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Abstract

Routing in Mobile Ad Hoc Networks (MANETs) presents unique challenges not

encountered in conventional networks. Limitations in bandwidth and power as well

as a dynamic network topology must all be addressed in MANET routing protocols.

Predicted Associativity Routing (PAR) is a custom routing protocol designed to ad-

dress reliability in MANETs. By collecting associativity information on links, PAR

calculates the expected lifetime of neighboring links. During route discovery, nodes

use this expected lifetime, and their neighbor’s connectivity to determine a residual

lifetime. The routes are selected from those with the longest remaining lifetimes.

Thus, PAR attempts to extend the duration routes are active, thereby improving

their reliability.

PAR is compared to Ad Hoc On-Demand Distance Vector Routing (AODV)

using a variety of reliability and performance metrics. Despite its focus on reliability,

PAR does not provide more reliable routes. Rather, AODV produces routes which

last as much as three times longer than PAR. However PAR, even with shorter lasting

routes, delivers more data and has greater throughput. Both protocols are affected

most by the node density of the networks. Node density accounts for 48.62% of the

variation in route lifetime in AODV, and 70.66% of the variation in PAR. As node

density increases from 25 to 75 nodes route lifetimes are halved, while throughput

increases drastically with the increased routing overhead. Furthermore, PAR increases

end-to-end delay, while AODV displays better efficiency.
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Evaluation of the Effects of Predicted Associativity

On the Reliability and Performance

Of Mobile Ad Hoc Networks

I. Introduction

1.1 Background and Motivation

Advances in wireless network technology have freed users from the tethers of con-

ventional wired networks. Wireless networks permit users to move anywhere within

transmission range of an access point. Even so, there are still limitations associated

with this type of network. First, their range is limited to the transmission range of

the nodes. All nodes in infrastructure networks are tied to an access point. So, while

movement is supported in infrastructured wireless networks, it is not limitless. Addi-

tionally, traditional wireless networks require a supporting infrastructure be in place

to facilitate communication. This places an additional burden when implementing

the network.

Mobile ad hoc networks (MANETs) solve many of the limitations of infrastruc-

tured wireless networks. MANETs extend freedom of motion by not requiring nodes

be within range of an access point. Rather, nodes in a MANET communicate directly

with one another thereby allowing full freedom of motion, provided another node in

the network can be reached. Furthermore, MANETs require no infrastructure which

means MANETs can be established as needed and at minimal cost since all that is

required is the nodes themselves.

MANETs are not without their own limitations. MANETs have a smaller band-

width than wired networks and MANET nodes have limited computational power and

energy. Additionally, the nature of the radio communications channel is a challenge

to MANETs. Finally, the mobility of MANET nodes complicates communication.
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These complications place a particular burden on routing in MANETs. Since

there is no infrastructure, each node in the network serves as a router. Nodes cooper-

ate to facilitate communication to distant nodes by forwarding messages from source

to destination. The limitations of MANETs make developing and maintaining routes

in these networks difficult. In particular, the mobility of the nodes in the network

makes establishing reliable routes especially challenging. Frequent changes in topol-

ogy mean routes fail regularly. Thus, reliable routes can be difficult to discover in

MANETs.

Reliable routing is the motivation for this research. This research proposes a

reliable routing protocol called Predicted Associativity Routing (PAR). This protocol

estimates link lifetimes, and selects routes with the greatest expected remaining life-

time. To determine the effectiveness of this strategy, the reliability and performance

of PAR is compared to the frequently used Ad Hoc On-Demand Distance Vector

(AODV) routing protocol.

1.2 Objectives

There are three primary objectives of this research. The first is to evaluate

the reliability of PAR compared to AODV. Second, to determine the performance

of both protocols in a variety of network configurations. Finally, the various factor

levels of the experiment are changed to determine their effect on the reliability and

performance of the protocols. The factors which have the greatest impact on the

protocols are identified.

1.3 Approach

Reliability in MANET routing can be defined in several ways. This research

defines reliable routes as routes which, once established, can be depended on to remain

active. Defined in this way, route lifetime becomes the metric by which routing

protocols are evaluated and compared. Route lifetimes are the time interval between

a route being entered into a node’s routing table, and the failure of that route. These
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statistics are compared for each routing protocol to determine which protocol performs

more reliably, and to evaluate how the various factors of the research impact reliability.

1.4 Summary

This research compares the reliability of the custom PAR routing protocol to

the AODV routing protocol. The performance of this new protocol is evaluated to

determine the effectiveness of PAR’s residual lifetime prediction method. Finally,

this research determines the impact of a variety of factors on the performance and

reliability of both the PAR and AODV routing protocols.

The remainder of this document is organized in the following way. Chapter 2

provides an overview of MANET routing protocols, methods for modeling mobility

in MANETs, and previous research into reliable routing in MANETs. Chapter 3

describes the detailed implementation of the Predicted Associativity Routing protocol,

and outlines the results of a pilot study to evaluate its parameters. Chapter 4 outlines

the methodology used to conduct the experiments in this research. Chapter 5 provides

the results of the research, provides analysis of those results, and draws conclusions

about the protocols studied. Finally, Chapter 6 summarizes the research and its

results, describes its impact, and suggests some possibilities for follow-on research.
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II. Literature Review

2.1 Introduction

This chapter provides an introduction to several aspects of MANET routing.

Section 2.2 introduces and discusses unique challenges of MANET routing. Section 2.3

presents a variety of Table-Driven, On-Demand, and Hybrid routing protocols, and

describes their approach to the challenge of MANET routing. Section 2.4 introduces

entity and group mobility models, and provides examples of each. Section 2.5 is an

overview of several research efforts addressing improving the reliability of routing in

MANETs.

2.2 Routing Challenges In Mobile Ad-Hoc Networks

The limitations associated with nodes in mobile ad hoc networks present signif-

icant challenges to these networks. In particular, routing is problematic. Restrictions

in resources and available bandwidth, the dynamic nature of the network’s topology,

and the properties of the transmission channel all impact routing in ad hoc wireless

networks [Joh94]. Routing schemes must address these issues to ensure network hosts

can communicate effectively.

The first of these challenges are the resource constraints of wireless networks

[Joh94]. Nodes in an ad hoc network must be self sufficient, providing their own

power sources. To achieve a level of portability, wireless devices sacrifice resources.

Key among these is power. Batteries only provide the host with a limited supply

of electrical power. Thus, power must be conserved. Taking the task of the routing

from dedicated routers and imposing it on network nodes further taxes the battery.

Nodes must now perform additional computations to determine routes. Additional

transmissions must be sent to update routing tables or create routes. Nodes must

not only send their own traffic, but the traffic of any other host using them as an

intermediate hop. All of these additional burdens require power. The routing scheme

employed in ad hoc wireless networks must limit this added routing overhead to

preserve the available power.
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Wireless nodes are often limited in other resources as well. Computational

power and storage can be exhausted with the added burden of routing [MuM04]. In

a large network with a significant amount of traffic, it is possible for a host to be

inundated by route construction requests, route table updates, and packet relays for

other nodes in the network. Storage is another resource that is limited in wireless

nodes. Depending upon the protocol, certain data concerning the network topology

must be stored to efficiently route traffic. In large networks, this can be a significant

amount of data. Again, this is a resource consumed by routing overhead that could

be used by the node itself. The routing scheme used by the node must make judicious

use of these limited resources as well.

Bandwidth in wireless networks is limited [Joh94]. Since wireless networks use

RF as their transmission mechanism, the available bandwidth is restricted. Nodes

in these networks operate within a certain range of frequencies. The physical prop-

erties of radio transmission establish a ceiling on the bandwidth available in this

range [MuM04]. In wired networks, this issue is of less concern; the use of fiber op-

tics, copper, and multiplexing techniques afford wired networks greater data rates.

Wireless networks, on the other hand, must operate within the constraints of the

radio spectrum. With restricted bandwidth, ad hoc networks must ensure that they

use this resource appropriately. If the routing protocol produces large or frequent

routing messages, bandwidth is wasted and is an inefficient use of the network poten-

tially lowering data throughput. Routing protocols, then, must also be designed to

facilitate efficient use of available bandwidth.

The use of radio as a transmission mechanism brings with it further compli-

cations. Links using radio transmissions are subject to changes in capacity and an

increased probability of error due to the RF channel. Additionally, since it is a broad-

cast medium collisions occur when nodes transmit simultaneously. One particular

example of this issue is the hidden terminal problem, shown in Figure 2.1 [MuM04].

Node B is in the transmission range of both nodes A and C, but A and C are not

within transmission range of each other. If node A is transmitting to node B, node C
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is unable to detect this transmission because it is out of node A’s transmission range.

Therefore, node C senses the medium is free, and transmits. This results in a collision

at node B.

Node A Node B Node C

X

Transmission Range

Figure 2.1: Hidden terminal problem [MuM04]

A further example of the complications of a radio transmission medium can be

seen in the exposed terminal problem depicted in Figure 2.2 [MuM04]. Nodes B and

C are within transmission range of each other. If node B is transmitting, to node A

for example, node C will not transmit to any other node, even if that node is outside

the range of node B since node C’s broadcast would result in a collision with node B’s

ongoing transmission. However, node C’s transmission to D would not interfere with

that since B is transmitting to A. Thus, channel capacity is wasted. To establish

reliable paths, routing protocols used in ad hoc networks must detect changes in link

capacity, quality, and congestion. As these factors change, the protocol must adapt

to ensure reliable communication between nodes.

Finally, the mobility of the nodes presents a challenge to routing in ad hoc

wireless networks [Joh94]. Since nodes not only manage their own traffic but act as

routers for other nodes, the mobility of a node can affect the entire network. When

nodes are mobile the topology changes frequently. As hosts move within the network,
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Node A Node B Node C Node D

Transmission 

Range

Figure 2.2: Exposed terminal problem [MuM04]

existing routes could be invalidated, thereby forcing nodes to send route updates, or

to discover new routes to a desired destination. This generates routing control and

update information that must be transmitted on the network. Routing protocols in

mobile ad hoc networks must be capable of handling the mobility of the nodes without

consuming excessive amounts of the limited resources. Mechanisms must ensure that

paths broken by mobility can be repaired, and that paths to the destination can be

reestablished quickly, whenever possible.

2.3 Routing Protocols

There are numerous routing protocols in wireless ad hoc networks. The ulti-

mate goal of all of these protocols is to efficiently discover and maintain routes for

data transfer between pairs of nodes in the network. Each protocol performs these

activities in unique ways. Protocols can be classified, based on their methodology for

accomplishing these goals, into three categories: 1) Table Driven Protocols; 2) On

Demand Protocols; and 3) Hybrid Protocols [MuM04].

2.3.1 Table Driven Protocols. Table driven protocols are proactive in their

approach to routing. Each node in the network maintains information about the

topology of the network [Mis99]. From this information, hosts can determine the
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optimal path to the desired destination. Protocols discover and maintain their rout-

ing information by broadcasting update messages periodically or when the network

topology changes. When nodes receive update packets, the information is compared

to the information currently possessed by the node. If the route to a destination has

changed or is stale, the node will update its information. The following are examples

of table driven routing protocols.

2.3.1.1 Destination Sequenced Distance Vector Routing Protocol. The

Destination Sequenced Distance Vector (DSDV) routing protocol is an extension of

the distributed Bellman-Ford algorithm [Ily03]. All nodes maintain a route table with

entries for every reachable destination in the network. For each entry, the protocol

maintains information on the next hop along the path to the destination, as well as the

hop count of the route. Additionally, destination sequence numbers preventing routing

loops from developing, and ensures that only the most recent route information is

retained in the route table.

Since the route table maintained by each node contains route information to ev-

ery available destination node, route discovery is straightforward. Route maintenance

is performed through a series of table update messages. Updates are sent periodically

or are triggered by significant changes in the topology of the network [PeB94]. Desti-

nation nodes initiate route updates, incrementing their sequence number to a greater

even value. Even sequence numbers identify this as a periodic update, rather than an

update forced by a link failure. There are two varieties of update, incremental and

full. Incremental updates occur when there are no significant changes in the node’s

local topology and the updated information can be transmitted in a single Network

Data Packet Unit (NDPU). Full updates, on the other hand, transmit all routing

information. They are used when significant changes to the network topology occur,

or when the updated information requires multiple NDPUs [PeB94].

Nodes initiating updates, broadcast the appropriate update message to their

neighbors. Upon receiving the update message, neighboring nodes either update their
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routing tables, or, if configured to do so, wait a predetermined period of time, allowing

updates from several neighbors to arrive [PeB94]. Using the latter method allows a

node to select routing information with the best metric, for example the shortest hop

count. The node updates its tables based on the sequence number associated with

the update. If the sequence number of the update is greater than the number stored

in the table, signifying more current route information, the route table is updated. If,

however, the destination sequence number is less than the current number, the update

is rejected. The metric, in this case hop count, determines the best route between

updates with identical destination numbers. These updated routes are propagated to

neighboring nodes through periodic updates [PeB94].

Link failures occurring during transmission are handled in a slightly different

manner. The node detecting the breakage updates its table to indicate a hop count

of ∞ for the failed path and initiates a route update message reflecting this infor-

mation with an odd sequence number greater than that stored in its routing table.

Upon receiving this message, a node forwards the message to propagate this infor-

mation throughout the network [PeB94]. Likewise, nodes receiving a message with

an ∞ metric, which have a greater sequence number and a finite metric, immediately

forward an update throughout the network reflecting this new route to the affected

destination. In this way, when the node on the downstream end of the broken link

broadcasts a route update, the path to this destination is updated and reestablished.

2.3.1.2 Wireless Routing Protocol. Like DSDV, the Wireless Rout-

ing Protocol (WRP) is an extension of the distributed Bellman Ford routing algo-

rithm [MuM04]. However, while DSDV uses destination sequence numbers to prevent

routing loops from developing, WRP uses the shortest path to each node and the

penultimate hop on these paths to eliminate loops. WRP further distinguishes itself

from DSDV by means of its route update and maintenance process.

Rather than maintain a single table containing routing data, WRP maintains a

series of several tables to gather more accurate routing information [MuM04]. The first
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is the distance table (DT). This accumulates the distance and penultimate hop on the

path to a particular destination reported by each of the node’s neighbors. The routing

table (RT) keeps track of up-to-date routes to all known destinations. In this table, the

shortest route distance, the penultimate hop on the route to the destination, the next

hop along the path to the destination, as well as a status flag indicating whether the

particular route is a simple path, loop, or unmarked is stored. Figure 2.3 depicts the

values that would populate the corresponding Routing Table fields, given the network

topology and link costs. Next, the link cost table (LCT) records the number of hops

to reach a destination when relaying a packet through each available link. To indicate

broken links, ∞ is entered as the cost. Additionally, as a mechanism to detect link

failures, the LCT maintains the number of intervals since the last successful update

was received over a particular link [MuM04]. Finally, the message retransmission list

(MRL) contains the list of all update messages that must be retransmitted, as well

as a counter for each. Nodes acknowledge each update message. In the absence of

an acknowledgement, a node retransmits an update message after a predetermined

interval. With each subsequent transmission of a message, the counter is decremented

until zero is reached. At this point the message is resent, and the MRL entry is deleted.

This further aids the protocol in determining the viability of links. By maintaining this

set of tables, nodes can perform consistency checks on the data when route updates

are received from its neighbors [MuM04]. Additionally, tracking the predecessor node

information for each destination node enables a node to converge to a viable route

quickly.

Using the mechanisms described above, nodes will detect link breakages. In

response, nodes send an update message setting the minimum cost of the failed link

to ∞ [MuM04]. Based on the information contained in its DT, the initiating node

attempts to find an alternate path to the destination. If found, the node distributes

an update. Nodes receiving updates reflecting a new route to the destination only

accept it if it is shorter than the existing routes. In this manner viable routes are

distributed throughout the network, overcoming the failure of a link.
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Figure 2.3: Routing table entries for each node for destination node 15 [MuM04]

2.3.1.3 Global State Routing Protocol. The Global State Routing

(GSR) protocol merges qualities of traditional link state protocols and extensions of

the distributed Bellman Ford algorithm, as seen in DSDV routing [Mis99]. Like link

state protocols, GSR establishes routes based on the exchange of state information

between the nodes in the network. However, wired link state protocols do this by

flooding the network. GSR improves on this by distributing route information to

neighbors on a periodic basis. This is similar to the method used by DSDV for route

information dissemination [Mis99].

Each node in the network maintains route information in a set of four lists and

tables: a neighbor list (A), a topology table (TT ), a next hop table (NEXTi) and

a distance table (D) [ChG98]. The list A identifies all nodes adjacent to the given

node. Adjacent is defined as the set of nodes that can be heard by a node. Table

TT has an entry for each reachable destination in the network. Each of these entries

contain two components. TT.LS contains link state information provided by a given

destination timestamped with TT.SEQ. This timestamp allows nodes to evaluate
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the freshness of the routing information contained in the table entry. Tables NEXT

and D, similarly, contains an entry for each destination. NEXT identifies the node

to which packets for a particular destination should be forwarded along the shortest

path. D indicates the distance of this shortest path [ChG98].

Route information update messages are only distributed to the neighbors of

a node. Upon receiving a message from a neighbor, a node examines the sequence

number, or timestamp, associated with a particular piece of link state information and

compares it to the link state data in table TT . If the new data is more recent than the

TT entry, TT is updated with latest information. Otherwise, it is discarded. Once

the topology table is updated, the node recomputes the routes based on the updated

link state information. The resulting routes are updated in the NEXT and D tables

and broadcast to the nodes neighbors. This process is repeated periodically [ChG98].

An extension of this protocol is the Fisheye State Routing (FSR) protocol

[PGC00] which uses the same scheme of route maintenance. However, FSR modifies

the frequency with which link state update information is sent based on a destina-

tion nodes distance, as seen in Figure 2.4. A node frequently sends updates about

nearby nodes, represented by the darkest ring. Information about distant nodes is

sent infrequently, indicated with the lightest ring. In doing so, FSR reduces the

overhead required for sending updates, since updates are smaller. The consequence

of this is nodes have accurate route information for nodes that are close by, while

the link state information of distant nodes can be inaccurate. However, as a packet

moves to the destination node, the route information becomes progressively more

accurate [PGC00].

2.3.1.4 Other Table Driven Protocols. In addition to the protocols

described above, there are many other table driven protocols. One such protocol is

the Clusterhead Gateway Switch Routing (CGSR) protocol [Mis99]. In this protocol,

nodes are organized into clusters, each with an elected cluster-head. Nodes belong

to a given cluster if they are in range of the cluster-head. Gateway nodes belong to
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Figure 2.4: FSR update information regions [PGC00]

multiple clusters. Sources transmit packets by sending the packet to their cluster-

head which forwards the packet to the gateway of the next cluster-head in the route.

The gateway propagates the packet to the next cluster-head, and the process repeats

until the cluster-head of the destination is reached which delivers the packet to the

destination.

The Source-Tree Adaptive Routing (STAR) Protocol is another example of a

table driven routing protocol [MuM04]. STAR reduces the overhead associated with

table driven routing protocols by using a least overhead routing approach (LORA)

rather than the optimal routing approach (ORA). The goal is to provide viable, though

potentially suboptimal, paths. By doing so, the amount of control overhead required

can be drastically reduced [MuM04]. In the STAR protocol, each node maintains

and broadcasts source-tree information, consisting of the links in the preferred route

to destination nodes. Through the receipt of this information from its neighbors,

nodes generate partial graphs of the network. Updates are broadcast at initialization,

and upon discovery of new destinations, nodes construct routes to every destination

[MuM04].
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2.3.2 On Demand Protocols. On demand protocols generate routes as

needed. Nodes without current routing information invoke a route discovery pro-

cess to determine the path to a destination. Nodes using these protocols may use

tables or caches to maintain information about the routes discovered, but, unlike ta-

ble driven protocols, do not keep route information for all possible destination nodes.

