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Analytical solutions for efficient interpretation of single‐well
push‐pull tracer tests

Junqi Huang,1 John A. Christ,2 and Mark N. Goltz3
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[1] Single‐well push‐pull tracer tests have been used to characterize the extent, fate, and
transport of subsurface contamination. Analytical solutions provide one alternative for
interpreting test results. In this work, an exact analytical solution to two‐dimensional
equations describing the governing processes acting on a dissolved compound during a
modified push‐pull test (advection, longitudinal and transverse dispersion, first‐order
decay, and rate‐limited sorption/partitioning in steady, divergent, and convergent
flow fields) is developed. The coupling of this solution with inverse modeling to estimate
aquifer parameters provides an efficient methodology for subsurface characterization.
Synthetic data for single‐well push‐pull tests are employed to demonstrate the utility
of the solution for determining (1) estimates of aquifer longitudinal and transverse
dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non‐aqueous
phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL
saturations based on partitioning and non‐partitioning tracers is designed to overcome
limitations of previous efforts by including rate‐limited mass transfer. This solution
provides a new tool for use by practitioners when interpreting single‐well push‐pull
test results.

Citation: Huang, J., J. A. Christ, and M. N. Goltz (2010), Analytical solutions for efficient interpretation of single‐well
push‐pull tracer tests, Water Resour. Res., 46, W08538, doi:10.1029/2008WR007647.

1. Introduction

[2] Single‐well push‐pull tracer tests, sometimes referred
to as single‐well injection‐withdrawal tests, are designed
to capitalize on reactive and chromatographic separation of
injected solutes to characterize subsurface properties. They
generally employ a single well to inject (“push”) a prepared
solution into an aquifer, followed by extraction (“pull”) of
the solution from the aquifer using the same well. The
injected solution will normally consist of a conservative tracer,
along with reacting and/or partitioning compounds. By moni-
toring concentrations of the extraction solution solutes over
time, the physical, chemical and biological properties of the
aquifer and those properties governing contaminant trans-
port (e.g., sorption distribution coefficients, degradation rates)
may be characterized. The single‐well push‐pull test provides a
reasonable compromise between the localized information
obtained via soil coring and the site‐averaged information
obtained during a partitioning interwell tracer test (PITT)
[Istok et al., 2002].
[3] Push‐pull tests have been used to measure aquifer

physical characteristics like longitudinal dispersivity [Gelhar

and Collins, 1971] and effective porosity [Hall et al., 1991].
They have also been used to quantify solute sorption [Istok
et al., 1999; Schroth et al., 2000; Cassiani et al., 2005],
the rate of solute degradation [Istok et al., 1997; Haggerty
et al., 1998; Snodgrass and Kitanidis, 1998; Istok et al.,
2001; Schroth and Istok, 2006], non‐aqueous phase liquid
(NAPL) saturation [Davis et al., 2002; Istok et al., 2002;
Davis et al., 2003, 2005], and rate of mass transfer into
zones of immobile water [Haggerty et al., 2001]. In all
cases, the desired parameter is obtained through the inter-
pretation of concentration versus time breakthrough data col-
lected during the extraction phase of the push‐pull test.
Generally, simplified analytical or numerical models are
employed to interpret the data by coupling the solution with
an optimization algorithm that identifies the parameter set
that provides the “best‐fit” to the breakthrough data.
[4] Previously reported analytical solutions have gener-

ally been restricted to simplified systems and have been
limited to the interpretation of longitudinal dispersion [e.g.,
Gelhar and Collins, 1971], equilibrium sorption [Schroth
et al., 2000; Davis et al., 2002], and first‐order degrada-
tion [e.g., Haggerty et al., 1998; Schroth and Istok, 2006].
Comparisons to experimental results and field‐data, how-
ever, have demonstrated the importance of dimensionality
and rate‐limited interphase partitioning (e.g., rate‐limited
sorption) on model application. Attempts to include addi-
tional factors such as transverse dispersion or rate‐limited
interphase partitioning have, to date, required the imple-
mentation of numerical methods [e.g., Haggerty et al., 2001;
Schroth et al., 2000; Hellerich et al., 2003]. While capable
of modeling these systems, numerical methods add an addi-
tional error and level of complexity to the interpretation of
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the results due to numerical errors and difficulties associ-
ated with implementing numerical methods for the inter-
pretation of these tests, which were originally derived as
simplified aquifer characterization techniques [Schroth et al.,
2000].
[5] In this study, a new analytical solution, designed to

overcome the limitations of existing single‐well push‐pull
model solutions, is developed. The model accounts for
advection, longitudinal and transverse (vertical) dispersion,
first‐order degradation, and rate‐limited interphase parti-
tioning during nonuniform, steady radial flow in a homo-
geneous, confined aquifer. The solution can accommodate a
modified push‐pull test, where tracer is not injected over the
entire confined aquifer depth, thereby allowing for estima-
tion of the transverse dispersivity in the vertical direction.
Although relatively novel, there have been field implementa-
tions of injection wells configured (using packers) to release
tracer over a portion of a fully penetrating well screen [e.g.,
Brooks et al., 2002]. Employment of the solution to estimate
NAPL saturations based on partitioning and non‐partitioning
tracers is designed to overcome limitations of previous efforts
by including rate‐limited mass transfer. This solution pro-
vides a novel addition to the currently available methods for
interpreting single‐well push‐pull test results.

2. Model Development

[6] A number of analytical solutions have been derived
to describe radially convergent or divergent flow and trans-
port resulting from operation of a single extraction or injec-
tion well [Hoopes and Harleman, 1967; Gelhar and Collins,
1971; Pickens and Grisak, 1981; Tang and Babu, 1979; Tang
and Peaceman, 1987; Moench, 1989; Zlotnik and Logan,
1996; Schroth et al., 2000; Cassiani et al., 2005]. These solu-
tions have generally employed simplifying assumptions such
as one‐dimensional flow, linear equilibrium sorption, con-
stant tracer injection, and zero or first‐order degradation. Chen
[1985], however, derived a solution for a fully penetrating
injection well with advection and simultaneous Fickian dif-
fusion into adjacent low permeability strata. Chen [1987]
derived a second solution to include Cauchy boundary con-
ditions at the injection well screen, facilitating the simulation
of more realistic mass loading conditions at the injection
well. Huang and Liu [1986] also derived a solution for
radial transport in dual porosity media, which facilitated the

simulation of mass exchange in fractured systems. In all
cases, however, the tracer injection was assumed to be over
the entire aquifer depth, preventing the characterization of
transverse dispersivity in the vertical direction. Also, previous
solutions that incorporated rate‐limited sorption or parti-
tioning into immobile zones were for injection or extraction
only, not for both, as would be necessary tomodel a push‐pull
test [e.g., Goltz and Oxley, 1991]. The following derivation
overcomes these limitations and accounts for advection,
longitudinal and transverse (vertical) dispersion, first‐order
degradation and rate‐limited interphase partitioning. Constant
concentration and third‐type (flux) boundary conditions are
employed at the well screen. Flow is assumed to be in the
radial direction only with mechanical dispersion occurring
in the longitudinal (radial) and transverse (vertical) direc-
tions. Analytical solutions are obtained using Laplace and
Finite Fourier transforms. The solution is derived assuming
a two‐stage test. During stage 1, the flow is divergent as
water is injected into the confined aquifer and tracer is
released over a portion of the fully penetrating well screen.
In stage 2, the flow is convergent as the well extracts water
from the aquifer and tracer solutions are recovered through
the screened section of the well. Figure 1 depicts the
modeled scenario where in a fully screened well of length
M, tracer is released from zb to zt.

