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Abstract

The Two-on-One pursuit-evasion differential game is revisited where the holonomic

players have equal speed, and the two pursuers are endowed with a circular cap-

ture range ` > 0. Then, the case where the pursuers’ capture ranges are unequal,

`1 > `2 ≥ 0, is analyzed. In both cases, the state space region where capture is

guaranteed is delineated and the optimal feedback strategies are synthesized. Next,

pure pursuit is considered whereupon the terminal separation between a pursuer and

an equal-speed evader less than the pursuer’s capture range ` > 0. The case with

two pursuers employing pure pursuit is considered, and the conditions for capturabil-

ity are presented. The pure pursuit strategy is applied to a target-defense scenario

and conditions are given that determine if capture of the attacker before he reaches

the target is possible. Lastly, three-on-one pursuit-evasion is considered where the

three pursuers are initially positioned in a fully symmetric configuration. The evader,

situated at the circumcenter of the three pursuers, is slower than the pursuers. We

analyze collision course and pure pursuit guidance and provide evidence that conven-

tional strategy for “optimal” evasive maneuver is incorrect.
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An Analytic Study of Pursuit Strategies

I. Introduction

1.1 Overview

The following document provides an analysis of pursuit-evasion games. We be-

gin by analyzing the Two-on-One pursuit-evasion differential game à la Rufus Isaacs’

“Two Cutter and Fugitive Ship” [1]. Isaacs’ geometrically derived the optimal feed-

back strategies for the two Pursuers (P1, P2), who employ Collision Course (CC)

guidance, and the Evader under the stipulation that their respective speeds, vP and

vE, were such that the speed ratio µ , vE
vP
< 1 – that is, the Pursuers were faster than

the Evader. It is often stipulated that the players have simple motion/are holonomic;

this assumption is maintained throughout the proceeding chapters.

Wasz and Pachter [2] expanded upon Isaacs formulation by endowing the Pursuers

with capture ranges of radius `. They furthered the adaptation of the “Two Cutters

and Fugitive Ship” game by equalizing the speeds of the three players – the speed

ratio µ = 1 [3]. Wasz and Pachter delineated the solution to the Game of Kind by

determining the region in the reduced state space where isochronous capture of the

Evader is guaranteed. Then, they determined the solution to the Game of Degree by

deriving the optimal state feedback strategies for the three players.

This research picks up where [3] left off by first developing a streamlined derivation

for the Game of Degree in the Two-on-One pursuit-evasion differential game when

the speed ratio µ = 1 and the two Pursuers are endowed with capture ranges of

radius ` – see Chapter III. We continue to adapt the “Two Cutters and Fugitive
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Ship” game by solving the Game of Kind for the case when the two Pursuers are

endowed with unequal capture ranges, `1 > `2 ≥ 0. As shown in Chapter IV, we

conjecture that the state space region which guarantees isochronous capture of the

Evader is delimited by the two tangents to the Pursuers’ capture disks. The validity

of the conjecture is confirmed through numerical simulation and exploration of special

cases. The solution to the Game of Degree is then provided through the derivation

of the players’ optimal state feedback strategies. We complete the solution of the

Two-on-One pursuit-evasion differential game by analyzing the reduced state space

in 3-dimensions.

Next, we analyze games of Pure Pursuit (PP) in which a single Pursuer instanta-

neously heads toward an Evader’s position. Pure pursuit games have been considered

for centuries [4], [5], however, most research was limited by the assumptions that the

Evader initially travels abeam the Pursuer, point capture is required, and the speed

ratio µ , vE
vP

< 1. Fairly recently, Barton and Eliezer [6] provided a closed-form

solution when the Evader’s initial heading is unrestricted.

In this paper, we analyze the game in which a Pursuer, endowed with a circular

capture disk of radius `, gives chase to a course-holding Evader when the speed ratio

µ = 1. We analytically derive the Pursuer’s PP curve and determine the necessary

and sufficient conditions for capture. We then turn our attention to Two-on-One PP

games – see Chapter V.

Next, we look at the application of Pure Pursuit in defense of a target. Isaacs

[1] studied the Target Defense scenario under the assumptions that the speed ratio

µ < 1 and point capture was required. In this research, in Chapter VI, we analyze the

defense of a stationary Target (T) under attack by a course-holding Evader/Attacker

and defended by a Pursuer/Defender endowed with a capture range ` > 0. We analyze

the Target Defense game for both a slow Evader/Attacker (µ < 1) and an equal speed
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Evader/Attacker (µ = 1). A “Winning Region” is developed in which the Attacker

reaches the Target before being intercepted by the Defender.

Lastly, in Chapter VII, we consider a Three-on-One pursuit-evasion game. The

inclusion of a third Pursuer greatly increases the complexity of the problem. Thus, we

examine the Three-on-One game under the stipulation that the initial configuration

is fully symmetric, that is, the three Pursuers’ initial positions rest on the vertices of

an equilateral triangle 4P1P2P3. The slow Evader (µ < 1), is initially positioned at

the circumcenter of the equilateral triangle. In the work of Von Moll, Pachter, Garcia,

Casbeer, and Milutinovic [7], it was determined the Pursuer’s “optimal” strategy was

to stay put. In Chapter VII, we challenge this notion by introducing a dithering

Evader. We determined the “optimal” frequencies to increase the time-to-capture

when compared to a stationary Evader.

1.2 Motivation

With the evolution of autonomous aircraft and drone technology, it is of interest to

study air-to-air conflict. Drone swarming and other air-combat strategies regarding

multiple players require special consideration. Previous research in this field focused

on pursuit-evasion games with fast (µ > 1) Pursuers. In this research, however, we

analyze the operationally relevant case where all of the players have similar capa-

bilities. Thus, we endow the Pursuer(s) with finite capture ranges to simulate an

aircraft weapon system. It is also important to note that most of the research in

this document was developed analytically. Deriving closed-form solutions expand the

understanding of what occurs at the boundaries of the game.
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1.3 Organization

The organization of this paper is as follows. Chapter I provides a brief back-

ground and introduction into the research described in later chapters. Chapter II

summarizes the relevant sources used to develop this research and is broken down

into two major sections: Section 2.1 outlines the relevant papers regarding pursuit-

evasion games where the Pursuer(s) employ Collision Course (CC) guidance, and

Section 2.3 describes the literature relevant to games of Pure Pursuit (PP). Chapters

III-VII are individual papers. Chapters III and IV discuss the Two-on-One pursuit-

evasion differential game in which the Pursuers employ CC guidance. Chapters V

and VI discuss games of PP. Chapter VII discuss both CC and PP, but in the con-

text of Three-on-One pursuit-evasion. Chapter VIII summarizes the findings in this

research.
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II. Background and Literature Review

The following literature review summarizes the sources pertaining to the research

in the proceeding chapters. This chapter is broken down into two sections: the works

concerning Collision Course (CC) guidance and the works concerning Pure Pursuit

(PP) guidance. The research relevant to CC guidance, found in Section 2.1, is further

broken down into subsections that regard the magnitude of the speed ratio µ = vE
vP

as well as the number of pursuers. Section 2.3 discusses the literature pertaining to

games of Pure Pursuit, which is then broken down to discuss the interesting case of

the Target Defense Scenario.

2.1 Collision Course Guidance

2.1.1 The Speed Ratio µ < 1

The basis of this research stems from the work of Rufus Isaacs [1], who in 1951

developed the concept of the differential game. A differential game is a subset of

game theory which models and analyzes a dynamic system in conflict. In [1], Isaacs

analyzed pursuit-evasion games and discussed their application in wartime. Relevant

to the following research, Isaacs formulated the “Two Cutters and Fugitive Ship”

differential game, which described the chase of two fast Pursuers (P ) against a slow

Evader (E). Isaacs stipulated that the Pursuers and Evader were holonomic, the

speed ratio µ = vE
vP
< 1, the pursuers employed Collision Course (CC) guidance, and

point capture was required. He derived a solution to the game geometrically with the

use of Apollonius circles. Apollonius circles are generated from a set of points whose

distances from two fixed points, the positions of the Pursuer(s) and the Evader, are a

constant ratio, the speed ratio µ = vE
vP

. Isaacs determined that, under optimal play in

the Two-on-One pursuit-evasion differential game, the Pursuers and Evader should
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aim for the farthest vertex of the intersection of two Apollonius circles. This strategy

is discussed and analyzed further in Chapter VII. Isaacs also discusses the “Cornered

Rat” scenario in [1], where an evader is trapped between a wall and a pursuer. We

analyze a variation of this scenario in Chapter IV.

The geometry-based strategies derived in [1] were verified in Pachter’s work in

[8]. Pachter showed the pursuit-evasion strategies from [1] were recovered from the

solution of the Hamilton-Jacobi-Isaacs partial differential equation. His work was

especially helpful in developing the costates for the 3-dimensional state space solution

found in Chapter IV.

In a continuation to Isaacs’ work, Pachter, Von Moll, and Garcia [9] delineated the

solution to the Game of Kind for the Two-on-One pursuit-evasion differential game

with the speed ratio µ < 1. They determined the state space region in which the

pursuers isochronously capture the evader.

Wasz and Pachter [2] expanded analysis of two-on-one differential games by en-

dowing the pursuers with a capture range ` > 0. With the inclusion of capture ranges,

the Apollonius circles in [1] become Apollonius ovals. They geometrically derived the

solution to the Game of Kind, then provided the players’ optimal feedback strategies.

In Chapter IV, we compare the state space region, derived in [2], where the Pursuers

isochronously capture the Evader when endowed with a capture range ` > 0 and the

region where the Evader is isochronously captured by equal speed pursuers, µ = 1,

endowed with capture ranges ` > 0.

2.1.1.1 Three-On-One

Von Moll, Pachter, Garcia, Casbeer, and Milutinovic [7] expanded the study of

pursuit-evasion games by incorporating a third pursuer. The inclusion of a third

pursuer in pursuit-evasion games greatly increases the complexity. In [7], they ana-
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lyzed the Three-on-One pursuit-evasion scenario in which the configuration is fully

symmetric, that is, the three Pursuers’ positions exist on the vertices of an equilat-

eral triangle and the Evader is positioned at the circumcenter. In the Two-on-One

scenario, the vertices of the intersection of two Apollonius circles provide the optimal

aimpoint to prolong the Evader’s life given the Pursuers are employing “optimal”

CC guidance. In the case with three pursuers, as pointed out by [7], the vertices of

the intersection of three Apollonius circles provide an aimpoint that result in a faster

time-to-capture than if the Evader remained stationary at the circumcenter of the

equilateral triangle. Thus, they concluded the best course of action for the evader

was to remain stationary. Chapter VII further discusses the implications of three

pursuers in pursuit-evasion games.

Pachter, Von Moll, and Garcia [10] continued the study of the Three-on-One

pursuit-evasion game where the pursuers employ Collision Course (CC) guidance.

They analyzed the game in which the Evader runs away from one of the Pursuers. As

pointed out in [10] and referenced in VII, it is best for the Evader to remain stationary

at the circumcenter of the equilateral triangle in the initial configuration.

2.1.2 The Speed ratio µ = 1

Same speed pursuit-evasion differential games, that is the speed ratio µ = vE
vP

= 1,

require special consideration. In the seminal paper [11] discriminating pursuit strate-

gies are employed, which, according to the survey paper [12], is common in many-on-

one pursuit-evasion games. However, in this paper, we use state feedback strategies.

The motivation for studying same speed pursuit-evasion games comes from Kang [13]

and Horie [14], who discuss the operational relevance of studying opposing players

with similar capabilities. Prior to [13] and [14], most research analyzed pursuit-

evasion games with fast pursuers as in [15]. Chapters III, IV, V, and VI all analyze
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pursuit games with equal speed players, µ = 1.

In [3], Wasz and Pachter continued their research of two-on-one pursuit evasion

with a non-zero capture range with the stipulation that the speed ratio µ = 1. When

the players have the same speed, the boundaries for capture are no longer defined by

Apollonius ovals, but arcs of hyperbolae. They delineated the solution to the Game of

Kind by determining the state space region where capture is guaranteed. The solution

to the Game of Degree was found by deriving the optimal feedback strategies for the

players. Chapter III is a derivative from [3], as we take the solution of the Game of

Kind from Wasz and Pachter and generate a streamlined derivation of the solution

to the Game of Degree.

2.2 Target Defense

Isaacs [1] analyzed a Target Defense game in which the Pursuer/Defender and

Evader/Attacker have equal speed, µ = 1, and point capture is required. In this case,

the Defender employs CC pursuit, and the Target is an area in the state space.

2.3 Pure Pursuit

Pure Pursuit (PP) strategies in pursuit-evasion games have been studied for cen-

turies. Traditionally, PP games were analyzed under the stipulation that the pursuer

is faster than the evader and point capture is required. Until recently, closed-form

solutions for games of PP only existed under the assumption that the pursuer is ini-

tially abeam the evader, as is the case in [4] and [5]. In the early 2000’s, Barton and

Eliezer [6] derived a closed form solution for the Pursuer’s path when the Evader’s

heading is not restricted to being abeam the Pursuer’s initial line of sight. These

works provided the background necessary for the research developed in Chapters V,

VI, and VII.

8



2.3.1 Target Defense

Another source that provided relevant information for this research includes the

work of Garcia, Casbeer, Fuchs, and Pachter [16]. They looked at the 2-Dimensional

differential game with a Target, a Pursuer, and a Defender, where the Defender acted

to intercept the Pursuer before it reached the Target. Assuming equal and constant

speeds, an analytical solution was determined using Isaacs’ Methodology. Given the

Defender had a positive capture radius, the analytical solutions provide the optimal

interception point, thus providing the optimal headings for the players at each time

step. Target Defense games are further discussed in Chapter VI.
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III. Two-on-One Pursuit when the Pursuers Have the Same
Speed as the Evader

3.1 Abstract

A two-on-one pursuit-evasion differential game is considered. The setup is akin to

Isaacs’ Two Cutters and Fugitive Ship differential game. In this paper it is however

assumed that the three players have equal speeds and the two cutters/pursuers have

a non-zero capture radius. The case where just one of the Pursuers is endowed

with a circular capture set is also considered. The state space region where capture

is guaranteed is delineated, thus providing the solution of the Game of Kind, and

the players’ optimal state feedback strategies and the attendant value function are

synthesized, thus providing the solution of the Game of Degree.

3.2 Introduction

Isaacs’ Two Cutters and Fugitive Ship differential game [1] is revisited – see Fig. 1 .

In Isaacs’ formulation, the cutters are faster than the fugitive ship and point capture

Figure 1: Two Cutters and Fugitive Ship

is required. The solution of the game was obtained using a geometric method, sans
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a proof. In [8] the validity of Isaacs’ geometric approach was proven. It was shown

that the geometric method–provided strategies are recovered from the solution of the

HJI PDE. In [1], [8], and [9], point capture was considered and the case where the

two pursuers are endowed with circular capture sets of radius ` > 0 was addressed in

[2]. In references [1], [8], [9], and [2], the pursuers are faster than the evader.

In this paper it is assumed that all three players have the same speed. Many-on-

one pursuit-evasion games where the players have simple motion and the pursuers

and evader have the same speed require special consideration – see, e.g. the seminal

paper [11], where discriminating/stroboscopic pursuit strategies are employed. This

has become a standard feature in the many-on-one pursuit-evasion literature as doc-

umented in the recent survey paper [12]. Not so in this paper where the optimal

strategies are state feedback strategies.

