
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Speech Recognition Using the Mellin Transform Speech Recognition Using the Mellin Transform

Jesse R. Hornback

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computational Linguistics Commons, and the Language Interpretation and Translation

Commons

Recommended Citation Recommended Citation
Hornback, Jesse R., "Speech Recognition Using the Mellin Transform" (2006). Theses and Dissertations.
3484.
https://scholar.afit.edu/etd/3484

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/375?utm_source=scholar.afit.edu%2Fetd%2F3484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1391?utm_source=scholar.afit.edu%2Fetd%2F3484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1391?utm_source=scholar.afit.edu%2Fetd%2F3484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3484?utm_source=scholar.afit.edu%2Fetd%2F3484&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

SPEECH RECOGNITION USING THE

MELLIN TRANSFORM

THESIS

Jesse R. Hornback, Second Lieutenant, USAF

AFIT/GE/ENG/06-22

 DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, the Department of Defense, or the

United States Government.

AFIT/GE/ENG/06-22

SPEECH RECOGNITION USING THE MELLIN TRANSFORM

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jesse R. Hornback, B.S.E.E.

Second Lieutenant, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/06-22

SPEECH RECOGNITION USING THE MELLIN TRANSFORM

Jesse R. Hornback, B.S.E.E.
Second Lieutenant, USAF

 Approved:

 /signed/

 Dr. Steven C. Gustafson (Chairman) date

 /signed/

 Dr. Richard K. Martin (Member) date

 /signed/

 Dr. Timothy R. Anderson (Member) date

 /signed/

 Dr. Raymond E. Slyh (Member) date

iv

AFIT/GE/ENG/06-22

Abstract

 The purpose of this research was to improve performance in speech recognition.

Specifically, a new approach was investigating by applying an integral transform known

as the Mellin transform (MT) on the output of an auditory model to improve the

recognition rate of phonemes through the scale-invariance property of the Mellin

transform. Scale-invariance means that as a time-domain signal is subjected to dilations,

the distribution of the signal in the MT domain remains unaffected. An auditory model

was used to transform speech waveforms into images representing how the brain “sees” a

sound. The MT was applied and features were extracted. The features were used in a

speech recognizer based on Hidden Markov Models. The results from speech

recognition experiments showed an increase in recognition rates for some phonemes

compared to traditional methods.

v

Acknowledgments

 I would like to express my sincere appreciation to my faculty advisor, Dr. Steven

Gustafson, for his guidance and support. The many hours he spent helping me

accomplish this project were crucial in the success of this thesis effort. I would also like

to thank my sponsors, Dr. Tim Anderson and Dr. Ray Slyh, from the Air Force Research

Laboratory (AFRL/HECP) for both the support and time spent helping me in this

endeavor. I am also indebted to Dr. Richard Martin for his help and input amidst a busy

schedule.

 I would also like to thank my lovely wife for her constant support and

encouragement throughout my time at AFIT and for gracefully enduring all the hours I

spent studying and working.

 Last, but not least, I would like to thank my Lord and Savior Jesus Christ. I can

do all things through Him who gives me strength.

 Jesse R. Hornback

vi

Table of Contents

 Page
Abstract .. iv

Acknowledgements..v

Table of Contents... vi

List of Figures .. viii

List of Tables ... ix

I. Introduction...1

II. Background...4

 2.1 Speech Recognition Basics ..4

 2.2 Language Models...6

 2.3 Hidden Markov Models as an Acoustic Model ...6

 2.4 Mel Frequency Cepstral Coefficients as Features10

 2.5 Auditory Image Model...12

 2.6 The Mellin Transform and its Applications...16

III. Experimental Design...19

 3.1 TIMIT Database...19

 3.2 Mellin Transform Processing...20

 3.2.1 Processing up to the Stabilized Auditory Image Stage..................20

 3.2.2 Stabilized Auditory Image Synchronization..................................22

 3.2.3 Mellin Transform Calculation ...24

 3.3 Illustration of the Effect of Pitch Scaling ..25

vii

 3.4 HMMs with HTK...31

IV. Results...36

 4.1 Overall Results...36

 4.2 Individual Phoneme Results ..39

V. Discussion and Recommendations ...45

Appendix A. All Parameters Matlab Script..48

Appendix B. Wave File Conversion Perl Script ..52

Appendix C. Main Program Matlab Code ...53

Appendix D. Synchronize SAI Matlab Script ..61

Bibliography ..63

viii

List of Figures

 Figure Page

 1. A block diagram of the basic model for speech recognition4

 2. An example of a state transition matrix of a hidden Markov model7

 3. Diagram of a 3 state hidden Markov model..8

 4. Block diagram of the calculations for mel frequency cepstral coefficients..........11

 5. An example of a Mel-scale filter bank..12

 6. A block diagram of AIM and each of its modules..13

 7. A portion of the neural activity pattern of a vowel sound14

 8. A section of the stabilized auditory image of a vowel sound15

 9. A section of the Mellin transform of the stabilized auditory image18

 10. Block diagram of the overall procedure ...21

 11. The sampled version of the stabilized auditory image24

 12. The stabilized auditory image of the vowel sound /uh/ at a pitch of 100 Hz27

 13. The stabilized auditory image of the vowel sound /uh/ at a pitch of 200 Hz28

 14. The Mellin transform of the stabilized auditory image from Figure 1229

 15. The Mellin transform of the stabilized auditory image from Figure 1330

 16. A block diagram for steps the Hidden Markov Model Toolkit uses32

 17. A comparison of Mellin image resolutions...34

 18. Marginal distributions of a stabilized auditory image frame..............................47

ix

List of Tables

 Table Page

 1. Part of a typical pronunciation dictionary...6

 2. Key properties of the Mellin transform ..16

 3. Comparison of the results of the Hidden Markov model Toolkit experiments36

 4. Confusion matrix for MFCC results ...40

 5. Confusion matrix for results using Mellin transform data and 1-state HMMs.....41

 6. Confusion matrix for results using Mellin transform data and 3-state HMMs.....42

 7. The results of the HTK recognition process for individual phonemes43

 1

Speech Recognition Using the

Mellin Transform

I. Introduction

 Speech recognition has many military and commercial applications, for example:

hands-free voice control of cockpit or automotive controls; voice-based data entry for

applications that would normally require several mouse clicks or have several text entry

fields; telephony applications such as telephone banking, catalogue centers, and call

routing for customer service centers; and voice-based biometrics, etc. Because of the

wide applicability of speech recognition, it has received a great deal of research for a

number of decades [1]. Despite this considerable attention, automatic speech recognizers

still do not perform as well as human for most tasks.

 One problem in speech recognition is achieving good speaker-independent

performance. A speech recognizer trained on many examples of speech for a given

individual can often perform well. However, a recognizer trained on the same amount of

data but from a wide range of speakers, usually does not perform nearly as well. There

are a number of reasons why this is the case. For example, women and children tend to

have shorter vocal tracts than men, leading to shifts in the formants (vocal tract

resonances). Also, women and children tend to have higher average pitch than men.

Another reason is the different accents and dialects among speakers. These various

differences among speakers cause considerable variability in the standard features used in

speech recognition, which in turn reduces the phoneme discrimination of a recognizer,

where phonemes are basic elements of speech. This research attempts to partially address

 2

this speaker-independent speech recognition problem through the use of a feature set

based on an auditory model and the Mellin transform.

 The Mellin transform (MT) [2] is the integral transform

 () () ()1

0

,s
f tM s = t f t dt s

∞
− ∈∫ . (1)

 The usefulness of the MT lies in its scaling property. Research has shown that the

MT normalizes vowel feature sets from speakers with different voice pitches [3]. The

benefits of the MT with an auditory model are that it helps to separate pitch information

from the vocal tract configuration and that it generates a representation that separates the

vocal tract size information from the general shape information. The research conducted

here uses an entirely new approach in the field of speech recognition by performing the

MT on all speech data, not just vowels, to determine if features from the MT lead to

improved phoneme discrimination across speakers.

 For this research several Matlab scripts were written to run experiments and to

supplement previously written code. Altering part of the code that executes the MT

resulted in a reduction in computation time by a factor of four. Hidden Markov models

(HMMs) were used to perform recognition experiments. The results were compared to

results from traditional automatic speech recognition (ASR) using the standard features,

which are mel frequency cepstral coefficients (MFCCs). The results obtained from the

speech recognition experiments show a recognition rate improvement for some phonemes

over conventional methods used in ASR.

 Chapter 2 discusses the terms and the basic tools used in this research and

provides a background for understanding the methodology. Chapter 3 discusses the

experimental methodology, including steps for obtaining results and why each step was

 3

taken. Chapter 4 analyzes the results, and Chapter 5 provides a discussion and

recommendations for future research.

 4

RecognizerRecognizerFeatureFeature
ExtractionExtraction

Speech

Waveform

Hypothesized
Words

Acoustic
Model

Pronunciation
Dictionary

Language
Model

II. Background

This chapter discusses the basics of speech recognition and also defines the terms

and tools used to accomplish the results of this research. Once a background

understanding of the methods for speech recognition is reached, the experimental

methodology discussed in Chapter 3 will be understood more completely.

2.1 Speech Recognition Basics

 As mentioned in the previous chapter, speech recognition is highly challenging in

that it requires developing statistical models to understand and recognize human speech.

The basic model for a speech recognition system is shown in Figure 1. The first step is to

extract features from the speech that will be used in the pattern recognition analysis to

recognize the speech. Successful speech recognition requires prior knowledge in the

form of an acoustic model, a pronunciation dictionary, and a language model. The

recognizer uses the prior knowledge sources and the feature vectors to determine a set of

words according to the fundamental speech recognition equation [4] given as:

Figure 1. A block diagram of the basic model for speech recognition.