2.1. Governing Equations

[7] The following equations describe advective/dispersive
transport of a reacting and sorbing compound in a radially
symmetric, horizontal flow field:

r �
@C

@t
þ �b

@S

@t

� �
¼ aLq

@2C

@r2
� q

@C

@r
þ aTq

@2C

@z2
� r��C � r�b�S

ð1Þ

@S

@t
¼ �� S � kdCð Þ � �S ð2Þ

Equation (1) is the two‐dimensional (r‐z) advection‐
dispersion equation in radial coordinates, assuming radial
symmetry for a sorbing and reacting compound [Bear,
1979], and equation (2) describes sorption of the compound
onto aquifer solids, where rate‐limited sorption is described
as a first‐order process. C is the compound concentration
in the liquid phase, S is the concentration in the solid phase,

Figure 1. Conceptual model and coordinate system.
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� is the aquifer porosity, rb is the aquifer bulk density,
q = Q/2pM where Q is the well flow–rate, M is the con-
fined aquifer thickness, aL and aT are the longitudinal and
transverse dispersivity, respectively, l is a first‐order decay
constant, a is the non‐equilibrium sorption first‐order mass
transfer rate coefficient, and kd is the adsorption partitioning
coefficient. Equations (1) and (2) are solved according to the
following initial and boundary conditions during stage 1
(“push”) and stage 2 (“pull”) of the single‐well push‐pull test:

Stage 1 (injection):

C ¼ S ¼ 0; t ¼ 0 ð3aÞ

�� aL
@C

@r
þ C ¼ C0; r ¼ rw; zb � z � zt

0; r ¼ rw; 0 � z < zb; zt < z � M

�
ð3bÞ

C ¼ 0; r ! 1; 0 � z � M ð3cÞ

@C

@z
¼ 0; rw � r < 1; z ¼ 0; M ð3dÞ

Stage 2 (extraction)

C ¼ CI ðr; z; t1Þ; S ¼ SI ðr; z; t1Þ ; t ¼ 0 ð4aÞ

@C

@r
¼ 0; r ¼ rw; 0 � z � M ð4bÞ

C ¼ 0; r ! 1; 0 � z � M ð4cÞ

@C

@z
¼ 0; rw � r < 1; z ¼ 0; M ð4dÞ

where C0 is the concentration of injected tracer, rw is the
well radius, zb and zt are the bottom and top elevation of the
tracer injection segment of the well, respectively, s is a control
flag with values 1 or 0 for constant flux or constant concen-
tration boundary conditions respectively, and CI(r, z, t1) and
SI(r, z, t1) are the initial distributions of liquid and solid phase
compound concentrations, respectively, following the com-
pletion of stage 1 at time t1. Note from equation (3b) that
although the aquifer thickness is M and the well is screened
over the entire aquifer thickness, tracer injection is only over
the vertical interval between zt and zb (where zt − zb ≤ M).

2.2. Transformed and Real‐Time Solutions

[8] Solution of equations (1) and (2) combine Laplace
transforms with respect to t (C) and Finite Fourier Cosine
transforms with respect to z (Ĉ) with substitutions as shown in
Appendix A to simplify the problem to the well known Airy
equation. Parameterization of the general solution using the
transformed boundary conditions for stage 1 (equation (3), see
Appendix A) leads to a transformed concentration in the
aqueous phase:

Ĉ1 r; n; pð Þ ¼ C0

p
L nð Þer�rw

2aL
Ai xð Þ

�1Ai xwð Þ � �2Ai0 xwð Þ ð5Þ

and solid phase:

Ŝ1 r; n:pð Þ ¼ � kd
pþ �þ �

Ĉ1 r; n; pð Þ ð6Þ

where all parameters in this section may be found in the
appendices. The subscript 1 signifies the solutions are for
stage 1 of the single‐well push‐pull test, and g1 = 1 − s/2,

g2 = saL
2/3f 1/3 and xw = aL

−1/3 1

4aL
þ rw f þ N

� �
f −2/3.

[9] Following a similar methodology for stage 2, where
the nonzero initial condition established at the end of stage 1
(equation (4a)) is considered using Green’s function, and
the transformed boundary conditions (equations (4)) are
used to parameterize the general solution, the transformed
stage 2 concentration in the aqueous phase may be written
(see Appendix A):

Ĉ2 r; n; pð Þ ¼ c1 n; pð Þe� r
2aL Ai xð Þ þ Hðr; n; pÞ ð7Þ

where

c1 ¼ ��

�

Bi xwð Þ � 2� Bi0 xwð Þ
Ai xwð Þ � 2� Ai0 xwð Þ

Z 1

rw

e
r

2aL Ai xð Þg r; n; pð Þdr

H ¼ �

�
e�

r
2aL Ai xð Þ

Z r

rw

e
r

2aLBi xð Þ g r; n; pð Þdr
�

þ Bi xð Þ
Z 1

r
e

r
2aL Ai xð Þg r; n; pð Þdr

�

and g = aL
2/3f 1/3. Equation (7) provides a transformed solu-

tion for the aqueous phase concentration during stage 2
(pull) of the push‐pull test.
[10] Given that single‐well push‐pull tests employ solute

concentrations extracted during stage 2 of the test to obtain
aquifer parameters, it is necessary to quantify the concen-
tration at the extraction well (r = rw). For this condition,
equation (7) simplifies:

Ĉ2 rw; n; pð Þ ¼ 2e�
rw
2aL

AiðxwÞ � 2�Ai0ðxwÞ
Z 1

rw

e
r

2aL AiðxÞgðr; n; pÞdr ð8Þ

or

Ĉ2 rw; n; pð Þ ¼ e�
rw
2aL

q

Z 1

rw

e
r

2aLF2ðr; n; pÞr

� �Ĉ1 r; n; t1ð Þ þ �b�

pþ �þ �
Ŝ1 r; n; t1ð Þ

� �
dr ð9Þ

with F2(r, n, p) =
2AiðxÞ

AiðxwÞ � 2�Ai0 ðxwÞ or using from

Appendix B, F2(r, n, p) = pFCF(r, n, p).
[11] Comparison with actual field results, however, re-

quires inversion of these transformed solutions to real time
and space. To obtain the aqueous concentration solution in
real time, equations (5)–(9) may be inverted following the
methods outlined in Appendices B and C. For a constant
concentration boundary condition (s = 0), equation (5) may
be written in real time:

Ĉ1 r; n; tð Þ ¼ C0L nð Þer�rw
2aL FCC r; n; tð Þ ð10Þ
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For a constant flux boundary condition (s = 1) equation (5)
becomes

Ĉ1 r; n; tð Þ ¼ C0L nð Þer�rw
2aL FCF r; n; tð Þ ð11Þ

where FCC(r, n, t) (equation (B9)) and FCF(r, n, t)
(equation (C6)) are defined in Appendices B and C. A
special case is also given in Appendix A for the scenario
where a tracer is injected for a pulse length ts less than t1, the
length of water injection during stage 1.
[12] The solid phase stage 1 concentration in real time can

be obtained by inverting equation (6):

Ŝ1 r; n; tð Þ ¼ � kd

Z t

0
e�ðt�	Þð�þ�ÞĈ1 r; n; 	ð Þd	

¼ C0� kd L nð Þer�rw
2aL Fconv r; n; tð Þ ð12Þ

where Fconv (r, n, t) is given in Appendix A.
[13] To obtain the analytical solutions for concentrations

in the aqueous and solid phase in real time and space during
stage 1 of the single‐well push‐pull test the inverse Finite
Fourier Cosine transform is applied:

C1 r; z; tð Þ ¼ 1

M
Ĉ1 r; 0; tð Þ þ 2

M

X1
n¼1

Ĉ1 r; n; tð Þ cos n�z

M

� �
ð13aÞ

S1 r; z; tð Þ ¼ 1

M
Ŝ1 r; 0; tð Þ þ 2

M

X1
n¼1

Ŝ1 r; n; tð Þ cos n�z

M

� �
ð13bÞ

where Ĉ1 and Ŝ1 are as given previously.
[14] Although the same methodology could be applied to

invert equation (7), equation (9) is considered here due to
the primary interest in aqueous phase concentrations at the
extraction well during the push‐pull test. Employing the
Laplace transform of the derivative and the convolution

principle as shown in Appendix A, the transformed solution
at the extraction well in real time may be written

