix as shown
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in equation 30 and 31.

Hlocalization =

1 0 0 0

0 1 0 0

 (30)

Hvelocity =

0 0 1 0

0 0 0 1

 (31)

Figure 23: Extended Kalman filter diagram. Showcases the measurement update

processes and how the input data feeds through the ANNs and into the EKF

The workflow of the EKF is highlighted in figure 23. This shows how the input

data feeds through the corresponding ANN and into the measurement update step.

Many of the specific parameters of the EKF such as the dynamics noise, measurement
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noise, and FOGM characteristics are determined by the results of the ANN and will

be discussed in the next chapter.

3.4 Chapter Summary

In this chapter the methods for for collecting and processing the training data

was described. Three different image based ANNs using Glorot initialization and two

methods using transfer based learning were discussed for localization based pedestrian

navigation. Three different PDR model architectures were discussed for pedestrian

navigation. Additionally, the PDR windowing inputs were discussed as well as three

different training target types for determining the best results. Finally, a description

of the EKF model combining the two ANN was described.
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IV. Results and Analysis

This chapter analyzes results from the data collection, localization Artificial Neu-

ral Network (ANN), Pedestrian Dead Reckoning (PDR) ANN, and combined extended

Kalman Filter (EKF) results for a single one hour test collection set. The primary

objective is to determine the results of the EKF solution and see if any increase in

capabilities is found by combining ANN derived solutions into a single output. In

order to accomplish this both ANN based methods of navigation must be explored.

The localization based ANN is analyzed first comparing the Glorot initialized models

only trained on the urban data set to the transfer learning based methods. Then the

results for the PDR are discussed in relation to previous results on the Oxford data set

[42]. The best models are chosen and incorporated into the EKF where its results are

then compared to the results of the individual ANN based methods. The models are

all compared to there propogated final trajectory solution compared to the original

trajectory. Errors in the north, east, and combined dimensions are explored to obtain

the standard deviation of error of each model. Root mean square error (RMSE) is

the primary method used to compare between model types. The standard deviation

of the error is also considered when comparing similar models to achieve the optimal

solution.

4.1 Data

The data was collected in a two square city block approximately 250m/820ft by

350m/1150ft within an urban downtown environment. One block included an open

park covering around 60 percent with a large seven story building and an outdoor

pavilion covering the remaining area. The second block consisted of a variety of sky

rises ranging from three to twenty stories tall. This area was chosen to provide a range
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of different types of structures and scenes within an urban area for the neural network

to have a robust library of information to generalize for future collections. The time of

day of collect ranged from 1000 to 1600 creating different illumination between data

sets. An aerial view of the area with Global Positioning System (GPS) data points

for one of the collections can be seen in Figure 24. The urban data set currently

spans over three months with thirty collects ranging between forty minutes and 1.5

hours. The weather varied between sunny, cloudy, rainy, and snowy. Additionally,

the environment changed slightly with construction work on the adjacent streets

next to the walking path. Due to the construction, large equipment was in various

images at different times and locations for about fifteen of the collections, but the

path walked remained relatively unobstructed. Vegetation changes occurred during

the collections due to the seasonal change from autumn to winter. The data is split

between training, validation, and testing with twenty-seven collects used for training,

two used for validation, and one used for testing. Generally a larger split is preferred

between training, validation, and test, but additional data seemed to be needed for

training due to poor initial model results that will be discussed in results section 4.2

for localization and 4.3 for PDR.
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Figure 24: GPS data points for one collect in the urban environment. Note the

multipath effect on the GPS points along the left street

The data collected had various errors within it that could potentially reduce train-

ing capabilities. The GPS data collected was the primary source of errors that needed

to be resolved before being used. The original trajectory of one of the collections wi-

htout the satellite view is shown in Figure 25. Both Figure 24 and 25 showcase errors

in the system such as multipath and position errors of the sensors. These two prob-

lems seemed to be the greatest source of GPS error. A relative GPS error was used to

determine error instead of absolute error because there was no reference points for the

data to calibrate to. The relative error is based on average distance travelled between

each updates. It was assumed the error would take a Gaussian distribution and any

error greater than five standard deviations from the mean would be removed. A large

standard deviation was chosen because the update frequency of the GPS compared

to the other sensors was already over one hundred times slower. Removing too many

data points would create large time steps between each update during interpolation.
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A local average of the remaining GPS points was taken to smooth out the trajectory

further matching Figure 26. Another problem the GPS data encountered was signal

multipath. The multipath of the signals resulted in a wandering trajectory on the

north western vertical path closest to the origin in Figure 25. No action was taken to

remedy this effect creating variance in the training targets position. A more precise

geotagging of location could remedy this solution, but resources weren’t available.

The multipath effects on the routes varied between each collect and believed to cre-

ate a Gaussian like distribution around the actual location on that street. This error

was deemed acceptable and the neural networks may be able to generalize an average

of the positions as its prediction.

