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Abstract

The Advanced Navigation Technology (ANT) Center at the Air Force Insti-
tute of Technology (AFIT) is currently exploring ways to develop and advance the
employment of autonomous Unmanned Aerial Vehicles (UAV) by the Department
of Defense for military purposes. The research in this thesis describes the develop-
ment of a tool that enhances situational awareness and provides synthetic vision in
a program called the Aviator Visual Display Simulator (AVDS) during UAV flight.
During flight testing, the Situational Awareness and Synthetic Vision Relay Tool
(SASVRT) developed provides the test coordinator and pilot, as well as the safety
observers, with the most pertinent information regarding operational safety. In ad-
dition to improved safety, the enhanced situational awareness provided by SASVRT
provides improved operational capabilities. SASVRT provides users with real-time
information regarding hard boundaries, interpolated terrain, flight ceilings, and other
aerial vehicles present. The hard boundary is a user defined area within which the
UAV is to stay at all times e.g. as designated by a Safety Review Board (SRB).
Pertinent data to this boundary is both distance and time until crossing, and is
provided to the user during flight by SASVRT. The interpolated terrain part of
SASVRT allows the user to input contours of altitude and based on all present in-
formation, interpolates a minimum safe altitude for flight. This information is also
relayed to the user during flight. If multiple aerial vehicles are recognized by the
autopilot operator interface, SASVRT will relay to the user the distances between a
vehicle and any other vehicles present. Finally, in order to provide synthetic vision,
SASVRT relays telemetry data from the aircraft to AVDS, an aircraft simulation
program, to provide a real-time visualization of the aircraft’s position and attitude
relative to a synthetic terrain constructed based on information entered by the user.

The visualization can be thought of as the view from a virtual camera that can be

v



placed anywhere relative to the UAV or ground. Furthermore, the virtual camera
can be oriented such that it provides a view from the cockpit, providing synthetic
vision for the UAV operator, the fidelity of which is limited only by available maps
and GPS accuracy. This report and the accompanying SASVRT program, provide
a much enhanced methodology for safe operation during UAV flight testing, as well

as improved operational capabilities.
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SITUATIONAL AWARENESS AND SYNTHETIC VISION FOR
UNMANNED AERIAL VEHICLE FLIGHT TESTING

1. Introduction
1.1  Motwwation

Unmanned Aerial Vehicles (UAVs) have long been researched in order to obtain
a operating presence amidst environments too dangerous for pilots. However it has
only been in recent years that developing technology has been able to revolutionize
the capabilities of UAVs. Their missions can now range from intelligence, surveil-
lance, and reconnaissance (ISR) for troops on the ground or commanders apart from
the battlefield, to autonomous search and destroy missions. Because the pilot is
removed from the platform, many restrictions are also removed allowing the aircraft
to perform longer without risk of fatigue or perform in conditions not suited for the
human body such as high accelerations, high altitude, or contaminated areas. It
is with these advantages in mind that the Department of Defense (DoD) pursues

research of UAVs with such vigor.

In order to produce UAVs capable of fulfilling the high demands of modern
warfare, extensive research and flight testing is an absolute requirement. Exper-
imental flight testing is a vital element in aircraft research and development, and
although the target end product of research and flight testing is assured and safety or
reliability, the testing itself can lack exactly that. Flight testing an autopilot system
on an aircraft can go wrong for a countless number of reasons due to the complexity
of the system and its reliance on numerous vital elements. However, improving the
operator’s situational awareness can dramatically reduce the risk of flight testing

autonomous UAVs.



Flight testing of unmanned autopilot systems on Area B of Wright-Patterson
Air Force Base requires a safety briefing in which an area is designated within which
the flight testing is to occur. Because of the nature of the flight test, it is often
difficult for observers to monitor where the aircraft is in relation to the boundary of
the designated area. However, with a Global Portioning System (GPS) receiver on
board, an autopilot can tell where exactly the aircraft is in relation to boundaries.
Because of GPS and other sensors on board, the situational awareness of observers
can be heightened by processing the on board information and relaying the most
relevant data to the observers. Furthermore, the improved situational awareness to

improve flight test safety can also increase operational capabilities.

1.2 Related Research

1.2.1 Characterization of UAV Performance Evaluation and Development of
a Formation Flight Controller for Multiple Small UAVs.  Ensign Patrick McCarthy
is working in the Advanced Navigation and Technology (ANT) Center to control
multiple aerial vehicles and fly them in formation patterns. As a lead aircraft flies,
his work involves using a position based relative to that of the lead aircraft to place
a waypoint for a following aircraft to track and fly towards (McCarthy, 2006). The
application of this research with regards to Ensign McCarthy’s research is discussed

in Chapter VL.

1.2.2  An Investigation Into Robust Wind Correction Algorithms for Off the
Shelf Unmanned Aerial Vehicle Autopilots.  Ensign Brent Robinson is also working
in the ANT Center to account for wind effects during UAV flight (Robinson, 2006).
The goal of his research is to point an on board sensor at a target amidst the
autopilot induced crabbing of the aircraft to compensate for the wind conditions. The

application of this research with regards to Ensign Robinson’s research is discussed

in Chapter VL.



1.2.3 Controlled Flight Into Terrain. The idea of maximum situational
awareness is not new nor unique to UAVs. Much research has been done in the area
of heightening the situational awareness of commercial pilots in order to reduce the
number of incidents of controlled flight into terrain, (CFIT), such as in Barry Breen’s
paper (Breen). Breen discusses that most airline fatalities are not the fault of the
aircraft itself, but rather the fault of the pilot’s lack of situational awareness. Yet
many attempts of a ground proximity warning system have failed due to excessive
alarms leading to pilot agitation and ultimate ignoring of the alarm. Many incidents
occurring with UAV flight testing are also due to pilot error, which often results from

the pilots lack of situational awareness.

1.2.4 Synthetic Vision.  The predominant cause of aircraft incidents involv-
ing CFIT and runway incursions has been cited as limited visibility. Because of this,
NASA is now conducting research and developing Synthetic Vision Systems (SVS),
in order to reduce the risks associated with low visability conditions. In Synthetic
Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool, the au-
thors discuss an evaluation of SVS in which two concepts were used, a head-worn
display of SVS and a three-dimensional SVS electronic flight bag. After experiment-
ing with several flight modes and situations including CFIT, the research concluded
taht numerous future directions should be examined in order to better optimize SVS

concepts [Kramer, 2006].

As a result, NASA then conducted a study on the incorporation of Enhanced
Vision Systems (EVS) into SVS [Bailey, 2006]. The research is based on compli-
menting the advantages of SVS, unlimited vision in any conditions, with those of
EVS, enhanced vision not subject to navigational error. Because EVS is an imaging
sensor presentation and not a database-derived image like SVS, it can be used to
correct the display of SVS by incorporating the researched integration and/or fusion
techniques. An example of the two displays that are compared is shown in Figure 1

[Bailey, 2006].



Synthetic Vision Enhanced Vision

Figure 1  Comparison Between SVS and EVS

1.8 Problem Definition

The primary objective of this research was to develop and test a situational
awareness tool that provides a real-time indicator as to the aircraft’s current location
with respect to the designated borders, including both two-dimensional approved
flying areas, and three-dimensional approximated terrain for safe flying. In order
to have an immediate impact of UAV flight testing in AFIT’s ANT Center, the
situational awareness tool must be compatible with the Piccolo II autopilot software
currently being utilized. The situational awareness tool will communicate with the
Piccolo IT autopilot on board the aircraft via the UHF antenna connected to the

ground station computer.

A secondary objective of this research was to develope a synthetic vision system
to provide a three-dimensional visualization of an aircraft’s attitude and position
relative to its surroundings. This would then give the radio control (R/C) pilot
synthetic vision, as if on board the aircraft, in order to enhance situational awareness.
Often times, due to the distance between the aircraft and an observer, a potential
hazard may look more or less serious from the observer’s point of view than it would

from the aircraft. A high fidelity synthetic vision system would give observers a much



better point of view despite weather or time-of-day conditions, which improves safety

and performance.

1.4

1.5

Research Objectives

Establish a method to determine and warn observers when the aircraft is ap-

proaching or has crossed over the designated flight area boundaries.

Establish a method to monitor the aircraft’s altitude relative to the ground
or a flight ceiling, and relay this information to observers along with warning

when the aircraft approaches the limits.

Incorporate terrain and buildings into a safe operating altitude algorithm in

order to maximize the situational awareness of the observers.

Relay telemetry data to the Aviator Visual Design Simulator (AVDS) in order

to give observers synthetic vision from onboard the aircraft.

Simulate flight tests of aforementioned methods of heightening situational
awareness in order to demonstrate a safer way to flight test UAVs, as well

as show the applicability to operational use of UAVs.

Significance

This thesis supports the ANT Center’s ongoing efforts to advance the fields of

guidance, navigation, and control in support of DoD missions in several ways. First

and foremost, the Situational Awareness and Synthetic Vision Relay Tool (SASVRT)

provides the ANT Center with improved UAV flight safety by significantly enhanc-

ing the UAV test teams situational awareness during flight operations. Of particular

interest is the enhanced safety during flights with multiple UAVs. SASVRT contin-

uously displays essential information like distance and time to user defined bound-

aries, minimum distance between UAVs, etc. At the same time, the synthetic visions

enables the operator (or anybody with a computer on the same network) to synthet-

ically view the UAV or multiple UAVs from any fixed position or from a position

5



relative to any of the UAVs, which enables views from perspectives not possible from
a fixed position on the ground, especially when the vehicles are at great distances or
beyond visual range. SASVRT also enables views not possible with vehicle-mounted
cameras, like a bird’s-eye view. In addition to improving safety, the increased situa-
tional awareness enhances operational mission capabilities, especially when operating
in conditions with limited visibility. Finally, the data generated during flight can be
logged and analyzed post-flight, including replaying the synthetic movie and even

generating new movies from different perspectives than viewed during flight.

1.6 Assumptions

Several assumptions were made in this research. In the coordinate transforma-
tions necessary in SASVRT, there are inherent errors due to the distance between the
current location and base point due to the curvature of the earth and the assumption
of a flat earth. Because the UAV flight testing occurs over a relatively small area,
these errors remain small and are neglected, but could be accounted for if flying over
large distances. Also, locations provided by the GPS receiver are not exact and have
associated errors. As such, the statistics of errors were assumed constant and were
included in the calculation of the minimum safe distance from the designated borders
and the aircraft. The data used to incorporate the terrain and buildings of the Area
B flight space into AVDS were simply to demonstrate the usefulness of the methods,
and as such were only estimates; however, if available or generated, extremely high
fidelity terrain and building maps can be used. The linear interpolation algorithm
used to estimate the altitude above safe operating altitude clearly is not meant to be

an exact figure, but rather a conservative estimate to maximize safety during flight.

1.7 Methodology

Methodology for this research with regards to the development of SASVRT

involved starting with a compilation of simple problems and concatenating them into



a robust algorithm that works in general for all cases. Once the simple problems
were shown to work for all cases, they were compiled into a more complex problem
and adjusted to produce desired results on the more complex level. Eventually, this
led to a set of general functions that could be used by a program to produce desired
quantitative results. After SASVRT was developed, it was used in Hardware in the
Loop (HITL) simulations to verify that the results produced matched the simulated

results.

The development of the synthetic vision portion of SASVRT involved develop-
ing an interface program to relay aircraft telemetry data to the AVDS program in
real-time. As its name implies, AVDS (Aviator Visual Design Simulator) provides
tools specifically developed to visualize aircraft simulations; however, the interface
developed in this thesis enables AVDS to be used to synthetically visualize UAVs (or
any vehicles) in real-time. Because AVDS uses a different coordinate system, it was
necessary to do coordinate transformations when transferring telemetry data from
the UAV to AVDS. Therefore, simulations were conducted in cardinal directions to

ensure the visualization in AVDS matched the true vehicle direction.

1.8 Thesis Ouverview

Chapter II examines closely the equipment and software used in this research,
and discusses related research. Chapter III explains the mathematical methods used
to develop SASVRT and the integration of SASVRT with the Piccolo 1T autopilot
system. Chapter IV discusses AVDS and its use in developing the synthetic vision
relay. Chapter V discusses how the developed methods and the program were tested
by simulating flight tests. Chapter VI illustrates the results of the simulations and
analyzes the results. Chapter VII draws conclusions based on the analyzed results

of the simulated flight testing of the situational awareness program.



II. Background
2.1 Overview

Chapter IT describes the equipment and software that made this research pos-
sible. The Rascal 110 aircraft and its avionics are discussed briefly to put in per-
spective the immediate application of this research. The Piccolo II autopilot and its
accompanying Software Development Kit (SDK) are described to more fully frame
the problem of implementation. Finally, a brief explanation of the need to trans-
form between latitude, longitude, and altitude coordinates and north, east, and up

coordinates is given.

2.2 Sig Rascal 110 Aircraft

The Sig Rascal 110 R/C aircraft was chosen as the demonstration platform for
this research due to the existing data and flight test procedures developed by Captain
Nidal Jodeh (Jodeh, 2006). The Rascal 110 was an attractive choice for an autopilot
test platform due to its large interior volume and stable flight characteristics (Jodeh,
2006). The Rascal 110 has been used by several groups conducting research on
autonomous UAVs including the University of California-Berkeley conducting vision
based navigation (Frew, et al., 2004). The aircraft is among the largest R/C planes
that come almost ready to fly (ARF) requiring approximately 40 man hours to
assemble and tune, compared to the estimated 200+ hours it would take to assemble
from a non-ARF kit. A modified fuel tank allows the Rascal to fly for approximately
two hours on a single tank of fuel (Jodeh, 2006). In addition to these ideal qualities,
a high-fidelity hardware-in-the-loop simulator was developed by Captain Jodeh in
his thesis, which facilitates guidance, navigation, and control development pre-flight

testing (Jodeh, 2006). A photograph of the Rascal aircraft is shown in Figure 2.



Figure 2  Sig Rascal 110

2.8 Avionics

2.3.1 Radio Control System.  The radio control system includes a Futaba
9CAP/9CAF 8 Channel transmitter, which sends commands to a Futaba R149DP
PCM 1024 receiver aboard the aircraft. The receiver relays the commands to high
torque servos in order to deflect the control surfaces. The Rascal can be controlled
by either a standard Radio Control system or the Piccolo IT autopilot. Switching
between the two is controlled by a Fail Safe Control Relay designed by the Sensors
Directorate in the Air Force Research Labs Sensors Directorate (AFRL/SN).

2.3.2  Piccolo II. The Piccolo IT autopilot is a commercially available au-
topilot system from Cloud Cap Technologies that includes an autopilot box on board
the aircraft, Operator Interface software, and a Ground Station that relays communi-
cations between the serial port of the personal computer (PC) running the Operator
Interface, and the UHF Antenna connected to the aircraft. The ground components
are shown in Figure 3 and the autopilot box is shown in Figure 4. The Piccolo II
is a fully autonomous autopilot system designed for small unmanned vehicles. It
obtains information by way of a GPS receiver, a dual ported dynamic pressure sen-

sor, an absolute ported barometric pressure sensor, an on board temperature sensor,
9



Figure 3  Ground Station Components

onboard rate gyros, and dual two-axis ADXL210e accelerometers. A Kalman filter
analyzes the data and estimates gyro bias and attitude in order to minimize the
error in telemetry data (Vaglienti, 2005). This telemetry data is relayed through the
Ground Station to the Operator Interface, which provides the user with the data
and the ability to pass commands back to the autopilot. The various functions and
data displays of the Operator Interface are detailed in the Piccolo II System User’s
Guide Version 1.3.0 available through Cloud Cap Technology (Vaglienti, 2005). The

Piccolo II avionics system is depicted in Figure 5.

Various commands can be entered in the Operator Interface to be relayed to
the aircraft via the Ground Station and Piccolo IT box including altitude, airspeed,
etc. However, the most important commands to autopilot navigation are waypoints
in the form of waypoint lists. The Operator Interface allows the user to input a loop

of waypoints for the aircraft to follow as seen in Figure 6. Through various gain

10



Figure 4  Piccolo IT Autopilot Box

settings the aircraft will follow the track more or less tightly and this can be used
to tune the autopilot for optimal performance. In order to test the hard boundary
and minimum altitude algorithms developed in this thesis, several different waypoint

lists were sent and the data analyzed, as described in more detail in Chapter V.

2.4 Hardware in the Loop Simulator

In any kind of flight testing, manned or unmanned, simulation prior to flight
testing is vital to fine tuning the items to be tested. Available to the Piccolo II
autopilot system is a hardware in the loop (HITL) simulator. The operator interface
view, as depicted in Figure 7, is identical for the simulation and actual flight test with
the exception of the Piccolo II autopilot box receiving flight data from the simulator
(B) rather than the aircraft and its on board sensors(A). When simulating, a PC

runs the simulator software and through its Universal Serial Bus (USB) port sends
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the data to the Piccolo II that it would be receiving were it flying in the prescribed
simulated condition. This data is also available on the simulator’s operating screen
as shown in Figure 8. Then, just as in an actual flight test, the Piccolo II box (C)
communicates the telemetry data to the Ground Station (D) which relays it to the
Operator Interface (E) running on a separate PC. Captain Jodeh in his research
determined and entered the inputs to the simulator in order to correctly model the
characteristics of the Rascal 110 aircraft (Jodeh, 2006). This simulator was vital
in testing and debugging software developed in this thesis to increase situational

awareness.

2.5 Software Development Kit

Along with the Operator Interface, the Piccolo IT system comes with a Software
Development Kit (SDK). This is a C++ based set of codes that provide the ability
to intercept and decode data packets sent between the Operator Interface and the
on board Piccolo II box. This gives the user access to the telemetry data measured
by the Piccolo II autopilot as well as the ability to send data packets back to the
aircraft. This communications managing technique was the basis for developing and

implementing SASVRT.

2.5.1 Existing C++ Code. Randall Plate, an intern in the ANT Center
in the Summer of 2006 began developing a C++ code with the SDK that allowed a
user to view the telemetry data in an external program. Key points in the code that
would be used later in this research were implementation of the SDK to decode data
packets and a conversion program from latitude, longitude, and altitude, to north,

east, and up coordinates.

2.5.2  Latitude, Longitude, Altitude, and East, North, Up.  Latitude, longi-
tude, and altitude (LLA) are excellent parameters for navigation and describing any

location on the earth. With its origin at the mass center of the earth, the LLA co-
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ordinate system defines location as the angles from reference vertical and horizontal
planes, for which the Prime Meridian and Equator respectively are commonly used,
and also the the distance along a line normal to a reference ellipsoid estimating the
surface of the earth (Baleri). However, in order to determine distance or time to a
boundary or terrain, it is more convenient to assume a flat earth and use a Cartesian
coordinate system rather than a spherical system. Cartesian coordinates for exam-
ple, allow velocities to be described by three distance rates of the same units rather
then two angular rates and a distance rate making interpretations more intuitive and
calculations much simpler. A common Cartesian coordinate convention is known as
the East, North, Up (ENU) coordinates system. Conversion between these systems

is discussed in detail in Section 3.4.3.1.

2.6 Awviator Visual Display Simulator

The Aviator Visual Display Simulator by Rasmussen Simulation Technologies,
LTD., is a program incorporating multiple operating modes designed to be univer-
sally applicable to a multitude of aircraft simulation visualization needs (Rasmussen,
2005). It can operate independently of other programs and simlulate a variety of
aircraft with inputs from a joystick, mouse, or keyboard. It can also obtain telemetry
data from a MATLAB script or C++ program using shared memory. These methods
can also be used in network mode in which the data is broadcast over a network and
can be read by any program running on the network. Several models of common
aircraft are available for visualization, or users can define a new aircraft using the
corners of a triangle or planar quadrilateral in three-dimensional Cartesian coordi-
nates. These models can also be in fixed locations in order to model terrain, and can
have texture image files applied to them. Furthermore, text files of telemetry can be
used in the program’s playback mode to visualize past flights in which the flight data

was recorded. These are just some of the features available in the Aviator Visual
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Display Simulator (AVDS), but this encompasses the scope of which this research

makes use of the program.

2.7 Summary

Given the presented aircraft, equipment, and software information, the reader
has a general sense of the circumstances under which the presented research was
started. The Rascal 110 modelled by Captain Jodeh, the C++ code developed
by Randall Plate, and the AVDS program provide the foundation to extend the

situational awareness and safety of flight testing presented in the following chapters.
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III. Development of a Proximity Warning System
3.1 Qverview

As previously mentioned, the end product of this research is a Situational
Awareness and Synthetic Vsision Relay Tool (SASVRT) to aid UAV testers and
operators as they perform their mission. This chapter presents the mathematical
foundation in Cartesian coordinates that provide the basis for the SASVRT. It starts
off with teh equations required to have situational awareness in two dimensions, and

then extends thos results to the three-dimensional case.