As such, these protocols do not exchange periodic information updates. On demand

protocols, instead, perform route maintenance by monitoring the status of links in ac-

tive routes. Topological changes that affect these routes initiate a route maintenance

procedure that can reconstruct the route, invalidate the route, or rediscover the route,

depending on the protocol. Several examples of on demand protocols follow.

2.3.2.1 Dynamic Source Routing Protocol. In the Dynamic Source

Routing (DSR) protocol, nodes with packets to send to another network node must

construct a source route to that destination [Ily03]. A source route identifies each

node on the path to the destination. The source route is contained in the packet’s

header. Intermediate nodes simply forward the packet to the next node identified in

the packet header. This continues until the packet reaches its destination.

Nodes in networks using DSR maintain route caches of known routes. If a node

has a packet for a particular destination, it checks its route cache to determine if a

source route is available [JoM96]. If no route is available it must be constructed by

means of a route discovery process. A source node initiates the route discovery by

broadcasting a route request packet to its neighbors. The request contains the source

and destination, a unique request id, and a route record. Each node maintains a list

of the source address and request id of route requests recently received. Upon receipt

of a route request the packet is checked against this list. If the request has already

been received, it is discarded. Furthermore, if the receiving node is already in the

route record, the request packet is discarded. These checks ensure the resulting route

is loop free. If these conditions are met, a node appends its address to the route

record and forward it to its neighbors. This process continues until the destination is
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reached. Figure 2.5 demonstrates this process. Route requests travel by three unique

paths to the destination, node 15. Additionally, network links that do not have a

corresponding route request reflect links over which duplicate requests are received.

These requests are ignored, and the links do not appear in any route. [JoM96].
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Path3: 1-6-10-11-14-15

Figure 2.5: DSR route request/route reply process [MuM04]

Upon receiving a route request packet destined for itself, a target node will

generate a route reply packet. DSR does not assume symmetric links [JoM96]. Thus,

to return a route reply packet to the source, the destination node must have a route

to the source. If a route exists in the destination node’s route cache it is used.

Additionally, if a network has symmetric links, the destination node can use the

reverse of the route record for the route reply. Alternatively, the route reply message

is “piggybacked” on a route request packet destined for the originator of the initial

route request. Figure 2.5 also shows the reply process. Requests arrive at the target

destination over three unique routes. The destination replies to each, sending the

route reply along the reverse path.
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Unlike other on-demand routing protocols, DSR does not use beacon or hello

messages to detect failures in the links. Rather, a variety of methods are used by the

route maintenance mechanism to detect link failures. One method relies on data link

level reports to determine transmission problems [JoM96]. Another method, if link

level acknowledgements are not available, requests the next hop send explicit acknowl-

edgements of packets received. A final approach is through passive acknowledgement.

In this method, a node determines its successor has successfully received a packet if it

hears it rebroadcast the packet to the next node in the route. This particular method

requires the node operate in a promiscuous mode, examining all packets it is able to

hear even if it is not the destination [JoM96].

Regardless of the method used to detect link failures, the route maintenance

process remains unchanged. Upon detecting a link failure, the upstream node ex-

amines its cache, truncating any routes that contain the failed link. The node then

generates a route error packet which identifies the nodes at either end of the broken

link. This packet is forwarded to the source of the packet (who’s failure detected the

link break) using any of the methods of determining routes for sending route reply

messages. Upon receipt of a route error packet, a node truncates routes in its cache

containing the failed link. To repair the broken route, the source initiates another

route discovery process [JoM96].

There are many optimizations that can be applied to DSR to make it more

efficient. The first of these makes further use of route caches [JoM96]. Nodes can ex-

amine their cache and learn routes to other nodes based on partial paths in previously

discovered routes. Additionally, routes can be discovered and cached when forward-

ing packets for other nodes. If promiscuous receive mode is used, nodes can discover

routes from packets overheard on the transmission channel. All of these methods re-

duce the need to perform independent route discoveries to determine routes. Having

intermediate nodes reply to route requests is another optimization [JoM96]. Suppose

a valid route request packet is received by an intermediate node and the route is in the

intermediate node’s cache. The intermediate node can generate a route reply packet,
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with the route record from the request packet concatenated to the node’s cached route

to the destination. This reduces routing overhead by limiting the retransmission of

requests. One final cache eliminates stale routes by limiting the lifetimes of the routes

in the cache thus preventing stale routes from being propagated to other nodes in the

network [Ily03].

Optimizations of the route maintenance procedures include caching negative

route information when links fail [Ily03]. By caching a particular link has failed, a

node will not accept routes that contain this link. Additionally, the protocol is more

efficient if it widens the distribution of route error messages [JoM96]. Nodes not on

the immediately impacted route can update their caches to reflect the link failure.

Finally, when a path from the source to the failed link does not match the path

traveled by the route error message, the source, upon receiving the error message, can

forward the message along the original path. This ensures that all nodes along this

route update their caches, eliminating the failed link [JoM96].

2.3.2.2 Ad Hoc On-Demand Distance-Vector Routing Protocol. Ad

Hoc On-Demand Distance-Vector (AODV) routing leverages properties of both the

DSDV and DSR protocols to provide a scalable efficient routing protocol for ad hoc

networks [Ily03]. To provide the freshest routes and prevent routing loops, AODV uses

destination sequence numbers in a similar manner as DSDV. Furthermore, AODV’s

route discovery method is similar to DSR’s. These mechanisms are combined to

reduce the control overhead required in either of these other protocols. AODV does

not retain the unnecessary route information and eliminates periodic route updates

of DSDV and the overhead of DSR is reduced by maintaining only next hop route

information, rather than storing and transmitting full paths to a destination.

Route discovery in AODV is initiated by broadcasting a route request (RREQ)

packet to its neighbors [PeR97]. These packets contain the source address and se-

quence number, a unique broadcast ID, destination address and sequence number,

and the hop count of the route. The source increments the broadcast ID for each
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RREQ it generates. The combination of the source address and broadcast ID uniquely

identify each route discovery. Nodes receiving a RREQ packet compare the source

address and broadcast ID of the packet to those requests already processed. If the

ID matches one that has already been forwarded, the request is dropped. In doing

so, the protocol prevents routing loops from developing [PeR97]. However, if this is

a new request and the receiving node cannot service the request itself, the packet is

rebroadcast. The intermediate node maintains the source and destination address,

broadcast ID, expiration time of the reverse path, the address of the neighbor from

which the RREQ was received, and the source sequence number. The address of the

previous node establishes a reverse path to the source [PeR97].

This process continues until the destination is reached, or until an intermediate

node with an active route to the destination is reached. Such intermediate nodes

can service route requests only if they have a stored destination sequence number

greater than that identified by the source in the RREQ packet. Therefore, nodes are

prohibited from replying to route requests with stale routes.

The responding node, be it the destination or an intermediate node, establishes

the route by sending a unicast route reply (RREP) along the reverse path [PeR97].

The RREP contains the source and destination addresses, the destination sequence

number for this path, the hop count, and the lifetime of the path. Upon receiving

a RREP packet, nodes update their routing table to reflect the new route. Each

entry in the routing table contains the destination address and sequence number,

as well as next hop and hop count information. Additionally, this table contains

a list of neighbors who are actively using the node to forward packets to a given

destination. Active neighbors are those who have transmitted at least one packet

within a predetermined timeout period. This information is used in the event of

a downstream link failure. Finally, a expiration time is established for this entry.

If the route is not used within the expiration time, the route entry is invalidated.

Furthermore, reverse routes are invalidated when no RREP packet is received for the

route within a timeout interval [PeR97].
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The AODV routing protocol only performs route maintenance on links with

active neighbors [PeR97]. Therefore, changes in local connectivity that do not impact

active routes result in no action from the protocol. Changes in network topology are

detected through the use of hello messages which are periodically broadcast by each

node. Failure to receive a predetermined consecutive number of these messages from

a neighbor indicates its link with that neighbor has failed. Upon detecting such a

failure, the hop count is set to ∞, and a destination sequence number is incremented

for any routes that include the failed link. The node then broadcasts an unsolicited

RREP packet with the updated hop count and destination sequence number to any

active neighbors using this link. Intermediate nodes update their routing tables and

forward the packet to their active neighbors. The message will continue to propagate

until all upstream nodes using the broken link have been notified. If a route to the

particular destination is still required, the source node reinitiates a route discovery

with a RREQ packet. The destination sequence number for this packet is incremented

to ensure a viable route is discovered [PeR97].

2.3.2.3 Associativity-Based Routing Protocol. The associativity-based

routing (ABR) protocol is a distributed routing protocol that selects routes based

on the stability of the wireless links [Mis99]. Each node in the network periodically

broadcasts a beacon signal. Nodes monitor the beacons received from their neigh-

bors, incrementing associativity counters for each beacon signal received from each

neighbor. Counts higher than a pre-determined threshold, Athreshold, imply a link that

is stable and long-lived. Conversely, associativity counts lower than Athreshold signify

high mobility, and consequently lower link stability [Toh97].

To establish a communication route with the desired destination, source nodes

initiate a route discovery process by broadcasting a broadcast query (BQ) packet

[Toh97]. BQ packets propagate through the network until the destination node is

reached. Unique sequence numbers are used to identify each BQ packet and each

packet is only broadcast once. Additionally, the source’s associativity counts with
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each of its neighbors is included in the packet, as well as other metrics that aid in the

selection of a route [Toh97].

Intermediate nodes receiving the BQ packet check to ensure the packet has not

been processed before. If it has, the packet is discarded which ensures no loops de-

velop in the path between source and destination [Toh97]. If not discarded, the node

compares its ID with the packet destination ID to see if it is the desired destination.

If it is not, node appends its ID to the packet and deletes all of its upstream node’s

associativity counts, except the one corresponding to itself. This process is demon-

strated in Figure 2.6. The source BQ packet in the figure contains all of the source

neighbors and their corresponding associativities. At the first intermediate node, IS1,

all entries in the BQ packet are removed except IS1, and IS1 adds entries to the packet

for each of its neighbors. Counts for each of the intermediate node’s neighbors are

added to the packet which captures both the route taken, and the associativity levels

of nodes in that route. The BQ packet is then rebroadcast.

Figure 2.6: ABR broadcast query process [Toh97]

When the BQ packet reaches the destination, the destination node waits for

a predetermined period of time in case BQ packets from alternate routes arrive at

the destination [Toh97]. At the expiration of the waiting period the destination
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node selects the best route from those BQ packets received. Routes with highest

associativity are selected, with shorter paths being selected in the case of multiple

routes with equal associativity. If both of these metrics are equal, an arbitrary route

selection is made.

Having selected a route, the destination node sends a REPLY packet along the

determined route to the source. This packet contains the complete path, as well

as metrics about this route. Intermediate nodes along this path mark the route as

valid. Alternate paths remain invalid, preventing duplicate packets from arriving at

the destination [Toh97].

Once a route is established, the route maintenance process responds to move-

ments by nodes that invalidate the path. ABR uses a localized query mechanism

to reconstruct routes that break due to mobility [Toh97]. The immediate upstream

(towards the source) and downstream (towards the destination) node will detect a

topology change based on the associativity beacons. In response, the downstream

node sends a route notification (RN) packet toward the destination which causes all

subsequent nodes in the path to invalidate the route.

The upstream node begins a localized query (LQ) process to discover a partial

route to the destination, thus repairing the broken path. The LQ process is similar

to the BQ process; however, the LQ process searches for partial routes that are, at

most, the same number of hops as the invalidated route [Toh97]. Upon receiving

LQ packets, the destination selects the best partial route, and generates a REPLY

packet. This packet is sent to the upstream node initiating the LQ packet, with

intermediate nodes validating the new route as the REPLY packet progresses along

this new path. If, however, the LQ packet fails to reach the destination, implying

no partial path of at most the desired length exists, the upstream node completely

invalidates its route, and the process backtracks to the next upstream node. This

node performs then repeats the LQ process. The process continues to backtrack until

the node performing the LQ is more than half of the original route’s hop count away
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from the destination [Toh97]. Rather than perform an LQ, this node sends an RN

packet to the source which causes all upstream intermediate nodes to invalidate their

routes, and causes the source to initiate a new BQ process.

2.3.2.4 Other On Demand Protocols. Besides the three protocols

outlined above, there are numerous other on demand routing protocols. The Flow-

Oriented Routing Protocol (FORP) [MuM04] uses GPS to predict route handoff.

Using GPS location, velocity, and direction information nodes compute the expected

lifetime of links. The expected lifetime of a given multi-hop route is the minimum

of the lifetimes of the included links. When a node detects a route is about to fail,

a handoff process is initiated. This process attempts to find an alternate path to

transmit packets so a source node can use this new path without suffering a link

failure.

Location-Aided Routing (LAR) [Ily03]also uses GPS. Nodes wishing to establish

a route to a destination calculate the destination’s expected location based on past

information about the node’s location and motion, thus defining two zones. The

expected zone is the geographic area where the destination is anticipated to be [Ily03].

The request zone establishes a boundary that limits the scope of the route discovery.

Once these zones are established, route requests are sent from the source. Depending

on the particular algorithm used, requests are discarded by intermediate nodes who

are either outside the request zone, or are further from the destination than the source.

Otherwise the request is forwarded to the intermediate nodes neighbors. This process

continues until the destination is reached and a reply packet is sent to the source

establishing the route.

Like ABR, Signal Stability Routing (SSR) [Mis99] attempts to create reliable

routes by preferring links with stronger signal strengths. Nodes broadcast periodic

beacons to their neighbors. Based on these beacons links are characterized as ei-

ther strong or weak. Routes are initiated by flooding route requests in the network.

Requests received by intermediate nodes over weak links are discarded. Otherwise,
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the packet is forwarded by the node. Upon reaching the destination node, a route

reply is sent back to the source establishing the route. Since request packets are only

forwarded over strong links, the route is known to contain only strong links. When

no such path exists, the route request times out. The source reinitiates the route

discovery, setting a flag in the request packet permitting weak links to be considered

in the path. This allows routes to be generated when no strong path exists.

Temporally Ordered Routing Algorithm (TORA) [MuM04] establishes routes

by constructing a directed acyclic graph between the source and destination. By

developing routes in this manner, TORA is able to simultaneously maintain multiple

paths to a given destination. TORA distinguishes itself by its method for handling

link failures. Upon the failure of a link, the node detecting the failure reverses the

direction of the link to its immediate upstream node. Intermediate nodes continue

to reverse their upstream links until the source is reached. Since traffic flows along

the directed graph, and the path containing the failed link now points to the source,

this path has been effectively invalidated. This mechanism allows the protocol to

minimize the impact of link failures by containing the scope of control messages to

a small section of the network. Furthermore, it also means the protocol can detect

partitions in the network. If a node, which has already reversed its link in response

to a link failure, is triggered to again reverse the link’s direction, a partition has

developed since conflicting information about the proper direction for the link has

been received [MuM04].

2.3.3 Hybrid Protocols. Hybrid protocols combine the benefits of both table

driven and on demand routing protocols. These protocols maintain local topology

information in tables reducing the latency associated with route discovery. Routes

to distant nodes are established using a route discovery mechanism, as found in on

demand protocols. Thus, a hybrid protocol minimizes the number of large route table

updates that occur. The combination of these mechanisms is intended to make better

use of network resources. The following are examples of hybrid routing protocols.
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2.3.3.1 Zone Routing Protocol. Zone Routing Protocol (ZRP) estab-

lishes routing zones based on the distance to neighboring nodes [Ily03]. A zone radius

parameter dictates the size of zones. A node’s routing zone consists of the nodes

whose distance from a “central” node is at most equal to the zone radius. This is

depicted in Figure 2.7 for the central node, S. The nodes inside the circle are in a

zone of radius two. Node L is not in the zone because the distance to S is three hops.

Routing zones are established relative to each node in the network. As such, the

routing zone of each node tends to overlap with the zones of other nodes. ZRP uses

an Intrazone Routing Protocol (IARP) to communicate with nodes within a zone.

An Interzone Routing Protocol (IERP) establishes routes for transmitting to nodes

outside the routing zone [HaP01].

Figure 2.7: ZRP routing zones, defined by hops from central node [HaP01]

To establish routing zones, nodes must first discover which nodes are within their

own zone radius. This is accomplished through a variety of methods. The protocol can

leverage media access control (MAC) layer information to directly determine a node’s

neighbors [HaP01]. Alternatively, the Neighbor Discovery Protocol (NDP), through

the periodic broadcasting of hello messages, can determine active nodes within its

zone radius. IARP uses this information to generate routing tables to communicate
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within the node’s zone. IARP is based on traditional link state routing protocols,

modified to accommodate the use of zones by limiting the scope of route updates

through a time to live (TTL) on route update packets [HaP01].

To communicate with a destination node, a source node checks if the destination

is within the routing zone. If it is, IARP routes the packet to the destination [HaP01].

If the node is outside the routing zone, a route to the destination is determined using

IERP. To discover routes, IERP uses bordercasting to locate the desired destination

node [HaP01]. If the destination node is not within the routing zone, the source

generates a route request, and bordercasts it to its peripheral nodes. Peripheral

nodes are those whose distance from the source is exactly equal to the zone radius

[HaP01]. These nodes check their routing zones to determine if the destination is

present. If not, the peripheral node appends its identification and also bordercasts

the request. This continues until a node finds the destination within its zone. This

node appends the route to the destination to the route record found in the request.

A route reply, containing this complete route, is sent to the originator of the request

by way of the reverse route. Similar to other protocols described, duplicate route

requests are discarded, thus avoiding route loops. Upon receiving any route replies, a

source chooses the best route according to a route selection criteria, such as shortest

path [HaP01].

This route discovery mechanism has several characteristics that must be ad-

dressed [HaP01]. For example, peripheral nodes may be multiple hops from the

source. Thus, the source may not have a direct route to these nodes and intermediate

nodes in the routing zone may deliver the route request to the zone border. To accom-

modate this, the bordercasting tree must be appended to request packets [HaP01].

This tree holds the path from the source to the border of each zone. In doing so, it is

possible to construct complete routes from source to destination. Additionally, during

the route discovery process, each bordercast covers an entire routing zone. However,

subsequent bordercasts may overlap this zone, generating redundant and unnecessary

route request packets from this zone. There are a number methods to control these
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query packets [HaP01]. One allows intermediate nodes in a zone to operate in a

promiscuous mode. When forwarding or overhearing a route request packet, a node

will mark the request as seen. Therefore, when a future bordercast reaches this node,

the request can be discarded, limiting the number of redundant route requests in the

network.

2.3.3.2 Core Extraction Distributed Ad Hoc Routing Protocol. The

Core Extraction Distributed Ad Hoc Routing (CEDAR) protocol is a hybrid routing

protocol that integrates quality of service (QoS) into a routing protocol [MuM04].

The protocol defines a core set of network nodes in a process called core extraction.

This core set approximates the minimal dominating set of the network which is the

set of least cardinality in which every node in the network is either in the dominating

set, or a neighbor of a node in the dominating set [SSB99]. Core nodes are selected

such that there is a core node within three hops of any other core node. Nodes not

in the core set choose a core node as their dominating node, and are considered core

members for that core node [SSB99]. The core nodes maintain local state information

about core members. Furthermore, the path between any two core nodes is considered

a virtual path.

Nodes find routes to a particular destination by polling their dominating node,

providing the destination and the required QoS. If the destination is also a core

member of the dominating node, the route is immediately established. Otherwise,

the source initiates route discovery by sending a route request to the dominating

node [SSB99]. A core broadcast mechanism is used to establish a core path which

consists of a route of core nodes from the dominator node of the source, to that of

the destination. In the core broadcast process, the dominator of the source broad-

casts a route request to each of its neighbor core nodes. These nodes evaluate their

member nodes to determine if the destination is present. If it is not, the request is

rebroadcast. Each core node appends its address to the path contained in the re-
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quest. Once the dominator node of the destination is found, that core node initiates

a acknowledgement message containing the core path discovered [SSB99].