In this paper, the three players have equal speeds but, as in [2], the cutters have

a non-zero capture radius; when the two pursuers have the same speed as the evader,

point capture is not possible, and this even if the Evader would be obliged to pre-

announce his course; thus the need for finite capture sets. This game, where all

the players have the same speed and the pursuers have a non-zero capture range,

was considered in our preliminary work [3]. The state space region where capture is

guaranteed was delineated thus providing the solution of the Game of Kind and the

closed form solution of the Game of Degree which yields the players optimal state

feedback strategies was outlined. In this paper, a streamlined derivation of the main

result – the pursuers’ and the evader’s optimal state feedback strategies, and the

Value function, is presented. The novel approach lends itself to the consideration

of additional interesting scenarios, e.g., the case where the pursuers have different

capture ranges.

The motivation behind this research is directly tied to air-to-air operations [13],
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[14]. Previous research into this field has focused on games with fast pursuers where

the objective is point capture, as in [15], but we are expanding this to include opera-

tionally relevant instances where both the blue and red sides have similar capabilities

and the pursuers are endowed with finite capture sets, to reflect the range of aircraft

weapon systems. This allows for the considerations of bounded capture regions, which

was not the case when fast pursuers and point capture only is considered.

3.3 Geometry

The Two Cutters and Fugitive Ship differential game is herein solved using a geometric

method based on the solution of the max-min open-loop optimal control problem –

as opposed to solving the HJI PDE – the validity of the geometric method in the

case when the pursuers are faster than the evader having been proven in [8]. Now,

when a pursuer and an evader; both with simple motion á la Isaacs, have the same

speed and the pursuer is endowed with a circular capture set of radius `, the locus of

points in the Euclidean plane which they can reach at the same time is a hyperbola.

Therefore, for any value of capture range ` > 0 of the pursuer, what would have

been a Cartesian oval had the pursuer been faster than the evader, as in [2], will now

become a hyperbola. The Boundary of the Safe Region of the Evader (BSR) will now

be delineated by an arc of the hyperbola

X2

a2
− Y 2

b2
= 1

with the parameters

a =
`

2
, b =

1

2

√
d2 − `2

where d is the P−E separation. Since there are two pursuers, there are two hyperbolae

at play. The asymptotes of those hyperbolae are used to solve the Game of Kind,
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and these are given by

Y = ± b
a
X

It will be useful to define the hyperbola’s ”eccentricity” e , d
`
, and so the asympototes’

slope is

b

a
=
√
e2 − 1 (1)

The hyperbola locus, whose foci are the instantaneous positions of the pursuer P

and the Evader E, and it’s asymptotes, is shown in Figure 2. We use the hyperbola

construct to designate the Safe Region (SR) of E in the two-on-one differential game

when the Pursuers have the same speed as the Evader. Figure 2 shows the Boundary

of the Evader’s Safe Region (BSR) in the realistic plane (X,Y) when the pursuer is at

(−d
2
, 0) and the evader at (d

2
, 0). Because the Pursuer is not faster than the Evader,

this BSR is open; in other words, the Evader can escape. Hence, we need at least

one other pursuer to obtain a closed SR so that the Evader might be isochronously

captured by the two cooperating pursuers.

In the version of the Two Cutters and Fugitive Ship Differential Game investi-

gated herein we have two pursers with capture radius ` and one evader, with all three

having the same speed. We use a rotating reference frame (x, y), with the x-axis run-

ning through the instantaneous positions of the Pursuers P1 and P2 and the y-axis is

the orthogonal bisector of the segment P1P2. The state is specified by three variables:

half of the separation of the pursuers, xp, and the x and y position, (xE, yE), of the

Evader in the rotation (x, y) frame. For example, the symmetric situation where E,

P1, and P2 are collinear and the Evader is located halfway between P1 and P2 is

illustrated in Figure 3. This Figure shows both the hyperbolae and their asymptotes,

which intersect. The SR is therefore bounded and under optimal play the two pur-

suers will isochronously capture the Evader.
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Figure 2: The Hyperbola is the BSR of E

If the asympototes don’t intersect the evader can escape. But if the hyperbolae

intersect and E is in the lens shaped region formed by the intersecting hyperbolae,

if the pursuers play optimally, captures of the Evader is guaranteed. I1 and I2 are

the points of intersection of the (P1, E) and (P2, E) based hyperbolae. Each of these

points will be important in the sequel. Our immediate goal is to determine whether

the SR is bounded, that is, the asymptotes intersect, which obviously is the case in

the symmetric configuration illustrated in Figure 3 – when the evader is hemmed in

by the pursuers, the asymptotes of the hyperbolae intersect at I ′ and I ′′.

14



Figure 3: Symmetric State – Two Pursuer Action

3.4 Game of Kind

When the players are in general position, to find the solution to the Game of Kind,

that is, whether under optimal pursuer play the Evader’s capture is guaranteed, we

need to determine whether the SR is bounded, which is the case if and only if the

asymptotes of the hyperbolae intersect. Consider now the diagram in Figure 4. There

are four points of interest, O1,O2, I
′, and I ′′ that are vertices of a quadrilateral. This

quadrilateral contains the entirety of the evader’s SR, so we can ensure capturability

if we determine that this quadrilateral is indeed formed.

To this end, consider the angles θ, α1, α2 in Figure 4. Since a quadrilateral must have

all internal angles sum to 360 degrees, we have the following

(360− θ) + α1 + α2 < 360
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Figure 4: Quadrilateral Formed by Intersecting Asymptotes

This yields the condition for a closed SR, and consequently the capturability condition

is

θ > α1 + α2

Since the slope of the asymptotes in the realistic plane (X, Y ) are specified by Equa-

tion 1, we know that α1 = arctan(
√
e21 − 1) and α2 = arctan(

√
e22 − 1), with e1 = r1

`

and e2 = r2
`

. The angles α1, α2, and θ are exclusively determined by the game’s state

(xP , xE, yE). This is shown in Figure 5 where P1, P2, and E are in a general position.

In Figure 5 the points

O1 =
1

2
(xE − xP , yE) , O2 =

1

2
(xE + xP , yE)
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Figure 5: The State (xP , xE, yE)

The angles

tanα1 =
√
e21 − 1 , tanα2 =

√
e22 − 1

and

tanP1 =
yE

xP + xE
, tanP2 =

yE
xP − xE

Therefore, summing those angles, we can characterize the captured zone in the re-

duced state space (xP , xE, yE). Based on these arguments, in Ref. [3] it was shown

that the SR is closed and capturability is guaranteed if and only if in the realistic plane

(x, y) the evader is located in the gray zone shown in Figure 6. If the y-coordinate

is greater than `, the evader can escape along a straight line path; he might even

pre-announce his course and he’ll still get away. The broken line in Figure 6 is not

part of the gray zone where capturability is guaranteed.

The capture zone is limited. This is due to the fact that the pursuers are not

faster than the evader – when both pursuers or just one pursuer, are/is faster than

the evader, global capturability is guaranteed. Interestingly though, while the area
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of the Capture Zone is small, the pursuers can initially be far away from the evader

and yet capturability is still guaranteed, provided the evader is in the narrow, gray,

capturability zone.

Figure 6: Region of Capture

3.5 Game of Degree

Suppose the initial state is in the capture zone as shown in Figure 6. We focus

on the Capture Zone area which is in the first quadrant of the (x,y) plane, that is,

xE > 0, yE > 0.

Because both pursuers with equal speed and equal capture radii must travel the

same distance in the same time, the interception ∆IP1P2 is isosceles, so the vertex I

of the BSR must be on the orthogonal bisector of the segment P1P2; therefore, the

intercept point I is on the y-axis.

We now stipulate that the following must hold – see Fig. 7,

√
x2E + (y − yE)2 =

√
x2P + y2 − `,

as capture is only possible if EI = P1I − ` = P2I − `. Squaring both sides of the
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Figure 7: Optimal Trajectories

above equation, we obtain a quadratic equation in y

4(`2 − y2E)y2 − 4yE(`2 − y2E + x2P − x2E)y − (`2 − y2E + x2P − x2E)2 + 4`2x2P = 0.

The discriminant must be non-negative. Thus, the following must be true:

4y2E(`2 − y2E + x2P − x2E)2 + 4(`2 − y2E)(`2 − y2E + x2P − x2E)2 − 16`2(`2 − y2E)x2P > 0

(`2 − y2E + x2P − x2E)2 − 4(`2 − y2E)x2P > 0

We know `2 − y2E > 0, x2P − x2E > 0, thus

`2 − y2E + x2P − x2E > 2
√
`2 − y2ExP .

We need

(xP −
√
`2 − y2E > x2E),
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but in the Capture Zone

xP −
√
`2 − y2E > xE.

Thus, as long as the state (xP , xE, yE) ∈ Capture Zone, the quadratic equation has

two real roots. If yE ≥ 0,

y =
yE(`2 − y2E + x2P − x2E)

2(`2 − y2E)
+
`
√

(`2 − y2E + x2P − x2E)2 − 4(`2 − y2E)x2P
2(`2 − y2E)

> 0 (2)

The expression under the square root can be simplified so that eq. (2) can be written

as

y(xP , xE, yE) =
`2−y2E+x

2
P−x

2
E

2(`2−y2E)
yE +

`
√

(xP+
√
`2−y2E)2−x

2
E ·

√
(xP−
√
`2−y2E)2−x

2
E

2(`2−y2E)
(3)

Eq. (3) can be applied ∀ xP > 0, xE > 0, yE > 0 to the Capture Zone part which is

in the first quadrant of the realistic (x,y) plane. The players’ optimal state feedback

strategies are

sin ψ∗ =
y√

x2P + y2
, cos ψ∗ =

xP√
x2P + y2

sin χ∗ =
y√

x2P + y2
, cos χ∗ = − xP√

x2P + y2

sin φ∗ =
y − yE√

x2E + (y − yE)2
, cos φ∗ = − xE√

x2E + (y − yE)2

where the function y(xP , xE, yE) is given by eq. (3). The value function

V (xP , xE, yE) =
√
x2P + y2 − `.
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When the state is symmetric (xE = 0)

y(xP , 0, yE) =
x2P − (`− yE)2

2(`− yE)

and the Value/time-to-capture

V (xP , 0, 0) =
x2P − (`2 − y2E)

2(`− yE)

When yE = 0,

y(xP , xE, 0) =

√
(xP + `)2 − x2E ·

√
(xP − `)2 − x2E

2`

3.6 Contact

Consider the case where the initial state is not in the interior of the gray capture

zone and E is in contact with one of the pursuers, say P2 – see Figure 8 – so

(xP − xE)2 + y2E = `2

We insert this expression into eq. (3) and calculate the y-coordinate of the players’

aim point,

y =
xPyE

xP − xE
(4)

But note:

tan(π − χ) =
yE

xP − xE

and we calculate

y = xP tan(π − χ) =
xPyE

xP − xE
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Figure 8: E in Contact with P2

so,

y = y

Thus, the optimal strategy of P2 mandates that: Once in contact, P2 pushes against

E and does not let go of E. Once E reaches the y–axis which is the orthogonal

bisector of the P1P2 segment, the captive, but not yet captured, E will be met by P1

and capture will be effected.

In general, if E does not play optimally by heading toward the interception point

I = (0, y), where y is specified by eq. (3), he will prematurely come into contact

with one of the Pursuers, whereupon, as discussed above, he’ll be pushed toward the

y–axis where he’ll be met by the companion pursuer and he’ll be captured. Indeed,

see Fig. 9 – the Evader’s SR is closed and, trying to escape, he’ll therefore run into

one of the hyperbolae, say the P2, E hyperbola. He will be met by P2 who, by playing

optimally, will push toward the point I ′ on the y-axis where he’ll encounter P1 and

capture will be effected. This play is illustrated in Figure 9:

E erred by not running toward the aim point I and prematurely established contact

with P2. Consequently, once contact is established, P2 relentlessly pushed E to the
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Figure 9: Suboptimal Play of Evader

new aim point I ′ on the y–axis, where E will be met by P1 and will be isochronously

captured by P1 and P2. This is not good for E because P1I ′ = P2I ′ < P1I = P2I;

E was captured prematurely. A period of contact cannot arise in classical pursuit-

evasion differential games where the pursuers are faster than the evader and this

occurrence is unique to games where the pursuer’s speed is the same, or even lower,

than the evader’s. When the speed ratio µ = vE
vP

, 0 < µ < 1, contact is immediately

fatal for E.

3.7 Different Capture Ranges

We now consider the case where the Pursers are endowed with dissimilar capture

ranges: `1 > `2 ≥ 0. The intercept point I is no longer on the y-axis. Instead,

the point of interception is defined by the intersections of three hyperbolae: the

safe region-delimiting hyperbola whose foci are P1 and E, the safe region-delimiting
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hyperbola whose foci are P2 and E, plus a third hyperbola whose foci are the positions

of the pursuers, P1 and P2. The parameters for the latter are

a =
`2 − `1

2
, b =

√
x2P − a2.

The geometry is illustrated in Figure 10. The three hyperbolae are concurrent at the

point I, which is the three players’ aim point.

Figure 10: Non-Equal Capture Disks. `1 = 1.2, `2 = 0.3.

We can now also consider the case where one of the pursuers, say P2, is not en-

dowed with a capture disk, thus point capture by P2 is then necessary. The geometry

when `2 = 0, is depicted in Figure 11. The aim point I, where, under optimal play

by the three players the evader will be captured, is defined by the intersection of the
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P1, E hyperbola, the orthogonal bisector of the EP2 segment, and also the P1, P2

hyperbola; these three curves are concurrent at the aim point I.

Figure 11: Point Capture in Conjunction with Capture by a Pursuer Endowed with
a Capture Disk of Radius. `1 = 1.5.

3.8 Conclusion

A pursuit-evasion differential game in which two pursuers engage an equal-speed

evader was analyzed. For capture to be effected, at least one of the pursuers must be

endowed with a circular capture disk. A geometric approach based on the solution

of the max-min open loop optimal control problem, whose validity was assumed in

[1] and proven in [8], is employed also when the pursuers have the same speed as

the evader. In this paper, a streamlined derivation of the players’ optimal state

feedback strategies is provided. This, contingent on the evader being in the zone of

capturability, as specified by the geometric solution of the Game of Kind. The zone
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of capturability is rather restricted due to the fact that the pursuers have the same

speed as the evader. In extension, the optimal feedback strategies for pursuers with

unequal capture radii were determined. Included was also the case in which only one

pursuer is endowed with a capture disk.
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IV. Two-on-One Pursuit of an Equal Speed Evader

4.1 Abstract

The two-on-one pursuit-evasion differential game in the Euclidean plane is con-

sidered for the case where the holonomic players have equal speed, but at least one

of the Pursuers is endowed with a circular capture disk. Necessary and sufficient

conditions for capturability when the two Pursuers’ respective capture disks radii are

`1 ≥ `2 ≥ 0 are obtained, thus providing the solution of the Game of Kind. The

solution to the Game of Degree is then derived, thus providing the optimal pursuit

and evasion state feedback strategies for the two Pursuers and the Evader when all

three have equal speed.

4.2 Introduction

The two-on-one pursuit-evasion differential game on the Euclidean plane with sim-

ple motion/honolomic players is analyzed under the stipulations that the Evader/Pur-

suers’ speed ratio µ , vE
vP

= 1, but at least one of the Pursuers is endowed with a

capture disk whose radius ` > 0.

