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Abstract

This work investigated the capability of a portable LIBS device to detect and quan-

tify dopants in plutonium surrogate alloys, specifically gallium, which is a common

stabilizer used in plutonium alloys. The SciAps Z500-ER was utilized to collect

spectral data from cerium-gallium alloys of varying gallium concentrations. Calibra-

tion models were built to process spectra from the Ce-Ga alloys and calculate gallium

concentration from spectral emission intensities. Univariate and multivariate analysis

techniques were used to determine limits of detection of different emission line ratios.

Spatial mapping measurements were conducted to determine the device’s ability to

detect variations in gallium concentration on the surface of sample. Chemometric

techniques were implemented to build predictive calibration models from the entire

spectral data set. Partial least-squares regression was determined to produce the

superior calibration model for predicting Ga content in a Ce-Ga alloy. The results

demonstrated the SciAps Z500-ER can be coupled with advanced multivariate ana-

lytical routines to efficiently and rapidly provide quantitative analysis of impurities

in plutonium surrogate metal. By using a handheld LIBS device in lieu of traditional

mass spectrometry methods, the chemical analysis time can be reduced to mere sec-

onds. This has direct applications for several national security applications including

directly enabling Pu pit production teams to meet the 80 pit-per-year production

goal outlined in the 2018 Nuclear Posture Review.
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RAPID ANALYSIS OF PLUTONIUM SURROGATE MATERIAL VIA

HAND-HELD LASER-INDUCED BREAKDOWN SPECTROSCOPY

1. Introduction

1.1 Motivation

Strategic nuclear deterrence has been the foundation of U.S. national security

for decades. In the past few years, our adversaries around the globe have begun

ramping up their nuclear capabilities by adding to their stockpiles and developing new

technologies which pose threats to current U.S. deterrence posture. To secure U.S.

national security and strategic interests, various ongoing efforts are in play to ensure

the effectiveness and readiness of our nuclear triad and its deterrence capabilities. The

2018 Nuclear Posture Review (NPR) has outlined several initiatives to be pursued by

the United States to ensure the effectiveness of the nuclear stockpile [1]. One of these

initiatives mandates the capability to produce plutonium pits at a rate of 80 pits per

year by 2030.

Improvements to the current analytical techniques used to conduct chemical com-

position analysis are being examined. Novel tools Dan techniques capable of quicker,

more efficient metallurgical analysis are highly sought after to continue advancing the

field. The development of a portable device capable of analyzing plutonium samples

and providing rapid measurements of impurity concentrations would greatly benefit

pit production efforts and improve upon existing analytical techniques.

This work details the experimental process which developed the analytical tech-

niques and algorithms allowing a commercially available laser-induced breakdown
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spectroscopy (LIBS) device quantitatively analyze a plutonium surrogate alloy. This

chapter serves to provide a brief background and summary of the approach, limita-

tions, and accomplishments for this research.

1.2 Background

LIBS has been used as a diagnostic technique for a wide variety of applications, and

has proven to be a versatile analytical tool. Traditional LIBS setups on the laboratory

scale have been used for combustion diagnostics to calculate fuel-to-air ratios, as

well as plasma diagnostics for calculations of electron density and temperature in a

variety of experimental proceedings [2–6]. Recently, LIBS has garnered the attention

of scientists in the nuclear engineering community for a variety of nuclear applications.

Experimental proceedings by Bhatt et. al. using a traditional LIBS setup iden-

tified uranium lines from uranium trioxide in order to detect and quantify uranium

concentrations [7]. Several additional studies have used LIBS to identify nuclear

material in different chemical matrices, including geological deposits [8, 9], uranium

ores [10,11] and surrogate nuclear debris [12]. Other studies by Chinni et. al., Sarkar

et. al., and Gaona et. al. validated the use of LIBS for various nuclear safeguard

applications including IAEA swipe analysis, reprocessing activities and standoff de-

tection [13–15]. The technique has been proven to generate reliable results, however

the space and equipment traditionally required in these setups does not fit the con-

straints imposed on nuclear material analysis in the field or laboratory glovebox.

Recently, HH-LIBS systems have been developed and used widely for industrial

purposes, such as the Z series HH-LIBS devices produced by SciAps [16]. The SciAps

Z500 weighs only 6 pounds, and costs approximately $40,000 (USD) [17]; it is widely

used in the metal scrapping industry. The commercial device contains libraries for a

large span of elements and can conduct rapid, automated spectral emission analysis
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to determine elemental concentrations in a sample. While the factory settings of the

device do not allow it to conduct analysis of lanthanides or actinides, these libraries

can be built and added to the device from experimental data. Recent work has

proven that the Z500 can be used to accurately determine concentrations of uranyl

flouride (UO2F6) in sand by using an algorithm which compares sample spectral data

to experimentally determined calibration curves. This work proved the device could

detect Uranium at a level of 250 parts per million from simulated on-site samples. [17].

Additionally, Manard et. al. proved this same device could be used for detection of

rare earth metals in a uranium matrix [18].

The study of spectral emission lines of plutonium and plutonium surrogates for

forensic identification purposes is much less developed. While data on lines from

plutonium in a mixed actinide sample has been tabulated, no thorough studies have

been conducted concerning spectral analysis of Pu alloys using a hand-held LIBS

device [19]. The most common detection methods for Pu involve passive systems,

such as gamma or neutron spectroscopy. These methods can detect and identify Pu

to certain constraints, but a compact, portable HH-LIBS device could yield several

improvements to the analytical process. Additionally, the size of the required equip-

ment and time required for collection of significant data from these aforementioned

spectroscopic techniques make them unsuitable for rapid in-situ analysis.

Quantitative analysis of plutonium is typically conducted in the laboratory envi-

ronment using plasma spectroscopy techniques, such as Inductively coupled plasma

- optical emission spectroscopy (ICP-OES). This technique uses plasma to excite a

sample and measures light from the deexcitation of the sample atoms [20]. Recent

work has demonstrated capability of ICP-OES to identify optical emissions of plu-

tonium; spectral data gathered can be processed and deconvolved for quantitative

analysis [21]. While results of high resolution ICP-OES experiments show promise
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for quantitative analysis of plutonium alloys, the complex equipment requirements

and sample preparation process leave a few areas of improvement open for investiga-

tion. In contrast, the HH-LIBS device can provide a compact, portable system for

rapid spectral data gathering and provide elemental analysis. The simplicity of the

system and depth of its commercial capabilities make it an ideal candidate for the

purpose of plutonium/plutonium surrogate fabrication and impurity concentration

measurement.

Cerium is a common chemical surrogate for plutonium, and is often used in ex-

perimental studies in place of plutonium since it is easier to access and handle [22].

Due to the two metals sharing similarities in chemical, physical, electrochemical, and

metallurgical properties, studying cerium alloys can often yield valuable insights into

the behavior of plutonium alloys [23, 24]. The spectral emission from alloys of this

surrogate can provide an excellent starting point towards building spectral calibration

models, tools, and analysis routines to be later applied to plutonium alloy analysis.

1.3 Problem

The task of identifying the presence of different elemental impurities in a Pu metal

matrix and conducting rapid in-situ measurements can be done using LIBS. A HH-

LIBS device can easily gather spectral data from a Pu sample, however commercially

available devices possess neither the requisite libraries nor the processing software

needed to conduct this quantitative nuclear material analysis. This research seeks

to develop an algorithm to identify cerium and quantify gallium concentration in a

Ce-Ga alloy which can be loaded onto the handheld device to bolster its quantita-

tive analysis capabilities. By building such a program from experimentally gathered

spectra, and building a comprehensive emission database, the HH-LIBS device could

be used to immediately identify provide dopant concentration information in Pu sur-
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rogate materials. The insights and results from this process can then be extended to

analyze of plutonium alloys.

1.4 Hypothesis

This research is based on the hypothesis that different emission lines from cerium

and gallium can be distinguished and used to develop calibration models relating

spectral intensities to Ga content of a sample. The handheld device can be used

to take raw spectra from Ce-Ga samples of varying Ga concentrations. An analyt-

ical algorithm can then be developed from this data to calculate Ga concentration

from spectral peak information, by constructing a calibration curve or using differ-

ent chemometric techniques to construct predictive models. The Ga concentration

in an unknown sample can then be measured by taking a spectral measurement and

comparing the emission intensity data to the experimentally calibrated models loaded

onto the device.

1.5 Approach

The settings of the hand-held device are first optimized for spectral acquisition.

Spectra of samples made of cerium and gallium oxides are taken to tabulate lines of

both cerium and gallium. An initial calibration curve program is created for cerium-

gallium alloys using the spectral emission intensities of standard sample alloys of Ga

content ranging from 0 to 3 weight percent. Employing useful line ratios identified by

the aforementioned univariate analysis, multivariate analysis techniques are used to

build more complex models relating several spectral line intensity predictor ratios to

the concentration. Each calibration model is analyzed and compared by calculating

limits of detection and other statistical parameters related to the accuracy of the

model.
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1.6 Research Assumptions and Limitations

This study is primarily limited by the design of the Z500. The accuracy of the

calibrations made using data collected from the device will depend largely on the

resolution of the system. It is assumed that the system resolution of 0.1 nm is enough

to resolve differences between the cerium and gallium emission lines to be used in

quantitative sample analysis. Additionally, since the device used in this thesis was

used previously to detect uranium compounds in sand, we assume the device has been

properly maintained and cleaned so that contamination from these samples does not

interfere with the data collection.

This study is also limited by the resources available in a laboratory setting and the

quality of experimental samples used to build the analytical program. As the alloying

process used to make the cerium chips was not perfect, the data acquisition process

must be optimized to get the best average spectra representative of each sample. Due

to the compressed timeline of this master’s program, there may not be enough time

for the creation of a completely new sample set for analysis.

Spectra of lanthanides and actinides are quite crowded, and chemometric tech-

niques will need to be utilized in order to process the large number of emissions

before making multivariate calibrations or predictive models. The accuracy of these

models will be limited by the statistical methods used to transform the raw data, as

many of these linear algebra based methods of dimensionality reduction lose informa-

tion explaining the complete variance of the sample set. These predictive models must

be created with enough components such that most of the variance of the original

data set is explained.

Lastly, many diagnostic calculations from spectral emission data are dependent

on the reliability of tabulated parameters for different emission lines, such as tran-

sition strengths and probabilities. This study assumes the accuracy of those values
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tabulated in the NIST Atomic Spectra Database, but any errors in these values would

carry through the calculations and affect the diagnostic measurements done to char-

acterize the LIP from the recorded emissions.

1.7 Research Contributions

This research advanced the analytical capabilities of a commercial HH-LIBS de-

vice. Some of the more notable contributions adn advances are:

• Validated capabilty of COTS HH-LIBS system for lanthanide analy-

sis: This study confirmed that a commericially available hand-held LIBS device

is capable of elemental concentration analysis of cerium alloys, a novel result in

this field.

• Groundwork for future Pu alloy studies: This research developed tech-

niques which can be used to conduct rapid in-situ analysis of plutonium samples

at various stages in the pit production process. This provides the DoE with a

critically desired capability to assist in meeting the 80 pits per year mission [1].