 5

()' arg max
w

w P w X= . (2)

This equation states that the hypothesized words, w’, equal the argument that maximizes

the probability of the words, w, given the acoustical features matrix X. Using Bayes’

rule, this equation becomes

() ()
()

' arg max
w

P X w P w
w

P X
= . (3)

The probability P(X) of the feature matrix is simply a scalar constant for all word

sequences, so it can be ignored. This leaves the following equation to describe the

speech recognition process:

() ()' arg max
w

w P X w P w= (4)

The P(w) term is the prior probability of a sequence of words, w, which is described by

the language model. Language models are one component that a speech recognizer uses

and are discussed in further detail below in Section 2.2. The P(X|w) factor is the

probability of a feature matrix given the word sequence, w. This term is taken into

account through the acoustic models.

 The final component for a speech recognizer is a pronunciation dictionary. An

example of part of a pronunciation dictionary is shown in Table 1. The pronunciation

dictionary tells the recognizer how words are broken up into smaller units called

phonemes, which are the smallest basic units of speech. There are about 39 different

phonemes in the English language. Speech recognition is often performed using

phoneme-level acoustic models rather than word-level models. This is due to a lack of

data necessary for training individual word models. This research uses phoneme-level

acoustic models.

 6

ABBREVIATE [ABBREVIATE] AH B R IY V IY EY T SP
ABBREVIATE [ABBREVIATE] AX B R IY V IY EY T SP
ABDOMEN [ABDOMEN] AE B D OW M AH N SP
ABDOMEN [ABDOMEN] AE B D AX M AX N SP
ABIDES [ABIDES] AH B AY D Z SP
ABIDES [ABIDES] AX B AY D Z SP
ABILITY [ABILITY] AH B IH L AH T IY SP
ABILITY [ABILITY] AX B IH L IX T IY SP
ABLE [ABLE] EY B AH L SP
ABLE [ABLE] EY B EL SP

Table 1. Part of a typical pronunciation dictionary used for speech recognition. The first
column is the word to be recognized, the second column is the output when that word is
recognized, and the third column shows a breakdown of all the phonemes that make up
each word, where “SP” denotes a short pause.

2.2 Language Models

Language models estimate the probability of sequences of words [4]. A speech

recognizer uses a language model to estimate the probability a given word will follow

another word in a spoken sequence. Common language models are bigram and trigram

models. These models contain computed probabilities of groupings of two or three

particular words in a sequence, respectively. This project uses a phoneme-level language

model for phoneme recognition experiments. The phoneme-level language model used in

this research, allows any phoneme to follow any other phoneme with equal probability.

Language models are not the focus of this research and therefore are not discussed

further.

2.3 Hidden Markov Models

HMMs are the acoustic models that produce the best results in speech recognition

[5]. They estimate probabilities of sequences of events, and are comprised of states,

where each state determines a set of probabilities. In general, HMMs are described by a

state transition matrix, where each state has a transition probability of moving from the

current state to the next state and also has probability densities of emitting continuous

 7

features from each state. An example of a three state HMM transition matrix is shown in

Figure 2, where each number is a probability of going from the current state, represented

by the rows, to the next state in the sequence, represented by the columns. For example,

the value in row 2, column 3 represents the probability of moving from state 1 to state 2.

The first row represents the initial or starting state, and the last row represents the final or

exit state, which do not emit anything. The initial state is just a starting point, so the

HMM cannot remain in the initial state and cannot return to the initial state once it is left,

so the probabilities are zero for all of column 1. Similarly, once the exit state is reached,

the HMM cannot transition to any other state, so the probabilities in row 5 are all zero.

In Figure 3 the arrows represent the probabilities governed by the state transition

matrix. The i and e states are the initial and exit non-emitting states, and states 1, 2, and

3 are the emitting states. HMMs may use as many states as desired, although one to five

is the norm for speech recognition. The more states that are used, the more complex an

HMM model becomes, due to the fact that more parameters must be calculated to

describe it. The parameters in the state transition matrix and the state emission

probability densities begin with initial guesses, and training provides more accurate

estimates of these parameters. The algorithm that accomplishes training by iteratively

 next state

current state

Figure 2. An example of a state transition matrix of an HMM.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.00.00.00.00.0
3.07.00.00.00.0
0.04.06.00.00.0
0.00.04.06.00.0
0.00.00.00.10.0

3
2
1

321

e

i
ei

 8

1 32i e
ai1 a12 a23 a3e

a11 a22 a33

Figure 3. Diagram of a 3 state HMM with initial state and end state. The a variables
represent state transition probabilities.

estimating and re-estimating these parameters is known as the Baum-Welch algorithm

[4]. The Baum-Welch algorithm, also known as the Forward-Backward algorithm [5], is

an expectation maximization algorithm that works iteratively to update the parameters of

the HMMs to match the observed sequence of training data.

This research uses continuous density HMMs, which use a Gaussian probability

density for each state to model the probability distribution of emitting continuous

observation vectors from the HMM. The means and variances of these Gaussian mixture

densities are estimated by the Baum-Welch algorithm for continuous HMMs using

Equations 5-11. The probability of generating observation vt in state j [4] is computed

using Equation 5.

 () ()
1

; ,
jM

j t jm t jm jm
m

b c N μ
=

= ∑∑v v , (5)

where Mj is the number of mixture components in state j, cjm is the weight of the m’th

component and N(vt; μ,Σ) is a multivariate Gaussian density with mean vector μ and

covariance matrix Σ, i.e.,

 9

 ()
()

() ()11
21; ,

2 n
N e

μ μ
μ

π

−′− − ∑ −
∑ =

∑

v v
v , (6)

where n is the dimensionality of v [4] and |Σ| denotes the determinant of the matrix Σ.

Next, the forward probability of observing the speech vectors while in state j at

time t is estimated using Equation 7

() () ()
1

2
1

N

j i ij j t
i

t t a bα α
−

=

⎡ ⎤
= −⎢ ⎥
⎣ ⎦
∑ v , (7)

where the state transition probability is aij [4]. The first and last states are the initial and

exit states which do not emit; hence the limits of the summation do not include those

states. Next, the backward probability [4] is estimated using Equation 8.

 () () ()
1

1
2

1
N

i ij j t j
j

t a b tβ β
−

+
=

= +∑ v , (8)

where βi(t) is the probability that the model is in any state and will generate the remainder

of the target sequence from time = t + 1 to time = T [5]. The transition probabilities [4]

are then able to be estimated using Equation 9.

() () ()

() ()
11

1

1T
i ij j t jt

ij T
i it

t a b t
a

t t

α β

α β
+=

=

+
′ = ∑

∑
v

 (9)

Equations 10-11 describe the calculations for estimating the means and variances of the

Gaussian mixtures. Each observation is weighted by Lj(t), which is the probability of

being in state j at time t, and normalized by dividing by the sum of all the Lj probabilities

[4].

()
()

1

1

T
j tt

j T
jt

L t

L t
μ =

=

′ = ∑
∑

v
 (10)

 10

()()()
()

1

1

T
j t j t jt

j T

t

L t

Lj t

μ μ
=

=

′− −
=Σ′ ∑

∑
v v

 (11)

The set of equations described above can be used iteratively as many times as needed to

get better estimates of the HMM parameters. In general, there is an equation for

estimating the cjm terms; however, this research used only single-mixture models for each

state so the cjm terms were all unity. For the speech recognition experiments performed

here, the HMMs are trained with features extracted from the speech phonemes.

Thousands of feature vectors are used as training data, and the result is one HMM that

represents each individual phoneme.

Once the HMMs are trained, testing may begin. Testing classifies unknown

phonemes by finding which HMM phoneme model is most likely to have produced the

observed features. The test speech data are decoded using the HMMs along with a

language model and a dictionary. Various algorithms exist for decoding the test speech

data. The one employed in this project is known as the Viterbi algorithm [4]. The

Viterbi algorithm is a dynamic programming algorithm that calculates the most likely set

of HMM states that produced the observed set of sequences, which in this case is the test

data, taking into account a language model and dictionary for computing results. For

example, the algorithm takes a test speech input and computes the sequence of HMM

phoneme models most likely to have produced it [5].

2.4 Mel Frequency Cepstral Coefficients as Features

 Features often used for training HMMs are MFCCs [1] [4]. These are coefficients

based on the Mel scale that represent sound. The word cepstral comes from the word

cepstrum which is a logarithmic scale of the spectrum (and reverses the first four letters

in the word spectrum). Figure 4 illustrates how MFCCs are calculated. First, the speech

 11

FFT Magnitude

DCT

Speech
Window

Mel-Scale
Filter Bank Log10 MFCCs

Figure 4. Block diagram of the calculations for MFCCs.

data are divided into 25 ms windows (frames). A new frame is started every 10 ms

making this the sampling period and causing the windows to overlap each other. Next,

the fast Fourier transform is performed on each frame of speech data and the magnitude

is found. The next step involves filtering the signal with a frequency warped set of log

filter banks called Mel-scale filter banks. These log filter banks collect the signal

information into the coefficients mi, which are the log filter bank amplitudes. The log

filter banks are arranged along the frequency axis according to the Mel scale, a

logarithmic scale that is a measure of perceived pitch or frequency of a tone [6], thus

simulating the human hearing scale. The Mel scale is defined in Equation 12.

 () ⎟
⎠
⎞⎜

⎝
⎛ += 7001log2595 10

ffMel (12)

The Mel scale yields a compression of the upper frequencies where the human ear is less

sensitive. The filtering process is illustrated in Figure 5. Next, the logarithm is taken of

the log filter bank amplitudes. Finally, the MFCCs are calculated using the discrete

cosine transform (DCT) in Equation 13.

 12

1

frequency

m1 ... mn

Figure 5. An example of a Mel-scale filter bank.

()
1

2 cos 0.5
N

i j
j

ic m j
N N

π
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ , (13)

where N is the number of filter banks and the ci terms are the resulting MFCCs.

To further enhance speech recognition performance, an extra set of delta and acceleration

coefficient features are sometimes calculated with MFCCs. These features are the first

and second time derivatives of the original coefficients, respectively.

 The results obtained in this project are compared to speech recognition

performance on regular MFCCs as well as on MFCCs with delta and acceleration

coefficients. Generally, the MFCC method for ASR yields the most successful results.