Isaacs, who formulated the two-on-one pursuit-evasion differential game under

the header “The Two Cutters and Fugitive Ship” differential game, stipulated that

the players have simple motion, the Pursuers are faster than the Evader, and point

capture is required [1]. Wasz and Pachter [2] expanded on Isaacs’ work through the

introduction of Pursuer capture disks whose radii `1 = `2 = ` > 0. In their work, they

provided the solution to the Game of Kind by determining the regions in the state

space where one of the Pursuers captures the Evader and the region where the two

pursuers isochronously capture the Evader. They then turned to the Game of Degree

and determined the optimal state feedback strategies for the Pursuers and the Evader.
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In an extension to the previously mentioned work, Pachter and Wasz [3] and Vlassakis

and Pachter [17] addressed the two-on-one pursuit-evasion differential game where the

speed ratio µ = 1 and the two Pursuers’ capture disks radii are `1 = `2 = ` > 0. The

conditions for capturability were determined along with the optimal state feedback

strategies for the Pursuers and the Evader. Also in their work, Vlassakis and Pachter

[17] explored the case where the Pursuers are endowed with unequal capture disks

`1 > `2 ≥ 0. The solution to the Game of Degree was partially delineated. The case

where there are many pursuers, the Evader is as fast as the Pursuers, and the game

evolves in the Euclidean plane where the players have simple motion was addressed

by Pshenichnyi in the seminal paper [18], however, point capture was required. The

pursuit strategy in [18] was stroboscopic, that is, the Evader was discriminated. In

our work, the two Pursuers are endowed with circular capture sets. Most importantly,

in our work the players’ optimal strategies are state feedback strategies.

The paper is organized as follows. In Section 4.3, the previous work concerning

the Two-on-One pursuit of an equal speed Evader with unequal capture ranges is

consolidated and extended. We obtain the complete solution to the Game of Kind

for the case in which the Evader/Pursuers’ speed ratio µ = 1: The necessary and

sufficient conditions for capturability are determined for both the cases in which the

Pursuers’ capture radii `1 > `2 > 0 and `1 > `2 = 0. The Capturability Zone is where

the Game of Degree is played, and its solution, the Pursuers’ and Evader’s state

feedback optimal strategies – are provided in Section 4.4. We analyze the two-on-one

pursuit-evasion differential game, when the speed ratio µ = 1, in a three-dimensional

reduced state space and draw special attention to the conditions in the end game,

at the moment of capture of the Evader by the two ”slow” pursuers. A conjecture

which characterizes the region of capturability, advanced in Section 4.3, is numerically

validated by simulations, as discussed in Section 4.5. The Game of Kind and Game
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of Degree in the case where one of the Pursuers employs point capture is analyzed in

the respective Sections 4.6 and 4.7 and interesting special cases are fully analyzed in

Section 4.8. Special attention is given in Section 4.9 to the geometry of the reduced

state space of the Two-on-One pursuit-evasion differential game where the speed ratio

µ = 1 and the Pursuers’ capture ranges are `1 ≥ `2 ≥ 0. In Section 4.10, we apply

our solution of the Two-on-One pursuit-evasion differential game to the interesting

game where a single Pursuer chases an equal speed Evader cornered against a wall.

Conclusions follow in Section 4.11.

4.3 Unequal Capture Ranges: Game of Kind

When the capture ranges are `1 > `2 > 0, the results of references [3] and [17]

bounds for the state space region Rc where capturability is guaranteed. This follows

from the results reported in [17], where the Pursuers’ capture ranges are equal, that

is, `1 = `2 = ` (> 0), and the capture region is included between the tangents of the

capture circles of radius ` – see Fig. 12:

Figure 12: Capturability Region.

29



Obviously, when the capture ranges `1 > `2 ≥ 0, the capture region Rc is smaller

than the region included between the tangents of the circles of radius `1 and is larger

than the region included between the tangents of the circles of radius `2.

In this respect, in reference to the Game of Kind, we have the following:

Conjecture 1 In the Two-on-One differential game when the Pursuers’ capture ranges

`1 > `2 ≥ 0, the capturability region RC is the region included between the tangents

to the capturability circles, as shown in Fig. 13.

Figure 13: Capturability Region.

If the state (xP , xE, yE) is in the blue shaded region shown in Fig. 13, the Evader

cannot escape, provided the pursuers play optimally.

yE <
1√

4x2P − (`1 − `2)2
[(`2 − `1)xE + (`1 + `2)xP ], (5)

�

Referencing Fig. 14,

tan α =
`1 − `2√

(2xP )2 − (`1 − `2)2
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Figure 14: Capture Zone with Unequal Capture Radii

so the slope of the straight line which is tangent to the Pursuers’ capture circles is

− `1−`2√
4x2P−(`1−`2)2

and, therefore, the tangent’s equation is

y(xE;xP ) = − `1 − `2√
4x2P − (`1 − `2)2

xE + c.

The tangent intersects the x-axis at the distance x from the origin, at (x, 0). We

calculate

x+ xP
2xP

=
`1

`1 − `2

x =
`1 + `2
`1 − `2

xP

so

0 = − `1 − `2√
4x2P − (`1 − `2)2

· `1 + `2
`1 − `2

xP + c
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⇒

c =
`1 + `2√

4x2P − (`1 − `2)2
xP .

Hence, the conjectured capturability zone in the upper half plane where yE ≥ 0 is

below the straight line (5). The capture zone is symmetric about the x-axis.

The validity of the conjecture is tested and “proved” by simulation in Section 4.5

after the Pursuers’ and Evader’s optimal state feedback strategies are developed in

Section 4.4 below.

4.4 Unequal Capture Ranges: Game of Degree

Consider the frame (x, y) in the Euclidean plane where the x-axis passes through

the positions P1 and P2 of the Pursuers and the y-axis is the orthogonal bisector of

the segment P1P2 whose length is 2xP . The position of the Evader in the (x, y) frame

is E = (xE, yE).

The Interception point I = (x, y) is on a hyperbola whose foci are P1 and P2 and

the distance from P1 to P2 is 2xP . The hyperbola, depicted in Fig. 15, is

x2

a2
− y2

b2
= 1 (6)

and its parameters are

a =
1

2
(`1 − `2), b =

√
x2P −

1

4
(`1 − `2)2.

Since the speed ratio µ = 1, when the Evader’s position is (xE, yE), the following

must hold: √
(x− xE)2 + (y − yE)2 =

√
(xP − x)2 + y2 − `2. (7)
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where (x, y) are the coordinates of the Interception point I where E is captured by

the Pursuers – see Fig. 15. We thus have two nonlinear equations, (6) and (7), in the

two unknowns x and y, whose solution yields the Interception point I = (x, y).

Figure 15: Interception is Effected on the Hyperbola whose foci are P1 and P2

We proceed as follows: squaring the two sides of eq. (7) yields

(xE − xP )x+ yEy +
1

2
(x2P − x2E − y2E + `22) = `2

√
(xP − x)2 + y2

Squaring again both sides of the above equation yields a quadratic equation in x and

y
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[(xE − xP )2 − `22]x2 + (y2E − `22)y2 + 2(xE − xP )yExy

+ [(xE − xP )w + 2`22xP ]x+ wyEy +
1

4
w2 − `22x2P = 0 (8)

where

w , x2P − x2E − y2E + `22.

We have two second-order polynomial equations (6) and (8) in two variables, (x, y).

We back out x from eq. (6):

x =
a

b

√
y2 + b2.

Inserting the above expression into eq. (8) and squaring, we get a quartic equation

in y. Quartic equations have an analytic solution. But, we should embark on the

solution of the quartic equation only after the solution of the Game of Kind guarantees

capturability – see Section 4.3, where it is mandated that E be under the tangents

to the capture disks. The quartic equation will then have two real solutions, one of

which – the point (x, y) farther from E – yields the players’ aim point I.

If `1 = `2 = ` > 0, eq. (6) is replaced by the equation x = 0 and setting x = 0 in

eq. (8) yields a quadratic equation in y:

(y2E − `2)y2 + (x2P − x2E − y2E + `2)yEy +
1

4
(x2P − x2E − y2E + `2)2 − `2x2P = 0

We, however, now consider the case in which the two Pursuers, P1 and P2, are endowed

with capture disks of unequal radii, `1 and `2. The reach of Pi is `i, i = 1, 2; without

loss of generality `1 > `2 ≥ 0, and, when `2 > 0, we must solve a quartic equation; if

however `2 = 0, we must solve a quadratic equation as will be evident in the sequel.

We have capturability if and only if the Safe Region (SR) of E is closed. As in [3],
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Figure 16: Safe Region of E. `1 = 1.2. `2 = 0.4.

the SR is formed by the P1, E and the P2, E hyperbolae, yet this is now a tale of three

hyperbolae, the third hyperbola being the P1, P2 hyperbola. The three hyperbolae

are concurrent at two points. The players’ aim point I is the point of concurrency

which is farther from E – see Fig. 16. Without (much) loss of generality, we have

assumed 0 ≤ xE, yE > 0. Geometrically, referencing Fig. 16, we calculate:

35



α1 = Atan

(√
(xP + xE)2 + y2E − `21

`1

)
,

α2 = Atan

(√
(xP − xE)2 + y2E − `22

`2

)
,

∠EP1P2 = Atan

(
yE

xP + xE

)
,

∠EP2P1 = Atan

(
yE

xP − xE

)
.

We have capturability if and only if the state (xP , xE, yE) is such that the upper

asymptote of the East-opening of the P1, E hyperbola and the upper asymptote of

the West-opening of the P2, E hyperbola meet/intersect. In this respect, we are

interested in the ∠EP1P2 + α1 and ∠EP2P1 + α2 angles. Thus, let

a1 ,tan(∠EP1P2 + α1) =
`1yE + (xP + xE)

√
(xP + xE)2 + y2E − `21

`1(xP + xE)− yE
√

(xP + xE)2 + y2E − `21
,

a2 ,tan(∠EP2P1 + α2) =
`2yE + (xP − xE)

√
(xP − xE)2 + y2E − `22

`2(xP − xE)− yE
√

(xP − xE)2 + y2E − `22

The equation of the upper asymptote of the East-opening of the hyperbola whose foci

are P1 and E is

y = a1x+ b1.

Since the upper asymptote of the East opening of the hyperbola emanates from the

point
(
xE−xP

2
, yE

2

)
,

yE
2

= a1
xE − xP

2
+ b1

where

b1 ,
1

2
[yE − a1(xE − xP )],
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and we get

y = a1x+
1

2
[yE − a1(xE − xP )].

Similarly, the equation of the upper asymptote of the West-opening of the hyperbola

whose foci are P2 and E is

y = −a2x+
1

2
[yE + a2(xP + xE)]

We have two linear equations in the two unknowns x and y. We are interested in the

solution

y =
1

2

a1[yE + a2(xP + xE)] + a2[yE − a1(xE − xP )]

a1 + a2
,

which is also written as

y =
1

2
yE +

1
1
a1

+ 1
a2

xP .

The SR is closed – capturability is guaranteed – if and only if a1 + a2 6= 0 and

y > 0, where

we calculate

y

xP
=


[
`1yE + (xP + xE)

√
(xP + xE)2 + y2E − `21

]
·
[
`2yE + (xP − xE)

√
(xP − xE)2 + y2E − `22

]


[
`1(xP + xE)− yE

√
(xP + xE)2 + y2E − `21

]
·
[
`2yE + (xP − xE)

√
(xP − xE)2 + y2E − `22

]
+
[
`2(xP − xE)− yE

√
(xP − xE)2 + y2E − `22

]
·
[
`1yE + (xP + xE)

√
(xP + xE)2 + y2E − `21

]



+ yE
2xP

(9)

The sufficient conditions for capturability can be described geometrically. In Fig. 16,

we see that for capturability to be possible,

∠EP1P2 + α1 <
π

2
and ∠EP2P1 + α2 <

π

2
.
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These conditions can also be written as

`1(xP + xE) > yE

√
(xP + xE)2 + y2E − `21

`2(xP − xE) > yE

√
(xP − xE)2 + y2E − `22,

and thus

`21(xP + xE)2 > [(xP + xE)2 − `21]y2E + y4E

`22(xP − xE)2 > [(xP − xE)2 − `22]y2E + y4E.

These conditions hold if and only if yE is such that

|yE| < `1, |yE| < `2

Capturability is then guaranteed.

If |yE| > `1, the SR is open – E can escape, and if |yE| > `2, we need `1 > |yE|

for capturability.

The quartic equation has two real solutions when its “parameter” (xP , xE, yE) is

such that a1 + a2 6= 0 and y given by eq. (9) is positive. For this to be the case, we

need |xE| < xP . This is so because the SR of E must be closed.

If both `1 = `2 = 0, since the speed ratio µ = 1, E can escape. However,

isochronous capture is possible when `2 = 0, provided `1 > 0. We show this by

replacing eq. (7) with

√
(x− xE)2 + (y − yE)2 =

√
(xP − x)2 + y2 (10)
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Squaring both sides of eq. (10) yields the linear relationship

(xP − xE)x− yEy =
1

2
(x2P − x2E − y2E) (11)

Eqs. (6) and (11) yield the quadratic equation in x

[
1

a2
−
(
xP − xE
byE

)2
]
x2 +

(xP − xE)(x2P − x2E − y2E)

b2y2E
x− (x2P − x2E − y2E)2

4b2y2E
−1 = 0

that is,

[(
b

a

)2

y2E − (xP − xE)2

]
x2+(xP−xE)(x2P−x2E−y2E)x−1

4
(x2P−x2E−y2E)2−b2y2E = 0

(12)

Here a = 1
2
`1 and b =

√
x2P − 1

4
`21. We require xP >

1
2
`1, otherwise the triangle

inequality will be violated; if xP <
1
2
`1, E cannot be (isochronously) captured by P1

and P2. And when yE = 0, the aim point I = (x, y) is

x =
1

2
(xP + xE), y =

√
x2P −

1

4
`21 ·

√(
xP + xE

`1

)2

− 1.

Fig. 17 shows the case where `2 = 0. If E is in the shaded state space region,

capture is possible. We have capturability because although `2 = 0, `1 > 0. The aim

point I is now at the intersection of the orthogonal bisector of the segment EP2 and

the hyperbola whose foci are E and P1, as shown in Fig. 17. We have capturability

if and only if

α1 + ∠EP1P2 <
π

2
− ∠EP2P1
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Figure 17: The Case where `2 = 0.

that is, the state (xP , xE, yE) is such that

π

2
−
[
Atan

(
yE

xP + xE

)
+ Atan

(
yE

xP − xE

)]
> Atan

(√
(xP + xE)2 + y2E − `21

`1

)

which yields the condition

√
(xP + xE)2 + y2E − `21

`1
<
x2P − x2E − y2E

2xPyE
(13)

The quadratic equation (12) has two real solutions when the parameter (xP , xE, yE) is

such that eq. (13) holds. In this respect, consider the discriminant ∆ of the quadratic
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eq. (12). We calculate

∆ = α(x2P − x2E − y2E)2 + (4x2P − `21)y2E − `21(x2P − x2E)

We have capturability if

x2P − x2E <
(x2P − x2E − y2E)2 + (4x2P − `21)y2E

`21
(14)

4.5 Simulation

Concerning Conjecture 1, and as a first step, consider the segment [yEmax , 0] on

the y-axis, where xE = 0. Thus, set xE = 0 in eq. (9) and calculate

y(xE = 0)

xP
=

yE
2xP

+

[
`1yE + xP

√
x2P + y2E − `21

] [
`2yE + xP

√
x2P + y2E − `22

]
[
`1xP − yE

√
x2P + y2E − `21

] [
`2yE + xP

√
x2P + y2E − `22

]
+
[
`2xP − yE

√
x2P + y2E − `22

] [
`1yE + xP

√
x2P + y2E − `21

]
We scan on 0 ≤ yE < yEmax the expression

[
`1xP − yE

√
x2P + y2E − `21

]
·
[
`2yE + xP

√
x2P + y2E − `22

]
+

[
`2xP − yE

√
x2P + y2E − `22

]
·
[
`1yE + xP

√
x2P + y2E − `21

]
> 0

In conjunction with the work reported in [17], the case where `1 = `2 = ` collapses

this expression to

`xP − yE
√
x2P + y2E − `2 > 0

`2x2P > y2Ex
2
P + y4E − y2E`2

y4E + (x2P − `2)y2E − `2x2P < 0
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The roots of the above equation are

y2E = 0, `2,

thus, we need −` < yE < `, which is indeed consistent with the result in [17].

