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Abstract 

Aerosol absorption and scattering can play a key role in degrading high energy laser 

performance in the form of thermal blooming and beam attenuation. Aerosol absorption 

properties are not completely understood, and thus affect how we are able to quantify 

expected high energy laser weapon performance. The Air Force Institute of Technology 

Center for Directed Energy (AFIT CDE) developed both Laser Environmental Effects 

Definition and Reference (LEEDR) and the High Energy Laser End-to-End Operational 

Simulation (HELEEOS) code to characterize atmospheric radiative transfer effects and 

evaluate expected directed energy weapon system performance. These packages enable 

modeling of total irradiance at given off-axis locations through the use of an off-axis 

scattering algorithm, which uses scattering phase functions to predict the amount of 

radiation scattered from the beam toward a particular observation location. Laser energy 

scattered from a Rayleigh beacon illuminator at 527 nm, located at the John Bryan 

Observatory (JBO) in Yellow Springs, Ohio, is measured using a high resolution Mini-

Shortwave Infrared (SWIR) snapshot camera. Aerosol characterization information was 

gathered using a Condensation Particle Counter (CPC), a Scanning Mobility Particle 

Sizer (SMPS) spectrometer, and a Continuous Light Absorption Photometer (CLAP). The 

differences in the measured versus predicted phase functions can help draw conclusions 

relative to bulk aerosol absorption properties, and lead to better quantification of 

degradation of laser performance due to aerosols. 
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DETERMINING BULK AEROSOL ABSORPTION FROM OFF-AXIS 

BACKSCATTERING USING RAYLEIGH BEACON LASER PULSES  

I. Introduction 

 Aerosols have a wide range of impacts in the natural atmosphere--direct, indirect, 

and semi-direct. The first--direct effect--is the heating or cooling of the atmosphere 

through absorption and scattering of both solar and terrestrial radiation. The second--

indirect effect--are the changes to the microphysical and radiative properties of clouds 

from aerosols acting as cloud condensation nuclei. The third--semi-direct effect--which is 

the ‘cloud burning effect’ by heating the atmosphere. Here, absorbed solar radiation heats 

the cloud, reducing cloud cover and liquid water content (Hansen et al. 1997).  The full 

extent of these aerosol effects are still not wholly understood, and the quantification and 

measurement of aerosol absorption properties remain a challenge.  

A fourth effect of aerosols is when the particles interact with the purposeful 

propagation of concentrated electromagnetic (EM) energy, such as laser beams. Aerosols 

can degrade laser performance through thermal blooming--a spreading of the beam due to 

interaction between absorbed laser radiation and the propagation medium, much like the 

semi-direct effect--and beam attenuation--removed or re-directed laser light as a result of 

absorption and scattering of the laser beam. 

All four effects stemming from the presence of aerosols can affect military 

capabilities involving targeting, communication, directed energy weapons, and sensor 

performance. In particular, as high energy lasers become more prevalent in defense 

operations, the ability to quantify degradation of laser performance due to aerosols 

becomes increasingly more important. Furthermore, understanding aerosol optical 
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properties from laser energy propagation can have implications for the atmospheric 

science communities at large. 

The purpose of this research is two-fold--first, to test the hypothesis that measured 

off-axis backscatter from high energy lasers can be used to determine bulk aerosol 

absorption, and second, to develop a technique that can be applied in both high energy 

laser applications and within atmospheric science communities. The technique involves 

using a beacon laser, associated with HEL (weapons system or other), and a camera 

sensor to measure aerosol backscatter, compare to LEEDR and HELEEOS model output, 

and back out aerosol absorption properties. Furthermore, the overall objective is to be 

able to infer bulk aerosol absorption using a simple particle counter and a radiative 

transfer model like LEEDR. 

1.1 Background 

Atmospheric scattering consists of both forward and backward directional 

components. Molecules and aerosol particles cause light to be scattered out of the beam 

in all directions, where the scattering toward the laser beam, or origin of the light source, 

is known as backscatter, and scattering in the same direction, or away from the origin of 

the light source, is known as forward scattering. The direction of the scattering is 

dependent on the particle size and wavelength of the light. Particles that are much smaller 

than the wavelength of a laser beam scatter equally in a forward and backward direction, 

while larger particles scatter more strongly in the forward direction.   

It is possible to characterize a laser through remote (off axis) observation of the 

laser beam scatter.  With the atmospheric environment and particle counts sufficiently 

characterized and the following attributes of the laser beam known: location in reference 
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to the observation point, azimuth, elevation, power, off-axis point, scattered irradiance 

can be calculated.  

This research employs numerical modeling packages, an off-axis scattering 

algorithm, as well as experimental equipment.    

The modeling packages--LEEDR and HELEEOS--were developed by AFIT CDE 

to characterize radiative transfer effects and simulate laser propagation through the 

atmosphere (Bartell et al, 2005). These packages together enable calculation of total 

irradiance at given off-axis locations through the use of scattering phase functions. 

HELEEOS was developed for the purpose of evaluating expected directed energy 

weapon system performance.  It predicts the properties of a high energy laser beam at 

every point along its path, account for atmospheric interaction, while fully incorporating 

a probabilistic climatological database (Fiorino et al, 2006). Recognizing that the 

capability to create realistic data profiles of the atmospheric effects on EM propagation 

extended beyond directed energy weapon performance analysis, AFIT CDE produced 

LEEDR. The LEEDR model is a worldwide surface-to-100 km, ultraviolet-to-radio 

frequency, atmospheric characterization package. It defines the well-mixed atmospheric 

boundary layer with a probabilistic surface climatology, and then computes the radiative 

transfer and propagation effects from the vertical profile of meteorological variables. It 

also has the capability for users to directly input surface observations, surface aerosol 

number concentrations, or numerical weather prediction (NWP) data in lieu of the 

climatological profile (Fiorino et al, 2014).  

Developed by Scott Belton in 2006, the initial off-axis scattering algorithm was 

added to HELEEOS in order to provide the model with the computational tools to output 
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scattered irradiance, given known properties of a laser, at any off-axis location (Belton, 

2006). The algorithm takes a given laser power and wavelength input, the relative bulk 

aerosol particle size, and bulk characteristic phase function profile, and calculates the 

scattered irradiance at any off-axis observer location. Aerosol particle count and size 

distribution can be taken from a climatology database coupled with HELEEOS, or input 

by the user from actual measured aerosol number concentrations. The scattering angles 

and their location on the beam are determined using standard geometry calculations as 

long as the length of the laser beam path and distance to the off-axis observation point are 

known.  

The algorithm determines the amount of scattered irradiance for separate sections 

of the beam. It splits the beam into 1,000 separate segments, i, accounting for phase 

angles, cross sections of scattering particles, and the number density of each particle. 

Scattering angles, shown in Figure 1below, are computed using standard geometrical 

relationships. A full description on how the algorithm computes scattering angles can be 

found in Belton, 2006.   
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Figure 1. HELEEOS off-axis algorithm schematic of geometric set-up for off-axis irradiance calculations and beam segment 

breakdown (Fiorino et al, 2010). 

With the scattered irradiance and phase angles of each segment calculated, the 

amount that reaches a given off-axis location are determined using transmittance 

calculations by simulating a laser beam from each segment to the off-axis point. Each 

simulated laser beam is equal to that of the calculated scattered irradiance of its 

respective segment. Transmittance is determined by accounting for extinction along the 

simulated beam path associated with the atmosphere defined by the user. The end 

equation used within the algorithm is,  

𝐼𝑆𝐶𝐴 = ∑
𝑃(𝜃)𝛽𝑆𝐶𝐴𝑖𝐼𝑂𝑖𝑡𝑖

4𝜋𝑅𝑖
2

1000
𝑖=1 𝑑𝑣𝑖                                                   (1) 

where ISCA is the scattered intensity that reaches the off-axis observing point, P(ϴ) is the 

scattering phase function, βSCA is the volume scattering coefficient. IOi is the initial beam 

intensity, ti is transmittance, Ri is the distance between the receiver and the beam, and dvi 

is the scattering volume (Belton, 2006; Fiorino et al, 2010). 
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John Haiducek (2010) experimentally tested and validated the off-axis algorithm 

capability using an infrared camera and two infrared lasers, with a power range of 1 to 5 

watts and a wavelength of approximately 1550 nm, at Wright-Patterson Air Force Base in 

July 2009. Infrared images of the laser beam were taken from an off-axis location and 

irradiance values were computed from the image pixels. Those values were then 

compared to that of the HELEEOS off-axis scattering algorithm output. The analysis of 

the tests revealed that HELEEOS outputs correlated weakly to the measured irradiances, 

and produced outputs nearly two orders of magnitude different than the measured 

irradiances. Although the data was not in close enough agreement to serve as a validation 

of the algorithm by itself, there was some correlation in terms of laser power output and 

viewing angle. As such, this test showed that this method can be successfully used to 

calculate the intensity of off-axis scattering and infer scattering phase function profiles 

(Haiducek, 2010; Fiorino et al, 2010). 