• Provided a novel technique to evaluate alloy production quality: The

surface Ga mapping study conducted in this work yielded valuable insight into

potential flaws of annealing and manufacturing techniques used to produce the

Ce-Ga alloys. This technique could be used to improve the alloy production

process, and can be further applied for plutonium manufacturing studies.
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2. Theory

The development of a HH-LIBS system capable of detecting and analyzing pluto-

nium surrogates requires an understanding of evolution of laser-induced plasmas and

their spectroscopic signature, and their use in material composition analysis. First, a

summary of plasma spectroscopy and the theory behind LIBS are presented. A short

comparison of alternative analytical spectroscopic methods are presented. The quan-

titative techniques used to extract suitable diagnostic information about the plasma

and sample composition are analyzed. A brief discussion on plutonium chemistry is

provided to understand the need to quantify impurities in plutonium alloys and the

forensic application of this metric. All literature related to LIBS of plutonium and

other actinides using the HH-LIBS to date are summarized, and methods of utiliz-

ing plutonium spectral data for nuclear forensic analysis are discussed. Finally, an

overview of the function and capabilities of the HH-LIBS device is provided. To-

gether, the information provided in the following sections allow for an understanding

and interpretation of the results and conclusions made in Chapters 4 and 5.

2.1 Optical Emission Spectroscopy

A summary of the fundamental concepts behind laser ablation and plasma optical

emission spectroscopy are provided. This conceptual understanding helps us identify

the parameter domain for the plasma produced from laser ablation, which is used

for quantitative composition analysis of the sample. When laser photons impact a

target, deposit energy into the surface. This energy deposition excites the surface

atoms and strips electrons from the electron shell, ionizing the surface and creating a

plasma. Depicted in Fig. 1, the optical emission generated by a plasma is measured

by directing the signal with a series of mirrors and lenses into a spectrometer. The

8



spectrometer disperses the light into its different wavelengths, which can be detected

using a camera. The intensities of various wavelengths are recorded to obtain the

LIBS spectrum. Strong spectral emissions characteristic of particular atoms in the

ablated sample show up as peaks in the spectrum; analysis of these peaks can yield

significant information about the sample itself.

Figure 1. Schematic diagram of LIBS setup [16]. A pulsed laser ablates the sample
surface; the recombination of particles in the resulting microplasma produces photons
which can be captured by a spectrometer and recorded by a CCD camera. This spectra
can then be analyzed to determine sample composition.

LIP spectral recordings can provide be used to determine the temperature and

density of the plasma produced by the laser ablation event. The wavelength of dif-

ferent spectral lines can be matched to the emission wavelengths from a particular

element to determine composition of the sample. The intensities of various lines in

the spectra can then be used to determine the specific concentrations of different con-

stituents of the sample itself. Overall, plasma spectroscopy is a valuable tool capable

of providing a variety of information about a sample.

To understand how laser ablation of a sample can be utilized for chemical analysis,

a discussion of the the theory behind laser induced breakdown is presented. This is

followed by a basic overview of plasma spectroscopy. Finally, the techniques used to

perform quantitative spectroscopic analysis are discussed in Sect. 2.1.2.
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2.1.1 Laser Ablation

Laser ablation, depicted in Fig. 2, has traditionally been used to remove ma-

terial from the surface of a target object. The ablation process itself occurs when

short wavelength radiation from a laser beam couples with the material surface. The

ablation process is fundamentally dependent on different laser parameters, includ-

ing wavelength, pulse duration, repetition rate, and beam quality. Laser wavelength

affects the energy of the laser photons, which determines the way in which they in-

teract with the atomic matrix of the material. The type of coupling interaction is

determined by the photon energy as described in Eq. 1.

E =
hc

λ
(1)

Laser photons with energies higher than the atomic force attracting electrons to

the nucleus will liberate these electrons from the atom, causing ablation. This process

is defined as a ”photochemical” interaction. Lower energy photons won’t liberate

electrons from their orbits, but will simply cause them to vibrate, causing molecular

dissociations. If many such photons are incident on the atomic matrix of a material

over time, the cumulative vibration is imparted as thermal energy. This interaction,

called ”photothermal” coupling, can also be used to remove electrons from the atomic

matrix of a material [25].

Pulse duration and repetition rate affect the thermal characteristics of the ab-

lation. Shorter pulses minimize thermal damage to the area surrounding the abla-

tion event, and higher laser repetition rates enable maintaining a constant ablation

temperature, preventing heat waste. Beam characteristics such as size, focus, and

homogeneity are all factors affecting the ablation efficiency. These parameters must

all be carefully evaluated prior to experimental data collection in order to perform

successful ablation of a selected material.
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Typically, ablation blows material off the surface of the target in the form of a gas.

At higher laser fluxes, the ablated material interacts with a trailing portion of the

laser pulse, further ionizing the ablated material. This ionization creates a plasma of

the ablated surface material, forming what is referred to as a ”laser-induced plasma”.

Figure 2. Breakdown of laser ablation process stages [26].

The general process of a laser ablation event is depicted in Fig. 2, describing the

ablation of silica. Initially, the incident laser photons deposit part of their energy

on the surface of the material, while part of the energy is absorbed through various

ionization processes (multi-photon, inverse Brehmstrahlung, avalanche), creating the

laser plasma. Next, material heated by the laser is ejected away from the target site.

This heated mass transfers heat to the surrounding air, compressing it to create a

shockwave front. Additionally, pressure induced by the laser forms a thermoelastic

wave, which propagates as a pressure wave. This second stress wave further com-

presses material at the target site, leading to a second ejection and the formation

of the contact front. As this front expands, further compression of the ablation site

occurs and a third stress wave is generated. At the end of the ablation process, the
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target site is left with an ablation crater filled with highly dense material formed from

the compressions [26].

While this process occurs in the material, the plasma plume is expanding as a

result of the shock front propagation. As it expands, the plasma begins to cool and

recombine, leading to optical emission from various atomic shell transitions, which are

discussed further in Sect. 2.2.1. The exponential temperature decrease is described

in Fig. 3.

Figure 3. Example of temporal evolution of laser-induced plasma temperature [26].

As the ions and electrons recombine and the collision rate of the plasma slows, the

temperature decreases to an asymptote over the period of a few thousand nanosec-

onds. Eventually, all the constituent particles of the plasma recombine.

In pulsed LIBS, the entire process described above is repeatedly cyclically between

each laser pulse incident on the target material. For the purpose of material com-

position identification, a pulsed laser at a lower power and small beam diameter can

be used to interrogate and collect data on a sample material with minimal damage

beyond the ablation point on the surface.
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2.1.2 Plasma Spectroscopy

Plasma spectroscopy describes a well established domain of optical emission anal-

ysis which involves recording the spectra of light emitted from a plasma for the pur-

poses of quantitative analysis. The emission of spectral light occurs when an electron

hole in an lower energy state of an ion is filled by atomic deexcitation. When an

electron in a higher energy orbital transitions to a lower level electron hole, it releases

a photon with energy corresponding to the difference in energy between the levels, as

shown in Fig. 4.

Figure 4. Basic rendering of the atomic de-excitation process.

De-excitation photon emissions from a plasma are characteristic of the specific en-

ergy level transitions of a particular atom. An example energy level diagram (ELD)

is shown below for helium, along with different possible atomic transition paths. As

evident from the figure, one element may emit photons at multiple wavelengths char-

acteristic of one type of transition; some of these transitions are more probable than

others.

Resonant transitions refer to transitions linked to the ground state; these tran-

sitions are favorable with high probabilities, and therefore the emitted radiation is

generally intense. States which cannot decay via radiative transition are known as

metastable, and have long lifetimes. Radiation in the visible spectra used for optical
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Figure 5. Atomic energy level diagram for Helium [27].

emission spectroscopy generally originates from transitions between different excited

states [27]. The wavelength of the photon emitted from a transition can be calculated

from the energies of the transition states as given in Eq. 2, where p is the initial level

and k is the lower level.

λ0 =
hc

Ep − Ek
(2)

The intensity of the emitted light is a function of the particle density and the transition

probability, and can be quantified as described in Eq. 3.

εpk = n(p)Apk
hc

4πλ0
(3)

The spectra of emitted light from a plasma can be recorded using a spectrometer.

Emitted light directed into a spectrometer is collimated and focused onto a diffraction

grating, which disperses the light into its different constituent wavelengths. The

diffracted light is then reflected off a focusing mirror and can be directed onto a
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detector, such as a CCD camera, to be recorded. The monochromator, shown in Fig.

6, is a commonly used spectrometer which can be coupled to a plasma experiment

to record spectral emission of a particular narrow band of wavelengths. To record a

larger bandwidth, some spectrometers do not use an exit slit, and instead direct all

the diffracted light straight to a detector.

Figure 6. Schematic of Czerny-Turner style spectrometer.

With a ”cold” light source, the emission lines read by the spectrometer would

register as discrete lines at one single wavelength corresponding to one single energy

level transition. However, the spectra from a plasma appear as broadened lines, or

peaks, as seen in Fig. 7. The broadening of the spectral line by a plasma occurs due

Figure 7. Depiction of spectral line broadening in plasma photon emission.
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to the aggregate effects of several different phenomena in the plasma. The full width

at half maximum (FWHM) of a broadened line can be approximated as follows

∆λFWHM =
√

∆λ2D + ∆λ2S + ∆λ2A + ∆λ2V DW (4)

Eq. 4 equates the complete peak broadening as the sum of various broadening effects,

including Doppler, Stark, apparatus/instrument, and Van-der-Waals broadening. In

a plasma, two particularly important broadening mechanisms are Doppler and Stark.

Doppler broadening stems from the velocity distribution of the particles in the plasma.

Since every particle is emitted at a different velocity, each one has a different Doppler

shift relative to the observer, causing a shift in the frequencies of emitted radiation.

Due to the spread of velocities, there is variation in the Doppler shifts of the particles.

This cumulative variation leads to Doppler peak broadening. Stark line broadening

Figure 8. Depiction of Doppler line broadening effect.

occurs as a result of the Stark effect; the presence of an external electric field, such

as the one created by the charged particle distributions inside a plasma, cause the

splitting of degenerate energy levels in the atomic orbital. This is the electric field

analog to Zeeman line splitting, and is demonstrated visually in Fig. 9. Splitting of

the energy levels causes multiple photons at different wavelengths and intensities to

be emitted for a given individual atomic energy state transition, broadening a discrete

spectral line into a peak around the center wavelength of the transition. The line
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Figure 9. Stark line splitting of atomic energy levels caused by the presence of an
external electric field.

broadening effects can be analyzed from recorded spectral data to provide diagnostic

information about the laser plasma. The intensities of different lines in a spectrum

can be used for quantitative calculations of sample composition.

2.2 Quantitative Spectral Analysis Techniques

Recorded spectral data can be processed and manipulated to provide diagnostic

information of the electron temperature and density of the laser plasma. Intensity

measurements of spectral lines can be compared to existing spectral data libraries

to build calibration curves which can be utilized to determine isotopic composition

of a sample. This section discusses the process of performing these calculations to

conduct quantitative analysis of spectral data.