3.2 Two Dimensional Proximity Warning

3.2.1 Equations of Lines.  Given two points, (zg,yo) and (z1,y;) as seen in
Figure 9, an equation can be determined for the line connecting these points by first

determining the slope m of the line given by the equation

m:yl—yo’ (1)
1 — Xo

which can then be used to determine the y intercept b by the equation
b=y — may, (2)

ultimately leading to the general form of the line relating all values of x and y in the

equation

y = mx +b. (3)

Given an arbitrary point (z4,y,) not on the line, the closest distance between this

point and the line described by Equation 3 can be determined by first describing the

19



v XgY

A (XY

O (Y
;)
y=mx+b
y=mLx+bL
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line through the point (z,,y,) perpendicular to the line in Equation 3, for it is along
this line that the shortest distance is measured. This perpendicular line is described

by the equation

-1
= ba; 4
y T+ (4)

where b, can be solved for by the equation

1
ba: a —day 5
Yot @ (5)

with m being equal to the slope of the line in Equation 3. The intersection of the

two lines in Equations 3 and 4 at point (z;,y;) satisfies the equation
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-1
mx; + b= —x; + ba, (6)
m

found by equating the equations for y;. Solving Equation 6 for z; shows

b, — b
i = 7
! % +m (7)
which can then be used to solve for y;
y; = mx; + b. (8)

Then the shortest distance, d, between point (z,,y,) and the line described by
Equation 3 is the distance between the points x,, 3, and x;, y;, which is found by the

equation

da = \/(xa - xi)z + (ya - yz)2 (9)

It is important to note here that in the special cases where m = 0 or m = oo in the
given coordinate system, this problem breaks down into a simpler solution, where
d, = x4 — x1 for m = oo, or d, = y, — y; for m = 0. When solving this problem
in the for all lines this is an important check to have in a program so it does not

attempt to solve for infinity. Furthermore, if the equation

Vi(@o — )2+ (Yo — ¥:)? + V(w1 — )% + (11 — 1:)? = V(w0 — 21)% + (yo — 11)%,
(10)

is satisfied, then the point (z;,y;) falls between points (zq, yo) and (z1,¥;) on the line
described by 3. If it is not satisfied, then the shortest distance from point (z,,y,) to
the line segment between (zg, o) and (z1,y1) is the lesser of
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V(2o — 22)? + (yo — ya)? andy/(z1 — 74)2 + (y1 — Ya)?, the distances to the end points

of the segment.

An extension of this mathematics lends itself to the problem of a a polygon
comprised of line segments connecting a series of points. It is clear that one can

determine the minimum distance between an arbitrary point (z,,y,) and a polygon.

3.2.2  Closed Polygons. At the very root of a boundary warning system
is the necessity of a systematic method to determine at a given time, if the cur-
rent location, (x,,y,) is within or outside of a boundary defined by line segments
connnecting the points defining a closed polygon that can be easily coded into an
algorithm. If a line was extended in a single direction from the (z,,y,) out to in-
finity and the number of intersections with the line segments defining the edges of
the polygon were counted, it could be determined whether or not (x,,y,) is within
the bounds of the polygon. If the line crosses an even number of boundaries, then
(ZayYa), is located outside of the bounds of the polygon. If the line crosses an odd
number of boundaries, then the current location is within the bounds of the polygon.
Figures 10 and 11 show an arbitrary polygon defined by seven points. For the sake
of simplicity, in the algorithms used in this research, the arbitrary line from the test
point was given zero slope and taken to be all values greater than the test point’s
x value. Clearly Figure 10 shows that line extending from (z,,y,) horizontally to
the right crosses four sides of the polygon and the three other intersection points
are not contained on the line segments that make up the polygon. Based on the
aforementioned criteria, this point is determined to be outside of the bounds. Using
the same polygon, but changing the location of (x,,¥,), Figure 11 shows that the
horizontal line extending from (x,,y,) to the right only crosses three boundaries to
the right, with two intersection points not being contained on the line segment, and
the other two intersection points being to the left of (z,,y,). Therefore this (z4,y,)
is determined to be within the bounds of the polygon.
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Figure 10  Arbitrary Polygon with Point Outside Bounds

The mathematical techniques presented in the previous sections of this chapter
can be coded as to systematically determine if a position is within defined bound-
aries. With regards to geographic position, given a current latitude and longitude, a
program can reference a prescribed set of latitudes and longitudes for a designated
area and determine if the location is within the bounds of the flying area, or as it

will be called hereafter the hard boundary.

3.8 Three Dimensional Proximity Warning

3.3.1 Linear Interpolation.  In this section, the two dimensional mathemat-
ics will be extended to three dimensions to develop an altitude proximity warning
system. If one were to define several closed polygons of different altitudes, they could
be thought of contours of altitude on a topographic map describing the terrain of a

given area. Then it would be feasible to interpolate between the lines to estimate
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Figure 11  Arbitrary Polygon with Point Inside Bounds

the altitude of the ground at a test point, and call this the minimum altitude for
that point. The linear interpolation algorithm created to do this does so by taking
a current two-dimensional location (z.,y.) and calculating the shortest distances to
every line describing a side of a defined polygon representing a contour of altitude,

as well as the distances to the points describing the corners of the polygons. If

the shortest distance to a point on a line describing the side of a polygon is not
contained on the line segment actually making up the polygon, this value is thrown
out. The result is a set of points of known altitude, but most of the points are too
far away the current location to be used in a minimum altitude calculation for the
current location. As such, the algorithm then determines the shortest remaining
distance, either to a side or corner of a polygon, and stores the coordinates of the
point corresponding to this shortest distance as (z1,y;). The algorithm then deter-

mines the second shortest distance and subjects the corresponding point to several
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Figure 12 3-D Interpolation Restriction 1

restrictions. The first restriction, shown in Figure 12 dictates that the second closest
point, (zs,y2) , must come from a different polygon than (z1,y;), to ensure that an
interpolation occurs between two different contours. The next restriction, shown in
Figure 13, states that if (z., y.) is located outside the bounds of the polygon contain-
ing (z1,1), then (x4, y2) must also be located outside the bounds. This ensures that
the interpolated value is not accidentally extrapolated and ends up with a estimated
ground height larger than the larger of or smaller than the smaller of the altitudes

of the polygons containing (z1,y;) and (x2, y2).

Similarly, Figure 14 shows that if (x.,y.) is located within the bounds of the
polygon containing (x1,y;), then (x2,y2) must also come from within the polygon
for the same reasons as before. Figure 15 demonstrates the next rule which can
be stated, the distance between (z.,y.) and (z2,y2) cannot be greater than the

distance between (x1,y;) and (x9,y2), again to avoid accidentally extrapolating a
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Figure 15
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minimum altitude. If a point violates any of these restrictions, it is thrown out and
the next closest point is examined by the algorithm. Finally, if no points satisfy the
restrictions for (z3,y2) as shown in Figure 16, the minimum altitude is assumed to
be that of the polygon containing (z1,y;). Otherwise, the algorithm has stored the

two points, (x1,y;) and (z3,ys) as the two valid points closest to (z., y.)-

In order to estimate the minimum altitude, the equation for the line between
the points (z1,y1) and (z2,y2) is then determined. Next, the point on this line
closest to (z.,y.) is determined and called (z,,y,), as shown in Figure 17. The
distances between (z,,y,) and (x1,y1), di1, (x1,y1) and (z2,y2), doy, and (x1,y1)

and (z9,ys2), di2 are then used in the equation

d d
—hy + —Eh

hest = I, 11
Codn T di )

to determine the estimated height of the ground at (x.,y.), hest, if o is the altitude
of the polygon containing (z,y2), and hq is the altitude of the polygon containing

(z1,91).

3.3.2  Urban Canyon Check.  An advantage of using the linear interpolation
algorithm is that it also includes a maximum slope check. Hypothetically, an aircraft
could be flying along calculating the ground height and be comfortably above the
minimum flight altitude, and then crash into a tall object, (e.g. a building). There-
fore, a check was built in to the altitude interpolation algorithm to determine the
slope of the line from the current location to all points of known altitude. If based
on the maximum climbr rate performance, the aircraft cannot climb at the at the
steepest slope, the minimum altitude is defined as the distance above the ground
at which the aircraft would be able to climb to that countour of altitude. Thus,
as the example in Figure 18 shows, a steep increase in terrain, like the simulated
buildings represented by the blue surface, can be smoothed in the synthetic terrain

like the red surface, ensuring that at any instant the aircraft is able to climb out of
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Figure 18 Urban Canyon Check
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an imminent collision. Clearly this is on the conservative side as it is independent of
relative heading to the buildings, and in fact assumes the aircraft is flying directly

toward the building.

3.4 Integrating Prorimity Warning with the Piccolo I

3.4.1 QOverview. In order to make use of the mathematical techniques
described above in any real time situation, a program needs access to an aircrafts
location relative to boundaries and contours of altitude. This section describes how
SASVRT uses the Software Development Kit (SDK) provided with Piccolo, to in-
tercept telemetry data, transform it into data easily used in calculations, and apply
the minimum altitude interpolation and proximity warning algorithms to quantify

information pertinent to situational awareness.

3.4.2  Intercepting Piccolo II Packets. As mentioned in Section 2.5, the
SDK allows for the interception of data packets travelling between the Piccolo II
and the Operator Interface. As such, retrieving the inputs for the above algorithms
becomes quite straightforward. First, the packets coming from the Piccolo II are
intercepted. Then, depending on what type of packet was intercepted, whether it
be telemetry, control, etc. the packet is decoded and the information stored in C++
data structures. From there it is simply a matter of retrieving the data from the
structure and using it in the algorithms to calculate pertinent information such as
distance to the hard boundary, time until crossing the hard boundary, distance above
minimum altitude, time until crossing below the minimum altitude, or whatever else

the observer may want to know.

3.4.8 Determining Current Location. Obtaining the data containing an
aircraft’s current location from the Piccolo IT autopilot is straightforward for latitude,
longitude, and altitude. However, as mentioned a Cartesian coordinate system is

favorable over a spherical coordinate system for proximity calculations. Thus, there is
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one other step to determining the current location that is to be used in the algorithms,
and that is transforming latitude, longitude, and altitude (LLA) to East, North, Up
(ENU) coordinates. This is done by a separate algorithm and then used as the input

for the linear interpolation algorithm.

3.4.8.1 Conwvert Latitude, Longitude, Altitude to East, North, Up. In
order to easily calculate local rates and distances between the aircraft and boundaries
or terrain, the easiest coordinate system to use is the ENU system. So to convert
LLA to the ENU system, one must first determine a base location in an intermediate
coordinate system known as the Earth Centered, Earth Fixed coordinate system
(ECEF). The ECEF system is a three-dimensional Cartesian representation of a
location relative to the mass center of the earth, and is fixed with the earth as it
rotates. The Z-axis of this system is along the axis of rotation of the earth from
the center through the North Pole. The X-axis travels from the center through the
intersection of the Prime Meridian and the Equator. The Y-axis is then defined
following the right-hand-rule convention of k x ¢« = j, if 4,5, and k are unit vectors
along the XY, and Z axes respectively. So the Y-axis is in the direction 90° east of
the X-axis and 90° south of the Z-axis. If a cross-section of the earth is estimated

by the ellipse shown in Figure 19, then the parameters describing the ellipse can be

defined as,

a = 6378137, (12)

b = 6356752.31424518, (13)
a2 — b2

e= R (14)

where a is the semi-major axis in meters, b is the semi-minor axis in meters, and e
is the eccentricity of the ellipse. These parameters can then be used to define the

radius of curvature NNV,
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Figure 19  Ellipse Representing Earth

N = a (15)

V1 —e2sin?®

where ® is the latitude of the base location. This can then be used with the longitude,

A, and the altitude, h in the equations,

X = (N + h) cos(®) cos(N), (16)
Y = (N + h) cos(®) sin(N\), (17)
7 = (Z—ZN + h) sin(®), (18)

where X, Y, and Z are the distances in meters from the mass center of the earth along
their respective axes[9]. The ECEF coordinate system can then be used to easily
calculate distances and rates between objects by using vector algebra, yet it is still not

an intuitive coordinate system when dealing with flight testing UAVs. However, with
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a single base point in ECEF coordinates, one can define a new coordinate system,
placing its origin at the base point. The simplest and most intuitive basis for a
new coordinate system for flight testing would then be a flat earth approximation,
and would use coordinates for distance north of the base point, east of the base
point, and above the base point. With this ENU coordinate system, it is easy to
comprehend where the aircraft is relative to the base point, as well as determining

relative velocity.

3.4.4 Altitude Comparison. Using the above methods then, at any given
point during flight, SASVRT can provide the aircraft’s current distance above a base
point, as well as the estimated terrain distance above a base point using the linear
interpolation and coordinate transformations. By subtracting these two, SASVRT
can alert an observer to the aircraft’s altitude relative to the ground, and if this
distance surpasses a threshold, will give a indication for the pilot to “pull up!”
Similarly, working in ENU makes it straight forward to implement distance and

time to boudnary warnings.

3.5 Summary

As stated above, the main issue with heightening situational awareness with
regards to minimum altitude and relative position to hard boundaries was coming
up with a theoretical way to resolve these problems that could be converted to C++
code for integration with the Piccolo II autopilot. From there it was simply a matter
of debugging and fool proofing the code in order to have it work in all situations.In
addition, an investigation was performed to study which parameters would most

improve situational awareness.
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IV. Synthetic Vision in the Aviator Visual Design Simulator
4.1  Qverview

The Aviator Display Simulator (AVDS) was used in this research to visualize
an aircraft in flight. This chapter explains the process of the communication relay
between the intercepted packets from the Piccolo II autopilot and the telemetry
information passed to AVDS. Also, the development of three dimensional models of

the Sig Rascal and surrounding terrain is discussed.

4.2 Communication Relay

By intercepting the data packets sent from the Piccolo II, the attitude and
position of the aircraft relative to a fixed point can be determined. For this six degree
of freedom model of the aircraft, the only necessary variables are displacement from
the base point in X, d,, displacement from the base point in Y, d,, displacement
from the base point in Z, d,, bank angle, ¢, pitch angle, 6, and yaw angle, 1). Note
also that these X, Y, and Z are according to the convention of AVDS.

4.2.1 Piccolo II to C++. As was the case for the telemetry data used in
the proximity warning algorithm, the variables listed above can be determined by
simple calculations from the data packets from the Piccolo II. The variables d,, d,, d.
can be measured by a simple subtraction of the current ENU coordinates from the
ENU coordinates of a reference point. The reference point is the corresponding
ENU coordinates to a latitude, longitude, altitude chosen at a specific location to be
discussed below. The Euler angles ¢, 6, and ¥ can be determined by retrieving the
information from the decoded telemetry data packet. Thus, all the variables needed
to display the aircraft position (relative to a basepoint) and attitude, are readily

available during flight.
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4.2.2 C++ to AVDS.  Before initiating this research, there already existed
C++ example programs that demonstrated the functions used to pass the flight
data directly into the visualization program. Based on these example programs,
the functions were incorporated into the Piccolo II packet decoding program and
thereby relayed real-time telemetry information from the autopilot to the visualiza-
tion program. Another variable to be passed from Piccolo II to AVDS was the time
that passed between data packets. AVDS has a built in interpolation algorithm to
smooth the visualized motion of the aircraft between time steps. The smaller the
time step of the information passed to AVDS, the smoother this motion appeared.
The Operator Interface for Piccolo IT allows a toggle between data broadcast rates
of 1 Hz and 20 Hz with the 20 Hz data broadcast rate corresponding to a smoother
visualization in AVDS. Also, a model of the Sig Rascal 110 was written and included
in the AVDS program folder according to the AVDS manual, in order to visualize
the aircraft being tested. Comparison images between this model can be seen in

Figures 20 and 21. This text file model used in AVDS is included in Appendix C.

4.8 Real-Time Synthetic Vision

Although it may be somewhat beneficial to observe in real-time the attitude
of the aircraft by using AVDS, it is best to also see the motion of the aircraft
in relation to the surrounding terrain. AVDS allows terrain to be mapped using
polygons written in a text file format. Because the linear interpolation scheme
inherently works for all points, an estimate of the Area B terrain was readily available.
A script was written to create a grid of evenly spaced points and the coordinates of
each point were input into the linear interpolation algorithm along with the Area
B terrain data in order to create a map of polygons like that depicted in Figure 22
with each point also containing an altitude coordinate. This data was then written
to a text file that could be used in AVDS to combine the terrain of Area B with the

display of the aircraft flying through it. By anchoring a known point of latitude and
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Figure 20 Comparison Between Side View of Actual and Simulated Aircraft

Figure 21  Comparison Between Top View of Actual and Simulated Aircraft
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Figure 22  Example of Mapping Grid

longitude in the terrain, it was ensured that the synthetic vision truly estimated the
terrain and buildings in the proper locations of Area B. Furthermore, a texture of
the map of an Area B satellite image was placed on the terrain to further ensure
AVDS showed where the aircraft actually was. A three-dimensional mapping of the
estimated Area B terrain is shown in Figure 23. (Note: The buildings represent
those in Area B; howeverm, the mountains in the background were included only to

demonstrate the capability of the AVDS terrain feature.

4.4 Summary

Because the algorithms designed for maximum situational awareness made
readily available the data needed to visual an aircraft relative to the surrounding
terrain in a real-time manner, and because AVDS readily accepted such data when
in its Network mode, it was a small step to take quantitative information and trans-

form it into synthetic vision of the aircraft in flight.
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Figure 23 3-D Model of Area B
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V. Simulation and Flight Testing
5.1 Overview

Due to the nature of the research, much of algorithm verification for SASVRT
was done prior to running any simulations, and certainly before doing any flight
testing. Many of the problems encountered and overcome were discovered early
in the development phase. As the algorithms were written, many test cases were
examined and led to the aforementioned exceptional circumstances, such as the rules
for selecting the two closest points for the linear interpolation. Thus, when it came
time to run simulations using the HITL Simulator, the results were primarily to affirm
the effectiveness of situational awareness rather than to discover any circumstances

in which the algorithms broke down.

5.2 SASVRT

SASVRT is the C++ code that incorporates all of the discussed algorithms and
methods and it is listed in Appendix B. It is set up to run on the current Piccolo
computer network in the ANT Center, while simulating or flight testing a Piccolo
autopilot. In order to run SASVRT on a separate computer or network, the default
IP address must be changed in the code. SASVRT allows the user several options.

Figure 24 shows the initial screen of the program giving the user the options of:

e T’ for Telemetry Data. This brings the user to a screen as shown in Figure 25.
This serves best to give the user quantitative parameters to enhance situational
awareness. These parameters include inside or outside of a hard boundary,
distance to a hard boundary, time to a hard boundary, distance to a minimum
altitude, and distance to another aircraft, as well as typical flight data such as

altitude, airspeed, etc.
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‘\myProgs\AVDS\Utilities\Network\bin\DroneOne. exe

Inztructions
Press a Mumber to see Individual Piccolo Data <1.2...2
to see Telemetry Data
to load Area B terrain data
to Define a building
to Define a hard houndary
to Define a loop of minimum altitude
to Clear boundary and altitdue information
to Print a terrain data file to load into AUDS
g ‘8" to Toggle streaming data to AUDS
to Exit
Current Piccolo ID = 562

Figure 24  Startup Screen of the Situational Awareness Program

:\myProgs\AVDSWiilities\Network\bin\DroneOne. exe

Prezs '0' to return to options

Telemetry Packet Data : 20:59%:46.400AAA

Latitude (deg) : 39.773841 East: 1687.6368504
Longitude <deg> : —fB4.181951 Morth: 1716.286838
Altitude (md : 3568.459991 Up: —-384_494817
Ground Speed : 2@.285385

Air Speed : 19.852879

Control Packet Data : 3:23:2.52580R
Pitch Angle - —-1.718874
194136791 fAileron {degl A.171887
-19.595158 Elevator {(deg? -1.684282

Heading H
Bank Angle H
Roll Rate : —B.171887 Throttle <percentd>: 23.7800AA2

Pitch Rate 1.661578 Rudder <degd @8.857296
Yaw Rate -7.563843

Diztance to hard boundaryim>: 114.411938
Dizstance above minimum altitude(m>: 27.561853

Figure 25  Telemetry Data from the Situational Awareness Program
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Ground Altitude
777777 Building Altitude

Figure 26  Example of Building Altitude Contours

e A’ to load Area B data. To test SASVRT, the terrain of Area B was modelled
using contours of constant altitude. This option loads in this data, allowing the
program to display the distance to and time to the hard boundary of Area B,
the distance to the estimated minimum altitude of Area B, as well as starting a

log these parameters. The data loaded by this function is listed in Section A.2.

e 'B’ to define a building. If the user chooses to define the environment on the
fly, this option allows the user to define the location of a building by passing in
the latitude and longitude of the corners of the building as well as the height.
The program defines a contour of ground altitude around the building and a
contour of building altitude just inside the ground altitude contour as seen in

Figure 26.

e 'H’ for hard boundary. This allows the user to pass in of latitude and longitude
coordinates of a polygon in which the aircraft is designated to fly. SASVRT
will then show pertinent data relating the aircraft and the time and distance

to this defined hard boundary in the telemetry display.

e 'L’ for a loop of altitude. This allows the user to define a contour of altitude
to be interpolated by the minimum altitude algorithm by passing in the lati-
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5.3

tude and longitude of the points making up the corners of a polygon and as
well as the altitude of the contour. Based on this contour, minimum altitude

information will be presented in the telemetry display.

