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Abstract

Decision level fusion (DLF) algorithms combine outputs of multiple single sensors to
make one confident declaration of a target. This research compares performance results
of a DLF algorithm using measured data and a proven ATR system with results from
simulated data and a modeled ATR system. This comparison indicates that DLF offers
significant performance improvements over single sensor looks. However, results based
on simulated data and a modeled ATR are slightly optimistic and overestimate results

from measured data and a proven ATR system by nearly 10% over all targets tested.
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VERIFICATION OF A DECISION LEVEL FUSION ALGORITHM
USING A PROVEN ATR SYSTEM AND MEASURED SAR DATA

I Introduction

1.1. Background

Current and historical U.S. combat rules of engagement (ROE) require most surface
and aerial targets to be identified and confirmed as hostile prior to directing hostile fire
against them. ROE adherence is driven by the need to eliminate friendly-fire casualties
(fratricide) as well as to protect enemy non-combatants, and it has historically been
accomplished visually. Depending on the intended target, however, visual confirmation
requires a combat aircraft to move into close proximity with a suspected target before the
final decision to expend ordnance can be made, and it reduces or eliminates the
advantage of range for standoff weapons. Likewise, the ability to prosecute multiple

targets during a given engagement is greatly restricted.

Reliable combat identification and fratricide prevention are important because 1.S.
troop strengths and numbers of combat aircraft have steadily declined, forcing greater
reliance on force-multiplying technologies along with greater weapon precision and
lethality. Mistaken target identity reduces combat effectiveness, and friendly-fire

accidents have a proportionately greater adverse effect on force structure.



Although friendly force structures are smaller and more efficient, potential adversary
weapon systems are becoming more prolific and more capable of destruction. Successful
countermeasures require rapid threat identification, prioritization, and destruction. Likely
combat scenarios involve concentrations of disparate hostile weapon systems and threats,
taxing the un-assisted limits of human visual acuity and target prioritization. It is likely
that mistakes in combat engagement, such as target miss-prioritization or miss-
identification, will increase unless existing target recognition/prioritization capabilities

are improved.

To this end, fusion has become a keyword in the automatic target recognition (ATR)
community. This thesis research aims to verify the simulated results of the Decision
Level Fusion (DLF) algorithm developed by MCA, Inc. [Cohen, 2005] by testing the
algorithm with measured data and a fielded ATR system and comparing with results

produced using simulated data and a modeled ATR system.

1.2. ATR Processes

The first step in the ATR process is to gather data. In the case of the system used
here, the data is in the form of synthetic aperture radar (SAR) images collected by a
sensor flying onboard a surveillance aircraft platform. Once the images are collected,
several steps must be taken to isolate only the area of interest in the image, or more
specifically only the target of interest. The process of selecting only the target of interest
is referred to as chipping out the target. This process leads to the image of only the

target, commonly referred to as a chip.
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Throughout this research the measured data has already been processed into
individual chips, which allows the full scenario to be simulated using only these pre-
processed chips and the geometric positions of the strike platforms relative to the target
of interest. Occasionally, a single sensor can provide enough information to make
accurate declarations of targets through the ATR process. However, by combining the
output of several single sensor ATR systems through a fusion algorithm, results are

expected to improve significantly.

1.3. Objective

The objective of this research is to verify the performance of the DLF algorithm in
support of the Air Force Research Laboratory (AFRL) Sensors Directorate. To
accomplish this verification, theoretical models and data, similar to that used in the initial
development [Cohen, 2005] are compared with performance results based on measured
SAR data in a simulated scenario. The measured data is from sponsored collections, and
the ATR system is proven in that it is currently used on several surveillance platforms.

For this research the following components were provided:

* DLF algorithm and the assumptions made for its application [Cohen,
2005]

* Model used for the ATR system described in Section 4.2.1.2 [Gross,
2004a]

= Software for the actual ATR system [Sousa, 2004]

* Scenario information, including number of platforms, expected look
ranges, and number of looks collected [Gross, 2004a]

12



The results and analysis in Section 5 are based on the provided items above and their
integration with the data collected within the simulation. Significant contributions of this
research are

= Conglomeration of over 500 GB of SAR data and sorting into usable sets

= MATLAB based simulation framework and implementation of the DLF
algorithm

= Comparison of results based on simulated data and a modeled ATR
system with results based on measured SAR data and an existing ATR
system

This research does not endorse use of the DLF algorithm, nor is it intended to
demonstrate the accuracy (or inaccuracy) of the ATR system. However, it does provide
an unbiased analysis of the DLF algorithm in a real-time simulation based on conditions

prescribed by AFRL.

13



ll. Decision Level Fusion

This section provides an overview and derivation of the Decision Level Fusion

(DLF) algorithm.

2.1 Overview

DLF works with the output of currently developed single sensor ATR algorithms,
such as the RTMSTAR tool [Sousa, 2004]. The DLF algorithm provides a framework for
combining the target identification (ID) of either the same or different sensor/algorithms
over time and space. Each sensor performs preprocessing, including feature extraction
and identity declaration, to develop a declared identity for the observed entity. Examples

of decision-level fusion problems include:

* Threat-warning systems (TWS) onboard tactical aircraft that identify threats
[Steinberg, 1987]

e Multiple-sensor target detection [Waltz, 1990]

* Data processing for robotic vision [Lus, 1988]

An advantage of DLF is that less detailed information is passed between multi-sensor
platforms, resulting in low processing burden. The ATR ID and some historical

performance knowledge are the only required inputs.

More complex and processing-intensive fusion methods, including Attribute Level
Fusion or Feature Level Fusion, may provide better performance in the long run. These

additional methods should be explored in the future, weighing the costs of performance

14



versus processing efficiency. However, as shown in Figure 1, DLF approaches require
the least single sensor information for operation and therefore pass the least amount of

data between sensors.

Fusion Level Data Flow Characteristics

tion, clasgification

Decision i eAch sensar daman _
Level - Cambines sengor decisions
Fusion using AND, OR Boalean, or

. Bayesian infarence
= Simplest computation

Figure 1. Comparison of different types of fusion levels [Gross, 2004a]

2.2 Derivation

2.2.1 Ilterative Approach

The derivation of the DLF algorithm is, by design, quite simple. It assumes that a
priori single-sensor performance estimates are available in the form of historical
confusion matrices (HCMs). The DLF is designed to declare target 7; if this declaration

1s the most reliable decision that can be deduced from the single sensor.



The derivation that follows describes the most basic case, where two single sensor
outputs are combined to declare a single target as the ID. The overall task of DLF is to

estimate the probability

P(T; | dydy), for all i, j, and k. )]
where dj; indicates that sensor 1 declares target j, dy indicates that sensor 2 declares
target k, and P(7; | dy;,d2) is the expression that the probability that target i is present

given that these two declarations have occurred. By Bayes’ Theorem, Expression (1) can

be written

P(d,,dy | T)P(T)
2. P(dy;dy | T)P(T,)

P(T}d,;,d,,) = , for all i, , and k. (2)
Assuming that the prior probabilities P(7;) are all equal allows Equation (2) to be
simplified to

P(d!:ndlk ! ?:)

BN ..d., =% —_—
(ldysdu) Y. P(d,;,dy,|T)

for all 1, j, k. (3)
If it is assumed that sensor 1 and sensor 2 provide independent ID declarations, the
joint probabilities in Equation (2) can be factored to yield

P(d,; | T)P(dy | T)

P da) = S p g TyPL 1 T)

, foralli, j, k. ()

The right side of Equation (4) is now in terms of the entries of the single sensor
HCM. Each index in this matrix represents a probability of ID for the given target (rows)

versus the declared target (column), which allows definition of the declaration rule for the

16



DLF. Let DLF(j, k) represent the DLF declaration given that sensor 1 declares target j

and sensor 2 declares target k, and define
DLF(, k) = T, (5)
n = arg max{P(T; | di;dxy)}.

The probability of target i is computed for all target declarations. The case that results in

the highest probability is the DLF declaration as shown in Equation (5).

The performance of the so-defined DLF can be predicted by estimating, for each
target of interest 7}, the frequency with which the single sensor algorithm makes the
declarations j and &, and then assigning the appropriate declaration 7, from Equation (4),
to the DLF algorithm. These frequencies can I;e directly estimated from the single-sensor

confusion matrices (CMs) based on the independence assumption. In particular,
P(d,,.dy, | T;)=P(d,;|T,) P(dy |T;), foralli,j,and k. (6)

Thus, for each 7; the frequency with which the DLF declares each 7j can be
computed, and an estimate for the performance of the DLF in the form of a DLF

confusion matrix can be derived [Cohen, 2005].

The assumption of two single sensors obviously makes the derivation simple. This
research uses only the two sensor approach, which is accomplished by iterative
application after each new look. Thus, the first two looks are fused to produce a single
input into the DLF algorithm, the updated/fused look is then used in conjunction with a

new look, and the process iterated until all looks are used or until the output produces

17



acceptable results for decisions on dispatching weapons. A second approach, the

cumulative method is discussed in Section 2.2.2

2.2.2 Cumulative Approach

The approach described in Section 2.2.1 illustrates the simplest method, one in which
each fused output acts as a single input. However, a more complicated and processing
intensive method is described here. The cumulative approach allows for all the previous
looks to be fused together when each new update is gathered. The derivation shown here,
like that in Section 2.2.1, is theoretically simple, and attempts to take all biasness out of

each new look.