Figure 25: GPS based position trajectory before error processing has occured
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Figure 26: GPS based position trajectory with errors smoothed

The key image frames processed from the mp4 videos had minimal degradation

and an example can be seen in Figure 27. As previously mentioned the images

contained slight blurring and rotation about the vertical and horizontal axis. This is

an accurate representation of real world image collections and should help the neural

network generalize the solution to accommodate these variations.
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Figure 27: Image example from a collection data used to train localization neural

networks

The inertial measurement unit (IMU) and magnetometer sensor data show rela-

tive similarities throughout all of the collections. Important information from this

complete collection shown in Figure 28 are the points where it reamains flat and the

two large spikes. These points indicate where the data collector was standing still for

the flat spot and running for the spikes. The gyroscope plots are similar to the ac-

celeration plot. If the magnetometer data shown in Figure 29 was not being affected

by ferrous objects the data would be less noisy. Additionally, it would be expected to

have a similar reading as the same area is visited during the collect. There are some

key similarities in Figure 29 that make it appear as though it is picking up similar

readings. There is still a large degree of noise in the magnetometer data set that

is most likely the cause of ferrous objects nearby the sensor. This data could have

been smoothed to try to remove this noise, but the data could have held small bits of

information that is not noticeable by human interpretation and may provide benefits

to the neural network during training.
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Figure 28: Accelerometer readings for the x-axis for the duration of one collect. Two

spikes are where data collector was running and flat spots indicate no movement.

Figure 29: Magnetometer readings for the x-axis for the duration of one collect
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4.2 Localization

Model architectures results are split into two different initialization types including

standard Glorot which doesn’t utilize training of the weights apriori and transfer

learning which trained the model weights on another data set to initialize the weights.

ANN results utilizing only the urban data set for training with Glorot initialization

are explored first and then transfer learning based initialized weights are explored.

4.2.1 Image Based Glorot Initialized models

The ANN architectures with Glorot initialization included basic sequential, resid-

ual, and WideNet style base models that were altered in various ways to try to

achieve greater optimization. There are large commonalities for each of the three

types that were done in every training method. Learning rate always started at 10−4

with a learning rate reduction on plateau. This reduced the optimizer learning rate

by twenty percent if the validation loss did not reduce by a noticeable portion within

ten epochs. The base models of the three types were initially trained for 500 epochs,

batch size of eight images, and 400 batches per epoch. Each of the base models had

the lowest number of parameters to try to increase the computation speed and allow it

to operate on a cell phone. After initial training if models did not converge on an opti-

mal solution that tracked the trajectory, variations of the models were tested for fifty

epochs. The epoch size could be reduced drastically because the type of solutions the

network generally achieved occurred within the first twenty to thirty epochs. A more

thorough description of the remaining training and results are described separately

for the basic sequential, residual network, and widenet model types. The original

basic sequential model architecture experimented with is shown in Figure 30. This

model used a rectified linear unit (ReLU) activation function, root mean squared

propagation (RMSProp) optimizer, Glorot initialization, 6 convolution layers, and
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feature maps for each layer of 16, 16, 64, 64, 128, 128. Variations from this original ar-

chitecture exist and the parameters adjusted for the basic sequential model are listed

in table 1. Every combination of this table was tested and experimented to try to

obtain optimal solutions. At the beginning of experimentation this smaller network

was tested to increase speed of training, have the ability to compute a solution faster,

and be able to be used on a cell phone. This provided the benefit of quick analysis

to try to find a baseline to expand model hyper-parameters while also determining if

smaller networks held enough parameters to approximate the localization function.

These smaller weight models were not able to obtain results other than an average

value for all predictions indicating there may not be enough capacity in these smaller

networks.
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Figure 30: Basic sequential model base architecture showcasing the minimum layer

and feature map sizes used.
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Table 1: Hyper parameters tested for basic sequential model. Every combination was

tested on this algorithm for at least 50 epochs.

Activation Functions ReLU tanh sigmoid

Optimizer RMSProp ADAM SGD

Convolution layers 6 12 18

Feature maps per

layer group

(32, 64, 96)1 (32, 64, 96)2 (64, 128, 256)3

(64, 128, 256)4 (128, 256, 512)5 (128, 256, 512)6

Image channels 3 (RGB) 1 (grayscale)

Figure 31: Basic sequential model East error position for four minutes of test col-

lect. Model had seven convolution layers, ReLU activation, RMSProp optimizer, and

Glorot initialization

In order to test notion of not enough capacity in the network additional con-

volution layers were added in between each maxpooling layer and feature sizes were
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increased. These models achieved similar results as the previous models and obtained

an average predicted position for all images tested. All variations of the parameters

listed in table 1 provided similar results. An example of the prediction trajectory

compared to the true trajectory of the North position over the course of four minutes

of the test collect is shown in Figure 31. This prediction remains constant for all

images provided for each time step. When comparing north and east trajectories

simultaneously the prediction becomes a single point on the map and is not easily

recognizable in an image. After increasing the model capacity, trying different op-

timization and activation functions, and testing input channels the basic sequential

model was scrapped and additional more complex model architectures were tested.

The next model tested was the residual network model.

The residual network inspired architectures start from the base model. Figure 32

shows the initial input layers connected to one residual block. After each residual

block in the base model a connection to a maxpooling layer and then a dropout layer

occurs before entering another residual block. These connections occur six times

before entering the final two dense layers. Initially testing was done on the smaller

base model to see if the residual connection alone could change the solution outcome.

This model utilized a ReLU activation function for all layers except the final dense

layer which used a linear activation. Additionally, the RMSProp optimizer was used

on this model. Regularization was included with a dropout of thirty percent and

batch normalization after each convolution layer. These training parameters were

used as well as the ones already listed to test the initial results of a residual type

network. The initial results for the base model of the residual networks proved to

be similar to the basic sequential model. The base model only learned to output

an average value of the predicted positions of all input images. The base residual

network models predicted and true positions for the east dimension are compared in
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Figure 33.