'C’ to clear data. If the user wishes to restart defining altitudes and hard
boundaries, this function will clear the program of any existing data, and allow

for new data to be incorporated.

P’ to print terrain file. Based on the existing hard boundary, building, and
altitude contour data, this function will create a three-dimensional craft file
that can be placed into AVDS in order to obtain synthetic vision of the aircraft
with respect to its surrounding terrain. If the program is running the craft
directory of AVDS and the craftcap.txt file has already been setup to enable
this function, no further action is required. Otherwise, this terrain.txt file must

be moved into the craft directory.

'S’ to toggle streaming to AVDS. This activates a function that takes the
telemetry data from the Piccolo and converts it to a six degree of freedom
model that is sent into AVDS to visualize the aircraft in flight. This also toggles
a log that can be used to play back a flight in AVDS for future reference.

"X’ exits the programs and closes the telemetry logs.

Simulation

5.3.1 Hard Boundary. To test the Hard Boundary feature of SASVRT,

the Area B hard boundary was coded into the program, and for a visual check, the

Operator Interface map was altered to show this hard boundary as see in Figure 27.

A waypoint list was uploaded to the Piccolo as see in Figure 28 that included

multiple crossings of the hard boundary to ensure that the program could detect

when this occurred, as well as the distance, rate, and time until these crossings

occurred.
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Figure 27 Hard Boundary Simulation

5.8.2  Minimum Altitude. A substantial benefit of HITL simulator over
flight testing as far as monitoring minimum altitude is the ability to fly over and
between buildings. In reality this would carry too much risk to property and by-
standers. However, in the simulation, the Piccolo was commanded to fly over build-
ings as the minimum altitude was monitored and recorded. This enabled the user to
confirm a rapid change in minimum altitude as the aircraft approached and passed

over buildings.

5.3.3 AVDS. In addition to simply monitoring the quantified minimum
altitude during the simulation, AVDS allowed the user to visually compare the air-
craft’s altitude with that of the simulated terrain and buildings. The simulator also
allowed the user to optimize the method of using AVDS without risk before taking
it to the field for actual flight testing. This included determining what information

to pass from the Piccolo to the AVDS program such as position or Euler angles as
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Figure 28 Hard Boundary Simulation Racetrack

well as what terrain appeared most useful in the visualization. However, the most
compelling reason to simulate using AVDS was to ensure the terrain file was properly
aligned in the program, and the information being communicated was being properly
applied. Because AVDS uses a different coordinate system, it is easy to confuse some
directions, and the simulation allowed these errors to be discovered and eliminated.
For example, the hard boundary of which the situational awareness program alerts
the observer is entered into the program and is independent of the visualized hard
boundary in AVDS. Consequently, a valuable check of the AVDS placement accuracy
is observing the quantified boundary data as the aircraft visually crosses the bound-
ary in AVDS. Also, by applying a satellite image texture to the AVDS terrain file,
the relative aircraft position can be checked against where the Operator Interface
shows the aircraft to currently be. These concepts are displayed in Figure 29, where

the aircraft location is indicated by the green triangle.
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Figure 29  AVDS Screen Capture of Satellite View

5.4 Flight Testing

Flight testing could be conducted just as a simulated flight test with the ex-
ception of flying close to buildings or outside of the designated flying area. As such,
the Area B model was modified to include a simulated hill as seen in Figure 30 and a
much smaller designated flying area so that during a flight test, the algorithms could
be examined for flaws. The ultimate goal of this research, however was to use this
system as a reliable safety mechanism, and during a successful flight test in which
the aircraft does not impact the terrain or cross out of the designated flying area,

the results of this program should show that no alerts were triggered.
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Figure 30  Simulated Hill in AVDS
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VI. Results and Analysis
6.1 Qverview

This chapter presents the results of the numerous simulations that were run
to verify the algorithms developed in this research. These results are divided into
information relative to hard boundaries, minimum altitude, multiple UAVs, and
synthetic vision. These results are then analyzed to determine what conclusions or

modifications can be made.

6.2 Simulation

6.2.1 Hard Boundaries.

6.2.1.1 Results. The data taken in the hard boundary simulation
included distance, velocity, and rates to the boundary, and the instantaneous time
until crossing a boundary. Data was taken with both a constant velocity vector
towards the boundary and a changing velocity vector relative to the boundary. The
results are plotted versus time in Figures 31 and 32 for the constant velocity vector
case, and Figures 33 and 34 for the changing velocity vector case. Figure 35 shows an
overhead view of the simulated flight path and indicates whether or not the aircraft

was within the designated hard boundary.

6.2.1.2 Analysis. Safety is paramount in flight testing UAVs. As
such, it is extremely important to the safety and security that the proximity of an
aircraft relative to its surroundings and other aircraft is well known. Figure 35 clearly
shows that the boundary warning system accurately determines at any given time
whether or not the aircraft is within the simulated boundary. As important as this
is however, the best information to have to ensure safety during flight testing is not

simply whether or not the aircraft is within the boundary, but if the aircraft is on
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Time to Impact (sec)

Figure 31  Time to Impact with Hard Boundary: Constant Velocity

track to violate the boundary, so as to be able to recover the aircraft before such

violation occurs.

Figures 31 and 33 show clearly that the warning system is capable of displaying
the dead reckoned time to crossing the boundary at a given instant in time. As
expected for a constant velocity vector, Figure 31 shows a linear plot decreasing at
a rate of 122, as the aircraft will cross out of the designated flying area at the time
the line crosses the z-axis. Without changing the velocity vector, the dead reckoned
time to crossing the boundary should be correct at every data point, and it is true, as
the line initially indicates that the aircraft will cross the boundary in approximately
15 seconds, and 15 seconds later on the time of flight axis, the data indicates the
aircraft crossed the boundary. Figure 33 is not quite as smooth as Figure 31 as at
any instant the velocity vector is changing, and a new dead reckoned time to cross

boundary is calculated. However, this type of data more accurately reflects what
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Figure 32  Distance and Velocity to Hard Boundary: Constant Velocity

might occur when using this program to monitor an actual flight test. The key results
to take away from this plot is that the time to boundary is calculated accurately and
relayed to the observer. This is vital information as there undoubtedly is a time when
the pilot would want to take over control of the aircraft from the autopilot without

crossing the hard boundary, and this information allows the pilot to do exactly that.

Figures 32 and 34 demonstrate most importantly that the information used
to calculate time to boundary is reliable. Time to boundary is calculated by the

equation,

tp = dp/vs, (19)

where tp is the time to boundary, sec, dg is the distance to boundary, calculated

by aforementioned geometric methods, and vp is the velocity towards boundary, -,
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Figure 33  Time to Impact with Hard Boundary: Changing Velocity

calculated based on the aircrafts velocity and attitude. With a constant velocity
vector as in Figure 32 the distance to the boundary dp is constantly decreasing, thus
its derivative, or negative derivative as was convention is this simulation, vg should
be constant, and this is clearly shown to be the case. This relationship also holds
true for a given instant in Figure 34, where the cusps in the distance to boundary
plot correspond to discontinuities in the velocity to boundary plot, and the smooth
portions of the distance to boundary plot have corresponding derivative plots in the

velocity to boundary plot.

6.2.2 Minimum Altitude.

6.2.2.1 Results. In order to test the altitude proximity warning
algorithm, tests points were run for a given range of = and y values, and the h.y was

calculated at each point for several different sets of polygons of different height. The
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Figure 34  Distance and Velocity to Hard Boundary: Changing Velocity

data was then plotted and compared to what the plot should intuitively look like.
Early on inappropriate spikes, or ground height values above the maximum given
height quickly showed errors in the technique, but soon thereafter, the code was

adjusted and the plots looked certainly reasonable for an interpolation of terrain.

Figure 36 shows the flight path of the simulated aircraft, which was flown over
a simulated hill centered at a known point in the Area B flying area. This was done
so that simulated results could later be compared with actual flight data without
putting the aircraft in danger of hitting any terrain. As such Figures 36 and 37 show
the three-dimensional and overhead flight paths along with the minimum altitude
interpolated at any given point in the flight path. The red x’s in the flight path
indicates when the aircraft is below the minimum altitude. Figure 38 shows the

same minimum interpolated altitude and flight path data but plotted versus time.
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Figure 35 Overhead View of Simulated Flight Path with Respect to Hard Bound-
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Figure 36  Simulated Flight Path with Respect to Minimum Altitude

6.2.2.2  Analysis. In the figures, any time the calculated minimum
terrain is above the aircraft’s altitude, the program correctly indicates this. Also
Figure 36 shows that the simulated hill is correctly interpreted in the minimum alti-
tude algorithm as it appears as the aircraft flies over it. The true vote of confidence
of the minimum altitude calculation however, will be demonstrated in the AVDS

craft model, as it shows the entire area of interpolated altitudes.

Ideally, a time to impact with terrain would be the information passed to the
pilot in order to judge when to take over for a failing autopilot. However, due to the
vertical velocity constantly changing sign, and changing only slightly in magnitude,
it is not as easy to obtain velocity towards terrain as it was to obtain velocity
towards the hard boundary. Yet because it is much easier for an observer to judge
the aircrafts altitude, this becomes less vital, and simply knowing the distance above

terrain suffices for flight testing within visual range.
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Figure 37 Overhead View of Simulated Flight Path

Finally the estimated ground height is going to have some inherent error as
it is an interpolation in most cases. However, the more information input into the
algorithm the more correct the approximations become. Also the urban canyon check
provides a conservative approach to flight testing in simulated urban environments,
which appears to be a big part of the future of UAVs, as urban environments tend

to be overtly dangerous for large piloted vehicles.

6.2.8 Multiple UAVs.

6.2.3.1 Results. SASVRT was written to handle multiple UAVs flying
simultaneously. As such an utterly important albeit easy calculation was distance
between aircraft. A three-dimensional and overhead plot of the simulated flight paths

of two UAVs are shown in Figure 39 and 40.
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Figure 38 Minimum Altitude versus Time of Flight

6.2.3.2  Analysis. Distance between multiple UAVs is an extremely
difficult parameter to gauge from afar. Consequently, to maximize situational aware-
ness, this parameter needs to be quantified. Flight testing a single UAV is dangerous
enough, in order to put two UAVs in the air, one must be utterly certain the UAVs
will not collide. The simulated data in Figures 39 and 40 show that at the very least
one can know the distance between the aircraft, and have the ability to knock off

the flight test if the distance between the aircraft becomes too small.

6.2.4 AVDS.

6.2.4.1 Results. AVDS was used to provide synthetic vision to the
observer. The aircraft and terrain were loaded into AVDS and showed up as expected
during flight testing. Figure 41 shows a screen capture taken during the simulation

from a point of view off the starboard wing of the aircraft, with the simulated
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Figure 39  Simulated Flight Path of Multiple UAVs

buildings of the Air Force Museum in the background. The aircraft depicted is a
rough model of the Sig Rascal 110 made to scale with the simulated surroundings of
Area B. An overhead view of multiple UAVs flying is shown in Figure 42 which can
be used to gauge distance between aircraft. The terrain is a result of a grid of north
and east test points input into the minimum altitude algorithm to result in a three
dimensional map of triangles. The coarseness of this grid can be adjusted to give a
more or less accurate representation of the terrain, with the cost of a higher resolution
being a larger data file and a slower frame rate in AVDS. The colors of the polygons in
AVDS were experimented with to determine which color scheme most appropriately
visualized the terrain. A color scheme loosely correlating the electromagnetic visual
spectrum with the altitude of the polygons is shown in Figure 43. Hard coded
waypoints were also placed in the synthetic terrain in order to better visualize them
as shown in Figure 44. Also shown in this screen capture is a red sensor cone out the

nose of the aircraft. Figure 45 shows the capability of the program to place multiple
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Figure 40 Overhead View of Simulated Flight Path of Multiple UAVs

aircraft in the simulated terrain, boosting the situational awareness. In addition to
terrain texture, the screen captures also depict a hard boundary visualized by a set of
four transparent red walls. When the aircraft approaches these walls, SASVRT can
be monitored simultaneously to AVDS to ensure that when the program shows zero
distance to boundary that AVDS shows the aircraft crossing the visual boundary
Similarly, using the Operator Interface as a control, visualizing the aircraft over
known points in the satellite image as mentioned in discussing Figure 29, can be
compared to the satellite image in the Operator Interface. The three-dimensional

buildings in AVDS should line up with their footprints on the satellite image.

6.2.4.2 Analysis. The AVDS visualization worked as expected and

provided a much better perspective in terms of relative distances to terrain than the

observer had without AVDS. The ease of incorporating terrain and aircraft movement
relative to terrain showed that it is an extremely useful and powerful tool during
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Figure 41  Simulated Aircraft with Air Force Museum

flight testing. In addition, it demonstrated that it can be relied upon to assist in

navigation at night and in poor visibility.

The satellite image was quite useful in simulations, particularly on ensuring
the aircraft was in the correct location with respect to the model as it was with
respect to either the simulated or real environment. From an overhead view as seen
in Figure 29, the AVDS simulation could be compared with that of the overhead
view provided by the Operator Interface. Using the Operator Interface as a true
location, the model in AVDS could be adjusted to ensure proper orientation and

location within the synthetic environment.

Furthermore, from an operational standpoint, a satellite overview of an area
can be an excellent tool while monitoring a UAV. With simply a camera on board,

the user can see only what the UAV is flying over, whereas with synthetic vision
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Figure 42  Simulated Multiple UAVs from Above

from above, the user can compare what a camera might pick up to what a satellite

has previously captured on a larger scale.

The aforementioned researched concurrently performed by Robinson sought to
keep a sensor fixed on a waypoint amidst wind which would cause the aircraft to
crab (Robinson, 2006). Placing the waypoints in AVDS along with a sensor cone out
the nose of the aircraft allowed Robinson to visualize the results of his research by
checking if the sensor cone remained on the synthetic waypoints amidst simulated

wind.

Perhaps the most powerful application of the AVDS was the incorporation
of multiple UAVs. As it stood before, the operator interface would only show the
position of a single aircraft per window, and gauging the distance between aircraft
became a guessing game. However, with AVDS, particularly from an overhead view,

the relative location of each aircraft was clearly shown. This also had benefits in
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Figure 43  Simulated Alternate Color Scheme

the research of McCarthy, who sought to fly a UAV based on a relative position to
a lead aircraft (McCarthy, 2006). As it is quite dangerous to actually flight test two
aircraft simultaneously, especially basing ones position of the other, AVDS allowed
one aircraft to be simulated and another be flight tested, while placing both aircraft

in the same synthetic terrain.

Beyond the Area B data loaded into AVDS for the simulations, SASVRT allows
for an option of entering topographic data on any location, and will at the command
of the user print a three-dimensional terrain file to be loaded into AVDS. This allows

for synthetic vision to take place at any location so long as the terrain data is known.

6.3 Flight Test

Due to factors outside of the author’s control, actual flight tests planned to

demonstrate the SASVRT were delayed and scheduled to occur post thesis defense.
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However, due to the passive nature of the software, there would be no reason other
than the potential loss of signal from the aircraft to expect any different results
between simulation and flight testing. In both cases the aircraft is sending telemetry
wirelessly data to the software, which then uses it with a synthetic model of the

environment in order to render the most pertinent data to the user.
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7.1

VII. Conclusions and Recommendations
Overview

This chapter draws conclusions based on the results and analysis of this re-

search. Based on these conclusions, several recommendations are made for future

work in the area.

7.2

Conclusions

The research has accomplished several key objectives:

Provides the user with the ability to define a hard boundary that encompasses

a designated flying area.

Provides a real-time proximity warning system that givees the user continuous

feedback regarding the position of the aircraft relative to boundaries.

Relays to the user the distance and dead reckoned time until the aircraft travels

outside of the designated flying area.

Allows the user to input contours of ground altitude for a designated flying

area.

Uses the altitude information provided by the user to interpolate a safe flying

minimum altitude at any point within the flying area.

Relays to the user the distance above the safe flying altitude the aircraft cur-

rently is.
Uses the altitude information to construct a three-dimensional terrain file.

Places the aircraft within the three-dimensional terrain to give the user syn-

thetic vision.

With this type of real-time situational awareness and synthetic vision, the user is

able to better know the current circumstances of the aircraft, it also enables a pilot
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to have a better idea of when it becomes necessary to relieve a failing autopilot. The

software is not quite as user friendly as it could be, as some parameters still needed

to be hard coded and compiled in order to adjust them, and this is a problem that

could have been solved giving more time. Detailed recommendations follow in the

next section.

7.8

Recommendations

The following recommendations are made for future work in this area:

Implement a way of retrieving the coordinates of all waypoints in a Piccolo sent
list, such that the waypoint list sending can be used as a medium for defining
contours of altitude, hard boundaries, and known buildings which could then

be read into the synthetic environment.

Attempt to model a different flight area, as Area B was the only real site
modelled. This involves defining the altitude contours and adjusting the place
craft methods in order to have the aircraft place with respect the terrain as it

is in reality.

Develop a way to use fewer polygons to define large flat areas, in order to

minimize the craft file size and consequently improve frame rate in AVDS.

Rather than use one large texture to visualize the satellite image in AVDS, use

several small texture images to optimize frame rate in AVDS.
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Appendiz A. MATLAB® Program Code

The following MATLAB® script files was used to find the minimum altitude based
on the terrain and building of Area B for safe flight and write a text file to be loaded

into AVDS. The program sequence is as follows:

1. Create a text file and write in necessary craft information to be read by AVDS

2. Load the terrain data of Area B as an array of z and y coordinates where each

loop corresponds to a loop of constant altitude
3. Determine the resolution of the model based on dz and dy
4. For each test point (zp, yp)
(a) Determine the 2-D coordinates of two right triangles forming a rectangle
measuring dz by dy, the upper corner of which is (zp, yp)

(b) Interpolate the minimum altitude of the coordinates of the triangles based

on provided terrain information

(c) Write to a text file the 3-D coordinates of the right triangles in a format
readable by the AVDS program

(d) Loop through all z values in a row by increments of dz then increment
by dy and repeat
5. Apply a texture to the craft file in the image of a satellite photograph of Area

B

These same files were used to compare real time location data of the aircraft with

the interpolated minimum altitude data for the Area B model.

A.1 Altitude_Data_to_AVDS_Polygon.m

Tl To e Toto o oo Toto o T Toto o T To o 1o o T To o o To o o o To T 1o o T T o o o T o o T o o T o o o T o
%The following was written by ENS Joe Dugan under the 7
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% advisory of Major Paul Blue for his thesis work on %
% AFIT/GAE/ENY/05-J08. /)
T T Tototo o oo ToTototo o o T To To o 1o o o o o To T o oo o o To o o o oo o o T o o o oo o o T 1o o oo o

close all

clear all

clc

%0pens a .txt file to be written in a format that AVDS can read as a craft

%file

fid = fopen(’areaB.txt’, ’wt’);

%Informs AVDS of characteristics of the craft file areaB.txt

fprintf(fid,’areaB|Area B:\\\n\n# exhaust position\n :ep# 5100.00 0.00...
0.10:\\\n#ID number\n:ID#23 45 21 22 45 77 222 33:\\\n#\n#\n#\n#. ..