Ĉ2 rw; n; tð Þ ¼ e�
rw
2aL

q

Z 1

rw

e
r

2aL r �F2ðr; n; tÞĈ1 r; n; t1ð Þ	
þ Fðr; n; tÞŜ1 r; n; t1ð Þ
 dr ð14Þ

where F (r, n, t) (equation (A11)) is given in Appendix A.
[15] Using the inverse Finite Fourier Cosine transform,

the final analytical solution for the solute concentration at
the extraction well during stage 2 of the single‐well push‐
pull test is

C2 rw; z; tð Þ ¼ 1

M
Ĉ2 rw; 0; tð Þ þ 2

M

X1
n¼1

Ĉ2 rw; n; tð Þ cos n�z

M

� �
ð15Þ

where Ĉ2 is as given in equation (14). Note that the con-
centration given by equation (15) is a function of the
aqueous and solid phase concentration distribution at the
completion of stage 1 (when t = t1). Equation (15) provides
an analytical solution that may be combined with optimi-
zation algorithms to obtain aquifer parameters (i.e., dis-
persivities, kd, a, l) from data obtained for single‐well
push‐pull tracer tests in confined aquifers with the injection
compound released over only a portion of the well screen
and rate‐limited mass transfer between the aqueous and
immobile (solid and non‐aqueous phase liquid) phases.
Equation (15) has been implemented in a computer program
as described below, which has been made available by the
authors (see auxiliary material) to facilitate its use when
interpreting push‐pull experimental results.1

2.3. Numerical Evaluation of Solution

[16] The International Mathematical and Statistical
Library (IMSL) subroutines DQDAG and DQDAGI
[International Mathematical and Statistical Library, 2006]
based on Gauss‐Kronrod rules [Piessens et al., 1983] are
used to numerically evaluate the integrals which appear in
the solutions (equations (13) and (15)). The Airy functions,
Ai(z) and Bi(z), and their derivatives, Ai′(z) and Bi′(z), are
also available in IMSL. For example, equation (13a) was
evaluated using the IMSL routines to determine the dis-
solved concentrations of a sorbing, degrading tracer for the
baseline parameter values listed in Table 1. Figures 2a and
2b show aqueous phase tracer concentration contours in the
r‐z plane after 5 days of water injection (that is, t1 = 5d),
assuming constant concentration and constant flux boundary
conditions, respectively, at the well. The tracer is released
for ts = 3 days through a segment of the well screen located
at r = rw between zb = 0 m and zt = 2.5m. Clearly, the
solution provides for an efficient method to elucidate solute
concentrations surrounding a partially screened push‐pull
well at a given point in time. It is also worth noting that this
concentration profile serves as the initial condition for the
“pull” stage of the test.

3. Model Verification and Validation

[17] The analytical solutions developed here were verified
by comparing them with solutions obtained using an explicit

Figure 2. Concentration contour (mg/L) in the z‐r plane
on day 5 of injection for (a) constant concentration (CC)
boundary condition and (b) constant flux (CF) boundary
condition at the injection well, for parameter values in
Table 1.

1Auxiliary materials are available in the HTML. doi:10.1029/
2008WR007647.
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finite difference numerical code to approximate equations (1)
and (2), subject to the appropriate initial and boundary con-
ditions. The finite difference scheme used a grid spacing in
the r‐ and z‐directions of 0.2 m (Dr) and 0.25 m (Dz),
respectively. Based on numerical stability criteria [Zheng and
Wang, 1999], the time step (Dt) was set to

Dt ¼ 2� 10�5 < min
rwDr�

q
;
rwDr2�

2aLq
;
rwDz2�

2aTq
;
1

�

� �
ð16Þ

[18] Figure 3 compares the analytical and numerical so-
lutions for the values provided in Table 1 for constant con-

centration (CC) and constant flux (CF) boundary conditions.
Figure 3 shows concentration as a function of time for z = zt +
(M − zt)/2 = 3.75m at the extraction well (r = rw). Note the low
concentrations at the well (∼10−3 mg/L), due to the fact that
concentrations are measured at a location above the top of the
well screen, and the value of transverse dispersivity in the
vertical direction is low (aT = 0.02 m). The excellent match
with the numerical solution gives confidence in the correct-
ness of the analytical solution.
[19] To further extend this validation, the model may be

compared to data from an actual field site. However, given
the lack of readily available field data for this study,
a commonly employed numerical model (MODFLOW/
MT3DMS) was used to replicate push‐pull concentration
data from a synthetic field site with heterogeneous hydraulic
conductivity (mean hydraulic conductivity = 20 m/d). The
method of Taskinen et al. [2008] was used to generate het-
erogeneous hydraulic conductivity fields with specified
correlation lengths for use in the numerical modeling.
Transforming the MODFLOW [McDonald and Harbaugh,
1988] and MT3DMS [Zheng and Wang, 1999] domains
from a three‐dimensional Cartesian system to a two dimen-
sional cylindrical system using scaling factors, r and 2p, to
achieve computational efficiencies, tracer concentrations at
the extraction well (r = rw, z = zt + (M − zt)/2) were calculated
and compared with the concentrations obtained using the
analytical solution, which assumes homogeneity, for a con-
stant flux (CF) boundary condition. The CF boundary con-
dition was used for the analytical model as it has the
advantage of preserving mass balance. The analytical
solution was compared with numerical simulations that
were based on specified mass loading at the injection well.

Table 1. Base Line Parameter Values Used for Simulations

Parameter Value

aL (m) 2.0
aT (m) 0.02
q 0.3
rb (kg/L) 1.67
a (d−1) 0.02
kd (L/kg) 3.0
l (d−1) 0.001
rw (m) 0.2
M (m) 5.0
zt (m) 2.5
zb (m) 0.0
C0 (mg/L) 1.0
Q1

a (m3/d) 120.0
Q2

a (m3/d) 120.0
t1
b (d) 5.0

ts
b (d) 3.0

aQ1 and Q2 are the wells’ pumping rates in stages 1 and 2, respectively.
bHere t1 is the total water injection time during stage 1, and ts is the time

tracer is released during stage 1.

Figure 3. Comparison of results using analytical and numerical solutions for CC and CF boundary
conditions.
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Figure 4 demonstrates the analytical solution assuming a
homogeneous system only provides a reasonable approxi-
mation to the heterogeneous synthetic field site data when
the correlation length for the heterogeneous system is rel-
atively large. Thus, application of this methodology in
heterogeneous permeability fields with poor correlation
structure should be performed with caution.

4. Sensitivity Analysis

[20] Inverse modeling is typically used to estimate system
parameters from observations. To guide inverse modeling, it
is helpful to define metrics to quantify the importance of the
fitted parameters. One such metric is a composite scaled
sensitivity (CSS) [Hill, 1992; Anderman et al., 1996; Hill
et al., 1998] that quantifies the dependency of a parameter
to be estimated (P) on observations. For the push‐pull sys-
tem, CSS may be defined as [Hill, 1992; Anderman et al.,
1996; D’Agnese et al., 1996; Hill et al., 1998]

CSSðPÞ ¼ 1

N

XN
i¼1

wi P@ C
oðtiÞ=@ Pð Þ2

� �" #1=2
ð17Þ

where Co(ti) is the observed concentration at time ti; N is the
total number of observations (i.e., concentration measure-
ments), and wi is the weight of the ith observation, where the
weight is the inverse of a subjective estimate of the variance
of the measurement error (here wi = 1/Co(ti)

2). Increasing
CSS values indicate increasing information about the value

of parameter P that can be gleaned from the concentration
measurements.
[21] In the push‐pull experimental procedure, Co(ti) is

defined as the average concentration at time ti along some
segment of the extraction well screen rather than the entire
screen length. Estimating concentration along a section of
the screen length using e.g., a multilevel sampling well
located adjacent to the fully screened extraction well, pro-
vides for the ability to estimate transverse dispersivity, as
will be discussed in the following section. For example,
averaging over the well screen segment directly above the
tracer injection zone (i.e., z = zt to M):

CoðtiÞ ¼ 1

M � zt

Z M

zt

C2ðrw; z; tiÞdz ð18Þ

[22] Table 2 lists the CSS for parameters estimated in the
push‐pull model in the subsequent section. As will be
described in the next section, the model is used to estimate
dispersivities (aL and aT), adsorption parameters (kd and a),
and parameters describing distribution of a NAPL (�,
average NAPL saturation (Sn), and NAPL‐water partitioning
tracer first‐order mass transfer rate coefficient (aNAPL)). As
indicated for the conditions listed in Table 1, the porosity �
has the highest CSS and the decay constant l the lowest.
Depending on the optimization method, a relatively low CSS
would result in low confidence in the parameter estimate.
Note, however, that the CSS values in Table 2 were deter-
mined for the specific set of operating conditions in Table 1,
and under other conditions the relative magnitude of the

Figure 4. Comparison of tracer concentrations at the extraction well (r = rw, z = zt + (M − zt)/2) assum-
ing homogeneity (analytical solutions) and heterogeneity (correlation length of hydraulic conductivity =
1.0, 2.0, 5.0 and 100.0 m) for constant flux (CF) boundary conditions at the injection well, for parameter
values in Table 1.