The techniques Haiducek developed to validate the off-axis scattering algorithm 

provided the basis for the methods used to test the hypothesis that backscatter from a high 

energy laser beam can be used to determine bulk aerosol absorption. Experimental 

equipment involved in this research included a commercially available, standard charge-

coupled device (CCD) visible camera (i.e. Canon Sure-Shot), and an ultra-fast laser.  

The experiments conducted in this research are similar to those conducted by 

Haiducek (2009), except instead of a visible CCD camera, he used an infrared camera 

equipped with an Indium Gallium Arsenide (InGaAs) focal plane array (FPA) to capture 

laser energy. Additionally, his receiver telescope was placed at an off-axis location to 

measure forward scattered irradiance. 
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The experiments are different from those conducted by Haiducek (2009) in that 

this research measured backscatter rather than forward scattering, the experiment 

geometry was different, and an ultrafast Rayleigh beacon pulse laser was used as the 

energy source.  

The main difference in the experiment geometry was the elevation angle of the 

laser beam. The laser beam was pointed into the sky at a 45º elevation angle, as opposed 

to horizontally at a target in the distance, as Haiducek did. The degree of elevation angle 

is not important, only that the laser beam is pointed to the sky.  This setup allows for a 

longer laser beam length for analysis, and changes in scattered energy with altitude for 

examination.  

1.2 Motivation 

Aerosol absorption properties are not completely understood yet can significantly 

affects high energy laser weapon performance. By employing methods developed in 

Haiducek’s research while exploiting pulsed-beacon lasers and leveraging the knowledge 

of laser attenuation, and its degradation along the laser beam path, the hypothesis that 

measured off-axis backscatter from high or low energy lasers can be used to determine 

bulk aerosol absorption can be tested. Uses for this research include lasers, remote 

sensing, and defense applications.  Additionally, this knowledge can be applied in both 

the atmospheric science and climate assessment research communities. 

1.3 Overview 

 This document summarizes the current understanding of aerosol absorption and 

scattering properties and their effect on directed energy applications in Chapter 2.  

Chapter 3 describes the methods in which data is acquired concerning off-axis 
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backscattered laser energy phase functions and aerosol characterization information. It 

also explains the process of both incorporating data into LEEDR and using the off-axis 

backscattering algorithm used in HELEEOS to obtain predicted phase functions. Chapter 

4 covers data analysis and explores the findings from analyzing visible laser images and 

modeled phase functions. Lastly, Chapter 5 summarizes results and discusses how this 

research can be incorporated into future work.  

II. Literature Review 

2.1 Laser Propagation 

A laser is a nearly monochromatic, highly coherent radiation that propagates in a 

well-defined direction, and is produced through simulated emission (Perram et al, 2010). 

The laser propagates through the air as a narrow beam of light at the speed of light and 

places a small spot of light on a target. However, laser beams often suffer degradation as 

it propagates through the atmosphere. Many variables can affect laser performance but 

atmospheric conditions play a large role. 

The HEL, originally developed as a means to reduce the threat of nuclear war, is a 

weapon system for mainly defensive military applications. The benefit of a laser weapons 

system lies in the fact that it expends stored energy rather than munitions. Its lethality 

mechanism is thermal damage and includes burning, melting, structural failure, and or 

thermal penetration (Perram et al, 2010). 

In order for a HEL to be effective it must have laser lethality--capability to render 

a target nonfunctional. There are several factors to consider in determining laser lethality. 

Those factors include power and wavelength of the laser, diameter of the primary mirror 

(spot size), range to the target, time on target (dwell time), and delivered irradiance. In 
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other words, the delivered fluence--the accumulated laser irradiance at a target over a 

period of time--needs to exceeds the target’s threshold for damage. A major factor of 

delivered fluence is beam quality--measure of the ability to tightly focus a laser beam to a 

small spot on the target (Perram et al, 2010). This is true even for non-weapon laser 

systems like communications and target illumination.  

A variety of factors reduce delivered fluence, but the state of the atmosphere has a 

large influence on laser system performance (Perram et al, 2010). Variability in 

performance is dominated by the variability in atmospheric conditions, thus there is a 

need for the ability to properly model atmospheric impacts to HEL propagation in order 

to assess engagement limitations. 

Atmospheric conditions mainly cause degradation to spot size and power through 

optical turbulence, thermal blooming, and atmospheric extinction. Optical turbulence and 

thermal blooming--distortions in the wave front due to variance in the index of refraction 

from temperature variations--cause a laser beams to deviate as it propagates through 

atmosphere. These deviations create intensity fluctuations and blur the beam to a larger 

spot size, thus spreading the energy and reducing delivered irradiance. Extinction, the 

sum of absorption and scattering, is of cardinal importance in calculating the overall loss 

of laser energy along a path. Atmospheric absorption and scattering attenuate laser power 

at varying degrees dependent on wavelength, and the irradiance transmission can decay 

significantly with range. Additionally, absorption can induce thermal blooming by 

heating atmospheric gases within the beam, producing a gradient in the index of 

refraction that shifts the beam away from the intended direction of propagation (Perram 
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et al, 2010). Thus, characterization atmospheric absorption and scatter is important to 

laser system performance assessments.  

All high energy laser systems have some sort of beam control system in order to 

ensure high beam quality. These control systems usually include adaptive optics (AO), 

which involves a beacon laser to probe the atmosphere (Perram et al, 2010). AO can 

correct for the degradation effects of optical turbulence and thermal blooming on beam 

propagation; however, there is no direct way to correct for loss of energy from absorption 

and scattering. This reduction from absorption and scattering requires longer dwell time 

on target because of the linear relationship between delivered fluence and dwell time. The 

lower the amount of fluence the longer the dwell time required to surpass lethal fluence. 

Atmospheric extinction is a complex beast to quantify due to spatial and temporal 

variations in suspended particles, especially with aerosols. Further research with HEL has 

the potential to significantly enhance mission planning tools. At the very least using HEL 

or beacon pulse lasers to determine absorption properties can provide a method to quickly 

quantify atmospheric degradation and thus how long a laser spot must remain on a target. 

2.2. Atmospheric Extinction 

 Gases and particulates suspended in the atmosphere degrade transparency by 

absorbing and scattering light. This is known as atmospheric attenuation or extinction – 

the reduction in the intensity of a directly transmitted beam of radiation as it passes 

through the atmosphere. Intensity with respect to EM radiation is the rate of emitted 

energy from a unit surface area through a unit solid angle. The total amount of extinction 

is proportional to the intensity of the incident radiation, and is the sum of both absorption 
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and scattering from gas molecules and other particles--aerosols and liquid and ice 

particles--suspended in the atmosphere.   

Gas molecules (primarily nitrogen, oxygen, argon, carbon dioxide, and water 

vapor) both scatter and absorb radiation. Some, like nitrogen and oxygen, are present in 

the atmosphere in nearly unvarying concentrations, while others, like water vapor and 

carbon dioxide, are highly variable from one time and/or location to another. In the 

absence of clouds, absorption by molecules controls the overall opacity of the 

atmosphere, mostly by the less abundant or variable molecules. However, gas molecules 

can significantly scatter radiation, mostly at shorter wavelengths (Petty, 2006).  

There are also countless small particles of dust, salt, and other materials 

suspended in the air, known as aerosols. Both absorb and scatter radiation and are also 

highly variable in concentration from one time and location to another. Whether aerosols 

scatters or absorbs radiation along a path, or both, depends on the size and composition of 

the particle. Unlike gas molecules, the contribution of aerosols to the extinction of 

radiation in the atmosphere cannot be generalized because their composition and 

concentration are so highly variable (Petty, 2006). 

Additionally, aerosols can have a cooling effect at lower altitudes by 

extinguishing incoming radiation, but there is uncertainty in exactly how much of a 

cooling effect they have. Radiation absorption from aerosols transforms EM energy into 

thermal energy, which can alter temperatures, relative humidity, and cloud formation, and 

thus have implications on atmospheric circulations and stability (Moosmuller et al., 

2009). Currently, the ability to capture the magnitude of the impact aerosols have on 

atmospheric circulations is limited. 
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Aerosol absorption both attenuates and thermally blooms laser energy beams, 

which significantly degrades directed energy applications such as HEL targeting (Burley 

et al., 2017). The ability to quantify the magnitude of these impacts is limited by the 

measurement and calculation techniques that are based on our understanding of EM 

energy absorption and scattering theories. 