Distance > O ft\n :d0:\\\n#\n#double sided\n :DS#1:\\\n\n :ca=fuselage. ..

:\\\n  :co# 0.620 0.659 0.824:\\\n# center of mass\n :cm# 5100.00...
3700.0  10.00:\\\n# starboard wing tip\n :Sw# 10200.00 3700.00...
0.39:\\\n# port wing tip\n :Pw# 0.00 3700.00 0.39:\\\n\n’);
%loads topographic data of Area B in terms of x,y coordinates in feet along
%with total number of loops n, number of points in each loop m, and...
height of each loop h
[areaBx areaBy n m h]=areaB;
%dx,dy determine the resolution of the mapping of Area B, smaller values
%equate to higher resolution, but larger .txt files, which may bog down AVDS
dx=30;
dy=30;
for yp=0:dy:7684.34 %in feet this loop breaks surface into 7684.3/dy columns
for xp=0:dx:10171.8 %each row is broken into 10171.8/dx pairs of right...
triangles
x(1)=xp; Jthese are the x and y coordinates of right triangles
x(2)=xp+dx;
x(3)=xp;
y (1) =yp;
y(2)=yp;
y(3)=yp-dy;
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%based on relative position to the terrain of Area B,
%3DLinearInterpolate determines the ground height at the given x and...
y values
z(1)=3DLinearInterpolate (areaBx,areaBy,n,m,h,x(1),y(1));
z(2)=3DLinearInterpolate (areaBx,areaBy,n,m,h,x(2),y(2));
z(3)=3DLinearInterpolate (areaBx,areaBy,n,m,h,x(3),y(3));
if (max(z)/350)<(1/3) %these statements change the color of the polygon...
based on its elevation
co1=3*(max(z)/350) ;
co02=0;
co3=0;
elseif (max(z)/350)<=(2/3) && (max(z)/350)>(1/3)
col=1;
c02=3*((max(z)/350)-1/3) ;
co3=0;
else
col=1;
co2=1;
co3=3*((max(z)/350)-(2/3));
end
Jhere the polygon coordinates are written to the .txt file along
%with information about its color
fprintf (fid,’\n :co# %6.2f %6.2f 76.2f:\\\n  :pt# %6.2f U6.2f U6.2f :pt#...
%6.2f  %6.2f Y6.2f:\\ \n :pt# U6.2f Y6.2f U6.2f :cl:\\ ’,col,co02,c03,x(1),...
y(1),z(1),x(2),y(2),2(2),x(3),y(3),z(3));
%the above is repeated for the complimentary right triangle in the
%current row and column
x(1)=xp;
x(2)=xp+dx;
x(3)=xp+dx;
y(1)=yp-dy;
y(2)=yp;
y(3)=yp-dy;
z(1)=3DLinearInterpolate (areaBx,areaBy,n,m,h,x(1),y(1));
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z(2)=3DLinearInterpolate (areaBx,areaBy,n,m,h,x(2),y(2));
z(3)=3DLinearInterpolate(areaBx,areaBy,n,m,h,x(3),y(3));
if (max(z)/350)<(1/3)
co1=3*(max(z)/350) ;
c02=0;
c03=0;
elseif (max(z)/350)<=(2/3) && (max(z)/350)>(1/3)
col=1;
c02=3%((max(z)/350)-1/3);
c03=0;
else
col=1;
co2=1;
c03=3x((max(z)/350)-(2/3));
end
fprintf(fid,’\n :co# %6.2f %6.2f %6.2f:\\\n  :pt# %6.2f %6.2f %6.2f :pt#...
%6.2f  %6.2f Y6.2f:\\ \n :pt# Y6.2f Y6.2f Y6.2f :cl:\\ ’,col,co02,c03,x(1),...
y(1),z(1),x(2),y(2),2(2),x(3),y(3),z(3));
end
end
%the below line maps a satellite picture of Area B onto the surface for
%enhanced awareness of the aircrafts relative position
%fprintf (fid, ’\n#select texture file\n:XI#0:\\\n#texture coordinates\n :XC#...
1.0 0.0 0.0 :XC#1.0 1.0 0.0 :XC#0.0 1.0 0.0 :XC#0.0 0.0 0.0:\\\n# (left)\n...
:pt# 2976.00 0.00 0.00:pt# 2976.00 2246.00 10.00:\\\n :pt# 0.00...
2246.00 10.00:pt# 0.00 0.00 -10.00:cl:%);

fclose(fid) ;%closes the .txt file

A.2 areaB.m

T T Toto o e o To o e T To o o T To o o o T To o o T T o o o T o o T T o o o T o o o T o o o T o o o T o

%The following was written by ENS Joe Dugan under the 7

% advisory of Major Paul Blue for his thesis work on ¥

% AFIT/GAE/ENY/05-J08. h

Tl To e Toto o oo Toto o T Toto o T To o 1o o T To o o To o o o To T 1o o T T o o o T o o T o o T o o o T o
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function [x,y,n,k,h]=areaB

%this is an estimate of the terrain and building of Area B based on a
%satellite image. Its 2-Dimensional accuracy of the buildings is as good as
%a 2246x2976 pixel satellite image can provide, but in 3-Dimensions should
%not be relied upon, as the height of the terrain was merely estimated to
%check other algorithms. The coordinates are entered as the pixel location
%of the buildings and estimated terrain and then can be converted to

%lat/lon/alt or east/morth/up in feet based on the "for" loops below.

%x and y are arrays of n x m size, where each row represents a loop of
%constant altitude and each column with the row is a coordinate of a corner
%of the loop. h is a vector of the altitude of each loop and k is a vector
%containing the number of points in each loop. NOTE: the number of points
%in each loop is one less than the number of columns in each row, because
%the row represents a closed loop, i.e. the first and last coordinates are

%the same.

%outside box

x(1,:)=[0 2976 2976 0 0 0 O];
y(1,:)=[0 0 2246 2246 0 0 0];
k(1)=4;

h(1)=1;

Jmuseum A

x(2,:)=[844 998 1067 914 844 0 0];
y(2,:)=[909 735 802 973 909 0 0];
h(2)=1;

k(2)=4;

x(14,:)=[848 913 1066 999 848 0 0];
y(14,:)=[911 971.5 801.1 736 911 0 0];
h(14)=5;

k(14)=4;

x(3,:)=[858 1009 1049 895 858 0 0];
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y(3,:)=[920 749 786 954 920 0 0];
h(3)=7;

k(3)=4;

x(4,:)=[876 1024 1034 880 876 0 0];
y(4,:)=[936 764 775 939 936 0 0];
k(4)=4;

h(4)=9;

/museum B
x(5,:)=x(2,:)+78;
y(5,:)=y(2,:)+80;
k(5)=4;

h(5)=1;
x(15,:)=x(14,:)+78;
y(15,:)=y(14,:)+80;
h(15)=5;

k(15)=4;
x(6,:)=x(3,:)+78;;
y(6,:)=y(3,:)+80;
k(6)=4;

h(6)=7;
x(7,:)=x(4,:)+78;
y(7,:)=y(4,:)+80;
k(7)=4;

h(7)=9;

%museum C
x(8,:)=x(5,:)+78;
y(8,:)=y(5,:)+80;
k(8)=4;

h(8)=1;
x(16,:)=x(15,:)+78;
y(16,:)=y(15,:)+80;
h(16)=5;



k(16)=4;
x(9,:)=x(6,:)+78;
y(9,:)=y(6,:)+80;
k(9)=4;

h(9)=7;
x(10,:)=x(7,:)+78;
y(10,:)=y(7,:)+80;
k(10)=4;

h(10)=9;

%hill GL

x(11,:)=[2218 2466 2146 2158 2976 2976 2218];
y(11,:)=[2234 1306 722 5 0 2246 2234];
k(11)=6;

h(11)=2;

%hill 5

x(12,:)=[2514 2514 2970 2970 2514 0 0];
y(12,:)=[2214 10 10 2214 2214 0 0];
k(12)=4;

h(12)=5;

%hill 10

x(13,:)=[2870 2870 2970 2970 2870 0 0];
y(13,:)=[2214 10 10 2214 2214 0 0];
k(13)=4;

h(13)=10;

%tower 20

x(17,:)=[2870 2882 2894 2894 2882 2870 2870];
y(17,:)=[1062 1054 1062 1076 1079 1076 1062];
k(17)=6;

h(17)=10;
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x(18,:)=[2871 2882 2893 2893 2882 2871 2871];
y(18,:)=[1062 1055 1062 1075 1078 1075 1062];
k(18)=6;
h(18)=20;

%tower 50

x(19,:)=[2861 2866 2866 2861 2861 0 0];
y(19,:)=[1047 1047 1053 1053 1047 0 0];
k(19)=4;

h(19)=10;

x(20,:)=[2862 2865 2865 2862 2862 0 0];
y(20,:)=[1048 1048 1052 1052 1048 0 0];
k(20)=4;
h(20)=50;

%building

x(21,:)=[2278 2372 2372 2278 2278 0 0];
y(21,:)=[690 690 764 764 690 0 0];
k(21)=4;

h(21)=5;

x(22,:)=[2279 2371 2371 2279 2279 0 0];
y(22,:)=[691 691 763 763 691 0 0];
k(22)=4;

h(22)=10;

%building

x(23,:)=[1747 1810 1810 1747 1747 0 0];
y(23,:)=[485 485 542 542 485 0 0];
k(23)=4;

h(23)=2;

x(24,:)=[1748 1809 1809 1748 1748 0 0];
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y(24,:)=[486 486 541 541 486 0 0];

k(24)=4;
h(24)=7;

%building
x(25,:)=x(23,
y(25,:)=y(23,
k(25)=4;
h(25)=2;

x(26,:)=x(24,
y(26,:)=y(24,
k(26)=4;
h(26)=7;

%building
x(27,:)=x(25,
y(27,:)=y(25,
k(27)=4;
h(27)=2;

x(28,:)=x(26,
y(28,:)=y(26,
k(28)=4;
h(28)=7;

%building
x(29,:)=x(27,
y (29, :)=y(27,
k(29)=4;
h(29)=2;

x(30,:)=x(28,
y (30, :)=y(28,

1) +38;
1)+82;

1) +38;
1)+82;

1) +38;
1)+82;

1) +38;
1)+82;

:)+103;
s

:)+103;
1)
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k(30)=4;
h(30)=7;

%building

x(31,:)=[2229 2295 2409 2350
y(31,:)=[1113 1084 1350 1374
k(31)=4;

h(31)=2;

x(32,:)=[2230 2294 2408 2351
y(32,:)=[1114 1085 1349 1373
k(32)=4;
h(32)=7;

%building

x(33,:)=[2090 2159 2159 2090
y(33,:)=[734 734 772 772 734
k(33)=4;

h(33)=2;

x(34,:)=[2091 2158 2158 2091
y(34,:)=[735 735 771 771 735
k(34)=4;
h(34)=7;

%building

x(35,:)=[2079 2146 2146 2079
y(35,:)=[638 538 621 621 538
k(35)=4;

h(35)=2;

x(36,:)=[2080 2145 2145 2080
y(36,:)=[5639 539 620 620 539
k(36)=4;

2229 0 0];
1113 0 0];

2230 0 0];
1114 0 0];

2090 0 0];
0 0];

2091 0 0];
0 0];

2079 0 0];
0 0];

2080 0 0];
0 0];
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h(36)=7;

%building

x(37,:)=[2071 2255 2266 2144 2142 2075
y(37,:)=[241 240 401 411 439 441 241];

k(37)=6;
h(37)=5;

x(38,:)=[2072 2254 2265 2143 2141 2076
y(38,:)=[242 241 400 410 438 440 242];

k(38)=6;
h(38)=10;

%building

x(39,:)=[2155 2285 2287
y(39,:)=[562 47 81 89 52
k(39)=4;

h(39)=5;

x(40,:)=[2156 2284 2286
y(40,:)=[563 48 80 88 53
k(40)=4;
h(40)=10;

%building

x(41,:)=[2306 2431 2430
y(41,:)=[48 40 84 85 48
k(41)=4;

h(41)=5;

x(42,:)=[2307 2430 2429
y(42,:)=[49 41 83 84 49
k(42)=4;
h(42)=10;

2155 2155 0 0];

0 0];

2156 2156 0 0];

0 0];

2306 2306 0 0];

0 0];

2307 2307 0 0];

0 0];

2071];

2072] ;
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%building

x(43,:)=[3550 3580 3680 3730 3680 3580 3550]/3.2105198786266;
y(43,:)=[3600 3750 3750 3600 3480 3480 3600]/3.2105198786266;
k(43)=6;

h(43)=1;

x(44,:)=[3566 3630 3704 3704 3630 3566 3566]1/3.2105198786266;
y(44,:)=[3675 3749 3675 3550 3481 3550 3675]/3.2105198786266;
k(44)=6;
h(44)=9;

%hard boundary

x(101,:)=[802 1903 2149 240 802 0 0];
y(101,:)=[1209 1209 1838 1838 1209 0 0];
k(101)=4;

h(101)=25;

for j=1:max(k)+1 Ymirrors and shifts image to adjust for pixels counting down
for i=1:n
y(i,j)=-y(i,j)+2246;
end
y(101,j)=-y(101,j)+2246;
end

% for j=1:max(k)+1 %converts to lat/long

% for i=1:n

% x(i,j)=x(i,j)*.033937/2976-84.121328;

% y(i,j)=(-y(i,j)+2246)*.021078/2246+39.768439;
% end

% end

for j=1:max(k)+1
for i=1:n
x(i,j)=x(i,j)*3.2105198786266+*.3048-52.790896; /#of meters/feet per pixel in avds
y(i,j)=y(i,j)*3.2105198786266%*.3048+1202.619793; %based on differenece in east
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% coordinates at corners divided by .3048 /# of pixels (2976)
end
x(101,3j)=x(101,j)*3.2105198786266%.3048-52.790896 ;
y (101, j)=y(101,j)*3.2105198786266%.3048+1202.619793;

end

for j=1:n

h(j)=(h(j)-.99)*8-485.1; Jestimated height in enu

end

%simulated hill to test program, located at thrid ’x’ from left of runway

x(45,1)=946.
x(45,2)=946.
x(45,3)=946.
x(45,4)=946.
x(45,5)=946.
x(45,6)=946.
x(45,7)=946.

y(45,1)=1782

y(45,2)=1782.
y(45,3)=1782.
y(45,4)=1782.
y(45,5)=1782.
y(45,6)=1782.
y(45,7)=1782.

k(45)=6;
h(45)=-485.0

x(46,1)=946.
x(46,2)=946.
x(46,3)=946.
x(46,4)=946.
x(46,5)=946.
x(46,6)=946.

987432-200;
987432+200;
987432+300;
987432+200;
987432-200;
987432-300;
987432-200;

.186816+250;
186816+200;
186816;
186816-100;
186816-200;
186816+50;
186816+250;

20000;

987432-150;
987432;
987432+150;
987432+50;
987432-80;
987432-150;
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x(46,7)=946.987432;

y(46,1)=1782.186816+30;
y(46,2)=1782.186816+180;
y(46,3)=1782.186816+35;
y(46,4)=1782.186816-80;
y(46,5)=1782.186816-90;
y(46,6)=1782.186816+30;
y(46,7)=1782.186816;
k(46)=5;
h(46)=-435.020000;

x(47,1)=946.987432;
x(47,2)=946.987432+15;
x(47,3)=946.987432+5;
x(47,4)=946.987432-10;
x(47,5)=946.987432;
x(47,6)=946.987432;
x(47,7)=946.987432;

y(47,1)=1782.186816+5;
y(47,2)=1782.186816;
y(47,3)=1782.186816-8;
y(47,4)=1782.186816-2;
y(47,5)=1782.186816+5;
y(47,6)=1782.186816;
y(47,7)=1782.186816;
k(47)=4;

h(47)=-420;

n=47;

fid = fopen(’areaB.txt’, ’wt’); %this prints to a text file the equivalent

%information but in c++ code rather than matlab.
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for i=1:n
for j=1:7
fprintf(fid, ’\nx_e[%i] [%i]=%f;’,i-1,j-1,x(i,j));
end
fprintf(fid,’\n’);
for j=1:7
fprintf(fid,’\ny_n[%il [%il=%f;’,i-1,j-1,y(i,j));
end
fprintf (fid, \nm[%il=%i;’,i-1,k(i));
fprintf(fid, ’\nh[%il=%f;\n\n’,i-1,h(i));
end
%hard boundary
for j=1:6
fprintf (fid, ’\nx_eH[%il=Vf;’,j-1,x(101,3j));
end
for j=1:6
fprintf(fid, ’\ny_nH[%il=%f;’,j-1,y(101,3j));
end
fprintf (£fid, ’\nmH=%i;’,k(101));
fclose(fid);

for i=1:n
plot(x(i,1:k(i)+1),y(i,1:k(i)+1))
hold on

end

plot(x(101,1:k(101)+1),y(101,1:k(101)+1));

A.8 38DLinearInterpolate.m
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function[hp]=3DLinearInterpolate(x,y,n,m,h,xp,yp)
%Interpolates a minimum altitude, hp, based on terrain elevation

%information provided by x, y, and h

%x=x-coordinates, y=y-coordinates, n=#rows of x, m=#columns in a particular
%row of x, h=height of particular line, xp=test point x, yp=test point y,
%NOTE WELL: the arrays x and y must be rows of CLOSED loops, meaning the
%first and last coordinates in the row must be the same and m(i) is the
%number of POINTS (NOT including the ending point, which is the same as the
%starting point) in ith row.
count=1;
%loops through all rows (i.e. all topographic loops) and within each row,
%all points from 1 to m(i) and forms a vector of the distances between the
%test point and the closest points on the boundary
for i=1:n
for j=1:m(i)
%the following if statement provides xperp,yperp, the point on the
%boundary closest to the test point (xp,yp)
if abs(x(i,j+1)-x(i,j))<0.01 %vertical boundary check
xperp(i, j)=x(i,j);
yperp(i, j)=yp;
elseif abs(y(i,j+1)-y(i,j))<0.01 %horizontal boundary check
xperp(i, j)=xp;
yperp(i,jl=y(i,j);
else
mline=(y(i,j+1)-y(i,j))/(x(i,j+1)-x(i,j)); %oblique boundary
b=y(i,j)-mline*x(i,j);
mperp=-1/mline;
bperp=yp-xp*mperp;
xperp(i,j)=(b-bperp)/(mperp-mline) ;
yperp(i,j)=mperp*xperp(i, j)+bperp;
end
%distance from current corner of boundary to the next corner

dist12=sqrt ((x(i,j+1)-x(i,j)) " 2+(y(i,j+1)-y(i,3))"2);
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end

for

%distance from current corner to the point on the boundary closest
»to (xp,yp)
distip=sqrt ((x(i,j)-xperp(i,j)) "2+(y(i,j)-yperp(i,j))~2);
%distance from next corner to the point on the boundary closest to
%(xp,yp)
dist2p=sqrt ((x(i,j+1)-xperp(i,j))"2+(y(i,j+1)-yperp(i,j))~2);
%if the closest point to the line containing the boundary is
%between the corners, distlp+dist2p=distil2
if abs((distlp+dist2p)-(dist12))>0.01
%if the closest point to the line is not on the boundary, do
%not record in the closest points vector
count=count;
else
%distance from test point to point on boundary
dista(count,:)=[1i sqrt((xp-xperp(i,j)) ~2+(yp-yperp(i,j))~2)]1;
%xx,yy,hh matrices contain x,y,h of the point plus what line it
%is on in the array
xx(count,:)=[i xperp(i,j)];
yy(count,:)=[i yperp(i,j)];
hh(count, :)=[i h(i)];
%this is the maximum rate of climb determined by the performace
%of the aircraft
maxslope=35;
%this defines a second minimum altitude determined not by the
%terrain, but by the performance of the aircraft
hmin(count)=h(i)-dista(count,2)*maxslope;
count=count+1; %increments the closest points vector index

end

j=1:m(i)

