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Abstract 

Decision level fusion (DLF) algoritluns combine outputs of multiple single sensors to 

make one confident declaration of a target. This research compares performance results 

of a DLF algorithm using measured data and a proven ATR system with results from 

simulated data and a modeled ATR system. This comparison indicates that DLF offers 

significant performance improvements over single sensor looks. However, results based 

on simulated data and a modeled A TR are slightly optimistic and overestimate results 

from measured data and a proven ATR system by nearly I 0% over all targets tested. 
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VERIFICATION OF A DECISION LEVEL FUSION ALGORITHM 
USING A PROVEN ATR SYSTEM AND MEASURED SAR DATA 

I. lntroduciion 

1. 1. Background 

Current and historical U.S. combat rules of engagement (ROE) require most surface 

and aerial targets to be identified and confinned as hostile prior to directing hostile fire 

against them. ROE adherence is driven by the need to eliminate friendly-fire casualties 

(fratricide) as well as to protect enemy non-combatants, and it has historically been 

accomplished visually. Depending on the intended target, however, visual confirmation 

requires a combat aircraft to move into close proximity with a suspected target before the 

final decision to expend ordnance can be made, and it reduces or eliminates the 

advantage ofrange for standoff weapons. Likewise, the ability to prosecute multiple 

targets during a given engagement is greatly restricted. 

Reliable combat identification and fratricide prevention are important because U.S. 

troop strengths and numbers of combat aircraft have steadily declined, forcing greater 

reliance on force-multiplying technologies along with greater weapon precision and 

lethality. Mistaken target identity reduces combat effectiveness, and friendly-fire 

accidents have a proportionately greater adverse effect on force strncture. 
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Although friendly force structures are smaller and more efficient, potential adversary 

weapon systems are becoming more prolific and more capable of destruction. Successful 

countermeasures require rapid threat identification, prioritization, and destruction. Likely 

combat scenarios involve concentrations of disparate hostile weapon systems and threats, 

taxing the un-assisted limits of human visual acuity and target prioritization. It is likely 

that mistakes in combat engagement, such as target miss-prioritization or miss

identification, will increase unless existing target recognition/prioritization capabilities 

are improved. 

To this end, fusion has be~ome a keyword in the automatic target recognition (A TR) 

community. This thesis research aims to verify the simulated results of the Decision 

Level Fusion (DLF) algorithm developed by MCA, Inc. [Cohen, 2005] by testing the 

algorithm with measured data and a fielded A TR system and comparing with results 

produced using simulated data and a modeled A TR system. 

1.2. A TR Processes 

The first step in the ATR process is to gather data. In the case of the system used 

here, the data is in the form of synthetic aperture radar (SAR) images collected by a 

sensor flying onboard a surveillance aircraft platf01m. Once the images arc collected, 

several steps must be taken to isolate only the area of interest in the image, or more 

specifically only the target of interest. The process of selecting only the target of interest 

is referred to as chipping out the target. This process leads to the image of only the 

target, commonly referred to as a chip. 

11 



Throughout this research the measured data has already been processed into 

individual chips, which allows the full scenario to be simulated using only these pre

processed chips and the geometric positions of the strike platforms relative to the target 

of interest. Occasionally, a single sensor can provide enough information to make 

accurate declarations of targets through the ATR process. However, by combining the 

output of several single sensor ATR systems through a fusion algorithm, results are 

expected to improve significantly. 

1.3. Objective 

The objective of this research is to verify the performance of the DLF algorithm in 

support of the Air Force Research Laboratory (AFRL) Sensors Directorate. To 

accomplish this verification, theoretical models and data, similar to that used in the initial 

development [Cohen, 2005] are compared with performance results based on measured 

SAR data in a simulated scenario. The measured data is from sponsored collections, and 

the ATR system is proven in that it is currently used on several surveillance platforms. 

For this research the following components were provided: 

• 

• 

• 
• 

DLF algorithm and the assumptions made for its application [Cohen, 
2005] 

Model used for the ATR system described in Section 4.2.1.2 [Gross, 
2004a] 

Software for the actual A TR system [Sousa, 2004] 

Scenario infonnation, including number of platforms, expected look 
ranges, and number of looks collected [Gross, 2004a] 

12 



The results and analysis in Section 5 are based on the provided items above and their 

integration with the data collected within the simulation. Significant contributions of this 

research are 

• 

• 

• 

Conglomeration of over 500 GB of SAR data and sorting into usable sets 

MATLAB based simulation framework and implementation of the DLF 
algorithm 

Cmnparison of results based on simulated data and a modeled A TR 
system with results based on measured SAR data and an existing ATR 
system 

This research does not endorse use of the DLf algorithm, nor is it intended to 

demonstrate the accuracy ( or inaccuracy) of the ATR system. However, it does provide 

an unbiased analysis of the DLF algorithm in a real-time simulation based on conditions 

prescribed by AFRL. 

13 



II. Decision Level Fusion 

This section provides an overview and derivation of the Decision Level Fusion 

(DLF) algorithm. 

2. 1 Overview 

DLF works with the output of currently developed single sensor ATR algo1ithms, 

such as the RTMSTAR tool [Sousa, 2004]. The DLF algorithm provides a framework for 

combining the target identification (ID) of either the same or different sensor/algorithms 

over time and space. Each sensor performs preprocessing, including feature extraction 

and identity declaration, to develop a declared identity for the observed entity. Examples 

of decision-level fusion problems include: 

• Threat-waming systems (TWS) onboard tactical aircraft that identify threats 
[Steinberg, 1987] 

• Multiple-sensor target detection [Waltz, 1990] 

• Data processing for robotic vision [Lus, 1988] 

An advantage of DLF is that less detailed information is passed between multi-sensor 

platforms, resulting in low processing burden. The A TR ID and some historical 

performance knowledge are the only required inputs. 

More complex and processing-intensive fusion methods, including Attribute Level 

Fusion or Feature Level Fusion, may provide better performance in the long run. These 

additional methods should be explored in the future, weighing the costs of performance 

14 



versus processing efficiency. However, as shown in Figure 1, DLF approaches require 

the least single sensor information for operation and therefore pass the least amount of 

data between sensors. 

Decision • 
Level ··· 
Fusion 

• Presumes indepe11dent 
.. . . deteotion. c1ass 111oation 

: fo ea.i;n sensor domain 
··.· ::: ; •Combines sensor decisions 

ll?inQAND. OR'.Bool<":!,m, or 
: savesian 1nf0rcnoo 
• S1m;p1~st cornputat1on 

Figure 1. Comparison of different types of fusion levels [Gross, 2004a] 

2.2 Derivation 

2.2.1 Iterative Approach 

-· ,,,,,,,,', 

The derivation of the DLF algorithm is, by design, quite simple. It assumes that a 

priori single-sensor performance estimates are available in the form of historical 

confusion matrices (HCMs). The DLF is designed lo dechue target T; if this declaration 

is the most reliable decision that can be deduced from the single sensor. 
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The derivation that follows describes the most basic case, where two single sensor 

outputs are combined to declare a single target as the ID. The overall task of DLF is to 

estimate the probability 

P(T; I d1j,d2,J, for all i,j, and k. (1) 

where d1i indicates that sensor I declares target}, d2k indicates that sensor 2 declares 

target k, and I'(T1 I dlj,dz,J is the expression that the probability that target i is present 

given that these two declarations have occurred. By Bayes' Theorem, Expression (1) can 

be written 

Assuming that the prior probabilities P(T J are all equal allows Equation (2) to be 

simplified to 

(3) 

If it is assumed that sensor 1 and sensor 2 provide independent ID declarations, the 

joint probabilities in Equation (2) can be factored to yield 

P(dlj I T;)P(d2k I I:) 
P(T I d11 , d2,. ) = ""' , for all i, J·, k. (4) 1 

' L,P(dlj I T; )P(d2k IT;) 

The right side of Equation (4) is now in terms of the entries of the single sensor 

HCM. Each index in this matrix represents a probability ofJD for the given target (rows) 

versus the declared target ( column), which allows definition of the declaration rule for the 
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DLF. Let DLF(j, k) represent the DLF declaration given that sensor I declares target} 

and sensor 2 declares target k, and define 

DLFO, k) = 1~,, (5) 

n = arg max{P(T; I d1j,d2J}. 

The probability of target i is computed for all target declarations. The case that results in 

the highest probability is the DLF declaration as shown in Equation (5). 

The performance of the so-defined DLF can be predicted by estimating, for each 

target of interest T;, the frequency with which the single sensor algorithm makes the 

declarationsj and k, and then assigning the appropriate declaration Tn from Equation (4), 

to the DLF algorithm. These frequencies can be directly estimated from the single-sensor 

confusion matrices {CMs) based on the independence assumption. In particular, 

Thus, for each Ti the frequency with which the DLF declares each 1'j can be 

computed, and an estimate for the performance of the DLF in the form of a DLF 

confusion matrix can be derived [Cohen, 2005). 

The assumption of two single sensors obviously makes the derivation simple. This 

research uses only the two sensor approach, which is accomplished by iterative 

application after each new look. Thus, the first two looks arc fused to produce a single 

input into the DLF algorithm, the updated/fused look is then used in conjunction with a 

new look, and the process iterated until all looks are used or until the output produces 
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acceptable result,; for decisio11s on dispatching weapons. A second approach, the 

cumulative method is discussed in Section 2.2.2 

2.2.2 Cumulative Approach 

The approach described in Section 2.2.1 illustrates the simplest method, one in which 

each fused output acts as a single input. However, a more complicated and processing 

intensive method is described here. The cumulative approach allows for all the previous 

looks to he fused together when each new update is gathered. The derivation shown here, 

like that in Section 2.2.1, is theoretically simple, and attempts to take all biasness out of 

each new look. 

Starting with Equation 4 from above, it is shown that as additional looks are 

cumulatively factored in, the conditional probabilities simply expand to result in Equation 

7. 

P(d11 IT;)P(d2k II;)P(dn IT;)P(d4 k II;) ... P(dnk IT;) 
P(T I d1 .,dzk, d3k,d4 k , ... d_.) = L · 

' ' ,~ P(d . I T)P(d I T)P(d I T)P(d I T.)P(d IT) J J I 2k I 3k I 4k I nk I 

(7) 

From Equation 7, it can be seen that as more looks arc gathered the computation begins 

to grow very large. Although the output from Equation 7 may show optimal results, it 

has been bldicated that the gain in performance docs not outweigh the cost of processing 

efficiency. 
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2.3 Confusion Matrices 

Confusion matrices are used to display which targets are declared for which 

templates. A template is defined as a stored image within an A TR system database that is 

the result of averaging multiple target images over an aspect range, providing an expected 

match to the target images available. Herc targets, or truth, are displayed in rows and 

possible declarations, or templates, are shown at the headjng of each column. The values 

for each index in the matrix correspond to the ratio of how many times the truth is 

declared the template out of the total number of data samples for a particular truth target. 

The confusion matrices used in this research represent the historical performance· of 

the A TR system. To compute them, data from each target is passed into the A TR system 

and compared against the available templates within the ATR system. Six total targets 

are used in this research. The ATR system contains templates on only four of these 

targets, leaving two targets without a template match. The two unmatched targets are the 

Not-In-Library targets described in Section 3.3 

Confusion matrices often are used to describe the performance of an A TR system 

over the entire set of data. However, because it is well known that ATR prediction 

performance is aspect and depression angle dependent, for this research all data is divided 

into six aspect/depression regions - three at nine degrees depression and three at sixteen 

degrees depression. Each aspect region is based on the assumption of target symmetry, 

where it is assumed that targets are similar from the front and from the back, producing 

the head on/tail on region (HO), and that looking at the right side of a target is equivalent 

to looking at the left side, resulting in the broadside region (BS). These assumptions 
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leave all other targets grouped in the off-axis region (OA). Figure 2 illustrates the 

breakdown of aspect into the three regions. 