The validity of Conjecture 1 when xE = 0 is examined numerically. For each

time step, the Interception point I was calculated using equations (9) and (6). The

three-state nonlinear dynamics of the differential game are – see Fig. 18:

ẋP =
1

2
(cos χ− cosψ), xP (0) = xP0

ẋE =cos φ− 1

2
(cos χ+ cos ψ) +

1

2

yE
xP

(sin χ− sin ψ), xE(0) = xE0

ẏE =sin φ− 1

2
(sin χ+ sin ψ)− 1

2

xE
xP

(sin χ− sin ψ), yE(0) = yE0

Fig. 18 shows the reduced state space in the realistic plane (X, Y ). The optimal

state feedback strategies are

sin ψ∗ =
y√

(xP + x)2 + y2
,

cos ψ∗ =
xP + x√

(xP + x)2 + y2

sin χ∗ =
y√

(xP − x)2 + y2
,

cos χ∗ = − xP − x√
(xP − x)2 + y2

sin φ∗ =
y − yE√

(xE − x)2 + (y − yE)2
,

cos φ∗ = − xE − x√
(xE − x)2 + (y − yE)2

where x, y are the coordinates of the players’ aim point I.

The players’ trajectories in the reduced state space are first obtained, including
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Figure 18: Reduced State Space in the Realistic Plane

their respective control time histories φ(t), ψ(t), χ(t), 0 ≤ t. To transform the

dynamics into the realistic plane, we first note that the initial conditions are the same

for both the realistic plane and the reduced state space because the (x, y) and (X, Y )

frames are initially aligned. The “free fall” closed-loop dynamics during optimal play
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are

ẊP1 = cos(ψ + θ), XP1(0) = −xP0

ẎP1 = sin(ψ + θ), YP1(0) = 0

ẊP2 = cos(χ+ θ), XP2(0) = xP0

ẎP2 = sin(χ+ θ), YP2(0) = 0

ẊE = cos(φ+ θ), XE(0) = xE0

ẎE = sin(φ+ θ), YE(0) = yE0

where

sin θ =
YP2 − YP1

2xp
, cos θ =

XP2 −XP1

2xp

and the control time histories are known. Thus,

ẊP1 =
XP2 −XP1

2xp
cos ψ − YP2 − YP1

2xp
sin ψ, XP1(0) = −xP0

ẎP1 =
XP2 −XP1

2xp
sin ψ +

YP2 − YP1

2xp
cos ψ, YP1(0) = 0

ẊP2 =
XP2 −XP1

2xp
cos χ− YP2 − YP1

2xp
sin χ, XP2(0) = xP0

ẎP2 =
XP2 −XP1

2xp
sin χ+

YP2 − YP1

2xp
cos χ, YP2(0) = 0

ẊE =
XP2 −XP1

2xp
cos φ− YP2 − YP1

2xp
sin φ, XE(0) = xE0

ẎE =
XP2 −XP1

2xp
sin φ+

YP2 − YP1

2xp
cos φ, YE(0) = yE0

We in-

tegrate the linear but time-dependent differential system

Ẋ = A(t) ·X, X(0) = X0, 0 ≤ t ≤ tf
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where

X ,



XP1

YP1

XP2

YP2

XE

YE


, X0 = (−xP0 , 0, xP0 , 0, xE0 , yE0) ,

A(t) =



−cos(ψ(t)) sin(ψ(t)) cos(ψ(t)) −sin(ψ(t)) 0 0

−sin(ψ(t)) −cos(ψ(t)) sin(ψ(t)) cos(ψ(t)) 0 0

−cos(χ(t)) sin(χ(t)) cos(χ(t)) −sin(χ(t)) 0 0

−sin(χ(t)) −cos(χ(t)) sin(χ(t)) cos(χ(t)) 0 0

−cos(φ(t)) sin(φ(t)) cos(φ(t)) −sin(φ(t)) 0 0

−sin(φ(t)) −cos(φ(t)) sin(φ(t)) cos(φ(t)) 0 0



and obtain the players’ trajectories in the realistic plane.

Numerical exploration of the shaded region in Fig. 13 confirms that indeed cap-

turability is guaranteed.

4.6 Game of Kind: `2 = 0

We revisit the case where `1 > `2 = 0. It behooves us to say that “point capture”

means P2 is endowed with a capture disk of radius ε > 0, ε → 0. The following

relationship is derived geometrically – see Fig. 20.

α1 = Atan


√
EP1

2 − `2

`


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Figure 19: Isochronous Capture when P1 is Endowed with a Capture Disk of Radius
`1 and P2 resorts to point capture.

We have capturability if and only if the state (xP , xE, yE) is such that α1+∠P1+∠P2 <

π
2
. Since ∠P1 + ∠P2 = π − ϕ, the condition is

ϕ > α1 +
π

2

(
>
π

2

)

The law of cosines yields:

4x2P︸︷︷︸
P1P2

2

= (xP + xE)2 + y2E + (xP − xE)2 + y2E︸ ︷︷ ︸
EP1

2
+EP2

2

−2
√

[(xP + xE)2 + y2E]︸ ︷︷ ︸
EP1

· [(xP − xE)2 + y2E]︸ ︷︷ ︸
EP2

·cosϕ.

Simplifying the above expression yields

cos ϕ = − x2P − x2E − y2E√
(x2P + x2E + y2E)2 − 4x2Px

2
E︸ ︷︷ ︸

EP1·EP2

,
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which can be rewritten as the following:

sin α1 <
x2P − x2E − y2E√

(x2P + x2E + y2E)2 − 4x2Px
2
E︸ ︷︷ ︸

EP1·EP2√
EP1

2 − `2

EP1

<
x2P − x2E − y2E√

(x2P + x2E + y2E)2 − 4x2Px
2
E︸ ︷︷ ︸

EP1·EP2

.

The above expression further simplifies to

√
EP1

2 − `2 · EP2 < x2P − x2E − y2E

⇒

(x2P + x2E + y2E)2 − 4x2Px
2
E

< `2[(xP − xE)2 + y2E] + (x2P − x2E − Y 2
E)

which finally yields the straight-line boundary of the capture zone

yE <
1

2
` · xP − xE√

x2P −
(
`
2

)2 .
The state component xP must be such that 0 < ` < 2xP .

If the Evader is on the y-axis (xE = 0), we have

xE = 0⇒ yE <
1

2
` · 1√

1−
(

1
2
`
xP

)2 .

The zone of capturability when xE = 0 is then the thick line segment shown in Fig.
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20.

Figure 20: Capturability Condition.

We verify:

xP tan

(
Asin

(
`

2xP

))
=

1

2
` · 1√

1−
(

`
2xP

)2
As expected, the complete zone of capturability is symmetric about the x-axis.

4.7 Game of Degree: `2 = 0

The case in which ` = `1 > `2 = 0 is now considered. The equation of the

hyperbola whose foci are P1 and P2 when `2 = 0 is given in (6), with parameters

a =
1

2
`, b =

√
x2P −

1

4
`2.

Also, √
(x− xE)2 + (y − yE)2 =

√
(x− xP )2 + y2,

which can be rewritten as
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x =
yE

xP − xE
· y +

1

2

x2P − x2E − y2E
xP − xE

. (15a)

This is the equation of the orthogonal bisector of the EP2 segment. Let

e ,
yE

xP − xE
, f ,

1

2

x2P − x2E − y2E
xP − xE

,

so eq. (15a) is

x = ey + f (15b)

We have two equations, (6) and (15b), in the two unknowns x and y. Inserting eq.

(15b) into eq. (6) yields

(ey + f)2b2 − a2y2 = a2b2.

We have the quadratic equation

(b2e2 − a2)y2 = 2b2efy + b2(f 2 − a2) = 0 (16)

Its discriminant

∆ = a2b2(f 2 + b2e2 − a2).

We calculate

f 2 + b2e2 − a2 =
1

4

[
(x2P − x2E − y2E)2

(xP − xE)2
+

y2E
(xP − xE)2

· (4x2P − `2)− `2
]

which is equivalent to

f 2+b2e2−a2 =
1

4

1

xP − xE)2
·
[
y4E+2

(
x2P + x2E −

1

2
`2
)
y2E+x4P+x4E−2x2Px

2
E−`2(xp−xE)2

]
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For a solution to the Game of Degree to exist, we need the discriminant ∆ > 0; given

xP and xE, the discriminant ∆ depends on yE.

∆ ∝ y4E + 2

(
x2P + x2E −

1

2
`2
)
y2E + x4P + x4E − 2x2Px

2
E − `2(xP − xE)2 > 0

In this respect, consider the quartic equation which is now a biquadratic equation:

y4E + 2

(
x2P + x2E −

1

2
`2
)
y2E + x4P + x4E − 2x2Px

2
E − `2(xP − xE)2 = 0

Its roots are

y2E =
1

2
`2 − x2P − x2E ±

∣∣∣∣2xPxE − 1

2
`2
∣∣∣∣

The roots of the biquadratic equation are

y2E = −(xP − xE)2 (< 0), y2E = `2 − (xP + xE)2.

But we assume E has not yet been captured, so

(xP + xE)2 + y2E > `2

which can be rewritten as

y2E > `2 − (xP + xE)2,

and since the discriminant ∆ is quadratic in y2E – see Fig. 21 – the discriminant

∆ > 0 and we can proceed with the calculation of y, thus establishing the players’

aim point I = (x, y) – this, under the condition that the state (xP , xE, yE) is indeed

in the capture zone determined by the solution of the preliminary Game of Kind –

see Fig. 20, where E must be under the tangent to the circle.

Using the two roots of the biquadratic equation, the discriminant ∆ of the quadratic
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Figure 21: The Discriminant Dependence on yE

equation in y, eq. (16), is

∆(xP , xE, yE) =
1

64
`2

1

(xP − xE)2
(4x2P −`2) · [y2E+(xP −xE)2][y2E+(xP +xE)2−`2]

Hence, the explicit solution of the quadratic equation (16) is

y =
1

2

√
4x2P − `2 ·


yE(x2P − x2E − y2E)

√
4x2P − `2

+ `(xP − xE)
√

[(xP − xE)2 + y2E] · [(xP + xE)2 + y2E − `2]
`2(xP − xE)2 − y2E(4x2P − `2)


(17)

This formula for the calculation of the players’ aim point I applies to states

(xP , xE, yE) ∈ Capture Zone (shown in Fig.20), and (xP + xE)2 + y2E > `2, that

is, E is not in contact with P1. When the state (xP , xE, yE) ∈ Capture Zone and
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(xP + xE)2 + y2E = `2, that is, E is in contact with P1, the aim point I is at the

intersection of the radial from P1 through E, with the orthogonal bisector of the

segment EP2 – see Fig. 22. This is so because E is then a captive of P1, being

Figure 22: Contact with P1

pushed around by P1. If E does not move along with P1, he will instantaneously be

engulfed by the capture disk and capture will be effected.

The equation of the orthogonal bisector of the segment EP2 is given by eq. (15a)

and the radial from P1 through E is given by

y =
yE

xP + xE
(x+ xP ) (18)

The solution of the linear equations (15a) and (18) is

x =
1

2

(xP + xE)2 + y2E
x2P − x2E − y2E

· (xP − xE)

y =
1

2
yE

(
1 + 2xP

xP − xE
x2P − xE62− Y 2

E

)

During contact P1 is in Pure Pursuit (PP) of E and P2 is on a collision course

toward the interception point I = (x, y). E, in contact with P1, flees from P1, to be

intercepted by P2 at I and be captured. When the state (xP , xE, yE) ∈ Capture Zone
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and E is in contact with P2, that is, xE = xP − ε, 0 < ε << 1, P2 will be in PP of E

while E will be fleeing from P2. P1 will intercept E on the orthogonal bisector of the

segment P1P2 where capture will be effected. When the state (xP , xE, yE) ∈ Capture

Zone and E is not in contact with one of the Pursuers, the players head toward the

aim point I = (x, y), where y is given by eq. (17) and the x-coordinate of the players’

aim point I is obtained by substituting the right-hand-side of (17) into (15a).

4.8 Special Cases

4.8.1 Evader at the Origin, xE = 0, yE = 0

Figure 23: E at the Origin of the (x, y) Plane

We consider the case where the players are collinear: The Evader is situated at

the origin of the (x, y) plane – see Fig. 23. Equations (15a) and (17) yield the aim

point coordinates

x =
1

2
xP , y =

1

2

√
(4x2P − `2)(x2P − `2)

`
.

Obviously, here xP > ` because E is at the origin.
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4.8.2 Evader on the x-axis, yE = 0

Figure 24: P1, P2 and E are collinear.

Equations (15a) and (17) yield the aim point coordinates

x =
1

2
(xP + xE), y =

1

2

√
(4x2P − `2)[(xP + xE)2 − `2]

`
.

Obviously, ` < xP + xE. In both case 4.8.1 and 4.8.2, E pulls away from the capture

disk equipped Pursuer P1 because it represents a greater threat than P2 – as expected.

4.8.3 Evader on the y-axis, xE = 0

When the Evader is initially located on the y-axis, the aim point I’s coordinates

are

y =
1

2

√
4x2P − ` ·

yE(x2P − y2E)
√

4x2P − `2 + `xP
√

(x2P + y2E)(x2P + y2E − `2)
`2(x2P + y2E)− 4x2Py

2
E

,

x =
yE
xP
y +

1

2

x2P − y2E
xP
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Figure 25: E is on the y-axis of the (x, y) Plane

We note that the denominator in the y-equation is positive if

yE <
`xP√

4x2P − `2

But the maximal coordinate so that E is in the Capture Zone Rc,

y =
`xP√

4x2P − `2

Thus, the denominator in the y-equation is positive as long as

yE < y

When the state is in the Capture Zone Rc the denominator in the y-equation is

automatically positive. Indeed, the denominator in the y-equation is positive when

the state (xP , xE, yE) ∈ Capture Zone Rc: for the denominator in the y-equation to

be positive, the state (xP , xE, yE) must be such that

yE <
`(xP − xE)√

4x2P − `2
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Consider now the geometry of the Capture Zone.

Figure 26: Capture Zone

yE < y(xE;xP )

This means that the state is in the shaded region (Capture Zone). At the same time,

the denominator in the y-equation is positive.

4.9 State Space

The axes of the rotating frame (x, y) are initially aligned with the (X, Y ) axes of

the realistic plane, and so Fig. 13 directly renders the capture zone in the realistic

plane, given the positions of the Pursuers:

The two broken lines in Fig. 27, which form the boundary of the Capture Zone Rc,

are not part of the Capture Zone. If the state (xP , xE, yE) is on a broken line in the

realistic plane (X, Y ), E can escape by heading in the direction normal to the broken

line; he might as well announce his course ahead of time and the Pursuers won’t be

able to catch up with him. When E is just below the upper-broken line/above the
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Figure 27: The Capture Zone in the Realistic Plane (X, Y )

lower-broken line, the time-to-capture is very long and it approaches infinity as E is

(initially) closer to the broken line.