 Fortunately, absorption properties can be inferred, or at least approximated, from 

scattering and extinction properties and therefore, this research focuses on measuring 

scattering properties from a HEL. This chapter summarizes the fundamental concepts and 

theories of scattering and the phase function. A summary of laser propagation and 

scattering applications is also included as a prelude for discussion on viability of using 

the presented method to determine bulk aerosol absorptions and characterize laser 

performance degradation. 

2.3 Scattering 

When radiation is scattered, its energy is redirected, and therefore, the loss of 

radiation along one directional path results in a gain in another direction(s). This is how 

laser beams are observed: scattered light is redirected to your eyes. If there were no 

particles in the air to scatter visible radiation, the beam would not be visible off-axis. 

In order to determine the change in intensity along a finite path, absorption and 

scattering, both as a source of extinction as well as a source of radiation into the path, 

must be accounted for. Typically, scattering as a source of radiation into the path of 

interest (dIscat) is ignored in radiative transfer calculations. This is perfectly acceptable to 

do when gains in intensity from scattering into the directional path of interest is 
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negligible compared to losses due to extinction and gains from thermal emissions (Petty, 

2006). 

Neither absorption nor scattering properties are directly measured, rather they are 

derived and calculated using extinction measurements. Absorption properties are 

determined by subtracting scattering from extinction, and scattering properties are 

calculated through scattering theory equations based on particle size and shape, 

composition, and number concentration. 

The general form of the radiative transfer equation (RTE) accounting for 

extinction, emission and scattering into the beam, respectively, can be expressed as  

𝑑𝐼 = 𝑑𝐼𝑒𝑥𝑡 + 𝑑𝐼𝑒𝑚𝑖𝑡 + 𝑑𝐼𝑠𝑐𝑎𝑡,                                       (2) 

where, dIext, is the extinction component and is defined as 

𝑑𝐼𝑒𝑥𝑡 = −𝛽𝑒𝐼𝑑𝑠.                                                    (3) 

Since this research uses a visible light source and assumes single scatter as the 

predominate source of scattered light at the observation location, the focus is only on the 

extinction component of the RTE. The scattering portion of the extinction component, 

depends on the local extinction coefficient by volume, βe, the single scatter albedo, ώ, and 

the scattering phase function, p(ϴ) - the angular distribution of radiation intensity 

scattered by a particle at a given wavelength. These, in turn, depend on both wavelength 

and the suspended particles’ size, composition, shape, and number concentration. For 

scattering specifically, the size of the particle is the most important defining characteristic 

(Petty, 2006).  
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2.3.1 Extinction, Scattering, and Absorption Coefficients 

As already mentioned, the extinction along a path is the sum of the scattered and 

absorbed radiation. When calculating the extinction portion of the RTE, the absorption 

and scattering coefficients, βa and βs, are used to represent absorption and scattering by 

volume. In order to solve scattering and absorption specifics from extinction, it is helpful 

to determine the relative importance of scattering versus absorption within a medium. 

This is determined through the use of the single scatter albedo, ώ, which is the ratio of 

scattering to extinction an can be expressed as 

𝜔́ =
𝛽𝑠

𝛽𝑒
= 

𝛽𝑠

𝛽𝑠+𝛽𝑎
.                                                  (4) 

Scattering, absorption, and extinction coefficients can not only be defined in 

terms of volume, but also in mass-normalized and particle-normalized terms. In fact, 

these terms are often used rather than the terms used in reference to a fixed geometric 

distance (Petty, 2006). For example, the Weather Research and Forecast with Chemistry 

model quantifies atmospheric aerosols by mass densities, and LEEDR, specifically for 

Mie calculations, directly uses number concentrations to determine extinction, scattering, 

and absorption coefficients (Barnard et al. 2010, and Fiorino et al. 2019). 

The mass-normalized extinction term, known as the mass extinction coefficient 

ke, is expressed in terms of density and mass per unit area. It relates the volume extinction 

coefficient to the density of air particles. 

𝛽𝑒 =  𝜌𝑘𝑒                                                                (5) 

When considering that the atmosphere includes a mixture of a variety of particles, the 

total mass extinction coefficient is then sum of the individual mass extinction for each 
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type of particle (Petty, 2006). The use of the mass extinction term is commonly used 

when dealing with highly variable atmospheric constituents like water vapor. Mass 

extinction is constant for most substances in the atmosphere as long as all other variables, 

like pressure and temperature, are held constant. Aerosol mass densities is the legacy 

variable used in aerosol quantification and reporting, and in fact there is a wide network 

of accessible aerosol databases and networks that document mass density information for 

several of the different aerosol types (Hess et al. 1998, Andrews et al. 2019, and Koepke 

et al. 1997).  

The particle-normalized extinction term, known as the extinction cross section σe, 

is expressed in terms of particle number concentrations. It relates the volume extinction 

coefficient to the number concentration, N.  

𝛽𝑒  = 𝜎𝑒𝑁                                                                 (6) 

The extinction cross section, refers to a single particle, so once again when dealing with a 

mixture of a variety of particles, there are multiple cross section values and number 

concentrations to consider (Petty, 2006). The use of the extinction cross section is 

common when calculating radiative transfer through clouds. Using number 

concentrations, which can be easily measured rather than approximated, allows for 

increased accuracy of microphysical schemes, which could have significant implication 

on reliable numerical modeling of climate change (Fiorino et al. 2019, Peralta and 

Enrique 2013). 

Recalling that extinction is the sum of absorption and scattering, separate mass-

normalized and particle-normalized quantities for absorption and scattering coefficients 

can also be defined. 
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2.3.2 Rayleigh Scattering, Mie Scattering, and the Phase Function 

 Scattering and absorption properties of an aerosol particle is dependent on the 

relationship between the size and composition of the particle, and the wavelength of the 

radiation of interest. These same characteristics are also of crucial factors in determining 

a suitable method for calculating those properties (Petty, 2006). For scattering, the size of 

the particle is the most important characteristic, while for absorption, particle 

composition, or specifically the particle’s complex index of refraction (CIR), is the most 

important characteristic. In general, particles that are much smaller than the wavelength 

weakly scatter radiation, and particles that are much larger than wavelength scatter more 

strongly. Furthermore, particle size and shape also have an impact on whether radiation is 

more strongly scattered in the forward or both forward and backward directions, which is 

described by a characteristic phase function, further discussed below. Most particles in 

the atmosphere fall in between the two size extremes and require complex calculations to 

compute scattering properties (Petty, 2006).  

 Gas molecules fall in the very small range and mostly absorb radiation. Although 

molecules do scatter radiation, it usually a rather small percentage of the total extinction. 

Aerosols on the other hand, make up the particles that fall in between the two extremes 

noted earlier and are relatively much larger than gas molecules. Scattering and absorption 

properties of aerosols varies by size, shape, concentration and wavelength. Methods 

applicable to calculating optical scatter of small randomly oriented particles use Rayleigh 

theory, while those applicable to spheres of arbitrary size use Mie theory (Petty, 2006). 

 As already introduce, the size of a particle, the CIR, and the wavelength of 

radiation are major factors when calculating the particle’s optical properties. The non-
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dimensional size parameter, x, is the term used to describe scattering behavior of 

particles, that is whether Rayleigh, Mie, or geometric theory is appropriate for calculating 

their scattering properties. The size parameter can be calculated using wavelength, λ, and 

radius, r, of a specific particle. 

𝑥 ≡  
2𝜋𝑟

𝜆
                                                                     (7) 

 Figure 1 shows the relationship between the scattering behavior, size, and 

wavelength. When x << 1, the scattering behavior follows the Rayleigh theory, when x ≈ 

1, the scattering behavior follows Mie theory, and when x >> 1 the scattering behavior 

follows geometric scattering patterns.  

 

Figure 2. Graphical depiction of the relationship between particle size and radiation wavelength. The diagonal dashed lines 

describe the scattering behavior for atmospheric particles (Petty, 2006). 