Starting with Equation 4 from above, it is shown that as additional looks are
cumulatively factored in, the conditional probabilities simply expand to result in Equation

g

Lodd gy P TPy \T) Py, | T)P(dyy |T).. Py 1T,)
e e k) = S b 4 VT Py 1 T) Uy 1T Py (TP 1Ty D)

P(T; 1d,;,
From Equation 7, it can be seen that as more looks are gathered the computation begins
to grow very large. Although the output from Equation 7 may show optimal results, it
has been indicated that the gain in performance does not outweigh the cost of processing

efficiency.



2.3 Confusion Matrices

Confusion matrices are used to display which targets are declared for which
templates. A template is defined as a stored image within an ATR system database that is
the result of averaging multiple target images over an aspect range, providing an expected
match to the target images available. Here targets, or truth, are displayed in rows and
possible declarations, or templates, are shown at the heading of each column. The values -
for each index in the matrix correspond to the ratio of how many times the truth is

declared the template out of the total number of data samples for a particular truth target.

The confusion matrices used in this research represent the historical performance of
the ATR syétem. To compute them, data from each target is passed into the ATR system
and compared against the available templates within the ATR system. Six total targets
are used in this research. The ATR system contains templates on only four of these
targets, leaving two targets without a template match. The two unmatched targets are the

Not-In-Library targets described in Section 3.3

Confusion matrices often are used to describe the performance of an ATR system
over the entire set of data. However, because it is well known that ATR prediction
performance is aspect and depression angle dependent, for this research all data is divided
into six aspect/depression regions — three at nine degrees depression and three at sixteen
degrees depression. Each aspect region is based on the assumption of target symmetry,
where it is assumed that targets are similar from the front and from the back, producing
the head on/tail on region (HO), and that looking at the right side of a target is equivalent

to looking at the left side, resulting in the broadside region (BS). These assumptions

19



leave all other targets grouped in the off-axis region (OA). Figure 2 illustrates the

breakdown ol aspect into the three regions.

Broadside
g Off-Axis
Head/Tail On

Figure 2. Aspect angle breakdown by region

A diagram illustrating the resulting six confusion matrices from the aspect and
depression combinations is shown in Figure 3. The data used throughout this rescarch is

discussed in Section 3.1.



templates templates templates
2 . 2 ]
% Head/Tail § Broadside 4 Off-Axis
g e g @% gl @
templates templates templates
2 . 2L
< Head/Talil 3 Broadside o Off-axis
E @ ~16° E @ ~16° § @ ~16°

Figure 3. Confusion matrix illustration by aspect/depression regions

The measured depression angle is dependent on data collections, and the collections
of interest are chosen based on their expected depression angle. The scenarios of interest
to AFRL require multiple looks from multiple platforms. Therefore, data chosen at a
high depression angle (15° - 17°) represents a near range look, and data chosen at a low
depression angle (8° - 10°) represents a long range stand-off distance.

Once all the data is run through the ATR prediction system, the training-based
confusion matrices (which act as historical performance indicators or HCMs) for each
aspect/depression region are created as shown in Tables 1 — 6. These tables are the
underlying performance indicators used throughout the DLF simulation based on

measured data.
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Table 1. Head/Tail On confusion matrix at 9° depression

0.0099
0.0256
0.1389

02814
0.3333

00147 0.0189 0.0000
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Table 5. Off-Axis confusion matrix at 16° depression

A 16

172 510 .
0.1176]  0.0000] 0.0137]  0.0000
0.0012) 09698 0.0157| 0.0121]  0.0012
0.0000) 0.0188) 0.9726| 0.0086] 0.0000
0.0214]  0.0000) 0.2834] 0.6952]  0.0000
0.0330]  0.9104]  0.0519]  0.0000]  0.0047

2.4 PID vs. Reliability

Probability of Identification (PID) requires that the truth be known. Testing a system
for the average PID over a set of targets is acceptable as long as the results are used to
form conclusions on the usefulness of the system. However, during simulation and
demonstration of an ATR system another metric is needed, one that is independent of
truth. Here this metric is referred to as a measure of reliability (REL). The difference

between PID and REL can be seen from the sample confusion matrix shown in Figure 4.
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p J0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0330 0.0025 0.0736
: UU00 §0.9958 0.0000 0.0000 0.0042
PiDss ~ | 0.0099f 0.0277 §0.0000 0.9604 0.0000 0.0020

7] 0.0032 J0.0319 0.0895 0.8606 0.0096
0.0342 §0.0000 0.0479 0.0000 0.9178

RELss = 8477100 + 8477 + 0.0+ .0277 + 0032 + 0342} = 9287

Figure 4. Definition of probability of ID (PID) vs. definition of reliability (REL)

In the confusion matrix of Figure 4 the rows represent the target set and the columns
represent the templates used in the experiment, and, for example, the ATR system
determines the target of interest to be in column 2. The REL for this single sensor look
evaluates the (j, /) index of the confusion matrix, where j is the index of the single sensor
declaration, and divides by the sum of the entire column to obtain a REL of .9287.
Probability of ID is calculated by evaluating the (¢, /) index of the confusion matrix,
where ¢ is the row corresponding to the truth target, and divides by the sum of the entire
row. Here (as in all confusion matrices shown) the confusion matrix is normalized by
row, and therefore the sum of the row is 1, resulting in a PID equal to the value of the

(¢, J) index itself.

In a perfect sensor/ATR system the PID and REL values are both equal to 1, in

which case there are no errors, but values greater than 90% are generally considered
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acceptable. The DLF algorithm described in this research attempts to maximize REL,

sometimes at the sacrifice of PID.
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lll. Data and ATR System

This section considers the data sets, including test/template separation, not-in-library

targets, and the ATR system.

3.1 Data Sets

Data used in this research was gathered based on available targets, type of collecting
sensor, and relative depression angle. The initial goal was to use SAR data from as many
identical targets as possible. To demonstrate the AFRL test plan, data must be collected
for all targets in two distinct depression regions and must cover the full range of aspect
angles. The process of gathering data and sorting available sets led to the initial
determination of targets of interest. Similar vehicles were available in each of the data
collections described, but only vehicles that were consistent in each of the sets were used.
The targets of interest were the 2S1, BRDM-2, BTR-70, M978, T-72, and ZSU-23/4, and
data from the following collections was obtained: DARPA Sponsored Moving and
Stationary Target Acquisition and Recognition (MSTAR ‘95 and MSTAR ‘96), Dynamic
Database — Multisensor All-Source Data 1998 (DDB-MAD *98), and AFRL sponsored
Affordable Moving Surface Target Engagement - Moving Target Feature
Phenomenology (AMSTE-MTFP). From this list, data from the two MSTAR collections
provided the high depression region (15°-17°) and data from MTFP and MAD 98

provided the low depression region (8°-10°).
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3.1.1 MSTAR

The MSTAR program has had three separate data collections. Data for this research
was from both the MSTAR ’95 and MSTAR °96 collections. All data was collected using
the Sandia National Laboratory (SNL) STARLOS sensor operating at X-band at two
separate sites. First in August 1995 Scud (surrogate) data was collected at Estancia, NM
and had just one scene with two Scud surrogate targets in various articulation states. The
second part of the collection was at Redstone Arsenal, AL, where data was collected over
several days and had three scenes, each scene with 18 targets (12 target types) in various
states of articulation, camouflage, and obscuration. In addition, clutter imagery was
collected in the Redstone Arsenal arca. Data from this collection was at both 15°
depression and 17° depression, and targets of interest for this research from this

collection were the T-72 and BTR-70.

A second MSTAR collection was in November 1996 at Eglin Air Force Base, FL,
and contained baseline data on nine additional vehicles at a wide verity of squint angles
and aspect angles. As in the first MSTAR collection, the SNL STARLOS sensor was
used, and nearly all other operating conditions were the same. However, the addition of
several vehicles made this collection important for this research. From the MSTAR ‘96
collection, data for the 2S1, BRDM-2, BTR-70, M978, T-72 and ZSU-23/4 were used in

this research [Fitzgerald, 2005].
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3.1.2 AMSTE-MTFP

The objective of the AMSTE-MTFP collection that took place at Eglin in 2000 was
to obtain high range and Doppler resolution data and ground truth data on moving
military targets to support the analysis and exploitation of target features for feature aided
tracking. This collection used the Veridian/General Dynamics DCS sensor to collect the
SAR data. All data was collected at full 360° aspect ranges and at a depression angle of
8° or 10°. Of the nine targets in the collection, data for the 2S1, T-72 and ZSU-23/4 were

used in this research [Fitzgerald, 2005].