Figure 32: Building block of the base residual network. Showcasing the input block

and initial layers as well as one residual block containing two convolution layers.
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Figure 33: Residual network models east error position for four minutes of test collect

The base model is one of the shallower versions and subsequent models went deeper

with additional layers within the blocks and entire blocks between the maxpooling

layers. The hyper parameters and the variations tested that deviate from this basic

model are showcased in table 2. Every combination of hyper-parameters in table 2

were trained. The tested models first went deeper before testing additional activation

or optimazation functions. These deeper models were used to more closely mimic

the RESNET50 model and potentially improve results by increasing the number of

weights in the network and creating deeper networks. All of the variations of the

models tested had predictions similar to Figure 33 where the model would predict a

single location for all images.

66



Table 2: Hyper parameters tested for RESNET model. Every item was tested at

least once, but not every combination was tested.

Activation Functions ReLU tanh sigmoid

Optimizer RMSProp ADAM SGD

number of residual

blocks

6 12 18

convolution layers per

residual block

2 3 4

The results from both the basic sequential and residual base models and their

variations were not performing well so only one version of the widenet was tested.

This is because widenet has similarities to both networks and if the base model wasn’t

going to converge on an solution, variations most likely wouldn’t either. The widenet

base model results for the east position are shown in Figure 34. This model had six

residual blocks with two convolution layers per block. The model had feature map

sizes of 256, 256, 512, 512, 1024, 1024, 2048, 2048. The features map size is four times

the size of the largest basic sequential for each convolution layer. Unfortunately this

model predicted an average position for all images like the previous models as shown

in Figure 34
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Figure 34: Widenetwork predicted compared to the original results for the east posi-

tions over four minutes of collects

All of the models tested with a Glorot initialization did not prove to be usable for

this navigation solution. Many different parameters were adjusted to try to achieve

an optimal solution. Position averages appeared to be learned within the first fifteen

to thirty epochs and continued to predict values extremely close for the duration of

training. For example the true north and east location for training targets range

between 50m and 350m in the north, east, down (NED) frame and the predicted

solution would be 170m on the north axis and 200m on the east axis for every image

within the collection. Some potential causes for this could be due to the size of

the networks not having enough capacity to learn the models, the urban data set

didn’t have enough variation in it to generalize a solution, or potentially the Glorot

initialization of the weights placed the network into a local minimum solution that it

couldn’t escape from. To showcase these results the east predicted position compared
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to the original position for three base models for popular techniques are shown in

Figure 31, 33, and 34. Since these models were trained with varying number of

weights, it seemed to minimize the theory the network capacity was the problem to

training. The next step is to test networks that take advantage of transfer learning.

If these models obtain results it may indicate the urban data set did not have either

enough variation or sample size in the training set to converge on an adequate solution.

4.2.2 Image based Transfer learning initialization

Two base models were tested using transfer learning techniques including the

Xception and VGG16 model. Variations in training weights were used to try to

achieve more optimal results. Each variation had the weights pre-trained on the

ImageNet data provided by the keras library. In order to train the additional dense

layers added to convert to the regression output training was completed keeping all

layers of the original network frozen. The models were then trained for 20 epochs

with the urban data set to adjust the new layers based off of the ImageNet weights

and the urban data set. Once this initial training was complete, models were then

retrained with various layer weights unfrozen. These new unfrozen weights were

retrained on the current data set between 400 and 1000 epochs, 32 images per batch,

and 400 batches per epoch. The unfrozen layers were chosen to always start after

a maxpooling was done. This contained changes to the network to similar spatial

regions of the image. The layers that remained frozen are particular to each model

type and explained in the following paragraphs. Once training was completed the

lowest value for the validation loss of each epoch was chosen for the final model.

The best epoch performance was based off of the mean squared error (MSE) loss

of the validation sets. The outputs were tested for quantitative results including

position error per time step, the complete RMSE of the test collect, and the error
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variance. By comparing these values between all models the model with the lowest

values for complete RMSE was chosen. If multiple models were similar the remaining

two factors would be taken into consideration in determining the best model. One

model variation was chosen from both the Xception and VGG16 models to explore

in more detail.

The results for all Xception models tested are shown in table 3. The model

had many of the exit flow block removed and adjustments are shown in Figure 35.

The Xception model performed best when the layer weights from the input to layer

seventy-six remained unchanged and the remaining layer weights were retrained with

the urban data set. This corresponds to the middle flow models block, fifth repetition,

first separable convolution layer. The other two tested weights were unfrozen for layer

fifty-six and ninety-six, which corresponds to the third middle flow block and the

seventh middle flow blocks first seperable convolution layers.
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Figure 35: The adjustments made to the final exit block of the Xception model from

figure ??

The following results exploration are in reference to the model unfrozen on layer

seventy six only, but all models were tested similarly. The unfrozen layers were re-

trained for 1000 epochs and during training the loss continued to decrease for the

training MSE shown in Figure 36. The MSE validation loss values for this model

during training can be seen in Figure 37. The validation loss values remained rel-

atively stagnant and didn’t move considerably. The validation loss values have a

low starting point of 0.023 MSE with a slightly decreasing trajectory over the first

seventy epochs reducing validation loss to an average of 0.0125 MSE for remaining

epochs. However, the MSE loss values are extremely noisy from epoch to epoch and

never get below 0.007 MSE. There is a difference in the models training and vali-
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dation loss MSE curves. The training starts at a higher value and never reaches as

low of an MSE as the validation result. This difference could potentially be due to

the validation images matched the network better than the training batches. The

noisy nature of the validation loss function results could indicate the neural network

is either training and updating the weights to generalize to the entire urban data set

or the similarity between images at different points on the path cause the model to

predict values further away from the true value. Even with these differences the best

performing epoch is still chosen based on the validation loss curve. The epoch with

the lowest MSE error is chosen for testing and final results.