HUANG ET AL.: ANALYTICAL SOLUTIONS FOR PUSH‐PULL TRACER TESTS W08538W08538

6 of 16



CSS values would likely be different. For example, the
parameter values listed in Table 1 suggest the time constant
for decay is on the order of 1000 days, which is much larger
than the duration of the push‐pull test, leading to a relatively
low decay constant CSS.
[23] To better understand parameter sensitivity, the CSS

to two parameters, aL and aT, was examined. Well pumping
rates and the vertical location at which concentrations were
measured (z) were varied. Figures 5a and 5b show the CSS
to aL and aT, respectively, for varying well pumping rates.
Figure 5b shows that at lower pumping rates, the CSS to aT
increases, meaning that at lower well pumping rates, it is
relatively easier to elicit information about the value of aT
from concentration measurements. However, Figure 5a
shows that as the pumping rate decreases, the CSS to aL
decreases, implying the simultaneous estimate of aL and aT
will require selection of a pumping rate that is low enough
to provide a good estimate of aT yet high enough to provide
a good estimate of aL. Figures 5c and 5d show how the
vertical sampling location affects the CSS to aL and aT,
respectively. The CSS to both aL and aT increases as the

sampling location gets further from the top of the well
screen (recall zt = 2.5 m). Finally, note from Figure 5 that
the CSS to aL is orders of magnitude greater than the CSS to
aT, indicating that the estimate of aL will, at least for the
parameter values in Table 1, be significantly better than the
estimate of aT. Another parameter that may be used to
determine whether parameters can be estimated uniquely is
the correlation coefficient. Defining the elements of the
sensitivity matrix as

Si;j ¼ @C0ðtiÞ
@Pj

ð19Þ

where C0(ti) is the concentration at time ti and Pj is the
jth parameter, the correlation coefficients may be calcu-
lated using the covariance matrix cov(Si,j) [Rodgers and
Nicewander, 1988]:

R ¼ cov Si;j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov Si;i
� �

cov Sj;j
� �q ð20Þ

[24] The correlations between parameters are shown in
Table 3. Hill et al. [1998] noted that correlations exceeding
0.95 indicate that it may be difficult to independently esti-
mate parameter values. Note from Table 3 that, at least for
the example parameter values in Table 1, all correlation
coefficients for the dispersivities and sorption parameters are
less than 0.95, while the correlation coefficients for the
NAPL distribution parameters are all significant (with the

Table 2. Composite Scaled Sensitivity to Selected Parameters for
Table 1 Conditions

Group

Adsorption Dispersion NAPL

a kd l q aL aT q Sn aNAPL

CSS 0.026 2.396 0.000007 0.326 2.20 0.011 0.762 0.011 0.005
Rank 2 1 3 2 1 3 1 2 3

Figure 5. Sensitivity analysis CSS to (a) aL and (b) aT as a function of pumping rate and CSS to (c) aL
and (d) aT as a function of z. Note that the well screen extends from z = 0 to 2.5 m.
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correlation coefficients for � − Sn and aNAPL − Sn both
greater than 0.95).

5. Applications

[25] In this section we develop procedures and simplified
model equations that can be used to estimate parameter
values from field test tracer signals. Applications discussed
below include estimation of dispersivities, sorption param-
eters, and non‐aqueous phase liquid (NAPL) saturation
examples. As noted earlier, due to its relatively low CSS
caused by the extended half‐life relative to the tracer test,
estimation of the degradation rate constant is problematic for
the Table 1 parameter values used here. Therefore, estimation
of the degradation rate constant (l) will not be attempted
for the Table 1 conditions being evaluated in this study.
Simplified methods of determining first‐order degradation
rate constants with push‐pull tests have been presented pre-
viously, however [e.g., Haggerty et al., 1998; Schroth and
Istok, 2006]. Each application example in this section
employs a genetic algorithm coupled to the analytical solu-
tion to quantify model parameters for synthetic single‐well
push‐pull tracer data. Simplified solutions for each appli-
cation are derived first to aid in the implementation of the
model in specific site characterization scenarios.

5.1. Dispersivity Measurement

[26] To measure aL and aT a non‐sorbing, non‐degrading,
conservative tracer (i.e., l = a = kd = 0) should be used.
For these conditions, where transport is governed by
advection and dispersion only, the transport equation solu-
tions for both stages may be simplified as follows. During
stage 1 the intermediate function FCC in equation (10) can be
expressed as

FCCðr; n; tÞ ¼ e�
1

2aL
ðr�rwÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4aLN

p
� 2

�

Z 1

0

e�
2t



Y r; n; 
ð Þd
 ð21Þ

and FCF in equation (11) as

FCF r; n; tð Þ ¼ 2e�
1

2aL
ðr�rwÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4aLN

p
� 4

�

Z 1

0

e�
2t



Wðr; n; 
Þd
 ð22Þ

where Y and W have the same form as in Appendices A
and B, except h = �x2/q. During stage 2, the stage 1
solution at t = t1 provides the initial condition. Using the
simplified equations (21) and (22), the concentration at the
extraction well (r = rw) previously expressed in equation (14)
can now be written

Ĉ2 rw; n; tð Þ ¼ � e�
rw
2aL

q

Z 1

rw

e
r

2aL rF2ðr; n; tÞĈ1 r; n; t1ð Þ dr ð23Þ

where Ĉ1 (r, n, t1) is as given in equation (A6) or (A7)
(with t = t1), F2 (r, n, t) has the form

F2ðr; n; tÞ ¼ 4

�

Z 1

0

e�
2tWðr; n; 
Þd
 ð24Þ

and h = �x2/q. Inverting the Finite Fourier Cosine transform:

C2 rw; z; tð Þ ¼ 1

M
Ĉ2 rw; 0; tð Þ þ 2

M

X1
n¼1

Ĉ2 rw; n; tð Þ cos n� z

M

� �
ð25Þ

and the average concentration integrated over the entire well
screen depth is

Cave
2 ðrw; tÞ ¼ 1

M

Z M

0
C2ðrw; z; tÞdz ð26Þ

[27] Note that measuring concentrations averaged over
the well screen depth won’t provide any information useful
in determining the transverse dispersivity because the second
term on the right hand side of (25), which contains infor-
mation on aT, vanishes upon averaging. Thus, it is necessary
to sample over a fraction of the aquifer depth in order to
obtain information necessary to estimate aT.
[28] The importance of having a model that incorporates

transverse dispersion in the vertical direction is demonstrated
in Figure 6. In Figure 6, for the Table 1 parameter values,
tracer concentrations at a sampling location above the
extraction well screen (r = rw, z = zt + (M − zt)/2 = 3.75 m) are
simulated for various values of transverse dispersivity. Since
the sampling location is above the top of the well screen, if
there were no transverse dispersion (aT = 0.0 m), concentra-
tions would be zero at all times. As can be seen from Figure 6,
transverse dispersion results in concentrations that are
significantly greater than zero, and the greater the transverse
dispersivity, the higher the concentrations that are simulated
at a sampling location above the top of the injection‐
extraction well screen.