2.5 Auditory Image Model

 An alternative method of feature extraction that is a more recent development

than MFCCs is something called the Auditory Image Model (AIM). The AIM model is

software that models how the human ear processes speech [7]. It models the human

hearing mechanism by simulating the processes the ear performs on a sound, resulting in

an auditory image that represents the sound. AIM includes tools to simulate the spectral

analysis, neural encoding, and temporal integration performed by the auditory system [7].

 13

PCPPCP

BMMBMM

NAPNAP

Strobes/SAIStrobes/SAI

PCP = Pre-cochlear processing
BMM = Basilar membrane motion
NAP = Neural activity pattern
SAI = Stabilized auditory image

AIM*AIM*

*AIM code is
contained within
the dotted line.

Mellin TransformMellin Transform

SAI SynchronizationSAI Synchronization

InputInput
Wave Wave

FileFile

Output Mellin ImageOutput Mellin Image

 Figure 6 shows a block diagram that represents the process that AIM uses to

process a sound. The PCP (pre-cochlear processing) block performs filtering of the signal

to represent the response up to the oval window of the inner ear. The BMM (basilar

membrane motion) block represents the basilar membrane motion response to the signal.

It is simulated by a gamma-tone filter bank of bandpass filters with evenly distributed

center frequencies along a quasi-logarithmic scale known as an equivalent rectangular

bandwidth (ERB) scale [8]. This process transforms the signal (in effect) to a moving

surface that represents the basilar membrane as a function of time [9]. The NAP (neural

activity pattern) block simulates the neural activity pattern produced by basilar membrane

energy transduction to the auditory nerve which generates its firing activity pattern [7].

Figure 6. A block diagram of AIM and each of its modules.

 14

Figure 7 shows one frame of the NAP of a speech signal. The pulses have a rightward

skew from high to low frequency (as shown by the dotted lines) because of the phase lag

in the output of the cochlea in the BMM [7].

The Strobes/SAI (stabilized auditory image) block calculates the stabilized

auditory image using strobed temporal integration (STI) and represents the temporal

integration performed on the NAP. This process simulates the perception of the human

ear by stabilizing oscillating sounds into static patterns [7]. STI works by strobing the

Figure 7. A frame of the NAP of a vowel sound generated by the NAP block of Figure 6
and presented as a waterfall plot. The NAP module of AIM converts basilar membrane
motion into a representation that is expected to be similar to the pattern of neural activity
found in the auditory nerve or cochlea nucleus. The abscissa of the plot is time, and on
the ordinate each horizontal line represents one of 35 channels with center frequencies
from 100 Hz to 6 kHz on a log scale. The height of each pulse represents the “firing rate”
of the NAP.

 15

signal to the levels of high activity in the NAP by locating the points in each channel that

are local maxima. This information then defines the limits of integration when

performing temporal integration for calculating the SAI [8]. Figure 8 shows one frame of

the SAI of the speech signal from Figure 7. The SAI representation is based on the

assumption that as the NAP flows from the cochlea, the human hearing mechanism acts

as a bank of delay line filters [10] that capture information into a buffer store. This

process stabilizes the repeating patterns of the NAP into the SAI, which is an image

representing the sound. The phase lag from the NAP plot is removed, causing the phase

Figure 8. A frame of the stabilized auditory image (SAI) of a vowel sound generated by
the AIM. The SAI module of AIM uses STI to convert the NAP into the SAI. The
abscissa of the plot is time, the ordinate is frequency on a log scale, and vertical height
represents the “firing rate” of the SAI.

 16

to be aligned in the SAI plot as shown by the dotted lines. The SAI is described by

Equation 14 as

() ()0 0
0

, , pkt
I w p

k

A f S f kt e e ηξτα τ α τ
∞

−−

=

= +∑ , (14)

where Sw is the output of the NAP, αf0 is the peak frequency of each auditory filter in the

filter bank, τ is the time axis for the SAI, tp is the period of the signal, and η and ξ are

factors that affect the time interval of each SAI frame and the decay rate of the

waveforms in each frame [11]. The pattern of the pulse peaks or ridges in the SAI follow

a time-interval-peak frequency product path, denoted by h, which is constant along the

ridges of the SAI. This time interval-peak frequency product path is used later in the

calculation of the MT. The SAI synchronization block and its justification are discussed

in Section 3.2.2.

2.6 The Mellin Transform and its Applications

 The MT is the integral transform defined in Equation 1. Similar to the Fourier

transform (FT), the MT possesses certain properties [12], some of which are displayed in

Table 2. As mentioned previously, the scaling property of the MT is exploited in this

Property Function Mellin Transform
Standard f(t) M(s)
Scaling f(at) a-sM(s)
Linear af(t) a M(s)
Translation xaf(t) M(a+s)
Exponentiation f(ta) a-1 M(s/a)

Table 2. Key properties of the MT. The property of interest here is the scaling property,
which states that dilation of the abscissa in the time-domain by the factor a has no effect
on the shape of M(s) in the Mellin-domain. The time dilation by a is encoded in the a-s
factor and does not dilate M(s).

 17

project. The FT is translation-invariant in that it does not matter if the signal is shifted in

time by some Δt; the magnitude of the FT of the signal remains the same (although the

phase changes). This translation invariance does not hold for the MT, however, so the

limits of integration must be defined when it is calculated. The limits of integration are

defined by the STI, as discussed in the previous section. The MT is not translation

invariant, but it has a scaling property, and when evaluated under certain conditions it is

scale invariant within a phase factor [11] [3]. This scale invariance comes from the

scaling property of the MT and means that as the time-domain distribution of the signal is

subjected to dilation, the magnitude distribution of the MT does not dilate. Contrast this

to the FT, where if the time axis of a signal is compressed or expanded, the magnitude of

the Fourier spectrum is expanded or compressed, respectively. However, for the MT,

dilation of the time-axis does not compress or expand the distribution in the Mellin

domain. Equations 15-17 show how the scaling property of the MT, affects time axis

dilation of a signal. In particular, let

() ()1

0
() s

f tM s t f t dt
∞ −= ∫ . (15)

If the time axis is dilated by a factor of a, the result is

() ()1

0
() s

f atM s t f at dt
∞ −= ∫ . (16)

With τ = at, or t = τ/a, the integral is:

 () () () ()
1 1

1

0 0

1 1s s
s s

f t
df f d a M s

a a a a
τ ττ τ τ τ

− −
∞ ∞ − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫ . (17)

Thus, if M(s) is the MT of some function f(t), the introduction of a dilation factor a either

expands or compresses the time axis, but in the Mellin domain the net result of the MT is

a segregation of the size and shape information from the signal [11]. This normalizing

effect of the MT may be useful for achieving improved speaker independent speech

 18

recognition. Figure 9 shows the MT of the SAI from Figure 8. Chapter 3 gives an in-

depth description of how the MT is calculated in Matlab, which indicated that the MT is

evaluated using an FT such that s = -jc + ½.

 The MT has many uses, including digital image registration and digital

watermarking [13], digital audio effects processing [14], and vowel normalization [11].

Experiments in vowel normalization have shown positive results [3]. Thus, this research

attempts to use the normalizing effect of the MT on all speech to determine if results

improve over conventional ASR methods.

Figure 9. A section of the MT of the SAI from Figure 8 generated by the MT block of
the AIM. The abscissa of the plot is called the time-interval-peak frequency product
because the ridges in the SAI plot follow a path where the time-interval and the peak
frequency in the SAI equal a constant, h. The MT is computed along these vertical paths,
which results in a two-dimensional MT plot. The ordinate shows the Mellin variable,
which is the argument of the MT, much like jω in the FT. Darker color in a region
indicates greater Mellin coefficient magnitude.

 19

III. Experimental Design

This section presents the steps taken for phoneme recognition experiments with MFCCs

and the MT features using HMMs trained with the Hidden Markov Model toolkit (HTK)

[15]. The experiments were run using the TIMIT database.

3.1 TIMIT Database

The TIMIT database is a collection of 6300 sentences, 10 sentences each spoken

by 630 persons from eight different dialect regions in the United States. The speech was

recorded at Texas Instruments (TI) and transcribed at the Massachusetts Institute of

Technology (MIT), which is how the database derives its name. It was created for the

purpose of “providing speech data for the acquisition of acoustic-phonetic knowledge and

for the development and evaluation of automatic speech recognition systems” [16]. The

database is divided into training data, which consists of approximately 73% of the

database, and testing data, which consists of approximately 27% of the database. The

transcription files containing the words and phonemes of each spoken sentence are also

contained in the database.

For some experiments, a subset of the database is used instead of the entire

database. This subset consists of 100 sentences, 10 spoken utterances each from 10

speakers. For the subset, training is performed by the leave one out method which trains

on 9 speakers and tests on the 10th speaker, then leaves a different speaker out for testing,

etc. The results of leaving each speaker out once is averaged and shown as the result.

The reason for using this subset was to obtain some results quickly from each of the

experiments before performing them on the entire database, which requires much more

time.

 20

TIMIT is a small sized database by current standards, but it is a good choice for

this research because it is a diverse collection of data that possesses a good balance

between having enough data for training and testing and being small enough to avoid an

exorbitant amount of time in running experiments. It also is useful for speech recognition

research because it has been in existence for over two decades, has been used in

numerous experiments, and can be used for comparison with results obtained here.

3.2 Mellin Transform Processing

 Several versions of the AIM exist. For this research, the Auditory Image Model

in Matlab (aim-mat) [7] is used to implement the AIM, because it is the only version that

includes code for performing the MT. Aim-mat has a graphical user interface (GUI)

which allows a user to load a sound file and perform AIM calculations on it with ease;

however, this research employs the command line version of aim-mat instead of the GUI

to receive input and produce results so that batch processing can be implemented without

user interaction. A parameter structure file called “all_parameters.m” (listed in Appendix

A) includes all necessary parameters for the AIM calculations. When run in Matlab, this

structure file creates a variable called “all_options”, which specifies various parameters

and options necessary for each block of AIM.