Another key property is the relative index of refraction, m, expressed as 

𝑚 ≡  
𝑁2

𝑁1
,                                                                      (8) 
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where N2 is the CIR of the surrounding medium, and N1 is that of the particle. These 

indices, have real and imaginary components, N = nr + nii, and N varies with wavelength 

for all substances. The real component governs the phase speed of EM waves propagating 

through a medium, while the imaginary part governs absorption. The ability to determine 

the real and imaginary indices is key to properly characterizing aerosol absorption and 

their effect on both laser propagation and the atmosphere. Fiorino et al (2012), showed 

that both the real and imaginary components are partially codependent and can be 

determined through iteration. Previously it was assumed that the imaginary index can be 

derived by subtracting Mie-calculated scattering from measured extinction. However, by 

comparing measured off-axis scattering phase functions to empirically calculated phase 

function, and varying optical properties, Fiorino et al (2012) was able to show that that 

assumption was not correct, and develop a method to fully and accurately determine both 

real and imaginary components of the CIR.  

 Another important factor in radiative properties of particles is the shape. 

Considering that aerosols are not spherical, rather randomly oriented shapes, it is 

common to assume all particles are spherical in most radiative transfer calculations since 

there is a large number and variety of particle shapes for which to account (Petty, 2006). 

For non-spherical particles, r represents a radius of a sphere that would have the same 

surface area of the particle. 

 As mentioned above, the scattering phase function describes the angular 

distribution of radiation scattered by particles. The phase functions of real atmospheric 

particles can be complex and do not have simple mathematical descriptions. This is 

where the asymmetry parameter can come in handy, and it tells the relative proportion of 
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photons that are scattered in the forward verses backward directions. The asymmetry 

parameter can be interpreted as the average value of cos θ for a large number of scattered 

photons, and can be expressed as  

𝑔 ≡  
1

4𝜋 
∫ 𝑝(𝑐𝑜𝑠𝜃)
4𝜋

𝑐𝑜𝑠𝛳𝑑𝜔́,                                             (9) 

and 

-1 ≤ g ≥ 1.                                                            (10) 

When g > 0 photons are scattered in the forward direction, and when g < 0 photons are 

scattered in the backward direction. In the case when g = 0, it implies that photons are 

scattered equally in the forward and backward directions, known as isentropic scattering.  

 Scattering by gas molecules is called Rayleigh scattering and involves particles 

much smaller than the wavelength in the visible portion of the EM spectrum. For 

Rayleigh scattering, intensity is proportional to the fourth power of inverse wavelength 

(Petty, 2006). The phase function for Rayleigh scattering is quite smooth and perfectly 

symmetric with respect to forward and backward scattering. This is further expressed in 

the asymmetry parameter, as g = 0 for molecular scattering.  

 Even the cleanest air found in nature contains both gas molecules and aerosols, 

which are relatively much larger than gas molecules. Scattering by aerosols does not have 

as strong of a dependence on wavelength and the scattering phase function for aerosols is 

not symmetric, but rather exhibits strong forward scattering. Aerosols do not satisfy the 

Rayleigh criterion, and therefore Mie theory is used in calculating phase functions for 

these particles. Mie theory involves Maxwell’s equations to derive a wave equation for 

EM radiation in a three-dimensional space. Separable differential equations expressed as 

infinite series, usually truncated to keep only enough terms to yield a sufficient 
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approximation, are used to represent the scattering phase function. Mie calculations are 

dependent on the size parameter, x, and the relative index of refraction, m. An example of 

various Mie-derived phase function for various size parameters and an index of refraction 

of 1.33 is shown in Figure 2. The larger the particle the more terms are required to be 

kept in the series, and therefore, at some point geometric optics become the preferred 

method to calculate optical properties (Petty, 2006). 

 

Figure 3. Mie-derived phase functions profiles for a single relative index of refraction value, m = 1.33, and various size 

parameter values. As x increases, asymmetry and complexity of phase functions changes (Petty, 2006). 

2.4 Aerosol Properties and Databases 

 Aerosols exhibit significant temporal and spatial variations, both in quantity and 

optical properties. This includes number densities, size distributions, refractive indices, 

shape, and even distribution with altitude. Additionally, aerosol direct radiative forcing 

varies with solar elevation and surface albedo (Koepke et al, 1997). In climate 

assessments, it is desirable to account for these variations within global circulation 

models. For directed energy applications, access to specific aerosol data for any potential 

location at any given time is particularly useful. The Global Aerosol Data Set (GADS), 
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developed by Koepke et al (1997), provides a gridded 5-degrees by 5 degrees worldwide 

surface aerosol climatology of seasonal number concentrations, and optical properties for 

different constituents that account for relative humidity variations and multiple EM 

wavelengths. Furthermore, to make microphysical and optical properties in the solar and 

terrestrial spectral range of atmospheric particulate matter available and easy to handle in 

numerical modeling applications, Hess et al (1998) developed the Optical Properties of 

Aerosols and Clouds (OPAC) software package that incorporates GADS.  

Real aerosol profiles in the atmosphere are often a mixture of different 

components. Aerosol databases, like OPAC and GADS, that incorporate emission data 

are limited and far from complete. At the time these databases were developed, the 

characterization techniques made it impossible to make sufficient measurements of 

aerosol properties suitable for climate modeling (Koepke et al, 1997). Nevertheless, the 

data provides a useful tool for aerosol research with respect to average conditions at a 

certain location.  In characterizing aerosol degradation to laser propagation, average 

conditions may not be representative of the actual atmosphere at the time of interest. For 

example, most fair weather afternoons are characterized by the increase in small particles 

that are radiatively important, but do not significantly change the mass density (Fiorino et 

al, 2019). However, OPAC and GADS allows for the possibility to model relevant optical 

properties of any mixture of aerosols for individual cases, as well as integrate changes in 

both physical definitions and scatter theory.  These datasets were developed to allow for 

improvement of the data as observation and measurement techniques are expected to 

improve over time (Koepke et al, 1997 and Hess et al, 1998).  
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In GADS, aerosol particles are described by 10 main components which are 

characterized through their size distribution and their wavelength dependent refractive 

index. These component types are based on both aerosol emissions and formation and 

removal processes. Typical components include water-soluble (WASO), water-insoluble 

(INSO), soot (SOOT), sea-salt (SS), mineral (MC), and sulfate solution (SUSO). There 

are two size classes for salt and four size classes for mineral. Each component in GADS 

includes microphysical properties and optical parameters as shown in Figure 4 and 5. 

Microphysical properties include mode radius, rm, width of the distribution, σ, and 

density, ρ.  

These properties are then used to determine volume, mass, and the size 

distribution. Optical properties include extinction, scattering, and absorption coefficients, 

the single scattering albedo, asymmetry parameter, and the phase function. Further 

explanation of the optical and microphysical properties of each component type can be 

found in Koepke et al (1997) and Hess et al (1998). 

 

Figure 4. Table 1 from Koepke et al (1997). Lists the GADS aerosol components and their microphysical parameters. 
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Figure 5. Table 4 from Koepke et al (1997). Lists three Mie-calculated optical parameters, mass extinction efficiency (σe
*), 

single scatter albedo (ω0), and asymmetry factor (g), for GADS aerosol components at 0.5 µm and 10 µm wavelengths. 

The radiative properties are calculated by Mie theory at wavelengths between 

0.25 and 40 μm, and at 8 different relative humidity values. GADS assumes a lognormal 

size distribution for each aerosol type at given location, altitude, season, and relative 

humidity, expressed as  

𝑑𝑁(𝑟)

𝑑(𝑙𝑜𝑔𝑙𝑜𝑔 𝑟 )
= 

𝑁

√2𝜋𝑙𝑜𝑔 (𝜎)
 𝑒𝑥𝑝 (−

1

2
 (
𝑙𝑜𝑔𝑙𝑜𝑔 𝑟−𝑙𝑜𝑔𝑙𝑜𝑔 𝑟𝑀  

𝑙𝑜𝑔𝑙𝑜𝑔 𝜎 
)2)                   (11) 

where N is the total particle number concentration per unit volume (cm3), rM is the mode 

radius, and σ is the standard deviation to describe the width of the distribution. The total 

size distribution for the sample is the sum of that of the individual components. This 

lognormal distribution is evident in nearly all size spectrometer measurements of ambient 

aerosol particles; an example measurement at JBO is shown in Figure 6. 
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Figure 6. Lognormal size distribution measured by the TSI SMPS. 

 The CIR varies with wavelength and chemical substance. Rather than individual 

refractive index values for each type of chemical substance, GADs gives CIR as a bulk 

property for the component types. This means that real and imaginary CIR values are 

assumed based on typical internal mixtures of chemical substances for a component type. 

This assumption is only valid for particles in solution with water but provides a good 

starting point for average mixtures (Koepke et al, 1997). The spectral dependence of the 

real and imaginary refractive indices of dry particles is illustrated in Figure 7. 
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Figure 7. Figure 1 from Koepke et al (1997). Depicts the relationship of real and imaginary complex refractive indices with 

wavelength for the GADS aerosol components. 