3.13 DDB -MAD ‘98

Similar to the AMSTE-MTFP collection, DbB-MAD ’98 data was collected using
the Veridian/General Dynamics DCS sensor at Eglin AFB, FL. All data from DDB-
MAD ’98 is in a depression range between 8° and 10° and contains data for over 40
targets. Many targets have different configurations and articulations of 25 vehicle types.
As is the case throughout the data in each of the collections described, any target for a
particular vehicle that is visually similar to other configurations for that vehicle is
grouped to form the entire data set. Thus, although the serial number or configuration of
the T-72 used in the DDB-MAD 98 collection differs from that of the T-72 used in the
MSTAR collections, for this research they are grouped together. The scale of this

collection allowed for data from all 6 targets to be used [Sensor, 2005].

Figure 5 provides images of all the targets used in the experiments and shows some

of the subtle differences present in like targets with different serial numbers.
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Table 7 shows all the data used by aspect and depression regions. Although some targets

Figure 5. Target photo collage

are heavily populated with data, several targets are data limited in certain regions and

therefore may not be sufficient in providing statistically significant information.

Table 7. Complete data summary of targets used for DLF verification

Confusion Matrix populating data

off-axis

broadside Lroadside  headiail on  head/ail on = offaxis
Vehicle Name  Serial Numhber 97 chips 167 chips 9° chips 16% chips 9" chips 16" chips total chips
‘BRDM2 E71, E72 177 211 257 261 243 285 1435
BTRIO C70,C71,C72,C33 128 3506 289 995 394 1077 3734
T72 ADT, A10, 132 381 512 547 F22 505 724 3446
491 212 473 261 313 286 2036

ZSU

006, 008, 113




3.2 Test/Train Separation

To ensure that the algorithm is not trained on data it uses during testing, all available
data is separated into two groups. The test group is used during the simulation and in the
ATR system. Additionally, a train group is used to create the Training Confusion
Matrices (TCM) and consists of the excess measured SAR data. The test group is
selected from all data by choosing 100 data chips for each target in both the 9° depression
region and the 16° depression regions. To gather the 100 chips from each target in each
depression region, all data for each target and depression region is binned according to
aspect angle. The first bin contains any data with an aspect of -1.8 degrees to 1.8
degrees, with each of the following bins covering 3.6, resulting in 100 bins. Within each
bin a random data chip is selected. The selected chips, 100 in all for each depression
region, form the test group. Figure 6 shows a histogram of all available data of one target

in the 16° depression region.
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Figure 6. Histogram distribution of data samples

Initially the test group is created by sclection of the data sample closest to the center
of the bin, so that of all data available (nearly 13,000 chips) only 600 are used. Two
issues with this test group are, first, cases where there is no data in a particular region
(such as near 270° in Figure 6), and second, increasing the test set given that only about
5% of the data is used for testing.

To address the first issue the search for the random chip is simply expanded, which
is necessary in several target depression combinations. The other solution is a Monte
Carlo selection where the separation process is enhanced by allowing the chip selection
process to be redone any number of times, thus enabling the use of a different test set for

each test run.
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3.3 Not-In-Library Targets

This section considers issues related to not-in-library targets.

3.3.1 In-Library Targets vs. Not-In-Library Targets

As described in Section 3.1, the targets used in this research include the 2S1,
BRDM2, BTR-70, M978, T-72, and ZSU-23/4. Data from each of these targets are
collected and processed through the ATR system. However, there are two categories of
targets of the six listed. The BRDM2, BTR-70, T-72 and ZSU-23/4 are considered In-
Library targets. These are so defined because the ATR system is trained on these targets
and therefore has templates for matching. Not-In-Library (NIL) targets act as confusers
to the ATR system, thus providing valuable information regarding how the ATR systems
handles targets that it has no prior experience in identifying. The remaining two targets,
2S1 and M978, are NIL. The NIL targets do not have corresponding templates that the
ATR system has been trained on, but are declared by the ATR system to be one of the In-
Library targets due to the forced decision nature of the ATR system. The NIL targets
used as inputs are considered here as “NILs by target”. Another type of NIL target class,

“NILs by threshold”, is described in the following section.

3.3.2 Not-In-Library by Threshold

One of the outputs of the ATR system for each chip being processed is the score
metric. Although the score metric can be changed to optimize different criteria, for this
research the metric is restrained to the Classification Logic Test Statistic (CLTS). The

CLTS is a linear sum of several other scoring options and consistently produces the best
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overall PID compared to all other metrics when applied to the MSTAR data sets [Sousa,
2004]. The score is then compared against a set threshold to determine if the target
declaration is retained or declared a NIL. If the score is below threshold, regardless of

the declaration by the ATR system, the target is called a NIL.

Figure 7 shows the sample output of the ATR system. A score metric is computed
for all available templates compared to the input data sample, where the highest score
determines the declaration of the ATR system. In the case shown, if the threshold is set
below .779 the test chip is declared a BRDM2, otherwise the post-processing step

declares a NIL (by threshold) target.

target discrimipation score BRDHZ 232.000 Q.779
target discrimination score BTR70 48.000 0.599
target discrimination score 281 228,000 0.518
target discrimination score 28023~4 42,000 D.515
rarget discrimination score T72 42.000 G.513

Stage Timings: 0.230 0,090 Q.030 0.050 0.170 0.( {D.570})
<< Hetric labels complece. >>
%< Buccessfully processed 1 chip. »>

Figure 7. Sample output of the ATR system

The difference between the types of NIL targets can be summarized by examining
relevance within a confusion matrix. In a standard confusion matrix the columns indicate
the templates and each row represents a truth target. A row indicated by NIL refers to

NIL by target since it is known that the truth target must have been either a 2S1 or M978.
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However, the column marked by NIL indicates that the best template match had a score

less than the determined threshold. An example confusion matrix is shown in Table 8.

Table 8. Sample confusion matrix

RIS

3.3.3 Threshold Determination

As described above, the threshold plays a pivotal role in NIL determination. If the
threshold is set too low, too many of the NIL by target inputs result in false positives for
the In-Library targets. Likewise, if the threshold is set too high, too many correctly
identified targets are declared NIL because the score is not high enough. There are
several approaches to setting the threshold, but for this research, where priority is on
maximizing the probability of correct identification for the In-Library targets, the
threshold is chosen to be two standard deviations below the mean of all available scores,
resulting in a threshold of .6053. To verify that this value is reasonable, Figure 8 shows
that near .61 a difference in targets correctly identified from targets misidentified as NIL

begins monotonically increasing.
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Figure 8. Graphical verification of statistically determined threshold

Figure 8 shows the difference in errors in determining NIL by threshold and by
target. The y-axis is the absolute difference in the number of times a target is declared
correctly but (due to a low score) is called a NIL and the number of times a NIL by target

chip is not called a NIL (because of a high score).

Table 9 also shows the effects of changing the threshold values compared to the

baseline, where the threshold is set to zero.



Table 9. Threshold effects on confusion matrices
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Table 9 displays confusion matrices over the same aspect/depression regions at
several different threshold values. The baseline case, with T = 0.000 illustrates the forced
decision nature of the ATR system. As the threshold is increased many calls declaring
targets BTR-70 and ZSU-23/4 are pushed to the NIL column. The other extreme is at

T = 1.000 (not shown), which would result in all targets being placed in the NIL column.

3.4 ATR System

This section describes the ATR system, including its setup and its outputs.

3.4.1 Description

The ATR system used for this research is a model-based system that aims to achieve
accurate and robust performance in unconstrained scenarios. The system is designed to

locate and recognize military targets in SAR imagery. The scene conditions are realistic
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situations characterized by arbitrary viewing angles, variable radar squints, variable radar
depression angles, modest obscuration levels in both flat and hilly terrain, and multiple
target configurations and articulations. Figure 9 gives a general overview of the

representative ATR system.

+ I Innge chips

« OUT: Taget Clls

+ Fre-conpuited Predict

+ Sreanlined oniine
recognition rocessis
pardidizable

Figure 9. General overview of characteristics of the ATR system [Sousa, 2004]

A central tenet of the ATR system is that the combinatorically large number of
targets, sensors, and backgrounds found in realistic scenarios precludes the use of

algorithms that rely on a priori measured images. Statistically significant amounts of data



may not be available for template based ATR training. The system architecture is thus
designed as a hypothesis and test paradigm in which scene hypothesis are generated and
refined based on the degree to which the viewed imagery supports the model based

hypotheses [Sousa, 2004].

3.4.2 Processing Setup

The ATR system was developed and tested on UNIX based computer systems.
Therefore, the first task arranged for an ability to pass data back and forth between a
Windows based workstation and the UNIX based ATR system, which was accomplished
by setting up a networked file transfer protocol (FTP) between the two computers. The
data was stored in a directory structure on a workstation by target followed by
subdirectories for depression region and then another subdirectory that isolated aspect

region. Figure 10 illustrates the directory structure.

Edit  \bew  Favorkes  Tools 3237
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./ Search
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v D1S102628_007,phix D1S102628_007,phx

E

209 pbjecks (Disk frie space; oH, 0 GH)

Figure 10. Directory structure setup for measured data



With the directory structure in place, scripts were written within UNIX shell scripts to

process all chips for each target at the specified depression and aspect regions.