3.2.1 Processing up to the SAI Stage

Figure 10 shows the overall process. The first step is to convert the speech files

in the TIMIT database, which are NIST sphere files, to wave file format so that Matlab

can use them. This conversion is accomplished using the Perl script

“convert_timit_wav.pl” (listed in Appendix B). The Matlab script “main_program.m”

(listed in Appendix C) was developed to use the aim-mat code by calling the appropriate

functions, processing the resulting data from these functions, and writing results to the

 21

AIMAIM--MATMAT
CodeCode SAI SynchronizationSAI Synchronization

Input Wave Input Wave
FileFile

TIMITTIMIT
DatabaseDatabase

Speech FileSpeech File

RemoveRemove
HeaderHeader Output Mellin ImageOutput Mellin Image

HTKHTK

Output % CorrectOutput % Correct
Recognition ResultsRecognition Results

Figure 10. Block diagram of the overall procedure. Data from the TIMIT database is
first preprocessed so that it is useable in Matlab. The aim-mat code uses the resulting
input wave files to construct the SAI and the MT of the SAI. A modification made to the
code written specifically for this research is represented by the SAI synchronization
block. This module converts the SAI, which is asynchronous, into a synchronous data
stream before the MT is computed and the MT images are sent to HTK for recognition
tests. The HMMs require synchronous data for training.

correct location. Thus, the “main_program.m” script runs the entire process of the

conversion from wave files to Mellin transform data files, including loading the

parameter file, calling the aim-mat subroutines, loading SAI and MT image data, saving

SAI and MT image data, plotting, and converting MT image data to HTK format. The

paths in the “main_program.m” script must be set correctly to read from the directory

where the wave files are stored and to write the SAI and MT results in the desired

directory. The options in the “main_program.m” script can be set so that only the SAI is

 22

calculated, only the MT is calculated (on previously calculated SAI), both SAI and MT

are calculated on the fly, or the HTK conversion of the previously calculated MT files is

calculated. The parameters for each of the six AIM modules are specified in the

“all_parameters.m” script. Some of the parameters include specifying the algorithms

used in the AIM modules. Each module can use different algorithms to accomplish the

calculation. The built-in algorithms used here are:

• PCP: none

• BMM: gamma-tone filter bank

• NAP: irinonap

• Strobes: irinostrobes

• SAI: irinosai

• User-Module: mellin

These algorithms perform the steps in the AIM (as discussed in Section 2.5), as well as

the MT. They were chosen because they are less computationally intensive than

alternative algorithms. Future research could investigate the effects of different choices

for the various components.

 Once all the parameters and options are set, the “main_program.m” script uses the

aim-mat code to generate the AIM of the speech signals, which includes its SAI and the

MT of the SAI. The SAI is a representation of the speech signal that is divided into

frames, where each frame represents 35 ms of the speech signal.

3.2.2 SAI Synchronization

The SAI representation is asynchronous, meaning that the time intervals between

the start-times of each frame are not the same. Later, HMMs are used to perform the

speech recognition experiments, and they require synchronous input data. Therefore, the

 23

SAI must be synchronized prior to the experiments. The SAI synchronization block from

Figure 6 represents this step, which is performed before the MT calculation. The script

called “synch_sai.m” (listed in Appendix D) is additional code, written specifically for

this research, to execute the SAI synchronization process. It works by sampling the SAI

every 10ms and taking the frame that starts the closest to each 10 ms sampling period.

The sampling rate of 10 ms was chosen because it equals the sampling rate used for

calculating MFCCs. By using the same sampling rate for both MFCC calculation and

SAI synchronization calculation, results can be more accurately compared between both

methods. This SAI synchronization process discards some of the original frames, which

is acceptable because portions of each of the frames representing the speech signal

overlap. Each frame contains an image with six to eight vertical pulse patterns called

strobes, where each strobe contains a decayed version of the previous strobe. The

synchronization processes each frame by taking only the first 10 ms, which is

approximately the first two strobes of each SAI frame, because each frame contains a

decayed part of the frame previous to it. By removing the decayed portions from each

frame, the synchronized SAI contains less redundant information than the original SAI.

This action also has the benefit of a reduction in computation time for the MT

calculation. Figure 11 shows a synchronized version of the SAI.

3.2.3 Mellin Transform Calculation

 After the necessary synchronization process is complete, the final step in the aim-

mat code performs the calculations for the MT, and the results are saved to the previously

specified path in the “main_program.m” script.

Aim-mat uses the MT to map auditory speech images from vocal tracts of

different sizes into an invariant MT image [17] by performing a one dimensional MT

 24

Figure 11. The sampled version of the SAI generated by the “SAI synchronization” code.
Each strobe begins at each multiple of 10 ms, which is due to the 10 ms sampling rate of
the synchronization process. The process also takes the first two strobes from each frame
and removes the rest, which is a decayed version of the first 2 strobes. The abscissa of
the plot is time, the ordinate is frequency on a log scale, and vertical height represents the
“firing rate” of the SAI.

along each time interval-peak frequency product column of the SAI, resulting in a

collection of MTs which form a two-dimensional image. The MT of the SAI [11] from

Equation 14 is

 () ()1 ln

0
, ,

T s
I

hM s h A e dττ τ
τ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ , (18)

where AI is the SAI representation and h is the parameter representing the time interval-

peak frequency product constant.

 25

Calculation of the MT image from the SAI is accomplished by a two stage

process. First, a time dilation of each of the SAI channels by a factor proportional to the

center frequency of the channel filter is performed. This intermediate representation is

called the size-shape image (SSI) [17] and implements the ln τ term in Equation 18 by

creating a log-time axis [11]. The logarithmic time scale is achieved if we let

, , 0 ,x xt e dt e dx= = → −∞ ∞→∞ .

This causes the form of the MT when evaluated at s = -jc + ½ to be

() () ()

()
()

1 2

0

1 2

0

1 2 0

1 2

1

jc x x x
f t

jcx x

jcx x

M jc e f e e dx

e e f e dx

e f e dx
e

∞ − − −

∞ − −

∞ −

⎫− + = ⎪
⎪
⎪
⎬= ⎪
⎪
⎪=
⎭

∫

∫

∫

 , (19)

which is the FT on a logarithmic time scale. This is used in the second state where the

SSI is used to compute the MT. The center frequencies of the AIM filters are now on a

logarithmic scale along the abscissa. This coordinate system makes the MT equivalent to

a FT on spatial frequency [11], where each column of the final MT image is computed by

performing the FT on the columns of the SSI [17] and taking the magnitude.

3.3 Illustration of the Effect of Pitch Scaling

Generally women and children have higher pitched voices than men. Figures 12

and 13 use this fact to illustrate the effects of pitch scaling on the MT by showing a

simulated vowel sound at pitches of 100 Hz and 200 Hz, respectively. This pitch

difference simulates how typical male and female voices produce the same vowel sound

with different pitches. The first, second, and third formants, indicated by the horizontal

arrows in both figures, are at a frequency of 450 Hz, 1450 Hz, and 2450 Hz, respectively,

 26

simulating the formants of the phoneme /uh/. It can be seen that the pitch periods for the

male spoken vowel of Figure 12 last approximately twice the amount of time as those for

the female spoken vowel of Figure 13, as indicated by the vertical arrows in each figure.

Figures 14 and 15 show the MT of Figures 12 and 13, respectively. It can be seen

that the high amplitude regions for Figure 14 lie in the same regions as those of Figure

15. The differences in the amplitudes are due to the fact that the two vowels are not fully

scaled versions of each other. Only the pitch is scaled; the formants are the same for the

two signals.

 27

Figure 12. The SAI of the vowel sound /uh/ at a pitch of 100 Hz, typical of a male
speaker. Notice that the pitch period is 10 ms as indicated by the vertical arrows. The
vowel formants are 450 Hz, 1450 Hz, and 2450 Hz as shown by the horizontal arrows.
Compare this figure to Figure 13, which shows the same vowel spoken with a pitch of
200 Hz, typical of a female speaker.

 28

Figure 13. The SAI of the vowel sound /uh/ at a pitch of 200 Hz, typical of a female
speaker. Notice the pitch period is 5 ms as indicated by the vertical arrows.

 29

Figure 14. The MT of the SAI from Figure 12. Compare this plot to Figure 15, which is
the MT of the SAI from Figure 13.

 30

Figure 15. The MT of the SAI from Figure 13. Figures 12 and 13 show considerable
changes between male and female vowels, whereas Figures 14 and 15 show similar
regions of high amplitude.

 31

3.4 HMMs with HTK

This research uses a set of programs called HTK to train HMMs and conduct

phoneme recognition experiments. HTK is open source software designed by the

Cambridge University Engineering Department along with Entropic Research

Laboratories [15]. HTK also provides utilities for extracting features from speech data

and custom user defined features can be imported into HTK, as was the case for this

project.

 Before the MT data can be used in HTK to perform speech recognition

experiments, it must be converted to a format that HTK can use. The Matlab script

“writehtk.m”, obtained from the Imperial College department of electrical and electronic

engineering at the University of London website [18], is used to perform the conversion

of MT data to HTK format. This conversion is accomplished by reshaping the matrices

of each MT frame into a row vector so that each frame is one row. The data is written as

a floating point binary file. The frame period, which is 10 ms, is also encoded into the

file along with a flag identifying the data as user defined features. After this process, the

data can be imported into HTK.

Figure 16 illustrates the processes and commands used to perform phoneme

recognition. The HCopy command is part of the data preparation phase and calculates

MFCC features of the input speech data. Because data preparation for the MT is

accomplished prior to importing into HTK, the HCopy command is not needed for the

MT features and is omitted. The next command in HTK is HCompV, which works by

computing the global mean and covariance of the training data and assigning these values

as the starting points in the Gaussians in each phoneme HMM model. This assignment

is known as the initialization stage for “flat-start” training, because each phoneme model

 32

HCopyHCopySpeechSpeech
DataData

Result: % CorrectResult: % Correct
Recognition Recognition
of Phonemesof Phonemes

HCompVHCompV

HResultsHResultsHERestHERest

HViteHVite

HTK*HTK*

*HTK program
contained within
the dotted line.