%hchecks the corners for the closest points
dista(count,:)=[i sqrt((x(i,j)-xp)~2+(y(i,j)-yp)~2)]1;
xx(count, :)=[i x(i,j)]1;

yy(count, :)=[1 y(i,j)];
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hh(count,:)=[i h(i)];
maxslope=35;
hagain, defines minimum altitude based on a/c performance, referred
%to as the urban canyon check
hmin(count)=h(i)-dista(count,2)*maxslope;
count=count+1;
end
end
%dist1(2) is the smallest distance between (xp,yp) and a any boundary or
%corner, index1(2) is the row index for this point
[distl,index1]=min(dista);
%temporary variable to store the largest distance between the test point
%and any boundary/corner
temp=max (dista) ;
for i=1:length(dista)
%this changes all of the points on the loop containing the closest
%point to the largest distance to ensure the second closest point comes...
from a different loop
if dista(i,1)==dista(index1(2),1)
%changes the smallest distance to the largest in order to find
%second smallest
dista(i,2)=temp(2);
end
end
%Checks if test point is within the loop containing the closest point
b=Check_In_or_Out(x(dista(index1(2)),1:m(dista(index1(2)))+1),y(dista(index1(2)),...
1:m(dista(index1(2)))+1),xp,yp);
bcount=0;
bbb=0;
%below is a method to determine if any other of the closest points to the
%test point are within the loop containing the closest point
if b==
for i=1:length(dista)

if xx(i, 1) “=xx(index1(2),1)
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bb=Check_In_or_Out(x(dista(index1(2)),1:m(dista(index1(2)))+1),y(dista...
(index1(2)),1:m(dista(index1(2)))+1) ,xx(i,2) ,yy(i,2));
if bb==
bbb=bb; %number of points inside closest boundary)\
end
end
end
end
%if the point is within the loop containing the closest point AND there are
%no more points within boundary
if bbb==0 && b==
hp=h(dista(index1(2)));
else
for i=1:length(dista) Jchecks for 2nd closest point to the test point
[dist2,index2]=min(dista); %finds 2nd smallest distance
%if the 2nd closest is inside other bound
insidebound=Check_In_or_Out(x(dista(index1(2)),1:m(dista(index1(2)))+1),...
y(dista(index1(2)),1:m(dista(index1(2)))+1) ,xx(index2(2),2),yy(index2(2),2));
%If the test point is inside the loop containing the closest point, then
%the second closest point must also come from within the loop. If the test
%point is outside the loop containing the closest point, then
%the second closest point must also come from outside the loop.
if insidebound™=b
temp=max(dista);
dista(index2(2),2)=temp(2);
else
break
end
end
%Now the two closest valid points are stored and minimum altitude can
%be interpolated
dist12=sqrt ((xx(index1(2),2)-xx(index2(2),2)) "2+(yy(index1(2),2)-yy(index2(2),2))"2);
%the following method determines the equation of a line between the two

%closest points of known altitude, then determines where the closest
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%point is on that line to the test point, and uses that point to
%interpolate between the points
if abs(xx(index1(2),2)-xx(index2(2),2))<0.01 Yvertical line check
dd1=abs(yp-yy(index1(2),2));
dd2=abs (yp-yy(index2(2),2));
elseif abs(yy(index1(2),2)-yy(index2(2),2))<0.01 jhorizontal line check
dd1l=abs (xp-xx(index1(2),2));
dd2=abs (xp-xx(index2(2),2));
else Joblique line
mm=(yy (index1(2),2)-yy(index2(2),2))/(xx(index1(2),2)-xx(index2(2),2));
bb=yy (index1(2),2)-mm*xx (index1(2),2);
mmperp=-1/mm;
bbperp=yp-xp*mmperp;
xxperp=(bb-bbperp) / (mmperp-mm) ; %xperp=(bl2-bpostoperp)/(mpostoperp-mi2)
yyperp=mmperp*xxperp+bbperp;
dd1=sqrt ((xxperp-xx(index1(2),2)) "2+(yyperp-yy(index1(2),2))"2);
dd2=sqrt ((xxperp-xx(index2(2),2)) "2+(yyperp-yy(index2(2),2))"2);
end
%in the case where the closest point on the interpolation line is not
%between the two closest points, use a best guess to interpolate, in
%order to not go above the highest altitude nor below the lowest altitude
if ddi+dd2-dist12>.01
dist12=dd1+dd2;
end
%if two loops happen to intersect at the closest points, use that known
%altitude as to not have the interpolation go unbounded
if dist12<.0000001
hp=hh(index1(2),2);
else
hp=dd1/dist12*hh(index2(2),2)+dd2/dist12*hh(index1(2),2);
end
%the following can be commented out to turn off the urban canyon safety
%check, but it provides somewhat of a circus tent effect over tall

%buildings so as to ensure the aircraft can overcome the building
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%based on its performance capabilities
if hp<max(hmin)

hp=max (hmin) ;
end

end

A.J Check_In_or_Out.m
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function [b]=Check_In_or_Out(x,y,xp,yp)
%takes testpoint (xp,yp) and determines if it’s within boundary
%defined by vector of coords x and y. NOTE WELL: the boundary must be
%CLOSED, that is, the first and last coordinates must be the same
kk=length(x)-1;
%kk is the number of points on the boundary, NOT including the last point
%which would be the same as the first for a closed boundary
count=0;
%the method assumes a horizontal line extending from the test point (xp,yp)
%in the positive x direction and counts the number of boundaries the line
%crosses. If it crosses an even number of boundaries, the test point is
%outside the closed polygon. If it crosses an odd number of boundaries, the
%test point is within the bounds of the polygon.
for i=1:kk
%dist12 is the distance from the current cormer [x(i),y(i)], to the
%next cornmer [x(i+1),y(i+1)], distlp is the distance from the current
%corner to the test point, and dist2p is the distance from the next
%corner, to the test point. xI is the x-coordinate of the intersection
%the line containing the boundary and the horizontal line extending to

%infinity from the test point. Because the line is horizontal, the
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%y-coordinate of the intersection point is always equat to yp
if x(i+1)-x(i)==0; %horizontal boundary check
dist12=abs(y(i+1)-y(i));
dist2p=abs(y(i+1)-yp);
distlp=abs(yp-y(i));
xI=x(i);
elseif y(i+1)-y(i)==0; Yvertical boundary check
dist12=0;
dist2p=1;
distlp=1;
xI=1;
else
m=(y (i+1) -y (1)) /(x(i+1)-x(i));
b=y (i) -m*x (i) ;
xI=(yp-b)/(m);
dist12=sqrt ((x(i+1)-x(i)) "2+ (y(i+1)-y(i))~"2);
distilp=sqrt ((x(i)-xI) "2+(y(i)-yp)~2);
dist2p=sqrt ((x(i+1)-xI) "2+ (y(i+1)-yp) ~2);
end
%this claims that if the intersection point is on the boundary, and it
%lies to the right of the test point, then it counts as an intersection
%with a boundary
if ((distlp+dist2p)-(dist12))<.000001 && xI>xp
count=count+1;
end
end
%after looping, if the number of crosses of the is even or odd then...
if mod(count,2)==0
b=0; %if it’s even, the test point is outside or...
else
b=1; %if it’s odd, it is inside the bounds of the polygon.

end
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Appendiz B. C++® Program Code

The following C++® code was written, compiled, and linked in order to produce
the SASVRT executable file. Note: to avoid excessive redundant information, the
AreaB funciton of this program was omitted. So when the program calls the AreaB
function, it is simply loading the information output by the areaB.m script in Ap-
pendix A converted to ENU coordinates and written in C++® . For example, in

the MATLAB® script the first Air Force Museum building appears as:

Jmuseum A

x(2,:)=[844 998 1067 914 844 0 0];
y(2,:)=[909 735 802 973 909 0 0];
h(2)=1;

k(2)=4;

x(14,:)=[848 913 1066 999 848 0 0];
y(14,:)=[911 971.5 801.1 736 911 0 0];
h(14)=5;

k(14)=4;

x(3,:)=[858 1009 1049 895 858 0 0];
y(3,:)=[920 749 786 954 920 0 0];
h(3)=7;

k(3)=4;

x(4,:)=[876 1024 1034 880 876 0 0];
y(4,:)=[936 764 775 939 936 0 0];
k(4)=4;

h(4)=9;

and after its coordinates are transformed and written into C++® it appears as:

x_e[1]1[0]=773.119195;
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x_e[1]1[1]1=923.818430;
x_e[1]1[2]=991.339516;
x_e[1]1[3]1=841.618848;
x_e[1]1[4]=773.119195;
x_e[1] [6]1=-52.790896;
x_e[1]1 [6]1=-52.790896;

y_n[1] [0]=2510.963149;
y_n[1] [1]1=2681.233713;
y_n[1] [2]1=2615.669760;
y_n[1] [3]1=2448.334895;
y_n[1] [4]=2510.963149;
y_n[1] [6]1=3400.480060;
y_n[1] [6]1=3400.480060;
m[1]=4;
h[1]=-485.020000;

x_e[2] [0]=786.819126;
x_e[2] [1]1=934.582661;
x_e[2] [2]=973.725319;
x_e[2] [3]1=823.026085;
x_e[2] [4]=786.819126;
x_e[2] [6]1=-52.790896;
x_e[2] [6]=-52.790896;

y_n[2] [0]=2500.198918;
y_n[2] [1]1=2667.533782;
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y_n[2] [2]=2631.326823;
y_n[2] [3]1=2466.927658;
y_n[2] [4]1=2500.198918;
y_n[2] [6]1=3400.480060;
y_n[2] [6]1=3400.480060;
m[2]=4;
h[2]=-437.020000;

x_e[3] [0]1=804.433322;
x_e[3][1]1=949.261158;
x_e[3][2]=959.046823;
x_e[3] [3]1=808.347588;
x_e[3] [4]1=804.433322;
x_e[3] [6]1=-52.790896;
x_e[3] [6]1=-52.790896;

y_n[3] [0]=2484.541854;
y_n[3] [1]1=2652.855285;
y_n[3][2]1=2642.091054;
y_n[3][3]1=2481.606155;
y_n[3] [4]=2484.541854;
y_n[3] [6]1=3400.480060;
y_n[3] [6]1=3400.480060;
m[3]=4;
h[3]1=-421.020000;

The rest of the C++ code is as follows:

/************************************************************************\
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%The following was written by ENS Joe Dugan under the ¥
% advisory of Major Paul Blue for his thesis work on ¥
% AFIT/GAE/ENY/05-J08. t

\********************************************************************/

#include "windows.h"
//#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <math.h>

#include <UserNetwork.h>

//Piccolo Includes
#include<iostream.h>
#include<conio.h>
#include "CommManager.h"
#include "Win32Serial.h"
#include"lla2enu.h"

#include"my_types.h"

//Basic Variables/Arrays vital to all parts of code

CCommManager* m_pComm = NULL; //initialize Communications Manager m_pComm

Queue_t* pQ = NULL; //used to see if autopilot packets exist

ENUCoord PosENU; //East-North-Up coordinate used for telemetry and avoiding obstacles
telemetry current_telemetry[10];//holds decoded telemetry packet data for up to

// 10 networks

control current_control[10]; //holds decoded control packet data for up to

//10 networks

FILE * pFilel;
FILE * pFile2;
FILE * pFile3;
FILE * cFilel;
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FILE * acFilel;
FILE * pbFilel;
FILE * pbFile2;

UInt8 Waypoint_cmd[10]; //holds the index of the waypoint each network is currently

// heading towards - up to 10 networks

float deg_to_rad = 3.14159/180.0;

void send_telemetry(float east, float north, float up, int i);
void send_control(float phi, float theta, float psi, int i);
void init_AC(float lat, float lon, float alt, int i);

int Mindex(double #*Numbers, int Count) ;

double Min(double *Numbers, int Count);

int Maxi(int #*Numbers, int Count);

double Max(double *Numbers, int Count) ;

bool CheckInside(double *x_et, double *y_nt, double cte, double ctn, int count);
void hardbound(double *x_et, double *y_nt, int count, int i); //for hard bounds
double MinH(double ctn, double cte);

void printTerrain();

void addLoop();

void addHardBound() ;

void addBuilding();

void printTerrain() ;

int RetrieveLoop();

void clrscr();

void displayTelemetry(int i);

void displayData(int i, int numnets);

void areaB();

void clearData();

void Waypoints();

Aircraft ac[10];
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Aircraft ground;

//Basepoint to use for all ENU coordinates...calculated by doing lla2ecef transformation
// in matlab at a lat/lon/alt near AFIT

//Note that the further the basepoint from actual position, the more error

const double Base_X = 503000;
const double Base_Y = -4884700;
const double Base_Z = 4057800;

double x_e[100][10], y_n[100]1[10], x_eH[10], y_nH[10], h[100],x_o[5],y_o[5], ctu_old=0,...
time_old, timeH[10], distH, VH, distS, timeS, VS,xtemp_e[10],ytemp_n[10],htemp,...

xstart, ystart, zstart, xground, yground, zground, PBtime=.01,timeStart=100000;

int m[100], n=-1, mH, mo, data=8;

bool pboo=false, wpoo=false,stoo[10]={false,false,false,false,false,false,false,false,...

false,false}, soo=false, hio,sio, hoo=false, firsttime[10]={false,false,false,false,false,...

false,false,false,false,false},goo=false,sioo=false;

void hardbound(double *x_eH, double *y_nH, int mH, int i)

{

double xperp, yperp, mline, b, mperp, bperp, dist12, distlp, dist2p, dista[20],x[20],y[20];
int count=0,indexal[20];

double ctn,cte;

int j;

int NumNets = m_pComm->GetNumNets() ;

//for(int i=0; i<NumNets; i++)

{

ctn

current_telemetry[i] .North;

cte = current_telemetry[i] .East;

//hio = CheckInside(x_eH,y_nH,cte,ctn,count);

//if (hio !'= 0)

{

for (int k=0; k<mH; k++) //checks closed loop for closest boundary
{
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if (fabs(x_eH[k+1]-x_eH[k])<0.01)

{

xperp=x_eH[k];

yperp=ctn;

}

else if (fabs(y_nH[k+1]-y_nH[k])<0.01)

{

xXperp=cte;

yperp=y_nH[k] ;

}

else

{

mline=(y_nH[k+1]-y_nH[k])/(x_eH[k+1]-x_eH[k]) ;

b=y_nH[k]-mline*x_eH[k];

mperp=-1/mline;

bperp=ctn-cte*mperp; //ypos-xpos*mpostoperp=bpostoperp
xperp=(b-bperp) / (mperp-mline) ;

yperp=mperp*xperp+bperp;

}

dist12=sqrt ((x_eH[k+1]-x_eH[k])*(x_eH[k+1]-x_eH[k])+(y_nH[k+1]-y_nH[k])*(y_nH[k+1]...

-y_nH[k])); //closest distance from test point to boundary line
distlp=sqrt ((x_eH[k]-xperp)* (x_eH[k]-xperp)+(y_nH[k]-yperp) * (y_nH[k]-yperp));

dist2p=sqrt ((x_eH[k+1]-xperp) * (x_eH[k+1] -xperp)+(y_nH[k+1]-yperp) * (y_nH[k+1] -yperp)) ;

if (fabs((distlp+dist2p)-(dist12))<0.01) //makes sure intersection point is on boundary

{

distalcount]=sqrt ((xperp-cte) * (xperp-cte)+(yperp-ctn) * (yperp-ctn) ) ;

x[count]=xperp;

y [count]=yperp;

indexa[count]=count;

count=count+1;

}

distalcount]=sqrt((x_eH[k]-cte)*(x_eH[k]-cte)+(y_nH[k]-ctn)*(y_nH[k]-ctn));

y[count]=x_eH[k];

y[count]=y_nH[k];
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indexa[count]=count;

count=count+1;

}

distH = Min(dista, count); //closest border

//int index = Mindex(dista, count);

for (int index=0; index<mH; index++){

VH=current_telemetry[i].Velocity * cos(current_control[i].psi*deg_to_rad)*...

(y[index]-ctn)/(sqrt((y[index]-ctn)*(y[index]-ctn)+(x[index]-cte) *(x[index]-cte)))+...

current_telemetry[i] .Velocity * sin(current_control[i].psi*deg_to_rad)*(x[index]-cte)/...

(sqrt ((y[index]-ctn)*(y[index] -ctn)+(x[index] -cte) * (x[index]-cte))) ;
if (VH>0.01)

timeH[index] = distH/VH;

else

timeH[index] =-1;

}
}
}
}

int Mindex(double *Numbers, int Count) //finds the index of the minimum in an
// array of doubles

{

double Minimum = Numbers[0];

int Index=0;

for(int k = 0; k < Count; k++)
if( Minimum > Numbers[k] )

{

Minimum = Numbers [k] ;

Index=k;

}

return Index;

}
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double Min(double *Numbers, int Count) //finds the minimum value in an array of doubles

{ double Minimum = Numbers[O0];

for(int k = 0; k < Count; k++){
if( Minimum > Numbers[k] )

Minimum = Numbers[k];

}

return Minimum;

3
int Maxi(int *Numbers, int Count) //finds the minimum value in an array of integers

{ int Maximum = Numbers[0];

for(int k = 0; k < Count; k++){
if ( Maximum < Numbers[k] )

Maximum = Numbers[k];

}

return Maximum;

}

double Max(double *Numbers, int Count)//finds the maximum value in an array of doubles
{

double Maximum = Numbers[0];

for(int k = 0; k < Count; k++){
if ( Maximum < Numbers[k] )

Maximum = Numbers[k];

}
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return Maximum;

}

bool CheckInside(double *x_et, double *y_nt, double cte, double ctn, int count)
//pass in CLOSED LOOPS described by VECTORS x_et, y_nt, along
// with ctn, cte to determine if it is within the bounds
{
double dist12, dist2p, distlp, xI, m, b;
int condition=0;
for(int counter=0; counter<count; counter++) //loops through all points,
// doesn’t include first point twice
{
if (fabs(x_et[counter+1]-x_et[counter])<.01)
{
dist12=fabs(y_nt[counter+1]-y_nt [counter]);
dist2p=fabs(y_nt[counter+1]-ctn);

distip=fabs(y_nt [counter]-ctn);
xI=y_nt[counter];
}
else if (fabs(y_nt[counter+1]-y_nt[counter])<.01)
{

dist12=0;

dist2p=1;
distip=1;

m=(y_nt [counter+1]-y_nt [counter])/(x_et [counter+1]-x_et [counter]) ;

b=y_nt [counter] -x_et [counter]*m;

xI=(ctn-b)/m;
dist12=sqrt((x_et[counter+1]-x_et[counter])*(x_et[counter+1]-x_et[counter])+. ..
(y_nt[counter+1]-y_nt [counter])*(y_nt [counter+1]-y_nt[counter])) ;

distlp=sqrt((xI-x_et[counter])*(xI-x_et[counter])+(ctn-y_nt[counter])...
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*(ctn-y_nt [counter]));
dist2p=sqrt((x_et[counter+1]-xI)*(x_et[counter+1]-xI)+(y_nt[counter+1]-ctn)...
*(y_nt [counter+1]-ctn));

}

if (distlp+dist2p-dist12<0.01 && xI>cte) {condition=condition+1;
}

else condition=condition;

}

if (condition}2==0)

return false;

else

return true;

}

double MinH(double ctn, double cte) //given a system of n closed topographic loops
// defined by x_e, y_n, h_u, and point cte,ctn, determines min alt. total length is
// all points times 2.