[:::=:J Broadside 
1111111111 Off-Axis 
C:J HeadfTail On 

Figure 2. Aspect angle breakdown by region 

A diagram illustrating the re.suJting six confusion matrices from the aspect and 

depression comhinations is shown in Figure 3. The data used throughout this research is 

discussed in Section 3.1. 

20 



templates templates templates 

(/) - HeadfTail (I.) 

El @ - 90 
~ -

t/1 - Broadside (I.) 

e @ - 90 
~ -

Ill - Off·Axis (I.) 
C) 
~ @-90 
~ -

templates templates templates 

Ill - HeadfTail (I.) 

El @ -1 6° 
! 

Ill - Broadside (I.) 

e @ -16° ~ -
(/) - Off-axis (I.) 

e @ - 16° 
~ -

Figure 3. Confusion matrix illustration by aspect/depression regions 

The measured depression angle is dependent on data collections, and the collections 

of interest are chosen based on their expected depression angle. The scenarios of interest. 

to AFRL require multiple looks from multiple platforms. Therefore, data chosen al a 

high depression angle ( 15° - J 7°) represents a ne,u· range look, and data chosen at a low 

depression angle (8" - 1 O") represents a long range stand-off distance. 

Once all the data is run through the ATR prediction system, the training-based 

confusion matrices (which act as historical performance indicators or HCMs) for each 

aspcctldcpression region arc created as shown in Tables I - 6. These tables arc the 

underlying performance indicators used throughout the DLF simulation based on 

measured data. 
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Table 1. Head/Tail On confusion matrix at 9° depression 

no:8: : :Ja:soizJ: ?J1mm.1 ::u:::~ :::<::: rJ:::::isu: :: :D.1mgrn:11 
'BJUlffl2Iff iJJ!:!m5;,~ij 0.0000 0.0000 0.0046 . U.4198 
:atrttotrJ 0.2344 tt'tttiw.11: 0.0039 0.0469 • o.osos 
m u:t@J<· 0.0099 0.0000 ., .. , .. o-iezes. 0.0596 0.0099 
zsJ;iJ>n=inx 0.0000 0.0186 o.2a14 m:::nuitni o.QW6 
!BI-tt:t 0.0000 . 0~4169 o.3333 o~oso9 o.1389 

Table 2. Off-Axis confusion matrix at 9° depression 

'oA 9 a:an&12· ·····,···ar ,10 · ·•• • tt2 ·· ······· ·····2srr ········. ·11nr;·, ·· 
!B:RUMZHtn:niniijttl 0.0145 0.0000 0.0000 . 0.3382 
"'s·· Ti n,70··.,x~· O 0•~01 ltto·· :::;o~~ 0.05.19. O 0376 · o· 0231 ,' '_cyf , • u ,:,:::,:,:,;,::;,,,:.i~ ~~~::: .... • • 

nz :•:itHt 0.0'147 0.0189 . UtH9U® 0.0063 • · 0.0000 
izsu:r • ··· 0.0346 0.0035 0.1626 ::rnt(hffltU:1 

• • • 0.01n 
!ffJt;);faJjiffi 0.0000 ·0.7174 0.2500 0;0000 0.0'326 

Table 3. Broadside confusion matrix at 9° depression 

!ftJliili!&¥d 0.0000 0;9612 0.0243 O;OOOO 0.0146 

Table 4. Head/Tail On confusion matrix at 16° depression 

ia9.rmr::11 .J11001Mzm A::ttratoji rn===::a r:r:: ,rtrzauJffii: : '." :: . ~~i.!IiI: 
0.084:4 
0.0021 
0.000.0 
0.00.00 
0.1497 
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Table 5. Off-Axis confusion matrix at 16° depression 

:.O.~il6:i ·"·.· ·=:SROMZP /,6Il7(b 
•,B:RD.M2:::=. ,, .. :;;,QJt5!ffl 0.0122 

0.0000 
;,nuc;,:::,;,;,;;;,;;:;;,:, . . o..oit6o . o.s161 0.1303 0.0000 

Table 6. Broadside confusion matrix at 16° depression 

0.1176 O.OODO 0.0107 0.0000 
0.0121 0.0012 

ffi\i 0.0000 0 .0086 . 0 .0000 
0.0000 0.2834 >o:G.952 0.0,000 

!Nlt.U.U. .... LU.T. o .0330 0.9104 0.0519 0.0000 0.0047 

2.4 PID vs. Reliability 

Probability of Identification (PID) requires that the truth be known. Testing a system 

for the average PID over a set of targets is acceptable as long as the results arc used to 

form conclusions on the usefulness of the system. However, during simulation and 

demonstration of an ATR system another metric is needed, one that is independent or 

truth. Here this metric is referred to as a measure of reliability (REL). The difference 

between PID and REL can he seen from the sample confusion matrix shown in Figure 4. 
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0.0000 0.0000 0.0000 0.0000 
0.0000 0.0330 0.0025 0.0736 
0.9958 0.0000 0.0000 0.0042 
0.0000 0.9604 0.0000 0.0020 
0.0319 0.0895 0.8606 0.0096 
0.0000 0.0479 0.0000 0.9178 

RELss"" .84771(0.0 + .8477 + 0.0 + .0277 + .0032 + .0342) = .9287 

Figure 4. Definition of probability of ID (PID) vs. definition of reliability (REL) 

In the confusion matrix of Figure 4 the rows represent the target set and the columns 

represent the templates used in the experiment, and, for example, the A TR system 

determines the target of interest to be in column 2. The REL for this single sensor look 

evaluates the U,J) index ofthc confusion matrix, where} is the index of the single sensor 

declaration, and divides by the sum of the entire column to obtain a REL of .9287. 

Probability of ID is calculated by evaluating the (t, j ) index of the confusion matrix, 

where tis the row corresponding to the truth target, and divides by the sum of the entire 

row. Here (as in all confusion matrices shown) the confusion matrix is normalized by 

row, and therefore the sum of the row is 1, resulting in a PID equal to the value of the 

(t, j) index itself. 

In a perfect sensor/ A TR system the PID and REL values arc both equal to 1, in 

which case there are no errors, but values greater than 90% are generally considered 
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acceptable. The DLF algorithm described in this research attempts to maximize REL, 

sometimes at the sacrifice of PID. 
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Ill. Data and ATR System 

This section considers the data sets, including test/template separation, not-in-library 

targets, and the A TR system. 

3. 1 Data Sets 

Data used in this research was gathered based on available targets, type of collecting 

sensor, and relative depression angle. The initial goal was to use SAR data from as many 

identical targets as possible. To demonstrate the AFRL test plan, data must be collected 

for all targets in two distinct depression regions and must cover the full range of aspect 

angles. The process of gathering data and sorting available sets Jed to the initial 

detennination of targets of interest. Similar vehicles were available in each of the data 

collections described, but only vehicles that were consistent in each of the sets were used. 

The targets of interest were the 2Sl, BRDM-2, BTR-70, M978, T-72, and ZSU-23/4, and 

data from the following collections was obtained: DARPA Sponsored Moving and 

Stationary Target Acquisition and Recognition (MST AR '95 and MST AR '96), Dynamic 

Database - Multisensor All-Source Data 1998 (DOB-MAD '98), and AFRL sponsored 

Affordable Moving Surface Target Engagement Moving Target Feature 

Phenomenology (AMSTE-MTFP). From this list, data from the two MST AR collections 

provided the high depression region (J 5°-17°) and data from MTFP and MAD '98 

provided the low depression region (8°-10°). 
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3.1.1 MSTAR 

The MST AR program has had three separate data collections. Data for this research 

was from both the MST AR '95 and MST AR '96 collections. All data was collected using 

the Sandia National Laboratory (SNL) STARLOS sensor operating at X-band at two 

separate sites. First in August 1995 Scud (surrogate) data was collected at Estancia, NM 

and had just one scene with two Scud surrogate targets in various articulation states. 'The 

second part of the collection was at Redstone Arsenal, AL, where data was collected over 

several days and had three scenes, each scene with 18 targets (12 target types) in various 

states of articulation, camouflage, and obscuration. In addition, clutter imagery was 

collected in the Redstone Arsenal area. Data from this collection was at both 15° 

depression and 17° depression, and targets of interest for this research from this 

collection were the T-72 and BTR-70. 

A second MSTAR collection was in November 1996 at Eglin Air Force Base, FL, 

and contained baseJine data on nine additional vehicles at a wide verity of squint angles 

and aspect angles. As in the first MSTAR collection, the SNL ST ARLOS sensor was 

used, and nearly all other operating conditions were the same. However, the addition of 

several vehicles made this collection important for this research. From the MSTAR '96 

collection, data for the 2S1, BRDM-2, BTR-70, M978, T-72 and ZSU-23/4 were used in 

this research [Fitzgerald, 2005]. 
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3.1.2 AMSTE-MTFP 

The objective of the AMSTE-MTFP collection that took place at Eglin in 2000 was 

to obtain high range and Doppler resolution data and ground truth data on moving 

military targets to support the analysis and exploitation of target features for feature aided 

tracking. This collection used the Veridian/Gencral Dynamics DCS sensor to collect the 

SAR data. All data was collected at full 360° aspect ranges and at a depression angle of 

8° or 10°. Of the nine targets·in the collection, data for the 2Sl, T-72 and ZSU-23/4 were 

used in this research [Fitzgerald, 2005]. 

3.1 .3 DOB - MAO '98 

Similar to the AMSTE-MTFP collection, DDB-MAD '98 data was collected using 

the Veridian/General Dynamics DCS sensor at Eglin AFB, FL. All data from DDB

MAD '98 is in a depression range between 8° and I 0° and contains data for over 40 

targets. Many targets have different configurations and articulations of 25 vehicle types. 

As is the case throughout the data in each of the collections described, any target for a 

particular vehicle that is visually similar to other configurations for that vehicle is 

grouped to form the entire data set. Thus, although the serial number or configuration of 

the T-72 used in the DDB-MAD '98 collection differs from that of the T-72 used in the 

MST AR collections, for this research they are grouped together. The scale of this 

collection allowed for data from all 6 targets to be used [Sensor, 2005]. 

Figure 5 provides images of all the targets used in the experiments and shows some 

of the subtle differences present in like targets with different serial numbers. 
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Figure 5. Target photo collage 

Table 7 shows all the data used by aspect and depression regions. Although some targets 

arc heavily populated with data, several targets arc data limilcd in certain regions and 

therefore may not be sufficient in providing statistically significant information. 

Table 7. Complete data summary of targets used for DLF verification 

. t;:_<;>.~f-~-~!g~ _iyl<_3tri>< p~p~l-~~-i.~.9. -~-~~~ ...................... . 
brnadside hroailside henditail on head/tail on I off.axis off.axis 

Vehicle Name 9·• chips 16° chip~ 9• chips 16" chips 9• diips 16° chi1>s total chi is 
BRDll12 177 211 2!i7 261 243 286 '1435 
BTR70 128 856 289 995 394 1077 
TI2 J81 612 547 722 505 
,ZSU 491 212 473 261 
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3.2 Test/Train Separation 

To ensure that the algoritlun is not trained on data it uses during testing, all available 

data is separated into two groups. The test group is used during the simulation and in the 

ATR system. Additionally, a train group is used to create the Training Confusion 

Matrices (TCM) and consists of the excess measured SAR data. The test group is 

selected from all data by choosing 100 data chips for each target in both the 9° depression 

region and the 16° depression regions. To gather the 100 chips from each target in each 

depression region, all data for each target and depression region is binned according to 

aspect angle. The first bin contains any data with an aspect of -1.8 degrees to 1.8 

degrees, with each of the following bins covering 3.6°, resulting in 100 bins. Within each 

bin a random data chip is selected. The selected chips, 100 in all for each depression 

region, form the test group. Figure 6 shows a histogram of all available data of one target 

in the 16° depression region. 
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Figure 6. Histogram distribution of data samples 

Initially the test group is created by selection of the data sample closest to the center 

of the bin, so that of all data available (nearly 13,000 chips) only 600 are used. Two 

issues with this test group are, first, cases where there is no data in a particular region 

(such as near 270° in Figure 6), and second, increasing the test set given that only about 

5% of the data is used for testing. 