Figure 36: Xception training loss results per epoch for the highest performing Xcep-

tion model.

Figure 37: Xception validation loss results per epoch for the highest performing

Xception model.
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The best performing epoch for this model was chosen to be epoch North and

east position errors for the Xception model are shown in Figure 38 and have an

RMSE of 32.67m and 50.5m as shown in table 3. Although the position errors were

large and noisy, the predicted values maintained similar overall position trajectory to

the original trajectory as shown in Figure 39 and 40. Moreover, the position errors

are cyclical as shown in Figure 39 for the north dimension and Figure 38 for the east

dimension. The estimates are biased towards the center of the data set. The predicted

values undershoot the position when it has a high position value and overshoots when

it has a lower position value. This is potentially a reason why the validation loss was

sporadic and noisy as well. Observing both positions mapped together against the

original trajectory the errors become more prominent. The whole state plot is shown

in Figure 41 and has an overall RMSE of 60.2m. The center bias errors of the two

position dimensions are able to be seen when comparing the predicted trajectory to

the tre trajectory.
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Figure 38: Xception model position variance for North and East over the course of

the single test collect
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Figure 39: Xception model north position truth vs predicted

Figure 40: Xception model east position truth vs predicted
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Figure 41: whole state plot of Xception localization model

Results for all VGG16 variations tested are listed in table 3. The best performing

VGG16 model results are explored, but all variations were explored the same way.

The best VGG16 model is shown in Figure 42. This model has the last three fully

connected layers and the softmax layer from Figure 13 section 2.2.11.1 removed and

a global average pooling and two dense layers added. The first dense layer had a

ReLU activation and the second dense layer had a linear activation. This model

trained for twenty epochs with all VGG16 layer weights frozen and not training and

the added layers updating. This allows the bottom two layers to be trained on

the urban data set while maintaining feature map information from the ImageNet

data set. During this initial training RMSProp was used for the optimizer with a

learning rate of 0.0001, batch size of thirty-two, and 200 batches per epoch. After

this initial training block3 convolution layer three through the dense layers weights

were released for training. These additional layers were unfrozen to allow the model

to fine tune to the urban data set as there may be less generalization needed. These

additional layers were trained for 1000 epochs with a batch size of 32, 600 batches

per epoch. Additionally, a stochastic gradient decent (SGD) optimizer was used to
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tune the weights with a learning weight starting at 0.0001 and a momentum factor

of 0.9 based on the validation MSE. The learning rate had a reduction on it if the

validation loss plateaued for ten epochs by a factor of 0.8. All other factors within

the keras layers remained unchanged from their preset values.
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Figure 42: VGG16 model with final three fully connected and softmax layer removed.

Global average and two dense layers added
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During this retraining the MSE of the training loss decreased for the first 300

epochs and then leveled off as shown in Figure 43. However, the validation loss

shown in Figure 44 has a minimal decreasing trajectory that is unnoticeable after

epoch fifty. The validation loss values are also extremely noisy. The lowest epoch

result was chosen for testing and obtaining the final results. Three epochs had similar

MSE results, but two were before epoch 300 and hcosen not to be used because the

training loss was still decreasing and the validation stayed relatively flat. Epoch 577

was determined to be the lowest validation loss and chosen for further testing.

Figure 43: MSE training loss for the VGG16 model during 1000 epochs of training

on the highest performing model.
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Figure 44: MSE Validation loss for the VGG16 model during 1000 epochs of training

on the highest performing model.

The neural network epoch chosen was able to obtain an RMSE error of 20.6m for

north positions and 29.2m for east positions. The error plots can be seen in Figure

47. The error stays bounded with an average error close to zero. The error has small

oscillation in it where the network biased toward the center values when reaching the

minimum and maximum points in the north and east trajectories. The network may

have been more center biased due to finding an average value in the beginning of

training and then trying to push the predictions closer to the actual values to lower

the loss. This results in a more closely matched solution to the positions as shown in

whole state plots of Figure 48. The standard deviation of the error equates to 20.6m

for the north position and 28.4m for the east position.
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Figure 45: VGG16 model north position truth vs predicted

position.png position.png

Figure 46: VGG16 model east position truth vs predicted
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Figure 47: VGG16 position variance for North and East over time

The whole state plot is shown in figure 48. From this whole state plot the navi-

gation solution is hard to track exactly where the solution is going.

Figure 48: Whole state plot for VGG16 model compared to the true trajectory

Clustering Data Results After testing the transfer learning based techniques with
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regression the idea was brought up to try to cluster the data points into discreet

locations. This would eliminate any center bias the regression problem had as well as

test the transfer learning networks against a classification problem they were originally

developed to handle. Error is intrinsically placed in the system due to the cluster

center position, but this error could potentially be much smaller than the regression

problem if it has a high accuracy rate. The data clusters were tested ranging from

100 to 300 different clusters. Using 100 clusters was chosen to test the data against

because the higher the cluster amount the more data points would be given to points

effected by the multipath. The clustering of the map can be seen in Figure 50. The

bins did not all end up being evenly distributed. To account for this in the testing

each value was given a weight that would affect how much it changed the results. The

histogram of the clustered data can be seen in Figure ??.