 Wavelength specific extinction (E), scattering (S), and absorption (A) coefficients 

can be computed by integrating over the range of particle radii. The single scatter albedo 

and the asymmetry parameter are obtained as weighted averages of extinction coefficient 

and scattering coefficient respectively, of the corresponding values for the individual 

components given by equations (Koepke et al, 1997): 

𝜔́𝑜  (𝜆) =  ∑ 𝜔́𝑜𝑖(𝜆)𝑖 ∙
𝐸𝑖(𝜆)

∑ 𝐸𝑖(𝜆)𝑖
                                               (12) 

𝑔(𝜆) =  ∑ 𝑔𝑖(𝜆)𝑖  ∙
𝑆𝑖(𝜆)

∑ 𝑆𝑖(𝜆)𝑖
                                                    (13) 
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Mie-calculated optical parameters – mass extinction efficiency, single scatter albedo, and 

asymmetry parameter – at 50% relative humidity as a function of wavelength is plotted in 

Figure 8. The plots are examples of the complexity of aerosol optical properties discussed 

in previous sections. The smaller sized particles (WASO, SOOT, and SUSI) decrease in 

extinction efficiency with increasing wavelength, more prominently in the visible range. 

All component types, except soot, are weak absorbers in the visible and NIR range but 

become stronger absorbers at longer wavelengths, which demonstrates that the imaginary 

refractive index is not constant for a substance. Lastly, it’s important to keep in mind that 

these plots are not necessarily representative of all scenarios within the atmosphere, 

rather they are average profiles for the main component types within GADS for a 

particular relative humidity situation. 
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Figure 8. Figure 2 from Koepke et al (1997). Depicts the relationship of three Mie-calculated optical parameters, extinction 

efficiency (top), single scattering albedo (middle), and asymmetry parameter (bottom) with wavelength for the GADS aerosol 

components. 
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III. Methodology 

In order to test the hypothesis that measured off-axis backscatter from high energy 

lasers can be used to determine bulk aerosol absorption, measured and predicted phase 

function profiles of off-axis scattered laser energy are needed for comparison. Phase 

functions describe the amount of relative radiation that is scattered in each direction 

based on gas particle and aerosol mixture. Comparing the difference between measured 

and predicted phase function provides information on the actual particles present in the 

air.  

Predicted phase functions and off-axis irradiance values are created using 

HELEEOS and LEEDR modeling packages. The initial proposed method to build 

measured phase function profiles was to convert raw pixel data from off-axis images of a 

laser beam, taken with a calibrated visible/SWIR camera, into physical units of energy 

and relate to a phase angle using geometry calculations. Complications with both the 

visible camera calibration and laser operation schedule prevented calibrated images from 

being captured. Therefore, the use of measured irradiance values are not used in the 

analysis.  

An alternate measurement technique, using a G9 Canon digital camera, is chosen 

in order to qualitatively test the hypothesis. The camera is a CCD type image sensor with 

a lens aperture that ranges from 7 mm to 44 mm. Rather than irradiance values and a 

measured phase function profile, changes in intensity, or brightness, in the pixels digital 

output values are qualitatively compared to predicted scattering irradiance values.  

The energy source is a Rayleigh beacon pulse laser with an output wavelength of 

527 nm, an exit aperture of 60 cm, an output energy of 8 mJ per pulse, and a pulse 
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repetition frequency of 200 Hz. In contrast to the longer wavelength lasers used in 

Haiducek, average power per duty cycle output of the high energy laser used in this 

research is approximately 1.6 Watts. Laser experiments are conducted during nighttime 

hours in order to more clearly see and locate the laser beam scatter from the off-axis 

location, as well as reduce exposure to background light noise.  

In order to analyze how aerosol absorption characteristics alter the phase function, 

several LEEDR-calculated predicted phase function profiles are created using various 

imaginary index of refraction values. Additionally, to demonstrate the importance of 

accurately representing the CIR within absorption coefficient derivations, extinction, 

absorption, and scattering coefficient profiles for 5 and 6 November 2019 are created 

using measured aerosol data and two different methods of Mie calculations coded in 

LEEDR.  

 

3.1 Field Measurements 

3.1.1 Measured Profiles 

 Images of the Rayleigh beacon pulse laser beam, described in Chapter 1, are 

captured at JBO on 5 November 2019. The off-axis observation point is located 20 

meters to the northeast (approximately a 45º relative azimuth angle) of the laser platform, 

and the beam is aimed to the north at a 45º elevation angle (angle from the ground). The 

laser platform is 3 meters off the ground, while the observations were taken at 

approximately 1.5 meters off the ground. Because the laser beam is aimed into the sky 

with no actual target, a target altitude is arbitrarily chosen to be at 100,000 meters to 
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represent the approximate top of the atmosphere. Using geometry, the length of the beam 

can be calculated using the following equation: 

𝐵𝑒𝑎𝑚 𝐿𝑒𝑛𝑔𝑡ℎ =
100,000

sin45°
                                               (14) 

 

Therefore, the length of the beam used in calculation throughout this research is 

approximately 141,500 meters. The set-up is shown in Figure 9 (not to scale).  

 
 

Figure 9. 3-D graphical depiction, created in HELEEOS, of field set-up for the off-axis observation measurements. Due to the 

very long beam length, and the short distance between the laser platform and the observer, depiction is not to scale. 

In order for the data collection to be used, atmospheric scattering must be visible 

in the images, and it must be possible to determine the laser energy as the source of the 

scattering. This is possible with the G9 Canon camera by taking images at night when 

there is very little background noise, and by adjusting to a high exposure setting that 

enables the camera to capture multiple pulses of the laser beam. This is accomplished by 

decreasing the shutter speed to 15 seconds and adjusting the aperture value for a smaller 

lens view. The shutter speed and lens view remain constant for all images, which 

prevents images of the entire beam from being captured in a single image. Therefore, the 

length of the beam in each image varies as the viewing angle is adjusted. 
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Raw digital images of the laser have low contrast making it difficult to identify 

the laser beam pixels verses background pixels. Therefore, simple image enhancements 

are applied to view and analyze laser pixels (Figure 10). The images on the left are the 

raw digital images of three separate sections of the beam, while the images on the right 

are the corresponding images processed using a contrast enhancement. The enhancement 

involves several steps. First, the raw image is inverted in that each pixel value is 

subtracted from the max pixel value. Second, the inverted image is de-hazed, using 

method described in Lin and Wang (2012). Lastly, the de-hazed image is inverted to 

reveal the enhanced image. 

 
 

Figure 10. Off-Axis laser images captured with a G9 Canon camera. The left set of images are raw images of three different 

sections of the beam (lower, middle, top). The right set of images are processed using a contrast enhancement (twice inverted 

and dehazed) to make the laser beam easier to view. 

 In an effort to qualitatively compare to the predicted phase function profiles, it is 

necessary to relate pixels to physical locations. To accomplish this, geometry relevant to 
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each pixel is considered relative to the source and observer location as depicted in Figure 

11. The location of a pixel along the laser beam path is described relative to the source in 

the form of distance BD, and relative to the observer in terms of the angles a and d. In 

order to determine the distance BD from the angle a, or vice versa, the off-axis angle b 

and the distance AB must be known.  

 
Figure 11. Experiment setup with triangle shown between observer, source, and point of interest along the laser beam path. 

Geometry relevant to relate pixels to physical location. 

 The absence of irradiance values prevented complete measured phase function 

profiles from being created for comparison. Rather, intensity or brightness differences 

between the digital pixel values are used to qualitatively analyze the change in scattered 

energy along the beam. With the aim of analyzing laser pixels within each image more 

easily than the digitally enhanced images (Figure 10), the raw image green channel is 

scaled to use the full color map, shown in Figure 12. Additionally, in order to ensure 

brightest pixels are located along the length of the beam, the full scaled image is 
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manually reviewed using a pixel region tool to identify max pixel index along the laser 

beam (also shown in Figure 12). 

 

Figure 12. Raw image with green channel scaled to full-range color map (left). Image Processing Tool (right), allows image 

zoom to see index value assigned to each pixel. 

3.1.2 Aerosol Characterization Data 

Aerosol characterization information was also gathered at the field site, which 

included aerosol particle counts, size distributions and aerosol absorption estimates. 

Aerosol data was gathered using two different condensation particle counter (CPC) 

devices, a Scanning Mobility Particle Sizer (SMPS) spectrometer, and a continuous light 

absorption photometer (CLAP). The purpose of collecting particle counts and size 

distributions was to scale the GADS climatology surface aerosol concentrations within 

HELEEOS and LEEDR, and use the data to derive scattering and absorption profiles 

from extinction measurements. The purpose of collecting aerosol absorption values was 

to compare aerosol absorption profiles to that computed with LEEDR. 
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The aerosol collection devices were setup in a temperature-controlled enclosure 

located 3 meters off the ground, with a vertical stack attached to the side of enclosure to 

pull in ambient air. This collection occurred from October to December 2019.  