To address the first issue the search for the random chip is simply expanded, which 

is necessary in several target depression combinations. The other solution is a Monte 

Carlo selection where the separation process is enhanced by allowing the chip selection 

process to be redone any number of times, thus enabling the use of a different test set for 

each test run. 
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3.3 Not-In-Library Targets 

This section considers issues related to not-in-library targets. 

3.3.1 In-Library Targets vs. Not-In-Library Targets 

As described in Section 3. 1, the targets used in this research include the 2S 1, 

BRDM2, BTR-70, M978, T-72, and ZSU-23/4. Data from each of these targets are 

collected and processed through the A TR system. However, there are two categories of 

targets of the six listed. The BRDM2, BTR-70, T-72 and ZSU-23/4 are considered In

Library targets. These are so defined because the A TR system is trained on these targets 

and therefore has templates for matching. Not-In-Library (NIL) targets act as confusers 

to the A TR system, thus providing valuable information regarding how the ATR systems 

handles targets that it has no prior experience in identifying. 'The remaining two targets, 

2S I and M978, are NIL. The NIL targets do not have corresponding templates that the 

A TR system has been trained on, but are declared by the A TR system to be one of the In

Library targets due to the forced decision nature of the ATR system. The NIL targets 

used as inputs are considered here as "NILs by target". Another type of NIL target class, 

"NILs by threshold", is described in the following section. 

3.3.2 Not-In-Library by Threshold 

One of the outputs of the A TR system for each chip being processed is the score 

metric. Although the score metric can be changed to optimize different criteria, for this 

research the metric is restrained to the Classification Logic Test Statistic (CLTS). The 

CLTS is a linear sum of several other scoring options and consistently produces the best 
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overa11 PID compared to all other metrics when applied to the MST AR data sets [Sousa, 

2004]. The score is then compared against a set threshold to determine if the target 

declaration is retained or declared a NIL. If the score is below threshold, regardless of 

the declaration by the ATR system, the target is called a NIL. 

Figure 7 shows the sample output of the ATR system. A score metric is computed 

for all available templates compared to the input data sample, where the highest score 

detennines the declaration of the A TR system. ln the case shown, if the threshold is set 

below .779 the test chip is declared a BRDM2, otherwise the post-processing step 

declares a NIL (by threshold) target. 

target d.i sor i.min.at ion so ore BRDM2 232 . 000 -- 0 . 779 
target discr inliriat 10.n score BTR70 48.000 -- 0 . 599 
target discrimination score 2Sl 228.000 O.S13 
target discrimination score ZSU23-4 42.000 O.S13 
target discr:il'tlination score T72 4.2.000 0 . 513 

•, 
Stage Timings: 0.230 0.090 0.030 0.050 0.170 0.000 (0.570) 

" << Hetric: labels complete . >> 
Suc:cessfull y 

Figure 7. Sample output of the ATR system 

The difference between the types of NIL targets can be summruized by examining 

relevance within a confusion matrix. In a standard confusion matrix the columns indicate 

the templates and each row represents a truth target. A row indicated by NIL refers to 

NIL by target since it is known that the truth target must have been either a 2Sl or M978. 
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However, the column marked by NIL indicates that the best template match had a score 

less than the determined threshold. An example confusion matrix is shown in Table 8. 

Table 8. Sample confusion matrix 

.ij$\1~":'J :" Bm1Miit UI8:il0ff'c, Jx2::.,.i&ii@izs:u<.::...::t:: lfiUJ!BI 
BRb.M2; UWf:168 o. ·1090 0.0041 o .0095 o.oooci 
.fff.R70U'') 0.0012 .. ,\O.i9:6$.5' 0.0·16·3 0.0128 0.001:2 
J:ii=fHHHt 0.0000 0.0119 <> Pi'7tffl: o.ooa2 0.0000 
:ZS:U/%\,A 0.0189 0.0000 0.2736 JfJ(UlQ7i 0.0000 
!Mt~\¢1Ntfr • : . p.~11a:1 · · QJ944 · 0.1612- · o;oq.Qo: 0.0251 

3.3.3 Threshold Determination 

As described above, the t hreshold plays a pivot.al role in NIL determination. If the 

threshold is set too low, too many of the NIL by target inputs result in false positives [or 

the In-Library targets. Likewise, if the threshold is set too high, too many correctly 

identified targets are declared NIL because the sco re is not high enough. There arc 

several approaches to selling the threshold, hut for this research, where priority is on 

maximizing the probability of correct idcntif'ication ror the In-Library targets, the 

threshold is c hosen to be two standard deviations below the mean or all a vailablc scores, 

resulting in a threshold or .6053. To verify that this value is reasonable, Figure 8 shows 

that near .61 a d iffere nce in targcls correctly identified from targets 111isidcnlified as NTL 

begins monotonically increas ing. 
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Figure 8. Graphical verification of statistically determined threshold 

Figure 8 shows the difference in errors in determining NIL by threshold ,rnd by 

target. The y-axis is the absolute difference in the number or times a target is declared 

correctly but (due to a low score) is called a NIL and the number of times a NIL by target 

chip is not caJled a NIL (because of a high score). 

Ta.hie 9 also shows the effects of changing Lhe threshold values compared to the 

baseline, where the Lhreshold is set to zero. 
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Table 9. Threshold effects on confusion matrices 

-······· . ....-....... , . .. . ,, . 0 • · ., . ····~ ""' :a;!lt'i'"' .... ~·-·.-.- 0·11>'>~· 0 •1 i· · ' " ,,, !· · ·· c- . '"f'"( e"mf({b . · · 0,0»5'.i . .5 ,:m lU104. . tl;!!lb2 0.(fo., ?. ,m~itt::ft •· · , v,:,.;, • ..-w t Ji I). ,,W.i; i · · \).2;.,(l,J: tu;.,u:.s - . ' -- ~ 

~ ~ ~ - ~ ~ . ~ ~9~ ~ ~ ~ ~ ~ ........ - ~ ~ ~ -

WY~<:+Jt{Rot42mr ttMb.:::::Jnts:rm+ tttmtt:n :mmnwmmm: lWKw+::immmtt etijt.~t=:: .m ::t(n::,, · · 1wa: 
):!tmMUi: (!, {i;.~~~t lUlU•Jff tJ.OlllliJ (J.0'11~ IJJJOOO ):BRnt&/ l.b1Ml tU)UIJO OJ.lQOiJ! •.i.101:t. O.MtlO; 

T - ·~ .. ().i.5:17 t/m~t:Wi 0.00<,7. O.OG5;. 1)~1)000 ~ff:rifr~Tif t).1).161., :,fJt,1~~ O.<J(i'.17! O.oz9; t).0000 
- '.!'ii ·:·: -·ti"Ont? 0 0000 ,: ll'm~:i: ti°~ 0 (t@•Pt1t: ' ,> O.Oll(ii; 0 OO(i(t t::1HiUJ, ~ ·tY tHi@O • 

.oooo W'lF':':i/ :.::.::,;to""\ ···Juiiii.C.'"iiiiiii1 er(t'~\ ··~ii";· ~i'M!Nt ·····o·f,·i-~ ::i,t[;,· "':iftfi/ ?\i°v\ ....... i'.ir· .. £ 
16 ~ Wt 0.01!)2 osmi OJ2H O. IUJ'I ().llt)OfJ ffimtl: ..... : 0.105:!: o.~s~a :(J;U~6 1),2'JfJ· Q.0000 
~ - - - - - - ~ ,.,.._ ... _ .I'.-...,. - - - ~ - - - - ~ ............... -r:-- -- - -........., 

Nils by Target (2S1,M978) I L------ -
,A,,v~,,~,,vv ~ AA,,vv , ,A,,vv,AAl>YY\\AJIV V\AA JIYY\,~,, 

1 Nils by Threshold (Score< T) [ 
...... .,. .... ~ .. )6':t(, - ~,.,.,. " . .... (II ~ ,,.., .. ,,:-,:. ,~ ...... ,,:, ,:.,c ""),),)~~""" .. ,..,JI, 

Table 9 displays conJusion matrices over the same aspect/depression regions al 

several different threshold values. The baseline case, with T = ().()00 illustrates the forced 

decision nature of the ATR system. As the threshold is increased many calls declaring 

targets BTR-70 and ZSU-23/4 arc pushed to the NTL column. The other extreme is al 

T = 1.000 (not shown), which would result in all targets being placed in the NTL column. 

3.4 A TR System 

This section describes the ATR system, including its setup and its outputs. 

3.4.1 Description 

The ATR system used for this research is a model-based system that aims to achieve 

accurate and robust performance in unconstrained scenarios. The syste m is designed to 

locale and recognize military targets in SAR imagery. The scene conditions are realjstic 
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situations characterized by • .u-bitrary viewing angles, variable radar squints, variable radar 

depression angles, modest obscuration levels i11 both flat ,md hilly terrain, and multiple 

target configurations and articulations. Figure 9 gives a general overview of the 

representative ATR system . 

. tt l~dips 

.. a.Jr: TagtCa1s 

· Ft~tFtedd 
• SrEmlined <rine 

f~l]'OO:!SSiS 

paakfi?itie 

··~ 1~m 
~ :JJ~f ;ft:jc, 

Figure 9. General overview of characteristics of' the A TR system [Sousa, 2004] 

A central tenet or the ATR system is that the combinatorically large number or 

targets, sensors. and backgrounds found in real istic scenarios precludes the use of 

algorithms that rely on a priori measu red images. Statist ically significant amounts of data 
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may not be available for template based ATR training. The system architecture is thus 

designed as a hypothesis and test paradigm in which scene hypothesis arc generaled and 

refined based on the degree to which lhe viewed imagery supports the model based 

hypotheses I Sousa, 20041. 

3.4.2 Processing Setup 

The ATR system was developed and tested on UNIX based computer systems. 

Therefore, the first task arranged for an ability to pass data back and forth between a 

Windows based workstation and the UNIX based ATR system, which was accomplished 

by setting up a networked file transfer protocol (FTP) between the two computers. The 

data was stored in a directory structure on a workstation by target followed by 

subdirectories for depression region and lhen another subdirectory that isolated aspect 

region. Figure IO illustrates the di.rectory structure. 

W:\.ll\ARSTfullset\BTR70\ho\dep_9 :·~ (§Go: 
Folders 

FIRSTf~et 

*' C2St 
1: :;,;: 8RDM2 
~: { Ji BTR70 

:+: :,;J ollch,P< 

't' :,.:) bs 
:a: :: .. J ho 

:;.:;;- clep_9 

:i-, ,::·::i othe, 

:):: i;) te$t 
:t: Herntt 

:;;: SCUD 

:-t: ::,.J T72 
~, :,'.) zsu 

X j . ~ DlS102622_005.phx 

P ··: [[ill ] '.\"::',,' ! ,~'] ~\~1~:~23_005 phx 
1.=.J :.,:::::···: 

f .. \ D1S102623_007.pnx 

)1]_) \.;,/ ! rmfJ ;\5):r2i_OOS.phx 

r· ····~ D1Sl0262i_007.pnx 

!_[ill]_! ::;::-;-;:,-
!'""":··:; DL510262S_OO?.phx 

I.~ ):\/' 
! ...... · ~ 01s102620_00,.phx 

: i :.rm1.i :\\\' 
;~~ DL5102627 _007.phx 

!.~.] '.\\'.\' 
j' :'1 DI 5102629 _007.phx 

!. TI] : \:\ /'' 
-~<.: 

,~;..,. .......... , .. , ........ :::,.,.,.,:,.:::,:i::::i:,.,,:,,:.,::,.,,::c,::,:,:, ....• , ... E ::, .. J.:.;;,,\ . .P)~l.9?;~,_097.:p,n~ ...... . .. ::.~:.}\ P.1.s1~.~ii~I,.,90?,Ji.i~., .... ....... .. . 
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Figure 10. Directory structure setup for measured data 
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With the directory structure in place, scripts were written within UNIX shell scripts to 

process all chips for each target at the specified depression and aspect regions. 