Figure 49: Trajectory points clustered into 100 discreet locations.
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Figure 50: Histogram of the different clustered points

F With the data clustered both the transfer learning best performing models were

retrained using a classification based approach. The VGG16 model was the highest

performing regression results, but under performed during training. The Accuracy

for the training never achieved greater than thirty percent accuracy on the training

set and the validation set never got higher than ten percent. The WideNet model

tested achieved a higher classification success rate of fifty percent on training but

never got above twenty percent on the training. The only model that moved forward

to determining the RMSE of the trajectory was the Xception model. The training

loss for the Xception model is shown in Figure 51
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Figure 51: Accuracy curve for training set with cluster based localization Xception

model

The training accuracy continued to improve for the first 400 epochs before stabi-

lizing around 89% accuracy. Although the training accuracy showed improvement the

validation accuracy jumped around 30 percent. This could be due to images being

placed in nearby clusters as the results are only based off of the highest probability

model. The validation accuracy can be seen in Figure 52

Figure 52: Accuracy curve for validation set with cluster based localization Xception

model

With the highest performing accuracy the model was tested for RMSE values to

compare to the regression model. Only the highest probability classification was used

in determining the error and the labels were converted to their corresponding center

points. The model was able to obtain a total RMSE of 61.05m shown in table 3. This

result didn’t perform better than five of the six regression models. If the probability

of the classifications were taken into account and the top two or three label center

points were combined to create an average it might improve the results. However,

the results seem consistent with the regression error on the Xception model. One
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thing to point out though is that the WideNet neural network was able to train to

a classification problem with no prior transfer learning. This shows the ANNs had a

hard time learning a regression problem with only the urban data set.

4.2.3 Localization Result Summary

Results varied for the ANNs tested for localization. None of the Glorot initialized

models were able to obtain a navigation solution. However, both of the transfer

learning cases were able to obtain a localization solution on all variations. All results

are listed in table 3 for comparison. The VGG16 model performed better on all

counts when compared to the Xception model even though the Xception has better

metrics on the ImageNet data set classification problem. This could potentially be

due to the Xceptions network depth and having trouble readjusting to the new data

set or the Xception model may have performed better on classifications that were not

seen in the urban data set. The VGG16 model explored was chosen to be used in

the EKF for position measurement updates based on its RMSE. With both transfer

learning models and their variations obtaining a solution it gives more credence to the

possibility the urban set isn’t adequate for training on its own. With a localization

solution determined the results of a PDR solution needs to be explored next.

Table 3: localization results for transfer learning based models

Models Middle flow unfrozen start layer North RMSE East RMSE Complete RMSE Error Standard deviation

Xception Block4 Sep1 32.01m 47.80m 57.53m 55.62m

Xception Block5 Sep1 32.67m 49.90m 59.64m 55.07m

‘ Xception Block6 Sep1 39.85m 52.61m 66.00m 62.85m

Xception Clustered Block4 Sep1 31.33m 52.47m 61.05m

VGG16 7-15 20.83m 28.56m 35.35m 35.09m

VGG16 11-15 22.35m 28.74m 36.41m 36.23m

VGG16 15 23.96m 28.79m 37.46m 36.42m
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4.3 Pedestrian Dead Reckoning

Initially models were tested against the Oxford dataset as a benchmark for com-

parison as well as dialing in known working models. The highest performing model

architectures were then used in training on the urban data set. In this initial testing

only some of the parameters discussed in section 3.3.2 were tested. This includes the

windowing effect on the input data and the single final output step for the entire

input as shown in output one of Figure 22. Additionally, various hyperparameters

were tested including the activation function, types of layers, number of layers, how

long the input lookback would be, number of units, and drop out rate. After this

initial testing two models were chosen to initially test on the urban data set. The

first one is a two layer Gated Recurrent Unit (GRU) architecture shown in Figure

53. The results of this model had a bit of drifting in the beginning but stabilized and

followed similar paths to the original trajectory as shown in Figure 54. The second

model that performed better during testing used CuDNN Long Short-Term Memory

(LSTM) layers. These layers are similar to normal LSTM layers except they only

allow a hyperbolic tangent function (tanh) activation function and no drop out. The

other important hyper-parameters in this model were a RMSProp optimization with

a learning rate of 0.001, 200 input lookback, and 256 units. The architecture for this

model is shown in Figure 55 and the results are shown in Figure 56
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Figure 53: Neural network results for best GRU network on the Oxford PDR data

set

Figure 54: Trajectory for GRU neural network architecture trained on Oxford PDR

data set.
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Figure 55: Neural network results for best overall and best LSTM network on the

Oxford PDR data set

Figure 56: Trajectory for LSTM neural network architecture trained on Oxford PDR

data set.