CEDAR attempts to find a path that meets the QoS requirements specified by

the source node by using a path to the farthest possible core node along the core path

that meets the QoS requirement [SSB99]. If this path does not reach the dominator

node, the intermediate node performs a similar QoS path discovery. This process

repeats until a path is created to the destination that meets the stated requirement.

If multiple paths are discovered, the core node for the source chooses the shortest

path with the most available bandwidth as the route [SSB99].

Link failures along active paths are handled with a route reconstruction process.

Upon detecting a broken link along a path, a node sends a notification message to

the source of the packets. The node then begins a local route repair procedure to find

a partial route to the destination node. Having received the link failure notification,

the source node begins route reconstruction itself [SSB99]. If a partial route cannot

be established from the error detecting node, the source establishes a new route itself.

This has the potential for packet loss [SSB99]. Nodes detecting link errors drop

packets that arrive after the error has been detected. Sources, on the other hand,

continue to transmit packets until notification of the failed route arrives. Because of

this, packets transmitted after link failure are lost.

2.4 Mobility Models

The routing protocols discussed previously are all designed for wireless ad hoc

networks. The performance of each particular protocol varies based on a number

of factors. One such factor, critical to the evaluation of protocols in wireless ad hoc

networks, is mobility. Research on mobile ad hoc networks must consider the mobility

of the network nodes and must model that motion appropriately. Mobility models can

be classified into two groups: 1)Entity Models and 2) Group Models. Entity models

represent the independent motion of mobile nodes in the network [CBD02]. Each

node acts as an autonomous entity, free to move throughout the simulation area in a
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unique manner. Group models, on the other hand, represent the movement of groups

of mobile nodes within a given simulation area. Clusters of nodes move together in the

area [CBD02]. Individual nodes in a group move independently, based on an entity

model, but are restricted to the vicinity of the group.

2.4.1 Entity Models.

2.4.1.1 Random Walk Mobility Model. The Random Walk Mobility

Model emulates erratic and unpredictable movements of entities [CBD02]. This model

determines the motion of nodes by selecting a random speed and direction from a

predefined, uniformly-distributed range of values defined by [speedmin, speedmax]

and [0, 2π], respectively. The node continues in motion at the selected speed and

along the selected path for a predetermined duration specified as either a set distance,

d, or a set period of time, t. If a border is reached, the node “bounces” off the

boundary of the area at an angle determined by the incident direction. Figure 2.8

shows a motion pattern generated using the Random Walk Mobility Model when

nodes travel 60 seconds before changing direction. This model has the property of

being memoryless. The result of this memoryless quality is that nodes can behave

unrealistically. As shown in Figure 2.8, nodes make extremely sharp turns and sudden,

and instantaneous, stops.

The motion of nodes under this model is a function of the parameters d and

t, whichever is used in a particular simulation. These variables must be assigned

appropriate values to ensure the model represents the desired mobility. If these pa-

rameters are assigned too small a value, nodes are restricted to a small portion of the

simulation area which results in a network with a relatively static topology [CBD02].

Thus, small values of d and t should be used to model networks with slower rates of

topological change, whereas larger values provide the mobility encountered in more

dynamic networks.
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Figure 2.8: Movement pattern of a node using the Random Walk Mobility Model
[CBD02]

2.4.1.2 Random Waypoint Mobility Model. The Random Waypoint

Mobility Model operates in a similar fashion to the Random Walk Mobility Model

[CBD02]. Nodes choose, at random, a speed in the uniformly distributed range

[speedmin, speedmax]. However, unlike the Random Walk Model, nodes in the Ran-

dom Waypoint Model randomly select a destination within the simulation area. The

node then moves directly to the selected destination at the determined speed. Upon

arriving at this location, the node pauses for a specified period of time and then se-

lects a new speed and destination. The traveling pattern that this generates can be

seen in Figure 2.9.

Under this model nodes tend to cluster, particularly in the center of the simu-

lation area [CBD02]. There is high probability that a node’s selected destination is

either in the center of the simulation area, or requires the node to travel through this

area. Node density tends to converge to the center of the simulation area, disperse,

and converge again.
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Figure 2.9: Movement pattern of a node using the Random Waypoint Mobility
Model [CBD02]

The Random Waypoint Mobility Model can experience some anomalous behav-

ior upon initialization. In most evaluations using this model, nodes are randomly

dispersed throughout the simulation area [CBD02] which results in an initial high

variability in the percentage of nodes which neighbor each other. The high variability

experienced can impact the results of performance evaluations, especially when sim-

ulations are of short duration. To overcome this, a simulation can be run beyond the

point where variation is high. The locations of nodes at the end of this simulation run

can be preserved and used as starting locations for nodes in subsequent simulation

runs [CBD02]. By doing so, an initial node distribution is created which does not

have such variability in the percentage of neighboring nodes. Alternatively, rather

than dispersing nodes randomly, a distribution that more accurately represents the

initial distribution of nodes in a system can be used. Finally, simulations can be

run for extended periods with the data collected during the period of high variability

being discarded. This eliminates the undesirable initial high variance, and results in

random initial placement of nodes in the simulation area.
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Finally, similar to the Random Walk Mobility Model, the stability of the network

is affected by the choice of pause time. If the pause time is long, the network is

stable, even with nodes moving with high speeds [CBD02]. Furthermore, a network

combining high speed nodes with long pause times results in a topology that is more

stable than a network with low speeds and short pause times [CBD02].

2.4.1.3 Gauss-Markov Mobility Model. The Gauss-Markov Mobility

Model differs from the previous models by using previous information to make mobility

decisions [CBD02]. Nodes are initially assigned a speed and direction and continue to

move using these parameters for a fixed period of time. When this period ends, the

node computes a new speed and direction for the nth iteration based on the values

from the (n− 1)st iteration. The updated values are computed using:

sn = αsn−1 + (1− α)s̄ +
√

(1− α2)sxn−1 (2.1)

dn = αdn−1 + (1− α)d̄ +
√

(1− α2)dxn−1 (2.2)

where α is the randomness parameter; s̄ and d̄ are the mean values of speed and direc-

tion as n →∞, and sxn−1 and dxn−1 are random variates from a Gaussian distribution.

Furthermore, at each time iteration the next position is calculated using:

xn = xn−1 + sn−1 cos dn−1 (2.3)

yn = yn−1 + sn−1 sin dn−1 (2.4)

Thus this model is not memoryless. The previous values for speed, direction, and

position affect future values. This alleviates much of the unrealistic motion produced

by the Random Walk and Random Waypoint Mobility Models. Unlike these models,

the Gauss Markov Mobility Model does not result in sharp turns or sudden stops as

can be seen in Figure 2.10. The movement of nodes under this model is gradual and

results in more realistic node movements throughout the simulation area.
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Figure 2.10: Movement patter of a node using the Gauss-Markov Mobility Model
[CBD02]

While this method produces more realistic movement, it also has an unintended

consequence. Since changes in motion are more subtle, nodes using this model may

remain near an edge for extended periods of time [CBD02]. Nodes can be directed

away from an edge when they move too close by altering the value of d̄ to move away

from the edge of the simulation area, preventing the node from loitering near this

border [CBD02].

2.4.2 Group Models.

2.4.2.1 Exponential Correlated Random Mobility Model. The Expo-

nential Correlated Random Mobility Model produces patterns of motion for both

individual mobile nodes and groups of nodes, based on the motion function [CBD02]:

b(t + 1) = b(t)e−
1
τ +

(
σ

√
1−

(
e−

1
τ

)2
)

r (2.5)
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where τ is a Gaussian Random Variable with variance σ. Small values of τ correspond

to large changes in motion. While inherently simple to calculate, it is difficult to pro-

duce a particular motion pattern by selecting appropriate values of τ and σ [CBD02].

2.4.2.2 Reference Point Group Mobility Model. The Reference Point

Group Mobility (RPGM) model represents the motion of a group of mobile nodes

[CBD02]. The motion of the individual nodes is determined by the movements of

the group’s center. To determine the motion of this central reference point, a group

motion vector, ~GM , is selected, either randomly or from a predefined value. The

combination of the central point and ~GM is used to calculate the motion of the

group. A representative traveling pattern for groups of various sizes is shown in

Figure 2.11 [CBD02]. In this figure, each line represents the motion of an individual

mobile node, while each style of line represents a group of the stated size. The figure

demonstrates that while each node has a unique motion pattern, the nodes in a group

follow approximately the same path.
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Figure 2.11: Movement pattern of 5 groups of various sizes using the Reference
Point Group Mobility Model [CBD02]
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The model further captures the random motion of individual nodes within group.

Each node within the group moves about an individual reference point [CBD02]. The

locations of these reference points for a given time interval is dependent on the motion

of the logical center of the group. To calculate the motion of the individual nodes, a

random motion vector, ~RM , is selected. This vector has a uniformly distributed length

within a certain radius of the new reference point [CBD02]. Similarly, the direction

of the vector is uniformly distributed between 0 and 2π. ~RM is then summed with

the reference point of a node to compute the node’s new position [CBD02].

A number of extensions to the RPGM model are possible. With careful selection

of initial group positions and group paths, this model can be used for an assortment of

applications. One such extension is the In-place Mobility Model [CBD02]. This model

divides the simulation area into subsets, assigning each to a group. Each group then

operates exclusively in its assigned subset. Additionally, the Overlap Mobility Model

[CBD02] simulates different groups, with unique motion characteristics, operating in

a given geographic area. Finally, the Convention Mobility Model [CBD02] represents

an application of the RPGM model. In this application, the simulation area is divided

into subsets, with groups moving throughout the subsets with similar patterns. Each

group in this model can have unique motion characteristics.

Furthermore, the RPGM model can implement several other mobility models.

The Column Mobility Model [CBD02] uses reference points located linearly on a

reference grid. As this grid moves, the nodes of the groups move appropriately to

adjust to the motion of their predefined reference nodes. The motion of the nodes in

this model can be parallel to the reference grid, similar to a single file line of students,

or perpendicular to the grid, comparable to a rank of soldiers marching side-by-side

in formation. Similarly, the Nomadic Community Mobility Model [CBD02] can be

implemented using the RPGM model. All nodes in RPGM share a reference point

about which they move independently. Finally, the Pursue Mobility Model [CBD02]

identifies one of the group’s nodes as the target. All other nodes will track, or pursue,

the target node.
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2.5 Research in Reliable Routing for Ad Hoc Networks

There are a myriad of methods to address the challenge of routing in ad hoc

wireless networks. Each attempts to provide an efficient method to route packets in

an environment where power and other resources are constrained. When evaluating

these protocols, one important characteristic to consider is the reliability of the routes

produced. Reliability, in this sense, refers to the fault tolerance, or the robustness, of

routes developed by the protocol. Significant research has been undertaken to develop

constructs for achieving reliable routing. This section examines several examples of

such research.

2.5.1 Ad Hoc On-Demand Multipath Distance Vector Routing. In [MaD01],

an approach is presented to improve the reliability of the standard AODV routing

protocol by modifying the AODV protocol to compute multiple link-disjoint paths

for each route discovery. To be considered link-disjoint, paths cannot have any com-

mon links. The revised protocol, known as Ad Hoc On-Demand Multipath Distance

Vector (AOMDV) Routing [MaD01], discovers and maintains multiple independent

paths between source and destination thereby improving reliability by substituting a

redundant path in the event of the failure of the primary route. Thus, the protocol is

expected to eliminate the need for repeated route discoveries, and the increased delay

associated with them.

The performance of this modified protocol is evaluated by comparing it to the

traditional AODV protocol [MaD01]. In order to vary the mobility of the nodes

using the Random Waypoint Mobility Model, the maximum speed is varied. Under

this variation, AOMDV outperforms AODV in every metric. Figure 2.12 shows the

ratio of packets received to packets sent. While the packet delivery ratio for both

protocols decreases as mobility increases, AOMDV loses 3-5% fewer packets than

AODV. Similarly, AOMDV drastically reduces the average end-to-end delay almost

always yielding a 100% improvement over AODV [MaD01]. This is expected since

AOMDV supplies alternate routes upon link failures without delay while AODV must
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incur the cost of a route discovery with each link break. The frequency of these route

discoveries is shown in Figure 2.13. AOMDV provides approximately a 20% reduction

in the frequency of route discoveries. Similar, improvements are noted in the ratio of

routing control packets [MaD01]. Again, these improvements are expected since the

maintenance of multiple routes allows nodes to access new routes without initiating

a route discovery. Consequently, the number of control packets required is reduced.

Figure 2.12: Packet Delivery Ratio - AODV vs AOMDV [MaD01]

The impact of varying load on these protocols is also evaluated [MaD01]. AOMDV

provides substantial improvements in end-to-end delay. For both protocols, routing

control load increases with the number of sessions, with AOMDV demonstrating an

improvement as the number of sessions increases. However, at high packet rates

AOMDV yields a higher routing load than AODV. This is because AOMDV requires

multiple route reply packets in response to a route discovery. At high packet rates,

the number of discoveries increases and as the network saturates packets are dropped.

Thus, AOMDV can cause higher routing overhead at high packet rates. However, this

multipath protocol can be used to increase reliability in dynamic networks where link

failures are common. In general, AOMDV outperforms AODV in every metric, pro-
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Figure 2.13: Route Discovery Frequency - AODV vs AOMDV [MaD01]

viding substantial improvements in end-to-end delay, lower packet loss, and a lower

frequency of route discoveries [MaD01].

2.5.2 Multipath AODV With Reliable Nodes. In [YKT03], the concept of

a multipath protocol is examined further. Similar to the previous research, [YKT03]

uses a multipath modified AODV protocol as the basis for a framework for reli-

able routing. AODV is modified to incorporate the more stringent requirement of

node-disjoint paths. Paths are node-disjoint if the paths share no common nodes.

Simulation results of this protocol, using three different node densities, indicate that

AOMDV can find at least 80% of the node-disjoint paths found by an ideal search of

the network when the network is dense. In a less dense network, the protocol found at

least 70% of those found in the ideal case. Furthermore, Figure 2.14 is the probability

of finding at least three node-disjoint paths. While high for networks with high den-

sity and short paths, this probability decreases quickly when the network has fewer

nodes. Therefore, even with moderate node density such as Case 1 in Figure 2.14,

the probability of finding a sufficient number of node-disjoint paths to provide the

required reliability is low [YKT03].
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Figure 2.14: Probability that the number of node-disjoint paths is ≥3 [YKT03]

To compensate for a lack of node-disjoint paths, the notion of R-nodes, or reli-

able nodes, is introduced [YKT03]. R-nodes are unique network hosts with increased

reliability, that is, a more capable node, perhaps with regard to power capacity. These

nodes are placed strategically throughout the network space to increase the proba-

bility of establishing a reliable path. A reliable path is a path between source and

destination comprised entirely of reliable segments. A reliable segment is defined as

either: 1) a segment comprised entirely of R-nodes, or 2) a path for which there are

at least κ node disjoint paths between its origin and its termination where κ specifies

the level of reliability required [YKT03].

R-nodes must be distributed in the network judiciously to increase the probabil-

ity of finding a reliable path [YKT03]. The min-cut algorithm determines locations in

the network that are vulnerable to partitioning and places R-nodes in these locations.

R-nodes can also be placed in the vicinity of nodes with low degrees of connectivity,

since it is likely that these nodes will be bottlenecks when forming node-disjoint paths.

R-nodes placed near neighbors of the low degree nodes attempt to make the links of

nodes on the network periphery reliable [YKT03].
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Through the use of simulations, the effectiveness of each of these strategies is

evaluated [YKT03]. R-nodes constitute 10% of all nodes, and the reliability parame-

ter, κ, is set to three. Figure 2.15 shows that the min-cut based strategy is a significant

improvement over a network with no R-nodes. Furthermore, a random distribution

of R-nodes is ineffective, yielding approximately the same probability of finding a

reliable path as no R-nodes. This shows that the combination of a multipath routing

protocol, and the judicious use and deployment of R-nodes can provide significant

improvements in the reliability of routing in a network [YKT03].

Figure 2.15: Probability of finding a reliable path using various R-node deployment
strategies [YKT03]

2.5.3 AODV Using Link Lifetimes. An alternative to multipath routing uses

links that are stable, as determined by the expected behavior of links based on past

behavior [BKS03]. That is, links that have been long-lived, are expected to remain for

a long period of time. This is similar to the basic principle of ABR, preferring links

with long durations of uninterrupted connectivity. In [BKS03], AODV-REL modifies

the AODV protocol to use link longevity as the metric for determining routes. Further

modifications add query restriction mechanisms to reduce routing overhead by limiting
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the scope of route request flooding. AODV-GOD, on the other hand, estimate the

residual, or remaining, lifetime of a link by taking the difference of the expected

lifetime of the link and the duration of its connectivity. In doing so, the protocol

establishes an omniscient knowledge of the perceived link lifetimes.

Simulations of the three protocols (AODV, AODV-REL, and AODV-GOD)

shows that for low traffic level, AODV-GOD protocol performs best [BKS03]. Since

the extent to which packets flood on a route query is limited routing overhead for the

modified protocols is lower, with AODV-GOD performing better than AODV-REL.

Similarly, as the number of packets dropped due to the failure of active connections is

minimized. AODV-GOD is the best performer. As the level of mobility increases, the

number of dropped packets increases, as can be seen in Figure 2.16. The two modi-

fied protocols require a greater number of route discoveries, since they are searching

for reliable routes based on expected link longevity. Thus, given this requirement,

these protocols may reject paths that are acceptable to the standard AODV protocol,

resulting in more failed route discoveries [BKS03] as shown in Figure 2.17. Simi-

larly, AODV outperforms the others with regard to end-to-end delay as expected.

AODV selects optimal paths, while the others select the path with the highest level

of reliability. Finally, AODV-GOD yields the greatest throughput, with AODV-REL

outperforming AODV. This is the anticipated result, verifying the improved reliability

of these protocols [BKS03].

High load results are similar to the low load. The modified protocols show

improved performance in routing control overhead as anticipated since the modified

protocols restrict the extent to which routing packets are flooded. Similarly, the

modified protocols improve the number of packets dropped due to route failures since

the modified protocols’ reliable routes fail less often [BKS03]. AODV excels when

measuring end-to-end delay since it seeks optimal, shortest path routes and is less

selective in its route discovery. AODV also outperforms the modified protocols in the

number of failed route discoveries, again because it is less selective in the routes it

discovers. There is some unique behavior with regard to throughput. At high levels
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Figure 2.16: Throughput versus Percent mobility [BKS03]

Figure 2.17: Packets lost due to link failure versus Group associativity [BKS03]
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of group associativity, implying low mobility, AODV-REL outperforms AODV-GOD.

However, since mobility is minimized, it is reasonable that the less restrictive protocol,

AODV-REL, would perform better. Thus, these results are consistent with expecta-

tions [BKS03]. In general, the significant improvements in performance displayed by

AODV-GOD lends credence to the use of link stability as a metric for determining

reliability. To achieve its full benefit, however, the reliability metric must be tuned

to yield a more accurate approximation of the residual link lifetime [BKS03].

2.6 Summary

This chapter introduces the routing challenges encountered in MANETs. Sev-

eral unique Table-Driven, On-Demand, and Hybrid routing protocols are identified,

and their operation explained. Examples of Entity and Group mobility models offer

insight into the ways motion in MANETs can be captured. Finally, this chapter iden-

tifies research efforts that have investigated mechanisms to improve the reliability of

MANET routing protocols.
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III. Predicted Associativity Routing

3.1 Introduction

This chapter presents the Predicted Associativity Routing protocol. First, the

general distinguishing characteristics of the protocol are described. Then, the oper-

ation of the protocol is presented in detail. The chapter concludes with a discussion

of a pilot study which evaluated the various parameters of Predicted Associativity

Routing.