5.2. Sorption Parameters Measurement

[29] Prior to evaluating the sorption parameter values, it is
assumed that the longitudinal and transverse dispersivity
values have been estimated as described in the preceding
section. With transverse dispersivity quantified, tracer
injection during Stage 1 may be over the entire aquifer depth,
so L(n) = 0 in equation (11) for all n > 0 and L(0) =M, which
simplifies equations (10) and (11) for constant concentration:

C1 r; tð Þ ¼ C0 exp
r � rw
2aL

� �
FCCðr; 0; tÞ � FCCðr; 0; t � tsÞð Þ ð27Þ

Table 3. Correlation Coefficients Between Parameters for Table 1 Conditions

Adsorption Dispersion NAPL

Parameter a kd l Parameter q aL aT Parameter q Sn aNAPL

a 1.00 −0.62 0.24 q 1.00 −0.13 0.21 q 1.00 −0.98 −0.93
kd −0.62 1.00 0.43 aL −0.13 1.00 −0.82 Sn −0.98 1.00 0.99
l 0.24 0.43 1.00 aT 0.21 −0.82 1.00 aNAPL −0.93 0.99 1.00

HUANG ET AL.: ANALYTICAL SOLUTIONS FOR PUSH‐PULL TRACER TESTS W08538W08538

8 of 16



and for constant flux boundary conditions:

C1 r; tð Þ ¼ C0 exp
r � rw
2aL

� �
FCFðr; 0; tÞ � FCFðr; 0; t � tsÞð Þ ð28Þ

These equations may be solved for radial transport when
injecting a sorbing solute through a fully screened well to
obtain two sorption parameter estimates: a (the first‐order
sorption rate constant) and kd (sorption partition coefficient).
Equation (15) is still applicable to describe the concentration
in the extraction well during Stage 2 (C2), except the initial
concentration of stage II is now given by equations (27) and
(28), respectively, for constant concentration and constant
flux boundary conditions. The sorbed concentration for this
application is expressed

S1 r; tð Þ ¼ � kd

Z t

0
e�ðt�	Þð�þ�ÞC1 r; 	ð Þd	 ð29Þ

5.3. NAPL Saturation Measurement

[30] Given the novelty of this application it is important to
outline in more detail the previous efforts to quantify in situ
NAPL saturations using single‐well partitioning tracer study
results. Partitioning tracers were initially proposed for use in
interwell tracer tests [Jin et al., 1995] as an effective method
for quantifying the average non‐aqueous phase liquid
(NAPL) saturation within a NAPL source zone. More
recently, work has focused on adaptation of this methodol-
ogy to the single‐well push‐pull tracer technology [e.g.,
Istok et al., 2002]. This methodology evolved from the
petroleum engineering literature where it was proposed for

the identification of residual oil [e.g., Tomich et al., 1973].
Recent environmental applications have focused on the
interpretation of single‐well push‐pull partitioning and non‐
partitioning tracer signals to identify NAPL contaminant
[Istok et al., 2002; Davis et al., 2002, 2005]. Istok et al.
[2002] employed a single‐well push‐pull test to quantify
TCE saturations in bench‐scale model aquifers and at a field
site in Cincinnati, OH. A similar test was employed by
Davis et al. [2002, 2005], which relied on injection of a
conservative tracer and radon‐free tap water. During
extraction, the conservative tracer and a naturally occurring
partitioning tracer, Radon‐222, were monitored. The model
of Schroth et al. [2000] was then used to interpret the
extraction signals of the partitioning and non‐partitioning
tracers to compute a retardation coefficient

�
R = 1 + �b

�
� K
�
,

which could then be combined with the known equilibrium
partitioning tracer‐NAPL partitioning coefficient (K) to
compute the average NAPL saturation (Sn):

Sn ¼ R� 1

Rþ K � 1
ð30Þ

[31] Application of (30) requires the assumption that the
mass transfer of the partitioning tracer to the NAPL is rapid
enough that rate‐limitations may be ignored. Previously
reported results [Istok et al., 2002; Davis et al., 2002, 2005],
however, suggest this is a poor assumption in single‐well
push‐pull tests and that the dispersion observed in the par-
titioning tracer extraction signal is likely caused by both
non‐equilibrium effects and heterogeneous distribution of
NAPL. Modeling these effects has generally required the

Figure 6. Comparison of simulated breakthrough concentrations at the extraction well (r = rw, z = 3.75 m)
for different vertical transverse dispersivities and CF boundary conditions.
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implementation of numerical models [e.g., Schroth et al.,
2000].
[32] The model developed in this work provides a more

efficient alternative for quantifying NAPL saturations using
single‐well push‐pull test results when non‐equilibriummass
transfer is important. Given that non‐equilibrium partition-
ing into the NAPL is analogous to non‐equilibrium sorp-
tion, sorption parameters in equations (1) and (2) can be
redefined in terms of NAPL partitioning. The aquifer
porosity (�) must now be divided into the volume fraction of
voids containing the aqueous phase (�a) and the volume of
voids containing NAPL (�n). These volume fractions relate
to the aqueous saturation (Sa) or NAPL saturation (Sn)
according to �a = �Sa and �n = �Sn, respectively. Given that
only a fraction of the void space is now available for
aqueous phase flow, � should be replaced with �a, and
assuming partitioning between the aqueous phase and NAPL
is analogous to sorption, rb should be replaced with �n in
equation (1). Rate‐limited mass transfer between the aque-
ous and NAPL phases is governed by the rate‐limited mass
transfer coefficient (aNAPL) and the capacity for partitioning
tracer to accumulate in the NAPL, which is governed by the
aqueous phase‐NAPL equilibrium distribution coefficient
(K). With these substitutions, and assuming tracer injection
is over the entire screen length, equation (1) becomes

r �Sa
@C

@t
þ �Sn

@S

@t

� �
¼ aLq

@2C

@r2
� q

@C

@r
þ aTq

@2C

@z2

� r�Sa�C � r�Sn�S ð31Þ

and with only slight modifications in parameter nomencla-
ture, the sorption solution described previously can be used
to quantify the NAPL saturation in a system that includes
non‐equilibrium partitioning. This solution again uses the
initial and boundary conditions expressed in equations (3)
and (4) and is solved according to equation (15).
[33] To quantify the NAPL saturation, a number of

parameters must be determined, including dispersivities
and partitioning parameters. Longitudinal and transverse
dispersivities (aL and aT) may be determined from the
interpretation of non‐partitioning (conservative) tracer test
results as described previously. As before, the Darcy
velocity (q) is computed from the aquifer thickness (M)
and the well flow rate (Q). Partitioning parameters, i.e., the
rate‐limited mass transfer coefficient (aNAPL) and the
equilibrium distribution coefficient (K), may be determined
from batch and column studies conducted in the lab using
a sample of the NAPL collected from the field and the
proposed partitioning tracers or, as shown in the following
example, K may be determined in the lab while aNAPL is
estimated from the partitioning tracer field results. Like-
wise, aquifer porosity may be determined using conven-
tional methods or may be simultaneously estimated from
the tracer results, leaving the interpretation of the parti-
tioning tracer extraction signal to quantify the NAPL satu-
ration (Sn). While a reactive partitioning tracer could be used
(l > 0), it is advisable to use a non‐reactive partitioning tracer
to simplify the interpretation and analysis. The following
section provides an example demonstrating the use of the

Figure 7. Comparison of “real” concentration data from example with simulated data using GA‐
obtained parameter values for (a) longitudinal and transverse dispersivities (aL, aT), (b) sorption parameters
(a, kd), and (c) NAPL distribution parameters (�, Sn, aNAPL).

HUANG ET AL.: ANALYTICAL SOLUTIONS FOR PUSH‐PULL TRACER TESTS W08538W08538

10 of 16



proposed methodology to quantify the interrogated‐volume
average NAPL saturation.