After initial testing showed results with the ability track track the test sample on

the Oxford data set the neural network architectures were tested on the urban data

set. The models were trained from initialization on the urban data set and tested
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on the urban data test set. The two models that performed the best on the Oxford

data set showed no success in learning on the urban data set. The predicted outputs

averaged around zero and never deviated. Since neither of these models worked, test-

ing began solely on the urban data set again. These new tests included testing the

windowing and non windowing inputs, all three output types in Figure 22, LSTM,

GRU, and Temporal Convolutional Network (TCN) layer types, and various hyper

parameters. Over 500 variations of models were tested using hyper parameter sweeps

and training for 25 epochs. This initial test was to get model baselines that could

be improved upon to learn basic distance and angle changes. The various hyper pa-

rameters tested are shown in table 4. Unlike the localization not every combination

was tested due to timing, but a large enough number to be able to eliminate various

parameters. By holding certain parameters constant under multiple variations model

parameters could be eliminated. Due to the large number of models trained initial

performance to eliminate parameters was based on a qualitative visual inspection of

the test trajectory prediction performance compared to the true trajectory. The PDR

neural networks had similar problems to the Glorot initialized localization neural net-

works in that they kept learning constant values for all predictions and were clearly

evident in the trajectory results. During inspection of the results various hyperpa-

rameters were eliminated to include LSTM layers and Bi-directional LSTM layers,

sigmoid and ReLU activation, adaptive moment estimation (ADAM) and SGD opti-

mizer, and models trained with no dropout. None of the models trained with these

hyperparameters achieved predicted results other than a constant average value of

the outputs for all inputs received. In addition to these hyperparameter values two

of the output types were not able to obtain a valid prediction. These were second

and third model outputs shown in Figure 22 in section 3.3.2 that only output a value

for the remaining time step of the inputs and the one that summed the outputs for

90



the entire input time sequence into a single output. With the parameter window

narrowed better models could be pushed forward for additional training.

Table 4: PDR hyper-parameter variations tested

layer types
LSTM GRU

Bi-directional LSTM Bi-direction GRU

Activation Functions ReLU tanh sigmoid

Optimizer RMSProp ADAM SGD

number of stacked layers 2 3 4

lookback 50 100 150 200

units 32 64 128 256

dropout 0% 30% 40% 50%

The TCN models had various parameters that were taken into account as well

that are listed in table 5. The TCNs networks did not perform better than the higher

rated GRU layers. This model had large errors in the distance and angle change

predicted measurements. This model was tested on both input types, but was only

tested on two of the output types. The two output types tested were the first and

second outputs shown in section 3.3.2 Figure 22. The learning rate was similar to

the others in that it used a starting value of 10−4 with a reduction on plateau. This

reduction occurred with a 0.8 multiplier and a patience of ten epochs.
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Table 5: PDR TCN hyperparameter variations tested

Activation Functions ReLU tanh sigmoid

Optimizer RMSProp

Kernel size 2 3 4

dilation [1,2,4,8] [1,2,4,8,16] [1,2,4,8,16,32]

number of stacked blocks 2 3

dropout 0% 30% 40% 50%

From visual inspection alone the remaining parameters in table 4 could not be

further eliminated. The remaining models performance was measured off of the RMSE

of the distance, angle change, and position trajectory. Eight models were chosen to

to retrain for additional training epochs to try to achieve a lower error rate. These

sixteen models were trained for 100 epochs and the best epoch weights were chosen

to compare the predicted values from the original. The epoch for testing was chosen

based off the lowest validation loss of the neural network during training. Additional

parameters common to all of these models is their RMSProp optimizer, hyperbolic

tangent activation function, learning rate starting at 10−4, 256 batches, 100 epochs,

and the data was windowed. These sixteen models were then compared based off of

their RMSE values and displayed in table 6.
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Table 6: PDR hyperparameter results. All models trained with Three RNN layers,

two time-distributed dense layers, RMSProp optimization, tanh activation, learning

rate10−4,256 batches,100 epochs, and the data was windowed

Layer type Input lookback units RMSE distance(m) RMSE Angle(rad) RMSE trajectory(m)

GRU IMU 50 64 0.0925 0.0599 180.3

GRU IMU 50 128 0.0986 0.0569 174.02

GRU IMU 100 64 0.0790 0.0794 190.39

GRU IMU 100 128 0.0797 0.0588 198.52

GRU IMU and Magnitometer 50 64 0.098 0.0564 171.2

GRU IMU and Magnitometer 50 128 0.0878 0.0643 223.6

GRU IMU and Magnitometer 100 64 0.09793 0.0600 195.9

GRU IMU and Magnitometer 100 128 0.0862 0.0583 188.9

Bi-Directional GRU IMU 50 64 0.079 0.045 183.06

Bi-Directional GRU IMU 50 128 0.0883 0.0527 199.6

Bi-Directional GRU IMU 100 64 0.0847 0.0588 215.6

Bi-Directional GRU IMU 100 128 0.0923 0.0455 197.5

Bi-Directional GRU IMU and Magnitometer 50 64 0.0780 0.0499 197.2

Bi-Directional GRU IMU and Magnitometer 50 128 0.0838 0.0581 205.6

Bi-Directional GRU IMU and Magnitometer 100 64 0.095 0.0412 178.12

Bi-Directional GRU IMU and Magnitometer 100 128 0.0741 0.0479 195.68

The model that performed the best under the various tests was a three layer GRU

network shown in Figure 57. This model had all three input sensors including the

accelerometer, gyroscope, and magnetometer data. The output training target was

when an output was predicted for each time step of the input sequence showcased

in section 3.3.2 Figure 22. This model had a data input size of fifty time steps of

data and slides once every time step. Only the last output is taken from each output

input pairing as it slides through the data once the first fifty predictions occured.

Moreover, the model had sixty-four units for each layer and trained on batches of

256. This model utilized a hyperbolic tangent activation for all layers except a linear

final activation. The model was trained with a RMSProp optimizer with a learning
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rate starting at 10−4 with a 10−1 reduction whenever the data would plateau for

twenty epochs.