3.1.2 1 Number Concentrations and Size Distributions 

 Number concentrations were measured directly using an Aerosol Dynamics Inc. 

Moderated Aerosol Growth with Internal water Cycling (MAGIC) CPC.  A TSI, Inc. 

CPC is employed in the SMPS. As such, the TSI Inc. CPC does not directly produce 

number concentration data as the MAGIC does, rather total concentrations are inferred by 

aggregating size - number concentrations (i.e. summing number concentrations in each of 

the size bins) measured by SMPS.  

The MAGIC is capable of sampling particles with diameters ranging from 5 nm 

through 2500 nm. The MAGIC was used to provide continuous higher resolution number 

concentration measurements and to identify diurnal trends in aerosol concentrations at a 

higher temporal resolution. This information can be an important factor to consider when 

deriving absorption properties using measurements and comparing to derived absorption 

properties using a model that relies on climatological data. 

The SMPS is capable of sampling particles with diameters ranging from 2.5 nm 

through 1000 nm. The device is not capable of capturing the entire size spectrum. This is 

because the size window is limited by the configuration of SMPS components, such as 

the Differential Mobility Analyzer (DMA) and flow rates impactor sizes. Multiple SMPS 

and DMA configurations would be required to capture particles across the full size 

spectrum; however, that was not feasible at the field site. Therefore the device was 

configured to measure particles ranging from 12.86 nm through 673.17 nm based on the 
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desire to capture as many big particles without missing the size info associated with nano 

particles.  

SMPS mass densities and number concentration profiles from the data collection 

field site is shown in Figure 13. The SMPS provided critical size number concentration 

data needed for correction of aerosol absorption data collected by equipment loaned to 

AFIT by NOAA and described in the following section. 
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Figure 13. Mass densities (top) and number concentrations (bottom) for 5 and 6 Nov 19. Data was collected with the TSI Inc. 

Electrostatic Classifier and SMPS with samples recorded every 5 minutes. 

3.1.2.2 Absorption Estimates 

 Absorption estimates were collected using the National Oceanic and Atmospheric 

Association (NOAA) CLAP device. The CLAP measures the change in light transmission 

through a filter on which particles are collected, and derives absorption as the difference 

between light extinction and light scattering of suspended particles, which includes both 

aerosols and gas molecules. Derivations require either size distribution data to infer 

aerosol scatter coefficient via Mie scatter calculations, or directly measured aerosol 

scatter coefficients using a nephelometer. A nephelometer was not available, so the 

aerosol scatter coefficients were calculated using the size distribution data collected with 

the TSI Inc. SMPS. Instrument calibration and absorption estimate processes used with 

this device are detailed in Bond et al (2010). 
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3.2 Predicted Phase Functions 

Predicted phase functions are calculated using the previously discussed off-axis 

scattering algorithm, and both LEEDR and HELEEOS modeling packages. The field 

measurement geometry parameters and laser properties are input into HELEEOS to 

produce scattered irradiance values for each segment of the beam. The same field 

measurement parameters are then input into LEEDR to produce the predicted phase 

functions. 

Worldwide seasonal, diurnal, and geographical spatial-temporal variation in 

meteorological parameters in HELEEOS and LEEDR is organized into probability 

density function using the Extreme and Percentile Environmental Reference Tables 

(ExPERT) database. Wright-Patterson Air Force Base (WPAFB) is one of the ExPERT 

sites, while JBO is not. JBO is located approximately 15 miles east of WPAFB, therefore 

the WPAFB ExPERT data is considered representative of JBO. Additionally, aerosol data 

is provided from GADS and scaled based on CPC measurements when they significantly 

differed from seasonal climatology values. 

HELEEOS and LEEDR allows the user to input surface conditions, rather than 

using climatological data. Specifically, surface pressure, air temperature, dew point 

temperature, and relative humidity are recorded every 30 minutes using automated 

weather observation equipment located at JBO, averaged over the entire image collection 

period, and input into both model packages. 

The laser platform, target, and observer parameters used in the model calculations 

are the same as those described in Chapter 1 and the above field measurement section. In 

order to have predicted phase function profiles that are comparable to measured data, the 
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model needs to use as much of the same parameters as possible. The user defined input 

used in both HELEEOS and LEEDR are listed in Appendix A. 

3.2.1 HELEEOS 

HELEEOS allows the user to define geometry parameters described in the field 

measurement section, as well as laser properties such as wave type, power output, 

wavelength, optical focus and transmit (exit aperture) settings, and field of view (FOV) 

specifics. 

Laser wavelength, optical focus, and transmit settings match those described in 

Chapter 1. It is assumed that a continuous wave laser of power equal to the average 

power propagated by that of the Rayleigh beacon pulsed laser—available for this 

research—would provide reasonable insight on the relative magnitude of scattered 

irradiance. As such, the average output power of the laser (1.6 W), is found by 

multiplying the pulse repetition frequency (200 Hz) by the energy per pulse (7.98 mJ).  

In order to calculate scattered irradiance values at the observation point, the 

model requires observer FOV parameters to be specified. The observer parameters used 

in the HELEEOS model are chosen to be representative of a human eye, or a camera, 

viewing the laser beam from an off-axis location. An angular focusing type FOV is 

chosen with a ±0.4º range so that further down the beam path would result in a longer 

section of the beam being viewed, as occurs with the human eye. 

 HELEEOS provides several output values, but the only one of interest in this 

research is the observer irradiance, that is the amount of irradiance scattered from a 

specified section of the beam to the off-axis observation point. HELEEOS off-axis 

scattering model requires a specific point along the beam to be selected in order to 
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retrieve the scattered irradiance value toward the observer. Several points along the full 

length of the beam are input into the model in order to retrieve enough data to analyze 

how scattering changes along the beam path.  

3.2.2 LEEDR 

 LEEDR allows the user to define geometry parameters described in section 3.1, 

just like in HELEEOS, but additional required parameters include path resolution and 

path type. The path resolution--defines the number of layers and length of each section of 

the beam--is set to 283 layers, each 500 meters long. This path resolution is chosen with 

the nighttime boundary layer height (500 meters) in mind. The path type describes the 

path of the beam, which in this research is a slant path to represent a beam that is aimed 

into the sky at an angle. 

 LEEDR is coded to account for the overall aerosol concentrations as defined in 

GADS for the user selected location. For WPAFB that includes water soluble, soot, and 

water soluble aerosols. LEEDR also allows for those values to be adjusted based on in 

situ observations that vary from the climatological database. However, GADS winter 

aerosol concentrations values, coinciding with the season the ambient outdoor 

measurements are collected, are used for the predicted phase function calculations 

presented in this research rather than aerosol data measured at JBO during image 

collection. Without measured phase functions to be compared to predicted phase 

functions, using in situ observation versus GADS is not an important factor. 

 Additionally, LEEDR accounts for the different index of refraction values of each 

of the different aerosol components. This value impacts the aerosol absorption values 

calculated within the model, and to isolate that impact of phase function profiles on 
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absorption, the index of refraction is held constant within each iteration regardless of the 

aerosol mix. The aerosol index of refraction is coded to be 1.53-0.010i, which is 

ammonium sulfate plus an arbitrary absorbing value. In each separate iteration the real 

component—governs scatter—is held constant but the imaginary component—governs 

absorption—is varied. The additional values for the imaginary component include 0.001i, 

0.006i (GADS), 0.050i, 0.100i, 0.400i (soot), and are chosen to capture the full spectrum 

of common imaginary index values seen in local aerosol components.  

3.3 Extinction, Absorption, and Scattering Coefficient Calculations 

 In an effort to demonstrate the importance of accurately representing the 

CIR within absorption coefficient derivations, extinction, absorption, and scattering 

coefficient profiles for 5 and 6 November 2019 are derived using two different methods 

of Mie calculations coded in LEEDR. Additionally, absorption data collected using the 

CLAP device, as described in section 3.1.2.2, is also presented in order to compare the 

data to the LEEDR-derived absorption values.  

The first LEEDR calculation method holds the CIR constant, using the same 

ammonium sulfate plus an arbitrary absorbing value (1.53-0.010i) described for the phase 

functions profiles. The second method is the standard LEEDR code which accounts for 

the different index of refraction values of each aerosol component in the mixture.   