The most efficient way to proceed with the experiment is to process all available data
and save the results, which allows for the data set to change and also enables an efficient
process. The processing of all chips takes over 10 hours. If all available data is
processed, all the code needed to run an experiment can be written entirely in MATLAB.
With everything running from the same software, the simulation has a much more

realistic flow and can be done in one simple execution step.

Before the data is applied to the ATR system, several issues had to be addressed.
Problems arose when either the DDB-MAD 98 or AMSTE-MTFP data was passed to the
ATR system. Data collected under DDB-MAD 98 and AMSTE-MTFP was collected in
the form of Video Phase-History by the DCS sensor and processed into National Image
Transmission Format (NITF) [Fitzgerald, 2005]. This data format first needed
conversion to Phoenix format (PHX), in which header information is stored as text before
the image data in a binary format, for the ATR system to read the data. Initially this was
a simple task that was accomplished using a conversion tool developed by the AFRL
Sensor Data Management System (SDMS) group [Fitzgerald, 2005]. The conversion
updated the header into the Phoenix style, but there were differences in field names and
units that needed resolution. For MSTAR and AMSTE-MTFP data results were very
good. However, it was determined that the current data from the DDB-MAD 98
collection had a convention difference in determining how the platform collected the data

from the MSTAR and AMSTE-MTFP. By rotating the data 90° the chips were finally
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ready to be processed by the ATR system to produce the confusion matrices used

throughout this research and shown in Section 2.2.1.

3.4.3 Outputs

The outputs from the ATR system include the truth target, the declared target, the
actual pose angle (aspect), the estimated pose angle, and the metric score. After all the
data is run through the ATR system a text file is created, where each row of text
represents the results of one chip. This master text file is then parsed into individual files
for each line. These output result files are then stored in a directory structure similar to
the raw data (separated by target/depression/aspect). For each target the filenames
representing each individual chip reflect the aspect angle of the actual measured SAR
chip. With the data stored in this fashion the simulation can easily query the folder of the

individual target for results at a given aspect and depression.
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IV. Experimental Setup

This section describes the experiment scenario along with the simulation framework

and the DLF flow.

4.1 Scenario Description

A simple case is considered where two fighters are flying in tandem. Each platform
is offset about the target, with headings such that the target is centered. When the
platforms are within 50 km the SAR sensors are turned on and the first look is gathered.
While thi-s look is processed the platform diverges by 15° from its current path, and when
the target is within 30 km a second look is gathered from each platform, resulting in four

total looks — two from each platform. Figure 11 describes the process.
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Figure 11. Scenario description

The divergence after the first look allows the platforms to gather target SAR data at a
significant aspect change (a change of greater than 10°), which is important because
performance may depend on aspect angle. By gathering data at different aspects, a wider
range of search criteria for the ATR system is examined, and independence between
looks is guaranteed. For this research data collected under AMSTE-MTFP and DDB-
MAD 98 collections (8°-10°) is used to represent the 50 km looks, and data from the

MSTAR collections (15°-17°) is used to represent looks gathered at 30 km.

4.2 Simulation Flow

This section describes the experimental cases. An experiment can be run as a single
case, where the test chips are evaluated by initializing the target heading incrementally,

or through a Monte Carlo setup, where multiple test sets are used. Here ‘iteration’ is
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defined as a four-look DLF process, where the target and the corresponding heading are

kept constant. Likewise, a ‘run’ is defined as the process of cycling through each target

at cach heading for a sct of test data. To verify the DLF algorithm two types of

experiments are performed. First is the simulated experiment, which uses simulated data

and an ATR model used in the initial DLF development. The second experiment uses a

real ATR system with measured SAR data. In both simulated and measured cases, the

framework remains the same and is shown in Figure 12.
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Figure 12. Simulation framework flowchart

4.2.1 Simulated Experiment

For a simulated experiment no measured data is used. The data comes directly from

the HCMs described in Section 4.2. 1.1, and the ATR system is a simple probabilistic
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model that bases target declaration on the probabilities of the confusion matrices and
compares them to a random variable between zero and one. The ATR system model used
in the simulated experiment is described in detail in Section 4.2.1.2. The only difference
between the simulated experiment and the real experiment is that the modeled ATR
system is exchanged for a real ATR system and estimated data is replaced by measured

SAR data.

4.2.1.1  Confusion Matrix Estimation

Key to DLF is reliable estimation of sensor/ATR performance. As described in
Section 2.2, DLF is based on confusion matrix results. The confusion matrices used in
the simulated testing of the DLF algorithm are based on historical performance over SAR
data for a general SAR sensor/ATR system. Examples of the simulated confusion

matrices used are shown in Tables 10-15. [Gross, 2004b]

Table 10. Head/tail 9° historical confusion matrix

75U N
0.0000
0.0000

0]  0.0000

07500

10.0000

| 0.0000
0.6500]  0.0000
0.0000] 0.0000] 0.8000{ 0.1000] 0.1000
0.0000( 0.0000] 0.3000{ 0.5500] 0.1500
0.0250) 0.1500) 00000 0.0500] 0.7750
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Table 12. Off-axis 9° historical confusion matrix

0.0500 :

. 0.8500)  0.0000,  0.0000f 0.0800
0.0550)  0.8950] 0.0000] 0.0500
0.0000] 0.1000]  0.8000] 0.1000
05000 0.0000 4.0000 0.4750

Table 13. Head/tail 16° historical confusion matrix

BTRID
0.0000
0.9060
0.0000
0.0000
0.5900

0.0000
0.0230 0.1160
0.1820 0.0000
" 0.5910]  0.0820
0.1330 0.7350

09330 :

0.0580{ 0.0700
0.0000 0.0100
0.0000 0.0000
- 0.0320 0.3600

The tables show the performance of the ATR system when used with SAR data. One
difference between the estimated confusion matrices here and the confusion matrices of

the measured data (Tables 1-6) is that the latter show performance based solely on the
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data available while the CMs shown in tables 10-15 are estimates of the actual sensor

performance without regard to the characteristics of the measured data.

4.2.1.2 ATR System Modeling

The model used for the ATR system is a probability-based predictor with a random
threshold. When used with historical confusion matrices, which also are probability
based, all needed information is available. The first step is to randomly define a
minimum probability threshold, which allows for the possibility of mis-identification and
the inherent presence of error. Once the threshold is set, the model examines the row of
the confusion matrix corresponding to the selected target truth. The process
incrementally moves across the row, summing total values. When the sum exceeds the
threshold, a declaration is made corresponding to the current column [Gross, 2004a].
Figure 13 illustrates an example case processed by the model ATR system and used in

the simulated experiment.

- Marlable RID
RY <
Sum Tot
- Target

Declaration

Figure 13. Modeled ATR system flow and example case
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This illustration indicates that the model is likely very good if the historical
confusion matrices are perfect. Since real world characteristics such as clutter and signal
to noise ratio cause unforeseen error in image based ATR systems, the model does not
perform as an actual system. Verification using measured data and a real ATR system is

needed.

4.2.2 Measured Data Experiment

The framework described at the beginning of this section and the flow outlined in
Figure 12 remains the same when measured SAR chips are used as the input data and
replace the simulated confusion matrices. The ATR system is also altered by replacing
the modeled system with a fielded ATR system. In the following sections the process is

described for measured data and a real ATR system.

4.2.2.1 Single Test Set

For a single test set, the geometric scenario is run for each target at each angle,
which is accomplished by simply rotating the heading of the target by 3.6 degrees for
each iteration. Due to the geometry of the scenario, when the target heading is kept
constant throughout one iteration, each look (of the four total) is at a different aspect
angle. For the long range looks the aspects angles are offset by 60°. For the second look
from each platform the aspect angle changes by 15° and the overall offset of the near

range looks is 90°,

A single test set experiment is completed when each of the 5 targets (BRDM-2,

BTR-70, T-72, ZSU-23/4, NIL) is initialized at the heading increments, each with the
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same test set, which results in 500 iterations, or one run. However, performance and
validation should not be based on such a limited sample size (500 chips) — especially if it
is heavily dependent on the test data. Thus an expansion of the data set into the Monte

Carlo scenario is made.

4.2.2.2 Monte Carlo Scenario

To overcome instances where a single test set is chosen such that the confusion
matrix results for each test set are dissimilar to that of the training set, a Monte Carlo
scenario is used. A simulation run in Monte Carlo mode takes over 10 hours to run the
entire scenario if 100 different test sets are considered, but a better representation of the
results is obtained. The Monte Carlo version of the simulation chooses a new te.s't set for
each run. Once the test set s chosen as described in Section 3.2, aspect/depression region
training confusion matrices (TCM) are calculated, and these TCMs are then used in the
DLF algorithm. After the completion of each run the test set is reset and the process

starts over.