2.2.1 Electron Temperature Determination

Plasma temperature is a measure of the thermal kinetic energy of the particles in

the plasma. Higher temperatures are required for a sustained ionization in the plasma,
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and the degree of ionization itself is characterized by the electron temperature based

on the Saha equation [28]:

ni+1ne
ni

=
2

λ3
gi+1

gi
exp [−εi+1 − εi

kBT
] (5)

Electron temperature can be calculated from spectral line data assuming that the

plasma satisfies the conditions for local thermodynamic equilibrium (LTE). If a plasma

is in thermodynamic equilibrium (TE), the system can be described by a series of dis-

tribution laws, from which relations such as Eq. 5 are derived. Under this assumption,

all the distributions for velocity, population, number density, and energy density can

be characterized by the same unique temperature value. However, TE can never be

achieved in a transient and inhomogeneous LIP; the radiative equilibrium demands

that the plasma be optically thick at all photon frequencies, yet a LIP emits photons

quite easily. As a result, the photon energy no longer obeys a Planckian distribution

and TE is violated. However, if the energy loss due to photon emission is less than

the energy required for other plasma processes (collisional ionization, photoionization,

radiative decay, excitiation, Bremsstrahlung), the distributions governing population,

number density, and velocity still apply [29]. These are the conditions which define

LTE, and this can be quantitatively evaluated using the McWhirter criterion as seen

in Eq. 6 [29,30].

Ne > 1.6e12T .5∆E3
nm (6)

Using the McWhirter criterion to determine LTE, one can then use the Boltzmann

plot method to determine electron temperature from spectral line data [4,6,29,31,32].

This method uses the following equation, derived from the Boltzmann distribution

law. The values Inm, λnm, Anm, gnm, and En refer to line intensity, transition wave-

length, transition probability, degeneracy, and upper level transition energy. Intensity
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and wavelength are taken from the spectral data, and the other values can be deter-

mined from tabulated data [33].

ln
Inmλnm
Anmgnm

=
−En
kT

+ ln
hcN

U(T )
(7)

The left hand side of Eq. 7 can be plotted against the corresponding upper level

energy for a given line. Multiple line values can be plotted together to generate a

Boltzmann plot, as shown in Fig. 10. The electron temperature can be calculated

as the negative reciprocal of the slope of the line fitted to the data points. The

Boltzmann method of electron temperature calculation can be used to determine im-

portant diagnostic information about plasma temperature from a given set of recorded

spectral data.

Figure 10. Example Boltzmann plot method using spectral data from Fe ionization
lines as described in [29].

2.2.2 Electron Density Determination

Under the conditions of LTE described in the section above, we can assume that

the LIP contains an equal number density of electrons and ion species. Electron

density provides a measure of how many particles the plasma contains, and can be

19



used to evaluate other qualities of the plasma, such as optical thickness and RF

attenuation. The electron density can be calculated from recorded spectral peaks

by associating the electron density with peak broadening caused by the Stark effect,

as mentioned in Sect. 2.3.2. The broadening of the peak due to the Stark effect is

caused directly by the electric field created by the charge separation in the plasma.

Changes in electron density affect this electric field, thereby affecting the extent to

which a spectral line is broadened.

V (λ;σ, γ) =

∫ ∞
−∞

G(λ′;σ)L(λ− λ′; γ)dλ (8)

The line broadening from the Stark effect, called Stark broadening, can be deter-

mined by running a spectral peak through a mathematical processing routine. As-

suming that Doppler and Stark broadening are dominant, any spectral peak can be

approximated as the mathematical convolution of a Gaussian peak and a Lorentzian

peak, corresponding to the Doppler and Stark broadened profiles, as shown in Eq. 8.

This convolution is known as the Voigt profile fit (VPF). Here σ and γ refer to the

Doppler and Stark broadening widths, respectively. Fig. 11 visually represents the

results of a VPF and peak deconvolution routine of the LIBS spectra from the 566.6,

567.9 and 571.1 nm Nitrogen lines [34]. Using Stark widths extracted from the

deconvolution, the following well-known equation can be used to calculate electron

density [4, 31, 32,35,36].

Ne =
∆λ1/2

2w
(1016) (9)

Here ∆λ1/2 refers to the Stark FWHM and w is a tabulated parameter known as

fractional intensity width [28, 36, 37]. This method of spectral analysis is commonly

used for electron density diagnostics of non-hydrogenic lines and is an efficient way

of calculating this diagnostic parameter.
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Figure 11. Example deconvolution of the NII peak using a Voigt profile fitting routine
[34].

2.2.3 Elemental Composition Determination

LIBS has demonstrated the ability to quickly determine elemental composition of

a sample from spectral line intensity information [17,38]. The intensity of a spectral

line emission corresponding to a transition in a specific element is dependent upon the

concentration of that element in a sample. As more atoms of the sample are present,

more of these transitions can occur during laser ablation, and the line intensities

will in turn increase. In a mixed-element sample, the ratio of intensities of two

spectral lines corresponding to different constituent elements can be used to determine

elemental concentrations. Data from an experimental sample can be compared to

a calibration curve to identify and quantify concentrations of specific elements in

the sample [17, 35, 39, 40]. Fig. 12 is an example of a calibration curve of lead

concentration in brass standards built from LIBS spectral data. The intensity ratio

scales linearly with concentration, forming a line which can be referenced to determine

Pb concentration from spectral data of unknown samples. While this example reflects

a high R2 value of the calibration points, these data points can often have larger error

bars as a result of shot-to-shot fluctuations of emission line intensities increasing the
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standard deviation of the overall data set.

Figure 12. Example calibration curve from experimental data showing the increase
in intensity ratio of Pb lines with increasing concentrations of lead in brass standard
samples [38].

2.3 Alternate Material Composition Analysis Techniques

2.3.1 Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-

OES)

ICP techniques have long been used to quantitatively analyze sample composition

and perform trace element analysis. ICP-OES is a destructive analytical technique

which directs aerosol particles from a sample into an argon plasma and examines the

spectral emission of the sample to determine its composition [41].

ICP-OES analysis is conducted by digesting sample material in nitric acid, and

adding the solution to a peristaltic pump. The pump directs the solution into a

nebulizer, which creates a fine aerosol out of the sample. The aerosol is then directed

into an argon plasma to excite the molecules in the aerosol and induce ionization;

the spectral emission is then recorded by a spectrometer and analyzed to determine
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material composition [20].

While ICP-OES has been demonstrated to provided accurate elemental composi-

tion analysis, the size of the required equipment, lengthy sample preparation process,

and time required to analyze a sample all make ICP-OES a non-ideal technique for

a field analysis application [21]. Unlike ICP-OES, LIBS analysis can be conducted

directly on a solid sample; no acid digestion is required. Additionally, while 12-15 mL

of sample is required in ICP, LIBS can be conducted on much smaller sample areas

due to the precision of the laser. Other differences between the two systems include

the portability, compactness and shorter analysis time. All of these characteristics

make the HH-LIBS device a more ideal candidate for detecting Pu in the field.

2.3.2 X-ray Fluorescence Spectroscopy (XRF)

In XRF, a sample is exposed to an x-ray photon source and is ionized; when an

electron from a higher orbital falls into the place of an electron hole, another x-ray

photon is emitted. This photon is then directed into a detector, which disperses the

emitted photons based on either wavelength or energy. Different materials fluoresce

at different wavelengths characteristic of their constituent atoms, and a spectra can

be recorded to conduct elemental composition analysis of experimental data [42].

XRF is a common technique used in chemical analysis of various substances, and

is similar to LIBS in efficiency, resolution, detection limits and time required for

sample analysis. XRF also requires little to no sample preparation. Hand held XRF

devices are commercially available, with detection speed and accuracy comparable to

a HH-LIBS device [43].

However, for a portable, a handheld XRF is not ideal due to the fact that the

system relies on a delicate, often expensive solid state detector. While XRF systems

require these sensitive systems to detect light emission in the x-ray spectrum, LIBS
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relies on visible and UV light, which can simply be passed through a robust transpar-

ent window into the spectrometer. This feature allows LIBS systems to be designed

for use rougher conditions, as their ruggedness makes them much less prone to dam-

age or failure. Additionally, XRF selectively excites certain atoms in a sample; this

is dependent on the energy of the x-ray. For analysis of different elemental composi-

tions, the x-ray has to be tuned to a different energy and a new set of measurements

has to be conducted. This makes XRF inefficient for rapid, multi-element analysis.

Since LIBS is characterized by ionization of the entire target volume, electronic de-

excitation transitions from all constituent elements can be recorded. This allows for

the analysis of multiple elements from one recorded spectra, making LIBS ideal for

the application investigated in this work.

2.4 Plutonium Chemistry Overview

Plutonium is a critical material used in the manufacturing of ”pits” of modern nu-

clear explosive devices. Plutonium is not naturally abundant, and must be produced

in reactors through neutron absorption and decay by uranium. Common production

pathways for Pu-239 and Pu-240 are shown below.

238
92 U +1

0 n→239
92 U →239

93 Np+0
−1 β + ν̄


→239

94 Pu+0
−1 β + ν̄

+1
0n→240

93 Np+ γ →240
94 Pu+0

−1 β + ν̄

Pu-240 is also produced by (n,γ) reactions with Pu-239:

239
94 Pu+1

0 n→240
94 Pu+ γ

Upon recovery from reprocessed uranium, a variety of steps must be taken to form

a weapon pit from the extracted plutonium, due to its complex material properties.
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This section discusses the material properties and phase chemistry of plutonium,

gives a description of events of interest in the pit production process, and discusses

the properties of a common chemical surrogate for plutonium.

2.4.1 Pu Allotrope Chemistry

Plutonium metal exists in many different material phases, or allotropes, defined by

different arrangements of the atoms in the crystal lattice of the metal. The mechan-

ical and thermal properties of plutonium vary widely between the different phases;

understanding the phase chemistry of Pu metal is critical to weapon core design and

nuclear forensics. This particular property of plutonium makes it extremely sensi-

tive to phases in temperature and allows for large changes in atomic volume between

phase transitions [44]. Fig. 13 shows the change in atomic volume of plutonium with

temperature, along with the various phase ranges and transition points. Upon ex-

Figure 13. Atomic volume change over various temperatures for known Pu allotropes
[44].

traction from reprocessed uranium fuel, plutonium is found in the alpha phase, which
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exhibits a simple monoclinic crystal structure. As a result, it is brittle, weak and

not easily compressed or machined. Additionally, it is susceptible to large changes in

atomic volume over small temperature fluctuations. Both of these properties make

it far from ideal for manufacture and use in a weapon pit. The beta (body-centered

monoclinic) and gamma (face-centered orthorhombic) exhibit similar behavior as the

alpha phase. The delta phase of plutonium can be reached by heating up Pu metal

within 310 to 452 Celsius. This phase exhibits face-centered cubic (FCC) crystal

structure, and is much less sensitive to volume changes due to temperature fluctu-

ation. Additionally it behaves more like a traditional metal, and has a comparable

strength and malleability to aluminum. Pu metal in this phase is easily machined and

formed into weapon pits [45]. In order to stabilize delta phase Pu at room tempera-

tures, the Pu metal must be heated and then alloyed with a dopant [45,46]. The most

common alloying metal used is gallium. A phase diagram of Pu-Ga up to 12 atom

percent Ga concentration is shown in Fig. 14. The phase diagram indicates that

Figure 14. Pu-Ga alloy phase diagram [46].
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alloying larger percentages of Ga with Pu allows for delta phase stabilization across

a wider range of temperatures. This allows for the alloyed plutonium to be machined

into the weapon pit upon cooling. An additional benefit to alloying plutonium with

gallium is seen it its behavior in the weapon detonation process. Upon compression

in a detonation, the Pu-Ga alloy pit will transition from the delta phase back to the

denser alpha phase, helping reach supercriticality to kick-start the fission chain reac-

tion. This property of the alloy is extremely important to the function of a nuclear

device. Pu-Ga alloys are made by adding a certain amount of gallium to a mass of

Figure 15. E-probe image of Pu-Ga alloy [24].

molten plutonium to achieve the desired weight percent of Ga. Gallium segregates

itself in plutonium, forming rich grain centers and lean grain boundaries, as shown

in Fig. 15. In order to diffuse the gallium through the plutonium, the alloy must be

annealed at a temperature in the delta phase transition region. This homogenization
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process stabilizes the lattice structure of the alloy. Upon cooling, the alloy stabilizes

in the FCC configuration of delta-phase Pu, making it ideal for machining into a

weapon pit [45].