Rather than the GADS defined aerosol concentrations, measured values collected 

with the SMPS at the field site (JBO) are used to calculate the extinction, absorption, and 

scattering coefficient values. The numerical code requires the user to input surface 

conditions, specifically, aerosol number concentration, surface temperature, dew point, 

and pressure. The SMPS recorded size distributions and number concentrations every 5 
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minutes, while the automated weather observation equipment located at the field site, 

recorded surface weather conditions every 30 minutes. In order to calculate over the 

entire 2-day period, both sets of data are meshed, which interpolated the surface weather 

conditions to match the total number of aerosol concentration samples. Single extinction, 

absorption, and scattering coefficients are also calculated for the day and time of laser 

image collection. Image collection occurred over 2-hour period, 0730-0930L, therefore 

surface conditions and aerosol number concentrations are averaged over the same 2-hour 

period in order to be more representative. The values are 2,180 parts/cm3, 42º F, 31º F, 

and 1024 mb. 

Additionally, the model allows the user to customize the aerosol mixture. 

However, the GADS aerosol mixture is used in the extinction, absorption, and scattering 

coefficient calculations presented in this research. For winter season at WPAFB, the total 

GADS aerosol surface number concentration is 26000.5 per cm3. The aerosol component 

break down includes 0.5 parts/cm3 non-water soluble, 15,000 part/cm3 soot, and 11,000 

parts/cm3 water soluble. 

IV. Results 

4.1 Off-Axis Laser Images 

The inability to derive precise, quantitative irradiance data resulted in a less 

rigorous quantitative analysis of the laser beam images. Pixel information is plotted on 

the image to show the pixel location, index value, and actual raw digital RGB value for 

several points along the beam and in the background (Figure 14a).  

Images are displayed with green channel scaled to a full color map in order to 

view the brightness values along the beam. Brightness values increase along the length of 
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the beam, indicating that greater scatter irradiance is seen at greater backscatter angles. 

This is to be expected at greater viewing angles (viewing further out along the beam) as 

larger sections of the beam are being observed, and thus more aggregate scatter is 

reflected back to the observer. Additionally, analysis of the rate of increase of 10 equally 

spaced pixels along the beam show that the increase in backscattered irradiance is greater 

for the lower portion of the beam than the top portion of the beam (Figure 14b). 

 

 

 

Figure 14a. Image of the upper portion of the beam taken with a G9 Canon digital camera. Pixel index and location are plotted 

along the beam to show the increase in brightness values at larger phase angles, indicating an increase in scattered irradiance.  

  
Figure 14b. Rate of change depiction of 10 equally spaced pixels, in ascending order, along the length of the beam and plotted 

two different ways; pixel index value verses beam location (left), and rate of increase verses beam location (right). 
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4.2 Predicted Observer Irradiance 

HELEEOS-derived observer irradiance values are computed and retrieved to 

compare to the scattered irradiance pattern along the length of the beam observed in the 

laser beam images. Figure 15 shows an example of the HELEEOS output. Since the same 

±0.4 degree angular view is used in each iteration, the length of the section of the beam 

observed increases the further away from the start of the beam. 

 

Figure 15. Example of HELEEOS output using the off-axis algorithm. Observer irradiance can be found in the center box 

titled irradiance values. 

Several points along the beam are input into the model and each observer 

irradiance value is plotted to show the change in scattered irradiance that reaches the 

observation point along the beam path (Figure 16). The model predicts an increase in 

irradiance at larger phase angles, which are backward scatter angles. It is important to 

note that, the increase in scattered irradiance shown in the following figures does not 

suggest that more irradiance is scattered from any particular point, but rather that larger 
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sections of the beam are being observed at further distances, resulting in more aggregate 

backscattered irradiance. 

 

Figure 16. HELEEOS-calculated observer irradiance along the entire length of the beam. 

 

Figure 17. HELEEOS-calculated observer irradiance along the first 1000 m of the beam. 
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Figure 18. HELEEOS-calculated observer irradiance from 300 m to 1,000 m. 

 

Figure 19. HELEEOS-calculated observer irradiance from 3,000 m to 141,500 m 
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Figure 20. HELEEOS-calculated observer irradiance from 20,000 m to 141,500 m 

Zooming in on different sections of the beam (Figures 18-20) show a similar 

overall pattern observed in Figure 16, which is a rapid increase followed by a slow and 

steady increase. The last 50,000 meters of the beam reveals a very small increases in 

observer irradiance with upward viewing angle adjustments. This is due to the fact that at 

very small changes in viewing angle, a camera lens would be viewing almost the same 

sections of the beam. 

Closer analysis of the HELEEOS-predicted observer irradiance verses beam 

length graphs (Figure 16), reveals two sharp peaks in observer irradiance. One at 400 

meters (Figure 17), and the other at 900 meters (Figure 18). A best guess of these features 

would be a boundary layer or some sort of inversion that would cause a notable change in 

aerosol particle number concentration or mass densities at those altitudes. These patterns 

are not observed in the laser image pixel analysis because background light noise near 

surface made it impossible to differentiate between laser pixels and background pixels at 

these low levels.  
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Using simple geometry relations, as depicted in section 3.1.1 for determining 

beam length, the altitude of both peaks can be determined given the beam length. The 

first sharp peak (400m) in scattering is calculated to be occurring at a height of 

approximately 282 meters, while the second sharp peak (900m) is calculated to be 

occurring at 37 meters. LEEDR and HELEEOS assumes the boundary layer height at 

night to occur at 500 meters, therefore the sharp increase at the 900 meter mark is likely 

an impact of the boundary layer. 

It is important to note that these observer irradiance values are model derived 

calculations that take into account model predicted atmospheric features and variations 

with altitude. Even though conclusions on the cause are drawn, these same features are 

not able to be observed in the visible images captured for this research. 

4.3 Predicted Scattering Phase Functions 

 Even though measured phase function profiles are not used in this research, a look 

at the LEEDR-derived predicted phase functions described in Chapter 3 can provide 

useful information about backward scattering angles and absorption properties. Each 

imaginary index value used to derive the phase functions, results in a slightly differing 

path extinction and attenuation values output by LEEDR (Figure 21). The multiple phase 

function profiles computed in LEEDR (Figure 22) depict how absorption properties 

changes the shape of the scattering phase function at backward angles.  



48 

 

Figure 21. Resultant path transmittance and extinction calculated with various imaginary index values; 0.001i (top left), 0.006i 

(top middle), 0.050i (top right), 0.100i (bottom left), 0.400i (bottom right). 

 

Figure 22. Multiple LEEDR-derived predicted phase function profiles. The black solid line represents molecular (Rayleigh) 

scattering, while the blue and green lines are the different aerosol scattering (Mie) phase functions resulting from various 

imaginary index values. 

4.4 Extinction, Absorption, and Scattering 

 LEEDR-derived extinction, absorption, and scattering coefficient profiles for both 

calculation methods described in Chapter 3 are shown in Figure 23. On 5 and 6 

November, both methods result with scattering as the dominate cause of extinction, and 
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absorption as only a fraction of the total extinction. At first glance, the two methods 

appear to have the similar results but further investigation reveals that is not the case.  

 

Figure 23. LEEDR-calculated extinction profiles with the CIR held constant (top), and accounting for different index of 

refraction values of each aerosol component in the mixture (bottom). Solid blue and red lines represent absorption and 

scattering (respectfully) from aerosols only, while the dashed line represent that resulting from both molecular and aerosol 

particles. 

 The difference between the two calculation methods for extinction, 

scattering, and absorption coefficients (respectively) is shown in Figure 24-26. Both 

calculation methods result in similar diurnal patterns, but the order of magnitude varies. 

That is that the constant imaginary refractive index profiles is anywhere from 

approximately 2-20 parts/Mm greater than the standard index of refraction profiles. The 

12-24 UTC (06-18L) timeframe have close agreement in the magnitude, while the 00-12 

UTC (18-06L) have a large disagreement in magnitude. This is also the timeframe where 

there was a measured increase in both aerosol mass densities and number concentrations 
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(Figure 13). Scattering values during the 00-12 UTC values were up to 20 parts/Mm 

larger, and absorption values for the same time frame where up to 6 parts/Mm larger 

using a constant index of refraction calculation. 

Holding the index of refraction constant at the ammonium sulfate plus an arbitrary 

absorbing value (1.53-0.010i), results in overall higher absorption and scattering 

compared to the standard method used in LEEDR. This can be explained by the fact that 

the standard method accounts for the smaller soot particles while the fixed method 

(constant index of refraction) only accounts for the ammonium sulfate particles. Even 

though soot particles have relatively high absorption rate, they have a much smaller cross 

section compared to the sulfate particles. These soot properties result in less absorption 

and scattering when accounted for in the Mie calculations. The fixed method handicaps 

the effect of soot particles and results in more absorption and scattering because the same 

number concentration is used in both calculation methods.  