The Monte Carlo method is the method of choice and generates the results of Section
5. Variations in case by case results are obvious, but by combining results of many runs
(100), most of the outlier data points are masked by the law of averages. The results
reflect a more general case than if the randomly drawn test set does not coincide with the

historical performance of the ATR system.
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4.3 DLF Flow

The DLF portion of the simulation is performed within each iteration. The
simulation processes the looks in sequence, where the first fighter gets “Look 17. The
first step is to calculate the aspect angle from the platform to the target. Once the aspect
angle is calculated, the data chip to be read from the results database is known. Each data
file contains information that is saved during processing in the ATR system. From each
file the truth target, the target declared by the system, the actual aspect angle that is the
basis, the aspect angle estimated by the ATR system, and the scoring metric value are
read. From this information the declared target determines the target ID, the estimated
aspect angle for t-he lookup determines which TCM is used, and the scoring metric
determines if the target is called NIL. The TCM that contains the estimated pose of the
measured data is then stored as the single sensor confusion matrix. However, for this first
look the single sensor results also represent the initial DLF result. Therefore, the ATR

declaration for the single sensor look is identical to the initial DLF identification.

Once the first look is processed, the second platform has a first look at the target. A
process similar to that described above allows the second platform to obtain single sensor
results. In this case and those that follow for look 3 (from the first platform again) and
look 4 (from the second platform), the single sensor results are fused with the previous
DLF results using the method described in Section 2.2 to produce an updated DLF
output. After the completion of look 4, the resulting DLF identification is used as the
final decision. The flowchart of Figure 14 describes a single iteration using the DLF

algorithm.
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Look 1:
Look1.PID
Look1.REL

Look 2:
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Look2.REL
DLF:
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Look3 Look3.REL
5
DLF: Look 4:
Fused Output ¢ Lookd.PID
Look4 Lockd.REL
¥
TARGET ID= X
PIDdIf = XX. X
RELdIf = XX. X

Figure 14, DLF flowchart
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V. Results

The goal of any ATR system is to correctly identify targets as quickly as possible, as
accurately as possible, and from as far away as possible. Improved sensor technology
and on-board computing allows better and more complicated systems to be placed on
many kinds of platforms. Advancements in fusion, specifically less complicated
approaches such as DLF, can only enhance an already proven ATR system. However, as
shown below, the benefits of DLI on simulated data may be slightly optimistic compared

with the performance foupd using a real ATR system and measured data.

5.1 Simulated Results

This section shows examples of results from a simulated ATR system used in
coordination with estimated data, and it provides baseline observations for further
research. The results show that DLF yields significant improvement over a single sensor
working on each platform. Figures 15 — 16 show that DLF provides a median PID and

REL for all targets near 95% or greater.
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Figure 15. Median PID values with percentile ranges over all DLF looks -
Simulated

Each DLF look is made up of fused single sensor looks. However, since each sensor
performs differently, it is important to show the single sensor results separated by range
and depression angle. Thus in the single sensor comparison there are two data points.
The first data point, which is the same for both look | and look 2, represents single sensor
looks from a further range and uses data collected at the lower depression angle. The
other single sensor value is the averaged PID (or REL in Figure 16) over the last two

looks, which are at a closer range and higher depression.

wn
(R}



: : [} Single Sensor !

Look

Figure 16. Median reliability with percentile ranges over all DLF looks —
Simulated

In the typical plots of Figures 15 and 16, the shaded area represents the range of values in
the 25" and 75" percentile. The vertical lines at each look represent the single sensor
results. Where the box is the median value and the circles show the 25" and 75"
percentile points. A significant performance improvement is shown over the single
sensor median values. Not only does the median value continue to increase as additional
looks are gathered, but the size of the middle fiftieth percent of the data grows
considerably smaller. Table 16 compares the improvements made through the DLF

process over single sensor looks.
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Table 16. DLF vs. single sensor over all looks — Theoretical

ravement % 12.64%

mprovement %

From the table it can be seen that simply adding a second look and fusing it with the first
look yields significant improvements in capabilities. By using all four looks the

algorithm is able to increase both the probability of identification and the reliability in the
declaration to over 95%. Also shown in the table 1s that the improvement over the single

sensor performance is over 15% in both PID and REL

Figures 17-21 show how the individual targets, when isolated, perform in the DLF

Process.
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These plots show PID vs. REL for each target. As the system gathers additional
looks and DLF is performed, both the PID and REL move on the plot toward the upper
right corner. These results depend on expected performance as characterized in the
historical confusion matrices or training confusion matrices. For the BTR-70 and the
NIL targets the results are slightly below the other targets because the expected PID

based on the HCMs (Tables 10-15) used is also less.

The results shown here are encouraging; however, there are still many robustness
and accuracy concerns. The next step is to compare the simulated results using the model

ATR system with results from a proven ATR system used with measured data.

5.2 Measured Data Results

Once the modeled ATR system is replaced with the proven ATR system and the
expected historical confusion matrices are exchanged with calculated training confusion
matrices from the actual ATR system, results can be compared. Similar to the plots
shown in the previous section, the measured data indicates strong trends that endorse the
use of DLF in ATR prediction. However, the measured data and real ATR system do not

produce results as conclusive as those using simulated data.

Figure 22 shows that the median value for the PID increases as the looks increase.
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matrices from the actual ATR system, results can be compared. Similar to the plots
shown in the previous section, the measured data indicates strong trends that endorse the
use of DLF in ATR prediction. However, the measured data and real ATR system do not

produce results as conclusive as those using simulated data.

Figure 22 shows that the median value for the PID increases as the looks increase.
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Figure 22. Median PID values with percentile ranges over all DLF looks -
Measured

When comparing with Figure 16 (the PID vs. looks plot based on simulated data), Figure
22 shows that in both cases the improvement from the first to the second looks increases

by nearly 10%, with the simulated results starting from a higher PID.

The REL vs. look plot shown in Figure 23 again shows that as more looks are input

to the DLF algorithm, reliability improves. A slightly more dramatic improvement than
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in Figure 16 (simulated REL vs. Looks plot) from look I to look 2 is apparent, with the

final two looks adding nearly a 3% increase in performance over the preceding look.
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Figure 23. Median reliability values with percentile ranges over all DLF looks -
Measured

Figures 24-28 show how each target performed for the measured data.
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Figure 28. PID vs. reliability for NIL - Measured

Again it is shown that the BTR-70 and the NIL targets provide results that underperform
the other targets considerably. Each of these two targets provides different insight into
the performance of the DLF process. In the case of the BTR-70, the PID values approach
80%, but the REL values never rise above 70%. This low REL value can be directly
traced to the training confusion matrices. For example, consider any of the TCMs shown
in Tables 1-6. As described in Section 2.2.2, PID is calculated across a row, while REL
is based on the indices in the column of the target declaration. Therefore, since the value
corresponding to the BTR-70 column for the NIL truth target is also a large value for an
off-diagonal index, the REL associated with that target is constrained by the largest value

in any of the other indices in the column. When all the TCMs are considered, the
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maximum REL of the BTR-70 is only 62%. Therefore, it is shown that through the

process of DLE over four looks the REL associated with the target is increased over 11%.

In the case of the NIL, it 1s shown that DLF has greatly improved performance
over the four look scenario. Of course improvement in performance is relative
considering that the percentage improvement in PID is over 90% as the value is raised
from 5% to 55%. The improvement in REL nearly matches that of the PID metric, where

the values improve 78% from 15% to 70%.

The improvement over the single sensor looks as DLF proceeds, as shown in Table
17, shows that (similar to the simulated experiment) there is great improvement in

reliability as looks progress — to over 26% after the fourth look.

Table 17. DLF vs. single sensor over all looks - Measured

1 5-_-L:n.uk-§2:
0.725

SS

Improvement % 0.68% 9.38%
b | ose7esl  0s17]
85 ' 06725 06725
Improverment % 0.88%| 17.69%

The overall value of PID increases nearly 18% from the first look to the fourth DLF
iteration, but the final PID is actually below that of the single sensor looks at the closer
range. This 1s an 1deal example that illustrates the impact of maximizing REL at the

expense of PID.
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VI. Conclusions

The previous two sections show that DLF significantly improves ATR performance
versus single sensor looks. However, the purpose of this research is not to prove that
fusion is a useful tool in the ATR arena (this statement is a forgone conclusion). While
results of the measured data within the framework of an actual ATR system slightly
underperform those that were modeled, they are still encouraging. Figure 29 compares
the effects of DLF on both performance of the simulated portion of this research with

performance based on measured data and a real ATR system.
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Figure 29. Comparison of PID vs. REL with measured and simulated results
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Figure 29 illustrates that although DLF is able to increase performance in both PID
and REL there are still differences that factor into the two cases described. Figure 30

extends the plot shown in Figure 29 to include the percentile variances at each look.

@.Lookﬂz o . l,_‘_,é.L.ools.Z:_..
PID =8.75%~+ PID=8.89%

" REL = 102:[‘!" "

" REL =17.26% ,
« TOT = 32.8%

. TOT = 51.4%

RES
BEL

14 i e e
! ; :
i :
ws £ 4 L
n:i- :k_irig!{he_u_\-:_! Rosolby ¥ ; itk Hissods
g L Mo Boils g : '-
Y & ') B W 1 B i it i
I vis
Look 3: Look 4:
4. . i ' + P

" PID = 7.29%
“ REL = 7.81%

" PID =7.37%
" REL = 8.84%
/ TOT = 69.0%

: =i 0
R it TOT i 28.1 /D

Ak i A= ; v : x i

wak i 3 { . - L
{ Hfli h'inu\inw_:l: Flusnithe
e Lo Messied Resl
[ nh b it ] [T 1 (] B4 L7 0y i3 0 1

] Pt

Figure 30. Percentile variance area plots for each look

The difference between the PID and REL at each look is shown on the individual axes.
The term TOT refers to the total area in percentile variance. As shown, in Look 1 the
area of the simulated variance is 51% the size of the percentile variance of the measured
results. As the looks at the target increase the discrepancy in PID and REL is reduced.