AcousticAcoustic
LanguageLanguage

Model/Model/
DictionaryDictionary

 Figure 16. A block diagram for steps HTK uses in taking an input and computing
percent correct recognition results. Results can be shown in percent correct recognition
per sentence, per speaker, or over the entire test data set.

starts identically [4]. Once initial estimates for the HMM models are calculated, the

models can be re-estimated by training with the HERest command. This command uses

the Baum-Welch algorithm to perform re-estimation of the mean, variance and state

transition parameters of the HMMs [4] and may be used iteratively to re-estimate the

parameters of the HMM models. For this research, the re-estimation is performed for a

total of three iterations. In iteratively estimating the HMM parameters, there is the option

of updating the weights, means, and variances of the mixtures. For some of the

experiments, a global variance was used and not further updated.

 33

 When training is complete, the HVite command is used for testing. HVite is a

Viterbi word recognizer that computes the likelihood of the phonemes that produced the

given speech data using the HMM models, a language model, and a dictionary, and it

outputs a transcription of the speech file. When testing is complete, the HResults

command outputs the results, including the percent correct recognition rates as well as

other statistics determined by options in the command. Some of these statistics include:

the number of correctly recognized phonemes, words, and sentences as well as the

number of errors from deletions, insertions, and substitutions. Also, HResults can

compute a confusion matrix, which is a matrix that displays all phonemes in rows that

show which phoneme is recognized and the number of times it occurs.

Several variations of test data are used for the training and test process in this project. By

default the MT produced by the AIM has too many features to estimate with HTK (about

192,000); however the options in the “main_program.m” file can be set to control the MT

image data resolution. The number of features and the size of the MT image file are

equivalent to image resolution, where a larger resolution means that more pixels are

required to describe the image, resulting in a larger memory requirement. Smaller

images reduce the memory size of the image but also reduce the information contained in

the image, as illustrated in Figure 17, which show the two Mellin image resolutions used

here compared to the default resolution that aim-mat produces. HTK was recompiled to

accept a maximum number of features of 8192. Due to this limitation, the original

number of features set in the options file for the MT data was 8100. The use of 500

features from the MT was also investigated, to make the process of training and testing

faster and to observe the impact of the reduced resolution on the recognition results. The

 34

Figure 17. A comparison of the two Mellin image resolutions used in this research
compared to the default resolution that aim-mat produces. The top plot is the default
aim-mat resolution which has about 192,000 features, the middle plot is the one
containing 8100 features, and the bottom plot is the one containing 500 features.

 35

SAI data was also used to train and test HMM models with HTK; the SAI data used 5600

features.

 36

IV. Results

 Results from each experiment in HTK were output to a master label file (MLF)

for analysis by different methods. One method outputs the percent correct recognition of

phonemes over the entire test set. Percent correct recognition is defined as H/N x 100%,

where H is the number of correctly identified phonemes and N is the total number of

phonemes. The number of correctly identified phonemes is given by: H = N – S – D,

where D is the number of deletions and S is the number of substitutions. A deletion

occurs when a phoneme should have been recognized but was omitted. A substitution

occurs when a phoneme is mistaken for a different phoneme. Another output statistic is

the percent accuracy defined as (H - I)/N x 100%, where I is the number of insertions in

the output. An insertion occurs when a phoneme is mistakenly inserted into a place

where no phoneme should be recognized. Note that the percent accuracy can be negative

if enough insertions occur. Most of the results emphasized below are percent correct

recognition of phonemes.

4.1 Overall Results

Table 3 shows overall percent correct recognition results from the experiments

described in Chapter 3. In this table, the MFCC, MT, and SAI methods and also the

Method Global
Var

HMM
States # Feat # Param Database Sub-set

(100 sentences)
Entire Database

(6300 sentences)

MFCC N 3 13 106 40.23% 41.56%
MFCC_D_A N 3 39 262 50.94% 54.46%

Mellin N 3 8100 48628 18.85% 14.11%
Mellin Y 3 8100 48628 20.22% 18.41%
Mellin N 1 8100 16212 26.23% 23.68%
Mellin Y 1 8100 16212 30.62% 27.19%
Mellin N 3 500 3028 16.67% 10.66%
SAI N 3 4480 26908 N/A 15.55%

Table 3. Comparison of the results of the HTK experiments shown in percent correct
recognition. Note that the number of HMM states is the number of emitting states.

 37

varying parameters used in the experiments are compared for percent correct recognition.

Since no delta and acceleration coefficients are calculated for the MT data, it is

appropriate to compare them to ordinary MFCC results instead of MFCC with delta and

acceleration coefficients. This method is included in the table for reference and to

observe how the calculation of delta and acceleration coefficients improves percent

recognition results. The method column of the table indicates the method of feature

extraction: MFCC, MFCC including delta and acceleration coefficients, the MT images

at two different resolutions, and finally the SAI image representation. The global

variance column indicates whether the initial global variance computed is the same one

used throughout all the HMM re-estimations or if the variance for each HMM model is

re-estimated during each iteration. The number of HMM states column indicates the

number of states used to build the HMM models. As discussed in the previous section,

the number of features for the MT data is restricted by HTK to a maximum of 8192;

therefore, the maximum number of features used in the MT experiments is 8100. The

number of features column indicates how many features each method uses. The number

of parameters column indicates the number of parameters that the HMM models must be

trained to estimate. The formula for calculating the number of parameters is

 () () () ()2# 2 # # # # 2parameters states features states states= ⋅ ⋅ + + + (20)

Diagonal covariance matrices were used, so each state must have means and variances

equal to the number of features, which is the reason for the factor of two. Adding the

number of states is necessary because a global constant is estimated for each state. The

final term is a result of the estimation of the state transition matrix. The state transition

matrix includes the initial and final state, hence the +2 in this term. The database subset

(100 sentences) column shows results in percent correct recognition when a subset of the

 38

TIMIT database is used for training and testing. The final column shows the results in

percent correct recognition when the entire TIMIT database is used for training and

testing.

 The most interesting aspect of the results in Table 3 is the percent correct

recognition in each category. The best performing method for MT data recognition is the

1-state HMM with global variances used throughout HMM re-estimations, with a correct

recognition rate of 27.2%. It is obvious that the recognition rates are better when the

global variances are used in re-estimations than when the variances are re-estimated in

each iteration. The reason for this is that the database is not large enough to support

accurate training of the individual mixture variances. Also, note that the 1-state models

have roughly one-third the number of parameters to estimate compared to the 3-state

models. This reduction in the number of parameters for the HMM models to train makes

training with the given data faster and produces better performance, but it also yields less

flexibility to the models.

Another interesting result is the decrease in performance when the MT data with

500 features is used. The reduction in features results in a reduction in the MT image

resolution, which causes a decrease in percent recognition performance. Even though the

number of parameters to train is reduced for the MT image with 500 features, the

negative effects from a reduced resolution of the MT image outweigh the positive effects

of having fewer parameters to train. Since HTK does not accept more than 8192 features,

possible performance improvement using more than 8100 features was not explored, but

this possibility would be an interesting topic for future research. Also, a lot more data

would be required to estimate significantly more parameters.

 39

 The SAI data, used in computing the MT data, was also tested and found to

perform better than the corresponding case with the MT. This result suggests that some

of the parameter settings for the MT and the SAI synchronization component used in this

research should be further investigated.

 One final observation to take note of from this table is the fact that performance

decreases going from the tests on the database subset to tests on the entire database. This

result might be due to the properties of the reduced set of speakers, but more research is

needed to determine its cause.

 A comparison of the MFCC results with the MT and SAI results does show that

the MFCCs have better performance, but they have received considerable research and

the research on the MT and SAI is just beginning.

4.2 Individual Phoneme Results

 To compare performance for individual phonemes, tables 4-6 show the confusion

matrices for results from MFCCs (3-state HMMs), MT with 1-state HMMs, and MT with

3-state HMMs, respectively. Both of the MT methods used the global variance during

HMM re-estimation. The confusion matrices list all the phonemes in the first column and

show a mapping along each row of how each phoneme is recognized in the experiments.

The matrices also list the number of insertions and deletions for each phoneme. After the

deletions column, the percent correct recognition for each phoneme is listed. The next

column lists the broad phonetic class of the phonemes, and the final column gives an

average percent correct recognition for each broad phonetic class. Comparison between

all three confusion matrices shows an improvement in some, but not all, of the phonemes

with the MT method over the MFCC method.

 40

Ta
bl

e
4.

 C
on

fu
si

on
 m

at
rix

 fo
r s

pe
ec

h
re

co
gn

iti
on

 re
su

lts
 u

si
ng

 M
FC

C
s w

ith
ou

t d
el

ta
 a

nd
 a

cc
el

er
at

io
n

co
ef

fic
ie

nt
s a

nd
 3

 st
at

e
H

M
M

s.

 41

Ta
bl

e
5.

 C
on

fu
si

on
 m

at
rix

 fo
r s

pe
ec

h
re

co
gn

iti
on

 re
su

lts
 u

si
ng

 M
T

da
ta

 a
nd

 1
-s

ta
te

 H
M

M
s.

 42

Ta
bl

e
6.

 C
on

fu
si

on
 m

at
rix

 fo
r s

pe
ec

h
re

co
gn

iti
on

 re
su

lts
 u

si
ng

 M
T

da
ta

 a
nd

 3
-s

ta
te

 H
M

M
s.