{

double xperp, yperp, mline, b, mperp, bperp, dist12, distlp, dist2p, dista[1000],...
xx[1000],yy[1000] ,hh[1000] ,minalt,x[100] [10],y[100] [10];

int count=0, indexa[1000],ma[1000],j,k,Index2;

int Total=sizeof (m)/sizeof (int);

int maxm = Maxi(m, n);

for (k=0; k<100; k++)

{

distal[k]=0;

indexal[k]=0;

xx[k]=0;

yy [k]1=0;

hh[k]=0;

}

for (k=0; k<n; k++){
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for (j=0; j<maxm; j++)
{

x[k] [j1=0;

y k1 [j1=0;

}

}

for (k=0; k<n; k++){ //reconstructs x and y matrices

for (j=0; j<10; j++)

{

x[k] [j1=x_e[k]1[j]1;//x_e[k*10+j]; //the l+maxm accounts for the first and last values
// of columns are the same closing the

y[k] [jl=y_nlk][j];//y_nlk*10+j]; //loop and making the rows one column longer than
// the number of points maxm

}

}

for (k=0; k<n; k++) //these loops form a vector of the distances between the test
// point and the closest points on the boundary

{

for (j=0; j<ml[k]; j++)
{

if (fabs(x[k][j+1]1-x[k]1[j]1)<0.01)

{

xperp=x[k] [j1;

yperp=ctn;

}

else if (fabs(y[k][j+1]1-y[k1[j1)<0.01)
{

xperp=cte;

yperp=y [k]1[j];

}

else
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{
mline=(y[k] [j+1]1-y[k]1 [j1)/(x[k] [j+11-x[k]1[j1);
b=y [k] [j]1-mline*x [k] [j];
mperp=-1/mline;
bperp=ctn-cte*mperp; //ypos-xpos*mpostoperp=bpostoperp
xperp=(b-bperp) / (mperp-mline) ;
yperp=mperp*xperp+bperp;
}
dist12=sqrt ((x[k] [j+11-x[k] [j1)*(x[k] [j+1]-x[k] [j1)+(y [k] [j+11-y[k] [j1)*. ..
(yx1[j+1]1-y[k1[j1)); //closest distance from test point to
// boundary line
distlp=sqrt ((x[k] [j]-xperp)*(x[k] [j]-xperp)+(y[k] [j1-yperp)*(y[k] [j1-yperp));
dist2p=sqrt ((x[k] [j+1]-xperp) * (x [k] [j+1] -xperp)+(y[k] [j+1]-yperp) * (y [k] [j+1]-yperp)) ;
if (fabs((distlp+dist2p)-(dist12))<0.01) //makes sure intersection point is on boundary
{
distalcount]=sqrt ((xperp-cte) * (xperp-cte)+(yperp-ctn)* (yperp-ctn) ) ;
xx[count] =xperp;
yy [count]=yperp;
hh[count]=h[k];
indexalcount]=k; //indexa is the LOOP NUMBER
ma[count]=m[k];
count=count+1;

}

}

for (j=0; j<m[k]; j++) //checks corners for distance

{

distal[count]=sqrt ((x[k] [jl-cte)*(x[k] [jl-cte)+(y[k] [jl-ctn)*(y[k] [jI-ctn));
xx[count]l=x[k] [j];

yy [count]l=y[k] [j];

hh[count]=h[k];

indexal[count]=k;

ma[count]=m[k];

count=count+1;
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double Minl = Min(dista, count); //count should be the number of elements, starts
//at zero, goes to one above highest index

int Indexl = Mindex(dista, count); //indexl is the index number of the minimum
//distance from ct point and boundary: indexal[Indexl1]=min dist loop #

double xindex[50];

double yindex[50];

for (k=0; k<(1+ma[Index1]); k++); //malindex1]+1 refers to the length of the CLOSED loop
// describing the closest boundary

{

xindex [k]=x[Index1] [k]; //writes a vector for the x,y coords for the loop

yindex [k]=y[Index1] [k];

}

int temp=sizeof (xindex)/sizeof (double) ;

xindex [temp]=xindex [0] ;

yindex [temp]=yindex[0]; //closes loop

float maxdist = Max(dista, count);

for (k=0; k<count; k++)

{

if (indexalk]==indexa[Index1]) //this ensures that the second closest point comes
// from a different loop

dista[k]=maxdist; //changes the smallest distance to the largest in order to find
// second smallest

}

bool inorout=CheckInside(xindex, yindex, cte, ctn, ma[Index1]+1); //if test point
//is within closest boundary

int bcount=0;

bool bbb=false;

if (inorout==true)

{

for (k=1; k<count; k++)

{
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if (xx[k]!=xx[Index1])

{

bool inorout2=CheckInside(xindex, yindex, xx[Index1], yy[Index1], ma[Index1]+1); //*7?
if (inorout2==true)

bbb=inorout2; //there exists other boundaries within closest boundary

}

}
if (bbb==false && inorout==true) //if the point is within the boundary of the closest
// point and there are no more points within boundary
{
minalt=hh[Index1];
return minalt;
}
else
{
for (int k=0; k<ma[Index1]; k++)
{
double Min2 = Min(dista, count);//find 2nd smallest distance

Index2 = Mindex(dista, count); //and index

bool inorout3=CheckInside(xindex, yindex, xx[Index2], yy[Index2], ma[Index1]+1);
//this determines if the second min distance is within first bound
if (indexa[Indexl]==indexa[Index2]) //if they’re on the same line
distal[Index2]=maxdist;
else if (inorout3!=inorout) //if the point is inside the bound, use the next closest
// point inside the bound
dista[Index2]=maxdist; //OR if the point is outside th bound, use the
//next closest point outside the bound
}
}

// at this point should have two closest points(within bounds) and the distance two the points
double ddi1,dd2,mm,bb,mmperp,bbperp,xxperp,yyperp;
dist12=sqrt ((xx[Index1]-xx[Index2]) * (xx[Index1] -xx[Index2])+(yy[Index1]-...
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yy[Index2])*(yy[Index1]-yy[Index2]));
if (fabs(xx[Index1]-xx[Index2])<0.01)

{
ddi=fabs(ctn-yy[Index1]);
dd2=fabs(ctn-yy[Index2]);
}
else if (fabs(yy[Index1]-yy[Index2])<0.01)
{
ddi=fabs(cte-xx[Index1]);
dd2=fabs(cte-xx[Index2]);
}
else
{

mm=(yy [Index1]-yy [Index2]) /(xx[Index1] -xx [Index2]) ;
bb=yy [Index1] -mm*xx [Index1] ;
mmperp=-1/mm;
bbperp=ctn-cte*mmperp;
xxperp=(bb-bbperp) / (mmperp-mm) ; //xperp=(bl2-bpostoperp)/(mpostoperp-mi2)
yyperp=mmperp*xxperp+bbperp;
dd1=sqrt ((xxperp-xx[Index1])* (xxperp-xx [Index1] )+ (yyperp-yy [Index1]) ...
(yyperp-yy[Index11));
dd2=sqrt ((xxperp-xx [Index2] ) * (xxperp-xx [Index2] )+ (yyperp-yy [Index2]) *. ..
(yyperp-yy[Index2]));
}
if ((dd1+dd2-dist12)>.01)
dist12=dd1+dd2;
if (dist12<.0000001)
minalt=hh[Index1];
else
minalt=dd1/dist12*hh[Index2]+dd2/dist12*hh[Index1];
//printf ("\nminalt: %f",minalt);
//S1leep(10000) ;
return minalt;

}
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//Displays Instructions

void displayData(int i, int NumNets) {

switch(data){
case(0) : {
displayTelemetry(i);
break;

}

case(1):{
areaB();
break;

}

case(2):{
soo=true;
addBuilding();
break;

}

case(3):{
hoo=true;
addHardBound () ;
break;

}

case(4) :{
soo=true;
addLoop() ;
break;

}

case(5):{
clearData();
data=8;

break;

}
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case(6):{

printf("\nPrinting Terrain File");
printTerrain();

//printf ("\nback in loop");
data=0;

break;

}

case(7):{

if (stoo[i]==true){

stoo[i]=false;

printf("\nNot streaming data to AVDS");
Sleep(1000) ;

}

else{

stoo[i]l=true;

printf ("\nStreaming data to AVDS");
Sleep(1000) ;

}

data=8;

break;

case(10) :{

if (pboo==false){

pboo=true;
pbFilel = fopen ("terrain.save.txt","w");
pbFile2 = fopen ("sig.save.txt","w");

fprintf (pbFilel,"%%LAT %f\n)%LONG %f\n\%/time xpos ypos Alt xrot yrot zrot craft type"...
,current_telemetry[i] .Latitude,current_telemetry[i] .Longitude);

fprintf (pbFile2, "} %LAT %f\n%%LONG %f\n\%/time xpos ypos Alt xrot yrot zrot craft type...
rud el ail",current_telemetry[i].Latitude,current_telemetry[i] .Longitude);

printf ("\nPlayback Recording On");

}

else{

pboo=false;

fclose (pbFilel);
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fclose (pbFile2);
printf ("\nPlayback Recording O0ff");
}

Sleep(1000) ;

data=8;

break;

}

case(11):{

if(sioo==false){

sioo=true;

printf("\nSatellite image on");
}

else{

sioo=false;

printf("\nSatellite image off");
}

Sleep(1000) ;

data=8;

break;

}

case(8):{

clrscr();

printf ("Instructions");

printf ("\nPress a Number to see Individual Piccolo Data (1,2...)");

printf("\nPress ’T’ to see Telemetry Data");
printf("\nPress ’A’ to load Area B terrain data");
printf ("\nPress ’B’ to Define a building");
printf("\nPress ’H’ to Define a hard boundary");

printf("\nPress ’L’ to Define a loop of minimum altitude");

printf ("\nPress ’C’ to Clear boundary and altitdue information");

printf("\nPress ’P’ to Print a terrain data file to load into AVDS");

printf("\nPress ’S’ to Toggle streaming data to AVDS");

printf("\nPress 'R’ to Toggle Playback Recorder");
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printf("\nPress ’X’ to Exit");

printf ("\nCurrent Piccolo ID = %i", m_pComm->GetIDFromIndex(i));
break;

}

}

}

}
//displayData

void addBuilding(){ //adds a building to the synthetic terrain
n=n+1;

m[n]=RetrieveLoop();

double xt=xtemp_e[0],xcent[2]={0,0},ycent[2]={0,0};

double yt=ytemp_n[0];

int i, temp;

h[n]=MinH(xt, yt);

for (i=0; i<m[n]; i++){
x_e[n] [i]=xtemp_e[i];
y_n[n]l [i]l=ytemp_n[il;

}

for (i=0; i<m[n]; i++){
xcent[0] += x_el[n][i];
ycent[0] += y_n[n][i];
}

xcent [0]=xcent [0]/m[n];
ycent [0]=ycent [0] /m[n] ;
n=n+1;

h[n]l=htemp;
m[nl=m[n-1];

for (i=0; i<m[n]; i++){

x_e[n] [1]=0.99*xtemp_e[i];
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y_n[n] [11=0.99*ytemp_n[il;

}

for (i=0; i<m[n]; i++){

xcent[1] += x_el[n][i];

ycent[1] += y_n[n][il;

}

xcent [1]=xcent [1]/m[n];
ycent[1]=ycent[1]/m[n];

for (i=0; i<m[n]; i++){

x_e[n] [i]=x_e[n] [i]+xcent [0] -xcent [1];
y_n[n] [il=y_n[n] [i]+ycent [0]-ycent [1];
}

data=0;

} //Add Building

void addLoop(){ //adds loops of constant altitude
n=n+1;

m[n]=RetrieveLoop();
h[n]=htemp;

for (int i=0; i<m[n]; i++){
x_e[n] [i]=xtemp_e[i];
y_n[n] [i]=ytemp_n[il;

}

x_e[n] [m[n]]=xtemp_e[0];
y_n[n] [m[n]]=ytemp_n[0];
data=0;

}

void addHardBound(){ //adds loops of constant altitude
mH=RetrieveLoop();

for (int i=0; i<mH; i++){

x_eH[i]=xtemp_e[i];

y_nH[il=ytemp_n[il;
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}
x_eH[mH]=xtemp_e [0];
y_nH[mH]=ytemp_n[0];
data=0;

}

void clearData(){

n=0;

soo=false;

hoo=false;

wpoo=false;
printf("\nData Cleared");
Sleep(1000) ;

}

//Displays Network Telemetry and Control Information

void displayTelemetry(int i) {

clrscr();

UInt32 NumNets;

NumNets = m_pComm->GetNumNets() ;

printf("\nPress ’0’ to return to options");

if (data==8)

displayData(i,NumNets) ;

printf("\nTelemetry Packet Data : %i", current_telemetry[i] .Hours);
printf(":%i", current_telemetry[i].Minutes);

printf(":%f", current_telemetry[i].Seconds);

printf("\nLatitude (deg) : %f", current_telemetry[i].Latitude);
printf(" East: %f", current_telemetry[i].East);

printf ("\nLongitude (deg) : %f", current_telemetry[i].Longitude);
printf (" North: Jf", current_telemetry[i].North);

printf("\nAltitude (m) : Kf", current_telemetry[i].Altitude);
printf(" Up: %f", current_telemetry[i].Up);

printf ("\nGround Speed : Kf", current_telemetry[i].Velocity);
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printf ("\nAir Speed : Hf", current_control[i].AirSpeed);

//print current control data

printf("\n\nControl Packet Data : %i", current_control[i].Hours);

printf(":%i", current_control[i].Minutes);

printf(":%f", current_control[i].Seconds);

printf ("\nPitch Angle : %f", current_control[i].theta);
printf ("\nHeading : Kf", current_control[i].psi);
printf(" Aileron (deg) : %f", current_control[i].Aileron);

printf ("\nBank Angle : %f", current_control[i].phi);
printf (" Elevator (deg) : %f", current_control[i].Elevator);
printf ("\nRoll Rate : %f", current_control[i].RollRate);

printf (" Throttle (percent): ’%f", current_control[i].Throttle*100);

printf("\nPitch Rate : %f", current_control[i].PitchRate);
printf (" Rudder (deg) : %f", current_control[i].Rudder);
printf("\nYaw Rate : %f", current_control[i].YawRate);

//Boundary Information

double ctn = current_telemetry[i].North;

double cte = current_telemetry[i].East;

double ctu = current_telemetry[i].Up;

if (hoo==false)

printf ("\n\nHard boundary not defined");
else{

hio=CheckInside(x_eH, y_nH, cte, ctn, mH);
hardbound(x_eH,y_nH,mH, i);

switch(hio)

{

case false:q{

printf ("\n\nOUTSIDE OF HARD BOUNDARY");
printf("\n");

fprintf (pFile2,"\n%6.4f 6.2f %6.2f %6.2f O 0 0

+current_telemetry[i] .Seconds/60) ,ctn,cte,ctu, hio);
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break;

}

case true:q{

printf("\n\nDistance to hard boundary(m): %f", distH);

for (int index=0; index<mH; index++){

if (timeH>0){

printf("\nTime until impact with hard boundary [%i](m): %f", index, timeH[index]);
fprintf (pFile2,"\n%6.4f %6.2f %6.2f /6.2f 1 %6.2f 46.2f /%6.2f",(...
current_telemetry[i] .Minutes+current_telemetry[i] .Seconds/60),ctn,cte,...
ctu,distH,VH,timeH[index]);

}

else{

printf("\n");

fprintf (pFile2,"\n%6.4f %6.2f %6.2f /6.2f 1 %6.2f  %6.2f 0", (...
current_telemetry[i] .Minutes+current_telemetry[i] .Seconds/60),. ..

ctn,cte,ctu,distH,VH);

switch(soo)
{
case false:{
printf("\nNo minimum altitude information present");
break;
}

case true:{

double tempmin=MinH(ctn, cte);
distS=ctu-tempmin;

if (distS<0){
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printf ("\nBelow minimum altitdude, PULL UP!");
fprintf(pFile3,"\n’%6.4f %6.2f %6.2f %6.2f 0 ¥6.2f", (current_telemetry[i].Minutes...

+current_telemetry[i] .Seconds/60) ,ctn,cte,ctu,tempmin) ;

}

elseq
printf("\nDistance above minimum altitude(m): %f", distS);;
fprintf (pFile3,"\n’%6.4f %6.2f %6.2f %6.2f 1 %6.2f", (current_telemetry[i] .Minutes...

+current_telemetry[i] .Seconds/60) ,ctn,cte,ctu,tempmin) ;

3
break;

}
3

for(int j=0; j<NumNets-1; j++){

if (m_pComm->GetIDFromIndex(j)!=m_pComm->GetIDFromIndex(i)){

double ctn2 = current_telemetry[j].North;

double cte2 = current_telemetry[j].East;

double ctu2 = current_telemetry[j].Up;

double distance = sqrt((ctn-ctn2)*(ctn-ctn2)+(cte-cte2)*(cte-cte2)+(ctu-ctu2)*(ctu-ctu2));
printf("\nDistance to aircraft %i: %f (m)", m_pComm->GetIDFromIndex(j),distance);
fprintf (acFilel,"\n%6.4f %6.2f 6.2f 6.2f .6.2f %6.2f %6.2f %6.2f", (...
current_telemetry[i] .Minutes+current_telemetry[i].Seconds/60),ctn,cte,ctu,ctn2,...
cte2,ctu2,distance);

}

}

if (stoo[il==1)

printf ("\nStreaming data to AVDS");

}

//displayTelemetry

void printTerrain(){
pFilel = fopen ("terrain.txt","w");

fprintf(pFilel,"Synthetic Terrain|terrain:\\\n\n\n# center of mass\n :cmi#...
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-1782.187376 -946.987728 -473.92:\\\n\n# Distance > 0 ft\n :d0:\\\n\n\n:DS#1:\\\n
:ca=fuselage:\\\n :ct# 1.0 0.0 0.0:\\\n\n# (back)\n :pt# %f %f 0.00:pt# %f Jf -600.0:\\
\n :pt# %f %f -600.0:pt# Jf %f 0.00:cl:\\\n\n# (front)\n :pt# ¥%f %f 0.00:pt# Uf %f...

-600.0:\\\n :pt# %f %f -600.0:pt# %f %f 0.00:cl:\n\n# (left)\n :pt# ¥f J%f 0.00:pt#...

Wt %f —-600.0:\\\n :pt# %f %f -600.0:pt# %f %f 0.00:cl:\\\n# (right)\n :pt# %f %f...

0.00:pt# %f %f -600.0:\\\n :pt# %f %f -600.0:pt# %f %f 0.00:cl:\n :co# 0.700 0.700...

0.700:\\\n\n\n#texture files\n:XF=AreaBsmall.bmp:\\\n:XF=AreaBsmall.bmp:\\\n\n\n\n#...

(back)\n :pt# 2859.4 1202.6 -473.92:pt# 2859.4 1202.6 -476.92:\\\n ...

:pt# -52.8 1202.6 -476.92:pt# -52.8 1202.6 -473.92:cl:\\\n\n\n\n#select texture file...

\n:XI#1:\\\n#texture coordinates \n:XC#1.0 0.0 0.0 :XC#1.0 1.0 0.0 :XC#0.0 1.0 0.0 :...
XC#0.0 0.0 0.0:\\\n# (bottom)\n :pt# -52.8 1202.6 -473.92:pt# -52.8 3400.5...
-473.92:\\\n :pt# 2859.4 3400.5 -473.92:pt# 2859.4 1202.6 -473.92:cl:\\\n\n\n#...

(front)\n :pt# -52.8 3400.5 -473.92:pt# -52.8 3400.5 -476.92:\\\n :pt#...

2859.4 3400.5 -476.92:pt# 2859.4 3400.5 -473.92:cl:\\\n\n#select texture file\n:...
XI#1:\\\n#ttexture coordinates \n:XC#1.0 0.0 0.0 :XC#1.0 1.0 0.0 :XC#0.0 1.0 0.0 :XC#...
0.0 0.0 0.0:\\\n# (top)\n :pt# 2859.4 1202.6 -476.92:pt# 2859.4 3400.5 -476.92...

:\\\n :pt# -52.8 3400.5 -476.92:pt# -52.8 1202.6 -476.92:c1:\\\n\n\n\n :co# 0.000...

0.700 0.000:\\\n# (left)\n :pt# -52.8 1202.6 -473.92:pt# -52.8 1202.6 -476.92:...
\\\n :pt# -52.8 3400.5 -476.92:pt# -52.8 3400.5 -473.92:cl:\\\n\n#select texture file...
\n:XI#0:\\\n#texture coordinates \n:XC#1.0 0.0 0.0 :XC#1.0 1.0 0.0 :XC#0.0 1.0 0.0 :...
XC#0.0 0.0 0.0:\\\n# (right):pt# 2859.4 3400.5 -473.92:pt# 2859.4 3400.5 -476.92:\\\...

n\n :pt# 2859.4 1202.6 -476.92:pt# 2859.4 1202.6 -473.92:cl:\n",x_eH[3], y_nH[3...
1,x_eH[3],y_nH[3],x_eH[2],y_nH[2],x_eH[2],y_nH[2] ,x_eH[4] ,y_nH[4],x_eH[4],y_nH[4]...