2.4.2 Cerium as a Plutonium Surrogate

While conducting experimental LIBS measurements of plutonium alloys can yield

valuable data, plutonium is relatively hard to access compared to other radioisotopes.

However, conducting LIBS measurements of similar metals can provide more easily

accessible results and help characterize the possible LIBS signatures of an actual

Pu-Ga alloy. Cerium, a lanthanide metal, is a commonly used chemical surrogate

for plutonium [22, 23]. Fundamental links between cerium and plutonium have been

reported in several studies. Both metals have low melting points, asymmetrical crystal

lattice structures, and multiple allotropes which exhibit large volume changes with

phase transformations. The similarities in properties has been attributed to the

face that f-shell electrons in both elements are in transition to a localized state [24].

Fig. 16 shows the E-probe image of a Ce-Ga alloy; this alloy exhibits the same

Figure 16. E-probe image of Ce-Ga alloy [24].

segregation behavior as seen in Pu-Ga in Fig. 15. The similarities between cerium
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and plutonium have made cerium compounds a popular choice for use in experimental

work to overcome many of the laboratory hazards of working with plutonium. Cerium

compounds such as cerium oxides have been studied extensively as an experimental

substitute for plutonium oxides, and the comparative behavior of both compounds in

different experimental conditions has been documented in literature [22–24,47]. This

work will examine LIBS spectra of both Ce-Ga in metal and oxide forms and develop

a base of analytical measurements which can be extended to Pu-Ga alloys.

2.5 LIBS for Nuclear Forensics

LIBS is an emerging technique of interest in the nuclear forensics community.

Several studies have demonstrated the ability of LIBS to detect nuclear material in

matrices relevant to the nuclear community, such as geological deposits [8,9], uranium

ores [10,11], and surrogate nuclear debris [12]. Other studies validated the use of LIBS

in nuclear safeguard applications, including analysis of IAEA swipe samples [13],

nuclear reprocessing plant activities [14], and standoff detection of radiological threat

materials [15]. LIBS has also been used to tabulate spectral lines of several actinide

elements [19]. While traditional laboratory setups can provide rapid and accurate

analysis of samples, the capabilities of portable handheld devices for field use still need

to be thoroughly evaluated. Studies have been conducted using the HH-LIBS device

used in this thesis work, in which the device was used to detect uranium compounds

or anomalies in a bulk uranium matrix. These early results are promising, as they

indicate that the Z500 can detect emissions of dopant elements in an bulk actinide

matrix, despite the lower resolution of the device. This section discusses these studies

in detail and their implications for quantitative analysis of cerium-gallium alloys using

the HH-LIBS device.
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2.5.1 HH-LIBS for Nuclear Forensic Analysis

Previous work using the Z500-ER has confirmed uranium detection capabilities

of the hand held device. This work examined spectra of uranyl flouride (UO2F2),

which was mixed with sand to produce samples varying from 1 to 39.5 weight percent

UO2F2 [17]. Fig. 17 shows the variation in the spectra of the 409.1 U(II) peak height

Figure 17. U(II) 409.1 nm peak for varying uranyl fluoride concentrations [17].

over different concentrations. It is expected that as the uranium concentration in the

sample decreases, the line intensity decreases since less of the transitions emitting the

409.1 nm line are occurring. Calibration curves were built using intensities of each

uranium line selected for all sample concentrations, an example calibration curve for

the U II 409.1 nm line is shown in Fig. 18. The fitted line to the datapoints gives

the calibration curve which can be used to determine concentration of an unknown

sample once the appropriate line ratios has been calculated. This technique can be

applied to Ce-Ga alloys as well, allowing the creation of a calibration curve for the

plutonium surrogate.

An additional study conducted by Manard et. al. [18] demonstrates how the Z500

can be used to discriminate rare earth metals in a uranium matrix. Here, the Z500

was able to detect Eu, Nd, and Yb in levels up to hundredths of a percent in a
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Figure 18. Calibration curve for the U II 409.1 nm line [17].

uranium oxide powder. These results indicate that the HH-LIBS device is capable

of detecting dopants in a bulk actinide compound matrix and also show promising

potential for the Z500 device to discriminate and identify gallium in a cerium, or even

plutonium matrix.

Finally, recent work conducted at LANL using the SciAps Z300, a similar HH-

LIBS device, confirms that these devices can be used to analyze surrogate nuclear melt

glass [48]. The chemometric techniques used to bolster the analytical capabilities of

the Z300 in the study can be applied to the quantitative analysis of cerium alloys in

this work as well. The experimental methodology used in the works discussed above

will be applied to this thesis to record, select, and analyze emission lines of cerium

and gallium to perform quantitative analysis of these materials.

2.6 Chemometrics

The univariate calibration curve analysis method described in Sect. 2.2 is a simple

technique useful for detection and elemental composition determination from rela-

tively uncluttered spectral data. However, when dealing with spectra of heavy metals

and high Z elements, the large number of possible atomic transitions leads to a much
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more crowded emission spectra with a large amount of data to sort through in order

to begin any form of quantitative analysis. Chemometrics refers to a set of statisti-

cal and mathematical techniques used to simplify and process large sets of chemical

data. The goal of applying chemometrics is to determine patterns and correlations

from the extracted data in order to build models describing variations in the data set

to properties of the samples. Chemometrics employs multivariate statistical analysis

techniques, used to simplify large data sets and find relations between different de-

pendent variables influencing an outcome variable. Multivariate analysis is especially

useful in processing LIBS data, due to the complex nature of spectral responses and

the large number of variables present [49–54]. This section describes different mul-

tivariate analysis techniques which were utilized in this thesis work to analyze the

complex cerium alloy spectra.

2.6.1 Multivariate Regression

Multivariate regression can be used to construct a single regression model based on

multiple different predictor variables [55–57]. Compared to simpler linear regression,

multiple regression models provide better precision for estimation and prediction of

outcome estimates, such as elemental concentration. A simple multivariate regression

model can express an outcome as a function of two independent predictor variables

by extrapolating the regression line to a 3D plane, shown in Fig. 19. This regression

plane is given by the equation

y = β0 + β1x1 + β2x2 (10)

Here, the beta coefficients correspond to slopes of the independent variables. x1 and

x2 correspond to the values of the x and z axes in Fig. 19. This model is the genesis of

the multivariate regression. Multiple independent predictor variables can be included
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Figure 19. 3D multivariate regression plane. [56].

in the model, with each variable having a slope term in the regression equation, which

can be extended as follows:

y = β0 + β1x1 + β2x2 + ...+ βnxn (11)

Eq. 11 can be applied to spectral data in order to generate a multivariate model re-

lating elemental concentration to the intensity or intensity ratio of multiple spectral

lines in the data set. This multivariate calibration model can yield more accurate

determinations of elemental concentration with lower limits of detection than a uni-

variate calibration can, making it a simple but valuable technique in more complex

analysis of spectral emission data [53].
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2.6.2 Principle Components Analysis (PCA)

PCA is a statistical analysis technique used to reduce the dimensionality of a com-

plex data set by creating a smaller set of variables describing the variance in most of

the original data [55,58]. PCA algorithms are commonly used in the LIBS community

to identify significantly varying spectral lines in crowded spectral data sets and ana-

lyze only the factors causing variations in the data [9,50–54,57,59]. PCA uses matrix

algebra to construct linear combinations of the original data set variables, called prin-

ciple components (PCs). Each PC is uncorrelated, but most of the information in the

data set is compressed into the first few PCs. Each component explains a percentage

of the total variance of the overall data set; this can be graphically represented in

order to determine how many PCs are needed to represent the data set. An example

is shown in Fig. 20. PCA outputs two information matrices for each PC: loadings

Figure 20. Percent of explained variance in data set vs. principle component number.

and scores. Loadings describe correlations between the variables, as well as their rela-

tive contributions to the data set. Scores quantify patterns and correlations between

samples in the data set itself. Examining the relationship between loadings values
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and emission wavelengths of LIBS spectra can identify the emission lines causing the

most variance in the data set, and aid in variable reduction. An example is given in

Fig. 21.

Figure 21. Example PC loadings of LIBS spectra. Significantly varying emission lines
in the data set are clearly identified by their loadings values [59].

This loading plot identifies emission lines which vary the most among different

samples in the spectral data set. By identifying these wavelengths, the data set can

be reduced to look solely at these variables, greatly simplifying the original cluttered

spectra. Running a PCA algorithm on the simplified variable set allows for further

grouping and analysis of the similarities between the LIBS spectra of the samples. For

example, comparing the loading values of different principle components can cluster

the variables by element, as seen in Fig. 22. These example loadings plots discrimi-

nate the variables based on element of emission origin, and quantify the influence of

individual spectral lines to the discrimination of the sample.

PC scores can further aid in clustering samples in the data sets based on quanti-

fied similarities. Fig. 23 schematically describes the sorting of different samples by
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Figure 22. Example of comparative plot of different PC loadings from a LIBS data set.
The loadings clearly cluster variables based on elements from which certain atomic
emissions manifested [59].

chemical matrix type based on the relationship between scores of different PCs. This

Figure 23. Example PC scores of LIBS spectra. Scores help identify patterns between
the samples in the data set, such as sample type or elemental concentration [59].

technique is particularly useful in the LIBS community for discrimination of samples

based on a particular property or criterion of interest. This allows for the sorting of

samples based on matrix type, or dopant concentration levels, which is particularly

useful in nuclear forensic applications. Overall, PCA is a powerful tool for spectro-

scopic analysis which can greatly aid in the clustering of complex spectral data and

the identification of elements of interest within a sample set.

A regression model can be formulated using outputs of a PCA calculation; this is

known as principle components regression (PCR). Regression coefficients relating the
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response variables to the predictor data (principle components) can be calculated by

conducting a linear regression between the mean deviations of the response variables

and the scores of the desired PCs. These coefficients can then be multiplied by

the original spectral data variables to create a regression fit model relating the PC

scores to the outcome. In doing so, a predictive model can be generated to determine

elemental concentration from a set of spectral data using the outputs of a PCA

algorithm.