 43

 Table 7 lists the phonemes with improved percent correct recognition

performance using the MT features with either 1-state HMMs or 3-state HMMs over the

MFCC features (without delta and acceleration coefficients). Each of the MT methods

used the global variance for all re-estimations. Both the percent correct recognition rates

and the percent accuracy rates are shown for each type of feature set. In some cases the

accuracy percentage was negative. Obviously, the MT data does not perform equally

well in all 1-state and 3-state cases. Even though the MT features did not outperform the

MFCCs overall, improvement was found for some phonemes. The increase in

performance found for these phonemes with the MT might be exploited by fusing the

particular phoneme models that have improved performance for the MT with existing

models of HMMs trained with MFCCs. Also, it is important to note that the MFCCs

 MFCC Mellin-1 State Mellin-3 State

Phoneme % Cor % Acc % Cor % Acc % Cor % Acc

IY 45.41% 38.33% 56.07% -284.49% 40.07% 37.35%
AE 43.55% 34.94% 13.32% -601.05% 51.82% 46.28%
OW 41.91% 14.02% 55.08% -48.57% 21.28% 17.26%
AA 5.01% -14.06% 38.36% -3846.17% 32.00% 26.80%
UH 26.54% -153.09% 52.94% -149.02% 53.19% -53.19%
UW 29.85% 15.39% 54.48% -178.65% 31.97% 26.29%
V 61.37% -18.13% 11.62% -411.48% 63.24% 13.24%

DH 30.88% 6.69% 39.95% -114.64% 5.79% 4.49%
HH 44.22% -23.61% 56.99% -4376.16% 46.55% 26.06%
CH 59.61% 5.88% 79.09% -2321.29% 66.11% -28.33%
N 36.09% 25.90% 10.62% 9.64% 39.48% 35.39%
M 56.88% 41.49% 75.91% 17.27% 28.49% 24.19%

AW 49.30% -824.41% 68.10% -17515.95% 50.31% -16.77%
OY 53.60% -11.15% 87.89% -1912.80% 86.99% 2.85%
D 23.80% 11.61% 27.66% -6.12% 2.90% 2.90%
P 84.80% 79.92% 83.08% -134.77% 90.39% 60.45%
K 38.59% 20.28% 54.75% -87.40% 4.37% 3.80%

Table 7. The results of the HTK recognition process for phonemes with improved
recognition performance using MT features over MFCC features.

 44

have been finely tuned over decades of research, while the MT features are just starting to

be investigated, and thus further research on the MT features may yield better results.

 45

V. Discussion and Recommendations

 Research previously conducted on vowel recognition using the MT [11] [17]

suggested the possibility of improved speech recognition results with MT features. This

previous research used a Mixture of Gaussians model on single simulated vowel frames

to perform vowel recognition [3] [11]. Since all broad phonetic classes of real speech

were used in this research, not just synthetic vowels, it is more general than previous

research.

This research reported here differs from this previous research in that it uses

HMMs to conduct the phoneme recognition experiments. Since the HMMs are based on

having synchronous feature vectors, adding the extra step of SAI synchronization was

necessary. This step, while converting the SAI to synchronous form, might have

contributed to a decrease in recognition performance results due to some of the design

choices made. Investigating the tradeoff of some of these design choices related to

synchronization may lead to better recognition performance. Alternatively, a method of

speech recognition that does not require synchronous data (thus enabling the SAI to

remain asynchronous) may produce better results.

There are a number of variations to try in future research. One variation to try is

feature normalization. The MT features were not normalized to take into account overall

magnitude differences between frames utterances. Feature mean and variance

normalization, for example, may improve results. Another variation to try is using more

than one mixture for each state in the HMM models. This would make the models more

complicated but might make them more discriminating, thereby leading to improved

results. Also, changing the algorithms used to calculate the various components of the

 46

AIM to more complex ones may yield a tradeoff of computational complexity for

improved results.

 Rather than increasing the complexity of the recognition system, methods that

reduce the complexity of the system but that retain as much information as possible in the

data may be beneficial. For instance, principal components analysis (PCA) is a linear

transformation that reduces the dimensionality of a dataset while retaining as much of the

information as possible contained in the dataset. Another possible method for reducing

complexity is to use marginal distributions (e.g., temporal and spectral profiles), of the

image data, where feature vectors that sum down the rows and across the columns of the

data matrix are employed. Figure 18 shows an example of the marginal distributions of a

SAI image frame. Similar processing could be done with the MT images. While PCA

and marginal distributions might reduce feature information, they also might allow better

trained HMMs given the small amount of data available in the TIMIT database.

 As shown in the results section, some phonemes did increase in correct

recognition performance when MT features were used instead of MFCC features. It may

be beneficial to attempt fusion of the phoneme models trained with MT data that show

improvement with existing MFCC-based models that perform relatively well.

 In summary, using the MT features lead to improved phoneme recognition rates

for some phonemes. The results obtained here further the AFRL/HECP mission in

improving human-machine collaboration, and future research should be able to use these

results to explore ways to further improve speech recognition.

 47

Figure 18. Marginal distributions of a SAI frame. The waveform at the top of the figure
is the original speech waveform. The waveform at the bottom is the temporal profile of
the SAI image, which is obtained by summing down the columns of the SAI data matrix.
The waveform on the right is the spectral profile of the SAI image, which is obtained by
summing across the rows of the SAI data matrix.

 48

Appendix A: All Parameters Matlab Script

% Parameters
% for the project:
%%%%%%%%%%%%%

%%%%%%%%%%%%%
% Signaloptions
% all_options.signal.signal_filename='';
% all_options.signal.start_time=0;
% all_options.signal.duration=;
% all_options.signal.samplerate=16000;
% all_options.signal.original_start_time=0;
% all_options.signal.original_duration=;
% all_options.signal.original_samplerate=16000;

%%%%%%%%%%%%%
% outer/middle ear filter function
all_options.pcp.none.generatingfunction='gennopcp';
all_options.pcp.none.displayname='no correction by outer/middle ear';
all_options.pcp.none.revision='$Revision: 1.2 $';

%%%%%%%%%%%%%
% bmm
all_options.bmm.gtfb.generatingfunction='gen_gtfb';
all_options.bmm.gtfb.displayname='Gamma tone filter bank';
all_options.bmm.gtfb.revision='$Revision: 1.6 $';
all_options.bmm.gtfb.nr_channels=35;
all_options.bmm.gtfb.lowest_frequency=100;
all_options.bmm.gtfb.highest_frequency=6000;
all_options.bmm.gtfb.do_phase_alignment='off';
all_options.bmm.gtfb.phase_alignment_nr_cycles=3;
all_options.bmm.gtfb.b=1.019;

%%%%%%%%%%%%%
% nap
all_options.nap.irinonap.generatingfunction='gen_irinonap';
all_options.nap.irinonap.displayname='Irinos nap';
all_options.nap.irinonap.revision='$Revision: 1.1 $';

%%%%%%%%%%%%%
% strobes
all_options.strobes.irinostrobes.generatingfunction='genirinostrobes';
all_options.strobes.irinostrobes.displayname='Irinos Strobes';
all_options.strobes.irinostrobes.revision='$Revision: 1.2 $';

%%%%%%%%%%%%%

 49

% sai
all_options.sai.irinosai.generatingfunction='genirinosai';
all_options.sai.irinosai.displayname='time integration stabilized
auditory image';
all_options.sai.irinosai.revision='$Revision: 1.1 $';
all_options.sai.irinosai.start_time=0;
all_options.sai.irinosai.maxdelay=0.035;
all_options.sai.irinosai.buffer_memory_decay=0.0003;
all_options.sai.irinosai.frames_per_second=200;
all_options.sai.irinosai.delay_time_strobe_weight_decay=0.0002;

%%%%%%%%%%%%%
% user defined module
all_options.usermodule.mellin.generatingfunction='gen_mellin';
all_options.usermodule.mellin.displayname='mellin Image';
all_options.usermodule.mellin.displayfunction='displaymellin';
all_options.usermodule.mellin.revision='$Revision: 1.12 $';
all_options.usermodule.mellin.do_all_frames=1;
all_options.usermodule.mellin.framerange=[0 0];
all_options.usermodule.mellin.do_all_image=1;
all_options.usermodule.mellin.audiorange=[1 200];
all_options.usermodule.mellin.flipimage=0;
all_options.usermodule.mellin.ssi=0;
all_options.usermodule.mellin.log=0;

%%%%%%%%%%%%%
% graphics
all_options.graphics.ams.minimum_time=0.001;
all_options.graphics.ams.maximum_time=0.035;
all_options.graphics.ams.is_log=1;
all_options.graphics.ams.time_reversed=1;
all_options.graphics.ams.display_time=0;
all_options.graphics.ams.time_profile_scale=1;
all_options.graphics.autocorr.minimum_time=0;
all_options.graphics.autocorr.maximum_time=0.035;
all_options.graphics.autocorr.is_log=0;
all_options.graphics.autocorr.time_reversed=0;
all_options.graphics.autocorr.display_time=0;
all_options.graphics.autocorr.time_profile_scale=1;
all_options.graphics.grouped.minimum_time=0.001;
all_options.graphics.grouped.maximum_time=0.035;
all_options.graphics.grouped.is_log=1;
all_options.graphics.grouped.time_reversed=1;
all_options.graphics.grouped.display_time=0;
all_options.graphics.grouped.time_profile_scale=1;
all_options.graphics.grouped.plotstyle='waterfall';
all_options.graphics.grouped.colormap='summer';
all_options.graphics.grouped.colorbar='off';
all_options.graphics.grouped.viewpoint=[0 80];
all_options.graphics.grouped.camlight=[50 0; 30 90];