6. Example

[34] As an example of model application, synthetic data
were generated using typical parameter values found in the
literature. The model was applied in a forward fashion using
equation (18) to generate extraction well observations as a
function of time. The model was then applied to these data
in an inverse mode to estimate the original parameters. The
inverse modeling process used in these applications is
characteristic of many optimization problems. Here, the
genetic algorithm (GA) developed by Carroll [1996] was
used. The objective function for this model is given as

Fobj ¼ 1þ 1

N

XN
i¼1

CO
2 ðtiÞ � CC

2 ðtiÞ
� �2" #1=20

@
1
A

�1

ð32Þ

where, C2
O (ti) and C2

C (ti) are the observed and modeled
concentrations at time ti, respectively. The GA determines
the values of the model parameters (e.g., aL, aT) which
maximize the objective function.
[35] The above‐described procedure was applied to esti-

mate (1) longitudinal and transverse dispersivities (aL, aT),
(2) sorption parameters (a, kd), and (3) NAPL distribution
parameters (�, Sn, aNAPL) for three alternative simulation
scenarios with parameters as depicted in Table 4 (“real”
column). Note the simulations for sorption and NAPL dis-
tribution parameters are mutually exclusive. That is, either
rate‐limited sorption to aquifer solids or rate‐limited parti-
tioning into NAPL is assumed. Both processes do not occur
in parallel, as we implicitly assume that if NAPL is present,
partitioning into the NAPL would overwhelm any sorption
to aquifer solids that may be occurring. Estimation of
sorption and partitioning parameters is assumed to employ a
fully screened well, such that transport can be assumed one‐
dimensional. For each simulation (n = 1, 2, or 3), the GA
was used to estimate the parameter values. Results are
shown in Table 4 and Figure 7. As can be seen from Table
4, the estimated parameter values are generally within 20%
of the “real” parameter values that were used to generate the
synthetic data. Figure 7a demonstrates the quality of fit
when using conservative tracer signals to estimate dis-
persivity only. As can be seen from Table 4, the poorest
estimate was for the transverse dispersivity in simulation 1,
which was overestimated by 20%. Note from Table 2 that

transverse dispersivity has the lowest CSS, so the inaccuracy
of the estimate is not unexpected. In Figure 7b, the model
provides an excellent fit to the simulation signals for the
quantification of sorption parameters (a, kd). Dispersivities
are assumed known from conservative tracer signal inter-
rogation. Figure 7c compares the best fit realization from
the GA to each simulation in a NAPL source zone
assumed to have relatively low, uniform NAPL saturations
(see Table 4). Dispersivities are again assumed known from
conservative tracer signal interrogation. Clearly the model
is capable of fitting the “real” signals for these scenarios.
As stated previously, however, results depicted in Figure 7c
are limited to a conceptual model that assumes the satura-
tion is uniformly distributed and would be incapable of
recognizing nonuniformities in NAPL saturation. However,
it is well recognized that this is a limitation in site char-
acterization that is common for several characterization
techniques (e.g., PITTs).
[36] It must be noted that to apply an analytical solution in

the above scenarios, a number of relatively severe simpli-
fying assumptions needed to be made. For instance, the
synthetic parameters used in the above example are assumed
to be homogeneous throughout the system, regional
groundwater flow is assumed negligible, and both flow and
transport are assumed to be radially symmetric. Obviously, a
real system will have physical, chemical, and biological
parameters that will vary in space (and perhaps even time)
and asymmetric flow due to regional gradients and local
heterogeneities. Figure 4 provides an example of the mag-
nitude of the impact of spatial heterogeneity of just one
parameter, hydraulic conductivity, on results. The accuracy
of the analytical models presented here, which assume
homogeneity and symmetry, will be strongly affected by the
heterogeneity of the actual system’s parameters and the
relative magnitude of regional flow. As an aside, one way to
assess the goodness of the assumption of negligible regional

flow is to compare the regional flow length‐scale
qregt1
�

� �
,

where qreg is the regional flow Darcy velocity, with the push‐

pull experiment length‐scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qt1

��ðzt � zbÞ

s !
. Although

the simplifying assumptions required by an analytical model
are severe, the models have value in that they offer a
computationally efficient means of obtaining results. These
models are quite useful in providing users with an easy
mode of gaining insight into the interplay of different pro-
cesses, as well as a way of checking results from the more

Table 4. Parameter Estimates Using a GA on Synthetic Data

Parameter

Simulation 1 Simulation 2 Simulation 3

Reala Estimated Reala Estimated Reala Estimated

Dispersivitiesb aL (m) 2.0 3.02 2.0 2.00 10.0 9.99
aT (m) 0.02 0.024 2.0 1.86 1.0 1.00

Adsorption Parametersb a (d−1) 0.02 0.026 0.06 0.061 0.1 0.096
kd (L/kg) 3.0 2.49 8.0 7.13 1.0 0.94

NAPL Distribution Parametersb � 0.5 0.52 0.2 0.21 0.3 0.30
Sn 0.08 0.09 0.05 0.074 0.01 0.015

aNAPL (d−1) 0.04 0.032 0.03 0.018 0.03 0.02

a“Real” parameter values were used in the forward simulations to generate the synthetic concentration data that were then inverted using the GA coupled
to the analytical solution methodology described in the text.

bDispersivities and NAPL distribution parameter estimates were obtained after the GA ran for 40 generations; sorption parameter estimates required 120
GA generations.
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complex numerical models that might have to be applied
during remediation design.

7. Conclusion

[37] The model developed in this work provides an effi-
cient tool for the interpretation of single‐well push‐pull
tracer test results. Applications for the estimation of longi-
tudinal and transverse dispersivity, sorption parameters, and
NAPL saturation and partitioning parameters demonstrate
the utility of the model. The novel application of the model to
estimate rate‐limited partitioning to immobile NAPL for the
estimation of in situ NAPL saturation provides a particularly
attractive tool for estimating average NAPL source zone sa-
turations. The incorporation of rate‐limitations facilitates the
application of this technology across a broader array of
contaminated sites and overcomes the limitations of previous
tracer interpretation models. The example demonstrates the
coupling of this model with an optimization algorithm (GA)
for the simultaneous estimation of aquifer and NAPL para-
meters, saving time and resources. This model provides an
exciting new tool for aquifer characterization and will be
relevant for a variety of environmental applications.

Appendix A: Derivation of Analytical Solution

[38] Applying Laplace transforms with respect to t (C)
and Finite Fourier Cosine transforms with respect to z (Ĉ),
equations (1) and (2) may be rewritten

aL
d2Ĉ

dr2
� dĈ

dr
� rf ðpÞ þ NðnÞ½ �Ĉ ¼ 0 ðA1Þ

where

f ðpÞ ¼ 1

q
� pþ �ð Þ þ �kd�b pþ �ð Þ

pþ �þ �

� �
NðnÞ ¼ aT

n2�2

M2

and p and n are the Laplace and Finite Fourier Cosine
transform parameters, respectively.
Letting Ĉ = y(x)e

r
2aL and x = aL

−1/3
�

1

4aL
+ rf + N

�
f −2/3

equation (A1) takes the form of the well‐known Airy
equation:

d2y

dx2
� xy ¼ 0 ðA2Þ

which has the general solution [Abramowitz and Stegun,
1970]

y ¼ c1Ai xð Þ þ c2Bi xð Þ ðA3Þ
or

Ĉ ¼ c1e
r

2aLAi xð Þ þ c2e
r

2aLBi xð Þ ðA4Þ
where Ai(·) and Bi(·) are the Airy functions.
[39] During stage 1, the Finite Fourier Cosine transform

of the outer boundary condition (3c) is straight‐forward and
the inner boundary condition (3b) is

��aL
@Ĉ

@r
þ Ĉ ¼ C0

p
L nð Þ; r ¼ rw ðA5Þ

where

L nð Þ ¼ M

n�
sin

n� zt
M

� �
� sin

n� zb
M

� �h i

[40] Applying transformed boundary conditions (3c) and
(A5), the constants in (A4) may be evaluated, resulting in

Ĉ1 r; n; pð Þ ¼ C0

p
L nð Þer�rw

2aL
Ai xð Þ

�1Ai xwð Þ � �2Ai
0 xwð Þ

The transformed concentration in the solid phase may
likewise be written

Ŝ1 r; n:pð Þ ¼ � kd
pþ �þ �

Ĉ1 r; n; pð Þ

where the subscript 1 signifies solutions for stage 1 of the
single‐well push‐pull test, and g1 = 1 − s/2, g2 = s aL

2/3 f 1/3

and xw = aL
−1/3 1

4aL
þ rwf þ N

� �
f −2/3.