2.6.3 Partial Least Squares Regression (PLSR)

PLS regression is a technique which combines features from ordinary multivariate

regression and PCA, and is another commonly used technique used to analyze complex

LIBS spectra of a limited sample set [8,54,57,60,61]. A PLS regression builds a model

predicting an outcome from predictor variables in order to describe their common

structure. PLSR finds a set of components called latent vectors, which decompose

the predictor and outcome matrices such that the information contained within the

latent vectors explains as much of the variance between the predictors and outcomes

as possible. A regression then decomposes the predictor matrix in order to determine

outcome.

At the simplest level, PLS analysis involves generating a regression model which

correlates the LIBS spectral data (X) to elemental concentrations (Y) as described in

Eq. 12.

Y = XB (12)

B represents a regression coefficients matrix describing the relationships between the

spectral emission intensities and the elemental concentrations (response). Comparing

the regression coefficients to the predictor variables (wavelengths) generates a plot

similar to the loadings comparison depicted in Fig. 21. This allows for discrimination
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of the important variables in the data set, as noted in Fig. 24. The PLS algorithm

Figure 24. Comparison of PLS regression coefficients to wavelength variables from data
set. The behavior of the coefficients clearly identifies which emissions contribute to the
variation in the data [8].

then uses a linear combination of values to relate the variation in the spectra with

the elemental compositions using a familiar linear equation:

Y = b0 + b1X1 + ...+ bkXk (13)

In Eq. 13, Y refers to the elemental composition variables, and the b terms represent

regression coefficients for the corresponding emission wavelength X. This regression

model can be used to determine elemental concentrations using spectral data taken

from a sample of unknown composition.

A regression model for a data set generated using this technique can be contrasted

to one generated using PCR, as both MVA methods could produce models with differ-

ent levels of accuracy. An example comparison is depicted in Fig. 25. These models

were generated in a Mathworks MATLAB tutorial from NIR spectral data of fuels at

different octane ratings. These example models compare regression fits relating the

38



Figure 25. Comparison of regression models generated using PCA and PLSQ [62].

wavelengths of the fuel spectra to the octane rating using 2 components in both mod-

els. This plot outlines the main difference between the two regression methods. PCR

constructs components to explain variances in the predictor data matrix, while PLSR

accounts for the relationship between the predictor data matrix and the responses.

As a result, PCR with two components cannot generate an accurate predictive model,

since the data the first two components explains most of the variance in the predictor

variables, but little of the variance in the responses.

39



3. Methodology

The Z500 was used in a data collection process similar to the one described in

Sect. 2.5.1 to perform quantitative analysis of cerium-gallium compounds. The gen-

erated calibration curves were used as confirmation that the Z500-ER is capable of

lanthanide analysis. Further multivariate analysis of the spectral data was conducted

to refine the calibration models, and limits of detection were calculated. Upon acqui-

Figure 26. Experimental data collection and analysis flowchart.

sition of the Ce-Ga pieces, the HH-LIBS was used to record spectra from each sample.

Next, using information tabulated in literature [33], strong spectral lines to be used

in univariate analysis were identified. After line identification, a calibration curve was

built to relate the intensity ratios of the selected spectral lines to the concentration

of gallium in each alloy sample. Limits of detection for the univariate analysis curves

were calculated. Once appropriate emission line ratios were identified, multivari-

ate analysis techniques were implemented to generate higher-fidelity mathematical

models relating the behavior of multiple emission lines to the gallium concentration.

The multivariate regression model was then used to conduct a detailed surface gal-

lium concentration mapping analysis of a sample to quantify surface anomalies in Ga

distribution and evaluate the alloy production process. Lastly, two different multi-

variate analysis techniques were used to conduct a chemometric calibration of the
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sample spectra. These models were quantitatively evaluated and compared against

each other to determine the best candidate for use in an analytical program.

3.1 Ce-Ga Alloy Sample Creation

The cerium and gallium alloy samples were made using a Thermo Scientific Ther-

molyne (model number FD1545M) resistive heating furnace. Cerium metal (99.9%

purity) was obtained from Aldrich Chemistry and gallium metal (99.99% purity) was

obtained from Alfa Aesar. Preparation of the samples took place in an argon filled

glovebox with oxygen content nominally under 200 PPM. Between 10-20 g of cerium

metal in chips of approximately 4 g each were weighed using a mass balance (Met-

tler Toledo PR2003 DeltaRange). Gallium metal was then heated to its liquid state

(approximately 60 ◦C) and measured out using a glass pipette to the desired concen-

tration within the Ce-Ga alloy. Weights of both metals were chosen to create samples

between 0 and 3 weight percent gallium; these Ga content levels contain the weight

percent range in which Ga can stabilize the delta phase of Pu, as per Fig. 14. The

combined Ce-Ga was placed in a magnesium oxide crucible obtained through Fisher

Scientific and heated in the furnace to 850◦C and held at that temperature for 8

hours. The furnace temperature was then reduced to 480◦C and held for 12 hours

to anneal the samples. After annealing, the furnace was turned off and allowed to

cool via natural convection down to room temperature. The crucible containing the

Ce-Ga alloy was removed and cracked with a hammer to release the sample. Samples

were then exposed to ambient air and humidity to grow an oxide layer. For the scope

of this work, the Ce-Ga samples had been exposed to air for over 3 months.
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(a) 0% Ga sample (b) 0.5% Ga sample

(c) 1.0% Ga sample (d) 3.0% Ga sample

Figure 27. The Cerium-Gallium alloy samples used for the experimental calibration
curve measurements. The samples seen in (a), (b), (c), and (d) have Ga weight percent
concentrations of 0, 0.5, 1.0, and 3.0 percent, respectively.
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3.2 SciAps Z500-ER Handheld Laser Induced Breakdown Spectroscopy

Device

3.2.1 Z500-ER Overview

Developed by SciAps in 2014, the Z500-ER was the world’s first HH-LIBS an-

alyzer at the time of its commercial release. Its easy to use form, ruggedness, and

powerful compact laser made it an ideal device to be used for industrial LIBS analysis.

Specification of the devices are listed as follows [16]:

Table 1. Z500 specifications

Laser Nd:YAG
Wavelength 1064 µm
Pulse Width 1 ns
Pulse Energy 5 mJ
Focal Length 1.5 cm

Spot Size 50 µm
Dimensions 12 x 11 x 5 in

Weight 6.6 lbs
Bandwidth 180-900 nm
Resolution 0.1 nm FWHM

The SciAps Z500-ER used in this work was originally designed for the identifi-

cation and classification of metal alloys. Its fields of use have expanded into geo-

chemistry and corrosion analysis [17, 63], and the Z500-ER is a promising candidate

for field nuclear forensic analysis. A more detailed description of how this system

operates for the aforementioned purpose is discussed in Chapter 3.

3.2.2 Elemental Identification Method

The Z500-ER’s onboard spectrometer records the radiative emission produced by

the microplasma created on the surface of the sample material. The device has an

automatic beam rastering function which takes data at different points in the target

area, averaging the spectra over multiple spatial points. The device contains many
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Figure 28. SciAps Z500-ER handheld LIBS device.

built in programs for elemental identification and alloy analysis, which use pre-built

libraries of spectral lines characteristic of various elements.

Upon acquisition of spectral data, the computer examines the experimental spec-

tra and searches the libraries for lines and intensities corresponding to the spectral

lines seen in the data. Using the calibration curve technique discussed in 2.3.3, the

program generates a list of elements corresponding to the spectral lines from the data,

and gives an estimated relative abundance along with a ”likelihood” error from which

one can derive statistical uncertainty of the measurement [16]. The built-in software

also give the user the option to build custom calibration curves for specific materi-

als; this feature can be utilized to expand the capabilities of the device to identify

elements whose libraries it does not possess.

3.3 Experimental Measurements and Analysis

3.3.1 Calibration Model Data

The Z500 was used to acquire spectral data on the surface of the Ce-Ga alloy

samples ranging from 0 to 3 wt % Ga. Originally, a sample range from 0 to 5 wt %

was chosen, however the calibration curves were hindered by self absorption of Ga
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emission lines in the 5% spectra, shown in Fig. 29. Since this weight percent is
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Figure 29. Calibration curve using Ga I 287 nm line with Ga content ranging from 0
to 5 weight percent. Self-absorption is evident; this skews the calibration.

above the delta phase range for Pu, it was not of significant interest to this study,

so it was decided that the calibration curves would only include samples up to 3%.

The beam rastering function was used to ablate 8 surface locations, with 3 shots per

location, and record the average spectra over all locations. This gave a representation

of the overall surface concentration. Multiple spectral data sets were taken from each

sample. All samples were measured in a glovebox under negative pressure with an

argon environment. Data from the spectra was then used to identify strong emission

lines of Ce and Ga which could be used to create univariate calibration curves. The

complete emission data set was then used to create calibration models built from

different multivariate analysis techniques. Limits of detection were calculated for

each univariate model to compare their detection capabilities. Statistical parameters

such as root mean square error were determined for the different chemometric models
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to compare their predictive capabilities and determine which could provide the best

solution for an analytical program.

3.3.2 Concentration Mapping

Once the appropriate multivariate calibration curve was generated, the HH-LIBS

was mounted to a rig as shown in Fig. 30. Two posts were used to stabilize the base

and nose of the device. Cable ties were used to secure the device to prevent sideways

movement. Two translation stages were used to create an x-y axis moveable platform

upon which the samples were mounted and fixed. The stages were moved to shift

Figure 30. Constructed mount rig used to stabilize HH-LIBS device for mapping mea-
surements.

the sample so that the laser could ablate specific locations across the sample surface.

Data was taken in a grid pattern on each sample, keeping the distance between the

data points constant at 1 mm. The 3% Ga sample was mapped using this technique,

and the MVR model was used to calculate the surface Ga concentration at each point.

46



4. Results

The previous three chapters provided motivation, background information, and

the methodology for the HH-LIBS quantitative analysis experimental study of plu-

tonium surrogate material. This chapter presents the results and is organized as

follows. First, the spectrometer settings used to gather spectral data of samples

are discussed. Next, the spectral pre-processing method used to remove noise and

optimize emission signature peaks is discussed. Then, univariate calibration curves

generated from the spectral data are presented. Limits of detection are calculated

using the calibration curve parameters. The calibration potential of different line

ratios are discussed based on the limits of detection and statistical parameters of the

calibration fit lines. Finally, multivariate analysis techniques are applied to the data

to generate more complex models relating the emission line intensity to the gallium

concentration. Surface concentration mapping results using the multivariate models

are discussed, along with the implications and importance of this capability for man-

ufacturing. The accuracy and fidelity each technique is discussed to determine the

superior chemometric technique for Ga content determination.

4.1 Spectrometer Settings

The Z500 settings can be modified to fine tune the spectral data acquisition process

and maximize the signal. The final settings used for calibration curve data collection

are listed in Table 2.

First, a 5 percent Ga content cerium alloy sample was used to collect data to

determine gate delay. The optimal gate delay recorded spectral emissions such that

signal was maximized and noise was minimized. A gate delay of 450 ns was chosen

since this setting gave a strong spectral output signal without the noise seen at earlier
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Table 2. Laser and Spectrometer settings used in calibration curve data collection
shots.