In the interior of the Capture Zone the optimal state feedback strategies of the

players and the Value Function are determined by the solution of the quartic equation,

which comes from squaring equation (8), or, if `2 = 0, by the solution of the quadratic

equation (16). Not so if in the realistic plane (X, Y ), while in the Capture Zone, E

is located on a thick line, which designates the circumference of a capture disk of P1

or P2. E is then in contact with one of the Pursuers. In this case, and as far as E

is concerned, he is faced with the solution of a non-normal optimal control problem:

During contact with a Pursuer’s capture disk, E has no choice but to run away from

the Pursuer. Concerning the Pursuer who is in contact with E, his optimal strategy

is Pure Pursuit (PP) – he pushed against E. The second Pursuer goes on a collision

course with E to meet E on the East-West opening of a hyperbola whose foci are P1

and P2, and the distance difference is `1 − `2. The Pursuers’ optimal strategies are,

as before, contingent on the solution of the quartic equation, derived from eqs. (8)

and (6), or, if `2 = 0, the solution of the quadratic equation (16).

Thus, the thick lines on the circumference of the capture disks which are on the

boundary of the Capture Zone are included in the Capture Zone. When E is on a
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thick line, the solution of the quartic equation yields Pursuer strategies which are

Pure Pursuit (PP) for the Pursuer in contact with E and Collision Course (CC)

guidance for the second Purser.

4.9.1 Reduced State Space (xP , xE, yE)

Figure 28: Reduced State Space. `1 = `2 > 0.

The 3-dimensional reduced state space, S, depicted in Fig. 28 when `1 = `2 = ` > 0,

is

S = {(xP , xE, yE)|xP > 0} ⊂ R3.

The Capture Zone Rc is defined in Fig. 28 by the 3-Dimensional shape whose reach

in the direction of the yE axis is delimited by the height ` of the cylinders and on the

xE axis by the surface of the cylinders. Due to symmetry, it is sufficient to consider
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the first quadrant of R3

S1 = {(xP , xE, yE)|xP > 0, yE ≥ 0},

and since `1 = `2, it is sufficient to consider the positive orthant of R3,

S+ = {(xP , xE, yE)|xP > 0, xE ≥ 0, yE ≥ 0}.

The dimension of the reduced state space is 3, but when the speed ratio µ = 1, and

therefore isochronous capture is mandated, the terminal manifold is rank deficient: it

is not of co-dimension 1, that is, it is not two-dimensional. The terminal manifold is

now one-dimensional. It is a curve in the 3-D reduced state space – the red curve at

the intersection of the two cylinders – see Fig. 28. And when the Pursuer P2 relies

on point capture, the terminal manifold shrinks to a point.

The optimal trajectories terminate at a point I where the two capture disks in-

tersect – see Fig. 29. In the realistic plane, before capture of the Evader E, the

Figure 29: Point of Interception

geometry is shown in Fig. 30. Since the speed ratio µ = 1, capture of E is only ef-

fected isochronously when both Pursuers, P1 and P2, come into contact with E. It is

necessary that the Pursuers’ capture disks come together. The capture disks intersect

the first time when they just touch (from the outside) – see Fig. 31a. Because E can
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Figure 30: Point of Interception

only be isochronously captured by P1 and P2, the P1 − P2 separation 2xP cannot be

too big: From Fig. 31a we see that for capture to occur, we need

(a) First Contact (b) Last Contact

Figure 31: Contact of Capture Disks.

xP ≤
1

2
(`1 + `2)

By the same token, P1 and P2 cannot be too close for isochronous capture to be

possible. The critical configuration is shown in 31b. Thus it is necessary for

xP ≥
1

2
(`2 − `1)

Now, in the reduced state space, isochronous capture occurs when the state
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(xp, xE, yE) is such that

(xE + xP )2 + y2E = `21

(xE − xP )2 + y2E = `22

Isochronous capture occurs on the terminal manifold which is now a curve in 3-D. This

curve lies at the intersection of the above two-dimensional (red) orthogonal cylinders,

as shown in Fig. 32. Thus, in parametric form this curve, in red, is

xE(xP ) =
1

4xP
(`21 − `22),

yE(xP ) =±

√
`21 −

[
1

4
(`21 − `22) ·

1

xP
+ xP

]2
,

1

2
(`1 − `2) ≤ xP ≤

1

2
(`1 + `2)

(19)

The red curve at the intersection of the cylinders in Fig. 32 is the terminal manifold.

Figure 32: Capture Region in the Reduced State Space when `1 > `2 > 0.
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When `1 = `2 = `, the terminal manifold is the curve:

xE(xP ) = 0, yE(xP ) =
√
`2 − x2P , 0 ≤ xP ≤ `.

It is the red curve shown in Fig. 33.

Figure 33: The Upper Part (in red) of the Terminal Manifold

When `2 = 0, the terminal manifold shrinks to the point in 3-D space

xP =
1

2
`1, xE =

1

2
`1, yE = 0,

and the reduced state space is shown in Fig. 34. The red dot is the terminal manifold.

The capture zone in the reduced state space (xP , xE, yE) is delimited by two

ruled surfaces formed by the tangents to the two capture circles at each fixed xP ,

xP ≥ 1
2
(`2 − `1). In our two-on-one pursuit-evasion differential game when the speed
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Figure 34: Reduced State Space with Terminal Manifold. `1 > `2 = 0.

ratio µ = 1, the terminal manifold is a curve, and as such, dimension deficient. Hence,

the terminal costate for optimal trajectories is


λxP

λxE

λyE


∣∣∣∣∣∣∣∣∣∣
tf

= −a


cos ξ

b

sin ξ

 , 0 ≤ ξ ≤ π

2
, a > 0,

and for optimal trajectory in the positive orthant where xE ≥ 0, b < 0. This is similar

to the situation in the Two Cutters and Fugitive Ship Differential Game [8] where the

speed ratio µ , vE
vP
< 1, in the state space region where the Evader is isochronously

captured by P1 and P2.

In the case where `1 > `2 = 0, the terminal manifold is reduced to a point. The
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terminal costate is now
λxP

λxE

λyE


∣∣∣∣∣∣∣∣∣∣
tf

= −a


cos ξ

b

sin ξ

 , 0 ≤ ξ ≤ π

2
, a > 0, b ∈ R.

Thus, the family of optimal trajectories is now parameterized by two parameters, ξ

and b ∈ R, and as such can cover the 3-D space.

It is important to note that the costates are the partial derivatives of the game’s

Value function V (xP , xE, yE), albeit with a negative sign, so

λxP (tf ) = −VxP (tf ),

λxE(tf ) = −VxE(tf ),

λyE(tf ) = −VyE(tf )

Lastly, we compare the (xP , xE, yE) reduced state spaces when µ < 1 and when

µ = 1. As derived in [2] and [8], the region in the reduced state space, where E is

isochronously captured by P1 and P2 when µ < 1 is delimited by the surface

yE =
xP − xE
µxP − xE

√
µ2`2 − (µxP − xE)2,

Combining the two equations above yields the cyan surfaces shown in Fig. 35, which

are asymptotic to the planes ±xE = µxP .

A cross-section of Fig. 35 is shown in Fig. 36. The shaded blue, hourglass-shaped

region is the portion of the reduced state space in which, when the speed ratio µ < 1,

isochronous capture is guaranteed. The shaded gray region is the section of the

reduced state space in which isochronous capture occurs when µ = 1. Obviously,

when µ < 1, the region of capturability in the reduced state space is infinite, and
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Figure 35: State Spaces Comparison: µ = 1 and µ =
√
2
2
< 1, `1 = `2 = ` > 0

thus, the winning region for the Pursuers is much larger than when the speed ratio

µ = 1, as expected.
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Figure 36: Cross-Section Comparison in the Reduced State Space: µ = 1 and µ =
√
2
2

,
`1 = `2 = ` > 0, xP = 2.

4.10 Cornered Rat

The pursuit-evasion differential game where an Evader is hemmed in between a

Pursuer and a wall, a variation of the “Cornered Rat” scenario from [1], is considered

– see Fig. 37. The Pursuer and Evader have simple motion/are holonomic, as usual,

and the Pursuer and Evader now have the same speed; the speed ratio µ = vE
vP

= 1.

The Purser’s capture range ` > 0. The following holds:

Theorem 2 In the “Cornered Rat” game illustrated in Fig. 37, where the Pursuer’s

and Evader’s speeds are equal, under optimal play, the Pursuer captures the Evader

provided the latter is in the shaded region shown in Fig. 39. Capture is effected at

the wall. The Pursuer’s and Evader’s optimal state feedback strategies for min-max
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Figure 37: Cornered Rat, µ = 1, ` > 0

time-to-capture are given in Section 4.4.

Proof. Consider two-on-one pursuit with the speed ratio µ = 1 and the Pursuers’

capture ranges `1 = `2 = ` > 0. We have the solution to the Game of Kind, given in

Section 4.3 – see Fig. 27, reproduced herein as Fig. 38 for the special case where the

two Pursuers’ capture ranges are equal, as was the case in reference [17]. Since now

`1 = `2 = `, the capture region (shaded) is as shown in Fig. 38.

Figure 38: Solution to the Game of Kind, µ = 1, ` > 0

P2, in conjunction with P1, work to capture E in minimum time while E tries to

67



maximize the time-to-capture. We now assert that the presence of P2 is equivalent

to the presence of a wall at the orthogonal bisector of the segment P1P2, as shown in

Fig. 39.

Figure 39: Cornered Rat Game of Kind, µ = 1, ` > 0

E has no hope of escaping P1 (P in Fig. 37) by running away from P1 in a Westerly

direction because he then runs into the embrace of P2. During optimal play by the

Pursuers – P1 and the virtual Pursuer P2, which mirrors P1’s controls, the effect of a

virtual wall halfway between P1 and P2 materializes. Hence, the optimal pursuit and

evasion strategies derived in Section 4.4 are directly applicable to the Cornered Rat

game when the speed ratio µ = 1. Just as the Evader is captured in the Two-on-One

pursuit-evasion differential game along the y axis when `1 = `2 = `, in our Cornered

Rat game, the Evader/Rat is now captured with his back to the wall.

�

An interesting special case ensues when the Evader is on the wall. The solution of

Isaacs’ Wall Pursuit differential game when the speed ratio µ = vE
vP

= 1 is as follows:
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Corollary 3 Consider the Wall Pursuit game where the Pursuer’s and Evader’s

speeds are equal, µ = 1, and the Pursuer is endowed with a capture disk of radius

`. If the Evader is in the shadow cast on the wall by the Pursuer’s capture disk, he

will be captured. Outside this narrow band, the Evader escapes by running along the

wall. The Pursuer’s optimal state feedback strategy is specified in Section 4.4.

�

4.11 Conclusion

The complete solution of the Two-on-One pursuit-evasion differential game where

the players have simple motion, the speed of the Evader is equal to the speed of the

Pursuers, and the two pursuers are endowed with capture disks of radii `1 > `2 ≥ 0

is presented. Concerning the Game of Kind, in the case where one of the Pursuers

resorts to point capture, that is, `2 = 0, it was determined that, in the realistic plane,

the Capturability Zone is the interior of the region between the tangents from P2 to

the capture disk of radius `1 of P1. In this vein, for the case where `1 > `2 > 0, we

conjecture that the Capturability Region in the realistic plane is the interior of the

region between the two tangents to the Pursuers’ capture disks. If the Evader is in

this zone, his capture under optimal play by the two pursuers is guaranteed. If the

Evader is on one of the tangent lines, capture is not possible, and the Evader’s escape,

by running in a direction normal to this line, is guaranteed. This was validated

in interesting special cases, and numerically validated by simulation. The optimal

pursuit and evasion state feedback strategies for the two Pursuers and the Evader are

derived, thus providing the solution of the Game of Degree: Each player should travel

toward an aim point I whose location is geometrically determined by the intersection

of three hyperbolae as discussed in Section 4.4: the P1, E hyperbola, P2, E hyperbola,

and the P1, P2 hyperbola. Computationally, this comes down to the solution of a
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quartic equation and when `2 = 0, it entails the solution of a quadratic equation.

Lastly, we examined the geometry of the three-dimensional reduced state space of the

Two-on-One pursuit-evasion differential game. In the Two-on-One differential game,

the terminal ”manifold” is rank deficient, it is a curve. It was explicitly determined,

along with the terminal costates required for generating, in retrograde fashion, the

optimal flow field in the reduced state space. The optimal trajectories/characteristics

are a family of straight lines which fill the capture zone determined by the Game of

Kind. There are no singular surfaces except the benign Evader’s dispersal surface

{(xP , xE, yE)| xP > 0, yE = 0}. The complete solution of the Two-on-One pursuit-

evasion differential game when the Evader is as fast as the pursuers has been obtained.
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V. Pure Pursuit of an Equal Speed Evader

5.1 Abstract

The classical problem of pure pursuit is revisited. The off-the-beaten path case

is considered where the Pursuer’s speed is equal to the speed of the Evader, where-

upon the terminal separation between the Pursuer and Evader must be less than the

capture range l to ensure capture. The instance where two pursuers are at work is

then considered, and conditions are given that determine if capture of the Evader is

possible, and if so, the solution of the Evader’s optimal control problem of maximizing

the time-to-capture is provided.

5.2 Introduction

This research is motivated by the work of Rufus Isaacs, who in 1951 started

developing the theory of differential games, with an emphasis on pursuit-evasion [1].

In his work, he discussed strategies for minimum time capture in the face of Evader

maneuvers. It is often times stipulated that the protagonists have simple motion/are

holonomic, that is, they can instantaneously choose their heading. Also of interest

are Pure Pursuit (PP) scenarios in which the Pursuer instantaneously directs his/her

heading toward the Evader for all time. Pure pursuit when the Pursuer is faster

than the Evader has been considered since the 18th century [4], [5] but closed form

solutions have been obtained only for the case where the Pursuer is initially abeam of

the Evader. Only fairly recently have Barton and Eliezer [6] developed an analytical

solution for the Pursuer’s path in a PP scenario where the Evader’s course is not

restricted to being perpendicular to the initial line of sight. Also, point capture is

exclusively considered. This paper first revisits the pursuit problem discussed in [6],

with the provision that the Pursuer is endowed with a capture circle of radius l. In
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this paper, an extension of the work from [6] is undertaken to derive a closed form

solutions for the case where the speed ratio µ , VE
VP

= 1, which so far has not been

considered in the context of PP.

5.3 Course-Holding Evader

It is assumed that the Evader (E) holds the course θ, thus moving along a straight-

line in the realistic plane (x,y), as depicted in Figure 40, while the Pursuer (P ) starts

at the origin. The initial P -E separation is d. The speed ratio µ is defined as the

ratio of the Evader’s speed VE to the Pursuer’s speed VP , µ , VE
VP

. It is customarily

stipulated that the speed ratio µ < 1, a standard assumption in the pursuit-evasion

literature.

Figure 40: Pure Pursuit Curve. d = 1, θ = π
6
, µ = 0.9.

Without loss of generality set the Pursuer’s speed at 1, so the Evader’s speed is µ.
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The coordinates of the Evader in the (x,y) frame, when his course angle is θ, are

(µ t cos θ, d+ µ t sin θ).

Barton and Eliezer [6] analytically derived a formula for the position of the Pursuer

along the pursuit curve using a rotated frame (X,Y), where the Y-axis is aligned with

the Evader’s path, as shown in Figure 40. The pursuit curve in the (X,Y) frame is:

YP
h

=
µ

1− µ2
(sec θ+µ tan θ)+

1

2

{
1

1 + µ
w

(
XP

h

)1+µ

− 1

1− µ
w−1

(
XP

h

)1−µ
}

(20)

where

w , sec θ − tan θ.

h = d cos θ

Using (20), the time of point capture tc is determined by setting in eq. (20) XP = 0.

Since tc = YP (XP=0)
µ

, the capture time

tc =
1

1− µ2
(1 + µ sin θ)d , (21)

The aspect angle at the time capture is 0 – the Pursuer captures the Evader from

behind.