The most efficient way to proceed with the experiment is to process all available data 

and save the results, which allows for the data set to change and also enables an efficient 

process. The processing of all chips takes over 10 hours. If all available data is 

processed, all the code needed to run an experiment can be written entirely in MATLAB. 

With everything running from the same software, the simulation has a much more 

realistic flow and can be done in one simple execution step. 

Before the data is applied to the ATR system, several issues had to be addressed. 

Problems arose when either the DOB-MAD 98.or AMSTE-MTFP data was passed to the 

A TR system. Data collected under DDB-MAD 98 and AMSTE-MTFP was co11ected in 

the form of Video Phase-History by the DCS sensor and processed into National Image 

Transmission Format (NITF) lritzgerald, 2005]. This data format first needed 

conversion to Phoenix format (PHX), in which header information is stored as text before 

the image data in a binary format, for the ATR system to read the data. Initially this was 

a simple task that was accomplished using a conversion tool developed by the AFRL 

Sensor Data Management System (SDMS) group [Fitzgerald, 2005]. The conversion 

updated the header into the Phoenix style, but there were differences in field names and 

units that needed resolution. For MST AR and AM STE-MTFP data results were very 

good. However, it was determined that the current data from the DOB-MAD 98 

collection had a convention difference in determining how the platform collected the data 

from the MSTAR and AMSTE-MTFP. By rotating the data 90° the chips were finally 
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ready to be processed by the ATR system to produce the confusion matrices used 

throughout this research and shown in Section 2.2.1. 

3.4.3 Outputs 

The outputs from the ATR system include the truth target, the declared target, the 

actual pose angle (aspect), tlhe estimated pose angle, and the metric score. After all the 

data is run through the ATR system a text file is created, where each row of text 

represents the results of one chip. This master text file is then parsed into individual files 

for each line. These output result files are then stored in a directory structure similar to 

the raw data (separated by target/depression/aspect). For each target the filenames 

representing each individual chip reflect the aspect angle of the actual measured SAR 

chip. With the data stored in this fashion the simulation can easily query the folder of the 

individual target for results at a given aspect and depression. 
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IV. Experimental Setup 

This section describes the experiment scenario along with the simulation framework 

and the DLF flow. 

4.1 Scenario Description 

A simple case is considered where two fighters are flying in tandem. Each platform 

is offset about the target, with headings such that the target is centered. When the 

platfonns _arc within 50 km the SAR sensors are turned on and the first look is gathered. 

While this look is processed the platform diverges by 15° from its current path, and when 

the target is within 30 km a second look is gathered from each platform, resulting in four 

total looks - two from each platfonn. Figure 11 describes the process. 
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Figure 11. Scenario description 
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The divergence after the first look allows the platforms to gather target SAR data at a 

significant aspect change (a change of greater than 10°), which is important because 

perfonnance may depend on aspect angle. By gathering data at different aspects, a wider 

range of search criteria for the A TR system is examined, and independence between 

looks is guaranteed. For this research data collected under AMSTE-MTFP and DOB

MAD 98 collections (8°-10°) is used to represent the 50 km looks, and data from the 

MST AR collections (15°-17°) is used to represent looks gathered at 30 km. 

4.2 Simulation Flow 

This section describes the experimental cases. An experiment can be run as a single 

case, where the test chips are evaluated by initializing the target heading incrementally, 

or through a Monte Carlo setup, where multiple test sets are used. Here 'iteration' is 
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defined as a four-look DLF process, where the target and the corresponding heading arc 

kept constant. Likewise, a 'run' is defined as the process of cycling through each target 

at each heading for a set of test data. To verify the DLF algorithm two types of 

experiments are performed. First is the simulated experiment, which uses simulated data 

and an ATR model used in the initial DLF development. The second experiment uses a 

real ATR system with measured SAR data. In both .simulated and measured cases. the 

framework remains the same and is shown in Figure 12. 
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Figure 12. Simulation framework flowchart 

4.2.1 Simulated Experiment 

For a simulated cxperimc nl no measured data is used. The dala comes directly from 

the HCMs described in Section 4.2. 1.1 , und the ATR system is a simple probabilistic 
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model that bases Largel declaration on the probabilities of the confusion matrices and 

compares them to a random v,uiable between zero and one. The ATR system model used 

in the simulated experiment is described in detail in Section 4.2.1.2. The only difference 

between the simulated experiment and the real experiment is that the modeled ATR 

system is exchanged for a real ATR system and estimated data is replaced by measured 

SAR data. 

4.2. 1. 1 Confusion Matrix Estimation 

Key to DLF is reliable estimation or sensor/ATR performance. As described in 

Section 2.2, DLF is based on confusion matrix results. The confusion matrices used in 

the simulated testing of the DLF algorithm arc based on historical performance over SAR 

data for a general SAR scnsor/ATR system. Examples of the simulated confusion 

matrices used are shown in Tables 10-15. !Gross, 2004bl 

Table 10. Head/tail 9° historical confusion matrix 

0.0000 
0.0000 0.1500 
0.0000 . O.OSQQ 

OJ1500 
-OJIQOO 0.5250 

Table 11. Broadside 9° historical confusion matrix 

:JJ$\ijjf J [B'Rtifflf?\I !i!iiliifb?JJ W2::::r::r:JJ: zs.U/Jf :J:::::: !llmlli@t 
:amnfi ttJ: +:nnm~:oon 0.0000 0.0000 0.0000 : · 0.2000 

0.0000 0.0000 0.20.00 
: .OJ!.QQ,Q; 0.1000 0 ... 000 

•zst, m:: >: 0.0000 0.0000 0.3000 ·o:ssoo 0.150.0 
0.0000 0.0.500 0.7750 
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Table 12. Off-axis 9° historical confusion matrix 

:qpf:~tf: :;:,,,:,, JlJ:aoM~Jj!:i ITRZO{i]( ¥f:2)])!]/J :it{ij , , :< :::: , • 

,ar11r.o:+u:+ 0.0100 :n>,::::01150:0 0.0000 0.0000 o.oa.oo 
0.0000 o.nsso t:ltP(f!Qij:Q: 0.0000 · · · · QJ1500 
0.0000 0.0000 0.1000 .· ., 9~~49..A 0.1000 
0.0250 : 05000 0.0000 · O;OOOO 0.4750 

Table 13. Head/tail 16° historical confusion matrix 

0.4100 

Table 14. Broadside 16° historical confusion matrix 

. BS: 10; }/ .8ROM2 /,:, 'i:l:ri{ZQ,: ::<•:: ]12: :::;:,, ::::;, ZSll:JHiiir Bllttm::rrirn 
i:B.f.Wfj1J!tft it~ ItlttlSSit o .0000 o .0000 o .0000 o .1020 
BT:RtfJV,t, 0.1780 , .. Q'iill-0 0.0000 0.0230 0.1160 
T12:, 'ti= 0.0000 0.0000 :mamttr o.1s20, o.uooo 
.ZS.lk... 0.0000 0.0000 0.3270 /'\iJ)l$9.1.Q~ 0.0820 
!BJJtij@iWW 0.0610 · 0;0710 0.0000 0:1330 0.7350 

Table 15. Off-axis 16° historical confusion mat rix 

OA 1:G~: : : .8lmf¥1.2:=::: 6JR7:0 .. 112: ,,:,,,, ,,:,:,: ZS.:U,:JL?:J ID!MI/]t]( 
BR.DM2::\ l\IHl'.a'liJO 0.0330 0.0000 0.0000 · o.on o 
Jffft'li!l#hl 0.0580 {)\Q:($7Jiji 0.0000 0.0000 . 0.0700 
:Tr.z:r:n:rn 0.0000 0.0550 f · 0.9240 0.0110 . 0 .0100 

:~~UMlb::::: 0.0000 0.0000 0.1000 t?JthS.OJOI 0.0000 
lNU!lfallM : · • • !l.0320 0.5920 0.0000 o.o·rno 0.3600 

The tables show the performance of the ATR system when used with SAR data. One 

difference between Lhe estimated confusion matrices here and the confusion matrices of 

the measured data (Tables 1-6) is that the latter show performance based solely on the 
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data available while the CMs shown in tables 10-15 are estimates of the actual sensor 

performance without regard to the characteristics of the measured data. 

4.2.1.2 ATR System Modeling 

The model used for the ATR system is a probability-based predictor with a random 

threshold. When used with historical confusion matrices, which also arc probability 

based, all needed information is available. The first step is to randomly define a 

minimum probability threshold, which allows fo r the possibility of mis-identification and 

the inherent presence of error. Once the threshold is set, the model examines the row of 

the confusion matrix corresponding to the selected target truth. The process 

incrementally moves across the row, summing totaJ values. When the sum exceeds the 

threshold, a declaration is made corresponding to the current column [Gross, 2004al. 

Figure 13 illustrates an example case processed by the model ATR system and used in 

the simulated experiment. 

RV < 
Stm Tot 

: ra'igBt 
. Declaration 

vf; ;tl-,- -~ '!i 
'( ij~': 0 ~~ 

Figure 13. Modeled A TR system flow and example case 
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This illustration indicates that the model is likely very good if the historical 

confusion matrices arc perfect. Since real world characteristics such as clutter and signal 

to noise ratio cause unforeseen error in image based A TR systems, the model docs not 

perform as an actual system. Verification using measured data and a real ATR system is 

needed. 

4.2.2 Measured Data Experiment 

The framework described at the beginning of this section and the flow outlined in 

figure 12 remains the same when measured SAR chips are used as the input data and 

replace the simulated confusion matrices. The A TR system is also altered by replacing 

the modeled system with a fielded A TR system. In the following sections the process is 

described for measured data and a real A TR system. 

4.2.2.1 Single Test Set 

For a single test set, the geometric scenario is run for each target at each angle, 

which is accomplished by simply rotating the heading of the target by 3.6 degrees for 

each iteration. Due to the geometry of the scenario, when the target heading is kept 

constant throughout one iteration, each look (of the four total) is at a different aspect 

angle. For the long range looks the aspects angles arc offset by 60°. For the second look 

from each platform the aspect angle changes by 15° and the overall offset of the near 

range looks is 90°. 

A single test set experiment is completed when each of the 5 targets (BRDM-2, 

BTR-70, T-72, ZSU-23/4, NIL) is initialized at the heading increments, each with the 
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same test set, which results in 500 iterations, or one run. However, perfonnance and 

validation should not be based on such a limited sample size (500 chips) - especially if it 

is heavily dependent on the test data. Thus an expansion of the data set into the Monte 

Carlo scenario is made. 

4.2.2.2 Monte Carlo Scenario 

To overcome instances where a single test set is chosen such that the confusion 

matrix results for each test s:et are dissimilar to that of the training set, a Monte Carlo 

scenario is used. A simulation run in Monte Carlo mode takes over 10 hours to run the 

entire scenario if I 00 different test sets are considered, but a better representation of the 

results is obtained. The Monte Carlo version of the simulation chooses a new test set for 

each run. Once the test set is chosen as described in Section 3 .2, aspect/depression region 

training confusion matrices (TCM) are calculated, and these TCMs are then used in the 

DLF algorithm. After the completion of each run the test set is reset and the process 

starts over. 