Settings Input

Gate Delay 450 ns
Gate Width 250 ns
Locations 8
Shots per location 3
Averaged Spectra 3

gate delay settings; this is reflected in Fig. 31. Some later gate delays, such as the 650

ns signal, showed higher peak intensities, but some of the key Gallium peaks did not

appear, as they decayed very quickly after initial plasma formation. The Z500 has
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Figure 31. Variation in intensity of Ce 394.4 nm peak with different gate delay settings.

an automatic beam rastering feature which moves the laser focal point during shot

collection in order to get a more representative spectra across the target surface. This

feature was used to ensure the acquired data was representative of the total sample.

To develop a calibration curve, 8 locations were ablated on the sample, with 3 laser
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shots per location. These spectra were then averaged by the device. Elemental maps

were constructed from a raster pattern consisting of 20 different shots averaged at

one surface location.

4.2 Spectral Pre-Processing
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Figure 32. Effects of different individual filters on Ce 394.4 peak.

In order to remove baseline noise and smooth the peak signal, a spectral pre-

processing method used by Shattan et. al [17] for analysis of uranium spectral peaks

was implemented. This involved a MATLAB routine which conducted 3 processes

on the data. First, a signal removal method was employed in order to subtract the

baseline from the spectra. This leveled the signal for more accurate analysis. Next, a

Savitzky-Golay filter was employed to remove continuum noise from the peak. Finally,

a noise median method function was used to further remove noise from the peak wings.

The results of varying filter parameters are displayed in Fig. 32.
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4.3 Initial Spectral Line Analysis

Spectral measurements of compounds containing the isolated elements of interest

were taken in order to get a baseline collection of the various emission lines to compare

against the tabulated NIST data. This allowed for initial identification of strong

spectral lines which could be used in calibration curves. A gallium oxide (Ga2O3)
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Figure 33. Ga2O3 spectra from hand held LIBS device with identfied lines of various
elements.

powder sample fixed on tape was used to investigate emission of gallium lines. Fig.

33 displays the emission spectra recorded by the hand held device. 4 main Ga I lines

were identified at 287.4, 294.4, 403.3, and 417.2 nm, confirming the data in the NIST

database. Additionally, a plethora of argon lines were identified between 690 and 811

nm. These lines resulted from the ionization of the argon fill gas in the glovebox.

Additionally, lines from sodium, hydrogen and lithium were identified; these likely

came from residual emissions of the ablated tape which was burned through during
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a sequence of 75 cleaning shots before recording the ablation of the oxide powder.

A cerium oxide (CeO2) powder sample was prepared for analysis as well. Mutiple
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Figure 34. CeO2 spectra from hand held LIBS device with Ce II lines identified.

tabulated Ce II lines were identified, as seen in Fig. 34. Lines appearing in the lower

range of the spectrum were of most interest, since they were less likely to be interfered

with by argon emission lines. The Ce II 394.4 nm emission line was determined to be

of most interest due to its location in a relatively uncluttered part of the spectrum

and its distance from the other Ga I lines. As seen from the figure, the addition of a

heavy metal into the sample makes the spectral significantly more complicated. Since

heavier elements have more electrons in their electron shells, there are many more

electron transitions that can occur, leading to the emission of light at many more

wavelengths than is seen with lighter elements.
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4.4 Plasma Diagnostic Calculations

The techniques discussed in Sect. 2.2.1 were used to determine electron tempera-

ture based on the argon line emissions seen in the recorded spectra, listed in Table 3.

The spectra of the recorded argon lines is shown in Fig. 35. The Boltzmann tech-

Table 3. Argon I lines used in Boltzmann temperature calculation [33].

λ (nm) Ek (cm−1) gk Ak (106 s−1)

738.4 107289 5 0.087
751.5 107054 1 0.043
763.6 106237 5 0.274
772.5 107496 3 0.366
794.8 107131 3 0.117
801.5 105617 5 0.186
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Figure 35. Ar I emission lines used to determine Boltzmann temperature.

nique was used to calculate temperature by averaging the different recorded spectra

and using the average intensities of the argon emissions in Eq. 7. This generated a

Boltzmann plot, shown in Fig. 36. The inverse slope of the Boltzmann plot gave
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Figure 36. Boltzmann temperature plot points calculated from recorded emissions
along with linear fit line.

the electron temperature as 3439 K, or 0.29 eV, giving a characteristic calculation

of the temperature of the plasma created by the Z500. However, due to the set in-

tegration period of this device, the calculated temperature may be artificially lower

than the actual LIBS plasma temperature. The Z500-ER has a set gate width of 1

µs, over which the spectral emission signal is recorded [17]. It has been demonstrated

that a LIBS plasma can cool significantly, on the order of 1 eV or greater, over this

timescale [29,34]. As a result, the longer integration period of the device caused it to

record an averaged signal of a cooling plasma, lowering the calculated electron tem-

perature. Additionally, this temperature could also appear lower due to the recorded

signal being a spectral average of the hotter plume center and its colder outer regions.

This phenomenon was similarly reflected in the electron density measurements.

The hydrogen alpha peak at 656 nm was seen in the recorded spectra, although

significantly diminished compared to many of the other lines. However, the Hα peak

was used to conduct electron density measurements by extracting the Stark width

via the Voigt deconvolution method discussed in Sect. 2.2.2. The fit is described in
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Fig. 37. The Lorentzian width of the peak was determined and used in the following

empirical formula developed by Surmick and Parriger to calculate the electron density

of the plasma [64].

∆wHα = 1.31

(
Ne

1017

)0.64

(14)

The extracted Stark width of 0.3661 nm yielded an electron density of 1.36 × 1016
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Figure 37. Voigt profile fit to the hydrogen alpha emission at 656 nm.

cm−3 using Eq. 14. While LIBS plasmas are typically characterized by electron

densities of 1016 to 1017 cm−3, the longer gate width could have averaged the emission

signal while the plasma density was decaying due to cooling and recombination. As

a result, this calculated electron density may be lower than the true value.

4.5 Univariate Analysis

Results in this chapter were published in an article written by the author [65].

Rao, A.P.; Cook, M.T.; Hall, H.L.; Shattan, M.B. Quantitative Analysis of Cerium-

Gallium Alloys Using a Hand-Held Laser Induced Breakdown Spectroscopy Device.

Atoms 2019, 7, 84.

54



4.5.1 Spectral Line Identification

Four emission lines (Ga I 287.4 nm, Ga I 294.4 nm, Ce II 394.4 nm and Ce II 413.8

nm) were identified for use in building calibration curves. These lines appeared across

all gallium concentrations tested and were relatively free from other spectral interfer-

ences. These lines were extracted from each spectrum and processed according to the

routine described in Sect. 4.2. Figs. 38 and 39 display the behavior of the selected

gallium lines in the different alloy samples tested. As expected, the intensity of the
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Figure 38. Ga I 287.4 nm peak intensity at different Ga concentrations.

Ga I 287.4 nm emission line increases as the Ga concentration in the sample increases,

due to the increasing amount of Ga atoms present to emit the 287.4 nm transition

wavelength photon during plasma recombination. This emission line is characterized

by a significant emission intensity even at very low gallium concentration levels. The

Ga I 294.4 nm emission peak showed similar behavior, with peak intensity increasing

as Ga concentration in the alloy increased. It should be noted that the intensity of
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Figure 39. Ga I 294.4 nm peak intensity at different Ga concentrations.

this line in the spectra taken from the 0.5% alloy was significantly lower than the

intensity of the 287.4 nm line at the corresponding concentration. The cerium emis-

sion peaks at 394.3 and 413.8 nm were similarly analyzed; the results are displayed

in Figs. 40 and 41. The cerium emission peaks displayed the expected behavior

reflected in the gallium lines; as gallium was added to the alloy, decreasing the concen-

tration of cerium, the cerium emission line intensity decreased. Both cerium emission

peaks analyzed showed strong emissions at every concentration level and were free of

self-absorption effects or spectral interference from other emission lines. All of the

elemental emission lines selected for further analysis showed good responsiveness to

gallium concentrations, and their line shapes suggest the plasma is optically thin and

free from self-absorption of these emissions. The recorded peak intensities were used

to build calibration curves relating peak intensity ratios to sample Ga concentration.
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Figure 40. Ce II 394.3 nm peak intensity at different Ga concentrations.

413.65 413.7 413.75 413.8 413.85 413.9 413.95

Wavelength (nm)

0

500

1000

1500

2000

2500

3000

3500

4000

In
te

n
s
it
y
 (

a
.u

.)

0%

0.5%

1.0%

3.0%

Ga wt%

Figure 41. Ce II 413.8 nm peak intensity at different Ga concentrations.
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4.5.2 Univariate Calibration Curves

The initial analysis of the Ce-Ga alloy samples examined the emission intensity

ratios of the gallium lines to the cerium lines chosen in Sect 4.5.1. Figs. 42 - 45 display

the univariate calibration curves using 4 different emission line ratios and display the

95% confidence interval for the regression fit. All ratios from the experimental peak

intensity data are represented by the black dots; error was calculated via uncertainty

propagation rules using the standard deviation of the selected peak intensities between

different shots. The regression fit, displayed as the solid red line, was calculated using

a MATLAB function with added weighting factors to each regression point based

on the magnitude of the error, thereby including the influence of shot-to-shot peak

intensity variation in the fit. This program also returned error bounds for the fit

coefficients; these were used to calculate the fit confidence interval represented by the

dashed red lines.

Figs. 42 and 43 show calibration curves built using the intensity ratio of the Ga I

287.4 nm emission line to the two Ce II emission lines, while figures 44 and 45 show

curves built using the Ga I 294.4 nm emission line. Fit parameters for each curve are

listed in Table 4, along with R2 values and limits of detection (LOD).