[41] To obtain the solution for the aqueous concentration in
real time, equation (5) can be inverted using Appendices B
and C. Assuming a constant concentration boundary con-
dition (s = 0),

Ĉ1 r; n; tð Þ ¼ C0L nð Þer�rw
2aL FCC r; n; tð Þ

and assuming a constant flux boundary condition (s = 1),

Ĉ1 r; n; tð Þ ¼ C0L nð Þer�rw
2aL FCF r; n; tð Þ

where FCC (r, n, t) and FCF (r, n, t) are defined in Appendix B
and C. In the special case where a tracer is injected for a
pulse length ts less than t1, the length of water injection
during stage 1, the boundary condition (3b) may be rewritten
using the Heaviside step function (H(.)):

�� aL
@C

@r
þ C ¼ C0Hðts � tÞ; r ¼ rw; zb � z � zt

0; r ¼ rw; 0 � z < zb; zt < z � M

�

Solutions for this slightly modified scenario are readily
obtained using superposition:

Ĉ1 r; n; tð Þ ¼ C0L nð Þer�rw
2aL FCCðr; n; tÞ � FCCðr; n; t � tsÞð Þ ðA6Þ

for the constant concentration boundary condition and

Ĉ1 r; n; tð Þ ¼ C0L nð Þer�rw
2aL FCFðr; n; tÞ � FCFðr; n; t � tsÞð Þ ðA7Þ

for the constant flux boundary condition.
[42] The solid phase concentration in real time can be

obtained by inverting equation (6):

Ŝ1 r; n; tð Þ ¼ � kd

Z t

0
e�ðt�	Þð�þ�ÞĈ1 r; n; 	ð Þd	

¼ C0� kd L nð Þer�rw
2aL Fconv r; n; tð Þ
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where

Fconvðr; n; tÞ ¼ FCC0 rð Þ�ðtÞ � 2

�

Z 
2


1

wð
; tÞ



Y r; n; 
ð Þd

�

þ
Z 1


3

wð
; tÞ



Y r; n; 
ð Þd

�

for a constant concentration boundary condition (s = 0), and

Fconvðr; n; tÞ ¼ FCF0 rð Þ�ðtÞ � 4

�

Z 
2


1

wð
; tÞ



W r; n; 
ð Þd

�

þ
Z 1


3

wð
; tÞ



W r; n; 
ð Þd

�

for a constant flux boundary condition (s = 1), and where

�(t) =
1

�þ �
[1 − e−(l+a)t], w(x, t) =

1

�þ �� 
2
[e−xt

2

−
e−(l+a)t], and all other parameters are as defined in the
appendices.
[43] Finally, using the inverse Finite Fourier Cosine

transform, the analytical solutions for concentrations in the
aqueous and solid phase during stage 1 of the single‐well
push‐pull test are obtained:

C1 r; z; tð Þ ¼ 1

M
Ĉ1 r; 0; tð Þ þ 2

M

X1
n¼1

Ĉ1 r; n; tð Þ cos n�z

M

� �

S1 r; z; tð Þ ¼ 1

M
Ŝ1 r; 0; tð Þ þ 2

M

X1
n¼1

Ŝ1 r; n; tð Þ cos n�z

M

� �

where Ĉ1 and Ŝ1 are as given in equations (10), (11), and
(12).
[44] Solving for the aqueous and solid phase concentra-

tions during stage 2, equation (1) may be rewritten using
Laplace and Finite Fourier Cosine transforms (noting that
the advection term is now positive, indicating convergent
flow):

aL
d2Ĉ

dr2
þ dĈ

dr
� rf ðpÞ þ NðnÞ½ �Ĉ ¼ �g r; n; pð Þ ðA8Þ

where g(r, n, p) accounts for the nonzero initial conditions
resulting from the stage 1 tracer push:

g r; n; pð Þ ¼ r

q
�Ĉ1 r; n; t1ð Þ þ �b�

pþ �þ �
Ŝ1 r; n; t1ð Þ

� �

The homogeneous form of equation (A8) has two linear,
independent solutions:

e�
r

2aLAi xð Þ and e�
r

2aLBi xð Þ ðA9Þ

Green’s function may be used to obtain the general solution
to the heterogeneous form of equation (A8):

Ĉ ¼ c1e
� r

2aLAi xð Þ þ c2e
� r

2aLBi xð Þ þ Hðr; n; pÞ

where c1 and c2 are the integration constants and H(r, n, p) is
the specific solution of (A8). Applying the boundary con-
ditions (4b) and (4c), the solution to equation (A8) written in
the transformed domains is

Ĉ2 r; n; pð Þ ¼ c1 n; pð Þe� r
2aLAi xð Þ þ Hðr; n; pÞ

where

c1 ¼ ��

�

Bi xwð Þ � 2� Bi0 xwð Þ
Ai xwð Þ � 2� Ai0 xwð Þ

Z 1

rw

e
r

2aLAi xð Þg r; n; pð Þdr

H ¼ �

�
e�

r
2aL Ai xð Þ

Z r

rw

e
r

2aLBi xð Þ gðr; n; pÞdr
�

þ Bi xð Þ
Z 1

r
e

r
2aLAi xð Þ gðr; n; pÞdr

�

and g = aL
2/3 f 1/3.

[45] Given that single‐well push‐pull tests employ solute
concentrations extracted during stage 2 of the test to obtain
aquifer parameters, it is important to quantify the concen-
tration at the extraction well (r = rw). For this condition,
equation (7) simplifies to

Ĉ2 rw; n; pð Þ ¼ 2e�
rw
2aL

AiðxwÞ � 2�Ai0ðxwÞ
Z 1

rw

e
r

2aLAiðxÞgðr; n; pÞdr

or

Ĉ2 rw; n; pð Þ ¼ e�
rw
2aL

q

Z 1

rw

e
r

2aLF2ðr; n; pÞr
�
�Ĉ1 r; n; t1ð Þ

þ �b�

pþ �þ �
Ŝ1 r; n; t1ð Þ

�
dr

with F2(r, n, p) =
2AiðxÞ

AiðxwÞ � 2�Ai 0 ðxwÞ or using (C2),

F2(r, n, p) = pFCF (r, n, p).
[46] However, employing the Laplace transform of the

derivative:

L FCF
0 r; n; tð Þf g ¼ pFCF r; n; pð Þ � FCF r; n; 0ð Þ

where, L{·} indicates the Laplace transform and recognizing
that FCF (r, n, 0) = 0, the inversion of F2(r, n, p) is

F2ðr; n; tÞ ¼ FCF
0 r; n; tð Þ ¼ 4

�

Z 
2


1


 e�
2tWðr; n; 
Þd

�

þ
Z 1


3


 e�
2 tWðr; n; 
Þd

�

ðA10Þ

Using the convolution principle,

Ĉ2 rw; n; tð Þ ¼ e�
rw
2aL

q

Z 1

rw

e
r

2aL r �F2ðr; n; tÞĈ1 r; n; t1ð Þ	
þ Fðr; n; tÞŜ1 r; n; t1ð Þ
 dr

where

Fðr; n; tÞ ¼ �b�

Z t

0
e�ðt�	Þð�þ�ÞF2ðr; n; 	Þd	 ðA11Þ

or

Fðr; n; tÞ ¼ 4�b�

�

Z 
2


1


wð
; tÞWðr; n; 
Þd

�

þ
Z 1


3


wð
; tÞWðr; n; 
Þd

�

ðA12Þ

Finally, using the inverse Finite Fourier Cosine transform,
the final analytical solution for the solute concentration at
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the extraction well during stage 2 of the single‐well push‐
pull test is

C2 rw; z; tð Þ ¼ 1

M
Ĉ2 rw; 0; tð Þ þ 2

M

X1
n¼1

Ĉ2 rw; n; tð Þ cos n�z

M

� �

where Ĉ2 is as given in equation (14).