The Monte Carlo method is the method of choice and generates the results of Section 

5. Variations in case by case results are obvious, but by combining results of many runs 

(100), most of the outlier data points are masked by the law of averages. The results 

reflect a more general case than if the randomly drawn test set does not coincide with the 

historical performance of the A TR system. 
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4.3 DLF Flow 

The DLF portion of the simulation is performed within each iteration. The 

simulation processes the looks in sequence, where the first fighter gets "Look 1 ". The 

first step is to calculate the aspect angle from the platform to the target. Once the aspect 

angle is calculated, the data chip to be read from the results database is known. Each data 

file contains information that is saved during processing in the A TR system. From each 

file the truth target, the target declared by the system, the actual aspect angle that is the 

basis, the aspect angle estimated by the ATR system, and the scoring metric value are 

read. From this information the declared target determines the target ID, the estimated 

aspect angle for the lookup determines which TCM is used, and the scoring metric 

determines if the target is called NIL. The TCM that contains the estimated pose of the 

measured data is then stored as the single sensor confusion matrix. However, for this first 

look the single sensor results also represent the initial DLF result. Therefore, the ATR 

declaration for the single sensor look is identical to the initial DLF identification. 

Once the first look is processed, the second platform has a first look at the target. A 

process similar to that described above allows the second platform to obtain single sensor 

results . In this case and those that follow for look 3 (from the first platform again) and 

look 4 (from the second platform), the single sensor results are fused with the previous 

DLF results using the method described in Section 2.2 to produce an updated DLF 

output. After the completion of look 4, the resulting DLF identification is used as the 

final decision. The flowchart of Figure 14 describes a single iteration using the DLF 

algorithm. 
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Look 1: 
Look1.P1D 
Look1.REL - ..-

Ir ~ 

DLF: 
Look1 
Look2 

... 
DLF: 

Fused Output 
Look3 

... 
DLF: 

Fused Output 
Look4 

TARGET ID= X 
PIDdlf - XX.X 
RELdlf = XX.X 

Look 2: 
Look2.P1D 
Look2.REL 

Look 3: 
I~ Lo,ok3.P1D 

Look3.REL 

Look 4: 
~ Look4.P1D 

Look4.REL 

Figure 14. DLF flowchart 
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V. Results 

The goal of any ATR system is to correctly identify targets as quickly as possible, as 

accurately as possible, and from as far away as possible. Improved sensor technology 

and on-board computing allows better and more complicated systems to be placed on 

many kinds of platforms. Advancements in fusion, specifically less complicated 

approaches such as DLF, can only enhance an already proven ATR system. However, as 

shown below, the benefits of DLF on simulated data may be slightly optimistic compared 

with the performance found using a real A TR system and measured data. 

5.1 Simulated Results 

This section shows examples of results from a simulated ATR system used in 

coordination with estimated data, and it provides baseline observations for further 

research. The results show that DLF yields significant improvement over a single sensor 

working on each platform. Figures 15 - 16 show that DLF provides a median PID and 

REL for all targets near 95% or greater. 
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Figure 15. Median PID values with percentile ranges over all DLF looks -
Simulated 

Each DLF look is made up of fused single sensor looks. However, since each sensor 

performs differently, it is important to show the single sensor results separated by range 

and depression angle. Thus in the single sensor comparison there are two data points. 

The first data point, which is the same for both look l and look 2, represents single sensor 

looks from a further range and uses data collected at the lower depression angle. The 

other single sensor value is the averaged PID (or REL in Figure 16) over the last two 

looks, which are at a closer range and higher depression. 
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Figure 16. Median reliability with percentile ranges over all DLF looks -
Simulated 

In the typical plots of Figures 15 and 16, the shaded area represents the range of values in 

the 2501 and 7 5th percentile. The vertical lines at each look represent the single sensor 

results. Where the box is the median value and the circles show the 25th and 75t1i 

percentile points. A significant performance improvement is shown over the single 

sensor median values. Not only does the median value continue to increase as additional 

looks arc gathered, but the size of the middle fiftieth percent of the data grows 

considerably smaller. Table 16 compares the improvements made through the DLF 

process over single sensor looks. 
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Table 16. DLF vs. single sensor over all looks - Theoretical 

10.99% 15.26% 16.15% 

From the table it can be seen that simply adding a second look and fusing it with the first 

look yields significant improvements in capabilities. By using all four looks the 

algorithm is able to increase both the prohahility of identification and the reliability in the 

declaration to over 95%. Also shown in the table is that the improvement over the single 

sensor performance is over 15% in both PID and REL 

Figures 17-21 show how the individual targets, when isolated, perform in the DLF 

process. 
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These plots show PID vs. REL for each target. As the system gathers additional 

looks and DLF is performed, both the PID and REL move on the plot toward the upper 

right corner. These results depend on expected perfonnance as characterized in the 

historical confusion matrices or training confusion matrices. For the BTR-70 and the 

NIL targets the results arc slightly below the other targets because the expected PID 

based on theHCMs (Tables 10-15) used is also less. 

The results shown here are encouraging; however, there are still many robustness 

and accuracy concerns. The next step is to compare the simulated results using the model 

A TR system with results from a proven ATR system used with measured data. 

5.2 Measured Data Results 

Once the modeled ATR system is replaced with the proven ATR system and the 

expected historical confusion matrices are exchanged with calculated training confusion 

matrices from the actual A TR system, results can be compared. Similar to the plots 

shown in the previous section, the measured data indicates strong trends that endorse the 

use of DLF in ATR prediction. However, the measured data and real ATR system do not 

produce results as conclusive as those using simulated data. 

Figure 22 shows that the median value for the PID increases as the looks increase. 
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Figure 22. Median PID values with percentile ranges over all DLF looks -
Measured 

When comparing with Figure 16 (the PIO vs. looks plot based on simulaled data), Figure 

22 shows that in both cases the improvement from the J'irsl to the second looks increases 

by nearly 10%, with lhe simulaled results slarti.ng from a higher PIO. 

The REL vs. look plot shown in Figure 23 again shows lhat as more looks arc input 

to lhe DLF algorithm, reliabilily improves. A slightly more dramatic improvement than 
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in Figure 16 (simulated REL vs. Looks plot) from look I lo look 2 is apparent, with the 

final lwo looks adding nearly a 3% increase in performance over lhe preceding look. 
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Figure 23. Median reliability values with percentile ranges over all DLF looks -
Measured 

Figures 24-28 show how each target performed for the measured data. 

59 



1 r---.-----.--~-~- ·- ------------
I O I • I O O 4 I ' . . . . . . . ' 

0
·
9 -------:-------+-------1--------i-------i------+···-)-----···1·····-r : : : : : : rm : : 

o.s ·······i ·······r-·····i······· i ······-r······r·······r······r······-i·------
0.7 : : : : 1 : : ; : 

I • I I I I • 

• I t I t I ' 
I I t I I I t 
I I I I I > I I I o.r. .. ·····:····· --. :--·-· -- ·: ........•...... -·-· .... . ·: ....... :···. ····t·······: ...... . 
I > I O I O o . . . ' . . . _, 

~ 0.5 
I f t ' ' 0 I 
I I I I I O O I -·-----0w------- ·-----·--·-------- ------- .. ·-------•-------........ -------.. ----------------
' , o O I I I 
I O I O I I I 

I O • I I 

' . . . 
o t I I I 0 

0.4 -······~·-····· :········;········~·······;········;·······+·······!········'······· 
' . . . . . . . . . . 

o I I • • 

0-3 ------ 1-------~--···--·~---····t·------1······--r····· ---~ ·····--1--······f -------
• I I I I I 1 . . . . . . . ' . . ' . . . . 

0.2 •.•••. : ·······!········t·······: ·······!·······-~·-····· : ·······~·-·····-~·-······ . . . . . 
I O t O I . . . . ' 

I 1 I I 

0.1 ------:-- -- ---- ~------ --~- -------:--- -----~-- ---- --~-- · •... . . ' . . . . . ' ' . . . . ' . . . 
0 I ' < I 0 

0 ou: 
D Single Sensor 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
PID 

Figure 24. PID vs. reliability for BRDM2 - Measured 

. . 
o.9 ----- --:-.... ·--1--------r-------·:··· --·-· ~---·. ·--~-------~-- -----!--------~ -------

, ' . . . . . ' 
I I o I < I • I 

...., 
~ 0.5 

I I • I t I I I . ' . . . ' ' . ' 

o.s ······ i ······-r···-·r······r··-·-·r·····r····· r···-·r·····r····· 
0-1 ---····r··-···· 1··-·····r····-··t·····--1······· .. r ··· ····r····-··1©···· ~ --···· 
o.G · ······; -------;---··---;----··· ; ...•••• : .•.•••.. ; .•••.•. -fiL ... : .. © .. ;·-····· 

: : : : i : : : :0 
·······:·······;·······-;········;·······;········;·······;·······:·@··;······· . . . . . . . . . 

0.4 ····· · ·: ••••••· :········:········:········:········ : ······-~·-··· ···:········: ······· . . . . . . . . . . . . . . . . . . . . . . . . ' . . 
I O I I O • I I 0 

O.J ·····-r······t····r·····r ·····t"····r ·····r ····r·····r····· 
0.2 ••••.. ~ ······+·····+······+······+-······!······· !····-··+·····+······ . ' ' ' . ' ' . . ' ' ' . ' . ' . ' ' ' . . . . . 
0.1 ·····+·····+·····+······-;·-·····+····-+······ Q DLF 

: : : : : D Single Sensor 

0.1 0.2 0.) 0.4 0.5 0.6 0.7 0.8 0.9 
PIO 

Figure 25. PID vs. reliability for BTR-70- Measured 

60 



...J ... 
c:: 

0.9 

0 .8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

! 1 ! . j ! ! ! j © 
: 1 r : 1 r 1 ®1 ~ 

·······: ·······:···--·--:·--···· i ······r·····r ······i ····-·-r······r····· 
r 1 r : 1 r : 1 0~ 

·····+·····+·····+·····+·····+····+·····+······i··· .. ··-l-~--. . . . . . 
I I I O I I 

t t I I I O O I I -.. -·· -----_____ .. ___ ·--__ .. _ ------- ---- -- ................... . ---........ -.... .. -. -..... .. -. --.. . 
• • I I • I • • 
0 • , I o O I 
O , I I I . . . . . 
o I • ' I 
I I I o o I ' ' I .... ••••"' • • • .., ··· ~ · ••• • • ·· ~ • • ••• • • _,.. .. . ...... ,. .......... r••• • .... ., .... • • •• •• ,. ., • • • • • • • r •••• • • • 
' . ' . ' . ' . . 
' ' ' . . ' . ' ' ' ' . ' . ' 

o I I I l O 0 . . ' . ' ·······; ·······r···-·ur·--·-··t"··--··t·····-·t·-· .. ·~t·······r······-~-·-.. ·--
' . . . . . . 

.......... : ........... -~- ..... --.. ~. ------.: -------~ -------.f ..... -... : .............. i- ... --- .... ~ ....... . 
I I > I I I t I t 

' ' . ' ' . . . 
I I O , o t O I 
I I o o o O O 0 
o O O O O I 

······:-------:--------~----····: ·······:--------:------- Q DLF 
: : : : : 0 Single Sensor 

0.1 0.2 0.3 0.1 0.5 
PIO 

0.6 0.7 0.15 0.9 

Figure 26. PIO vs. reliability for T-72 - Measured 

0.9 ······{···-·· j---·····t······-t-····""1"···----1-··----~---t ··---·r ···· 
0.8 

! I I + I • I ! , 

: i : : : ; : : : 

0.7 
! ! ! ! ~ l ! ! ! 
: 1 r : 1 : r 1 r . . . . . . 