However, by adding the percentile variances it is seen that even though the median values
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are closer, the majority of the data is bounded by a significantly tighter box after the

fourth look.

Table 18 compares results in a form that highlights the difference between the use of
measured data with a real ATR system and results using simulated data with a modeled

ATR system. The most significant difference in performance is in REL of the first look.

Table 18. Table of median PID and REL for measured and simulated results

| Look2 | Look
{PID . _0.8000| 0.880
Data REL 0.6785| 08189 0.
Simulated |PID 0.8000] 0.9100] 0.2
Data : . 0.4231
difference

The discrepancy between the simulated and measured results is mostly due to the
difference in the ATR predictor used. The modeled ATR system is probabilistic
according to expected performance as given in the HCMs, not taking into account that
certain aspect regions are more likely to produce errors. For example, each BTR70)
within the head-on or tail-on aspect region (-30° — 30°, and 150°-210°) is expected to
correctly identify the target 85% of the time. However, if this region had been divided

into finer regions, there could be significant changes in results.

The limited data supply (of over 14,000 samples) leads to the initial assumption that

the targets are symmetrical for similar angular approaches. Some leeway is taken in
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defining symmetry, but the aspect regions must be described by enough data to be

statistically significant.

This research provides a critical bridge between the use of components provided by

outside sources, including the DLF algorithm and its associated assumptions, the defined

§

scenario, the simulated data in the form of confusion matrices, the developed ATR

i
model, and the intermediate steps of integration with measured data and existing software
into a experimental framework that can easily be adapted to the needs of future DLF

studies.

This research illustrates the benefits of a simple fusion algorithm such as DLF, but
also motivates several questions and possible experiments to further the technology.

Some of these questions are as follows.

e How would a variable threshold for setting the NIL affect overall
performance?

e If enough data were available, how would a more precise separation of aspect
regions affect performance?

o What about a larger target set?

e Would applying DLF to different sensor types, such as a EO/IR camera with
an image based ATR and the SAR based ATR system described in this
research, be advisable?

 Can related but more complicated fusion algorithms such as Attribute Level
Fusion or Feature Level Fusion be pursued?

Each question is worthy of future study as the search for reliable algorithms that

maximize the capabilities of multiple sensors, each with different strengths, continues.

In summary, it is shown hére that the DLF algorithm is a good approach for the

fusion of independent sensor looks on a target. Although the initial experiments that
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involved simulated ATR and historical performance illustrated the benefits of the
algorithm, actual testing with a proven ATR system shows that performance is adequate,

with room for improvement.
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VIll. Appendix A

Quick-Reference: ATR System Run Guide'

1. Installation

The installation disk includes one file, “atrsys.tar”. Copy this file to a working
location, such as the user HOME directory.

1.1 “Untar” the file as follows:

tar -xvf atrsys.tar -C /usr/local
This will create a directory “atrsys” under the “/usr/local” directory. Another
destination directory can be substituted, if desired, for “/usr/local”.
1.2 Modify the “Makefile” file.
ed /usr/local/atrsys/source

Open “Makefile” with an editor to remove “-lgen” from the “libs” variable:

Change: 1ibs = -lgen -1m -1z ‘glib-config --1libs’
To: # libs = -lgen -1m -lz ‘glib-config --libs"'
libs = im -1z ‘glib-config --1libs’

1.3 Create the executable as follows:

cd /usr/local/atrsys/source
make clean

make atrsys
Ensure that no errors were reported.

1.4 The executable is now ready to use:

/usr/local/atrsys/source/atrsys

' All references to the actual software package have been replaced by atrsys in this text.
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2. Running the Application

The steps below describe the process to set up and run data through the ATR
system.

2.1 Set Templates

The ATR system allows the user to define which templates the system will
attempt to compare the measured data with. By editing the file named
rc_mstar.txt, the user can set the templates for comparison.

2.2 Set Search Path

Data that is to be processed by the ATR system can be a single file or multiple
files contained in a single director. A folder named chips is initially created
during the install process. This is the default folder in which the system searches
for data. If subdirectories are placed in this folder the user must specify the folder
to read.

2.3 Run Application

The application is run once the templates are defined and the search path is
set. To begin the process, enter the following at the command line.

.fatrsys -rec rec_mstar.txt -ecp ../ /chips -numres 1 -pid 10

Additional inputs can be added to set search thresholds such as maximum
depression, azimuth, and squint angles by adding:

-dep <percentage>

-8 <percentage>

~az <percantagoe>

By default these values are set to 100%, allowing for all possible template
matches.

The input —numres defines the number of outputs. Target declaration is based
on the best match. However, in some applications it is beneficial to also see how
all templates scored against the truth target that was input. In this case the user
would set —numres 10 the total number of template choices and the score of each
is displayed.

2.4 Read Results

As the application runs the results are displayed to the screen. One way to
capture the results is simple create a file to write the text displayed on the screen
to a separate text time and then parse it according to the information that user
desires. This method is best suited for cases where —numres is greater than one.
In the simple, target declaration case, the application can save the results to a file
by adding the following command when calling the application.

-0 <filename>
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The added —o input stores the results in a binary file that is then read by an
additional application that ships with the software and is installed by default under
the normal install process.

To read the binary file and convert it to text type

Jresults -i <results file from atrsys> > newfilename.txt

Once the line shown above is executed, a text tile is created that is formatted
into a table that can easily be parsed by other additional applications such as
MATLAB or EXCEL. An example of the formatted output is shown below.

File IGT Target CalllY/N | Est Pose | GT Pose | Pose Dltal ATR Target Call | ATR Score | ERPS | DLTS

hb03914.00151 7211 1114.0001112.791 1 -1.200 | T72_scnofuel | 2.9591 53361 0977
hb15182.00191  t72111238.0001240.084 |1 2.084 | T72_scnofuell 0.2001 42171 0.975
hb03907.00151 72111 70.0001 72,7911 2.791 | T72_scnofuell -1.664 1 4.8081 0.907
hb19887.00191  t72101176.0001178.084 | 2.084 | ZSU23-4 scl 1.832| 4.2671 0.780
hb03335.00151  72111252.0001250.791 1 -1.200 | T72_sc| -2.0181 47371 0.901
hb03884.00151  t72111310.,0001312,7911 2.791 | T72_scnofuel | 1.8921 49981 0.949
hb15142.00201 72111 36.0001 32.5151 -3.485 | T72_senofuel| -0.2131 5.1901 0.965
hb03877.00151 7211 1274.0001272.7911 -1.209 | T72 sc1-1.2411 53991 0.982
hb15120.00191 7211 1226.0001229.0841 3.084 | T72_scnofuel | -0.2501 4.7401 0.901
hb03848.00151 172111 62,0001 61,791 | -0.209 | T72_scnofuel | 2.0711 54291 0.985
hb15106.00201  t72111156.0001156.515| 0.515 | T72_scnofuel| 09271 59141 1.000
hb03840.001510 (72101 26,0001 21.791 | -4.209 |  ZSU23-4_scl 04591 51671 0.963
hb17642.00191  t72111120.0001120.084| 0.084 | T72_scnofuel | -0.0051 4.856 | 0.911

hbO3822.0015| 7211 1258.0001261.7911 3.791 | T72 scl -2.0231 4.6291 0.865
hb15076.00201 17211 1356.0001356.5151 0.515 | T72_scnofuel | 25531 4.8491 0911
hb15257.00201 17211 1282.0001283.5151 1.515 | T72_scl -3.5551 4.7231 0.899

hb15072.0019 1  172111336.0001338.0841 2,084 | T72_scnofuel | 3.5911 5.0011 0.949



IX. Appendix B

Simulation Code

% Updates for version 4:
% NIL calls are determined by score

% Initialize variables
minheading = 0;
maxheading = 359;
NumTruth = 5;

RTMSTAR = 0;

platlloc = [43.3 25;
16.6 25];

plat2loc = [43.3 -25;
16.6 -25];

epsi = 4e-2;

its = 100;

h = waitbar(0);
headingchoices = [3.6:3.6:360];

storecMhod = zeros(S,Sg;
storecMoad = zerosES,S

storecMbs9 = zeros(5,5);
storecMbs16 = zeros(5,5);
storecMhol6 = zeros(S.Sg:
storeCMoalé = zeros(5,5);

totlooks = 0;