Appendix B: Analytical Inversion of the Solution
With Constant Concentration Boundary Conditions

[47] Setting s = 0, equation (5) becomes

Ĉ1 r; n; pð Þ ¼ C0L nð Þer�rw
2aL FCCðr; n; pÞ ðB1Þ

where

FCC r; n; pð Þ ¼ 1

p

Ai xð Þ
Ai xwð Þ ðB2Þ

Applying the complex inversion formula [Hildebrand,
1976], the inversion of (B2) to the real time domain may
be written as

FCCðr; n; tÞ ¼ 1

2�i

Z �þi1

��i1
FCCðr; n; pÞeptdp ðB3Þ

[48] Following the inversion methodology employed by
Chen [1985] with the intermediate variable f ( p) substituted
for the Laplace parameter ( p) in the expression for xw, the
Bromwich contour for the complex inversion may consider
multiple branch points to account for the rate‐limited
adsorption process. Along the imaginary axis of the p plane,
p has two segments, respectively on [p1, p2] and (−∞, p3],
where, p1 = −l, p2 = −(l + a) and p3 = −(l + a) − akdrb/�,
that make f ( p) negatively valued, which are the cuts linking
the branch points, p1, p2 and p3. As indicated by

Abramowitz and Stegun [1970], the possible zeros of Ai(xw),
which are the singular points of (B3), only distribute in the
range (−∞ < xw < 0). The interesting interval are the cuts along
(p2 < p < p1) and (−∞ < p < p3). Based on this property, an
improved Bromwich contour depicted in Figure B1 can be
used to carry out the inversion. An equivalent integration path
with (g − i∞ < p < g + i∞) is composed of (G + L1 + L2 +
L3 + L4). Thus, (B3) can be written

FCCðr; n; tÞ ¼
X3
i¼0

ResðpiÞ þ 1

2�i

Z
L1þL2þL3þL4þG

� �

� FCCðr; n; pÞeptdp ðB4Þ

A unique nonzero residue is at p0 = 0, which leads to

X3
i¼0

Res ðpiÞ ¼ Aiðx0Þ
Aiðxw0Þ ðB5Þ

where, x0 and xw0 are the specific values of x and xw, in which

the intermediate variable f(0) =
1

q
��þ �kd�b�

�þ �

� �
. Since the

integrand approaches zero when R, the radius of contour G,
approaches infinity, there is no contribution along G. Along
L1 the integration is written as

1

2�i

Z
L1

FCCðr; n; pÞeptdp ¼ � 1

�i

Z 
2


1

e�
2t




Ai �e�2�i=3
� �

Ai �we�2�i=3ð Þ d
 ðB6Þ

where

� ¼ a�1=3
L

1

4aL
� rhþ N

� �
h�2=3

�w ¼ a�1=3
L

1

4aL
� rwhþ N

� �
h�2=3

h ¼ � 1

q
� �� 
2
� �þ �kd�b �� 
2ð Þ

�þ �� 
2

� �


1 ¼
ffiffiffi
�

p


v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

p

Following Abramowitz and Stegun [1970],

Ai �e�2�i=3
� �

¼ 1

2
e��i=3 Ai �ð Þ þ iBi �ð Þ½ �

and the right hand side of (B6) takes the alternative form

� 1

�i

Z 
2


1

e�
2 t




� Aið�ÞAið�wÞ þ Bið�ÞBið�wÞ � i Aið�ÞBið�wÞ � Bið�ÞAið�wÞ½ �
Ai2ð�wÞ þ Bi2ð�wÞ d


ðB7Þ

Along L2, the integration is of the negative conjugate of (B7).
Combining L1 and L2,

1

2�i

Z
L1þL2

FCC r; n; pð Þeptdp

¼ � 2

�

Z 
2


1

e�
2t




Aið�ÞBið�wÞ � Bið�ÞAið�wÞ
Ai2ð�wÞ þ Bi2ð�wÞ d
 ðB8Þ

Figure B1. Modified Bromwich contour of integration for
Laplace transform inversion.
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The contribution from L3 and L4 can be derived in the same
way. Substituting these path integrations and residuals into
(B4), the final inversion takes the form

FCCðr; n; tÞ ¼ FCC0 rð Þ � 2

�

Z 
2


1

e�
2t



Y r; n; 
ð Þd


 

þ
Z 1


3

e�
2t



Y r; n; 
ð Þd


!
ðB9Þ

where

FCC0 rð Þ ¼ Aiðx0Þ
Aiðxw0Þ

Yðr; n; 
Þ ¼ Aið�ÞBið�wÞ � Bið�ÞAið�wÞ
Ai2ð�wÞ þ Bi2ð�wÞ


3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �ð1þ kd�b=�Þ

p
Substituting (B9) into (10), the solution in the real time
domain is

Ĉ1 r; n; tð Þ ¼ C0L nð Þer�rw
2aL FCCðr; n; tÞ

Appendix C: Stage 2—Analytical Inversion of the
Solution With Constant Flux Boundary Conditions

[49] Setting s = 1, equation (5) becomes

Ĉ1 r; n; pð Þ ¼ C0L nð Þer�rw
2aL FCFðr; n; pÞ ðC1Þ

where

FCF r; n; pð Þ ¼ 1

p

2Ai xð Þ
Ai xwð Þ � 2a2=3L f 1=3Ai0ðxwÞ

ðC2Þ

Using complex inversion formula, the inversion of (C2) to
the real time domain may be written

FCFðr; n; tÞ ¼
X3
i¼0

Res ðpiÞ

þ 1

2�i

Z
L1þL2þL3þL4þG

� �
FCFðr; n; pÞeptdp

[50] In the same way as in Appendix B, the residuals are
calculated according to

X3
i¼0

Res ðpiÞ ¼ 2Ai x0ð Þ
Ai xw0ð Þ � 2a2=3L f 1=30 Ai0ðxw0Þ

Chen [1987] demonstrated that the denominator of the
second term on the right hand side of (C2) lacks a zero.
Thus, the integration contour used in Appendix B may also
be applied here. Along L1, if p = x2epi:

1

2�i

Z
L1

FCFðr; n; pÞeptdp

¼ � 2

�i

Z 
2


1

e�
2tAið� e�2�i=3Þ=

Aið�w e�2�i=3Þ � 2a2=3L h1=3e�i=3Ai0ð�w e�2�i=3Þ

d


ðC3Þ

where, following Abramowitz and Stegun [1970],

Ai �e�2�i=3
� �

¼ 1

2
e��i=3 Ai �ð Þ þ iBi �ð Þ½ � ðC4aÞ

Ai0 �e�2�i=3
� �

¼ 1

2
e�i=3 Ai 0 �ð Þ þ iBi 0 �ð Þ½ � ðC4bÞ

the right hand side of (C3) becomes

� 2

�i

Z 
2


1

e�
2t




Aið�Þ þ iBið�Þ
w1 þ iw2

d
 ðC5Þ

with

w1 ¼ Aið�wÞ þ 2a2=3L h1=3Ai0ð�wÞ

w2 ¼ Bið�wÞ þ 2a2=3L h1=3Bi0ð�wÞ

[51] Along L2, the integration is of the negative conjugate
of (C5), which when combined with L1 gives

1

2�i

Z
L1þL2

FCFðr; n; pÞeptdp ¼ � 4

�

Z 
2


1

e�
2 t




Aið�Þw2 � Bið�Þw1

w2
1 þ w2

2

d


Adding the contribution from L3 and L4 as well as the
residual at p0 = 0:

FCF r; n; tð Þ ¼ FCF0 r; nð Þ � 4

�

Z 
2


1

e�
2t



Wðr; n; 
Þd


 

þ
Z 1


3

e�
2t



Wðr; n; 
Þd


!
ðC6Þ

where

FCF0 r; nð Þ ¼ 2Ai x0ð Þ
Ai xw0ð Þ � 2a2=3L f 1=30 Ai0ðxw0Þ

Wðr; n; 
Þ ¼ Aið�Þw1 � Bið�Þw2

w2
1 þ w2

2

Substituting (C6) into (C1), the solution in the real time
domain is obtained:

Ĉ1 r; n; tð Þ ¼ C0L nð Þer�rw
2aL FCFðr; n; tÞ
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