3.2 General Description

Predicted Associativity Routing (PAR) is an on-demand MANET routing pro-

tocol. It is specifically designed to address route reliability in ad hoc networks. Using

Ad Hoc On-Demand Distance Vector (AODV) Routing as its basis, PAR makes route

selection decisions using residual link lifetime information to establish the longest

lasting routes possible. In doing so, application layer data can be more dependably

delivered. The end result of this is improved throughput. Additionally, the overhead

associated with route failures and maintenance can be avoided.

PAR leverages several unique concepts. First, PAR uses associativity to deter-

mine link lifetimes. The concept of associativity, introduced in [Toh97], is simply a

count of consecutively received HELLO packets from a neighboring node. By main-

taining this information for each adjacent node, hosts can determine how long a link

has been active, and, given an expected value for that link, how long the link will

remain active.

Another distinguishing characteristic of PAR is its use of residual link lifetimes

as a metric for selecting routes. Similar to the work in [BKS03], PAR uses the expected

remaining lifetime of links to select the best route. In so doing, the protocol uses link

performance to establish routes that will remain active for extended durations. This

produces more dependable routes, and increases the reliability of the protocol.

While similar to [BKS03] in its use of residual lifetime, the method by which

this information is collected and the best route is determined are unique in PAR. By

43



collecting samples of experienced route lifetimes, PAR computes a mean, or expected,

lifetime for links. This expected lifetime is particular to each node, and adapts as

the conditions of the network around the node change. PAR establishes a zone of

associativities about the mean called the No Go Zone. The No Go Zone is a confidence

interval on the expected lifetime, and delimits the reliability required by the network

to deem a link reliable. If the associativity of a particular link falls in this zone it

is either expected to fail soon, or has just passed its expected lifetime and may fail

soon. Thus, these links are not considered reliable based on the configuration of the

network. In this way, PAR only accepts routes that provide acceptable residual route

lifetimes. This is the distinguishing characteristic of the PAR protocol.

3.3 Operation of PAR

3.3.1 Key PAR Structures. To operate effectively, PAR maintains several

structures to hold information about routes, route requests, and neighbor connectivity.

These structures are:

• Route Table: The route table maintains information about active and recently

expired routes. Like AODV, PAR populates the common IP route table. Thus,

this route table serves only to support the discovery and maintenance of routes.

Packets are forwarded according to the common IP route table. Each entry

in the route table contains the following information, as well as other data

supporting routing:

– Destination Address: Destination of route.

– Destination Sequence Number: This information helps ensure that route

information is fresh, and that routes are free of loops.

– Next Hop Address: This is the next node packets are sent to when being

forwarded to a destination node.
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– Minimum Residual Associativity: The minimum residual associativity is

the residual associativity of the shortest lifetime link on the route to the

destination.

– Reliable Route Flag: Indicates whether the route entry is a reliable route.

– Route Insertion Time: The time the entry was placed into the table.

– Route Expiry Time: The time the route is no longer considered valid.

– Hop Count: The length of the route.

– Precursor List: A list of upstream neighboring nodes that use the route to

a destination.

– Route Entry State: This field determines if a route entry is valid or expired.

• Route Request Table: The route request table is two lists. The first holds

information about route requests that originate at a node. The second tracks

information about route requests from other nodes. These lists contain the

following information:

– Destination Address (Originator List Only): This is the destination for the

initiated route request.

– Request ID: The request ID is a unique identifier for the route request.

– Insertion Time: The time the route request was inserted into the table.

– Expiry Time: This entry provides two functions. In the originator list, this

item is the time a route request times out if no reply has been received. In

the forward list, it is the time by which a destination node should reply to

a route request.

– Source Address (Forward List Only): The source address is the originator

of the route request packet.

– Number of Retries (Originator List Only): This is the number of route

request retries available before the request is discarded.
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• Neighbor Connectivity Table: This table maintains information about neigh-

boring nodes which currently have connectivity with a given node. Each entry

in this table contains the following information:

– Neighbor Address: The address of the neighboring node.

– Last HELLO Time: This is the time the last HELLO packet was received

from this neighbor.

– Connectivity Expiry Time: If no further HELLO packets are received,

connectivity is deemed to have been lost at this time.

– Neighbor Associativity: This is a count of consecutive HELLO packets

received during the current connection with the neighbor.

3.3.2 Neighbor Connectivity Maintenance. Nodes in MANETs using PAR

evaluate neighbor connectivity using periodic HELLO messages. After broadcasting

a HELLO message, the node randomly selects a new HELLO period from the uniform

distribution in the range [d − 0.05, d + 0.05], where d represents the desired period

for HELLO packets. Thus, collisions from the simultaneous transmission of HELLO

packets are avoided. When this period is reached, the node broadcasts a HELLO

packet and selects a new period. This process continues indefinitely.

When a node receives a HELLO packet, it updates the appropriate entries in

the Route and Neighbor Connectivity Table or adds them if they do not exist. If an

entry was added, the Reliable Route flag is set to TRUE and the Minimum Residual

Associativity is set to the expected lifetime of the link. For an existing entry, the

associativity is incremented to reflect the successful reception of a HELLO packet

and the the Connectivity Expiry Time is set to the current time plus the product of a

HELLO period (selected using the method described above) and the allowed HELLO

loss. The allowed HELLO loss is a parameter of the network intended to give nodes

some tolerance for packet loss. The Route Table entry is updated to reflect the most
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current information, with the Minimum Residual Associativity reset to the expected

lifetime.

When the Connectivity Expiry Time for a neighbor is reached, the node deems

connectivity with that node has been lost. In this event, the node must add the

associativity information in the Neighbor Connectivity Table entry for that neighbor

to its knowledge base for calculating expected link lifetimes. The associativity is

added to the node’s set of lifetime samples. The mean of this set is computed, as well

as the standard deviation. This information is then used to re-compute the No Go

Zone. The confidence interval is calculated using the t-distribution values [MiA03] for

the corresponding size of the No Go Zone. After the number of samples reaches 100,

the Normal distribution, Z value, is used in computing the No Go Zone. Once these

calculations are made the entry is removed from the Neighbor Connectivity Table

and the Route Table Entry is removed. The Route Error Process, discussed in detail

below, is initiated to notify other nodes of the failed link.

3.3.3 Route Request Process. Application layer packets are sent to the

routing protocol process when no route is available to the destination in the common

IP route table. If these packets are from another node, they are dropped and a Route

Error (RERR) is sent, since PAR does not support local route repairs. If, however,

the packets are received from the node’s own application layer, a route discovery is

initiated. Route discoveries consist of broadcasting route requests (RREQ), and the

subsequent route reply (RREP) of the selected route.

To transmit an application layer packet a node sends a RREQ packet and adds

the request to the Originator List in the Route Request Table. Any application layer

packets for the destination are queued until the route discovery is resolved. Figure 3.1

shows the format of RREQ packets. The packet has the following fields:

• Type: Indicates the type of packet.

• U: Flag that indicates that the destination sequence number is unknown.
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• I: Flag that indicates that the route discovered thus far is reliable.

• R: Flag that indicates that a reliable route is required.

• Hop Count: Indicates the hop count from the source to the current node.

• RREQ ID: A unique identifier for the request.

• Destination Address: The destination for which a route is sought.

• Destination Sequence Number: The last sequence number the source has on

record. This ensures the route provided is not stale.

• Source Address: The address of the originator of the request.

• Source Sequence Number: The current sequence number for the source. This is

used in establishing the reverse route.

• Minimum Residual Associativity: The minimum positive residual associativity

of the route thus far. This is the remaining lifetime of the shortest lived link in

the route.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type U I R Reserved Hop Count

RREQ ID

Destination IP Address

Destination Sequence Number

Source IP Address

Source Sequence Number

Minimum Residaul Associativity

Figure 3.1: RREQ Packet Format for PAR

PAR supports two types of RREQs distinguished by the R flag in the packet.

If this field is set to TRUE, a reliable route is required. This means all hops in the

route must be deemed reliable. The second type of RREQ, where R is FALSE, does

not require reliable routes. Usually reliable routes will be requested; however, there

are two conditions under which non-reliable requests are sent. The first is when a

source node has fewer than two associativity samples. In this case, the originator

does not have sufficient information to determine the reliability of a link and cannot
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assume any node has such information. Thus, non-reliable requests are sent to ensure

a route, any route, is discovered in a timely manner. Second, if no reliable route exists

between source and destination no route will be discovered. The source then attempts

to retry the discovery for any available route using a non-reliable request. If no route

is found, the discovery is terminated and application layer packets are dropped.

RREQ are dropped if the TTL is exceeded. They are also ignored if the RREQ

requires a reliable route, and the node has fewer than two associativity samples since

the node does not have enough information to determine if the previous hop is reli-

able. Similarly, the RREQ is dropped if a reliable route is required and the nodes

associativity with the previous node falls in the No Go Zone. This indicates residual

lifetime of the link is short and is thus unreliable. RREQ packets are ignored if the

receiving node is not the destination, and a request with the same source address

and request ID is in the Forward List of the Route Request Table. Such an entry

indicates the request has already been processed by the node. If the receiving node is

the destination of the RREQ, the packet is dropped if the Route Reply Backoff has

expired, meaning a RREP has already been sent. Finally, and perhaps most obvious,

the packet is dropped if the receiving node is the originator of the request.

If none of the above conditions hold, the receiving node processes the RREQ.

The request is added to the Route Request Table in the Forward List. If the node is the

destination of the request, the Route Reply Backoff is set which allows the destination

to receive several route requests, from various paths. The destination selects the best,

most reliable, route from the received requests. Additionally, the node updates the

appropriate values in the RREQ packet. The hop count is incremented to reflect the

latest link added to the route and the node examines the residual associativity of the

last hop. The node subtracts the associativity in the Neighbor Connectivity Table

for the previous node in the path, from the expected link lifetime. If the difference is

positive and less than the Minimum Residual Associativity indicated in the packet,

the packet is updated to reflect the new associativity. Otherwise, the existing value

is preserved.
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The node then must establish a reverse route to the source of the RREQ so

that the RREP has a route by which to return to the source. If no route is in the

Route Table, an entry is added reflecting the information from the RREQ packet.

However, if an entry does exist for the source, it may require an update. The current

route table entry is updated if the RREQ contains more current information than

the Route Table. That is, if the source sequence number of the RREQ is greater

than the sequence number for the source found in the Route Table, the entry is

updated. Additionally, if the entry in the Route Table is invalid, indicating that it

has expired but has not yet been deleted, but the sequence numbers are equal, the

entry is updated. Furthermore, if the RREQ packet reflects a reliable route while

the table entry is unreliable, but the sequence numbers are equal, the Route Table

is updated to reflect the reliable route. Finally, if the sequence numbers are equal,

and the Minimum Residual Associativity of the RREQ is greater than the remaining

lifetime of the route entry, the route is updated. Reverse routes are allowed to expire

if no RREP is received. Thus, only the selected path, both forward and reverse, is

preserved by the nodes in the network.

With the reverse route updated, non-destination nodes complete the processing

of a RREQ by rebroadcasting the updated RREQ packet to its neighbors. Destination

nodes, however, must process the RREQ further. If this is the first RREQ to reach

the destination, it has established the Route Reply Backoff when it is added to the

Route Request Table. The node retains this RREQ packet. As subsequent RREQ

packets are received, their Minimum Residual Associativities are compared against the

retained packet. If the subsequent packet has a greater associativity, it is determined

to be more reliable. This subsequent packet is retained and the previous packet

dropped. In doing so, the node keeps track of the best route received, while ignoring

inferior routes. At the expiration of the Route Reply Backoff, the node sends a

RREP for the request currently being retained. Thus, the most reliable route of those

discovered is used.
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3.3.4 Route Reply Process. Route Replies are sent by the destination to

indicate to the source, and intermediate nodes, the preferred path between source and

destination. Using the information from the RREQ packet, the destination creates

a RREP packet. Figure 3.2 contains the format of the RREP packets. The fields

contained in these packets are:

• Type: Indicates the type of packet.

• I: Flag indicating whether the route is reliable or not.

• Hop Count: Represents the hop count of the discovered route.

• Destination Address: The address of the destination of the discovered route.

• Destination Sequence Number: The most recent sequence number for the des-

tination of the discovered route.

• Source Address: The originator of the route request.

• Lifetime: The duration for which the route is accepted as valid.

• Minimum Residual Associativity: The minimum residual associativity of the

route discovered.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type I Reserved Hop Count

Destination IP Address

Destination Sequence Number

Source IP Address

Minimum Residaul Associativity

Figure 3.2: RREP Packet Format for PAR

Nodes receiving the RREP packet process it in much the same way as a RREQ.

First, a determination is made whether the packet should be handled by the node.

Unlike the RREQ process, there are only two conditions in which a node ignores

RREP packets. The first is if a destination node receives its own RREP. Secondly, if
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no route to the source exists, and the node is not the source itself, the node ignores

the RREP packet.

If not discarded or ignored, the RREP packet must be updated. Like the RREQ

process, the node compares the Minimum Residual Associativity in the RREP packet

with that for the previous hop. If the residual associativity of the previous hop is

less than that of the packet, the packet is updated to reflect the new associativity.

Additionally the hop count is incremented to indicate an additional hop in the route.

Each node establishes the forward path to the destination of the route request.

If no entry to the destination exists in the Route Table, the entry is added with

the Reliable Route Flag and Minimum Residual Associativity field set to match the

respective fields in the RREP packet. However, if the entry does exist in the Route

Table, the node uses the criteria outlined in the RREQ Process determines if the entry

should be updated. When nodes update or add Route Table entries during the RREP

process, they also update the precursor lists for both the forward and reverse paths.

That is to say, the node adds the upstream node on the route to the Precursor List

for the destination node. Similarly, the downstream node is added to the Precursor

List for the source node to ensure the node is aware of all neighbors depending upon

it to provide routes to these destinations.

Once the Route Tables are updated to reflect the new route information, the

RREP packet is forwarded to the next hop along the reverse path to the originator

of the route discovery. Nodes continue to process the RREP in this same way until

the source is reached. The originator of the discovery also processes the route packet

in this way. However, the source node takes an additional step and deletes the entry

in the Originator List of the Requst Table corresponding to the received reply. Addi-

tionally, the source node cancels the Route Request Expiry Timer since a route has

been discovered.

3.3.5 Route Error Process. Route Error packets are sent for two reasons.

First, if a node receives a application layer packet, but has no route to the destination
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of that packet, a RERR is sent. Secondly, a node will send a RERR packet if it detects

a broken link. RERR packets notify upstream nodes of failures in routes. The format

of these packets is shown in Figure 3.3. The fields of a RERR message are:

• Type: Indicates the type of packet.

• Dest Count: A count of the number of unreachable destinations.

• Dest Address: Address of the unreachable destination (This field is repeated for

each unreachable destination).

• Dest Sequence Number: The greatest known sequence number for the unreach-

able node (This field is repeated for each unreachable destination).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type Reserved Dest Count

Unreachable Destination IP Address

Unreachable Destination Sequence Number

Additional Unreachable Destination IP Address (if needed)

Additional Unreachable Destination Sequence Number (if needed)

Figure 3.3: RERR Packet Format for PAR

Nodes process both types of Route Errors in approximately the same way. If

the error is generated in response to an application layer packet, the node adds the

destination of that packet to the list of unreachable destinations in the RERR packet.

This process is slightly more complex if a node detects a link failure. In these circum-

stances a node searches its Route Table. Any destination in the table for which the

failed link is the next hop is added to the unreachable destination list.

With all unreachable destinations identified, the node must determine which

neighbors rely on it for routes to these unreachable destinations. By examining the

Precursor Lists, a node can determine which nodes must be notified of the failed

route. If no such precursor nodes exist, the node simply invalidates the entries in its

own Route Table. Alternatively, if a single node must be notified, the RERR packet

is unicast to that neighbor. Otherwise, the RERR is broadcast. Once the RERR
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is sent the Route Table entries for each unreachable destination are invalidated and

their Precursor Lists are destroyed.

Upon receiving a RERR packet, a node processes it in the same way the origi-

nating node created the packet. The node examines the Route Table entries for each

listed unreachable destination. If there are precursors for the unreachable destina-

tion, the RERR packet must be forwarded. As before, if there is a single precursor

the RERR packet is unicast to that neighbor, otherwise it is broadcast. The node

invalidates its route entry, and destroys the Precursor Lists for the unreachable nodes.

This process continues until all nodes comprising the failed routes have been notified,

and the routes invalidated.

3.4 Results of Pilot Study

The Predicted Associativity Routing protocol uses several new parameters, and

places increased emphasis on others. A pilot study is conducted to examine these

parameters and their effect on the routing protocol. In particular, the pilot study

determines the protocol configuration used in the main experiment.

There are three factors in this pilot study. The first is the Hello Periodicity. This

factor has three levels: one packet per second, two packets per second, and five packets

per second. Additionally, the size of the No Go Zone, corresponding to the confidence

level of the interval, is varied among three levels: 20%, 50%, and 80%. Finally, the

duration of the RREP Backoff assumes values from two levels: 0.1 s and 0.05 s. The

pilot study is a full factorial experiment of these factors. Each network configuration

experiment is run five times for a total of 90 experiments. These experiments are run

on a network of 50 nodes. Each node uses Random Waypoint Mobility with speeds

zero to five meters per second. Finally, each node produces application layer traffic

at a rate of two packets per second.

Since the focus of the main research is the reliability of the protocol, this pilot

study primarily examines the route lifetimes of the different configurations to find the
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best configuration to compare against AODV. The results of the pilot study for route

lifetime are depicted in Figures 3.4 and 3.5. Visual analysis of these figures, indicates

that PAR achieves its best route lifetimes when a HELLO periodicity of one packet per

second is used. This is contrary to the expectation that higher HELLO periodicities

would yield greater route lifetimes due to the higher precision of link lifetime samples.

However, as is explained in detail in Chapter V, frequent link failures occur in PAR

so the longer HELLO periods mean nodes won’t detect link for longer periods of time,

thereby increasing route lifetime.
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Figure 3.4: Route Lifetime versus No Go Zone Size for RREP Backoff of 0.05 s

Further inspection of Figures 3.41 and 3.5 reveal interesting observations about

the other factors of the experiment. The line for each HELLO periodicity is almost

horizontal, with only minor variations. This implies the size of the No Go Zone

has little impact on the route lifetime. Similarly, comparing the lines for the each

periodicity in the two figures demonstrates that PAR produces routes with similar

route lifetimes, regardless of the value of the RREP Backoff. Therefore, the factor

that has the only significant impact on route lifetime is HELLO periodicity.

1Confidence intervals for this, and similar figures, are generally to tight to be seen on the figures.
Information regarding confidence intervals for these figures can be found in Appendix A.
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Figure 3.5: Route Lifetime versus No Go Zone Size for RREP Backoff of 0.1 s

Based on these observations the configuration that produces the greatest route

lifetime is selected. It is clear a HELLO periodicity of one packet per second should

be used. However, since the remaining factors have little impact on route lifetimes,

the configuration of HELLO periodicity of one packet per second, RREP Backoff of

0.05 seconds, and No Go Zone Size of 80% is selected. This configuration, referred to

hereafter as the research configuration, is used to compare with AODV.

Analysis of the other results of this pilot study support the selection of the

research configuration. Figure 3.62 represents the end-to-end delay produced under

the various configurations of PAR. Examination of the figure shows that delay is

minimized when the HELLO periodicity is one packet per second. Thus, while it does

not achieve the minimum delay, the research configuration provides near minimum

results for end-to-end delay.

Similar results occur for the amount of application layer data received. Fig-

ure 3.7 depicts the application data received for a RREP Backoff of 0.05 seconds.