Figure 57: velocity GRU neural network architecture obtaining the lowest MSE for

distance and angle measurement

The results for the urban data set were not able to match the results shown in

Chen et-all [43] or reproduced on their data set. This could potentially be due to the

type of data being analyzed or the difference in labeling the data. His work had much

higher resolution for tracking positional changes per frame. This allows the network

to get precise changes every step of the input instead of interpolated answers which

provide similar responses for large sequences of the inputs. Another difference is the

trajectory continually went in circles in a small room. This is not representative

of the urban environment that it was retrained on. The urban environment had

large straight paths with minimal turns. Figure 58 showcases the predicted distance

compared to the true distance of the test collect. When the windowing effect is taken
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into consideration the distance RMSE is 0.0098m and the change in angle RMSE is

0.056rad. Due to the activation function, negative numbers seep into the model for

the distance which does not happen in the true model. However, negative numbers

happen infrequently and don’t provide a large portion of the error. Changes in angle

seemed to be a lot harder to determine for the the neural network models on this data

set. This is partly due to the sparsity of changes in angles throughout the training

data.

Figure 58: GRU truth vs predicted distance changes for 1000 time steps
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Figure 59: GRU truth vs predicted angle changes for 1000 time steps

Figure 60: GRU predicted angle change error over the course of the test collection

96



Figure 61: GRU distance error over the course of the test collection

While these errors are small they compound on each other as the model progresses

through the 240,000 time steps in the data set. This results in a large deviation from

the true data set and an RMSE of 171m and a whole state plot shown in Figure 62.

This whole state plot was generated with an initial true angle of orientation and then

propagated completely on change in distances and angles to that original orientation.
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Figure 62: PDR whole state solution for highest performing GRU based model.

4.4 Extended Kalman Filter

Neither of the two neural network results were able to create a complete solution

on their own that tracked the trajectory within a small enough margin of error. The

localization had very noisy and jumpy result and the PDR solution wasn’t able to

follow the trajectory at all. To determine if classical filtering could improve either so-

lution the ANNs were combined together within an EKF to potentially reduce errors

and smooth results. As mentioned the EKF utilized four state state-space represen-

tation with a first order Gaussian Markov (FOGM) dynamics block to monitor the

north and east velocities. The FOGM variance and time constants were approximated

and tuned to work well based off of the true data set. The dynamics Q noise matrix is

showcased in equation 32 where the sigma values are set to 0.1 and time constant(τ)
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is set to one second.

Q =



0 0 0 0

0 0 0 0

0 0 σ2e
−|t|
τ 0

0 0 0 σ2e
−|t|
τ


(32)

The measurement noise model was a four by four cross correlation matrix with vari-

ances based off of results from the single test set. It was assumed there would be no

correlation between any of the states and everything except the diagonal was set to

zero. The position variances were determined by taking the average error variance

across the entire test collect for the VGG16 ANN highest performing results. The

PDR variances were estimated based off of the error variance and tuned. A direct

relationship between the PDR ANN and the EKF can’t be made because the EKF

is calculated in absolute velocity and the ANN is relative distance and angle changes

per time step. The localization variance and tuned velocities for the measurement

noise matrix R is highlighted in equation 33. This matrix showcases the noise for

north position, east position, north velocity, and east velocity providing the highest

accuracy results.

R =



425 0 0 00

0 806 0 0

0 0 .01 0

0 0 0 .01


(33)

Two EKF solutions are shown in Figures 63 and 64. Figure 63 showcases the

EKF results with a shorter period between position updates. Position is updated

every three seconds and velocity updates are given every one hundredth of a second.
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This solution was able to obtain an RMSE value of 28.5m from the true position for

the complete trajectory. Figure 64 showcases an EKF result that has a larger time

between position updates. This model updates position every thirty seconds with

velocity updates still occurring every one-hundredth of a second. This solution was

able to obtain an RMSE value of 48.2m. Both of these solutions have a center bias

that has propagated into them from the localization neural network.

Figure 63: EKF solution with position updates every 3 seconds velocity updates one

hundredth of a second
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Figure 64: EKF solution with position updates every 30 seconds velocity updates one

hundredth of a second

The localization solution appeared to introduced less error into the system as the

results got remarkably better for increasing the position measurement updates. This

effect only lasted up until the three second update mark and then the error started to

grow again as it became more frequent. This appears to be due to the noisy nature

of the data and increasing the update rate begins to override the beneficial aspects

of the velocity updates when faster than three seconds. Since the results from the

PDR solution are less than desirable tests were run without any velocity updates to

the system to ensure the EKF was getting some useful information from the PDR

solution. This resulted in RMSE values similar to the localization results with a

complete RMSE value of 34.65m on the best performing VGG16 model. While this is

an improvement it is much smaller than the improvements made by having the PDR

solution combined.
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4.5 Chapter Summary

The solutions provided by the localization ANN were able to obtain a navigation

solution with and RMSE of 28m. Although this is not groundbreaking results it does

showcase the increased benefit of employing transfer learning practices on navigation

solutions. Additionally, there isn’t a guaranteed ANN model that will perform best

for all data sets. The need still exists to test out various models on new data sets. The

PDR solution was not able to obtain an accurate solution based on the given data set.

The type of data seems seems extremely important when solving these solutions as

previous work on different data sets was able to obtain much higher accuracy results.