Conducting the R2 analysis for each fit gave an intial metric of how reliable the

chosen intensity ratios were for the purpose of Ga concentration calculations. From

visual inspection of the calibration curve figures along with a comparison of the R2

values in Table 4, the Ga I 287.4 nm is clearly superior to the 294.4 nm line for

elemental identification purposes. The regression fits made using the 294.4 nm line

intensities are extremely poor; the cause stems from the emission line intensities of

this wavelength in the 0.5% samples. Comparing the green data line in Figs. 38

and 39, one can see that the 294.4 nm emission is significantly less prominent than

that of the 287.4 nm line at a gallium concentration of 0.5%. The large drop in
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Figure 42. Calibration curve based on intensity ratios of emissions from Ga I 287.4 nm
to Ce II 394.3 nm.
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Figure 43. Calibration curve based on intensity ratios of emissions from Ga I 287.4 nm
to Ce II 413.8 nm.
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Figure 44. Calibration curve based on intensity ratios of emissions from Ga I 294.4 nm
to Ce II 394.3 nm.
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Figure 45. Calibration curve based on intensity ratios of emissions from Ga I 294.4 nm
to Ce II 413.8 nm.
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intensity of the 294.4 nm peak between the 1.0% (blue line) and 0.5% (green line)

samples causes the Ga/Ce peak intensity ratio to drop significantly between these

two concentration levels, as reflected in Figs. 44 and 45. The low value of the

data point significantly shifts the regression fit lower than would be expected for

the given data set, especially when including the effects of error from shot-to-shot

signal variation. Therefore, the univariate analysis effectively concludes that the Ga

I 287.4 nm emission line is superior for quantitative analysis purposes. Using each of

Table 4. Fitting parameters for calibration curves for equation y = ax + b and Limit
of Detection (LOD)

Line Ratio a δa b δb R2 LOD (wt%)

287.4 nm/394.3 nm 0.098 0.0294 0.0072 0.0036 0.9669 0.335
287.4 nm/413.8 nm 0.106 0.0320 0.0066 0.0032 0.9661 0.318
294.4 nm/394.3 nm 0.053 0.0251 0.0029 0.0033 0.4855 3.524
294.4 nm/413.8 nm 0.063 0.0243 0.003 0.0033 0.5637 3.429

the regression lines fitted to the calibration curves, limits of detection (LODs) were

calculated for each line intensity ratio. To fully understand the capabilities of each

fit, it is critical to quantitatively establish how low of a gallium concentration the

different calibration curves could theoretically detection. Having a handheld device

capable of resolving Ga concentration differences to the low tenths of a percent would

be invaluable to all communities seeking to use the HH-LIBS for quantitative analysis

of plutonium surrogates. LODs were calculated using the commonly used expression

3σd/s [17]. σd is referred to as the standard deviation of the blank, and inferred

from variations in spectra taken from cerium with no gallium, while s is the slope

of each regression fit. The LODs calculated for each ratio from the experimental

calibration data further proved the superiority of the Ga I 287.4 nm line for this type

of quantitative analysis. An LOD of up to 0.31% was calculated for this line, while the

294.4 nm line curves could not produce an LOD below 3%. This order-of-magnitude

difference is likely a result of the low intensity of Ga I 294.4 nm emissions at gallium
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concentrations of 0.5%. These initial univariate calibration results indicate promise

for the Ga I 287.4 nm line to be capable of resolving small differences in gallium

concentration in the sub-1% range. All calculated fit parameters and LODs for each

calibration set are tabulated in Table 4.

4.6 Multivariate Analysis

Different multivariate analysis techniques were evaluated with the Ce-Ga alloy

data. This section will discuss the calibration model results obtained from multivari-

ate regression, principle components analysis, and partial least-squares techniques.

4.6.1 Multivariate Regression

First, a simple multivariate regression model was created using the built-in MVREGRESS

function in MATLAB. By passing in the univariate calibration intensity ratios, error

values, and concentration levels to the function, multiple regression fit coefficients

were generated to produce a regression model in the form of Eq. 15.

y = b0 + b1x1 + b2x2 (15)

Fig. 46 visually represents a basic, 3-D multivariate regression with only 2 predictor

variables related to the outcome (concentration). Conceptually, this demonstrates the

basic principle behind multivariate analysis. The LOD for this method was calculated

using the equation described in Sect. 4.5.2. This 2 factor multivariate model gave an

LOD of 0.2435%, a tenth of a percent lower than the best univariate calibration model.

This simple multivariate model produced a better LOD than any of the univariate

models, highlighting the usefulness of multivariate analysis techniques in elemental

identification from LIBS data. The fit parameters to create the model in Fig. 46 are

listed in Table 5.
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Figure 46. Multivariate regression plot and confidence interval using ratios of Ga I
287.4 nm line to both Ce II emission lines.

4.6.2 Principle Components Analysis (PCA)

As discussed in Sect. 2.6, PCA is a useful multivariate analysis technique for

the interpretation of spectroscopic emission data. PCA algorithms can be used to

distinguish significantly varying emission lines in a data set, and quantify the in-

teractions and contributions between different emission lines in the sample matrix.

This section will provide a detailed overview of the PCA method implemented to

cluster the behavior of different cerium and gallium emission lines and represent how

the emission intensities of these lines varied with gallium concentration. Sect. 4.5.2

described a univariate calibration based on the behavior of four identified emission

lines. To identify additional emission lines of interest, the PCA function in the MAT-

LAB statistics toolbox was applied to 17 different sample spectra recorded with the

HH-LIBS. In order to identify significantly varying emission peaks within the differ-
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Table 5. Fit parameters for multivariate regression of data points using Ga I 287.4 nm
line intensities.

Parameter Value

b0 0.006
b1 2.934
b2 5.886
δb0 0.001
δb1 0.341
δb2 0.333
R2 0.994

ent sample datasets, the loadings for each principle component were plotted against

emission wavelengths. The loadings of PCs 1-3 of the complete spectrum are shown

in Fig. 47. Several additional emission wavelengths corresponding to Ce and Ga
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Figure 47. Loadings of all 10 principle components calculated from the Ce-Ga sample
data. The peaks which varied the most with Ga concentration show larger loading
values.

were identified and used further to refine the PCA calculation, and are listed in Table

6.
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Table 6. Emission lines used in PCA algorithm.

Element λ (nm) Upper Level

Ga I 287.4 4s24d
Ga I 294.4 4s24d
Ce II 394.3 4f5d(3H0)6p
Ga I 403.3 4s25s
Ce II 407.4 4f5d(3H0)6p
Ce II 412.4 4f5d(3H0)6p
Ce II 413.8 4f5d(3H0)6p
Ga I 417.2 4s25s
Ce II 429.7 4f2(3H4)6p3/2

Ce II 446.1 4f2(3H5)6p3/2

Ce II 518.8 4f2(3H6)6p1/2

Ce II 527.4 4f2(3H5)6p1/2

Ce II 535.4 4f2(3H4)6p1/2

PCA algorithms output loading values for each principle component; the influence

of different spectral lines can be graphically represented by plotting these loadings

for different PCs in order to cluster and discriminate the effects of different vari-

ables. The influence of individual spectral lines on the discrimination of the selected

samples is schematically depicted in loadings plots of the first three PCs. Fig. 48

compares the loadings of the first two PCs of the data. Comparatively plotting PC

loadings yields clusters of the data; in this case, each cluster grouped data based on

constituent element. The cerium loadings are split into two different clusters; the first

cluster, corresponding to the last 5 emission lines in Table 6, appear to be the most

significant discriminators in the data set. To investigate the clustering split of the

cerium emissions, the 3rd PC was analyzed. As seen in Fig. 48, the 3rd PC further

discriminates the cerium emissions into three separate clusters. Upon comparison to

the data listed in Table 6, it appears that a possible explanation of this clustering

trend stems from atomic deexcitations. Each cerium cluster contains loadings corre-

sponding to emission line variables with similar atomic orbital designations. The red
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Figure 48. Principle component loadings comparing coefficients of components 1 and
2. The PCA algorithm clusters similar loadings of like elements.

cluster corresponds to Ce emission lines whose orbital transitions start at an upper

level of 4f5d(3H0)6p. The two data points in the upper right Ce cluster both have

6p3/2 terms, while the three clustered in the bottom right of Fig. 49 correspond to

transitions starting at 6p1/2 upper levels. This analysis of the first three PCs of the

data yields several important conclusions. First, the higher wavelength Ce emission

lines are the most important for analysis of the sample set, and contribute most to

the sample correlations. Second, the PCA algorithm is capable of resolving the com-

plex cerium-gallium spectra into a few key variables, and clustering those variables in

ranges based on constituent elements. Lastly, the first three principle components are

capable of grouping and resolving differences between emissions down to the atomic

level, despite the fact that the PCA algorithm is ”physics-blind”, as it does not fac-

tor sample composition or atomic transition parameters into the calculation. Since

heavier metals tend to produce a significant amount of different atomic transitions

when elevated to an excited state, this clustering tool can be used to identify specific
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Figure 49. Principle component loadings comparing coefficients of components 1 and
3.

upper energy levels whose transitions are most important and contribute to the most

variance in the data set.

While loadings are useful for discriminating sample elements and representing

variable correlation, PCA scores plots can represent patterns and resolve differences

in the sample distribution. Fig. 50 represents the first three PC scores; the data

points are identified by the Ga concentration of the sample from which they were

taken. This 3D plot of the scores can be rotated to observe different patterns and

features that are similar in the sample set. Fig. 51 relates the scores of the first

two PCs. There is a clear clustering of the 0% and 0.5% samples, while the 1%

and 3% samples are grouped close to each other, indicating that the first two PCs

cannot produce good separation between the 1 and 3 wt. % samples. There is a stray

outlier data point corresponding to one of the pure cerium samples, but the overall

similarities and patterns in the samples are visually represented. Rotating Fig. 50

allows for further comparison of scores of different components to observe different

sample clustering patterns. Fig. 52 demonstrates a better grouping of the pure Ce
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Figure 50. Principle component scores comparison between PC 1, PC2 and PC 3.
Clustering based on Ga concentration is evident.
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Figure 51. Principle component scores comparison between PC 1 and PC 2. Clustering
based on Ga concentration is evident.
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samples, and resolves differences between the 1 and 3 percent Ga samples with the

exception of one overlapping sample point. While the patterns are more resolved,

there is still minimal separation between the 1 and 3 wt% samples when compared

to the 0 and 0.5 wt. % points in the same figure.
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Figure 52. Principle component scores comparison between PC 1 and PC 3. Clustering
based on Ga concentration is evident.

Better separation of the higher Ga content samples was achieved by comparing

the fourth PC to the first two PCs plotted in earlier figures. Fig. 53 compares scores

of PC 4 to PC 1, indicating a much clearer separation of the 1 and 3 wt. % samples,

again with the exception of one overlapping point. This indicates that while the

first 2 PCs explain an overwhelming percentage of the variance of the original data

set, the 4th PC contains the data which resolves the differences between the spectra

of the 1 and 3 wt. % samples. The 4th PC only explains a tenth of a percent of

the total system variance, indicating that there are relatively few differences in the

spectra when Ga content is increased from 1 to 3 wt. %. However, for the purposes

of creating a discriminative Ga content determination algorithm, this result indicates

that a larger number of principle components may be needed to distinguish between
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the spectra of higher Ga content alloy samples.
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Figure 53. Principle component scores comparison between PC 4 and PC 1. Separation
of the 1 and 3 percent samples is noticeable along with more distinct grouping of the
pure Ce and 0.5 percent Ga samples.

Analysis of the PC scores can yield important information about the features

and relationships between sample data points. The behavior of samples in different

dimensions of the scores plot can be used to construct a predictive model, in which

the position of different PC scores in various planes of the 3D component space

can help determine the Ga concentration of an unknown sample by comparing it

to the tabulated PC scores. This initial analysis of the spectral data using PCA

was extended to build a predictive regression model of the data set. The results are

compared to a predictive model generated using partial least-squares regression to

evaluate the capabilities of the different multivariate techniques.

4.6.3 PLSR vs. PCR

Predictive models built using PLS and PCA have varying degrees of accuracy due

to differences in the numerical calculations both algorithms perform on a given data
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set. Finding the best model to use in order to maximize accuracy of elemental content

determination and minimize computational time required by the HH-LIBS is a critical

portion of this study. While PLSR and PCR both represent dimensional reduction

techniques capable of explaining a data set in terms of simplified latent variables,

PLSR yields covariance coefficients which explain variance in both the predictor and

outcome data. The percent of variance explained in the Ga content measurements

(outcome) of the sample spectra in each decomposed component is plotted in Fig.