Eq. (20) allows us to explore the relationship between the capture time, the heading

angle θ, and the speed ratio µ. As Figure 41 shows, the capture time is monotonically

increasing in θ; to outrun the Pursuer, the Evader must turn away from the Pursuer.

Unfortunately, when the speed ratio µ = 1, eq. (20) is not applicable.
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Figure 41: Capture Time vs θ for µ < 1.

5.4 Pure Pursuit when the Speed Ratio µ = 1

5.4.1 Single Pursuer

A PP strategy will always result in failure to capture the Evader. However, if the

Pursuer is endowed with a capture circle of radius l, the Evader may be captured if

he must hold course and does not flee directly away from the Pursuer, or if more than

one Pursuer gives chase. During PP, the P -E distance is monotonically decreasing,

and it asymptotically settles on a constant distance behind the Evader, except if E

runs away from P whereupon the initial P -E separation does not change.

Point capture is now out of the question. To capture a course-holding Evader, the

Pursuer must be endowed with a capture disk of radius l > 0. In order to determine

if capture is possible, we must first determine the limiting separation r between the

Pursuer and Evader as time approaches infinity. Since the two players are traveling

at the same speed, they will asymptotically achieve a final P -E separation r∞, P

trailing behind E. The following holds.
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Proposition 4 If P engages in PP and the speed ratio is µ=1, point capture is not

possible. If E holds the course θ, the pursuit always ends with a tail chase where

asymptotically P maintains a constant distance r∞ behind E,

r∞(θ) =
1 + sin θ

2
r0. (22)

Proof. When the speed ratio µ = 1, (20) does not hold. To determine the terminal

miss distance r∞, we must derive ab initio the pursuit curve when the speed ratio

µ = 1. To do so, we use polar coordinates (r, φ), which specify E’s position relative

to P , and start with the equations of motion – see Figure 42 –

ṙ = −1 + cos(φ− θ) (23)

φ̇ = −1

r
sin(φ− θ) (24)

with initial conditions r(0) = r0, φ(0) = π/2. Figure 42 provides a visual repre-

sentation at two instantaneous points in time that show the change in distance and

bearing of E as time increases. The axes (X,Y) represent a stationary, inertial frame,

while the moving frame’s axes (X0, Y0), (X1, Y1) are centered on the Pursuer’s instan-

taneous position but remain aligned with the inertial (X,Y) frame. We must solve

the system of differential equations (23) and (24) to get an analytical solution for the

path of the Pursuer.

E’s bearing φ is monotonically decreasing, so we divide eqs. (23) and (24):

1

r

dr

dφ
=

1− cos(φ− θ)
sin(φ− θ)

(25)

The solution by separation of variables of the differential equation (25) is reduced to

an integration. E’s bearing φ is such that θ ≤ φ ≤ π/2. Integrating both sides of the

75



Figure 42: Pursuit Curve Determination Using Polar Coordinates.

differential equation (25) yields

ln

(
r(φ)

r0

)
=

∫ φ

π/2

1− cos(φ− θ)
sin(φ− θ)

dφ. (26)

To obtain r(φ), we introduce the function

I(φ) , −
∫ φ−θ

π/2−θ

1− cos x
sin x

dx.

The integral ∫
1− cos x
sin x

dx = −ln(1 + cos x),

so

I(φ) = ln

(
1 + cos(φ− θ)

1 + sin θ

)
. (27)

We relate (26) and (27) to get

ln

(
r(φ)

r0

)
= −ln

(
1 + cos(φ− θ)

1 + sin θ

)
(28)
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which yields the pursuit curve in polar form when the speed ratio is µ = 1 and E’s

course θ, −π
2
< θ ≤ π

2
, is arbitrary, and not necessarily θ = 0:

r(φ) =
1 + sin θ

1 + cos(φ− θ)
r0, θ ≤ φ ≤ π/2. (29)

With (29), we can determine the asymptotic P -E separation r∞ by evaluating (29)

at φ = θ. The terminal miss distance is

r∞(θ) =
1 + sin θ

2
r0.

�

If the Pursuer is endowed with a capture radius l > r∞, the course-holding Evader

will be captured. Thus, the following holds

Corollary 5 If the initial P -E separation is r0 and the Evader holds the course θ,

−π
2
≤ θ < π

2
, he/she will be captured by an equal speed Pursuer P which employs PP,

provided the Pursuer is endowed with a capture circle of radius

1

2
(1 + sin θ) r0 < l < r0. (30)

�

To determine r with respect to time we must first determine the function φ(t), namely,

the temporal behavior of the bearing angle φ. To this end, we insert eq. (29) into eq.

(24):

dφ

dt
= − 1

1 + sin θ

1

r0
[1 + cos(φ− θ)]sin(φ− θ), (31)
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and so

1

r0

1

1 + sin θ
t = −

∫ φ

π/2

dφ

[1 + cos(φ− θ)]sin(φ− θ)

that is

1

r0

1

1 + sin θ
t = −

∫ φ−θ

π/2−θ

dx

[1 + cos(x)]sin(x)
. (32)

Upon integrating, we get

1

r0

1

1 + sin θ
t =

1

4

[
1

cos2(π
4
− θ

2
)
− 1

cos2(φ
2
− θ

2
)

]
− 1

2
ln

(
tan(φ

2
− θ

2
)

tan(π
4
− θ

2
)

)
,

which gives

t = r0(1 + sin θ) ∗

{
1

4

[
1

cos2(π
4
− θ

2
)
− 1

cos2(φ
2
− θ

2
)

]
− 1

2
ln

(
tan(φ

2
− θ

2
)

tan(π
4
− θ

2
)

)}
. (33)

Equation (33) provides t as a function of φ, given θ and r0. Plotting (33) for a fixed

θ and r0 gives the plot shown in Figure 43.

Figure 43: r0 = 1, θ = π
8
. The Function φ(t) is Monotonically Decreasing.

We can now calculate r(φ(t)), which will allow us to get the equation of the pursuit

curve in parametric form. First, we define:

a(t) , r(φ(t))cos(φ(t))

b(t) , r(φ(t))sin(φ(t))
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Next, we map the pursuit curve into the Cartesian frame (X,Y):

XP (t) = t cos θ − a(t)

YP (t) = r0 + t sin θ − b(t)

where t ≥ 0. The pursuit curve in the Cartesian plane (X,Y) can also be parameter-

ized in terms of φ:

XP (φ) = t(φ) cos θ − r(φ) cos φ (34)

YP (φ) = r0 + t(φ) sin θ − r(φ) sin φ, (35)

where t(φ) is given by eq. (33) and θ ≤ φ ≤ π/2. Combining (29), (33), (34), and (35)

produces equations parameterized by φ that describe the pursuit curve in the realistic

plane (X,Y). In the classical case where θ = 0, the pursuit curve in parametric form

is

XP (φ) = −1

2

[
cos φ

1 + cos φ
+ ln

(
tan

(
φ

2

))]
r0

YP (φ) =

(
1− sin φ

1 + cos φ

)
r0, 0 < φ ≤ π

2
.

We calculate

sin φ

1 + cos φ
= tan

(
φ

2

)
cos φ

1 + cos φ
=

1

2

[
1− tan2

(
φ

2

)]
.

Now

YP
r0

= 1− tan
(
φ

2

)
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and thus

tan

(
φ

2

)
= 1− YP

r0
.

Hence when µ = 1 and θ = 0 the classical pursuit curve in Cartesian coordinates is

XP

r0
= −1

2

{
1

2

[
1−

(
1− YP

r0

)2
]

+ ln

(
1− YP

r0

)}
,

which simplifies to

XP

r0
= −1

2

[
YP
r0
− 1

2

(
YP
r0

)2

+ ln

(
1− YP

r0

)]
(36)

Equation (36) allows us to plot the pursuit curve in the Cartesian frame (X,Y) when

E’s course θ = 0 and µ = 1 – see Figure 44.

Figure 44: θ = 0. Pursuit Curve in the Cartesian Frame (X,Y) when µ = 1.

Using Corollary 5, we can establish the condition which guarantees that a course-

holding Evader can escape when µ = 1: If his/her course angle

θ > Asin

(
2
l

r0
− 1

)
, (37)

the Evader will escape the single Pursuer. Figure 45a depicts the conical safe region,
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delimited by a critical angle A,

A , Asin(2
l

r0
− 1),

in the case where the pursuer’s capture range l is greater than half of r0. In this case,

the Escape Cone is convex. Heading into the Escape Cone allows E to escape. If the

capture range l is less than half of r0, the Escape Cone is no longer convex (Figure

45b) where the critical angle A = Asin
(

1− 2 l
r0

)
.

(a) r0 > l > r0
2 (b) l < r0

2

Figure 45: Escape Cones

5.4.2 Two Pursuers

Consider now the pursuit scenario with two pursuers in PP, but the speed ratio

µ = 1, as shown in Figure 46. The state is (r1, r2, ϕ). First, we will assume that the

capture ranges of the pursuers are such that li >
ri
2

, i = 1, 2; thus, the critical angles

are Ai = Asin
(

2 li
ri
− 1
)
, i = 1, 2 and both Escape Cones will be convex.

We analyze the game from the perspective of each player. Using the theory devel-

oped in Section 5.4.1, we determine the Escape Cones with respect to each Pursuer,
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Figure 46: The State of the Game When There Are Two Pursuers.

as illustrated in Figure 47. The shaded black region C1 and the shaded blue region

C2 are the Escape Cones from P1 and P2, respectively. If E chooses a straight-line

trajectory within C2, it will escape from P2. However, the same trajectory will result

in capture by P1. Thus, for escape to be possible, there must be a region where the

two Escape Cones intersect:

C1 ∩ C2 6= ∅. (38)

If the condition (38) holds, the Evader can escape both pursuers by heading into

the cone C1 ∩ C2 and holding course. If however C1 ∩ C2 = ∅, capturability is

guaranteed, irrespective of what E does.

Concerning capturability, for C1∩C2 = ∅, the following geometric condition must

hold – see Figure 47:

ϕ >
π

2
− A1 +

π

2
− A2, (39)
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Figure 47: Escape Cones when li >
ri
2

, i = 1, 2.

where, recall, we have Ai = Asin
(

2 li
ri
− 1
)

, i = 1, 2. The following holds,

Theorem 6 When two pursuers using PP and endowed with circular capture disks

with radii li, i = 1, 2, are after an Evader, the speed ratio µ = 1, and the initial

configuration/state (r1, r2, ϕ) is as shown in Figure 46, capture will be effected, if and

only if the Pursuers’ lethal ranges r1
2
< l1 < r1,

r2
2
< l2 < r2 are such that

Asin(2
l1
r1
− 1) + Asin(2

l2
r2
− 1) > π − ϕ. (40)

�

Consider now the case where the capture range of the first Pursuer is such that l1 <
r1
2

,

while the second Pursuer’s capture range satisfies l2 >
r2
2

; this scenario is depicted in
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Figure 48. In this case, the Escape Cones C1 and C2 will intersect and consequently

escape will be possible if

Asin

(
2
l2
r2
− 1

)
− Asin

(
1− 2

l1
r1

)
< π − ϕ. (41)

The Evader will head into the cone C1 ∩ C2; he/she might as well hold course.

Figure 48: Escape Cones when l1 <
r1
2
, r2 > l2 >

r2
2

.

If both capture circles have a smaller diameter than the initial range r0, then

E can escape ∀ 0 ≤ ϕ ≤ π, r1 > l1, r2 > l2. Figure 49 shows an example in which

l1 <
r1
2
, l2 <

r2
2

:

At the same time, in the special case where the initial configuration is such that

ϕ = π (Figure 50) where E is hemmed in by P1 and P2, assuming li >
ri
2

, capture is

inevitable. Referencing (39), we know that if ϕ = π, the right side of the equation is

0, while the left side will be greater than zero.
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Figure 49: Escape Cones when li <
ri
2

, i = 1, 2.

Figure 50: The State of the Game when ϕ = π.

If ϕ = π but l1 >
ri
2
, l2 <

ri
2

(Figure 51), then for capture to be possible the

following condition must hold A1 > A2, that is

Asin

(
2
l1
r1
− 1

)
> Asin

(
1− 2

l2
r2

)
. (42)
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Figure 51: Escape Cones when ϕ = π, r1 > l1 >
r1
2

, l2 <
r0
2

.

Lastly, if both capture radii are less than ri
2

, then C1 ∩C2 6= ∅, and E can escape

by heading into the sector formed by the intersection of the two Escape Cones.

5.5 Conclusion

The interception in pure pursuit of a course-holding Evader whose speed equals the

speed of the Pursuer is considered. The pure pursuit curve in which the Pursuer and

Evader have equal speed is analytically derived. For capture to occur, the Pursuer

must be endowed with a capture disk of radius l, as point capture is not possible

when the speed ratio is µ = 1. If the capture range l is greater than the asymptotic

separation between the Pursuer and Evader, as specified in Corollary 5, capture is

possible. This result was applied to a two-on-one pursuit evasion scenario where the

speed ratio µ = 1. Necessary and sufficient conditions for capture were obtained for

two-on-one engagement.
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VI. Pure Pursuit in Defense of a Target

6.1 Abstract

A target-defense scenario is considered where an attacker heading toward the

target is to be intercepted by a defender in Pure Pursuit (PP). The case where the

target defender’s speed is greater than the attacker’s is analyzed and the result is

compared to the outcome when an optimal interception strategy is used in defense

of a target. The case is also considered where the attacker’s speed is equal to the

speed of the defender, but the defender is endowed with a capture disk of radius l.

Necessary and sufficient conditions are given that determine if capture in PP of the

attacker before he reaches the target is possible.

6.2 Introduction

A target-defense scenario where a Defender (D) is tasked with guarding a Target

(T ) coming under attack from an Attacker (A) is considered. The protagonists A and

D have simple motion à la Isaacs/are holonomic and the Target is a point target. A

wants to come as close as possible to T and perhaps reach T , whereas D strives to

intercept A as far away from T as possible. The solution of this differential game was

provided by Isaacs [1]: if A and D have the same speed, they both head toward the

aim point I, which is the point on the orthogonal bisector of the AD segment which

is closest to T . In this paper, the scenario where A heads straight toward the Target

and D employs Pure Pursuit (PP) is considered. The objective is to determine the

region in the plane wherefrom A can reach T before being intercepted by D. The

kinematics of Pure Pursuit (PP) have been studied since the 18th century [4],[5], but

closed form solutions were developed under the assumption that the Pursuer (P ) was

faster than the Evader (E), who initially traveled abeam of the Pursuer. Only fairly
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recently [6] has the pursuit curve been derived for the case where the Evader is not

necessarily initially abeam of the fast Pursuer. We build on the results obtained in

[6] and also consider the case where the speed of the Evader is equal to the speed of

the Pursuer.

This paper first revisits Pure Pursuit (PP) of a course-holding Evader where the

speed ratio µ , VA
VD

< 1, as in [4]–[6], and applies the closed form formula for a pursuit

curve developed in[6] to the target-defense scenario. The target-defense scenario in

which the speed ratio µ = 1, as in Isaacs’ target-defense differential game, and, in

addition, the Defender is endowed with a capture disk of radius l, and employs PP,

is investigated.

6.3 Pure Pursuit of Course-Holding Evader

Consider the case when an Evader (E) holds the course θ, thus moving along a

straight-line in the realistic plane (x,y), as depicted in Fig. 52, while the Pursuer (P )

starts at the origin. In the literature, it is customarily assumed that E’s course θ = 0,

but in [6] it is allowed for −π
2
≤ θ ≤ π

2
. The initial P -E separation is d. The speed

ratio parameter µ is defined as the ratio of the Evader’s speed VE to the Pursuer’s

speed VP , µ , VE
VP

. It is customarily stipulated that the speed ratio µ < 1, a standard

assumption in the pursuit-evasion literature.