2With few exceptions, the factors have similar effects on the other metrics collected in the pilot
study as they did on route lifetime. Therefore, only the figures for RREP Backoff of 0.05 are
presented here. The remaining figures can be found in Appendix A.
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Figure 3.6: End-to-end Delay versus No Go Zone Size for RREP Backoff of 0.05 s

The figure shows that, once again, HELLO periodicity of one performs the best. This

is to be expected, since it is known that this periodicity produces the longest lasting

routes. These long lasting routes permit greater amounts of data to be transmitted

without being interrupted by failed routes. Again, the research configuration does

not maximize this statistic. However, it performs at near maximum levels, while

producing the longest lasting routes.

Likewise, similar conclusions are drawn for routing overhead, depicted in Fig-

ure 3.8. In this case, HELLO periodicity of one packet per second produces the least

routing overhead. This stands to reason, as a periodicity of one packet per second re-

duces the number of HELLO packets that are sent. While route discoveries and route

errors also contribute to this statistic, the reduction in HELLO messages significantly

reduces the overall overhead of the protocol, more than cutting it in half as compared

to a periodicity of five packets per second. This further supports the selection of the

research configuration.

When the amount of data successfully received is examined compared to the

routing overhead, a measure of efficiency can be determined. Figure 3.9 shows the
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Figure 3.7: Data Traffic Received versus No Go Zone Size for RREP Backoff of
0.05 s
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Figure 3.8: Route Traffic Received versus No Go Zone Size for RREP Backoff of
0.05 s
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efficiency of the network. Once again HELLO periodicity has the largest effect on

the metric. And, as with the other statistics collected, a periodicity of one produces

the greatest efficiency. Taken in the context of previously examined statistics, this is

expected. Periodicity of one delivers greater amounts of application layer data, while

minimizing routing overhead. Thus, the research configuration is efficient, further

validating it as a sound choice for comparison to AODV.
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Figure 3.9: Efficiency versus No Go Zone Size for RREP Backoff of 0.05 s

The number of reliable routes discovered stand in contrast to the previous re-

sults. While previous statistics show that PAR favors a HELLO periodicity of one,

this statistic shows that more reliable routes are discovered using higher periodicities.

This result, while contrary to other results, is expected. Higher periodicities produce

associativities that more precisely represent the actual lifetimes of the links. Thus, the

protocol can distinguish, at high periodicities, two associativities that would be indis-

tinguishable at low periodicities. This means that more links fall in the No Go Zone

at low periodicities, resulting in fewer reliable routes discovered. Hence, a periodicity

of one is least favorable for producing large quantities of reliable routes. However,
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ultimately, the routes produced by PAR with a periodicity of one last longer than

those discovered when a periodicity of two or five is used.
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Figure 3.10: Reliable Routes Discovered versus No Go Zone Size for RREP Backoff
of 0.05 s

3.5 Summary

This chapter examines the details of the Predicted Associativity Routing pro-

tocol. PARs general distinguishing characteristics are discussed. Furthermore, the

detailed operation of the protocol and its structures are outlined. Finally, the results

of a pilot study on the protocol are analyzed. These results are used to select a con-

figuration of the PAR protocol to experiment with in the primary research of this

effort.
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IV. Methodology

4.1 Introduction

This chapter outlines the methodology used to experiment with, and evaluate

the performance and reliability of, MANET routing protocols. The problem is defined,

laying out the goals and hypotheses of this research in Section 4.2. Section 4.3 defines

the system under test. Section 4.4 outlines the system’s services. Sections 4.5, 4.6,

and 4.7 describe the system workload, performance metrics, and system parameters,

respectively. The experiment’s factors are listed in Section 4.8. Section 4.9 discusses

the evaluation techniques. Finally, Section 4.10 addresses the experimental design.

4.2 Problem Definition

4.2.1 Goals and Hypothesis. MANET routing protocols often focus on

finding optimal paths between a source and a destination. However, in many cases

reliable paths are preferable to optimal ones. Reliable routes can provide higher

quality of service, and in some cases, improve the overall performance of the network.

Many paradigms have been devised to provide MANETs with reliable routing schemes.

The primary goal of this research is to improve the reliability of the routes produced

by the network. More specifically, this research evaluates the impact of modifying

the AODV protocol to collect link lifetime information, and to use this information

as the metric for selecting routes. The research addresses not only the impact of the

modified protocol on the reliability of the network, but also its performance.

Modifying the AODV protocol in this manner is likely to improve the overall

reliability of the routes produced. Increasing route reliability has ramifications for

several areas of system performance. First, it is expected that fewer active routes will

experience route failures compared to the AODV protocol. Since the modified pro-

tocol, known as Predicted Associativity Routing (PAR), tracks the expected lifetime

of the links composing a route, it is less likely a route near the end of its lifetime is

chosen and route lifetimes are expected to increase.
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This increase has some consequences on other aspects of system performance.

One such implication is a greater amount of application data will be successfully

transmitted. Greater lifetimes imply fewer route failures. Thus, routes have to be

repaired less frequently. Since, the route is active for a greater portion of time, the

amount of data transmitted is expected to increase.

The improved reliability also carries some liabilities. First, additional informa-

tion must be collected to estimate link lifetimes. As outlined in the description of

the PAR protocol in Chapter III, this is done through HELLO packets. This periodic

information increases routing overhead. Similarly, selecting reliable routes implies

other, unreliable routes, are ignored. Thus, route discovery is expected to fail more

often further adding to routing overhead.

End-to-end delay is expected to increase since route discoveries are expected to

fail more often. Thus, application packets are forced to queue for extended periods

during route discovery. Furthermore, PAR prescribes a delay before responding to

received route requests which further increases the end-to-end delay. Therefore, the

delay of PAR is expected to exceed that of AODV.

Finally, the throughput of the PAR protocol is expected to increase compared

to AODV since both the amount of application layer traffic transmitted and the

amount of routing overhead are anticipated to rise. Thus, it is hypothesized that the

throughput of PAR is greater than that of AODV.

4.2.2 Approach. To achieve the goals outlined above, the AODV protocol

gathers information about the link lifetimes experienced by nodes in the network and

uses it to compute expected link lifetimes. The difference of the expected value for

link lifetime and the experienced lifetime yields the residual lifetime which PAR uses

to select routes. Using a series of simulations, reliability and performance metrics

are observed. These metrics show the impact of the modifications on the reliability

of the routing protocol. In particular, it is possible to conclude if the reliability of

the modified protocol is greater than the base protocol, thus confirming the research
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hypothesis. Furthermore, the collected performance metrics allow conclusions to be

drawn about the impact reliability has on overall system performance.

4.3 System Boundaries

The system under test (SUT) consists of the components that comprise a

MANET, and is depicted in Figure 4.1. First, the system includes a collection of

mobile hosts which serve as communicators. Additionally, the area of operation is

included in the system because the size of this region can have a significant impact on

system performance. Next, the system includes node mobility. The mobility model

defines the movement of the nodes in the area of operation. The system also includes

the MAC layer protocol, in this case IEEE 802.11. The final component in the system

is the routing algorithm being used which is also the component under test (CUT).

Since a goal of this research is to evaluate the effects of the selected routing protocols

on the system, it is clear that the routing protocol is the appropriate CUT.

Area of Operation

Mobile Host

Mobile Host

Mobile Host

Mobile Host

Mobile Host

Component Under Test:

Routing Protocol

Additional Components:

MAC Protocol (802.11)

Mobility Model

Figure 4.1: System Under Test

This study evaluates the reliability and performance of routing protocols. As

such, the impact of the MAC layer protocols and wireless radio are not considered.

The effect of group mobility is not considered. Rather, the study is limited to indi-
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vidual node motion using an entity mobility model. Finally, power consumption is

ignored.

4.4 System Services

One of the most fundamental services a network provides is a data transfer

service. This service transmits data from a sending node to a destination node. A data

transfer is considered successful when the destination node receives the data. There

are a variety of failure modes for this system service. The failure modes considered as

part of this research are failures due to failed routes. While modeled in the simulations,

failures due to congestion or interference are not considered in the scope of this study.

A second system service is route discovery. This is the process of finding a

viable path between a sender and a receiver. For this process there are two possible

outcomes. The first is success, defined as the establishment of a complete route.

Alternatively, the second outcome is failure. This second outcome may be due to

partitions in the network. In the PAR protocol, failures may be caused by lack of a

reliable route to the destination.

A final system service is route repair. This service repairs failed routes by

finding alternate paths between source and destination. A successful outcome results

in the restoration of service through an alternate route. A failure occurs when there

is no alternate route through which service can be restored. This may happen when

the destination is unreachable, again, perhaps due to network partitions, or lack of a

reliable route.

4.5 Workload

The workload submitted to the system is the data to be transferred over the

network. This workload affects the system in a number of ways. First, data transfers

from a source node triggers the route discovery process. To evaluate the reliability of

routes generated by a protocol, the routes must first be established. Providing data
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to the system to transfer ensures routes are available to evaluate. The frequency of

data transfers determines the number of routes a system must generate. Furthermore,

by transferring data over active links, routes are kept active (i.e., in use) allowing an

accurate appraisal of reliability.

Additionally, data transfers impact the performance of the system. Transfers

can increase the congestion on the network which can increase the amount of time

required to transmit a packet. As such, end-to-end delays are impacted by data

transfers. Furthermore, network loading can contribute to errors in packet delivery

which directly impacts the performance and reliability of the network.

4.6 Performance Metrics

To evaluate the system, several reliability and performance metrics are collected.

These metrics are:

• Route Lifetime: The lifetime of the route is the time between the route’s es-

tablishment (i.e., the transmission of a route reply by the destination) to its

failure. This metric is used to evaluate the reliability of the protocols. Longer

route lifetimes indicate a protocol produces more reliable routes.

• Throughput: Throughput is the number of successfully transmitted bits divided

by the elapsed time for the network. This metric is establishes a correlation

between reliability and system performance. In particular, this metric demon-

strates that more reliable routes yield a higher throughput.

• Efficiency: Efficiency is defined as:

Efficiency =
DataRx

(DataRx + RouteRx)
(4.1)

where DataRx is the number of data bits per second received, and RouteRx is the

number of routing protocol bits per second received. This metric is included
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as a measure of the efficiency of the protocols. It is expected that the PAR

protocol is more efficient than AODV.

• End-to-End Delay: This metric is defined as the average time required to trans-

fer a data packet from the source node to the destination node. This delay

metric is used to establish the hypothesis that while increasing reliability, the

PAR protocol also increases average end-to-end delay.

4.7 Parameters

4.7.1 System Parameters. The list below are parameters that affect the

performance of the system.

• Number of Nodes: The number of nodes in the system, along with the size of the

area of operation, affects the node density of the system. This, in turn, affects

the level of connectivity of the network. With higher levels of connectivity, more

routes are available between source and destination, making it more likely that

a reliable route can be found. Thus, the number of nodes in the network can

greatly impact reliability of the system.

• Size of Area of Operation: This parameter, coupled with the number of nodes,

determines node density. An operating area of 500m by 500m is chosen to

provide nodes ample room to move. Furthermore, these dimensions force routes

to be selected that are of significant length.

• Mobility Model: The mobility model determines the way mobile nodes move.

Since routes fail due to the mobility of the nodes, movement patterns are impor-

tant to consider. The Random Waypoint Model is used in a variety of research

including [BKS03], [YKT03], and [MaD01]. As such, it is selected as a reason-

able mobility model for this research.

• Node Speed: Node speed affects the level of mobility of the nodes. The mobility

of the nodes directly impacts the lifespans of links in the network. High levels
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of mobility result in shorter link lifetimes and so node speed can greatly impact

route reliability.

• Routing Protocol: This parameter is the focus of the research. The routing

protocol determines how the routes are chosen. Thus, the protocol is ultimately

responsible for the reliability of the routes. Furthermore, the manner in which

these routes are determined has a significant impact on system performance.

Therefore, the protocol used must be considered when performing performance

evaluations of networks.

• Reliability Thresholds: Reliability thresholds determine the level of route reli-

ability required for a route to be selected by the routing protocol. This level

is determined by the amount of anticipated lifetime a route must have for the

protocol to deem the route reliable. Since this parameter is involved in the

selection of routes, it has great influence over the reliability of the routes.

• Transmission Range: The transmission range of the nodes determines the max-

imum distance of communication. If the distance between nodes exceeds this

parameter, nodes cannot communicate. Transmission range impacts the level of

connectivity in the network. The level of connectivity impacts the reliability of

the routes in the network by varying the number of routes possible. This value

is set to 100 meters, a reasonable range for 802.11 MAC protocols [KaO02].

4.7.2 Workload Parameters. The following list describes the workload pa-

rameters that impact the performance of the system:

• Number of Sources/Destination Pairs: This parameter can also be considered

the number of conversations occurring in the network. Each of these conversa-

tions requires a route first be established. By increasing the number of conversa-

tions, more routes are established. Thus, this parameter can greatly impact the

reliability and performance metrics. In this research, all nodes generate traffic,

selecting random destination nodes from the network.
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• Packet Interarrival Rate: The packet interarrival rate determines how frequently

data packets are sent. By varying this parameter, varying levels of network

loading can be achieved. Loading leads to contention in the network which

subsequently affects the performance of the system.

• Packet Sizes: Packet size is also a contributor to the loading experienced by a

network. Similar to the previous parameter, packet sizes can impact the delays

and throughputs experienced on the network. This value is set to 1024 bits.

4.8 Factors

This list specifies the factors, and corresponding levels, used:

• Node Density:

– Low Density: To represent a network with low node density, and a corre-

sponding low degree of connectedness, 25 nodes are used. By selecting a

small number of nodes, the possible routes between source and destination

are limited and reliable routes will be more difficult to establish.

– Medium Density: 50 nodes provide a system configuration with medium

levels of connectivity. As such it is expected that some reliable routes are

available, although not for every desired route.

– High Density: The high node density level is 75 nodes making a variety of

routes available for a source. Thus, it is more likely that a reliable route

can be found.

• Node Speed

– Low Speed: A range of 0 to 5 m/s is assigned to this level. The Random

Waypoint model selects a speed from this range and moves the node at the

selected speed. At this speed, links are likely to remain valid for longer

periods of time, resulting in higher route stability.
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– High Speed: For this level, 0 and 20 m/s is used. High levels of mobility

reduce link lifetimes and route reliability will decrease.

• Routing Protocol

– AODV: This protocol is the base system. AODV uses hop count to make

route selection decisions.

– PAR: This protocol is a modification of AODV, designed to determine an

expected value for link lifetimes, and use this knowledge to select long-lived

routes.

• Offered Load

– Low: At this level, application layer packets arrive at a rate of 2 packets

per second. This provides a low offered load to the network and provides

smaller numbers of route discoveries.

– High: The high level corresponds to 4 packets per second. With the higher

levels of application layer packets more route discoveries are initiated, and

the network experiences greater levels of loading.

4.9 Evaluation Technique

This research uses simulations to evaluate the reliability and performance of

the routing protocols. Simulation is selected as the evaluation technique for a num-

ber of reasons. Direct measurements are impractical and the cost associated with

establishing a network on which measurements can be made is prohibitive. Addi-

tionally, controlling the various parameters of the system in a live testbed would be

problematic. Therefore, simulation is the best technique for this evaluation.

The simulations are run using OPNET version 10.5.A which includes models

for the AODV protocol. These models serve as a basis for the custom PAR models

that must be created. The code base for AODV is modified to include estimation of

link lifetimes, and the use of residual lifetimes to select routes.
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For valid results, the models must accurately represent the system. Since the

AODV models are provided by the manufacturer and comply with the draft standard

for AODV, they are assumed to be valid. Therefore, they are used to validate the

PAR models. In order to validate the PAR models, the protocol is configured as

closely to AODV as possible. Simulations are run on both protocols and the results

compared.

4.10 Experimental Design

To ensure a complete evaluation of main effects and interactions, a full factorial

experimental design is used. There are four factors, three having two levels and the

fourth having three levels. This results in 3 ∗ 2 ∗ 2 ∗ 2 = 24 experiments.

The inclusion of mobility in these simulations is expected to increase the variance

in collected results. As such, it is necessary to run several iterations of each experiment

to ensure the variance is at an acceptable level. Thus, ten iterations of each experiment

are conducted. The result is 240 experiments must be run. The data collected is

evaluated using 90% confidence intervals.

4.11 Summary

There are a number of protocols to address the problem of routing in Mobile

Ad Hoc Networks. Many, if not most, of these protocols select routes based on the

length of the route, favoring shorter routes. However, it may be preferential to select

routes which are expected to be long lasting. Predicted Associativity Routing uses

an estimation of link lifetimes to determine expected residual lifetimes. Using these

residual lifetimes as the basis for selecting routes, PAR attempts to improve the

reliability of the routes in the system. This research compares to the PAR protocol

to a standard MANET routing protocol, AODV, in terms of both reliability and

performance.
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There are several expected results from this research. PAR possesses a knowl-

edge of link lifetimes and uses this knowledge to select routes. As such the routes

selected are anticipated to have longer durations. Therefore, the lifetime of routes se-

lected by PAR should be greater than those selected by AODV. For this same reason,

it is expected that PAR will deliver a larger amount of application layer data and

thus demonstrate an improvement in throughput over AODV. Similarly, with more

data packets delivered, efficiency is expected to improve with the use of the reliable

protocol.

While reliability is expected to improve with the use of PAR, there are certain

costs associated with this improvement. First, PAR must gather information about

the performance of links which requires additional routing overhead. As such, the

amount of routing traffic is expected to be greater with PAR. Additionally, since

PAR selects routes based on reliability, and not shortest path, the end-to-end delay

is expected to be greater.

This chapter outlines the experimental methodology used to test the PAR and

AODV routing protocols, and analyze their performance and reliability. The system is

defined, its services outlined, and its parameters described. Furthermore, the factors

of the experiment are detailed, and reliability and performance metrics are identified.

Finally, the experimental design is explained in detail.
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V. Experiments, Data, and Analysis

5.1 Introduction

This chapter presents the results and analysis evaluating the reliability and

performance of the AODV and PAR routing protocols. Section 5.2 describes the

validation of the custom routing protocol, PAR. Section 5.3 outlines the methods of

experimentation and data collection. Sections 5.4, 5.5, 5.6, and 5.7 discuss the results

of the research for route lifetime, throughput, delay, and efficiency, respectively. The

analysis examines the effects of each factor on the reliability and performance of the

protocols.

5.2 Routing Protocol Validation

To validate the models created for the Predicted Associativity Routing Protocol

a comparison is made between the custom models, and the Ad Hoc On-Demand

Distance Vector Routing Protocol models provided with the OPNET 10.5.A wireless

module. These AODV models are the basis for comparison throughout this research

and are assumed to be valid.

In order to validate the PAR models, a series of experiments are conducted

and the results compared to ensure similar trends are followed by each protocol. In

these experiments, the protocols are configured to be, to the greatest extent possible,

identical. Therefore, the PAR protocol is configured to operate without a No Go

Zone or RREP Backoff, as AODV does not use these parameters. Furthermore, PAR

is configured to accept any available route, rather than require searches for reliable

routes, since this is AODV’s mode of operation. The AODV protocol, under normal

operation, uses an expanding ring search during route discovery. Since PAR does

not operate in this manner, the starting time to live for AODV is set to the network

diameter. All other parameters of the protocols are set identically.

The validation experiments are a full factorial design of four factors. The first

is the protocol used, PAR and AODV. Next, the levels for node density used are, 25,

50, and 75 nodes. The offered load levels are two and four packets per second (pps),
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and the node speed levels are 0-5 and 0-20 meters per second. Each experiment is

repeated ten times and the results for route lifetime, throughput, delay, and efficiency

are collected and compared. Figures 5.13 through 5.4 are the results for node speed

0-5 m/s. Results for node speed 0-20 m/s are included in Appendix B, but omitted

here as they repeat the trends seen in the results for node speed 0-5 m/s.