54. The figure indicates that 5 PLS components are necessary to explain more than
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Figure 54. Partial least-squares regression component variance plot. 95% of variance
in the data is explained with 5 components.

95 percent of the variance in the Ga concentrations across the sample set. For the

purposes of creating an analysis routine to be run by the Z500’s onboard computer,

using a PLS or PC regression with less components would be less computationally

intensive, leading to quicker analysis times. Initially, both PLSR and PCR algorithms

were run with the spectral data set, using a maximum of 5 components for each

technique. Initial insights can be gleaned from plotting the scores of the first two

principle components of each technique against the Ga concentration in the sample
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set.

Figure 55. Comparative plot of scores of first three PCs from PCR model.

As demonstrated in Sect. 4.6.2, PC scores can be used to cluster sample sets based

on similarities in the data. In this case, the scores used to produce the PCR model

group each sample based on Ga content, as seen in Fig. 55. Here each sample point

is clearly clustered with its corresponding Ga concentration. The same behavior is

observed in the score variables generated from PLSR, as demonstrated in Fig. 57.

While clustering the sample set is useful in qualitatively analyzing similarities in the

data set, regression models must be statistically analyzed to determine the quality of

the calibration. The PLSR and PCR calibration models are plotted in Fig. 59.

The calibration models are compared by plotting the fitted regression response

against the observed response from the data set. Upon initial inspection, the figure

clearly reflects that the PCR response is less linear than the PLSR model response.

Qualitatively, it can be deduced from this figure that the PLSR model provides better

predictive capabilities for purposes of calibration and impurity detection. These mod-

els can be quantitatively compared by examining the differences in their R2 and root

mean square error of cross validation (RMSECV) values, which are listen in Table 7.
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Figure 56. Comparative plot of scores PC 2 vs PC 1 showing sample classification
based on Ga content.

Figure 57. Comparative plot of scores of first three LVs from PLSR model.

Table 7. RMSECV and R2 values of PCR and PLSR models

PCR PLSR
RMSECV 0.716 0.216

R2 0.603 0.964
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Figure 58. Comparative plot of scores of LV 2 vs LV 1, showing similar sample classi-
fication patterns as PCA.
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Figure 59. Comparison of measured and predicted Ga concentration using PCR and
PLSR models.
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The PLSR model has a much higher R2 value than the PCR model, indicating

a higher linearity and fidelity in the regression. Additionally, the RMSECV value

of the PLSR model is significantly lower than that of the PCR model, suggesting a

more accurate calibration due to the fact that the error between the fitted and ob-

served responses is much lower in PLSR. As reflected in Fig. 60, PCA explains more
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Figure 60. Comparison of variance in X explained by PCR and PLSR.

variance in the predictor with less components than PLS does. However, since the

PLS regression factors in the variance of the outcome variables, it produces a better

fit than PCR with the same amount of components; these same results are quanti-

tatively reflected in Table 7. In conclusion, the multivariate analysis investigation

of the Ce alloy spectral data proved that PLSR is the superior analysis technique

for the purposes outlined by this study. Due to its ability to accurately fit a sample

data set, PLSR provides the best possibility for building a computationally effective

predictive model which can be programmed into the Z500’s onboard computer. This

conclusion is verified by examining the full component fit model, shown in Fig. 62

and quantitatively described in Table 8.
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Figure 61. Percent of total sample set variance in the outcome explain by each PLS
component.

Table 8. RMSECV and R2 values of full component PCR and PLSR models

PCR PLSR
RMSECV 0.140 0.046

R2 0.985 0.998
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Figure 62. Comparison of measured and predicted Ga concentration using 10 compo-
nents PCR and PLSR models.

While the regression fits appear to both be extremely linear and show the same

agreement between the experimental and calibrated Ga content, the R2 and RMSECV

values still indicate that PLSR provides the superior multivariate model even with

all ten components being used.

4.7 Surface Gallium Concentration Mapping Results

The HH-LIBS was mounted above a 2-dimensional translation stage and the alloy

samples were fixed to the stage. A series of shots were recorded at 1 mm intervals

across the surface of each sample. The multivariate regression model developed in

Sect. 4.6.1 was implemented on the spectra recorded at each location to calculate Ga

concentration at each ablation point. The surface Ga concentration distribution of the

3% sample is depicted in Fig. 63. This map can be analyzed to evaluate the sample

production process and examine the uniformity of the temperature in the crucible

during the annealing cycle used to diffuse the gallium through the molten cerium
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Figure 63. Map of Ga concentration of a 3 % Ce-Ga alloy sample across the surface of
the sample.

metal. Non-uniform heating of the inner crucible surface can cause an improper

diffusion of gallium through the crystal lattice of the bulk metal. Additionally, since

the surface exposed to air is not heated at the same rate as the surfaces contacting the

crucible, gallium atoms tend to diffuse inwards towards hotter areas in the metal. This

causes a lower gallium concentration on the surface, with gallium tending to crystallize

instead of dispersing evenly through the cerium. This explains the regions in Fig. 63

of below 1% Ga concentration with a few points having a 5 or 6% concentration.

This result yields several important conclusions. Firstly, it indicates that the

hand-held device can be used to conduct a rapid, detailed surface analysis to evaluate

production quality of the alloy. Secondly, by mapping the impurity concentrations

across the surface of a metal and examining the distribution, the manufacturer can

78



modify the alloy creation process (i.e. change the melting, forming, annealing stages)

in order to create a better alloy with a more even distribution of the dopant metal.

Lastly, this result indicates that this same method of analysis can be applied to Pu-

Ga alloys to ensure their quality and uniformity during production. As seen earlier in

Fig. 14, a very particular weight percent of Ga produces δ-Pu at room temperature.

Anything below this range leads to the formation of α-Pu crystals in the alloys, while

excess Ga can cause the formation of the ξ” phase. Since the different allotropes of

Pu have very different physical and chemical properties, it is critical that Pu metal be

homogenous in phase to ensure that the metal properties are uniform. In conclusion,

this novel surface analysis investigation concluded that the HH-LIBS device can be

used to determine important information about the alloy production process and

quantitatively assess the quality of the alloy.
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5. Conclusion

This proof-of-concept study demonstrated plutonium surrogate detection and quan-

titative analysis capabilities of the commercially available Z500-ER HH-LIBS device.

Previous efforts demonstrated this capability only for uranium compounds and rare

earth metals. [17,18]. A standard benchtop LIBS system lacks portability and speed

needed for rapid in-situ impurity measurements. In this research, the portable Z500

system was coupled with chemometric techniques to develop the means to rapidly de-

tect Pu surrogate metal and quantify gallium concentrations in the metal alloy. The

development of these data collection and analysis techniques lays groundwork for de-

veloping calibration and detection programs which can provide quick and accurate

measurements of plutonium alloys.

To investigate basic dopant concentration analysis, univariate calibration curves

are created using 4 different emission lines of Ga and Ce identified through prior

analysis of different cerium and gallium samples. Limits of detection are calculated

to quantitatively compare the different calibrations; the calibration curves using the

Ga I 287.4 nm line are determined to yield superior LODs and univariate calibration

models. Next, comparisons between different multivariate analysis models investigate

the performance of more advanced chemometric techniques in analyzing the cerium

alloy. A simple multivariate linear regression is shown to yield better LODs than all

of the univariate calibration curves analyzed initially. Principle components analysis

was conducted on the emission spectra for purposes of dimensionality reduction. The

PCA coefficients of the decomposed latent variables allowed for the identification

of several significantly varying emissions in the Ce-Ga alloy spectra. From these

selected emissions, elemental clustering capabilities were demonstrated by plotting

the loadings values of different principal components. It is determined that PCA

can separate emission wavelength variables based on upper energy level designations
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and their electronic structure. Scores comparisons of different principle components

are shown to cluster the sample set based on outcome values; Rotating a 3D plot

of the scores of the first three PCs showed different patterns grouping the samples

based on Ga concentration. Finally, predictive calibration models using PCA and

PLS are compared. While both PCR and PLSR demonstrated the capabilities to

sort the sample set based on Ga concentration, the PLS regression produced the

superior fitted model to the data set. This is due to the fact that PLS latent variables

explain variance in both the predictor and outcome variable set, while PCR only

explains variance in the predictor. As a result, the R2 and RMSECV values of the

PLSR model were superior to those of the PCR model, and it was determined that

a PLSR routine would be most useful to create a Pu analysis program for the Z500’s

onboard computer. These results yielded several important conclusions for the further

progression of the Pu alloy analysis project.

The Z500-ER shows great promise in being able to assist in delivering the rapid,

portable analysis tool needed for in-situ analysis of Pu metal during the production

process. Conducting this extensive study on the cerium alloys allowed for the refining

of the data collection process needed to gather usable spectra of Pu alloys. Addition-

ally, investigating the plethora of analysis techniques discussed in this thesis work

determined the best chemometric techniques to use in order to analyze impurities in

the Pu alloy metal. Future work will build on the processes and analytical techniques

refined in this study to conduct a thorough analysis of Pu samples.

5.1 Dissertation Research

This work provided an essential component for advancing the development of a

program to quantitatively analyze Pu alloys using the Z500-ER. However, further

work is required to improve all aspects of this on-going project related to analyzing
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the complex plutonium spectra using the techniques investigated in this Master’s

thesis. Further research areas for investigation include:

• Improving the PLSR model with a larger data set and performing

several rounds of training, validation and testing. This is critical to

refining this multivariate technique and applying it to the analysis of more

complex spectra. This would culminate in the development of an automated

PLSR routine which could be coupled to the HH-LIBS device.

• Investigate even more advanced analytical techniques to sort through

a large set of spectra and identify similarities and trends in the data.

Most likely, this would involve integrating machine learning capabilities into

this project and processing spectra data sets of Pu with different types of neu-

ral networks. Cognitive and Deep Tensor Neural Networks could be easily

programmed into the onboard computer of the Z500 and trained to analyze the

plutonium spectral emissions. Other machine learning-based techniques, such

as decision trees will also be investigated.

• Investigate other impurities which can be introduced into the Pu

chemical matrix during manufacture and processing. Metal elements

such as iron, aluminium, and silicon can be introduced into the Pu metal at

several stages during the manufacturing process and are found in Pu samples

taken for mass spec analysis. Identifying concentrations of these impurities at

various stages in Pu production is critical to ensuring quality of the Pu metal.

The MVA and machine learning techniques can be built to rapidly identify and

determine concentrations of multiple elements from the same spectra.

• Investigate the build-up of decay products in the plutonium metal

due to aging. Since Ce is not radioactive, this could not be done with the
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current study presented. Particularly, we would like to investigate the Z500’s

ability to detect americium and uranium build up in the Pu metal over time in

order to determine if the device can yield accurate chronometric measurements.

Since the build up of decay products can change the interaction cross sections

of the metal, it is critical that the pit production program have the ability to

detect and monitor decay product ingrowth as the Pu metal ages.

• Additional comparisons of HH-LIBS vs. HH-XRF to compare surface

distribution mapping capabilities of both techniques on Ce-Ga and/or

Pu-Ga alloys. While this thesis briefly contrasted these two spectral analysis

techniques, it would be highly beneficial to apply both to analysis of Pu samples

and visually compare their performance in mapping surface concentration of the

various dopant elements.
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