Without loss of generality set the Pursuer’s speed at 1, so the Evader’s speed is

µ. The trajectory of the Evader in the (x,y) frame, where his course angle is θ, is

(µ t cos θ, d+ µ t sin θ).

Barton and Eliezer [6] analytically derived a formula for the pursuit curve using

a rotated frame (X,Y), where the Y-axis is aligned with the Evader’s path, as shown

in Fig. 52. The Pursuer’s position in the (X,Y) frame is (XP , YP ) and the pursuit
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Figure 52: Capture Occurs at Point I – Point Capture

curve YP (XP ) is:

YP
h

=
µ

1− µ2
(sec θ+µ tan θ)+

1

2

{
1

1 + µ
w

(
XP

h

)1+µ

− 1

1− µ
w−1

(
XP

h

)1−µ
}

(43)

where

w , sec θ − tan θ, h = d cos θ

Using (43), we calculate the time of point capture of E, tc: It is determined by setting

in Eq. (43) XP = 0. Since tc = YP (XP=0)
µ

, the capture time

tc =
1

1− µ2
(1 + µ sin θ)d (44)

The aspect angle at the time of capture is always 0 – in PP the Pursuer captures the

Evader from behind.

Equation (44) allows us to explore the relationship between the capture time, the
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Figure 53: Capture Time vs the Course Angle θ for the Speed Ratio µ < 1.

Evader’s course angle θ, and the speed ratio parameter µ. As Fig. 53 shows, the

capture time is monotonically increasing in θ; to try to outrun the Pursuer, the Evader

must turn away from the Pursuer, and preferably, run away from the Pursuer.

Unfortunately, when the speed ratio µ = 1, Eq. (43) is not applicable.

6.4 Target Defense

The target defense differential game is now considered, where the Pursuer assumes

the role of the Defender (D) and the Evader is the Attacker (A). The Attacker holds

course while heading straight toward the Target (T ) while the Defender employs PP,

hoping to intercept A before the latter reaches T – see Fig. 54, where the initial

distance from D to A is d, A holds the course θ by heading toward the Target and

his/her initial distance from the point target T is r. In the target defense scenario,

the state is (d, r, θ).

Using Eq. (44), we compare the capture time tc to the time r
µ

it would take A to
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Figure 54: The Target Defense Scenario.

reach the target. If r
µ
< tc, that is,

r

µ
<

1

1− µ2
(1 + µ sin θ)d,

the Attacker will reach T before being captured by D in PP. Hence, if the state

(d, r, θ) of the“game” is such that

r

d
<

µ

1− µ2
(1 + µ sin θ), (45)

the Defender D, who’s strategy is PP, is not able to defend the Target by capturing

the Attacker A before the latter reaches T.

Now suppose (45) does not hold. Can A nevertheless reach T before being inter-

cepted by D by maneuvering rather than holding course? The answer is no. This is

so because the A/D speed ratio 0 < µ < 1 and therefore, away from T, player A is

continuously exposed to capture by the fast Defender. By following a straight-line

trajectory to T, A minimizes his exposure time to D. When (45) does not hold, A

can significantly increase the time-to-capture by instantaneously choosing the new
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course θ = π
2
, to be captured at time tc = 1

1−µd >
1

1−µ2 (1 +µ sin θ)d, but A will then

be captured and will not reach T. When (45) does not hold, maneuvering away from

a straight-line dash to T will not help A reach T before being intercepted by the fast

Defender D who employs PP. Thus, the following holds,

Proposition 7 When the state is (d, r, θ) and D employs PP, A is successful if and

only if condition (45) holds.

�

Proposition 7 allows us to characterize the region in the state space (d, r, θ) in

which A can reach T prior to being captured by D in PP. Let ψ , π
2
− θ.

The boundary of the safe region of T in polar coordinates (r, ψ) is

r(ψ) =
µ

1− µ2
(1 + µ cos ψ) d, 0 ≤ ψ ≤ π. (46)

Equation (46) delimits a cardioid-shaped region, whose boundary is B, shown in Fig.

55. If T is inside this region, A will reach T before being captured in PP by D. The

range of r is µ
1+µ

d ≤ r ≤ µ
1−µ d.
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Figure 55: A’s Winning Region. µ = 0.9, d = 1.

6.5 Pure Pursuit vs. Optimal Interception

Consider now the differential game of guarding a Target [16] where A and D play

optimally, that is, the Attacker wants to come as close as possible to the Target before

being intercepted by the Defender and the Defender wants to capture A as far away

from the Target as possible. The answer to the question: where should T be in order

for A to be able to reach it before being intercepted by D, is as follows [16]:

A reaches T before being captured by D if and only if T is inside the Apollonius

disk whose foci are A and D, where dist(A,D) = d, and the ratio used to construct

the Apollonius circle is the A/D speed ratio µ < 1. The radius of the Apollonius

circle ρ = µ
1−µ2d and the distance AO = µ2

1−µ2d – see Fig. 56. Hence, the effectiveness

of the Defender’s PP strategy vis a vis the optimal strategy provided by the solution

of the Target-Defense Differential Game [16], is illustrated in Fig. 57.

The Apollonius circle fits snugly in the boundary B, which delimits A’s winning

region when D employs PP, as discussed in Section 6.4. When D plays optimally, as
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Figure 56: A Wins if T is Inside the Apollonius Circle.

Figure 57: Optimal Pursuit v. Pure Pursuit.
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opposed to employing the PP strategy, A’s winning region is reduced – as expected.

In order to consider the classical target defense scenario of [1] where the Attacker

and Defender have the same speed, one must first gain a better understanding of PP

when the speed ratio µ = 1.

6.6 Pure Pursuit When the Speed Ratio µ = 1

When the speed ratio µ = 1, a PP strategy will always result in failure to capture

the Evader, except in the case where a suicidal Evader runs toward the Pursuer.

However, if the Pursuer is endowed with a capture circle of radius l, the Evader may

be captured if he holds course and does not flee directly away from the Pursuer, or if

more than one Pursuer gives chase – see, e.g. [17]. During PP, also when the speed

ratio µ = 1, the P -E distance is monotonically decreasing, and it asymptotically

settles on a constant distance behind the Evader, except if E runs away from P

whereupon the initial P -E separation does not change throughout the pursuit.

Since the speed ratio µ = 1, we now consider a Pursuer endowed with a capture

circle of radius l. In the case where the speed ratio µ = 1, Eq. (43) is not applicable.

Thus, to find the time-to-capture tc, we pick up where reference [6] left, at Eq. (25).

For µ = 1, the Pursuer’s position satisfies the differential equation

dYP
dXP

=
1

2

(
XP

X0

− X0

XP

)
, YP (d cos θ) = −d sin θ. (47)

where

X0 , (1 + sin θ) d.

Upon integrating the differential equation (47) and applying the initial condition,
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we obtain the pursuit curve when the speed ratio µ = 1 and −π
2
≤ θ ≤ π

2
:

YP (XP ) = 1
4

[
(1− sin θ)

(
XP

d cos θ

)2 − 3 sin θ − 1− 2(1 + sin θ)ln
(

XP
d cos θ

) ]
d,

0 < XP ≤ d cos θ

(48)

and in the classical case where θ = 0, the pursuit curve is

YP (XP ) =
1

4

[(
XP

d

)2

− 2 ln

(
XP

d

)
− 1

]
d, 0 < XP ≤ d. (49)

To determine the time-to-capture tc when the speed ratio µ = 1, we must deter-

mine where capture occurs along the Pursuer’s trajectory, say at Xc; recall that now

the capture range l > 0. Fig. 58 depicts the moment the Evader enters the Pursuer’s

capture disk of radius l. This is determined by the following Optimality Principle

whereby:

At capture time, the PE segment, which is of length l, is tangent to the pursuit curve

at the instant of capture when the Pursuer is at P ′ = (Xc, Yc(Xc)) – see Fig. 58.

We know

Xc

l
= sin α

and

tan α = −dXP

dYP

∣∣∣∣
Xc

,

which, when combined with Eq. (47), yields

√
l2 −X2

c

Xc

=
1

2

(
X0

Xc

− X0

Xc

)
.
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Figure 58: Geometry at Capture. d = 1, θ = π
8
, l = 0.72

This equation simplifies to the biquadratic equation in Xc

X4
c + 2X2

0X
2
c +X2

0 (X2
0 − 4l2) = 0. (50)

The solution of the biquadratic equation is

Xc =

√
(1 + sin θ)

(
2
l

d
− 1− sin θ

)
d. (51)

Evidently, for capture to be possible in the first place, need

sin θ < 2
l

d
− 1
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That is,

− π

2
≤ θ ≤

 Asin
(
2 l
d
− 1
)

if l ≥ 1
2
d

−Asin
(
1− 2 l

d

)
if l ≤ 1

2
d

(52)

The solution Xc must satisfy Xc < l. Indeed

l2 −X2
c = l2 − (1 + sin θ)

(
2
l

d
− 1− sin θ

)
d2,

and thus

l2 −X2
c =

(
1 + sin θ − l

d

)2

d2 > 0.

Given Xc and Yc = YP (Xc), we can determine the capture time.

tc = YP (Xc) +
√
l2 −X2

c (53)

Substituting (48) for YP in (53) yields the following result.

When the speed ratio µ = 1 and the Pursuer’s capture range is l,

tc(θ, d; l) =
1

4

[
2

(
1− l

d

)
− (1 + sin θ) ln

(
2 l
d
− 1− sin θ
1− sin θ

)]
d. (54)

With the equation for capture time in (54), we can explore the relationship be-

tween capture time, the Evader’s course angle θ, and the ratio of the initial separation

and the capture disk radius l – see Fig. 59. But first and foremost, given the “state”

(d, θ), for capture to be possible in the first place, we need – see Eq. (54)

l >
1 + sin θ

2
d
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Figure 59: Capture Time vs the Course Angle θ for the Speed Ratio µ = 1.

6.7 Target Defense When µ = 1

When the A/D speed ratio µ = 1, A reaches T unmolested by D in PP if and

only if

tc < r

Using the result (54) and, as before, setting ψ , π
2
− θ, we obtain the boundary B of

A’s winning region in polar coordinates (r, ψ):

r(ψ; d, l) =
1

4

[
2

(
1− l

d

)
−(1 + cos θ) ln

(
2 l
d
− 1− cos θ
1− cos θ

)]
d.

The range of ψ is

π ≥ ψ ≥


π
2
− Asin

(
2 l
d
− 1
)

if l > 1
2
d

π
2

+ Asin
(
1− 2 l

d

)
if l < 1

2
d

For A to win the, Target T needs to be located above the boundary B. A’s winning

region is now open and is depicted in Fig. 60.
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(a) l > 1
2d (b) l < 1

2d

Figure 60: A’s Winning Region

6.8 Conclusion

The scenario involving a target-guarding Defender who employs PP against a

target-seeking Attacker is considered. In the case where the Defender is faster than

the Attacker – the speed ratio µ < 1 – the conditions for capture of the Attacker prior

to him reaching the Target are derived. The operationally relevant case in which the

Attacker and Defender have similar capability, so the speed ratio parameter µ = 1,

was analyzed. An Attacker ”Winning Region” wherefrom the Attacker is able to

reach the Target before being captured by the Defender is characterized.

6.9 Appendix: Flight-or-Fight Response

As Figures 53 and 59 show, the capture time tc increases as θ increases. To flee,

the Evader turns away from the Pursuer. But what about the flight-or-fight response.

Consider now the case where the Purser’s maneuverability is limited by a minimal

turn radius ρ while the pursuer employs PP, the radius of curvature of the pursuit

curve cannot exceed ρ. Will it benefit the Evader to choose a smaller heading θ, that

is, turn into the pursuer, to saturate the Pursuer’s turning capability and thus break

off the engagement?

Having derived the pursuit curve, YP (XP ), the radius of curvature ρ is calculated
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as

ρ(XP ) =

∣∣∣∣∣∣∣∣∣
[
1 +

(
dYP
dXP

)2] 3
2

d2YP
dX2

P

∣∣∣∣∣∣∣∣∣ (55)

To obtain the radius of curvature ρ(XP ), Xc ≤ XP ≤ d cos θ, we start with Eq. (25)

from [4] reproduced here as Eq. (56):

dYP
dXP

=
1

2

[
w

(
XP

h

)µ
− 1

w

(
XP

h

)−µ]
(56)

where

h , d cos θ, w ,
1− sin θ
cos θ

.

Taking the derivative of Eq. (56), we get

d2YP
dX2

P

=
µ

2h

[
w

(
XP

h

)µ−1
+

1

w

(
h

XP

)µ+1
]
, (57)

and substituting (56) and (57) into (55) yields

ρ

h
=

1

4µ

[
w2

(
XP

h

)1+2µ

+
1

w2

(
XP

h

)1−2µ

+ 2
XP

h

]
. (58)

In the classical case of an abeam engagement when θ = 0, w = 1 and h = d, so

ρ

h
=

1

4µ

[(
XP

d

)1+2µ

+

(
XP

d

)1−2µ

+ 2
XP

d

]
.

To determine the minimum turn radius, we need to find the minimum of the function

ρ(XP ).

dρ

dXP

∝ (1 + 2µ)z + (1− 2µ)
1

z
+ 2 (59)
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where

z ,

(
XP

h

)2µ

w2, 0 ≤ z ≤ 1− sin θ
1 + sin θ

.

Setting the R.H.S. of Eq.(59) equal to 0, we get the quadratic equation in z

(1 + 2µ)z2 + 2z + 1− 2µ = 0.

We have a real solution if

1− (1 + 2µ)(1− 2µ) > 0,

which is always the case. The solution of the quadratic equation is

z =
2µ− 1

2µ+ 1

When the speed ratio 0 < µ < 1
2
, the radius of curvature is monotonically increasing

in XP . In other words, ρmax is attained at t = 0, so the curvature of the pure pursuit

path increases until the end point of the time of capture – see Fig. (61).

If, however, the speed ratio 1
2
< µ < 1, as shown in Fig. 62, the radius of curvature

attains its minimum at

X∗P
h

=

(
1

w2

2µ− 1

2µ+ 1

) 1
2µ

which can also be written as

X∗P
h

=

(
1 + sin θ

1− sin θ
2µ− 1

2µ+ 1

) 1
2µ

,

provided (
1 + sin θ

1− sin θ
2µ− 1

2µ+ 1

) 1
2µ

≤ 1
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Figure 61: Radius of Curvature. µ = 0.3.

Figure 62: Radius of Curvature. µ = 0.7.

Hence, if the speed ratio 1
2
< µ < 1, the radius of curvature attains its minimum at

X∗P
h

=

(
1 + sin θ

1− sin θ
2µ− 1

2µ+ 1

) 1
2µ

, (60)
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provided

θ < Asin

(
1

2µ

)
.

If 1
2
< µ < 1 and θ < Asin( 1

2µ
), the minimal radius of curvature

ρ∗

h
=

1

4µ

(
X∗P
h

)(
2µ− 1

2µ+ 1
+

2µ+ 1

2µ− 1
+ 2

)

which is simplified to

ρ∗

h
=

4µ

4µ2 − 1

(
X∗P
h

)
. (61)

Substituting (60) into (61) yields

ρ∗

h
=

4µ

4µ2 − 1

(
1 + sin θ

1− sin θ
2µ− 1

2µ+ 1

) 1
2µ

. (62)

The Evader can judiciously choose his course angle θ according to equation (62)

and instead of running away from the Pursuer to maximize the time-to-capture, by

saturating the Pursuer’s maneuverability, the Evader/Attacker can escape altogether.
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VII. Many on One Pursuit and Evasion

7.1 Abstract

In an extension to Isaacs’ “Two Cutters and Fugitive Ship” differential game,

this paper analyzes the effects of a third pursuer joining the chase. We analyze eva-

sion strategies to prolong the life of the evader when facing both “optimal” Collision

Course (CC) and Pure Pursuit (PP) guidance by the three pursuers. Cases where

traditionally “optimal” evasion result in a premature capture when compared to al-

ternative strategies are illustrated. We provide evidence that conventional wisdom

for “optimal” play by the evader is incorrect.