0 , 0 I I t 

I o o O I I o I • 

0.6 ······-r······r-······r········:········r-······r-······r······1········r······· 
0 0 ' o I < I 
! 0 I t O I _, 

~ 0.5 
• I I I t , • I • --- - --- .. · - -···· . . . ......... _ __ _ ......... __ __ _ _ _ __ _ _ _ _ __ ,, _ _ _ ____ aa,,, ........ ................... . . . . . . ' ' ' . 
' . ' . . ' ' 
I O I I I I I 
' • ' • + • • 
I I < I I • I 

::: ::::J ::: : : :: r :::::: :r :::::::r ::::::r:::::J::::::r:: ::: :1 :::::::: r::::: :: 
0 0 • o I ' 0 I 
I I O I I I I I 

0 • I ' ' I 

0.2 ...... :······-i---·····f········: ·-·····i·-······f········: ·······i·-······f······· 
< 0 I O f I I I 
I O I O I I O 0 
> o I I O O o • 

' . . . . . ~·~--'-'~ ~"-~ 
0.1 ······+······+·····+······ ~--····+····+······ 0 DLF 

: : : : : : 0 Single Sensor 
0 L__jL..__L..__:L..__JL__jL__j _ _J==::::::i:::::::::::::J==:::..J 

0.4 0.6 0.9 0.7 0.8 o.s 
PIO 

0 0.1 0.2 0.3 

Figure 27. PID vs. reliability for ZSU-23/4- Measured 

61 



0
·
9 ----··r-····\···-··r----·r-·--·-r··--·r --·-- :·-----··r--·-· ·r ····· 

I I • I f • I f 

0.8 - .. ·-·-:··· -· . -·1· ...... ·t· .. ···· :· ... ····1--..... -~·-··· .. ·:·· .. ····1· ...... ·t-·-· -· -
I f • I I I I I I 
o O o I I I I I , 

o., ·····--r····-··1·····---1--------~---··1··©·-·r···-····i····-··1-·····-·1·------
• I I O O , • I • 
I O I I I O • < 0 0.6 --· --- _.._ _______ ,. ________ • -----· ........ -- --~ ---- ----· · ----·· - -· -----~-----· --· ---- ---

~ ! ! ! ! ©. ! ! ! ! 
g 0.5 ·······:---···-· ;------··: ······· i--·-··· ;·-··--·-;------- (-····· [·····-··: --····· 

0.4 ··-···+··-··-· !········:-····-·+·-·-··-~---·-···:·······~·-·····-~--- ·-···:······· 
t t , I I 0 

0 • 0 I l 
O O I I t 

I + I I • I 0 

O.l ---·-··( --· -·· t-······r· ...... -r .... ···t· ..... ·r .. &a •aa ·t ....... ~--..... ·r ...... -
0 I O O I I I • 

0.2 --------: ------- :-----···f·-······! ....... ; ........ ; ........ :---····-i---·····f· ·--··· 
~l ! . ! ! . ! ! ! 

0.1 ----·--:---···· · i···-····i---·-··-:-·-·····i········;....... Q DLF 

! ! ! ! ' ! D Si119le Sensor 
0 o'--- 0.'-1 --0.2'--- o_'-3 --0.4'-. _ ....,o.'-s _....,0.'-6 _ ...,o_-, ---'o.a- ---'o_'-g --' 

PIO 

Figure 28. PID vs. reliability for NIL - Measured 

Again it is shown that the BTR-70 and the NIL targets provide results that underperfonn 

the other targets considerably. Each of these two targets provides different insight into 

the performance of the DLF process. In the case of the BTR-70, the PID values approach 

80%, but the REL values never rise above 70%. This low REL value can be directly 

traced to the training confusion matrices. For example, consider any of the TCMs shown 

in Tables 1-6. As described 1n Section 2.2.2, PID is calculated across a row, while REL 

is based on the indices in the column of the target declaration. Therefore, since the value 

corresponding to the BTR-70 column for the NIL truth target is also a large value for an 

off-diagonal index, the REL associated with that target is constrained by the largest value 

in any of the other indices in the column. When all the TCMs are considered, the 
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maximum REL of the BTR-70 is only 62%. Therefore, it is shown that through the 

process of DLF over four looks the REL associated with the target is increased over l 1 'J?). 

In the case of the NIL, it is shown that DLF has greally improved performance 

over the four look scenario. Of course improvement in perf'ormance is relative 

consideri11g that the percentage improvement in PTO is over 90% as the value is raised 

from 5% Lo 55%. The improvement in REL nc,u-ly matches that or the PTD metric, where 

the values improve 78% from 15% to 70'7(1. 

The improvement over the single sensor looks as DLF proceeds, as shown in Table 

17, shows that (similar Lo the simulated experiment) there is great improvement in 

rcliabi)jty as looks progress - to over 26% after the fourth look. 

Table 17. DLF vs. single sensor over all looks - Measured 

0 .6725 0 .653 . . • 0 ;653 
Im Hovement % 0.88% 17.69% 24.60% 26.21% 

The overaU value of PID increases nearly 18% from the first look to the fomth DLF 

iteration, but the final PID is actually below that of the single sensor looks at the closer 

range. This is an ideal example that illustrates the impact of maximizing REL at the 

expense of PID. 
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VI. Conclusions 

The previous two sections show that DLF significantly improves A TR performance 

versus single sensor looks. However, the purpose of this research is not to prove that 

fusion is a useful tool in the A TR arena (this statement is a forgone conclusion). While 

results of the measured data within the framework of an actual A TR system slightly 

underperfonn those that were modeled, they are still encouraging. Figure 29 compares 

the effects of DLF on both performance of the simulated portion of this research with 

performance based on measured data and a real A TR system. 
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Figure 29. Comparison of PID vs. REL with measured and simulated results 
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Fjgure 29 illusu·ate.s that although DLF is able lo increase performance jn both PID 

and REL there ,uc still differences that factor into the two cases described. Fjgurc 30 

extends the plot shown .in Figure 29 lo include the percentile vari,U1ces at each look. 
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Figure 30. Percentile variance area plots for each look 

The dilTcrence between the PIO and REL at eac.:h look is shown on the individual axes. 

The Lenn TOT refers to the total area in percentile variance. As shown, in Look I the 

area of the s imulated variance is 51 % the s ize of the percentile variance of the measured 

results. As the looks al the t.u·get increase the discrepancy in PIO and REL is reduced. 

However, by adding the percentile variances it is .seen that even though the median values 
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are closer, the majority of the data is bounded by a significantly tighter box after the 

fourth look. 

Table 18 compares results in a form that highlights the differe nce between the use o r 

measured data with a real ATR system and results using s imulated data with a modeled 

ATR system. The most significant differe nce in performance is in REL of the first look. 

Table 18. Table of median PlD and REL for measured and simulated results 

• 0.9100 : •• 0:9500 0.9600 
0.8~~1 . . OJ12$1 .Oi9605 0.9614 

,·· · ·fhkW )% ·ruoJ)fr :JJ';ij[~~fi.i J fil/t$:tf;;; J\ij§t/i{ (r@i:0.~'t,fJ 
diff.er..er,c.ei ~ Sil/@ !i]Ut~id~lJ ?Jft)trido/J )Hii'ii}tif&~ ?' ,.,,$i i5:G;o/J 

The discrepancy between the simulated and measured results is mostly due to the 

difference in the ATR predictor used. The modeled ATR system is probabilistic 

according lo expected performance as given in the HCMs, not taking into account that 

certain aspect regions arc more likely to produce errors. For example, each BTR70 

within the head-on or tajJ-on aspect region (-30° - 30°, and I 50"-210°) is expected to 

correctly idcntif y the target 85% of the lime. However, if this region had been divided 

into finer regions, there could he significant changes in results. 

The limited data supply (of over 14,000 samples) leads to the initial assumption that 

the largcts arc symmetrical for similar angular approaches. Some leeway is lakcn in 
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definfog symmetry, but the aspect regions must be described by enoug4 data to be 

statistically significant. 

This research prov1des a cri~cal _bri~g~ between the use of components provided by 

outside sources, including the DLF algoritlun and its associated assumptions, the defined 

. 
scenario, the simulated data in the form of confusion matrices, the developed A TR 

\ 

i 
model, and the intermediate steps of integration with measured data and existing software 

into a experimental framework that can easily be adapted to the needs of future DLF 

studies. 

This research illustrates the benefits of a simple fusion algorithm such as DLF, but 

also motivates several questions and possible experiments to further the technoJogy. 

Some of these questions are as follows. 

• How would a variable threshold for setting the NIL affect overall 
performance? 

• If enough data were available, how would a more precise separation of aspect 
regions affect performance? 

• What about a larger target set? 

• Would applying DLF to different sensor types, such as a EO/IR camera with 
an image based A TR and the SAR based A TR system described in this 
research, be advisable? 

• Can related but more complicated fusion algorithms such as Attribute Level 
Fusion or Feature Level Fusion be pursued? 

Each question is worthy of future study as the search for reliable algorithms that 

maximize the capabilities of multiple sensors, each with different strengths, continues. 

In summary, it is shown here that the DLF algorithm is a good approach for the 

fusion of independent sensor looks on a target. Although the initial experiments that 
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involved simulated ATR and historical perfonnance illustrated the benefits of the 

algorithm, actual testing with a proven A TR system shows that perfonnance is adequate, 

with room for improvement. 
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VIII. Appendix A 

Quick-Reference: ATR System Run Guide1 

1. Installation 

The installation disk includes one file, "atrsys.tar''. Copy this file to a working 
Jocation, such as the user HOME directory. 

1.1 "Untar" the file as follows: 

tar -xvf atrsys. tar -c /usr/local 

This will create a directory "atrsys" under the "/usr/local" directory. Another 
destination directory can be substituted, if desired, for "/usr/local". 

1.2 Modify the "Makefile" file. 

cd /usr/local/atrsys/source 

Open "Makefile" with an editor to remove "-lgen" from the "libs" variable: 

Change: libs - - lgen - lm - lz 'glib-config --libs' 

To: # libs ,... - lgen - lm - lz 'gl ib-config --- libs' 

libs= - lm - lz 'glib- contig --libs' 

1.3 Create the executabJe as follows: 

cd /usr/local/atrsys/source 

make clean 

make atrsys 

Ensure that no errors were reported. 

1.4 The executable is now ready to use: 

/usr/local/atrsys/source/atrsys 

1 All references to the actual software package have been replaced by atrsys in this text. 
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2 . Running the Application 

The steps below describe the process to set up and run data through the ATR 
system. 

2.1 Set Templates 

The ATR system allows the user to define which templates the system will 
attempt to compare the measured data with. By editing the file named 
rc_mstar. txt, the user can set the templates for comparison. 

2.2 Set Search Path 

Data that is to be processed by the ATR system can be a single file or multiple 
files contained in a single director. A folder named chips is initially created 
during the install process. This is the default folder in which the system searches 
for data. If subdirectories are placed in this folder the user must specify the folder 
to read. 

2.3 Run Application 

The application is run once the templates are defined and the search path is 
set. To begin the process, enter the following at the command line . 

. /atrsys -re rc_mstar . txt - cp .. /chips -numres 1 - pid 10 

Additional inputs can be added to set search thresholds such as maximum 
depression, azimuth, and squint angles by adding: 

- dep <percentage> 

-sq <parcsntage> 

-az <porcontago> 

By default these values are set to 100%, allowing for all possible template 
matches. 

The input -numres defines the number of outputs. Target declaration is based 
on the best match. However, in some applications it is beneficial to also see how 
all templates scored against the truth target that was input. In this case the user 
would set - n.umres co the total number of template choices and the score of each 
is displayed. 