 50

all_options.graphics.grouped.lighting='phong';
all_options.graphics.grouped.shiftcolormap=0.8;
all_options.graphics.gtfb.is_log=0;
all_options.graphics.gtfb.time_reversed=0;
all_options.graphics.gtfb.plotstyle='waterfall';
all_options.graphics.gtfb.colormap='cool';
all_options.graphics.gtfb.colorbar='vertical';
all_options.graphics.gtfb.camlight='left';
all_options.graphics.gtfb.lighting='phong';
all_options.graphics.hcl.is_log=0;
all_options.graphics.hcl.time_reversed=0;
all_options.graphics.hcl.plotstyle='waterfall';
all_options.graphics.hcl.colormap='hot';
all_options.graphics.hcl.colorbar='off';
all_options.graphics.irinosai.minimum_time=0.001;
all_options.graphics.irinosai.maximum_time=0.035;
all_options.graphics.irinosai.is_log=1;
all_options.graphics.irinosai.time_reversed=1;
all_options.graphics.irinosai.display_time=0;
all_options.graphics.irinosai.time_profile_scale=1;
all_options.graphics.irinosai.plotstyle='waterfall';
all_options.graphics.irinosai.colormap='summer';
all_options.graphics.irinosai.colorbar='off';
all_options.graphics.irinosai.viewpoint=[0 80];
all_options.graphics.irinosai.camlight=[50 0; 30 90];
all_options.graphics.irinosai.lighting='phong';
all_options.graphics.irinosai.shiftcolormap=0.8;
all_options.graphics.mellin.is_log=0;
all_options.graphics.mellin.time_profile_scale=100;
all_options.graphics.scaleprofile.is_log=0;
all_options.graphics.scaleprofile.time_profile_scale=1;
all_options.graphics.scaleprofile.frequency_profile_scale=1;
all_options.graphics.scaleprofile.minimum_time_interval=0.5;
all_options.graphics.scaleprofile.maximum_time_interval=20.5;
all_options.graphics.ti1992.minimum_time=0.001;
all_options.graphics.ti1992.maximum_time=0.035;
all_options.graphics.ti1992.is_log=1;
all_options.graphics.ti1992.time_reversed=1;
all_options.graphics.ti1992.display_time=0;
all_options.graphics.ti1992.time_profile_scale=1;
all_options.graphics.ti1992.plotstyle='waterfall';
all_options.graphics.ti1992.colormap='pink';
all_options.graphics.ti1992.colorbar='off';
all_options.graphics.ti2003.minimum_time=0.001;
all_options.graphics.ti2003.maximum_time=0.035;
all_options.graphics.ti2003.is_log=1;
all_options.graphics.ti2003.time_reversed=1;
all_options.graphics.ti2003.display_time=0;
all_options.graphics.ti2003.time_profile_scale=1;
all_options.graphics.ti2003.plotstyle='waterfall';
all_options.graphics.ti2003.colormap='summer';
all_options.graphics.ti2003.colorbar='off';

 51

all_options.graphics.ti2003.viewpoint=[0 80];
all_options.graphics.ti2003.camlight=[50 0; 30 90];
all_options.graphics.ti2003.lighting='phong';
all_options.graphics.ti2003.shiftcolormap=0.8;

 52

Appendix B: Wave File Conversion Perl Script

#!/usr/bin/perl

Read in a TIMIT .wav - strip off SPHERE header and convert to
MS WAV format

$list_in = "filelist.txt"; # reads in the file list of TIMIT
files

open(IN, "$list_in");
 chop(@in = <IN>);
close(IN);
$cnt = $#in;

for($x=0; $x<=$cnt; $x++) {
 ($root,$ext) = split('\.', $in[$x]);
 print "$root\n";
 `/tools/NIST/bin/h_strip ${root}.wav ${root}.raw`;
 `mv ${root}.wav ${root}.wav.orig`;
 `sox -r 16000 -w -s ${root}.raw ${root}.wav`;
}

 53

Appendix C: Main Program Matlab Code

% Main Program
% 2LT Jesse Hornback
% EENG 799
% 27 July 05

%%%
% initialization
%%%
echo off
clear;clear global;clc
global result
%%%
% choose whether to compute:
% 1) SAI only, 2) Mellin only, 3) SAI and Mellin, 4) HTK format
z = 3;
%%%

%%%
% decide if you want plots: 0) off, 1) on
plotting = 1;
%%%
% if plotting, decide whether to plot a portion (frames == 0) or
frames at
% a time (frames == 1)
frames = 0;
%%%

% to see code in command window
echo on
%%%
% load parameters here
%%%
echo off

[files,num_files] = file_list;num_files = 1;
path1 = 'M:/timit/mellin/'; % path for the wave files
%path1 = 'C:/MATLAB6p5/aim2003/Sounds/Tones and Misc';
path2 = 'H:/timit/mellin/'; % path for the SAI files
path3 = 'H:/timit/mellin/'; % path for the Mellin files
path4 = 'H:/timit/mellin/'; % path for the HTK files

% load the parameter m file to get the all_options struct array
current_directory = pwd;
cd ../parameter_files
run all_parameters
cd(current_directory)

%%%%%%%%%%%%%%%%%%%%

 54

if z ~= 4

for i = 1:num_files
fprintf('\n << iteration %-0.0f >>\n\n',i)

tic
[signal_filename,dir] = get_parameter_file(i,files);

%%%
%%% option to adjust the Mellin transform "resolution"
%%%
all_options.usermodule.mellin.c_2pi=linspace(0,30,180); %
original length = 601 (tried 180,50)
all_options.usermodule.mellin.TFval=linspace(0,16,45); % original
length = 321 (tried 45,10)
%%%
%%%

%%%
%%% load some variables that will be needed later
%%%
abridge_sai = 1;
all_options.signal.signal_filename = signal_filename;
all_options.signal.start_time=0;
max_delay = all_options.sai.irinosai.maxdelay;
c_2pi = all_options.usermodule.mellin.c_2pi;
% load the wave file
current_directory = pwd;
cd(fullfile(path1,'MSwav_files'));
[y,Fs,nbits,opts] = wavread(signal_filename);
cd(current_directory);
all_options.signal.duration = length(y)/Fs;clear y
signal_duration = all_options.signal.duration;

%%%
%%%

%%%
%%%%%% start computations for differnt cases (1-3)
%%%

if z == 1

echo on
%%%
% compute SAI
%%
%%%

 55

echo off

% call the aim_ng2_sai (modified) function
[result,strobes,newSigLen] =
aim_ng2_sai(all_options,signal_duration,max_delay,path1,abridge_s
ai);

% save the SAI to a .mat file for use later
save_sai(result.data.sai,i,signal_filename,dir,path2)

time(i) = toc;

if plotting == 0
 clear result
end

end

if z == 2

echo on
%%%
% compute Mellin transform
%%%
echo off

[result] =
aim_ng2_mellin(all_options,signal_duration,signal_filename,max_de
lay,i,dir,path1,path2);

% save the MT to a .mat file for use later
save_mellin(result.data.usermodule,i,signal_filename,dir,path3)

time(i) = toc;

if plotting == 0
 clear result
end

end

if z == 3

echo on
%%%
% compute SAI and Mellin transform
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
echo off

 56

% call the aim_ng2 (modified) function
[result,strobes,newSigLen] =
aim_ng2(all_options,signal_duration,max_delay,path1,abridge_sai);

%%%%%%%%%%%%%%
% the SAI and Mellin data are not saved to a .mat file because
they are
% calculated on the fly
%%%%%%%%%%%%%%

time(i) = toc;

if plotting == 0
 clear result
end

end

%%%
% now collect the SAI and Mellin data from the result struct
array and plot
%%%

warning off

if plotting

% specify what part of SAI image to plot and Mellin will be
calculated in x2
x1 = 1200; % x-axis from 1:x
%y = 200; % y-axis from y:end

if z == 1

% call the harvest_sai_data function
sai_image = harvest_sai_data(result);

clear result

% plot part of the SAI
plot_sai_image(sai_image,signal_duration,x1) % use this if doing
only the SAI

end

if z == 2

% call the harvest_mellin_data function
mellin_image = harvest_mellin_data(result);

 57

clear result

% scale x1 value to Mellin image so that the portion of the
Mellin image
% displayed corresponds to the portion of the SAI image displayed
x2 = x1*2/3;

% plot part of the Mellin
plot_mellin_mesh(mellin_image,signal_duration,c_2pi,x2)

end

if z == 3

if frames == 0

% call the harvest_sai_data function
sai_image = harvest_sai_data(result);

% call the harvest_mellin_data function
mellin_image = harvest_mellin_data(result,frames);

clear result

% scale x1 value to Mellin image so that the portion of the
Mellin image
% displayed corresponds to the portion of the SAI image displayed
x2 = x1*(size(mellin_image,2)/size(sai_image,2));

%%% plot part of the SAI and Mellin %%%
plot_sai_mellin_image(sai_image,mellin_image,signal_duration,c_2p
i,x1,x2)
plot_mellin_mesh(mellin_image,signal_duration,c_2pi,x2)

end

if frames == 1

%%% plot frames at a time %%%
%%plot_sai_mellin_image_frames_obsolete(sai_image,mellin_image,si
gnal_duration,c_2pi,newSigLen)
plot_sai_mellin_image_frames(result.data.sai,result.data.usermodu
le,signal_duration,c_2pi) % plot one frame at a time
%plot_sai_mellin_image_frames2(result.data.sai,result.data.usermo
dule,signal_duration,c_2pi) % plot two frames at a time
%plot_sai_mellin_image_frames3(result.data.sai,result.data.usermo
dule,signal_duration,c_2pi) % plot three frames at a time

clear result

 58

end

end

end % this ends the if plotting
warning on

end % this ends the calculation of the for loop

%%% display computation time

fprintf('\nThe computation time in minutes for each file
was\n\n')
%[a,files] = parameter_file_list; % this function isn't used
anymore
for i = 1:num_files
 [file,dir] = get_parameter_file(i,files);
 fprintf('%s\t%-0.2f\n',char(dir),time(i)/60)
end

fprintf('\nThe total computation time was\n\n')
fprintf(' %-0.2f minutes',sum(time)/60)

fprintf('\n\nThe average computation time was\n\n')
fprintf(' %-0.2f minutes\n\n',(sum(time)/60)/length(time))

end % this ends the if z ~= 4

if z == 4

echo on
%%%
% write Mellin data to HTK format
%%%
echo off

for i = 1:num_files
tic

global result % so that result can be cleared within the harvest
mellin function

[signal_filename,dir] = get_parameter_file(i,files);