, x_eH[1],y_nH[1] ,x_eH[1],y_nH[1],x_eH[3],y_nH[3],x_eH[3],y_nH[3], x_eH[4],y_nH[4]...
,x_eH[4], y_nH[4], x_eH[2], y_nH[2],x_eH[2], y_nH[2],x_eH[1],y_nH[1],x_eH[1],y_nH[1]);

//fprintf (pFilel,"Synthetic Terrain|terrain:\\\n\n\n# center of mass\n :cm# -1782.187376...
-946.987728 -473.92:\\n\n# Distance > 0 ft\n :d0:\\\n\n\n:DS#1:\\\n :ca=...
fuselage:\\\n :ct# 1.0 0.0 0.0:\\\n\n# (back)\n :pt# 182.07 1601.87 0.00:...
pt# 182.07 1601.87 -600.0:\\\n :pt# 2050.15 1601.87 -600.0:pt# 2050.15...
1601.87 0.00:cl:\\\n\n# (front)\n :pt# 732.01 2217.39 0.00:pt# 732.01 2217.39...
-600.0:\\\n :pt# 1809.42 2217.39 -600.0:pt# 1809.42 2217.39 0.00:cl:\n\n#...
(left)\n :pt# 182.07 1601.87 0.00:pt# 182.07 1601.87 -600.0:\\\n :pt# 732.01...
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2217.39 -600.0:pt# 732.01 2217.39 0.00:cl:\\\n# (right)\n :pt# 2050.15
0.00:pt# 2050.15 1601.87 -600.0:\\\n :pt# 1809.42 2217.39 -600.0:pt#...
1809.42 2217.39 0.00:cl:\n :co# 0.700 0.700 0.700:\\\n\n");

float minX=Min(*x_e,n);

float minY=Min(*y_n,n);

float maxX=Max(*x_e,n);

float maxY=Max(*y_n,n);

float x[3],y[3],z[3],col,c02,co03;
double xp=-52.8,yp=1202.6;
float zz[200] [200];
float dx=(2859.4+52.8)/200;//(maxX-minX)/300;
float dy=(3400.5-1202.6)/200;//(maxY-minY)/300;
int i=0, j=0;
for (i=0; i<200; i++){
for (j=0; j<200; j++){
yp+=dy;
zz[i] [j1=MinH(yp,xp) ; /*
if (fabs(zz[il[j])>490)
zz[i] [j1=-yp/10;
if (fabs(zz[il[j])<290)
zz[i]1 [j1=-xp/10;*/
//fprintf (pFilel,"\n%6.2f %6.2f %6.2f ",xp,yp,zz[il[j1);
}
yp=1202.6;
xp+=dx;
//fprintf (pFilel,"\n");
}
float minZ=-486;//Min(*zz,10000) ;
float maxZ=-420.02;//Max(*zz,10000) ;
xp=-52.8;
yp=1202.6;
float h;
for (i=0; i<199; i++){
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for (j=0; j<199; j++){
x[0]=xp;
x[1]=xp+dx;
x[2]=xp+dx;
y[01=yp;
y[1]l=yp;
y[2]=yp+dy;
z[0]=zz[i] [j];
z[1]=zz[i+1] [j];
z[2]=zz[i+1] [j+1];
h=fabs(z[0]-minZ) /fabs (maxZ-minZ) ;
if (h<0.125){
c01=0.0;
co02=1-8%h;
co03=8%h;
}
if (h<0.25 && h>0.125){
co1=2.0%(h-0.125);
c02=0.0;
c03=1.0-2.0%*(h-0.125);
}
if (h>0.25 && h<0.375){
c01=0.25+6.0*(h-0.25) ;
c02=0.0;
c03=0.75+2.0%(h-0.25) ;
}
if (h<0.5 && h>0.375){
col=1.0;
c02=0.0;
c03=1.0-8.0%*(h-0.375) ;
}
if (h>0.5 && h<0.625){
col=1.0;
c02=4.0*%(h-0.5);
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c03=2.0%(h-0.5);

}

if (h<0.75 && h>0.625){
col=1.0;
c02=0.5+4.0*(h-0.625) ;
c03=0.25-2.0%(h-0.625) ;
}

if (h>0.75 && h<0.875){
col=1.0;

co2=1.0;
c03=8.0%*(h-0.75) ;

}

if (h>0.875){

col=1.0;

co02=1.0;

co03=1.0;

}

fprintf(pFilel,"\n :co# %6.2f ¥6.2f 76.2f:\\\n :pt#
#6.2f  %6.2f %6.2f:\\ \n :pt# U6.2f %6.2f

y[0],z[0],x[1],y[1],=z[1],x[2],y[2],z[2]);
x[0]=xp;

x[1]=xp;

x[2]=xp+dx;

y[0]=yp;

y[1]1=yp+dy;

y[2]=yp+dy;

z[0]=zz[i]l [j];

z[1]=zz[i] [j+1];

z[2]=zz[i+1] [j+1]1;
h=fabs(z[0]-minZ) /fabs(maxZ-minZ) ;
if (h<0.125){

c01=0.0;

co02=1-8%*h;

co3=8xh;
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}

if (h<0.25 && h>0.125){
co1=2.0%*(h-0.125);
c02=0.0;
c03=1.0-2.0%(h-0.125);
}

if (h>0.25 && h<0.375){
co01=0.25+6.0%(h-0.25) ;
c02=0.0;
€03=0.75+2.0*(h-0.25) ;
}

if (h<0.5 && h>0.375){
col=1.0;

c02=0.0;
c03=1.0-8.0%(h-0.375) ;
}

if (h>0.5 && h<0.625){
col=1.0;
c02=4.0%(h-0.5);
c03=2.0%(h-0.5);

}

if (h<0.75 && h>0.625){
col=1.0;
c02=0.5+4.0%(h-0.625);
c03=0.25-2.0%(h-0.625) ;
}

if (h>0.75 && h<0.875){
col=1.0;

co02=1.0;
c03=8.0%(h-0.75);

}

if (h>0.875){

col=1.0;

co02=1.0;

118



co03=1.0;

}

fprintf(pFilel,"\n :co# 6.2f J6.2f J6.2f:\\\n :pt# ¥%6.2f ¥%6.2f U6.2f :pt#...
%6.2f %6.2f ¥%6.2f:\\ \n :pt# %6.2f %6.2f ¥%6.2f :cl:\\ ",col,co02,co03,...

x[0],y[0],z[0],x[1],y[1],=z[1],x[2],y[2],=z[2]);

yp+=dy;

}

yp=1202.6;

xp+=dx;

}

//brent’s data

float wpLat[7],wpLon[7],wpAlt=260;
wpLat [0]=39.776000;

wpLat [1]1=39.776000;

wpLat [2]=39.776000;

wpLat [3]=39.776000;
wpLat [4]1=39.776000;
wpLat [6]1=39.776000;
wpLat [6]1=39.776000;

wpLon[0]=-84.117796;
wpLon[1]=-84.103704;
wpLon[2]=-84.090613;

wpLon[3]=-84.117796;

wpLon[4]=-84.117796;

wpLon[5]=-84.117796;

wpLon[6]=-84.117796;

ENUCoord WAYPOINTI[7];

for(i=0; i<7; i++){

WAYPOINT[i] .1la2enu(wpLat[i]l*deg_to_rad, wpLon[i]*deg_to_rad, wpAlt, Base_X,...
Base_Y, Base_Z);
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}

double ybase=WAYPOINT[O].GetNorth();

double xbase=WAYPOINT[O].GetEast();

double zbase=WAYPOINT[O].GetUp();

fprintf(pFilel,"\n :co# 1.0 0.5 0.25:\\");//0RANGE

for(i=0;i<7;i++){

double ybase=WAYPOINT[i].GetNorth();

double xbase=WAYPOINT[i].GetEast();

double zbase=WAYPOINT[i].GetUp();

fprintf(pFilel,"\n :pt# 76.2f %6.2f ¥6.2f:pt# ¥6.2f U6.2f ¥6.2f:\\\n :pt#...
%6.2f %6.2f Y6.2f:pt# U6.2f ¥6.2f U6.2f:cl:\\",xbase,ybase,zbase,xbase,...

ybase, zbase+30,xbase+30,ybase,zbase+30,xbase+30,ybase,zbase) ;//right

fprintf(pFilel,"\n :pt# %6.2f 6.2f J6.2f:pt# U6.2f %6.2f ¥%6.2f:\\\n :pt#...
%6.2f %6.2f Y6.2f:pt# U6.2f ¥6.2f 96.2f:cl:\\",xbase,ybase,zbase,xbase,...

ybase-30,zbase, xbase,ybase-30,zbase+30,xbase,ybase,zbase+30) ;//back

fprintf(pFilel,"\n :pt# %6.2f %6.2f %6.2f:pt# %6.2f %6.2f %6.2f:\\\n :pt#...
%6.2f Y6.2f U6.2f:pt# U6.2f %6.2f Y6.2f:cl:\\",xbase,ybase-30,zbase,xbase,...

ybase-30,zbase+30,xbase+30,ybase-30,zbase+30,xbase+30,ybase-30,zbase) ;//left

fprintf(pFilel,"\n :pt# %6.2f %6.2f %6.2f:pt# %6.2f %6.2f %6.2f:\\\n :pt#...
%6.2f 46.2f Y6.2f:pt# U6.2f 6.2f U6.2f:cl:\\",xbase+30,ybase-30,zbase,xbase...

+30,ybase-30,zbase+30,xbase+30,ybase,zbase+30,xbase+30,ybase,zbase) ; //front

fprintf(pFilel,"\n :pt# %6.2f %6.2f %6.2f:pt# %6.2f %6.2f %6.2f:\\\n :pt#...
%6.2f /6.2f Y6.2f:pt# U6.2f Y6.2f U6.2f:cl:\\",xbase,ybase,zbase+30,xbase,...

ybase-30,zbase+30,xbase+30,ybase-30,zbase+30,xbase+30,ybase,zbase+30) ;//top

fprintf (pFilel,"\n :pt# %6.2f %6.2f %6.2f:pt# %6.2f %6.2f %6.2f:\\\n :pt#...
%6.2f %6.2f U6.2f:pt# U6.2f %6.2f U6.2f:cl:\\\n",xbase,ybase,zbase,xbase,...

ybase-30,zbase, xbase+30,ybase-30,zbase,xbase+30,ybase,zbase) ; //bottom

}

fclose (pFilel);

printf("\nterrain.txt file printed successfully");

Sleep(2000);

}//printTerrain

int RetrieveLoop(){
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double x_lon[10], y_lat[10], h_alt;
//Figure out how to decode waypoint list packet, store it in vectors x_lomn, y_lat,
// and altitude h

//int mtemp = sizeof(//decoded x loop)/sizeof (double); //# of points in loop
int mtemp=6,i,j;

printf ("\nNumber of Points:");
while (1>0){

if (i==13)

break;

if (kbhit ()){

i=getche();

if (i!'=13){

mtemp=(i-48) ;

}

}

}

i=0;

printf ("\nAlt (100m<alt<999m):",j+1);
double mult=100,alt=0;

while (1>0){

if (i==13)

break;

if (kbhit ()){

i=getche();

if (i1=13){

alt+=mult*(i-48);

mult=mult/10;

if (mult==0.01)

printf(".");

}

}

}

h_alt=alt;

i=0;
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for(j=0; j<mtemp; j++){
mult=10;

double lat=0,lon=0,alt=0;
printf ("\nLAT(%i):",j+1);
while (1>0){

if (i==13)

break;

if (kbhit()){
i=getche();

if (i1=13){
lat+=mult*(i-48);
mult=mult/10;

if (mult==0.1)
printf(".");

}

}

}

i=0;

mult=10;

printf ("\nLON(%i):-",j+1);
while (1>0){

if (i==13)

break;

if (kbhit()){
i=getche();

if (i!'=13){
lon+=mult*(i-48);
mult=mult/10;

if (mult==0.1)
printf(".");

}

}

}

i=0;
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y_lat[jl=1at;

x_lon[jl=-lon;

}

ENUCoord LoopENU[10];

for (i=0; i<mtemp; i++){
LoopENU[i].1la2enu(y_lat[i]*3.1415926/180, x_lon[i]*3.1415926/180, h_alt,
Base_X, Base_Y, Base_Z);

}

for(i=0; i<mtemp; i++){

xtemp_e [i]=LoopENU[i] .GetEast () ;
ytemp_n[i]l=LoopENU[i].GetNorth();
}

htemp=LoopENU[0] .GetUp () ;

return mtemp;

}

void NewNetwork(UInt16 NetworkID, void* Parameter) {

}

//Needed to Initialize Networks

//Looks for and gleans data from an autopilot packet sent from a network
void LookForAutopilotData(QType* pQ, int whosData)
{
static AutopilotPkt_t APPkts[10];
static AutopilotCmd_t Cmd[10];
double mins, hours;
UInt32 i, NumNets;
SInt32 ID;

//1look at how many networks m_pComm can see

NumNets = m_pComm->GetNumNets() ;
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for(i = 0; i < NumNets; i++)

{

// Don’t display past 10 networks since we didn’t include the space
if (i >= 10) break;

ID = m_pComm->GetIDFromIndex(i);

pQ = m_pComm->GetStreamRxBuffer ((UInt16)ID, AUTOPILOT_STREAM);

if (!pQ) continue;

// Now check to see if a packet exists. Note!!! The raw packet

// structure MUST persist between calls, and it MUST be unique to this
//  network.

if (LookForAutopilotPacket (pQ, &(APPkts[il)))

{

switch (APPkts[i] .PktType)

{

case TELEMETRY:

UserData_t telemData;

DecodeTelemetryPacket (& (APPkts[i]), &(telemData));

//update telemtry struct

current_telemetry[i] .Longitude = telemData.GPS.Longitude * 180.0 / 3.1415926;
current_telemetry[i] .Latitude = telemData.GPS.Latitude * 180.0 / 3.1415926;
//printf ("\ndx %f",current_telemetry[i].Latitude);

current_telemetry[i] .Altitude = telemData.GPS.Altitude;

current_telemetry[i] .Velocity = telemData.GPS.Speed;

//convert 1lla data to enu

PosENU.1la2enu(current_telemetry[i] .Latitude *3.1415926/180,
current_telemetry[i] .Longitude *3.1415926/180,
current_telemetry[i] .Altitude,

Base_X, Base_Y, Base_Z);
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current_telemetry[i
current_telemetry[i
//ctu_old=current_t
current_telemetry[i
current_telemetry[i
current_telemetry[i
current_telemetry[i
if (stool[il==true){
if (firsttimel[i]==f
init_AC(current_tel
current_telemetry[i
}
send_telemetry(curr
current_telemetry[i
}

//display the data
displayData(whosDat
break;

case CONTROL_DATA:
UserData_t controlD

float gyroBias[3],

].East = PosENU.GetEast();
].North = PosENU.GetNorth();
elemetry[i] .Up;

1.Up = PosENU.GetUp();

] .Hours telemData.GPS.hours;

] .Minutes telemData.GPS.minutes;

].Seconds telemData.GPS.seconds;

alse)q{

emetry[i] .Latitude,current_telemetry[i].Longitude,...

].Altitude, i);

ent_telemetry[i] .East,current_telemetry[i] .North,...

1.Up, 1);

a, NumNets);

ata;

controls[10];

DecodeControlDataPacket (& (APPkts[i]), &(controlData), gyroBias, controls);

//update telemetry
current_control[i]
current_control[il
current_controll[il
current_control[il
current_control[i]
current_controll[il
current_control[il
current_control[i]

current_control[i]

current_control[i]

.phi
.theta
.psi
.RollRate

.PitchRate
.YawRate

.AirSpeed

.Pdynamic

.Aileron

struct

controlData.Euler[0] * 180/3.1415926;

controlData.Euler[1] * 180/3.1415926;

controlData.Euler[2] * 180/3.1415926;

controlData.Gyro[0] * 180/3.1415926;

controlData.Gyro[1] * 180/3.1415926;

controlData.Gyro[2] * 180/3.1415926;

controlData.TAS;

controlData.Pdynamic;

.MagHeading = controlData.MagHeading*180/3.1415926;

controls[0] * 180/3.1415926;
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current_control[i] .Elevator = controls[1] * 180/3.1415926;

current_control[i] .Throttle controls[2];

current_control[i] .Rudder = controls[3] * 180/3.1415926;

//convert GPS seconds into hours, minutes, and seconds

hours = controlData.SystemTime / 3600000.0;

current_control[i] .Hours = hours;

mins = (hours - (double)current_control[i].Hours) * 60;
current_control[i] .Minutes = mins;
time_old=current_telemetry[i].Seconds;

current_control[i] .Seconds = (mins - (double)current_control[i] .Minutes) * 60;
if (stoolil==true){

if (firsttime[il==true)

send_control(current_control[i] .phi,current_control[i].theta,current_control[i].psi, i);
}

displayData(whosData, NumNets) ;

break;

case WAYPOINT:

break;

case WAYPOINT_LIST:/*

printf ("\npppppppppPpPPP: ") ;

Sleep(10000) ;

FPMask_t wplistMask;

DecodeWaypointListPacket (& (APPkts[i]), wplistMask);

printf ("\npppppppPPPPpPp: Ai",wplistMask) ;

Sleep(10000) ;*/

break;

case TRACK:

break;

case AUTOPILOT_COMMAND:

AutopilotCmd_t Cmd[3];

Waypoint_cmd[i] = DecodeAutopilotControlPacket (& (APPkts[i]), &Cmd[i]);
//This returns Waypoint_cmd[i] as the waypoint the Piccolo is currently heading towards
//displayData(whosData, NumNets);

break;
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S ]

// LookForAutopilotData

void main()

{

int i = 0, whosData = 0;

pFile2 = fopen ("hbdata.txt","w");

pFile3 = fopen ("altdata.txt","w");

acFilel

fopen ("multi.txt","w");

m_pComm new CCommManager (0, 57600, "1.1.1.3:2000", 0);

if (m_pComm->GetLastError() != 0){
printf("%s", m_pComm->GetLastError());

printf("\n");

m_pComm->SetNewNetworkCallBack(NewNetwork, m_pComm) ;

char keypress;

while (m_pComm && i == 0)

{

m_pComm->RunNetwork() ;

int NumNets=m_pComm->GetNumNets () ;

LookForAutopilotData(pQ, whosData) ;

if (kbhit()){

keypress = getch(); //get commands via keypress

switch(keypress)
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printf("\n");

fclose (pFile2);

fclose (pFile3);

fclose (acFilel);

break;

case ’t’: //print telemetry data for selected network
data=0;

break;

case ’a’: //print telemetry data for selected network
data=1;

break;

case ’b’: //building

data=2;

case ’h’: //hard boundary

data=3;

break;

case ’1’: //min altitude loop

data=4;

break;

case ’c’: //clear information->n=0;
data=5;

break;

case ’p’: //print terrain info for AVDS
data=6;

break;

case ’s’: //toggle streaming to AVDS
data=7;

break;

case ’0’: //return to options

data=8;

break;
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case ’w’: //turn on waypoints

data=9;

break;

case ’r’: //turn on recording

data=10;

break;

case ’i’: //turn on image

data=11;

break;

case ’1’: //print
whosData = 0;
break;

case ’2’: //print
whosData = 1;
break;

case ’3’: //print
whosData = 2;
break;

case ’4’: //print
whosData = 3;
break;

case ’5’: //print
whosData = 4;
break;

case ’6’: //print
whosData = 5;
break;

case ’7’: //print
whosData = 6;
break;

case ’8’: //print
whosData = 7;

break;

telemetry

telemetry

telemetry

telemetry

telemetry

telemetry

telemetry

telemetry

data

data

data

data

data

data

data

data

for

for

for

for

for

for

for

for

first Network

second Network

third Network

fourth Network

fifth Network

sixth Network

seventh Network

eighth Network
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case ’9’: //print telemetry data for ninth Network

whosData = 8;

break;

case ’0’: //print telemetry data for tenth Network

whosData = 9;

break;

}

}

//Sleep(10);

if (pboo==true){

if (PBtime<current_telemetry[i].Minutes*60+current_telemetry[i].Seconds){

if (timeStart>PBtime && PBtime>0.02){

timeStart=PBtime;

}

double tnew=PBtime-timeStart;

if (tnew<0){

tnew=0;

}

PBtime=current_telemetry[i] .Minutes*60+current_telemetry[i] .Seconds;

fprintf (pbFilel,"\n%f %f %f %f Jf %f Jf 17",tnew, ground.pos_X,ground.pos_Y,...
ground.pos_Z+500,ground.rot_X,ground.rot_Y,ground.rot_Z); //terrain

fprintf (pbFile2,"\n%f %f %f %f %Wf %f %f 18 %f %f %f %f",tnew, acl[0].pos_X,...
ac[0] .pos_Y,ac[0] .pos_Z+500,ac[0] .rot_X,ac[0] .rot_Y,ac[0].rot_Z,ac[0].rud,ac[0].elev,ac[0].ail,-ac[(
//terrain

}

}

}

CloseAVDSNetwork() ;