7.2 Introduction

In this paper, pursuit-evasion differential games with more than one purser are

investigated. The players are assumed to have simple motion à la Isaacs, that is,

they are holonomic, and the pursuit takes place in the Euclidean plane. We begin by

revisiting the “Two Cutters and Fugitive Ship” differential game as outlined by Rufus

Isaacs in [1], where the fugitive ship is slower than the two cutters and point capture

is required.The solution to the differential game employs the geometric construct

of an Apollonius circle. An Apollonius circle is the set of points whose distances

from two fixed points, in this case the positions of the Pursuer and the Evader, are a

constant ratio µ = vE
vP

, where vE and vP are the speeds of the Evader and the Pursuer,

respectively – see Fig. 63. Under optimal play, capture occurs at the intersection of

two Apollonius circles whose foci are the two pursuers’ and the evader’s instantaneous

positions – see Fig. 64.
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Figure 63: Apollonius Circle. µ < 1, ` = 0.

Figure 64: Construction of Aim Point I. µ < 1, ` = 0.

7.3 Extensions

Wasz and Pachter [2] extended the “Two Cutters and Fugitive Ship” game for-

mulation by endowing the cutters with capture ranges of radius ` > 0. In this case,

the optimal feedback strategies change, as the safe region is no longer defined by

the intersection of two Apollonius circles. Rather, it is defined by the intersection of

two Cartesian ovals, a family of which is displayed in Fig. 65. Wasz, Pachter, and
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Figure 65: Family of Cartesian Ovals. µ < 1, ` > 0.

Vlassakis in [3] and [17] further explored the case where the pursuers have a capture

range ` > 0 but the speed ratio between the pursuers and the evader µ = vE
vP

= 1.

Wasz and Pachter [3] delineated the state space region where capture is guaranteed

– see Fig. 66 – and they synthesized the players’ optimal state feedback strategies.

If E is in the shaded region in Fig. 66 and the pursuers player optimally, E will be

captured. In [17], Vlassakis and Pachter streamlined the derivation for the optimal

feedback strategies. Given the instantaneous positions of the two pursuers and the

evader, the boundary of the Safe Region when the speed ratio µ = 1 is depicted in

Fig. 67 by the blue lines whcih are arcs of hyperbolae. The players’ optimal strategies

entail heading toward the aimpoint I, shown in Fig. 67. A simulation to illustrate the

solutions to the Game of Kind and Game of Degree when E does not play optimally

was developed.
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Figure 66: Solution to the Game of Kind. µ = 1, ` > 0.

Figure 67: Two-on-One with Capture Ranges. µ = 1, ` > 0.
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7.4 Three Pursuers

Von Moll, Pachter, Garcia, Casbeer, and Milutinovic [7] expanded the study of

pursuit-evasion games with the inclusion of a third pursuer. This increases the com-

plexity of the pursuit-evasion problem. Thus, it is instructive to consider an initial

configuration which is fully symmetric, with the evader initially at the circumcen-

ter of the equilateral triangle 4P1P2P3 formed by the three pursuers, as shown in

Fig. 68. Fig. 68 shows the three Apollonius circles formed by each of the pursuers

Figure 68: Three Pursuers.

and the evader, whose intersection creates the “Safe Region” whose vertices, in the

two-on-one pursuit scenario, provided a candidate optimal aimpoint for the Evader

to maximize his time-to-capture – ditto for the pursuers, who strive to minimize the

time-to-capture. In the symmetric three-on-one case, however, the circumcenter of

the equilateral triangle 4P1P2P3, where the evader is initially located, provides the

longest distance for each of the pursuers to travel, as has correctly been pointed out
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by Alexander Von Moll in [7] and further analyzed in [10]. Thus, it would seem that

the Evader should not head toward a vertex of the “safe region”, but should stay

stationary at the circumcenter O∗: thus, doing nothing, the Evader prolongs his time

to capture. In [10], the three-on-one pursuit-evasion scenario was anaylzed when the

Evader moves away from P1 as illustratetd in Fig. 69 under the stipulation that

the pursers employed the “optimal” strategy of Collision Course (CC) guidance as in

Isaacs’ Two Cutters and Fugitive Ship game [1].

Thus, we consider the three-on-one pursuit evasion game with CC guidance and

analyze traditionally “optimal” evasion strategy. We look into the three-on-one case

where the pursuers employ both CC guidance and Pure Pursuit (PP), and we try to

improve on what one could naively think is the “optimal” evasion strategies.

7.5 Collision Course Guidance

If the Pursuers play “optimally”, that is, they employ Collision Course (CC)

guidance as in the two-on-one scenario, the geometry is illustrated in Figure 69.

Figure 69: Pursuers use Collision Course Guidance.
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Consider the triangle 4EP2I: The time-to-capture

tcCC =
−µ+

√
4− 3µ2

2(1− µ2)
· d

Now

tcCC < d⇔ −µ+
√

4− 3µ2

2(1− µ2)
< 1

⇔

µ3 − µ2 − µ+ 1 > 0, 0 ≤ µ < 1

⇔

(1− µ)(1− µ2) > 0,

which is always the case. Thus, it appears that E should stay put, ∀ 0 ≤ µ < 1.

But in [7] it is shown that, when the Pursuers employ CC guidance, the state enters

a dispersal surface. Depending on the speed ratio µ, E can do better – prolong his

time-to-capture – by going South.

7.6 Pure Pursuit

We now consider the case where three fast Pursuers chase a slow Evader in Pure

Pursuit (PP) and the speed ratio µ = vE
vP

< 1. As before, the configuration/initial

state considered is fully symmetric, as shown in Figure 70, where the Evader is initially

at the circumcenter of the equilateral 4P1P2P3.

Given the speed ratio µ < 1, it is clear that the Evader will be captured. The

question is, how can E maximize the time to capture, given the three Pursuers are

in PP?

We know [6] the capture time when the Pursuer employs PP and the Evader is
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Figure 70: Three Pursuers Fully Symmetric State.

slower than the Pursuer (µ < 1). The configuration is as shown in Figure 71:

Figure 71: Pure Pursuit Scenario.

The time-to-capture in PP

tcPP =
1

1− µ2
(1 + µ cosθ) · d (63)

In the fully symmetric configuration, depicted in Fig. 70, if E chooses a heading
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directly away from P1, as far as the Pursuers P2 and P3 are concerned, θ = 2
3
π, so eq.

(63) yields the time to capture in PP

tcPP =
1

1− µ2

(
1− 1

2
µ

)
· d (64)

E will isochronously be captured by P2 and P3 while P1 is redundant. Next, consider

the case where E stays put at its initial position. The time to capture is then

tcP = d (65)

Comparing equations (64) and (65):

tcP > tcPP

if and only if

d >
1

1− µ2

(
1− 1

2
µ

)
· d

which allows us to conclude: When the speed ratio µ < 1
2
, the capture time is greater

when the Evader is stationary – similar to the phenomenon encountered in [10] and

[7], and discussed in Section 7.5, where the Pursuer employed “optimal” CC guidance.

7.7 Proactive Evader

In the case where the speed ratio µ < 1
2
, if the Evader vacillates at high frequency

by moving a distance δµ – North-South or East-West, as shown in Figure 72 – will this

increase the capture time above and beyond tc = 1 by making the Pursuers follow an

oscillatory and therefore longer trajectory while the Evader is practically stationary?

The design parameter δ sets the frequency of the Evader’s oscillatory motion. It is the

time the Evader runs away from its initial position before turning around, and since
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(a) North-South (b) East-West

Figure 72: Dithering Evader.

the velocity of the Evader µ is constant, it determines the frequency of oscillation. As

δ increases, that is, the Evader’s oscillation frequency decreases, the Evader will draw

the Pursuers further off course. However, too great of δ might result in a decreased

capture time when compared to a stationary Evader. Thus, finding the optimal δ is

of interest.

7.7.1 North-South Oscillation

In the case where the Evader oscillates North-South, as shown in Figure 72a, we

know that if E is captured at any point above the circumcenter of the equilateral

triangle 4P1P2P3, it will result in a decrease in capture time when compared to a

stationary Evader. This is because P1 is not drawn off course by the Evader’s North-

South oscillatory motion, and thus will reach the circumcenter of the equilateral

triangle 4P1P2P3 in the same amount of time (nominally tC = 1 sec.) regardless of

the Evader’s motion. Therefore, for capture time to increase when compared to a

stationary evader, capture by P1 or by P2 and P3 must occur some distance below the

circumcenter of the equilateral triangle, in the region R below the broken line shown

in Fig. 73.

The Evader’s North-South oscillation strategy was simulated to determine which δ
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Figure 73: North-South Safe Region.

prolonged the life of the Evader when compared to staying put at the circumcenter.

The pursuit curves were numerically calculated using Euler’s integration method with

a time step of 1e-5 seconds – this, compared to the time required to reach a stationary

E in 1 second. The Evader initially travels South for time δ at speed µ, then changes

direction to have traveled a distance 2δµ so that it returns to the circumcenter of the

equilateral triangle 4P1P2P3 and continues to travel North for a distance δµ, etc. –

see Fig. 74.

The Evader was subject to the control policy shown in Fig 74 with varying δ’s. Figure

75 shows the resulting capture times tc for a range of δ’s when the speed ratio µ = 0.2.

As shown in Fig. 75, there were δ’s which extended the Evader’s life. In the best

case, δ = 0.518, the oscillatory motion drew the pursuers off-course enough to extend

the Evader’s life by 0.006 seconds – this, compared to a nominal 1 sec capture time.

The Evader changed direction once, and was captured 0.0062 units, or 0.62% of d,

below its initial position at the circumcenter of the equilateral triangle 4P1P2P3.

Next, we wanted to see the effects of varying δ for the case when the Evader first

travels South for δ, then returns to a position y(tf ) below the circumcenter of the

equilateral triangle 4P1P2P3 and stops – see Fig. 76. We use the parameter y′f to
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Figure 74: Evader Control and Position. µ = .2, δ = .25.

Figure 75: Capture Time tc vs. δ. µ = 0.2.

signify the distance the Evader stops below its initial position at the center of the

equilateral triangle.

y′f = y(tf )− yE(0)
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Figure 76: Evader Control and Position with Stoppage. µ = .2, δ = .25.

Fig. 77 shows the case where the Evader stops at y′f = −0.002. We see that when

δ > 0.224, the Evader’s motion increases the time to capture tc. In the best case,

δ = 0.518 yields tc = 1.006 seconds.

Figure 77: Capture Time tc vs. δ with Evader Stoppage. µ = 0.2, y′f = −0.002.
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7.7.2 East-West Oscillation

If the Evader oscillates East-West, as shown in Figure 72b, the Evader’s motion

will draw all three Pursuers off course. We explore the possibility that the Evader’s

motion increases the time to capture tc when compared to a stationary Evader at

O∗. As Fig. 78 shows, a mobile Evader is able to outlast a stationary Evader under

Figure 78: East-West Capture Time tc vs. δ. µ = 0.2.

certain frequencies of oscillation. An increase in capture time tc occurs when the

Evader returns to its initial position at the circumcenter of the equilateral triangle

4P1P2P3. The δ which yeilds the largest increase in capture time is at δ = 0.5, where

the mobile Evader is captured 0.003 seconds later than had he stayed stationary at

the circumcenter O∗. Once again, we also explore the case where the Evader changes

direction once, then returns to its initial position. In this case, we want zero separation

between the final position and the initial position, thus y′f = 0.

As Fig. 79 shows, the higher frequency/smaller δ cases do not draw the Pursuers off

course enough to increase the time to capture. Once δ > 0.49, we see an increase in

capture time to tc = 1.003 seconds, in the best case, when compared to a stationary
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Figure 79: East-West Oscillation Capture Time tc vs. δ with Stoppage. µ = 0.2.

Evader.

Under PP, an active Evader can bring about an increase, albeit small, in the time-

to-capture. The realized small increases in the time-to-capture is real – we verified it

is not an artifact of numerics.

7.8 Conclusion

The two-on-one pursuit-evasion differential game had been solved when the pur-

suers are faster than the evader, both when point capture is required and also when

the pursuers are endowed with capture circles of radius ` > 0. The case where the

two pursuers have the same speed as the evader and they are endowed with capture

circle of radius ` > 0 has also been addressed. When three pursuers are at work, the

pursuit-evasion differential game’s complexity increases significantly. In three-on-one

pursuit with an initial fully symmetric configuration and where the pursuers employ

PP, at first blush it would appear the Evader with less than half the speed of the

pursuers, µ < 1
2
, should remain stationary to prolong its life before being captured.
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We showed that using an oscillatory motion, the Evader can slightly increase the

time-to-capture. If the Evader dithers North-to-South, it is beneficial for the Evader

to dither once and return to a position slightly below its initial position at the cir-

cumcenter O∗. When the Evader oscillates East-West, he draws all of the pursuers

off course. This results in an increase in capture time tc when the Evader terminates

its oscillatory motion at its initial position.
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VIII. Thesis Conclusions

The accumulation of the preceding five paper’s results are as follows. In Chap-

ters III and IV, the complete solution for the Two-on-One pursuit-evasion differential

game where the players have equal speed and simple motion, and the two Pursuers

are endowed with capture disks of radii `1 ≥ `2 ≥ 0 was delineated. The solution

to the Game of Kind was presented by determining the region in the reduced state

space, which is delimited by the tangents of the two capture disks, where isochronous

capture is guaranteed. The solution to the Game of Degree was presented by pro-

viding the optimal state feedback strategies for the three players, which required the

calculation of the aim point I. Additionally, we analyzed the reduced state space in

three dimensions, and found the terminal “manifold” to be rank deficient, as it was

a curve. Thus, it was explicitly determined, as were the terminal costates.

In games of Pure Pursuit, the equation of the pursuit curve for a Pursuer endowed

with a capture range of radius ` was derived. For capture to occur, the terminal sepa-

ration between the Pursuer and Evader must be less than the Pursuer’s capture range

`, as demonstrated in Chapter V. We also considered the case with two Pursuers em-

ploying Pure Pursuit of an equal speed Evader and determined the necessary and

sufficient conditions for capture. In Chapter VI, we consider the defense of a station-

ary Target under attack. We analyze the case where a fast Defender employs Pure

Pursuit and determine the conditions for interception of the slow Attacker before he

reaches the Target. Then, we determined a “Winning Region” for an Attacker, who’s

speed is equal to the Defender’s, that reaches the Target before interception. Lastly,

in Chapter VII, we analyzed the Three-on-One pursuit-evasion game in which the

three Pursuers are faster than the Evader and the initial configuration is fully sym-

metric. It was determined that conventional wisdom for “optimal” play by the Evader

was incorrect, as it suggested a stationary Evader lived the longest. We determined
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that a dithering Evader outlived a stationary Evader under certain frequencies.

8.1 Future Work

There are numerous paths to diverge upon from this research. The Three-on-One

pursuit-evasion game is extremely difficult, and we barely grazed the surface. That

research could be continued by considering alternate configurations, variable speed

ratios, pursuer capture ranges, minimum turn radii, etc. We could also consider the

Two-on-One case in higher dimensional space, that is, analyze the scenario given the

Pursuers and Evaders positions have an (x, y, z) component.
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