% Clean the folders in Qreparation for next test set

if length(dir(’C:\FIRST\ResultsbData\BRDM2\bs\dep3')) > 3
4 CleanFolders

en

for 1?rgecuunt = 1:100 %100 differenct Test Sets

tic

if RTMSTAR == 1 %if using "real system" calculate CMs
NewverificationGroup(num2str(largecount)) %Choose test set
CMho9 = FirstCMs_8_25(10,1);
CMholé = FirstcMs_8_25(10,3);
CMbs9 = FirstcMs_8_25(90,1);
CMbs16 = FirstcMs_8_25(90,3);
CMoa%9 = FirstcMs_8_25(45,1);
CMoal6é = FirstcMs_8_25(45,3);

storecMholé = storecmhol6+CcMhol6;
storecMho9 = storecMho9+CMho9:
storeCMoalé = storeCMoalé+CMoal6;
storetMoa9 = storeCMoad+CMoad;
storecMbsl6é = storecMbsl16+CMbs16;
i storecMbs9 = storeCMbs9+CMbs9;
ean
for targcount = 1:5 %[BRDM2 BTR70 T72 ZSU NIL] Target Loop
targval = targcount;
for 1ooqcount = 1:its %Target Heading loop
totlooks = totlouk5+1i
waitbar(totlooks/(its*6),h,['Iteration ' num2str(totlooks) ...
'of ' num2str(its*6)]);
1ocx(tot1ooksg = 03
Tocy(totTlooks) = 0}

%setup Heading for each trial
targheading = headingchoices(Toopcount);

%Initialize
CMd1f = zeros (6);
Ind1f = 0;
cMd1f_a = zeros(6);
Ind1f_a = 0;

AZlist = []; ¥%Reset each run
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SCEDEDE Look 1 SISO

[Looklaspect,sensor_az,target_az] = aspectCalc(platlloc(l,1),...
q!at11oc(1,2).Tucx(tot1uoks), locy(totlooks),...
ocX(totlooks),locy(totlooks),0,0,targheading) ;

if RIMSTAR == 1
%if using "real" ATR system queary results folders for the
%corresponding result that is the closest match to the
%Looklaspect for the current truth target

targdirs = {'BRDMZ2', 'BTR70', 'T72', 'ZSu', 'NIL'};:
resultdir = fullfile 'c:\FIRST\Reguitsnata‘,targnirs{targVa1},...

'test', 'dep9');
D = dir(resultdir);
D = D(3:end);
fnames = {D(:).name};
for chipcount = 1:length(fnames)
q AZlist(chipcount) = str2num(fnames{chipcount} (4:end-4));
en

nu

nameind = nearest(Looklaspect,Azlist);
readfile = fullfile(resultdir,fnames{nameind});

0% Here we read the results file to get the ATR call %884
TODOODNEE use RTMSTAR results for ATR prediction
[IDss ATRaz] = ATRcall_scorebasedNILs(readfile);

%Use the correct CM region
if (ATRaz <= 30) | (ATRaz >= 330) | ((ATRaz >= 150)&(ATRaz <= 210))

CMss = CMho9;

elseif ((ATRaz > 60)&(ATRaz < 120)) | ((ATRaz > 240)&(ATRaz < 300))
CMss = CMbs9;

alse
CMss = (Moa9;

end

CMss (find(cMss == 0)) = epsi;
for 1 = 1l:length(cMss(:,1))
R CMss(i,:) = cMss (i, :)/sum(CMss(i,:));
an
7% IDss is the column in the confusion matrix that corresponds to
%% the targets
%% [BRDM2 BTR70 Scup  T72 Z5U NIL] - these also
%% correspond to targval.

PIDSS = CMSSEtaFgVa1.IDSS);
RELSS = CMss(IDSS,IDss)/sum(CMss(:,IDss)):
[cmd1f, 1Dd1f, PIDd1f, RELA1f, DLFconf]l = FindDLF(1l, targval, ...
CMss, IDss, cMdl1f, ...
I0d1f,0); %perform DL
else

Weodeees Use CMs Tor ATR predition (0080 0eesetomorossntoas:
CMss = FirstcMs(Looklaspect,l);

ATRaz = Looklaspect;

tgt = rand;

cumProb = 0; % reset the cumulative Probability

%Modeled ATR system
for i1 = 1l:size{CMss,2)
cumProb = cumProb + CMss(targval, i1);
if tgt <= cumProb
IDss = i1}
PIDSS = CMSSEtargva1,IDss);
RELSS = CMss(IDss,IDss)/sum(CMss(:,IDss));
break
end
end

[cmd1f, 1Ipd1f, PIDd1T, RELAIT, DLFconf] = FindbDLF(1, targval, ...
CMss, IDss, cMd1f v

10d1f,0); %Perform DLF
end

%Store outputs

Louk}l .pidd1f(totlooks) = PIDdIf;

Look{1l .p1dssEtot1ooks) = PIDss;

Look{l}.relss(totlooks) = RELss;

Look}l .reld1f(totlooks) = RELA]F;

Look{1}.range(totlooks) = sqrt((platlloc(l,1) - Tocx(totlooks))AZ ...
+ (platlloc(l,2) - TocY(totlooks))AZ);

Look{l}.aspect(totlooks) = Looklaspect;
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Look{1 .ATRaZEtntTOOkSg = ATRaz;
Look{l}.truth(totlooks) = targval;
Look{l}.time(totlooks) = 0;

Look{l}.platform(totTooks) = 1;

Look 1%.5ensor(tot1ooks) = 23
Lnot 1}.ptype(totlooks) = 16;
Loo

1}.idss$tot1ooks) = IDSS;
Look{1}.idd1f(tot]looks) = IDdIf;

if IDss = targval
looklss(totlooks) = 1;

se
Tooklss(totlooks) = 0;
end

Look 2 TR

ARV
[Loock2aspect,sensor_az,target_az] = aspectcalc(plat2loc(l,1),...
?1at21ac(1.2),1ocx(tat100ks), Tocy(totlooks),. ..
ocX(totTooks),locy(totlooks),0,0,targheading) ;

if RTMSTAR = 1

%if using "real" ATR sxstem queary results folders for the

%corresponding result t

at is the closest match to the

%Look2aspect for the current truth target

targdirs = {'BROM2', 'BTR70', 'T72'
resultdir = fullfile(!C:\FIRST\Resu

'ZSU', 'NIL'};
1tsaata',targnirs{targVa1},...

'test’, 'depd');

D = dir(resultdir);
D(3:end);

D
fnames = {D(:).name};

mu

for chipcount = 1:length(fnames)

AZlist(chipcount) = str2num(fnames{chipcount}(4:end-4));

end

nameind = nearest(Look2aspect,AZ]list);
readfile = fullfile(resultdir,fnames{nameind});

sk Here we read the results file to get the ATR call %@
HODEDOEOETE_use RTMSTAR results for ATR prediction YO@O00000%
[IDss ATRaz] = ATRcall_scorebasedNILs(readfile);

%Use the correct CM region

if (ATRaz <= 30) | (ATRaz >= 330) |

CMss = CMho9;

((ATRaz >= 150)&(ATRaz <= 210))

elseif ((ATRaz > 60)&(ATRaz < 120)) | ((ATRaz > 240)&(ATRaz < 300))

CMss = CMbs9;
else

CMss = (Moa9;
end

CMss(find(cMss = 0)) = epsi;
for i = 1:1ength(CMss(:.1§}

CMss(i,:) = CMss (i, :)/sum(cMss (i,:));
/% IDss is the column in the confusion matrix that corresponds to

end

%% the targets
%% [BRDM2

%% correspond to targval.

PIDss = CMss(targval,IDss);

BTR70 scup 172

ZsU NIL] - these also

RELSS = CMss (IDss,IDss)/sum(CMss(:,IDss));
[cmd1f, IDd1f, PIDd1f, RELA1f, DLFconf] = FindDLF(2, targval, ...

else

IEOOeO% Use cMs for ATR predition

CMss = FirstcMs(Look2aspect,?);
ATRaz = Looklaspect;
tgt = rand;

CMss, IDss, cMdlf, ...
I0d1f,0); %Perform DLF

i e e A e S AT T

cumProb = 0; % reset the cumulative Probability

#%modeled ATR system
for ii = 1l:size(CMss,2)

cumProb = cumProb + CMss(targval, ii);

if tgt <= cumProb

IDss = ii;

PIDss = CMssEtargva1.IDss);
RELSS = CMss

break

end
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end
[cmd1f, 1pd1f, PIDd1f, RELA1f, DLFconf] = FindDLF(2, targval,...
CMss, IDss, cmdlf,...
§ Ind1f,0); %Perform DLF
en

if IDd1T ~= Look{1l}.iddT1¥(totlooks)
" adsf = 03
en

%store outputs

Look{Z}.p1dd1fftotlouks) = PIDd1T;

Look{2 .pidssEtat1ooks) = PIDSS;

Look{2}.relss(totlooks) = RELsS;

Look{Z%.re1d1f(tot1ooks) = RELd1f;

Look{2}.range (totlooks) = sqrt((plat2loc(l,1) - Tocx(totlooks))A2 ...
+ (plat2loc(l,2) - locY(totlooks))A2);

Look{2}.aspect(totlooks) = LookZaspect;

Look{2 .ATRazEtot!ooks) = ATRaz;

Look{2}.truth(totlooks) = targval;

Look{2}.time(totlooks) = 0;

Look{2}.platform(totlooks) = 2;