2.4 Read Results 

As the application runs the results arc displayed to the screen. One way to 
capture the results is simple create a file to write the text displayed on the screen 
to a separate text time and then parse it according to the information that user 
desires. This method is best suited for cases where - n.umres is greater than one. 
In the simple, target declaration case, the application can save the results to a file 
by adding the following command when calling the application. 

-o <filename> 
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The added -o input stores the results in a binary file that is then read by an 
additional application that ships with the software and is installed by default under 
the normal in.stall process. 

To read the binary file and convert it to text type 

./results -i <results tile from atrsys> > newtilename . txt 

Once the line shown above is executed, a text tile is created that is formatted 
into a table that can easily be parsed by other additional applications such as 
MATLAB or EXCEL. An example of the fo rmatted output is shown below. 

Pile IGT Tal'get CalllY/N I Bs1 Pose I GT Pose I Pose Dita I ATR Target Call I ATR Score I tlRPS I DLTS 

hb03914.00I5 I t72 I 1 11M.0001112.791 I -1.209 I T72_scnofuel I 2.9591 5.3361 0.977 

hb15182.0019 I t72 11 1238.000 1240.084 I 2.084 I T72_scnofuel I 0.200 I 4.217 I 0.775 

hb03907.0015 I t72 I l I 70.000 I 72.791 I 2.791 I T72_scnofucl I -1.6641 4.8081 0.907 

hbl9887.0019 I t72IO 1176.0001178.084 1 2.084 I ZSU23-4_scl 1.8321 4.267 1 0.780 

hb03335.0015 I t72 I 1 1252.0001250.791 I -t.209 I 'I72_sc I -2.0181 4.737 I 0.901 

hb03884.0015 I t72 I l I 3J O.OOO 1312.7911 2.791 I T72_scnofuel I l.8921 4.9981 0.949 

hb15142.0020 I L72 I 1 I 36.000 I 32.515 I -3.485 I T72_scuofucl I -0.2131 5.190 I 0.965 

hb03877.0015 I 02 11 1274.000 1272.791 I -1.209 I T72_sc I -1.241 I 5.399 I 0.982 

hb15120.00J 9 I c72 I 1 1226.000 1229.084 I 3.084 I 172_scnofuel I -0.250 I 4.740 I 0.901 

hb03848.0015 I t72 I l I 62.000 I 61.791 1 -0.209 I T72_scnofuel I 2.0711 5.4291 0.985 

hbl5106.0020 I t72 1 I 1156.000 I 156.515 1 0.515 I T72_scnofucl I 0.9271 5.914 I 1.000 

hb03840.0015 I t72 IO I 26.000 I 21.791 1 -4.209 I ZSU23-4_s~ I 0.459 I 5.167 I 0.963 

hb17642.0019 I t'/2111120.000 11 20.0841 0.084 I T72_.scJ\ofueJ I -0.0051 4.8561 0.911 

hb03822.0015 I t72Il1258.000 1261.791 1 3.791 I T72_sc I -2.023 I 4.629 I 0.865 

hbl5076.0020 I t72Il I356.000 1356.5151 0.515 I T72_scnofuell 2.5531 4.8491 0.911 

hb15257.0020 I 172 111282.000 1283.5151 J.515 I T72_sc I -3.555 I 4.723 I 0.899 

hbl5072.0019 I t72 111336.000 I 338.08~ I 2.084 I T72_scnofuel I 3.591 I 5.001 I 0.949 
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IX. Appendix B 
Simulation Code 

% updates for version 4: 
% NIL calls are determined by score 

% Initialize variables 
minheading = O; 
maxheading = 359; 
NumTruth = 5; 
RTMSTAR = O; 

platlloc = [43.3 25; 
16.6 25) ; 

plat21oc = [43.3 - 25; 
16.6 - 25); 

epsi = 4e-2; 
its= 100; 
h = wai tbar(O); 
headingchoices = [3.6:3.6:360); 

storecMho9 = zeros(5,5); 
storeCMoa9 = zeros(5,5); 
storecMbs9 = zeros(5,5); 
storecMbs16 = zeros(S,5); 
storecMho16 = zeros(S,S): 
storecMoa16 = zeros(S,S); 

totlooks = O; 

% Clean the folders in preparation for next test set 
if length(dir('C:\FIRST\ResultsData\BRDM2\bs\dep9')) > 3 

cleanFolders 
end 

for largecount = 1 :100 %100 differenct Test Sets 
tic 
if RTMSTAR = 1 %if using "real system" calculate cMs 

NeWVerificationGroup(num2str(largecount)) %Choose test set 
CMho9 • FirstCMs_8_25(10,l); 
CMhol6 = FirstCMs_8_25(10,3) ; 
CMbs9 = FirstCMs_8_25(90,1); 
CMbsl6 = FirstCMs_8_25(90,3); 
O,,oa9 a Fi rstCMS_8_25(45,1); 
CMoa16 = FirstCMs_8_25(45,3); 

storeCMho16 = storea,,ho16+CMho16; 
storeCMho9 = storeCMho9+CMho9; 
storeCMoa16 = storeCMoa16+CMoa16; 
storeCMoa9 = storeCMoa9+CMoa9; 
storeCMbs16 • storeCMbs16+cMbs16; 
storeCMbs9 = storeCMbs9+CMbs9; 

end 
for targcount = 1:5 %[BRDM2 BTR70 T72 zsu NIL] Target Loop 

targVal = targcount; 
for loopcount = 1 :its %Target Heading loop 

totlooks = totlooks+l; 
wa1tbar(totlooks/(its*6),h,[' Iteration • num2str(tot1ooks) ... 

• of' num2str(its*6)]); 
locx(totlooks) = O; 
locY(totlooks) m O; 

%setup Heading for each trial 
targheading = headingchoices(loopcount); 

%Initialize 
CMdlf = zeros(6); 
IDdlf = O; 
CMdlf_a = zeros(6); 
IDdlf_a = O; 

AZ11st = []; %%Reset each run 
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~ Lookl ~~ 
[Looklaspect,sensor_az,target_az) = aspectcalc(platlloc(l,l) , •.. 

platl loc(l ,2),locX(totlooks), locY(totlooks), ..• 
locx(totlooks),locY(totlooks),0,0,targheading); 

if RTMSTAR = 1 
%if using "real" ATR system queary results folders for the 
%corresponding result that is the closest match to the 
%Looklaspect for the current truth target 

targDi rs = {'BRDM2', 'BTR70', 'T72', •zsu·, 'NIL'}; 
resultdir • fullfile('c:\FIRST\ResultsData',targoirs{targval}, ... 

'test' , 'dep9 '); 
D = dir(resultdi r) ; 
D = D(3:end); 
fnames a {D(:).name}; 
for chipcount = 1 :length(fnames) 

AZlist(chipcount) = str2num(fnames{chipcount}(4:end-4)); 
end 

nameind = nearest(Lookl aspect ,AZlist); 
readfile = fullfile(resultdir,fnames{nameind}); 

%%'XI% Here we read the results file to get the ATR call %%'XI% 
~~ use RTMSTAR results for ATR prediction %%%%%%%%'A.% 
[IDss ATRaz] • ATRcall_scorebasedNILs(readfile); 

%Use the correct CM region 
if (ATRaz ¢; 30) I (ATRaz >• 330) I ((ATRaz >= lSO)&(ATRaz ¢o 210)) 

CMSS = CMho9 ; 
elseif ((ATRaz > 60)&(ATRaz < 120)) I ((ATRaz > 240)&(ATRaz < 300)) 

CMss CMbs9 i 
else 

end 
CMSS = CMoa9 i 

CMss(find(CMSS "'"'0)) = epsi; 
for i = 1:length(CMss(: ,1)) 

end 
CMss (i,:) = CMSS(i,:)/sum(CMss(i,:)); 

~ IDss is the column in the 
~ the targets 
~ [BRDM2 BTR70 SCUD 
~ correspond to targval. 

PIDSS = CMSS(targval,IOss); 

confusion matrix that corresponds to 

T72 zsu NIL] - these also 

RELSS. CMSS(IDSS,IOSS)/sum(CMss ( :,IDss)); 
[CMdlf, IDdlf, PIDdlf, RELdlf, DLFconf] = Fi ndDLF(l, targval, .. . 

CMss, IDSS, CMdlf, . . . 

else 
IOdlf,O); %Perform DLF 

end 

~ Use CMs for ATR predition ~ 
CMs s = Fi rs tCMs (Looklaspect, 1) ; 
ATRaz ~ Looklaspect; 
tgt = rand; 
cumProb = O; % reset the cumulative Probability 

%Modeled ATR system 
for ii= 1:size(CMss,2) 

cumProb = cumProb + CMss(targval, ii); 
1 f tgt <"' cumProb 

IDss = ii; 
PIDSS = CMSs(targval,IDss); 
RELSS . CMSS(IDSS,IDss)/sum(CMss(:,IDSS)): 
break 

end 
end 

[CMdlf, IDdlf, PIDdlf, RELdlf, DLFconf] = FindDLF(l, targval •... 
CMss , IOss, CMdlf, ... 
IDdlf,O); %Perform DLF 

%Store outputs 
Look{l}.piddlf(totlooks) = PIDdlf; 
Look{l}.p1dss(totlooks) = PIDss; 
Look{l}.relss(totlooks) = RElss; 
Look{l} . reldlf(totlooks) = RELdlf; 
Look{l}.range(totlooks) = sqrt((platlloc(l,1) - locx(tot1ooks))A2 ... 

+ (platlloc(l,2) - locY(totlooks))A2); 
Look{l}.aspect(totlooks) = Looklaspect; 
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Look{ll.ATRaz(totlooks) = ATRaz; 
Look{l . truth(totlooks) = targval; 
Look{l . ti me (totlooks) = O; 
Look{l}.platform(totlooks) = 1; 
Look{l}.sensor(totlooks) • 2; 
Look{l} . ptype(totlooks) = 16; 
Look{l}.idss(totlooks) = IOss; 
Look{l}.iddlf(totlooks) = IDdlf; 

if IDSS ~ targVal 
looklss(totlooks) = 1; 

else 

end 
looklss(totlooks) = O; 

~~ Look 2 %%XY"~ 
[Look2aspect,sensor_az,target_az] = aspectcalc(plat2loc(l,1) , ... 

plat21oc(l,2),locx(totlooks), locY(totlooks), ... 
loCX(totlooks),locY(totlooks),0,0,targheading); 

if RTMSTAR = 1 
%if using "real" ATR system queary results folders for the 

%corresponding result that is t he closest match to the 
%Look2aspect for the current truth target 

t argoirs = {'BRDM2', 'BTR70', 'T72' 'ZSU', 'NIL'}; 
resultdir = fullfile('C:\FIRST\ResuitsData' ,targDirs{targVal}, ... 

'test' , 'dep9 '); 
D = dir(resultdir); 
D = 0(3 :end); 
fnames = {D(:) . name}; 
for chipcount = 1:length(fnames) 

AZlist(chipcount) = str2num(fnames{chipcount}(4:end-4)); 
end 

nameind m nearest(Look2aspect,AZlist); 
readf1le = fullfile(resultdir,fnames{nameind}); 

%%!G% Here we read the results file to get the ATR call %'Y"~ 
~~ use RTMSTAR results for ATR prediction~ 
[rnss ATRaz] = ATRcalLscorebasedNILs(readfile); 

%Use the correct CM region 
i f (ATRaz <= 30) I (ATRaz >= 330) 

CMSS = CMho9; 
elseif ((ATRa.z > 60)&(ATRaz < 120)) 

CMss = CMbs9 ; 

((ATRaz >= lSO)&(ATRaz <= 210)) 

I ((ATRaz > 240)&(ATRaz < 300)) 

else 

end 
CMSS = CMoa9; 

CMss(find(CMss = O)) = epsi; 
for i = 1:length(CMss(: ,1)) 

CMss(i,:) "' CMSS(i,:)/sum(CMss(i,:)); 
end 
~ IDss is the column in the 
~ the targets 
~ [BRDM2 BTR70 SCUD 
~ correspond to targval. 