Finally, from the RMSE results and figures 63 and 64 the EKF solution had better

performance than either ANN solutions on their own. Further closing thoughts are

discussed in the next chapter.
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V. Conclusions

5.1 Conclusion

As the increase in urbanization and Global Positioning System (GPS) degraded

and denied areas continues to grow solutions are needed to quickly and reliably nav-

igate areas for pedestrians. These pedestrian navigation methods require every day

technologies with quick and efficient algorithms. Cellular phones are an integral tech-

nology used by most people will continue to provide service for at least the near

future. Additionally, Artificial Neural Network (ANN) algorithms are continually im-

proving and have the potential to continue to provide better results in both image

and sequential based methods. This research’s purpose was to explore the viability

of ANN based pedestrian navigation for localization and Pedestrian Dead Reckoning

(PDR). The ANN utilized a set of 30 collects with over 1.5 million images and 6

million data points for the accelerometer, gyroscope, and magnetometer. The results

from this training were also combined with classical filters to determine the combined

results.

An ANN was used to approximate a localization function based on images. A

variety of Methods were explored using both transfer based learning as well as tradi-

tional learning. The method using transfer based learning with pre-trained weights

on the ImageNet database proved to be the most successful. All models trained using

this method were able to obtain a navigation solution with various results. Of these

results the model network called VGG16 obtained the lowest root mean square error

(RMSE). This model had half it’s weights retrained on the urban data set and was

able to obtain an RMSE of 35m. Additional models were trained without the use

of transfer learning including variations that employed residual, widenet, and basic

sequential type convolutional neural network (CNN) models. None of these models

103



were able to obtain a navigation solution.

Another ANN method was explored to approximate a PDR function that used

sequential type accelerometer, gyroscope, and magnetometer based information to

obtain a change in distance and heading angle. A variety of models were tested

with with varying inputs, outputs, and neural network architectures. Models that

obtained the lowest RMSE for these two values used all input information available

including the accelerometer, gyroscop, and magnitometer. Data outputs were created

for every input step. The model architecture were able to obtain closer results when

using hyperbolic tangent functions as an activation function, RMSProp optimizer,

and Gated Recurrent Unit (GRU) based neural network layers. The best model

selected employed a three layer GRU layer and was able to obtain a 171m position

accuracy over the test collect.

Methods using the classical extended Kalman Filter (EKF) were able to obtain the

best results by combining the solutions to both the localization and PDR ANN. This

method used the localization as a measurement update step and a the PDR as a state

prediction update based off the models predicted orientation. Multiple models were

tested with various measurement update rates and covariance and noise matrices. Of

these the model with localation based updates of three seconds and velocity updates

every one-hundredth of a second obtained an RMSE of 28.5m. These errors show

combining ANN with classical filters provides a complete navigation solution with

minimized errors.

5.2 Future Work

This research demonstrated that using nerual networks with classical filters can be

used to provide improved results over neural networks alone for pedestrian navigation.

This research is not comprehensive and additional work could be done to potentially
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improve results. These methods include but are not limited to the following: 1.

Testing additional methods and obtaining a PDR solution would potentially reduce

overall RMSE for both the PDR and EKF solution. One potential method would be

to obtain additional data sets with larger number of turns so the ANN has a greater

opportunity to learn turning. 2. Include measurement variance per time step into

the neural network to try to create a variance model that adjusts to the data being

seen. These added variance values would provide increased information for the EKF

solution and create a more precise variance of the solution. 3. One emerging method

for potentially increasing results for the localization would be to utilize work in Neural

Architecture Search(NAS) network models [44]. This uses a neural network to create

the best block of information for a given type of data set and currently has the highest

accuracy for classifying the ImageNet Database. 4. Finally, the last potential would

be to determine application solutions viability in indoor environments as GPS signals

are not usable.

105



Bibliography

1. Francois Chollet. Deep Learning with Python & Keras, volume 80. Manning

Publications Co., 2018.

2. Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. pages 1–15, 2016.

3. Yuan Zhuang, Jun Yang, You Li, Longning Qi, and Naser El-Sheimy.

Smartphone-based indoor localization with bluetooth low energy beacons. Sen-

sors (Switzerland), 16(5):1–20, 2016.

4. Wilfred E. Noel. Signals Of Opportunity Navigation Using Wi-Fi Signals. PhD

thesis, Air Force Institute of Technology, 2011.

5. J Raquet and R K Martin. Non-GNSS radio frequency navigation. In Acoustics,

Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Confer-

ence on, pages 5308–5311, mar 2008.

6. Hyunho Lee, Jaehun Kim, Chulki Kim, Minah Seo, Seok Lee, Soojung Hur, and

Taikjin Lee. Object recognition for vision-based navigation in indoor environ-

ments without using image database. In The 18th IEEE International Symposium

on Consumer Electronics (ISCE 2014), pages 1–2. IEEE, jun 2014.

7. Mart\’\in˜Abadi, Ashish˜Agarwal, Paul˜Barham, Eugene˜Brevdo,

Zhifeng˜Chen, Craig˜Citro, Greg˜S.˜Corrado, Andy˜Davis, Jeffrey˜Dean,

Matthieu˜Devin, Sanjay˜Ghemawat, Ian˜Goodfellow, Andrew˜Harp, Geof-

frey˜Irving, Michael˜Isard, Yangqing Jia, Rafal˜Jozefowicz, Lukasz˜Kaiser,

Manjunath˜Kudlur, Josh˜Levenberg, Dan˜Mané, Rajat˜Monga, Sherry˜Moore,
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