Look{2}.sensor(totlooks) = 2;

Look{2?}.ptype(totlooks) = 16;

LookEZ{.1d53$tot1uoks) = IDSS;

Look{2}.1dd1f(totTooks) = Ipdif;

if IDss = targval
Took2ss(totlooks) = 1;

else
Took2ss(totlooks) = 0O;
en

if 1pd1f = targval
Took2d1f(totlooks) = 1;

else
Took2d1f(totlooks) = 0;
end

SRS Look 3 IO

[Look3aspect,sensor_az,target_az] = aspectCalc(platlloc(2,1),...
q1at11ac%2.2),Tocx(tot1oaks),1ncY(tot1ooks).n..
ocX(totlooks) ,locy(totlooks),0,0,targheading) ;

if RTMSTAR = 1

%1 using "real"™ ATR system queary results folders for the

%corresponding result that is the closest match to the

%Look3aspect for the current truth target

targDirs = {'BRDM2', 'BTR70', 'T72', 'ZSU’, 'NIL'};

resultdir = fullfile('C:\FIRST\Resultspata',...
targdbirs{targval}, 'test','depl6');

D = dir(resultdir);

D = D(3:end);

fnames = {D(:).name};

for chipcount = 1:length(fnames)

F AZlist(chipcount) = str2num(fnames{chipcount}(4:end-4));
an

nameind = nearest(Look3aspect,AZlist);
readfile = fullfile(resultdir, fnames{nameind}):

Yo% Here we read the results file to get the ATR call %@@&
e USe RTMSTAR results for ATR prediction Woo000ome:
[IDss ATRaz] = ATRcall_scorebasedNILs(readfile);

%Use correct CM region

if (ATRaz <= 30) | (ATRaz >= 330) | ((ATRaz >= 150)&(ATRaz <= 210))
CMss = CMhol6;

elseif ((ATRaz > 60)&(ATRaz < 120)) | ((ATRaz > 240)&(ATRaz < 300))
CMss = CMbs16;

else
CMss = CMoal6;

end

Cmss (find(CMss == 0)) = epsi;
for 1 = 1:19ngth(cMss(:,1§)

i CMss(i,:) = CMss(i,:)/sum(cMss (i, :));
en
%% IDss is the column in the confusion matrix that corresponds to
%% the targets
%% [BRDM2 BTR70 scup T72 Zsu NIL] - these also
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%% correspond to targval.

PIDss = CMss(targval,IDss);

RELss = CMss(IDss, Iuss)/sum(cuss(..lnss))

[cmd1f, IDd1F, PIDd1F RELATT, DLFconf] = FindDLF(3, targval, ...
CMss, IDss, cMdlf, ...
I0d1f,0); %Perfarm DLF

else

end

oSoe% Use CMs Tor ATR predition %
CMss = FirstcMs(Look3aspect,3);
ATRaz = Looklaspect;

tgt = rand; ’
cumProb = 0; % reset the cumulative Probability

vt Ao e

NS Ty

#modeled ATR system
for 11 = 1:size(tmss,2)
cumProb = cumProb + cmss (targval, 11);
if tgt <= cumProb
IDss = i1;
PIDss = CMss(targval,IDss);
RELSS = CMss(IDss,IDss)/sum(CMss(:,IDss));
break
end
end

[cMd1f, IDdTf, PIDA1F, RELA1f, DLFconf] = FindDLF(3, targval,

CMss, IDss, CMd1f
Ind1f,0); %Perform DLF

if IDd1f ~= Look{2}.idd1f(totlooks)
adsf = 0;

end

%store outputs

Look{3},pidd1f(totlooks) = PIDAIf;
Look{3}.pidss (totlooks) = PIDss;
Look{3}.relss(totlooks) = RELSs;
Lnot:g .reldlf(totlooks) = RELdIf;
Lookd{

.range(totlooks) = sqrt(Ep1at110c(2.1; - 1ochtot1ooks;)h2 —

+ (platlloc(2,2) - Tlocy(totlooks))A2);

Look{3}.aspect(totlooks) = Look3aspect;
Lonk‘ai ATRaz (totlooks) = ATRaz;

Look{3

truth(totlooks) = targval;

Look{3}.time(totlooks) = 0;
Look 3% pTatfnrm(tot1ooks) = 1;

Look{3

sensor(totlooks) = 2;

Look/ 3} ptype(totlooks) = 16;
Look % .idss(totlooks) = IDss;

Look{

idd1f(totlooks) = Indif;

if IDss = targval

end

1ook355(tot1ooks) = 13
190k3$5(t0t1ooks) = 0;

if I0d1f = targval

Took3d1f(totlooks) =

Ise
Took3d1f(totTooks) = 0;

end

Look 4 IRTEOED6

SR
[Look4aspect,sensor_az,target_az] = aspectCalc(plat2loc(2,1),...

q]at21oc(2 ,2) ,locX(totlooks), 1ocY(totiooks)....
ocx(tot1ooks) 1ocY(tot1noks) 0,0,targheading);

if RTMSTAR = 1

%iT using "real" ATR system queary results folders for the
%cnrrespond1ng result that is the closest match to the
%Lookdaspect for the current truth target

targDirs = {'BRDM2', 'BTR70', 'T72", 'ZsSuU', 'NIL'};
resultdir = fu11f11e( (=L \FIRST\ResultsData ,targbirs{targvall,...
"test','depl6');
= Gir(resu1td1r9,
D = D(3:end);
fnames = {D(:).name};
for chipcount = 1:Tength(fnames)
AZlist(chipcount) = str2num(fnames{chipcount} (4:end-4));

T



end

nameind = nearest(Lookdaspect,AZ1ist);
readfile = fullfile(resultdir,fnames{nameind});

9586 Here we read the results file to get the ATR call &g
ICOTEHODDEG, use RTMSTAR results for ATR prediction SCQDEOSLHE0E

[IDss ATRaz] = ATRcall_scorebasedNILs(readfile);
1f (ATRaz <= 30) | (ATRaz >= 330) | ((ATRaz >= 150)&(ATRaz <= 210))

CMss = CMhol6;

elseif ((ATRaz > 60)&(ATRaz < 120)) | ((ATRaz > 240)&(ATRaz < 300))
CMss = CMbs16;

else
CMss = CMoalb;

end

cMss (Find(CMss == 0)) = epsi;
for i = 1:1ength(cnss(:.1§) .
4 cMss(1,:) = CMss (i, 1) /sum(cMss (i, D)) ;
en
%% IDss is the column in the confusion matrix that corresponds to
%% the targets
%% [BRDM2 BTR70 scup 172 Z5U NIL] - these also
%% correspond to targval.

PIDss = CMss(targval,IDss);

RELSs = CMss(IDss,IDss)/sum(CMss(:,IDss));

[cmd1f, Ipd1f, PIDd1f, RELATf, DLFconf] = FindDLF(4, targval, ...
cmss, IDss, cmdlf,...
10d1f,0) ; %Perform DLF

else

ISODEDEDE Use CMs for ATR predition JS008C0NSOSNORRBEER
CMss = FirstCMs(Lookdaspect,4):

ATRaz = Laoklaspect;

tgt = rand;

cumProb = 0; % reset the cumulative Probability

%modeTed ATR system
for i1 = l:size(CMss,2)
cumProb = cumProb + CMss(targval, i1);
if tgt <= cumProb
IDss = i}
PIDss = CMss(targval,IDss);
RELSs = CMss(IDss,IDss)/sum(CMss(:,IDss));
break
end
end

[emd1f, 1IDd1f, PIDd1f, RELA1F, DLFconf] = FindDLF(4, targval, ...
CMss, 1IDbss, cmdlf, ...

Ind1f,0); %Perform DLF
end

if IDd1f ~= Look{3}.idd1f(totlooks)
adsf = 0;

end

%Store outputs

Look{4}.pidd1f(totlooks) = PIDdIF;
Look{4 .pidssgtot1ooks) = PIDsS;
Look{4}.relss(totlooks) = RELsS:

Lunki4{.re1d1f(tnt1ook5) = RELATT;

Look{4}.range (totlooks) = sqrt((plat2loc(2,1) - Tocx(totlooks))AZ ...
+ (plat2loc(2,2) - TocY(totlooks))A2);

Look{4}.aspect(totlooks) = Look4aspect;

Look{4}.ATRaz(totlooks) = ATRaz;

Look{4}.truth(totlooks) = targval;

Look{4}.time(totlooks) = 0;

Look{4}.p1atform(tut1uok5) =25

Look{4}.sensor(totlooks) = 2;

Lcok%4%.ptype(tot]nuks) = 16;

Look{4 .1dss$tot1ouks) = IDSS;

Look{4}.idd1f(totlooks) = IDd1f;

if IDss = targval
Took4ss (totlooks)

1;

se
look4ss (totlooks) 0;

end
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and

if 1Ipd1f = targval
Tookad1f(totlooks)

else
q Tookad1f(totlooks)

1;
0;

en
i Azchoice(totlooks) = targheading;
en

end

Joc.X = locx;
Joc.Y = locy;
%Clean directories for new test set
if RTMSTAR == 1
CleanFolders
end
toc
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