P!Dss = CMss(targval,Ioss); 

confusion matrix that corresponds to 

T72 zsru NIL] - these also 

RELSS = CMss(IDss,IDSS)/sum(CMss(:,IDSS)); 
[CMdlf, IDdlf, PIDdlf, RELdlf, DLFconf] = FindDLF(2, targVal, .. . 

CMss, IOss, CMdlf, . . . 

else 
IOdlf,O); %Perform DLF 

%%Y".AX%%% use CMs for ATR predition ~ 
CMss = F1rstCMs(Look2aspect ,2); 
ATRaz = Looklaspect; 
tgt = rand; 
cumProb = 0; % reset the cumul ative Prolbabil i ty 

%modeled ATR system 
for ii = 1:size(CMss,2) 

cumProb • cumProb + CMss(targVal, ii); 
if tgt <= cumProb 

cmd 

IDss = i i; 
PIOss = CMss(targval,IDss); 
RELSS = CMss(IOss,IOss)/sum(CMss(:,IOss)); 
break 

75 



end 
[CMdl f, IDdlf, PIDdlf, RELd1 f, DLFconf] = Fi ndOLF(2, targva 1,,,. 

end 

CMss, IDSS, CMdlf, . .. 
IDdlf,0); %Perform DLF 

if IDdlf -= Look{l}.iddlf(totlooks) 
adsf = O; 

end 

%Store outputs 
Look{2}.piddlf(totlooks) = PIDdlf; 
Look{2}.pidss(totlooks) = Pross; 
Look{2}.relss(t:otlooks) = RELss; 
Look{2}.reldlf(totlooks) = RELdlf; 
Look{2}.range(totlooks) = sqrt((p1at2loc(l,1) 

+ (plat:2loc(l, 2) 
Look12}.aspect(totlooks) = Look2aspect; 

- locx(totlooks))A2 ... 
- locY(totlooks))A2); 

Look 2 .ATRaz(totlooks) = ATRaz; 
Look 2 .truth(totlooks) = targval; 
Lookf2l.time(totlooks) = O; 
Look 2 .platform(totlooks) = 2; 
Look 2 .sensor(totlooks) = 2; 
Look{2}.ptype(totl ooks) = 16; 
Look{2}.idss(totlooks) = IDss· 
Look{2}.iddlf(totlooks) = rodif; 

if IDSS == targVal 
look2ss(totlooks) = l; 

else 

end 
lookZss(totlooks) = O; 

if IDdl f = targva 1 
1ook2dlf(totlooks) = 1; 

else 

end 
lookZdlf(totlooks) = O; 

~ Look3 ~ 
[Look3aspect,sensor_az,target:_az] = aspectcalc(platlloc(2,l), ... 

platlloc(2,2),loCX(totl ooks),locY(totlooks), ... 
locx(tot1 ooks) ,locY(tot1ooks),O,O,targheading); 

if RTMSTAR == 1 
%if using "real" ATR system queary results folders for 
%corresponding result that is the closest match to the 
%Look3aspect for the current truth target 
targDirs = {' BRDM2', 'BTR70', 'T72', 'ZSU' 'NIL'}; 
resultd1r = fu1lfile('c:\FIRST\ResultsData 1 , • •• 

o = dir(resultdir); 
D = D(3:end); 
fnames = {D(:).name}; 

targDirs{targval}, 'test' ,'dep16' ); 

the 

for clh1 pcount = 1: length (fnames) 
AZlist(chipcount) = str2num(fnames{chipcount}(4:end-4)); 

end 

nameind = nearest(Look3aspect,AZlist); 
readfile = fullfile(resultdir,fnames{nameind}); 

%o/".,/;% Here we read the results file to get the ATR call~ 
~ use RTMSTAR results for ATR prediction~ 
[IDss ATRaz] m ATRcall_scorebasedNILs(readf1le) ; 

%Use correct CM region 
if (ATRaz <= 30) I (ATRaz >= 330) I ((ATRaz >= lSO)&(ATRaz <a 210)) 

CMss = CMhol6; 
elseif ((ATRaz > 60)&(ATRaz < 120)) I ((ATRaz > 240)&(ATRaz < 300)) 

CMss = CMbsl6; 
else 

end 
CMSS = CMoa16; 

CMss (f1nd(CMSS == 0)) = epsi; 
for i = 1:length(CMss(:,l)) 

CMss (i ':) = CMSS (i ': )/sum(CMss Ci ':)); 
end 
%% IDss is the column in the confusion matrix that corresponds to 
%% the targets 
%% (BRDM2 BTR70 SCUD T72 zsu NIL] - these also 
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~ correspond to targVal. 

PIDss = CMss(targval,IOss); 
RELss = CMss(Ioss,Ioss)/sum(CMss(: , IOss)); 
[CMdlf, IDdlf, PIDdlf, RELdlf, DLFconf] • Ff ndDLF(3, targVal, ... 

else 

CMss, IOSS, CMdlf, 
IDdlf,O); %Perform DLF 

~ Use CMS for ATR predi ti on ~ 
CMss = FirstCMs(Look3aspect,3); 
ATRaz = Looklaspect ; 
tgt = rand; 
cumProb = O; % reset the cumulative Probability 

%modeled ATR system 
f or ii~ l:size(CMss,2) 

cumProb = cumProb + CMss(targval, ii); 
i f tgt <= cumProb 

IDss = 11; 
PIOSS = CMss(targval,IDss); 
RELSS = CMss(IOss,IDss)/sum(CMss( : ,IDss)); 
break 

e nd 
end 

[CMdl f , IOdlf, PIDdlf, RELdlf, OLFconf] .. F1 ndOLF(3, targVal, .. . 
CMss , IDss, CMdl f , .. . 

end 

i f IDdlf ~ Look{2} . iddlf(totlooks) 
adsf = o; 

end 

IOdlf,0); %Perform DLF 

%Store outputs 
Looki3l.piddlf(tot1ooks) = PIDdlf; 
Look 3 .p1dss(totlooks) = PIDss; 
Look 3 .relss(totlooks) = RELss; 
Look{3}.reldlf(totlooks) = RELdlf; 
Look{3}.range(totlooks) e sqrt((platlloc(2 ,1) - loCX(totlooks))A2 ... 

+ (platlloc(2,2) locv(totlooks))A2); 
Look{3} .aspect(totlooks) = Look3aspect; 
Look{3} .A.TRaz(totlooks) = ATRaz; 
Look{3}.truth(totlooks) = targVal; 
Look{3}.time(totlooks) = O; 
Look{3} .platform(totlooks) = l; 
Look{3} .sensor(t otlooks) = 2; 
Look{3}.p·type (totlooks) = 16; 
Look{3}.idss(totlooks) = IDss; 
Look{3}.iddlf(totlooks) = IDdlf; 

if IDss == targval 
look3ss(totlooks) = l ; 

else 

end 
l ook3ss(totlooks) = D; 

if IDdlf = targval 
1ook3dlf(totl ooks) = l; 

else 

end 
look3dlf(totlooks) • O; 

m%~ Look4 ~ 
[Look4aspect,sensor_az,target_az] = aspectcalc(plat21oc(2,1) , •.. 

plat21oc(2,2),locx(totlooks), locY(totlooks), ... 
locX(totlooks),locY(tot looks),O,O,targheading); 

if RTMSTAR = 1 
%if using "real" ATR system queary results folders for the 
%correspondi ng result that is the closest match to t he 
%Look4aspect f or the current truth target 

targDirs = { 'BRDM2', 'BTR70', 'T72', 'ZSU', ' NIL'}; 
resultd1r = fullf1le('c:\FIRST\ResultsData' ,targD1rs{targVal} , ... 

D = di r(resultdi r); 
D • 0(3:end); 

'test ' , 'dep16'); 

fnames - {D( :).name} ; 
for chipcount = l:length(fnames) 

/\Zli st (chi pcount) = str2num(fnames{chi pcount}C4: end-4)); 
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end 

nameind = nearest(Look4aspect,AZlist); 
readfile = fullfile(resultdir,fnames{nameind}); 

~ Here we read the resul ts file to get the ATR call~ 

~ use RTMSTAR results for ATR prediction~ 
rross ATRaz) = ATRcall_scorebasedNILs (r·eadfile); 
,f (ATRaz <= 30) I (ATRaz >= 330) I ((ATRaz >= lSO)&(ATRaz <= 210)) 

CMSS = CMhol6; 
elseif ((ATRaz > 60)&(ATRaz < 120)) I ((ATRaz > 240)&(ATRaz < 300)) 

CMSS = CMbsl6 ; 
else 

end 
CMss = CMoal6; 

CMss(find(CMss == 0)) = epsi; 
for i a l:length(CMss( : ,1)) 

CMss(i, :) = CMss (i,:)/sum(CMss(i, :)); 
end 
%% ross is the col umn in the confusion matrix that corresponds to 
%% the targets 
%% [BRDM2 BTR70 SCUD T72 zsu NIL] - these also 
%% correspond to targva1. 

PIOSS ~ CMSS(targval,IDss) ; 
RELSS = CMSS(IOSs,IOss)/sum(CMss(:, Ioss)); 
[CMdlf, IDdlf, PIDdlf, RELdlf, DLFconf] = F1 ndDLF(4 , targval, .. . 

CMss, IDss, CMdlf, .. . 
rodlf,O); %Perform DLF 

else 
~ Use CMS for ATR predition ~ 
CMss = FirstCMs (Look4aspect,4); 
ATRaz = Looklaspect; 
tgt = rand; 
cumProb = O; % reset the cumulati ve Probability 

%modeled ATR system 
for ii = 1 :size(CMss,2) 

cumProb = cumProb + CMss(targval, ii); 
i f tgt <= cumProb 

IDSS = ii ; 
PIDss = CMss(targval,Ioss); 
RELSS = CMSs(IDss,IDss)/sum(CMss(:,IDSs)); 
break 

end 
end 

[CMdlf, IDdlf, PIDdlf, RELdlf, DLFconf] "' FindDLF(4, targVal, .. . 

end 

if IDdlf ~ Look{3}.iddlf(totl ooks) 
adsf = O; 

end 

%store outputs 
Look{4}.piddlf(tot1ooks) = PIDdlf; 
Look 4 .pidss(totlooks) = Pross: 

CMss, I Dss, CMdlf, .. . 
IDdlf,O); %Perform DLF 

Look 4 .relss(totlooks) = RELss; 
Look{4}.reldlf(tot1ooks) = RELdlf; 
Look{4}.range(totlooks) = sqrt((p1at2loc(2,1) - loCX(totlooks))A2 . .. 

+ (plat2loc(2,2) - locY(totlooks))A2); 
Look{4}.aspect(totlooks) = Look4aspect ; 
Look{4}.ATRaz(totlooks) = ATRaz; 
Look{4} . truth(totlooks) • targval; 
Look{4} .time(totlooks) = O; 
Look{4}.platform(totlooks) = 2; 
Look{4}.sensor(totlooks) a 2; 
Look{4}.ptype(totlooks) = 16; 
Look{4}.idss(totlooks) - IDss; 
Look{4}.iddlf(totlooks) = IDdlf; 

if IDss == targval 
l ook4ss(totlooks) = l; 

else 
look4ss(totlooks) = O; 

end 
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end 

end 
end 

if IDdlf == targval 
look4dlf(totlooks) = l; 

else 
1ook4dlf(totlooks) = O; 

end 
Azchoice(totlooks) = targheadi ng; 

loc .x = locx; 
loc.Y = locv; 
%clean directories for new test set 
if RTMSTAR ~ 1 

CleanFolders 
end 
toe 
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