Figure 5.1 shows there is a significant difference in the route lifetimes of AODV

and PAR. This difference can be explained by a fundamental, and unavoidable, dif-

ference in the way the protocols determine connectivity with their neighbors. AODV

updates the connectivity expiry timer after the receipt of any packet. This includes

RREQ, RREP, and application packets in addition to HELLO packets. PAR, in con-

trast, only updates the connectivity timer in response to HELLO packets. Thus, a

missed HELLO packet may cause a loss of connection in PAR, where it may not in

AODV. These losses in connectivity result in lower route lifetimes in PAR.
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Figure 5.1: Route Lifetime versus Node Density at 0-5 m/s

3Confidence intervals for this, and similar figures, are generally to tight to be seen on the figures.
Information regarding confidence intervals for these figures can be found in Appendix B.
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Similarly, the disparities in throughput seen in Figure 5.2 can be explained.

PAR’s more frequent losses in connectivity result in higher routing overhead since a

loss of connection with a neighbor can trigger the transmission of a RERR packet,

as well as initiate a route discovery to repair failed routes. Increasing the amount of

routing protocol packets sent increases the total amount of data sent, thus increasing

overall throughput.
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Figure 5.2: Throughput versus Node Density at 0-5 m/s

The characteristics of PAR explaining its higher throughput, can also explain

the disparity seen in end-to-end delay in Figure 5.3. Route failures initiate new route

discoveries to repair the failed routes. This forces application layer packets to queue

while a route is found. The result is increased delay, particularly in larger networks,

where routes may be substantial in length. Another reason for this disparity is a

difference in the criteria for route selection in the two protocols. AODV is designed

to find shortest path routes to a destination. PAR, on the other hand, is intended to

seek longer lasting routes. Thus, routes discovered by AODV may not be accepted

in PAR, even when the protocol is not searching for reliable routes exclusively. This

more stringent route selection criteria can also increase delay.
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Figure 5.3: Delay versus Node Density at 0-5 m/s

PAR efficiency in Figure 5.4 is also impacted by the increase in routing overhead.

Efficiency indicates the ratio of application data delivered to the total data delivered,

both application and routing data. As the route overhead increases, the efficiency

is driven down. Since PAR, by its nature, results in higher overhead, the efficiency

for this protocol is less than that of AODV. This disparity is magnified as the node

density increases, since more links fail.

It is clear there are differences between PAR and AODV in the reliability and

performance metrics presented. As discussed, these disparities are the result of the

fundamental differences in the protocols. However, if the trends are considered, the

responses of both protocols to the factors of the experiments are similar for all metrics

with the exception of Delay. These trends indicate that the factors of the experiment

affect like configured instances of the PAR and AODV protocols in similar ways.

The observations made in this section lead to important conclusions about the

PAR protocol. The differences in the magnitude of the protocols’ responses to the fac-

tors of the validation experiments indicate that PAR and AODV are unique protocols.

The fundamental, and unavoidable, properties of PAR make it a distinct protocol,
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Figure 5.4: Efficiency versus Node Density at 0-5 m/s

despite its roots in AODV. However, the similarities in the trends shown by the pro-

tocols show that PAR can exhibit AODV-like behavior. Ultimately, the validation

experiments conclude that PAR is, at its essence, unique from AODV, and, as such,

can not be validated directly against AODV. The similar trends observed, however,

permit valid comparisons to be drawn between the protocols, since PAR demonstrates

similar behavior to AODV.

5.3 Data Collection Methods

The experiments are run for a total of 16 simulation minutes. The first 60

seconds of each simulation are discarded to ensure that the network has reached

a steady state. In doing so, the effects of initialization do not skew the results.

Furthermore, since the Random Waypoint Mobility Model is used, discarding the

first 60 seconds ensures a random starting network configuration.

The metrics are collected using OPNET statistics collection functions. Each

metric, is collected in “bucket” mode, with each bucket set to five seconds. In bucket

mode, individual statistics are collected for the specified duration and collected in
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the “bucket”. At the end of this interval, a predetermined operation is performed on

the bucket data. The metrics in this research are either averaged or summed. The

result of this operation constitutes a single sample of the metric. In all cases, 90%

confidence intervals are used.

5.4 Route Lifetime Analysis

Route lifetime is the mean lifetime of active routes that have failed. In the

context of this research, longer route lifetimes imply greater reliability. Both AODV

and PAR are analyzed for each factor. Additionally, a computation of effects is

included to determine the impact of the various levels of the factors on the route

lifetime. Finally, an ANOVA is accomplished to determine the quantify the portion

of total variance contributed by the factors.

5.4.1 Routing Protocol. It is expected that the route lifetime for PAR would

be greater than that for AODV. However, Figure 5.5 indicates that the opposite is

true. In fact, for each node density level PAR is inferior to AODV. The figure indicates

at each level AODV has approximately three times the route lifetime.
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Figure 5.5: Plot of Route Lifetime by Protocol and Node Density
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This unexpected result can be explained by examining the manner in which

the protocols handle neighbor connectivity. AODV updates a neighbor connectivity

expiry timer with every packet received by the routing protocol. PAR, on the other

hand, only updates the expiry timer with HELLO packets. Thus, links fail more often

with the PAR protocol. Figures 5.64 and 5.7 demonstrate that link breaks for PAR

exceed those of AODV at each node density and at each speed and offered load. Thus,

the route lifetimes for AODV are greater than those of PAR.
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Figure 5.6: Link Breaks versus Node Density at 0-5 m/s

5.4.2 Node Density. Further analysis of Figure 5.5, reveals the effects of

node density on the route lifetime. Increasing node density from 25 nodes to 50 nodes

results in a halving of the route lifetime for both protocols. However, increasing from

50 nodes to 75 nodes has a smaller effect. This can be explained, once again, by

examining Figures 5.6 and 5.7. In these figures there is a significant increase in the

number of link breaks as the node density increases. These link breaks add a greater

4Confidence intervals for this, and similar figures, are generally to tight to be seen on the figures.
Information regarding confidence intervals for these figures can be found in Appendix D.
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Figure 5.7: Link Breaks versus Node Density at 0-20 m/s

number of samples of low route lifetimes thereby forcing a decline in route lifetime

for both protocols. However, as the node density increases even further, the level of

connectivity also increases. Thus, while there are increased link breaks, there are also

significantly more moderate and long lasting routes. The effects of both of these facts

ultimately maintain the route lifetime at its current level.

5.4.3 Node Speed. As the speed at which the nodes move increases, the

amount of time to leave the range of a neighbor decreases. With this in mind, it is

expected that increasing node speed results in a decrease in the lifetime of routes.

Figure 5.8 verifies this expectation. For both PAR and AODV, and for all node

densities, route lifetimes for 0-5 m/s exceed those for 0-20 m/s. As was discovered in

Section 5.2, regardless of the node speed, AODV provides more reliable routes than

PAR. However, as Tables 5.1 and 5.2 indicate, PAR is less sensitive to changes in

speed than AODV. Figure 5.8 verifies this; there is little difference between the route

lifetimes for the two speed levels for the PAR protocol. This is particularly true for

50 and 75 node densities. The higher levels of connectivity achieved at high densities
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have a stabilizing effect on route lifetimes by providing significantly more routes over

which to sample. Thus, the impact of short lived routes resulting from rapid link

breaks is decreased.
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Figure 5.8: Plot of Route Lifetime by Speed and Node Density

5.4.4 Offered Load. The expectation is that route lifetime increases as

the offered load increases. Figure 5.9 verifies this expectation. In all but one case,

the higher offered load resulted in higher route lifetimes. The remaining instance,

for AODV at 25 nodes, shows no statistically significant difference between the two

loads. While the figure confirms the expectation, the effect of the offered load factor

is seen to be small.

5.4.5 Computation of Effects for Route Lifetime. To evaluate the effects

of each level of the factors a computation of effects for route lifetime was performed.

Figures 5.10 and 5.11 plot the main effects of the factor levels for AODV and PAR

respectively. Both protocols respond in a common manner to the levels of the factors,

with route lifetimes dropping sharply between node densities of 25 and 50 nodes.

Increasing node density from 50 to 75 nodes has less impact on route lifetime than
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Figure 5.9: Plot of Route Lifetime by Offered Load and Node Density

increasing from 25 to 50 nodes. Similarly, as expected, the route lifetimes improve

in response to an increase in offered load. Furthermore, the figures reinforce the

expectation that as the speeds of the nodes increase, route lifetimes lessen.

Tables 5.1 and 5.2 summarize the effects of the factors. These tables show that,

for both protocols, the node density has the greatest effect on the route lifetime. The

nodes speed have the next greatest effect. Since none of the confidence intervals for

the factor levels include 0, all of the levels are considered statistically different from

the mean.

Table 5.1: Table of Effects for AODV Route Lifetime
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 12.58 2.07 12.26 12.89
25 5.38 0.27 4.93 5.82

Nodes 50 -2.98 0.27 -3.42 -2.53
75 -2.40 0.27 -2.85 -1.96

Load 2 pps 0.60 0.19 -0.91 -0.28
4 pps -0.60 0.19 0.28 0.91

Speed 5 m/s 3.01 0.19 2.70 3.32
20 m/s -3.01 0.19 -3.32 -2.70
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Figure 5.10: AODV Main Effects Plot of Route Lifetime

M
ea

n
 o

f 
Li

fe
ti

m
e 

(s
ec

)

755025

6

5

4

3
42

205

6

5

4

3

Nodes Load

Speed

Main Effects Plot for PAR

Figure 5.11: PAR Main Effects Plot of Route Lifetime

82



Table 5.2: Table of Effects for PAR Route Lifetime
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 4.30 0.91 4.17 4.44
25 2.08 0.12 1.89 2.28

Nodes 50 -0.96 0.12 -1.16 -0.77
75 -1.12 0.12 -1.31 -0.92

Load 2 pps 0.23 0.08 -0.37 -0.10
4 pps -0.23 0.08 0.10 0.37

Speed 5 m/s 0.80 0.08 0.66 0.93
20 m/s -0.80 0.08 -0.93 -0.66

5.4.6 Route Lifetime ANOVA. In order to determine the factors that have

the greatest effect on the lifetime of routes discovered in the MANET, an ANOVA

is used. This analysis determines the portion of the total variance for which each

factor and interaction is responsible. For the conclusions drawn in the ANOVA to be

valid, several assumptions must be met. First, the errors of the observations must

be normally distributed. Second, the variance of the observations must be constant.

Furthermore, the errors must be independent. Finally, it is assumed that the errors

are independent of the factor levels. In order to validate these results, a series of

visual tests are conducted. Appendix C contains several figures that accomplish these

visual tests and validate the ANOVA assumptions, as well as an explanation of the

data transforms used to validate these assumptions.

Each ANOVA computed allocates variance over all factors, as well as the in-

teractions of these factors. However, not all factors or interactions have statistically

significant effects on the response. The p-value of an ANOVA is an indicator of the

significance of the factor. Furthermore, the p-value determines the probability that

the variance attributed to the particular factor or interaction is, in fact, due to error.

To make this determination the p-value for each element of the ANOVA is compared

to the α value for the experiment. Since this research uses 90% confidence intervals,

α = 0.10. Any factor or interaction with a p-value greater than α is not statisti-

cally significant. These factors are pulled from consideration, and the ANOVA is

recomputed, attributing the variance of these factors to error.
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Table 5.3 shows the final ANOVA accomplished for the AODV protocol. As

explained in Appendix C, the ANOVA is accomplished using data transformed with

a natural log transform. The interaction of Offered Load and Node Speed, as well as

the interaction of all factors are insignificant. Therefore, these factors are removed,

and their variance attributed to error. About 48.62% of the total variance in ln(Route

Lifetime) is due to the Node Density of the network which supports the conclusions

drawn when examining the main effects previously. Node Speed has a significant

impact on the response as well. For AODV, Node Speed is responsible for 37.66% of

the variation in ln(Route Lifetime). While this factor is expected to have a significant

effect, it is not expected that this factor would represent such a large percentage of

the variation. Error also contributes significantly with 7.41% of the total variation.

All other factors and interactions represent smaller percentages, as seen in Table 5.3

Table 5.3: ANOVA Table for AODV ln(Route Lifetime)
Sum Percentage Mean F

Component of Squares Variation DOF Square Comp p
Total SST 14.7332 100.00% 117
Node Density SSA 7.1637 48.62% 2 3.5818 377.91 0.00
Offered Load SSB 0.3862 2.63% 1 0.3862 37.19 0.00
Node Speed SSC 5.548 37.66% 1 5.548 560.26 0.00
Node Density*Offered Load SSAB 0.2061 1.40% 2 0.1031 10.29 0.00
Node Density*Node Speed SSAC 0.3372 2.29% 2 0.1686 16.83 0.00
Error SSE 1.0919 7.41% 109 0.0100

Similar ANOVA computations are accomplished for PAR. In this case, an inverse

transform is used. The initial ANOVA indicates that the interactions of Node Density

and Offered Load, Offered Load and Node Speed, and of all factors are statistically

not significant. Thus, these factors are removed from the final ANOVA, allocating

their variance to error. Table 5.4 is the final computed ANOVA. For the inverse of

Route Lifetime for the PAR protocol, Node Density is responsible for the greatest

percentage of variation, accounting for 70.66%. While significantly less, Node Speed

also contributes significantly with 17.05%. These results are expected, and confirm

the conclusions drawn previously from computing and analyzing the main effects of

the factors. The error in this ANOVA is allocated 5.23% of the variation.
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Table 5.4: ANOVA Table for PAR (1/Route Lifetime)
Sum Percentage Mean F

Component of Squares Variation DOF Square Comp p
Total SST 0.6404 100.00% 116
Node Density SSA 0.4525 70.66% 2 0.2263 690.05 0.00
Offered Load SSB 0.0104 1.62% 1 0.0104 37.8 0.00
Node Speed SSC 0.1092 17.05% 1 0.1092 372.34 0.00
Node Density*Node Speed SSAC 0.0348 5.43% 2 0.0174 57.09 0.00
Error SSE 0.0335 5.23% 110 0.0003

5.5 Throughput Analysis

Throughput measures the total bits per second the network transmits. This

metric is one means of evaluating the performance of the network. In particular,

this metric shows the impact of reliability on the performance of the network. It

is expected that as reliability improves, so too does the amount of data successfully

transmitted. Therefore, it is anticipated that throughput increases with increases in

route lifetime.

5.5.1 Routing Protocol. As seen from the route lifetime metric in Section 5.4,

AODV provides more reliable routes, on average. This leads to the expectation that

AODV has greater throughput than PAR. Figure 5.12 shows the opposite trend. For

all node densities, PAR has greater throughput. Furthermore, the difference between

PAR and AODV is greater as node density increases. At 75 nodes, the throughput of

PAR has grown to almost two and one half times that of AODV.

Routing overhead and data traffic received are two major contributing factors

to the throughput experienced in these experiments. Figures 5.13 and 5.14 show

these two factors. As expected and explained in Section 5.2, PAR has significantly

more routing overhead. However, PAR also is superior in delivering application layer

packets. Since PAR has greater rates for both data transmission and route overhead

transmissions, its throughput is greater.

5.5.2 Node Density. Both AODV and PAR behave similarly as the node

density factor is varied. Figure 5.12 clearly shows that throughput increases as node
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Figure 5.12: Plot of Throughput by Protocol and Node Density

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

25 50 75

Nodes

R
ou

tin
g 

Tr
af

fic
 (b

its
/s

ec
)

AODV_2pps PAR_2pps AODV_4pps PAR_4pps

Figure 5.13: Route Traffic Received versus Node Density for 0-5 m/s
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Figure 5.14: Data Traffic Received versus Node Density for 0-5 m/s

density increases. The most fundamental reason for this rise in throughput is increased

routing overhead associated with the additional nodes. Nodes not only produce their

own traffic, but are responsible for forwarding the overhead of other nodes. At higher

densities, connectivity levels increase and overhead grows sharply which increases the

throughput. As expected, this rise occurs more rapidly in the PAR protocol since

PAR by design produces higher levels of overhead.

5.5.3 Node Speed. Lower values for node speed result in longer route life-

times, and consequently, greater amounts of data to be transmitted. Therefore, it

is anticipated that lower values for nodes’ speeds will result in higher throughputs.

Figure 5.15 shows the throughput values versus speed and node densities. This figure

confirms the anticipated results for AODV. Additionally, the figure shows that the

effect of the node speed factor is greater for AODV than for PAR. However, examin-

ing the plot for PAR indicates there is no statistically significant effect on throughput

from the node speed factor.
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Figure 5.15: Plot of Throughput by Speed and Node Density

5.5.4 Offered Load. The offered load factor seems to have the most direct

impact on throughput. Greater offered loads increase throughput in the network.

Figure 5.16 verifies this expected result. The figure demonstrates that for both proto-

cols increased offered loads yield greater throughputs, with the exception of PAR at

75 node density. In this instance, throughput is greater for lower offered load. This

is due to greater routing overhead for this configuration. This extra overhead drives

the throughput higher for this particular factor level.

5.5.5 Computation of Effects for Throughput. Figures 5.17 and 5.18 are

plots of the main effects for each factor. The figure for AODV confirms that each

factor has the anticipated effect on the throughput of the network. Increasing node

density increases throughput as both the amount of routing overhead and data traffic

increase. An increase in offered load increases throughput as well since there is more

application layer traffic on the network. Node speed, however, reduces throughput

since routes fail more frequently at high speeds, interrupting communications. The

figure for PAR, however, reveals that the offered load and node speed factors have

little effect on the throughput experienced by the network.

88



Th
ro

u
gh

pu
t 

(b
it

s/
se

c)

Nodes
Load

755025
424242

2000000

1500000

1000000

500000

0

755025
424242

AODV PAR

Panel variable: Protocol
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Figure 5.17: AODV Main Effects Plot of Throughput
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Figure 5.18: PAR Main Effects Plot of Throughput

Summaries of the effects of the various levels of the factors are presented in

Tables 5.5 and 5.6 for AODV and PAR respectively. These tables indicate that for

both protocols node density has the greatest effect on the throughput of the network.

Furthermore, the effects of node speed and offered load are similar. These tables also

indicate that for AODV there is no statistical difference between the mean and the

node density level 50. Furthermore, for PAR the effect of the 0-20 m/s node speed is

not statistically different than the mean.

Table 5.5: Table of Effects for AODV Throughput
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 494057.98 16844.02 491507.03 496608.93
25 -348197.22 2174.55 -351804.80 -344589.63

Nodes 50 3330.90 2174.55 -276.68 6938.49
75 344866.32 2174.55 341258.73 348473.90

Load 2 pps 41972.93 1537.64 -44523.88 -39421.99
4 pps -41972.93 1537.64 39421.99 44523.88

Speed 5 m/s 42902.03 1537.64 40351.09 45452.98
20 m/s -42902.03 1537.64 -45452.98 -40351.09
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Table 5.6: Table of Effects for PAR Throughput
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 1067785.32 39946.90 1061735.55 1073835.09
25 -881624.32 5157.12 -890179.98 -873068.66

Nodes 50 -126934.45 5157.12 -135490.12 -118378.79
75 1008558.78 5157.12 1000003.11 1017114.44

Load 2 pps 14265.49 3646.64 -20315.26 -8215.72
4 pps -14265.49 3646.64 8215.72 20315.26

Speed 5 m/s -7879.22 3646.64 -13928.99 -1829.45
20 m/s 7879.22 3646.64 1829.45 -13928.99

5.6 End-to-End Delay Analysis

It is anticipated that end-to-end delay is greater for PAR since it is designed to

discover reliable routes rather than short ones. Thus, route discovery can take longer

periods of time, forcing data packets to queue. This results in longer end-to-end

delays.

5.6.1 Routing Protocol. Figure 5.19 indicates that the delay associated

with PAR is substantially greater than that of AODV. At its smallest difference,

the delay of PAR is approximately six times greater than that of AODV. There are

several reasons for this. First, AODV employs an expanding ring search during route

discovery. This means a node sends out its request with a limited time to live (TTL).