%%%
%%% load some variables that will be needed later
%%%

 59

all_options.signal.signal_filename = signal_filename;
all_options.signal.start_time=0;
max_delay = all_options.sai.irinosai.maxdelay;
c_2pi = all_options.usermodule.mellin.c_2pi;
% load the wave file
current_directory = pwd;
cd(fullfile(path1,'MSwav_files'));
[y,Fs,nbits,opts] = wavread(signal_filename);
cd(current_directory);
all_options.signal.duration = length(y)/Fs;clear y
signal_duration = all_options.signal.duration;

% load previously computed Mellin data into result
result.data.usermodule =
load_mellin(i,signal_filename,dir,path3);

%%% put PCA here? %%%
%min_frac = 0.05 % minimum fraction variance component to keep
%mellin_image = pca_mellin(min_frac,i,signal_filename,dir,path3)
%%%%%%%%%%%%%%%%%%%%%

% call the harvest_mellin_data function
mellin_image = harvest_mellin_data_htk(result);
%clear result

frame_period =
round(1000*signal_duration/size(mellin_image,2))/1000;

current_directory = pwd;
cd(fullfile(path4,'HTK_files'));
warning off;
mkdir(dir);warning on
[pathstr,name,ext] = fileparts(signal_filename);
filename = fullfile(pathstr,name);
fprintf('%-0.0f writehtk %s\n',i,filename)
writehtk(sprintf('%s.htk',filename),mellin_image',frame_period,9)
cd(current_directory)

clear mellin_image

time(i) = toc;

if rem(i,10) == 0
 pack;
end

end

%%% display computation time

 60

fprintf('\nThe total computation time was\n\n')
fprintf(' %-0.2f minutes',sum(time)/60)

fprintf('\n\nThe average computation time was\n\n')
fprintf(' %-0.2f seconds\n\n',(sum(time))/num_files)

end % this ends if z == 4

 61

Appendix D: Synchronize SAI Matlab Script

function [data_final,newSigLen] =
synch_sai(data,strobes,signal_duration,max_delay,sampling_rate)
%
% Written by Lt Jesse Hornback
%

[a NumFrames] = size(data);

% find the strobe points
[Strobes,Strobes_diff] = strobes_est(strobes);
avg_str_diff = mean(Strobes_diff); % find the average time
difference between each strobe
Strobes_diff = [Strobes_diff avg_str_diff]; % account for this
variable being one shorter than Strobes

desired_portion = sampling_rate; % part of the .035 sec window
that we want to take out and keep
if avg_str_diff/desired_portion > 1.375 |
avg_str_diff/desired_portion < 0.75
 fudge_factor = desired_portion/avg_str_diff;
else
 fudge_factor = 1;
end

%%%
%%% do the uniform sampling here
which_strobes =
sample_strobes(Strobes_diff,signal_duration,sampling_rate); %
find which frames to use at the SR
NumFrames_new = length(which_strobes);
for i = 1:NumFrames_new
 data_sampled{i} = data{which_strobes(i)};
 Strobes_diff_new(i) = Strobes_diff(which_strobes(i));
end
clear data
%%%

% Get the data and take out the superfluous data
%newSigLen = [];
LenDif = 0;
h = waitbar(0,'Synchronizing SAI Image Data...');
for i = 1:NumFrames_new
 c = struct(data_sampled{i});
 [NumCh SigLen] = size(c.values);
 % find what size the new matrix should be with the
superfluous data removed
 %newSigLen(i) =
round(SigLen*(desired_portion/max_delay)*(Strobes_diff(i)/avg_str
_diff));

 62

 newSigLen(i) =
round(SigLen*(Strobes_diff_new(i)/max_delay)*fudge_factor); % use
this if desired portion = avg_str_diff
 if size(c.values,2) < newSigLen(i);
 newSigLen(i) = size(c.values,2);
 end
 %cc{i}.values = c.values(:,1:newSigLen(i)); % this is the
original
 cc{i}.values =
c.values(:,1:round((sampling_rate/max_delay)*SigLen)); % this is
to try and get an avg of the length of the sampling rate from
each frame
 waitbar(i/NumFrames,h)
end
close(h)
clear data_sampled

% output to frames
for i = 1:NumFrames_new
 data_final{1,i}=frame(cc{i}.values);
end

 63

Bibliography

1. Rabiner, Lawrence and Biing-Hwang Juang. Fundamentals of Speech Recognition, pp.
1,339-340, PTR Prentice-Hall, Inc., (Engelwood, NJ), 1993.

2. Weisstein, Eric W. “Mellin Transform.” From MathWorld--A Wolfram Web
Resource, 2006. http://mathworld.wolfram.com/MellinTransform.html

3. Turner, Richard E., Marc Al-Hames, and Roy Patterson. “Vowel Recognition using
the Mellin Image.” Centre of the Neural Basis of Hearing, Dept of Physiology, University
of Cambridge, 2003.

4. Young, Steve, Gunnar Evermann, Thomas Hain, Dan Kershaw, Gareth Moore, Julian
Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, and Phil Woodland. “The HTK
Book.” Cambridge University, (Cambridge, England). 2002.

5. Duda, Richard O., Peter E. Hart, David G. Stork. Pattern Classification, pp. 128-138,
Wiley-Interscience, (New York, NY), 2001.

6. Kamm, Terri, Hynek Hermansky, and Andreas G. Andreou. “Learning the Mel-scale
and Optimal VTN Mapping.” Johns Hopkins University, Center for Language and
Speech Processing, 1997 workshop (WS97), 1997.
http://www.clsp.jhu.edu/ws97/acoustic/reports/KHAMel.pdf

7. Bleeck, Stefan, and Roy Patterson. “Aim-mat: An implementation of the auditory
image model in MATLAB.” 2004.
http://www.mrc-cbu.cam.ac.uk/cnbh/aimmanual/Introduction/Introductionframeset.htm

8. Turner, Richard E., Marc A. Al-Hames, David R. R. Smith, Hideki Kawahara, Toshio
Irino, and Roy D. Patterson. “Vowel normalization: Time-domain processing of the
internal dynamics of speech.” in Dynamics of Speech Production and Perception, ed. P.
Divenyi, IOS Press, (Amsterdam, The Netherlands), (in press.)

9. Anderson, Timothy R. “A comparison of auditory models for speaker independent
phoneme recognition”, IEEE International Conference on Acoustics Speech and Signal
Processing, p. 231, 1993.

10. Patterson, Roy D. “Auditory images: How complex sounds are represented in the
auditory system,” Journal of the Acoustical Society of America, vol. 21, pp. 183-190,
2000.

11. Irino, Toshio and Roy Patterson. “Segregating information about the size and shape
of the vocal tract using a time-domain auditory model: The stabilized wavelet-Mellin
transform.” Speech Communication, vol. 36, no 3, pp. 181-203, March 2002.

 64

12. Tung, Y.K. “Uncertainty on Travel Time in Kinematic Wave Channel Routing.”
Channel Flow and Catchment Runoff Proceedings of the International Conference for
Centennial of Manning’s Formula and Kuichling’s Rational Formula, Wyoming Water
Research Center and Statistics Department, University of Wyoming, 1989.
http://library.wrds.uwyo.edu/wrp/89-30/89-30.html

13. Guo, Xiaoxin, Zhiwen Xu, Yinan Lu, and Yunjie Pang. “An Application of Fourier-
Mellin Transform in Image Registration,” The Fifth International Conference on
Computer and Information Technology (CIT'05), Shanghai, China, pp. 619-623, 2005.

14. De Sena, Antonio and Davide Rocchesso. “A Fast Mellin Transform with
Applications in DAFx,” Proc. Of the 7th Int. Conference on Digital Audio Effects
(DAFx’04), (Naples, Italy), pp. 65-66, October 5-8, 2004.

15. Cambridge University Engineering Department, Microsoft Corporation. Hidden
Markov Model Toolkit. http://htk.eng.cam.ac.uk, December 2002.

16. Garofolo, J.S., L.F. Lamel, W.M. Fisher, J.G. Fiscus, D.S. Pallett, and N.L.
Dahlgren. “readme.doc,” p1, The DARPA TIMIT Acoustic-Phonetic Continuous Speech
Corpus (TIMIT), Training and Test Data, NIST Speech Disc CD1-1.1, 1993.

17. Turner, Richard E. “The Perception of Scale in Speech: Vowel Recognition and the
Mellin Transform, Part III Project” pp. 4-5, 2003. http://www.mrc-
cbu.cam.ac.uk/~tw01/cnbh/teaching/physics_project/documents/PartIII2003.pdf

18. Brookes, Mike. VOICEBOX: Speech Processing Toolbox for MATLAB. Imperial
College of Science, Technology, and Medicine, University of London, Oct 2005.
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
23-03-2006

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sep 2004 – March 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 Speech Recognition Using the Mellin Transform

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
If funded, enter ENR #
5e. TASK NUMBER

6. AUTHOR(S)

Hornback, Jesse, R., Second Lieutenant, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN), Bldg. 640
 2950 Hobson Way
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/06-22

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFRL/HECP
 Attn: Dr. Timothy R. Anderson
 2255 H Street, WPAFB OH 45433-7022
 937-255-8817 DSN: 785-8817

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The purpose of this research was to improve performance in speech recognition. Specifically, a new approach was investigating by applying an integral
transform known as the Mellin transform (MT) on the output of an auditory model to improve the recognition rate of phonemes through the scale-invariance
property of the Mellin transform. Scale-invariance means that as a time-domain signal is subjected to dilations, the distribution of the signal in the MT domain
remains unaffected. An auditory model was used to transform speech waveforms into images representing how the brain “sees” a sound. The MT was applied
and features were extracted. The features were used in a speech recognizer based on Hidden Markov Models. The results from speech recognition
experiments showed an increase in recognition rates for some phonemes compared to traditional methods.

15. SUBJECT TERMS
Hidden Markov Model, Auditory Image Model, Stabilized Auditory Image, Mellin Transform, Hidden Markov Model Toolkit

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr. Steven C. Gustafson (ENGE)

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

75 19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4598; e-mail: Steven.Gustafson@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	Speech Recognition Using the Mellin Transform
	Recommended Citation

	Microsoft Word - Thesis _rough draft_.doc