 

Figure 24. LEEDR-derived total extinction profiles for 5 and 6 Nov 2019. The black solid line represents extinction calculated 

using a constant index of refraction regardless of aerosol mixture components, and the dashed gray line represents extinction 

calculation that accounts for all index of refraction values of each aerosol component in the mixture. 
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Figure 25. LEEDR-derived aerosol scattering profiles for 5 and 6 Nov 2019. The solid red line represent scattering calculated 

using a constant index of refraction regardless of aerosol mixture components, and the dashed pink lines represent scattering 

calculations that accounts for all index of refraction values of each aerosol component in the mixture. 

 

Figure 26. LEEDR-derived aerosol absorption profiles for 5 and 6 Nov 2019. The solid blue line represent absorption 

calculated using a constant index of refraction regardless of aerosol mixture components, and the dashed blue lines represent 

absorption calculations that accounts for all index of refraction values of each aerosol component in the mixture. 

 CLAP absorption data compared to LEEDR-derived absorption values (Figure 

27) reveals that LEEDR is capable of profiling aerosol absorption to a similar degree as 

the CLAP device. The fixed index of refraction calculation method (solid blue line in 

Figure 27) is comparable to the CLAP absorption data (dotted gray line in Figure 27) on 

5 November, but the standard calculation method (dashed light blue line in Figure 27) is 

comparable to the CLAP absorption data on 6 November. This likely has something to do 

with the measured increase in both aerosol mass densities and number concentrations 
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(Figure 13), but it is difficult to fully qualify without detailed information on the aerosol 

components present at the time of measurement.  

LEEDR calculation method requires only a simple number concentration input 

collected by a single CPC, compared to the more complex CLAP measurement that 

requires at least one additional measurement device (usually SMPS or a nephelometer) to 

correct for aerosol scatter. The extinction, scattering, and absorption coefficient results 

presented here suggest that LEEDR, with a number concentration measurement, can be 

used as an alternate method of estimating absorption. 

 
Figure 27. LEEDR-derived aerosol absorption coefficient profile, as depicted in Figure 26, and CLAP-estimated absorption 

coefficient profile for 5 and 6 Nov. The dotted gray line represents CLAP absorption data. 

 

V.  Conclusions and Recommendations 

5.1 Conclusions 

The tests and evaluations conducted in this research show qualitative agreement 

between HELEEOS-calculated off-axis observer irradiance and the off-axis field images. 



53 

That is, that scattering irradiance increase along the length of the beam, and that there is 

more scatter in the backward direction. Unfortunately, the lack of a calibrated camera 

prevented measured irradiance values from being converted from raw pixel data, and thus 

measured bulk absorption values from being derived. However, at the very least the 

matching pattern of increasing pixel index brightness (images), and the increasing 

observer irradiance values (HELEEOS-predicted) shows that original proposed method to 

determine bulk absorption properties may be possible. 

Although there were no measured phase function profiles to compare to the 

predicted phase function profiles, analysis of backscattering angles of the phase function 

could be conducted by varying absorption properties in the calculations. Variations in the 

CIR specifically resulted in changes in the shape of the phase function, notably at 

backward phase angles. Additionally, scattering and absorption calculations revealed that 

absorption properties and how they are accounted for can have a major impact in an 

accurate extinction value, especially during times of higher variation of mass densities 

and number concentration. 

Given the qualitative results from both the off-axis observer irradiance analysis 

and the phase function comparisons, a major takeaway is that the backscattering portion 

of scattering phase function offers significant information about aerosol optical properties 

for off-axis laser energy analysis. 

Even though a complete technique, described in Chapter 1, was not fully develop 

and presented in this research, the results lay the groundwork for future research on using 

off-axis laser backscatter to determine bulk absorption. Before the technique can be 

considered fully developed, quantitative data would need to show that scattered 
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irradiance and a phase function can be accurately measured and derived with a calibrated 

camera and the LEEDR model. 

5.2 Future Work 

 An obvious next step is to quantitatively test the method using a calibrated high-

resolution camera as proposed in Chapter 1. In addition to that, multiple geometry set-

ups, allowing for different off-axis angles, and laser power and wavelength variations 

should be tested against the method. Furthermore, this method of determining bulk 

aerosol absorption properties can pave the way for improved data assimilation and 

aerosol loading within NWP by allowing for more accurate local and regional aerosol 

characterization information. Additionally, in the interest of continued progress in aerosol 

absorption research, the qualitative findings in this research could be expanded to on-axis 

HEL spot measurement tests involving thermal blooming displacement and distortion.  

 The findings in this research, specifically the absorption coefficient profiles 

presented in section 4.4, suggest that there is a worthy area of study related to climate 

change research. A general assumption is that soot particles are the cause for an increase 

in bulk absorption from aerosols, but the three profiles shown in Figure 27 suggest that 

soot results in lower overall bulk absorption for a constant number concentration.  
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Appendix A. HELEEOS and LEEDR inputs 

A.1. HELEEOS 

The HELEEOS settings given here are used for all iteration runs in this projects. 

Settings are input based on the conditions under which the field images are taken. Not all 

input sections and tabs are used. For example, default settings are used for clouds and 

rain, which are no clouds or rain, because laser field operation and images were 

conducted on clear nights. For any input section or tab not mentioned here, default 

settings are used. 

A.1.1 Propagation Scaling 

Propagation Scaling: Gaussian 

A.1.2 Scenario 

A.1.2.1 Location tab 

Latitude: 39.83 

Longitude: -84.05 

ExPERT Site: DAYTON/WRIGHT-PATTERSON 

A.1.2.2 Atmosphere tab 

Database: ExPERT 

Season: Winter 

Time of Day: 00-03 

RH Bin Percentile: 50 

Aerosols: GADS; Multiplier: 1 

A.1.2.3 Ground Level tab 

Pressure (mb): 1024  
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Air Temperature (F): 38  

Relative Humidity (%): 83 

A.1.3 Platform 

A.1.3.1 Geometry tab 

Altitude (m): 3  

Distance to next Object (m): 141,500  

Relative Azimuth to next Object: 0 

A.1.3.2 Laser tab 

Wave Type: Continuous 

Power (W): 1.6  

Laser Wavelength: User Wavelength 

User Wavelength: 0.527e-6 

Laser Source: Top Hat 

A.1.3.3 Optics tab 

Focus Settings: Default 

Relative Obscurant: 0.1 

Exit Aperture Diameter (m): 0.6 

Beam Quality: 1 

Wave front Error (waves): 0 

Total System RMS Jitter (rad): 0 

Adaptive Optics: None  

AO Effect: None 

A.1.4 Target 
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A.1.4.1 Geometry tab 

Altitude (m): 100,000 

A.1.5 Observer 

A.1.5.1 Geometry tab 

Enable Observer: checked 

Altitude (m): 1.5 

Distance to next Object (m): 20 

Relative Azimuth to Platform: 45 

Observer Field of View: Angular Focusing 

FOV (rad): 0.04 

FOV center (m): varies; see Figure 16 

Beam to be Observed: Platform to Target 

A.2 LEEDR 

The LEEDR settings given here are used for all phase function output presented 

in this project. The LEEDR Mie-calculation code is altered specifically for this project to 

hold the index of refraction constant, as described in Chapter 3. The only variation is with 

the imaginary index, which is embedded in the code and not a user input parameter as 

described here. Settings are input based on the conditions under which the field images 

are taken. Not all input sections and tabs are used. For example, default settings are used 

for clouds and rain, which are no clouds or rain, because laser field operation and images 

were conducted on clear nights. For any input section or tab not mentioned here, default 

settings are used. 

A.2.1 Location tab 
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Latitude: 39.83 

Longitude: -84.05 

ExPERT Site: DAYTON/WRIGHT-PATTERSON 

A.2.2 Atmosphere tab 

Database: ExPERT 

Season: Winter 

Time of Day: 00-03 

RH Bin Percentile: 50 

Aerosols: GADS; Multiplier: 1 

A.2.3 Laser/Geometry tab 

Path Resolution (layers): 500 

Laser Wavelength: User Wavelength 

User Wavelength: 0.527e-6 

Path Type: Slant Path 

Platform Altitude (m): 3 

Target Altitude (m): 100,000 

Path Length (m): 141,500 

A.2.4 Ground Level tab 

Pressure (mb): 1024  

Air Temperature (F): 38  

Relative Humidity (%): 83 
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