Subsequent retries of the request increment this value until it reaches a threshold.

At this point the TTL is set to the diameter of the network. PAR, on the other

hand, immediately sets the TTL to the network diameter. Therefore, it takes longer

for PAR to detect a failed route request. This fact increases the end-to-end delay of

the network. A second reason for the significant difference between AODV and PAR

is PAR employs a backoff upon the receipt of a route request packet. This further

increases the route discovery time. Thus, the end-to-end delay is significantly greater

for PAR than for AODV.

5.6.2 Node Density. Figure 5.19 also demonstrates that the end-to-end

delay grows as the node density of the network increases. This trend is particularly
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Figure 5.19: Plot of End-to-End Delay by Protocol and Node Density

evident for the PAR protocol. As described in the previous section, the initial TTL

of RREQ packets is set to the network diameter. With greater numbers of nodes in

the network, this value is set higher, thereby lengthening the period before a node

retransmits a request and increasing delay. Additionally, PAR seeks to find reliable

routes rather than short routes. In doing so, some short but unreliable routes are

ignored while the protocol waits for a reliable route. In small networks, routes are

short, meaning reliable routes can be found quickly. However, as the network grows

it takes longer to find a reliable route, particularly to a distant neighbor. This also

contributes to increase in delay as node density increases.

5.6.3 Node Speed. High speeds correspond to larger end-to-end delays, since

packets must queue while the protocol adapts to the changes in topology and repairs

failed routes. Figure 5.20 reflects these results. Furthermore, the figure demonstrates

that the delay increases much more with the PAR protocol than with the AODV

protocol, as node speed is increased. This is expected due to AODV’s use of expanding

ring searches and PAR’s more selective route discovery process.
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Figure 5.20: Plot of End-to-End Delay by Speed and Node Density

5.6.4 Offered Load. The increased load on the network adds to the conges-

tion experienced. This congestion is compounded by the routing overhead associated

with the added data. Increased congestion forces delays waiting for the wireless

medium, as well as increasing the probability of collisions, thus making failed route

discoveries more common. All of this leads to the expectation that end-to-end delay

increases as offered load increases. Figure 5.21 confirms the expected findings. Again,

the figure shows that the effects of this factor are much more substantial for PAR than

for AODV. However, there are instances where the effect of offered load is minimal.

For example, there is no statistically significant difference between the two packets

per second and four packets per second levels for PAR with 25 nodes.

5.6.5 Computation of Effects for End-to-End Delay. The main effects for

the factors of the experiment for AODV and PAR shown in Figures 5.22 and 5.23

respectively reveal similar behavior for both protocols. Furthermore, the main effects

behave as predicted with higher node density, offered load, and node speed yielding

a higher end-to-end delay. These conclusions are supported by Tables 5.7 and 5.8

which show all effects are statistically different from the mean. Additionally, for both
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Figure 5.21: Plot of End-to-End Delay by Offered Load and Node Density

protocols, node density constitutes the largest effect. Offered load and node speed

have similar effects.

Table 5.7: Table of Effects for AODV End-to-End Delay
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 0.2021 0.0216 0.1989 0.2054
25 -0.0878 0.0028 -0.0925 -0.0832

Nodes 50 -0.0048 0.0028 -0.0094 -0.0001
75 0.0926 0.0028 0.0880 0.0973

Load 2 pps 0.0261 0.0020 -0.0294 -0.0228
4 pps -0.0261 0.0020 0.0228 0.0294

Speed 5 m/s -0.0469 0.0020 -0.0502 -0.0436
20 m/s 0.0469 0.0020 0.0436 0.0502

5.7 Efficiency Analysis

5.7.1 Routing Protocol. As shown in Figures 5.13 and 5.14, the PAR proto-

col has more overhead and successfully delivers a greater amount of application data.

Thus, it is possible for the efficiency of PAR to exceed that of AODV. However, it is

expected AODV has the greater efficiency due to the magnitude of the PAR routing
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Figure 5.22: AODV Main Effects Plot of End-to-End Delay
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Figure 5.23: PAR Main Effects Plot of End-to-End Delay
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Table 5.8: Table of Effects for PAR End-to-End Delay
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 1.4217 0.0914 1.4078 1.4355
25 -0.6976 0.0118 -0.7172 -0.6780

Nodes 50 0.0848 0.0118 0.0653 0.1044
75 0.6128 0.0118 0.5932 0.6323

Load 2 pps 0.1261 0.0083 -0.1399 -0.1123
4 pps -0.1261 0.0083 0.1123 0.1399

Speed 5 m/s -0.1356 0.0083 -0.1494 -0.1218
20 m/s 0.1356 0.0083 0.1218 0.1494

overhead. Figure 5.24 is the efficiency of the two protocols as a function of their node

densities and confirms AODV is more efficient than PAR.
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Figure 5.24: Plot of Efficiency by Protocol and Node Density

5.7.2 Node Density. Efficiency is expected to decrease as node density

increases due to the corresponding increases in routing overhead. Figure 5.24 con-

firms that the efficiency of the AODV protocol declines with increasing values of node

density. Similarly, the efficiency of the PAR protocol is reduced despite having suc-

cessfully transmitted greater amounts of application data. The decline in efficiency
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AODV experiences is smaller than that of PAR. As such, AODV remains more effi-

cient than PAR, even at higher levels for node density.

5.7.3 Node Speed. It is expected that efficiency at 0-5 m/s will exceed that

at 0-20 m/s. The results for efficiency in the experiments versus node speed is shown

in Figure 5.25. For all AODV node densities, 5 m/s is superior to 20 m/s. The

PAR results do not behave as expected. For the PAR protocol node speed has no

statistically significant impact on the efficiency of the network. These unexpected

results are due to the fact that PAR experiences high rates of link failures regardless

of node speed. Thus, for PAR, increases in node speed are not accompanied by the

loss of application layer data seen with AODV. Therefore, there is no impact to the

efficiency experienced.

Ef
fi

ci
en

cy

Nodes
Speed

755025
205205205

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

755025
205205205

AODV PAR

Panel variable: Protocol

Figure 5.25: Plot of Efficiency by Speed and Node Density

5.7.4 Offered Load. Efficiency can be increased by transmitting more appli-

cation layer data, or by reducing the overhead associated with routing. By increasing

the offered load, thus providing the network more application layer data to transmit,

it is expected that the efficiency of the network will improve. Thus, the efficiency
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for the four packets per second level should be greater than two packets per second.

Figure 5.26 displays the efficiency plotted versus the offered load. Both AODV and

PAR show greater efficiency at higher offered loads than at lower loads. Additionally,

for every node density and offered load AODV results in higher efficiency than PAR.

This is also an expected result since PAR has significantly greater routing overhead

than AODV.
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Figure 5.26: Plot of Efficiency by Offered Load and Node Density

5.7.5 Computation of Effects for Efficiency. Figures 5.27 and 5.28 show

the main effects of the factors with respect to efficiency. These figures demonstrate

that both protocols have a significant decline in efficiency between 25 and 50 nodes

in density. The efficiency continues to decline between 50 and 75 nodes, but does so

more slowly. The figures also confirm that the node speed has virtually no impact

on the efficiency of the PAR protocol. The remaining factors have lesser effects on

the efficiency of the protocols. Tables 5.9 and 5.10 quantify the effects of the factors.

For both PAR and AODV the node density has the greatest effect on efficiency, with

offered load having the second greatest effect. Furthermore, these tables verify that,
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at 90% confidence, there is no statistically significant difference between the node

speed factor and the mean for PAR.
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Figure 5.27: AODV Main Effects Plot of Efficiency

Table 5.9: Table of Effects for AODV Efficiency
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 0.2103 0.0115 0.2085 0.2120
25 0.1044 0.0015 0.1020 0.1069

Nodes 50 -0.0161 0.0015 -0.0185 -0.0136
75 -0.0884 0.0015 -0.0909 -0.0859

Load 2 pps 0.0509 0.0011 -0.0527 -0.0492
4 pps -0.0509 0.0011 0.0492 0.0527

Speed 5 m/s 0.0203 0.0011 0.0185 0.0220
20 m/s -0.0203 0.0011 -0.0220 -0.0185

5.8 Summary

Predicted Associativity Routing is a custom MANET routing protocol designed

to improve the reliability of the routes discovered. The results of this research in-

dicate that this protocol, despite focusing on reliable routes, does not produce more

reliable routes than AODV. Specifically, AODV produces routes that are as much as
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Figure 5.28: PAR Main Effects Plot of Efficiency

Table 5.10: Table of Effects for PAR Efficiency
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 0.1351 0.0070 0.1341 0.1362
25 0.1068 0.0009 0.1053 0.1083

Nodes 50 -0.0279 0.0009 -0.0294 -0.0264
75 -0.0789 0.0009 -0.0804 -0.0774

Load 2 pps 0.0336 0.0006 -0.0347 -0.0325
4 pps -0.0336 0.0006 0.0325 0.0347

Speed 5 m/s 0.0003 0.0006 -0.0008 0.0014
20 m/s -0.0003 0.0006 -0.0014 0.0008
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three times longer than the routes produced by PAR. Furthermore, the results reveal

that the density of nodes in the network has the greatest effect on both the reliabil-

ity and performance of the network. ANOVA computations for ln(Route Lifetime)

for AODV show Node Density contributes 48.62% of the total variation. Similar

computations for the inverse of Route Lifetime for PAR show that Node Density is

responsible for 70.66%. Furthermore, both ANOVAs show that Node Speed makes a

major contribution to total variation in the respective responses. Additionally, the

research demonstrated that despite its shorter lived routes, PAR delivers as much as

1.29 times more application layer data. However, to achieve this increase in data de-

livery, PAR requires up to 3.5 times more routing overhead than AODV. Thus, PAR

displays greater throughput than AODV. However, this substantial overhead drives

the efficiency of PAR down, working 0.4 times as efficiently as AODV. Additionally,

PAR results in up to 7.5 times the end-to-end delay experienced by AODV. In general,

AODV outperformed PAR in terms of both reliability and performance.
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VI. Conclusions

6.1 Introduction

This chapter summarizes the research and its results. First the objectives of the

research are discussed, and their outcomes described. Next the contributions of this

research are outlined. Finally, suggestions for future work in this area are proposed.

6.2 Objectives and Results

Three objectives are addressed by this research. The first objective is to deter-

mine the reliability of PAR. Next, the research seeks to determine the factors that

affect the reliability of the protocols the most. Finally, this research seeks to com-

pare the network performance of PAR to AODV to determine how the new protocol

compares to existing protocols.

6.2.1 Reliability of PAR. Despite the fact that PAR is specifically designed

to address the issues of reliability in MANET routing, the protocol did not improve

route reliability. In fact, the evaluation of the route lifetime metric for both PAR and

AODV shows AODV produces more reliable routes under all network configurations.

The difference in reliability can be as much as three times for high node densities. This

unexpected result is rooted in the differences in the ways the two protocols evaluate

connectivity between neighboring nodes. Links break more frequently in PAR which

drives the route lifetime metric down for this protocol.

6.2.2 Factors Affecting Reliability. Varying node density has the greatest

effect on the reliability of the routes discovered. Node speed has the second great-

est effect on the reliability of the protocol. The ANOVA for the AODV protocol

show node density accounts for 48.62% of the variation in the natural logarithm of

route lifetime. Similarly, node density accounts for 70.66% of the variation in the in-

verse lifetime of PAR. Node Speed also contributes significantly to the appropriately

transformed response in each protocol.
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6.2.3 Performance of Comparison of PAR and AODV. In addition to as-

sessing reliability, several network performance statistics are collected and analyzed.

These include throughput, end-to-end delay, and efficiency. The PAR protocol in-

creases throughput compared to AODV by as much as two and one half times. This

is due in large part to the routing overhead associated with PAR. In contrast, AODV

performs significantly better with respect to end-to-end delay. This can be accounted

for by the selectiveness PAR exhibits in selecting a route, as well as the expanding

ring search employed by AODV. These factors contribute to the difference in delay

in PAR and AODV. Finally, under most configurations, AODV has greater efficiency

despite PAR delivering a greater amount of application layer traffic. This, also, is due

to the routing overhead required by the PAR protocol to operate effectively.

6.3 Research Contributions

The primary contribution of this research is the unique approach used to de-

termine and employ residual link lifetimes in the generation of routes. In [BKS03],

the concept of using residual lifetimes in an effort to improve route reliability is in-

troduced. This research expands upon that by attempting provide a simple, adaptive

means to determine the expected value of link lifetimes. Though unsuccessful, this

type of protocol may yet result in a reliable MANET routing protocol. If the fre-

quency of link breaks can be reduced, perhaps by improving the method by which

PAR determines connectivity, the fundamental premise of PAR may prove successful

at improving route lifetimes and improving routing reliability.

An additional contribution of this research is the introduction of a new routing

protocol that improves the percentage of application layer packets delivered by the

routing protocol. While not demonstrating improved reliability, PAR successfully

delivers more data. As this is the fundamental purpose of a network, to deliver data

from source to destination, this finding is significant. By improving the amount of

application layer packets delivered results in more effective communication throughout

the network.
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6.4 Future Work

There are several areas for future research. First, modify the PAR protocol to

improve its reliability. As it is designed, a node’s connectivity with its neighbors is

determined only by consecutively-received HELLO packets. This makes the protocol

particularly sensitive to losses in these packets, as evidenced by the large number of

link breakages experienced. AODV, on the other hand, leverages all packets handled

by the routing protocol to evaluate connectivity. Modifying the PAR protocol to

operate in this manner may improve its reliability by reducing the frequency of link

failures.

An additional area of research increases the sophistication of the PAR protocol.

As it is implemented presently, the protocol is very basic, providing only the most

fundamental functionality necessary to discover and maintain routes. Future research

on PAR should focus on adding additional functionality such as local route repair, and

allowing intermediate nodes to respond to route requests. In doing so, the performance

of the protocol can be improved by reducing the overhead associated with the protocol.

One final area for research is to determine alternative ways to estimate link life-

times. The PAR protocol uses the mean of experienced lifetimes and the confidence

interval, or No Go Zone, to determine the expected value of link lifetimes. An alter-

native method may yield greater dividends in route reliability. By more accurately

estimating link lifetime, residual lifetimes can better be determined. With this more

precise knowledge, nodes can determine more reliable routes.

6.5 Summary

Mobile Ad Hoc Networks can provide low cost, rapidly deployable, highly mo-

bile network solutions. However, MANETs introduce challenges that make routing

difficult and unreliable. Reliable routes are crucial to providing efficient and effec-

tive communications. Predicted Associativity Routing is a MANET routing protocol

designed to address the issue of reliability in MANET routing. By determining an
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expected value for link lifetimes, PAR can make route selection decisions based on

the residual lifetimes of alternative routes. In doing so, PAR seeks to produce long

lasting, dependable routes.

Simulation of the protocol reveals, that despite its focus on reliability, PAR does

not produce more reliable routes that AODV. Furthermore, variations in node density

have the greatest impact on the route lifetimes experienced. Finally, PAR delivers as

much as 1.29 times more data but requires as much as 3.5 times the routing overhead.

However, PAR suffers from significantly longer delays, almost 7.5 times more, and

due to its great overhead, has 0.4 times the efficiency.
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Appendix A. Supplemental Pilot Study Results

Figures A.1 through A.5 represent the results of pilot study experiments conducted

with RREP Backoff set to 0.10 seconds. These results support the conclusions drawn

in Chapter III.

Additionally, Tables A.1 through A.12 represent the confidence intervals for

the corresponding figures. These intervals are reflected in the table since they are

generally too tight to be seen in the figures.

Table A.1: Confidence Interval Information for Figure 3.4
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 3.3269 3.5169 3.7123
1 50% 3.3983 3.4660 3.5337

80% 3.5504 3.6088 3.6672
20% 2.0851 2.1570 2.2289

2 50% 2.0691 2.1690 2.2690
80% 2.1151 2.1801 2.2450
20% 1.1493 1.1666 1.1840

5 50% 1.0453 1.1281 1.2110
80% 1.1308 1.1639 1.1970

Table A.2: Confidence Interval Information for Figure 3.5
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 3.4543 3.5441 3.6339
1 50% 3.3519 3.5274 3.7029

80% 3.3887 3.5581 3.7275
20% 2.1338 2.2025 2.2711

2 50% 2.0310 2.1258 2.2206
80% 2.1119 2.1972 2.2825
20% 1.1579 1.2145 1.2711

5 50% 1.2297 1.2525 1.2752
80% 1.1836 1.2393 1.2951
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Table A.3: Confidence Interval Information for Figure 3.6
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 1.1060 1.2042 1.3023
1 50% 1.1316 1.2055 1.2794

80% 1.1019 1.2386 1.3752
20% 1.4770 1.5670 1.6570

2 50% 1.5316 1.6255 1.7193
80% 1.4828 1.6360 1.7892
20% 1.9105 2.0041 2.0977

5 50% 1.6609 1.8194 1.9778
80% 1.8124 1.9525 2.0926

Table A.4: Confidence Interval Information for Figure 3.7
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 49498.28 51441.44 53384.60
1 50% 51299.76 52469.76 53639.76

80% 50110.43 51904.28 53698.14
20% 46920.43 48483.90 50047.37

2 50% 46783.51 48696.66 50609.81
80% 47254.82 48813.62 50372.43
20% 38230.34 39682.05 41133.75

5 50% 38974.68 41373.47 43772.25
80% 38594.70 40114.40 41634.11

Table A.5: Confidence Interval Information for Figure 3.8
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 559898.17 606215.40 652532.62
1 50% 574337.31 616186.23 658035.14

80% 563792.39 588126.22 612460.04
20% 837849.12 857057.17 876265.21

2 50% 806046.19 844199.33 882352.47
80% 772599.17 840054.73 907510.28
20% 1268409.31 1331620.33 1394831.35

5 50% 1300642.08 1427944.61 1555247.14
80% 1227094.13 1293917.76 1360741.39
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Table A.6: Confidence Interval Information for Figure 3.9
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 0.0754 0.0784 0.0814
1 50% 0.0747 0.0787 0.0826

80% 0.0787 0.0811 0.0836
20% 0.0523 0.0535 0.0547

2 50% 0.0527 0.0546 0.0565
80% 0.0522 0.0551 0.0580
20% 0.0284 0.0290 0.0295

5 50% 0.0272 0.0282 0.0293
80% 0.0294 0.0301 0.0307

Table A.7: Confidence Interval Information for Figure 3.10
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 3699.93 4009.20 4318.47
1 50% 3879.37 4046.60 4213.83

80% 3695.08 3736.00 3776.92
20% 5513.43 5656.20 5798.97

2 50% 5322.27 5543.80 5765.33
80% 4985.81 5366.60 5747.39
20% 7236.46 7599.80 7963.14

5 50% 7296.30 8036.20 8776.10
80% 7124.56 7512.60 7900.64
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Figure A.1: End-to-end Delay versus No Go Zone Size for RREP Backoff of 0.10 s

Table A.8: Confidence Interval Information for Figure A.1
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 1.1572 1.2397 1.3223
1 50% 1.1674 1.2551 1.3427

80% 1.1213 1.3028 1.4844
20% 1.6220 1.6511 1.6801

2 50% 1.4887 1.5890 1.6893
80% 1.5057 1.6393 1.7729
20% 2.0072 2.0694 2.1316

5 50% 1.8468 1.9675 2.0882
80% 1.9604 2.0670 2.1736
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Figure A.2: Data Traffic Received versus No Go Zone Size for RREP Backoff of
0.10 s

Table A.9: Confidence Interval Information for Figure A.2
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 49583.94 50775.84 51967.73
1 50% 50750.98 52178.94 53606.90

80% 48259.79 51262.58 54265.36
20% 45998.22 47573.67 49149.13

2 50% 46374.69 49009.10 51643.50
80% 45938.31 48324.15 50709.99
20% 37548.07 38996.20 40444.32

5 50% 38132.15 39341.62 40551.10
80% 38275.38 39527.08 40778.78
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Figure A.3: Route Traffic Received versus No Go Zone Size for RREP Backoff of
0.10 s

Table A.10: Confidence Interval Information for Figure A.3
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 581660.54 601479.68 621298.82
1 50% 534038.56 578925.61 623812.66

80% 524597.62 571154.85 617712.09
20% 766278.00 815517.23 864756.46

2 50% 776487.65 843831.22 911174.78
80% 792733.27 843565.48 894397.69
20% 1226220.78 1294132.64 1362044.51

5 50% 1196163.23 1246577.32 1296991.40
80% 1176989.94 1269635.53 1362281.12
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Figure A.4: Efficiency versus No Go Zone Size for RREP Backoff of 0.10 s

Table A.11: Confidence Interval Information for Figure A.4
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 0.0768 0.0779 0.0789
1 50% 0.0790 0.0829 0.0869

80% 0.0802 0.0825 0.0848
20% 0.0534 0.0552 0.0570

2 50% 0.0533 0.0550 0.0567
80% 0.0526 0.0542 0.0559
20% 0.0284 0.0293 0.0301

5 50% 0.0299 0.0306 0.0314
80% 0.0288 0.0303 0.0318
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Figure A.5: Reliable Routes Discovered versus No Go Zone Size for RREP Backoff
of 0.10 s

Table A.12: Confidence Interval Information for Figure A.5
Hello Periodicity No Go Zone Lower CL Mean Upper CL

20% 3846.21 3949.40 4052.59
1 50% 3622.27 3836.60 4050.93

80% 3379.74 3642.20 3904.66
20% 5119.91 5351.00 5582.09

2 50% 5112.05 5485.80 5859.55
80% 4971.27 5252.80 5534.33
20% 6896.22 7238.60 7580.98

5 50% 6747.01 7028.00 7308.99
80% 6559.64 7014.80 7469.96
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Appendix B. Supplemental Validation Results

Figures B.1 through B.4 represent the results of validation experiments conducted

with node speed set at 0-20 m/s. These results support the conclusions drawn in

Chapter V.