//Main
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void init_AC(float initlat, float initlon, float initalt, int i){

float fLon,fLat,fAlt,acLon,aclLat,acAlt;

int iCount = 1;

char* strAddress[1];

strAddress[0] = strdup("224.0.5.20:2267");/* this is the default AVDS multicast address*/
OpenAVDSNetwork (iCount,strAddress) ;

fLon=-84.109666;fLat=39.773633;fA1t=350.0;

acLon=-84.109666; acLat=39.773633; acAlt=0.0;

int idnumb[10]={1,2,3,4,5,6,7,8,9,10};

Init_Aircraft(&ac[i],"Sig Rascal 110",1,AIRCRAFT_TYPE_17,&acLon,&acLat,&acAlt) ;
Init_Aircraft(&ground, "Terrain",2,AIRCRAFT_TYPE_16,&fLon,&fLat,&fAlt) ;

ac[i] .rot_X = 0.0;
ac[i].rot_Y = 0.0;
ac[i].rot_Z = 0.0;

ground.rot_X = 0.0;

ground.rot_Y = 0.0;

ground.rot_Z = 180.0;

ENUCoord GroundENU;

GroundENU.1lla2enu(fLat*deg_to_rad, fLon*deg_to_rad, fAlt, Base_X, Base_Y, Base_Z);
yground=GroundENU.GetEast () ;

xground=GroundENU.GetNorth() ;

zground=GroundENU.GetUp() ;

ground.pos_X = xground;
ground.pos_Y = yground;

ground.pos_Z = zground;

ENUCoord StartENU;

StartENU.1lla2enu(acLat*deg_to_rad, acLon*deg_to_rad, acAlt, Base_X, Base_Y, Base_Z);
ystart=StartENU.GetEast () ;

xstart=StartENU.GetNorth();

zstart=StartENU.GetUp();

int idnumbs[10];
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idnumbs [0] = 1234;
idnumbs [1] = 5423;
idnumbs[2] = 9821;
idnumbs[3] = 6243;
idnumbs [4] = 5678;
idnumbs [6] = 3498;
idnumbs[6] = 1235;
idnumbs[7] = 5424;
idnumbs [8] = 9822;
idnumbs [9] = 6244;
ac[i] .packet.craftid = idnumbs[i]; // must be unique for each aircraft

ac[i] .packet.hostid = idnumbs[i];

ground.packet.craftid = 7125; // must be unique for each aircraft
ground.packet.hostid = 7125;

ac[i].dt = 1.0;

ground.dt = 1.0;

firsttime[il=true;

}

void send_telemetry(float east, float north, float up, int i)

{

ac[i] .pos_X =-east;//-north; //converts from delta_N (m) to delta X (ft)
ac[i] .pos_Y =-north;//east;

ac[i] .pos_Z =up+474.840818;//up;

Put_Aircraft(&ac[il);

Put_Aircraft (&ground) ;

}

void send_control(float phi, float theta, float psi, int i)
{

ac[i].rot_X

phi;//theta;

ac[i] .rot_Y = theta;//phi;
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ac[i] .rot_Z = current_control[i] .MagHeading+90;

ac[i] .ail = current_control[0].Aileron*3.1415926/20;
ac[i] .elev = current_control[0] .Elevator*3.1415926/20;
ac[i] .rud = current_control[0] .Rudder*3.1415926/20;
Put_Aircraft(&acl[il);

Put_Aircraft (&ground) ;

}

//clears the screen
void clrscr() {
HANDLE hStdOut = GetStdHandle (STD_OUTPUT_HANDLE) ;
COORD coord = {0, 0};
DWORD count;
CONSOLE_SCREEN_BUFFER_INFO csbi;
GetConsoleScreenBufferInfo (hStdOut, &csbi);
FillConsoleOutputCharacter (hStdOut, ’> ’, csbi.dwSize.X * csbi.dwSize.Y, coord, &count);
SetConsoleCursorPosition(hStdOut, coord);
}

//clears the screen
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Appendiz C. Sample Craft File

Sig| Sig Rascal 110:\

# angle between views

:av#30.0:\

# control type
:cn=pilot:\
# pilot’s position

:pp# 0.00 0.0 0.0:\

# weight - used for crash detection
:we#500.0:\

# 1Ixx - used for crash detection
11x#122200.0:\

# Iyy - used for crash detection
:iy#25000.0:\

# Izz - used for crash detection

:1z#139800.0:\

# center of mass
:cm# 0.00 0.0 0.00:\
# exhaust position

# :ep# 0.00 0.00 0.0:\

# Distance > 0 ft
:d0:\
:DS#1:\

#texture files
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:XF=Sunset .bmp: \
:XF=Sunset.bmp:\

port wing tip

#
# :Pu# -14.00 -8.33 0.39:\
# starboard wing tip

#

:Sw# 14.00 -8.33 0.39:\

#from above

:ca=fuselage:\

:co# 0.0 1.0 0.0:\

:pt# -20.0 -10.0 100.0:pt# -20.0 10.0 100.0:\
:pt#  20.0 0.0 100.0:cl:\

# wing

:ca=fuselage:\

tco## 1.0 1.0 1.0:\

:pt# -0.4 -0.50 0.30:pt# -0.4 0.5 0.30:\

:pt# -0.47 0.5 0.30:pt# -0.47 -0.50 0.30:cl:\

#select texture file

(XTI#1:\

#texture coordinates

:XC#1.0 0.0 0.0 :XC#1.0 -1.0 0.0 :XC#0.0 -1.0 0.0 :XC#0.0 0.0 0.0:\
:pt# 0.0 O 0.30:pt# 0.0 1.4 0.30:\

:pt# -0.1 1.4 0.35:pt# -0.1 O 0.35:cl:\

#select texture file

(XTI#1:\

#texture coordinates

:XC#1.0 0.0 0.0 :XC#1.0 -1.0 0.0 :XC#0.0 -1.0 0.0 :XC#0.0 0.0 0.0:\
:pt# 0.0 O 0.30:pt# 0.0 -1.4 0.30:\
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:pt# -0.1 -1.4 0.35:pt# -0.1 O 0.35:cl:\

#select texture file

(XT#1:\

#texture coordinates

:XC#1.0 0.0 0.0 :XC#1.0 -1.0 0.0 :XC#0.0 -1.0 0.0 :XC#0.0 0.0 0.0:\
:pt# -0.4 0.0 0.30:pt# -0.4 1.4 0.30:\

:pt# -0.1 1.4 0.35:pt# -0.1 0.0 0.35:cl:\

#select texture file

XTI#1:\

#texture coordinates

:XC#1.0 0.0 0.0 :XC#1.0 -1.0 0.0 :XC#0.0 -1.0 0.0 :XC#0.0 0.0 0.0:\
:pt# -0.4 0.0 0.30:pt# -0.4 -1.4 0.30:\

:pt# -0.1 -1.4 0.35:pt# -0.1 0.0 0.35:cl:\

:co# 0.9 0.9 0.9:\

#select texture file

(XTI#1:\

#texture coordinates

:XC#1.0 0.0 0.0 :XC#1.0 1.0 0.0 :XC#0.0 1.0 0.0 :XC#0.0 0.0 0.0:\
:pt# 0.0 -1.40 0.30:pt#¥ 0.0 0.0 0.30:\

:pt# -0.4 0.0 0.30:pt# -0.4 -1.40 0.30:cl:\

#select texture file

(XI#1:\

#texture coordinates

:XC#1.0 0.0 0.0 :XC#1.0 1.0 0.0 :XC#0.0 1.0 0.0 :XC#0.0 0.0 0.0:\
:pt# 0.0 1.40 0.30:pt# 0.0 0.0 0.30:\

:pt# -0.4 0.0 0.30:pt# -0.4 1.40 0.30:cl:\

:co#t 0.8 0.8 0.8:\
:pt# 0.0 1.4 0.30:pt# -0.1 1.4 0.35:\
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:pt# -0.1 1.6 0.3:cl:\
:pt# -0.3 1.6 0.30:pt# -0.1
:pt# -0.1 1.6 0.3:cl:\
:pt# -0.3 1.6 0.30:pt# -0.1
:pt# -0.47 1.4 0.3:cl:\

:pt# 0.0 -1.4 0.30:pt# -0.1
:pt# -0.1  -1.6 0.3:cl:\

:pt# -0.3 -1.6 0.30:pt# -0.1
:pt# -0.1  -1.6 0.3:cl:\
:pt# -0.3 -1.6 0.30:pt# -0.1

:pt#  -0.47 -1.4 0.3:cl:\

tco#t 1.0 1.0 1.0:\

:pt# 0.0 1.40 0.30:pt# -0.1
:pt# -0.3 1.6 0.30:pt# -0.47

:pt# 0.0 -1.40 0.30:pt# -0.1
:pt# -0.3 -1.6 0.30:pt# -0.47

# ailerons
:ca=articulated-surface-06:\

:ra#t -.4 0.5 0.3 -.4 1.4 0.3:\
:co# 1.0 1.0 1.0:\

:pt# -0.47 1.40 0.30:pt# -0.47
:pt# -0.4 0.5 0.30:pt# -0.4 1

:ca=articulated-surface-03:\

1.4

1.4

-1.4

-1.4

-1.4

1.6
1.40

-1.6
-1.40

0.5
.40

0.35:\

0.35:\

0.35:\

0.35:\

0.35:\

0.30:\
0.30:cl:\

0.30:\
0.30:cl:\

0.30:\
0.30:cl:\
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:ra# -.4 0.5 0.3 -.4 1.4 0.3:\
:pt# -0.47 -1.40 0.30:pt# -0.47
:pt# -0.4 -0.5 0.30:pt# -0.4 -

# horizontal tail

:ca=fuselage:\

ico#t 1.0 1.0 1.0:\

:pt# -1.30 -0.50 0.30:pt# -1.5

-0.5 0.30:\
1.40 0.30:cl:\

-0.5 0.30:\

:pt# -1.5 0.5 0.30:pt# -1.3 0.50 0.30:cl:\

:co## 0.0 1.0 0.0:\
:pt# -1.3 0.48 0.299:pt# -1.5 0

.48 0.299:\

:pt# -1.5 0.44 0.299:pt# -1.3 0.44 0.299:cl:\

# elevator
:ca=articulated-surface-02:\

:ra# -1.5 0.5 0.30 -1.5 -0.50
:co# 1.0 0.4 0.20:\

:pt# -1.57 -0.50 0.30:pt# ~-1.57
:pt# -1.5 0.5 0.30:pt# -1.5 -0

# vertical tail

:ca=fuselage:\

ico## 1.0 1.0 1.0:\

:pt# -1.24 0.0 0.30:pt# -1.5
:pt# -1.5 0.0 0.3:cl:\

# rudder

:ca=articulated-surface-01:\

:ra# -1.5 0.0 0.2 -1.5 0.0 O.
ico# 1.0 0.4 0.20:\

0.30:\

0.5 0.30:\
.50 0.30:cl:\

0.0 0.58:\

58 :\
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:pt# -1.5 0.0 0.2:pt#¥ -1.6 0.0 0.25:\
(pt# -1.6 0.0 0.35:pt# -1.5 0.0 0.58:cl:\

# fuselage
:ca=fuselage:\

:co# 0.8 0.8 0.8:\

:pt# 0.0 -0.07 0.0:pt# 0.0 0.07 0.0:\
:pt# -1.5 0.0 0.2:cl:\

ico# 1.0 1.0 1.0:\

:pt# 0.0 -0.07 0.3:pt# 0.0 0.07 0.3:\
:pt# -1.5 0.0 0.3:cl:\

:co# 0.9 0.9 0.9:\

#select texture file

:XI#0:\

#texture coordinates

:XC#0.0 1.0 0.0 :XC#1.0 1.0 0.0 :XC#1.0 0.0 0.0 :XC#0.0 0.0 0.0:\
:pt# 0.0 -0.07 0.0:pt# 0.0 -0.07 0.3:\

:pt# -1.5 0.0 0.3:pt# -1.5 0.0 0.2:cl:\

#select texture file

:XI#0:\

#texture coordinates

:XC#0.0 1.0 0.0 :XC#1.0 1.0 0.0 :XC#1.0 0.0 0.0 :XC#0.0 0.0 0.0:\
:pt# 0.0 0.07 0.0:pt# 0.0 0.07 0.3:\

:pt# -1.5 0.0 0.3:pt# -1.5 0.0 0.2:cl:\

:co# 0.8 0.8 0.8:\

:pt# 0.0 -0.07 0.0:pt# 0.3 -0.05 0.065:\
:pt# 0.3 0.05 0.065:pt# 0.0 0.07 0.0:cl:\
:pt# 0.4 0.0 0.15:pt# 0.3 -0.05 0.065:\
:pt# 0.3 0.05 0.065:cl:\
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:co# 1.0

(pt#
pt#
(pt#
:pt#

0.
0.

1
3

1.0 1.0:\
-0.07 0.235:pt#
0.05 0.235:pt#

0.4 0.0 0.15:pt#

0.3 0.05 0.235:cl:\

:co# 0.9 0.9 0.9:\

#select texture file

:XI#0:

\

#texture coordinates

:XC#-1.0 0.0 0.0 :XC#-1.0 -1.0 0.0 :XC#0.0 -1.0 0.0 :XC#0.0 0.0 0.0:\

:pt# 0.0

:pt# 0.3

-0.07 0.0:pt#
-0.05 0.235:pt#

#select texture file

:XI#0:

\

#texture coordinates

:XC#-1.0 0.0 0.0 :XC#-1.0 -1

(pt#
pt#

(pt#
(pt#
pt#
(pt#

# Gear

0.
0.

SO O O O

0
3

w D w

0.07 0.0:pt#
0.05 0.235:pt#

0.0 0.15:pt#
-0.05 0.235:cl:\
0.0 0.15:pt#

0.05 0.235:cl:\

:ca=fuselage:\

:co# 1.0 0.5 0.25:\

0.3 -0.05 0.235:\
0.1 0.07 0.235:cl:\
0.3 -0.05 0.235:\

0.3 -0.05 0.065:\
0.0 -0.07 0.235:cl:\

.0 0.0 :XC#0.0 -1.0 0.0 :XC#0.0 0.0 0.0:\
0.3 0.05 0.065:\
0.0 0.07 0.235:cl:\

0.3 -0.05 0.065:\

0.3 0.05 0.065:\
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pt#
(pt#
(pt#
pt#
(pt#
:pt#
pt#
(pt#
(pt#
:pt#

(pt#
(pt#
pt#
(pt#
(pt#
(pt#
pt#
pt#
(pt#
pt#

:co#
(pt#
pt#
(pt#
(pt#
(pt#
(pt#

(pt#
pt#
(pt#
(pt#

.00
.08
.00
.08
.00
.08
.00
.08

O O O O O O o o o

.00

|
o

.1

.00
.08
.00
.08
.00
.08
.00
.08

O O O O O O o o o

.00

|
o

.1

1.01
0.00

0.00

0.00

0.00

0.00

0.2 -0.1:pt# 0.00 0.22 -0.1:\

.21

.21
.22
.21
.20
.21

O O O O O O o o o

.21

-0.2
-0.21

-0.12:cl:

.2 -0.16:pt#

-0.12:cl:

-0.1:pt#

-0.12:cl:

-0.1:pt#

-0.12:cl:

\

0.00 0.22 -0.16:\

\

0.00 0.22 -0.16:\

\

0.00 0.20 -0.16:\

\

-0.12:cl1:\

.2 -0.1:pt# 0.00 0.22 -0.1:\

-0.1:pt# 0.00 -0.22 -0.1:\

-0.

12:cl:

-0.2 -0.16:pt#

-0.21
-0.22
-0.21
-0.20
-0.21

.1:pt#

d:pt#

.12:cl:

.12:cl:

.12:cl:

\
0.00 -0.22

\
0.00 -0.22

\
0.00 -0.20

\

-0.16:\

-0.16:\

-0.16:\

-0.2 -0.1:pt# 0.00 -0.22 -0.1:\

-0.21

.0 1.0

-0.12:cl1:\

:\

0.2 -0.16:pt# 0.00 0.22 -0.16:\

0.21
0.22
0.21

-0.12:c1:\

-0.1:pt# 0.00 0.22 -0.16:\

-0.12:cl:\

0.2 -0.1:pt# 0.00 0.2 -0.16:\

0.21

-0.2

-0.12:cl1:\

-0.16:pt# 0.00 -0.22 -0.16:\

-0.21 -0.12:c1:\

-0.22 -0.1:pt# 0.00 -0.22 -0.16:\

-0.21 -0.12:cl:\
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:pt# 0.00 -0.2 -0.1:pt# 0.00 -0.2 -0.16:\

(pt#

#windshield

-0.1 -0.21 -0.12:cl:\

:co# 0.0 0.0 0.0:\

:pt#
pt#
(pt#
(pt#
pt#
(pt#

SO O O o o o

0
1
0
.0
0
0

0.07 0.3:pt# 0.0 -0.07 0.3:\

-0.07 0.235:pt# 0.1 0.07 0.235:cl:\
0.07 0.3:pt# 0.1 0.07 0.235:\
0.07 0.235:cl:\

-0.07 0.3:pt# 0.1 -0.07 0.235:\
-0.07 0.235:cl:\

142



Appendiz D. Flight Test Results
D.1  QOverview

Due to unavoidable circumstances, SASVRT was not used while actually flying
an air vehicle until after this thesis was written and defended. However, the results

and conclusions of this flight test are hereby appended.

D.2  Flight Test

SASVRT was both tested and used as it was intended during the flight test. In
order to test the system without flying outside the SRB prescribed hard boundary,
a simulated hard boundary was placed within the actualy hard boundary. Similarly,
a hill was simulated in order to test the minimum altitude calculation. In addition,
the WPAFB Area B data was used to monitor aircraft position relative to the SRB
prescribed hard boundary and estimated terrain. The quantitative information was
relayed to the pilot in control in order to heighten situational awareness. Synthetic
vision was used in order to visualize the aircraft during flight as well as place a

simulated trail aircraft that followed the actual aircraft’s position.

D.8 Results

Figures 46 and 47 depict the data taken regarding the aircraft position relative
to simulated and SRB prescribed hard boundaries, respectively. The blue position
markers correspond to when SASVRT indicated the aircraft was within the bounds
defined by the green line. The red x’s correspond to when SASVRT warned that the

aircraft was outside of the bounds.

Figures 48 and 49 depict the data taking regarding the aircraft altitude relative
to the estimated terrain both with and without a simulated hill in the testing area,
respectively. The markers line indicates the aircraft position at a point in time, and

the green markers indicate the estimated terrain at that point in time. The red x’s
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Flight Test over Simulated Hill, Centered at 1000m East of Datum, 1800m North of Datum
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correspond to when SASVRT calculated the minimum altitude to be higher than the
altitude of the aircraft. The points in time when the aircraft is below the minimum
altitude correspond to the points in Figure 50 when the position of the aircraft is
withing the outer contour defining the simulated hill. Figure 48 is just a portion of
the Figre 51 which shows the altitude of the aircraft relative to the estimated terrain
over a longer duration, in which the aircraft crosses both the the minimum altitude

during takeoff, and the flight ceiling.

D.} Analysis

Figures 46 and 47 confirm that SASVRT can accurately determine whether
or not the aircraft is within a closed boundary. Regarding safety, Figure 47 clearly
shows that the aircraft remained within the SRB prescribed hard boundary during
the flight.

Figures 48 and 49 demonstrate that at a given point in time, SASVRT can
use the most pertinent altitude contour information to estimate a ground height and
determine the altitude of the aircraft relative to the ground. This also shows that
the estimate need not be solely based on physical constraints. Figure 50 further
confirms that as expected flying over a simulated hill without increasing altitude
will result in a below minimum altitude alram. As important as it is to stay above
the minimum altitude, it is relatively easy for the pilot to judge how far above the
ground the aircraft is. However, the maximum altitude allowed for flight testing is
400 ft, which is much harder to judge for the pilot. Figure 51 shows that SASVRT

can accurately assess whether or not the aircraft is above this maximum altitude.

D.5 Conclusions

The results of the flight tests both verify SASVRT as an accurate judge of
distance to boundaries and estimations of ground height, and demonstrate its ap-

plicability to the safe operations of UAVs. During flight, the pilot was unaware the
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aircraft had exceeded its flight ceiling until SASVRT relayed this information to him.
The distance to boundary information allowed the pilot to know when to turn the
aircraft around in order to not cross the SRB prescribed boundary. The synthetic
vision allowed for the observers to view the aircraft during flight as well as visualize
a simulated trail aircraft with respect to the lead aircraft. The heightened situa-
tional awareness was clearly evident during flight testing and the immediate impact

of SASVRT on AFIT’s ANT Center UAV program was undoubtedly demonstrated.
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