Additionally, Tables B.1 through B.8 represent the confidence intervals for the

corresponding figures. These intervals are reflected in the tables since they are gen-

erally too tight to be seen in the figures.

Table B.1: Confidence Interval Information for Figure 5.1
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV

2 51.87 60.89 69.90
4 38.64 45.44 52.23

PAR
2 7.20 8.06 8.92
4 8.05 9.13 10.22

50
AODV

2 16.57 19.52 22.47
4 19.75 22.38 25.00

PAR
2 3.36 3.48 3.61
4 3.64 3.73 3.82

75
AODV

2 14.25 15.44 16.64
4 15.56 17.04 18.51

PAR
2 3.04 3.06 3.08
4 3.34 3.39 3.44

Table B.2: Confidence Interval Information for Figure 5.2
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV 2 128408.93 133058.42 137707.91

4 145620.52 154390.19 163159.87

PAR 2 137388.27 145586.95 153785.63
4 211463.04 222656.99 233850.94

50
AODV 2 424159.90 429630.97 435102.03

4 437585.08 457823.28 478061.48

PAR 2 854135.88 877922.77 901709.66
4 987568.54 1006291.09 1025013.64

75
AODV 2 765716.09 779022.16 792328.23

4 753029.47 765435.07 777840.67

PAR 2 2069318.83 2099526.76 2129734.69
4 1986226.70 2025976.63 2065726.56
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Table B.3: Confidence Interval Information for Figure 5.3
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV

2 0.0301 0.0341 0.0382
4 0.0311 0.0381 0.0452

PAR
2 0.4270 0.4576 0.4882
4 0.4600 0.4822 0.5045

50
AODV

2 0.0405 0.0461 0.0518
4 0.0579 0.0680 0.0780

PAR
2 1.0539 1.1009 1.1478
4 1.3408 1.4127 1.4847

75
AODV

2 0.0616 0.0732 0.0847
4 0.1155 0.1479 0.1803

PAR
2 1.6193 1.6621 1.7048
4 2.0371 2.0947 2.1523

Table B.4: Confidence Interval Information for Figure 5.4
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV

2 0.1420 0.1531 0.1642
4 0.2605 0.2804 0.3002

PAR
2 0.1867 0.1943 0.2020
4 0.3055 0.3131 0.3207

50
AODV

2 0.1229 0.1298 0.1368
4 0.2022 0.2140 0.2258

PAR
2 0.0797 0.0808 0.0819
4 0.1367 0.1391 0.1415

75
AODV

2 0.0892 0.0928 0.0963
4 0.1376 0.1430 0.1485

PAR
2 0.0402 0.0408 0.0414
4 0.0732 0.0744 0.0756
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Figure B.1: Route lifetime versus Node Density at 0-20 m/s

Table B.5: Confidence Interval Information for Figure B.1
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV

2 24.08 26.74 29.40
4 26.73 28.81 30.89

PAR
2 3.83 4.22 4.60
4 4.09 4.52 4.95

50
AODV

2 11.87 12.74 13.60
4 13.10 13.98 14.87

PAR
2 2.84 2.88 2.92
4 2.95 3.00 3.05

75
AODV

2 10.31 11.05 11.79
4 11.77 12.71 13.66

PAR
2 2.98 3.00 3.01
4 3.09 3.12 3.15
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Figure B.2: Throughput versus Node Density at 0-20 m/s

Table B.6: Confidence Interval Information for Figure B.2
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV

2 116271.84 121265.44 126259.05
4 136956.50 140713.62 144470.75

PAR
2 140857.12 146533.85 152210.58
4 218530.89 226555.02 234579.15

50
AODV

2 372561.30 377829.66 383098.03
4 405271.62 413109.98 420948.34

PAR
2 881429.96 895272.20 909114.43
4 974491.41 993156.62 1011821.83

75
AODV

2 680213.67 690666.25 701118.83
4 650304.77 664835.69 679366.61

PAR
2 2062807.36 2090982.93 2119158.50
4 1988979.31 2016854.80 2044730.30
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Figure B.3: Delay versus Node Density at 0-20 m/s

Table B.7: Confidence Interval Information for Figure B.3
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV

2 0.0381 0.0422 0.0462
4 0.0331 0.0390 0.0449

PAR
2 0.8047 0.8358 0.8670
4 0.7436 0.7745 0.8055

50
AODV

2 0.0438 0.0530 0.0622
4 0.0598 0.0692 0.0786

PAR
2 1.3821 1.4250 1.4680
4 1.6590 1.6907 1.7323

75
AODV

2 0.0679 0.0808 0.0938
4 0.0887 0.1154 0.1422

PAR
2 1.8617 1.9169 1.9721
4 2.2792 2.3465 2.4200
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Figure B.4: Efficiency versus Node Density at 0-20 m/s

Table B.8: Confidence Interval Information for Figure B.4
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV

2 0.1452 0.1538 0.16424
4 0.2447 0.2602 0.2756

PAR
2 0.1859 0.1899 0.1939
4 0.2964 0.3042 0.3120

50
AODV

2 0.0943 0.0981 0.1018
4 0.1651 0.1706 0.1762

PAR
2 0.0758 0.0767 0.0776
4 0.1336 0.1357 0.1378

75
AODV

2 0.0620 0.0637 0.0654
4 0.1093 0.1124 0.1155

PAR
2 0.0389 0.0393 0.0397
4 0.0700 0.0715 0.0729
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Appendix C. Validation of ANOVA Assumptions

This appendix provides figures validating the assumptions made in the route lifetime

ANOVAs in Chapter V. Additionally, discussion is provided on the methods used to

transform the data to meet these ANOVA assumptions.

C.1 AODV

The residual plots for AODV route lifetimes, Figure C.1, reveal there exist

several high outliers. These outliers make the distribution of residuals non-normal.

Further inspection of these points reveal that most of these points correspond to net-

work configurations with node density of 25 nodes. These outliers are expected since,

as discussed in Section 5.4, networks with a density of 25 nodes produce significantly

longer lasting routes than either 50 or 75 nodes, which produce similar route lifetimes.

Given the non-normality of the residuals a transformation is necessary.
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Figure C.1: Residual Plots for AODV Route Lifetime

A series of transformations is performed on the data, including inverse, square

root, power, and natural logarithmic transformations. The latter of these transfor-

mations provides the best results. The initial transformation demonstrated similar
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outliers to the initial residual plots. The extreme high outliers are removed from the

data set, as they represent anomalous performance. The residual plots representing

this transformed and modified data set are depicted in Figure C.2.
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Figure C.2: Residual Plots for AODV ln(Route Lifetime)

Figure C.2 validates the assumptions of the ANOVA. The Normal Probability

Plot of Residuals is linear, indicating that the residuals are normally distributed.

Furthermore, the Residuals versus Fitted Value Plot demonstrates that the height of

the plot is generally consistent and trend free, with only minor growth as the fitted

value increases. This indicates constant variance and independent errors. Finally, the

plot of Residuals versus Order of Data shows no significant trend, indicating that the

residuals are independent of the order of the data.

C.2 PAR

The initial residual plots for PAR route lifetimes, shown in Figure C.3, demon-

strate a similar trend to that seen in AODV. In this case, there are both significant

high and low outliers in the residuals plots. Like AODV, these points belong to the

data for node density of 25 nodes, since this node density produces greater route life-
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times than the other densities included in this research. The result is residuals which

are not distributed normally.
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Figure C.3: Residual Plots for PAR Route Lifetime

Given the non-normality of the data, the same set of transformations are applied

to the PAR data, as were applied to the data for AODV. In this case the natural log-

arithmic transform did not achieve data with normally distributed residuals. Rather,

the inverse transformation produced data that most closely approximates the normal

distribution required. As before, even in the transformed data, the outliers appear.

To nullify the effects of this atypical behavior, these outliers are removed from the

data set, and the residual plots are reconstructed. Figure C.4 represents the residual

plots resulting from this manipulation of the data.

The ANOVA assumptions can be validated by visually inspecting the plots in

Figure C.4. Inspection of the Normal Probability Plot of the Residuals reveals that,

though not totally linear, the residuals of the transformed data are generally linear

in nature. This indicates that the residuals are approximately normal in distribution.

The plot Residuals versus Fitted Values demonstrates constant and independent vari-

ance, since there is no fanning of the plot, and no discernable trends exist. Finally,
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Figure C.4: Residual Plots for PAR (1/Route Lifetime)

examination of the Residuals versus Order of Data plot demonstrates there is no

correlation between the residual and the order of the data.
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Appendix D. Experimental Data and Analysis Tables

Table D.1: Confidence Interval Information for Figure 5.6
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV 2 1880.98 2003.50 2126.02

4 2084.10 2173.70 2263.30

PAR 2 4313.80 4473.20 4632.60
4 4548.27 4953.20 5358.13

50
AODV 2 6875.86 7164.20 7452.54

4 7626.98 7848.00 8069.03

PAR 2 26741.95 27284.70 27827.45
4 30131.68 31168.70 32205.72

75
AODV 2 12841.48 13185.80 13530.12

4 12925.60 13302.50 13679.40

PAR 2 75031.53 77863.00 80694.47
4 79135.51 81346.00 83556.49

Table D.2: Confidence Interval Information for Figure 5.7
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV 2 1880.98 2003.50 2126.02

4 2084.10 2173.70 2263.30

PAR 2 4313.80 4473.20 4632.60
4 4548.27 4953.20 5358.13

50
AODV 2 6875.86 7164.20 7452.54

4 7626.98 7848.00 8069.03

PAR 2 26741.95 27284.70 27827.45
4 30131.68 31168.70 32205.72

75
AODV 2 12841.48 13185.80 13530.12

4 12925.60 13302.50 13679.40

PAR 2 75031.53 77863.00 80694.47
4 79135.51 81346.00 83556.49
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Table D.3: Confidence Interval Information for Figure 5.13
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV 2 51172.78 52833.33 54493.89

4 48112.76 50361.26 52609.75

PAR 2 81636.63 86121.93 90607.24
4 78671.04 85606.72 92542.39

50
AODV 2 217721.87 224770.77 231819.67

4 195143.03 199553.25 203963.46

PAR 2 583315.98 594889.81 606463.64
4 514245.27 539593.64 564942.02

75
AODV 2 474946.40 484109.01 493271.61

4 384281.32 390620.98 396960.65

PAR 2 1621490.09 1670960.66 1720431.23
4 1338230.41 1366840.84 1395451.27

Table D.4: Confidence Interval Information for Figure 5.14
Node Density Protocol Offered Load Lower CL Mean Upper CL

25
AODV 2 17101.53 18225.72 19349.91

4 32272.51 34110.12 35947.73

PAR 2 18697.57 19677.75 20657.93
4 32597.79 35294.21 37990.62

50
AODV 2 43137.48 44350.35 45563.22

4 71892.56 75074.79 78257.02

PAR 2 50814.52 51694.59 52574.67
4 84381.94 87550.75 90719.55

75
AODV 2 58061.67 58966.81 59871.96

4 81967.11 83849.67 85732.23

PAR 2 70026.20 71464.05 72901.90
4 106706.16 108145.66 109585.16
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Table D.5: Computation of Effects for AODV Route Lifetime
2 pps 4 pps Row Row Row

5 m/s 20 m/s 5 m/s 20 m/s Sum Mean Effect
25 Node 22.9409 12.8398 23.9233 12.1062 718.1024 17.9526 5.3768
50 Node 10.3681 7.1081 12.5924 8.3315 384.0014 9.6000 -2.9758
75 Node 10.8560 7.7534 12.8299 9.2599 406.9918 10.1748 -2.401
Col Sum 441.6505 277.0136 493.4556 296.9758 1509.0956
Col Mean 14.7217 9.2338 16.4485 9.8992 12.5758
Col Effect 2.1459 -3.3420 3.8727 -2.6766

Table D.6: Computation of Effects for AODV Throughput
2 pps 4 pps Row Row Row

5 m/s 20 m/s 5 m/s 20 m/s Sum Mean Effect
25 Node 1.245E5 1.151E5 1.797E5 1.642E5 5.834E6 1.459E5 -3.482E5
50 Node 4.695E5 4.083E5 6.214E5 4.903E5 1.990E7 4.974E5 3.331E3
75 Node 8.606E5 7.345E5 9.661E5 7.945E5 3.356E7 8.389E5 3.449E5
Col Sum 1.455E7 1.258E7 1.767E7 1.449E7 5.929E7
Col Mean 4.849E5 4.193E5 5.890E5 4.830E5 4.941E5
Col Effect -9.187E3 -7.476E4 9.499E4 -1.105E4

Table D.7: Computation of Effects for AODV End-to-End Delay
2 pps 4 pps Row Row Row

5 m/s 20 m/s 5 m/s 20 m/s Sum Mean Effect
25 Node 0.0842 0.1486 0.0730 0.1513 4.5716 0.1143 -0.0878
50 Node 0.1310 0.2327 0.1639 0.2619 7.8942 0.1974 -0.0048
75 Node 0.1879 0.2718 0.2915 0.4279 11.7908 0.2948 0.0926
Col Sum 4.0304 6.5309 5.2837 8.4115 24.2565
Col Mean 0.1343 0.2177 0.1761 0.2804 0.2021
Col Effect -0.0678 0.0156 -0.0260 0.0782

Table D.8: Computation of Effects for AODV Efficiency
2 pps 4 pps Row Row Row

5 m/s 20 m/s 5 m/s 20 m/s Sum Mean Effect
25 Node 0.2562 0.2261 0.4037 0.3730 12.5900 0.3147 0.1045
50 Node 0.1649 0.1238 0.2731 0.2151 7.7691 0.1942 -0.0161
75 Node 0.1086 0.0767 0.1768 0.1255 4.8758 0.1219 -0.0884
Col Sum 5.2973 4.2651 8.5360 7.1364 25.2348
Col Mean 0.1766 0.1422 0.2845 0.2379 0.2103
Col Effect -0.0337 -0.0681 0.0742 0.0276
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Table D.9: Computation of Effects for PAR Route Lifetime
2 pps 4 pps Row Row Row

5 m/s 20 m/s 5 m/s 20 m/s Sum Mean Effect
25 Node 7.5587 4.2463 9.0935 4.6426 255.1440 6.3853 2.0814
50 Node 3.5732 2.9231 3.7896 3.0827 133.6860 3.3422 -0.9618
75 Node 3.1202 3.0030 3.4646 3.1495 127.3724 3.1843 -1.1196
Col Sum 142.5209 101.7234 163.4766 108.7485 516.4695
Col Mean 4.7507 3.3908 5.4492 3.6250 4.3039
Col Effect 0.4468 -0.9131 1.1453 -0.6790

Table D.10: Computation of Effects for PAR Throughput
2 pps 4 pps Row Row Row

5 m/s 20 m/s 5 m/s 20 m/s Sum Mean Effect
25 Node 1.605E5 1.499E5 2.217E5 2.125E5 7.446E6 1.862E5 -8.816E5
50 Node 8.645E5 9.060E5 9.922E5 1.001E6 3.763E7 9.408E5 -1.269E5
75 Node 2.089E6 2.151E6 2.031E6 2.034E6 8.305E7 2.076E6 1.009E6
Col Sum 3.114E7 3.207E7 3.245E7 3.247E7 1.281E8
Col Mean 1.038E6 1.069E6 1.082E6 1.082E6 1.068E6
Col Effect -2.967E4 1.137E3 1.391E4 1.462E4

Table D.11: Computation of Effects for PAR End-to-End Delay
2 pps 4 pps Row Row Row

5 m/s 20 m/s 5 m/s 20 m/s Sum Mean Effect
25 Node 0.5248 0.8942 0.5874 0.8896 28.9614 0.7240 -0.6976
50 Node 1.2353 1.4921 1.5227 1.7759 60.2598 1.5065 0.0848
75 Node 1.6879 1.9389 2.1582 2.3527 81.3771 2.0344 0.6128
Col Sum 34.4801 43.2529 42.6833 50.1818 170.5982
Col Mean 1.1493 1.4418 1.4228 1.6727 1.4217
Col Effect -0.2723 0.0201 0.0011 0.2511

Table D.12: Computation of Effects for PAR Efficiency
2 pps 4 pps Row Row Row

5 m/s 20 m/s 5 m/s 20 m/s Sum Mean Effect
25 Node 0.1861 0.1879 0.2924 0.3015 9.6790 0.2420 0.1068
50 Node 0.0800 0.0753 0.1398 0.1338 4.2894 0.1072 -0.02791
75 Node 0.0411 0.0390 0.0734 0.0715 2.2493 0.0562 -0.0789
Col Sum 3.0714 3.0218 5.0560 5.0686 16.2177
Col Mean 0.1024 0.1007 0.1685 0.1690 0.1351
Col Effect -0.0328 -0.0344 0.0334 0.0338
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Routing in Mobile Ad Hoc Networks (MANETs) presents unique challenges not encountered in
conventional networks. Predicted Associativity Routing (PAR) is a protocol designed to address reliability in MANETs.
Using associativity information, PAR calculates the expected lifetime of neighboring links. Nodes use this expected
lifetime, and their neighbor’s connectivity to determine a residual lifetime. The routes are selected from those with the
longest residual lifetimes. In this way, PAR attempts to improve the reliability of discovered routes. PAR is compared to
AODV using a variety of reliability and performance metrics. Despite its focus on reliability, PAR does not provide more
reliable routes. Rather, AODV produces routes which last as much as three times longer than PAR. However, PAR
delivers more data and has greater throughput. Both protocols are affected most by the node density of the networks.
Node density accounts for 48.62% of the variation in route lifetime in AODV, and 70.66% of the variation in PAR. As
node density increases from 25 to 75 nodes route lifetimes are halved, while throughput increases drastically with the
increased routing overhead. Furthermore, PAR increases end-to-end delay, while AODV displays better efficiency.
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