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Abstract

This research examines energy and error performance tradeoffs in Anchor-Free

Range-Aware Wireless Sensor Network (WSN) Localization algorithms in different

network environments. A concurrent and an incremental algorithm (Anchor Free

Localization (AFL) and Map Growing) are examined under varying network sizes,

densities, distribution methods, and range error conditions. Despite current expecta-

tions, even the most expensive configurations do not expend significant amounts of

battery life (at most 0.4% of a typical node battery). This implies very little energy

conservation is possible during localization which is contrary to significant current

research that tries to provide accurate localization while conserving energy usage.

AFL is twice as accurate but uses up to 6 times more communication. AFL’s

position refinement phase adds 700 - 2500 messages but significantly reduces error.

Map Growing averages 35 total messages. For both, node degree is the single most im-

portant factor, accounting for over 90% of the variation in communication. As node

degree increases, Map Growing communication increases, while AFL transmissions

drop. During refinement, nodes with more neighbors refine quicker using fewer mes-

sages. Between degree 12 and 16, many nodes receive the same message. This effect

overpowers the previous resulting in more AFL received bits. Other factors have little

effect on communication. Network size dramatically degrades Map Growing accuracy

but has little effect on AFL. Built from simulation data, the Energy Consumption

Model predicts the energy usage of incremental and concurrent algorithms used in

networks with varying size, density, and deployment methods. The model is applied

to current wireless sensor nodes. Among the many WSN applications, the military

operations include target tracking, surveillance, and remote intelligence gathering.

For military use, WSNs need to be durable, flexible, cheap, low-maintenance and

long lasting. Anchor-Free and Range-Aware algorithms best fit this need.
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Evaluation of Energy Costs and Error Performance of

Range-Aware, Anchor-Free Localization Algorithms

for Wireless Sensor Networks

I. Introduction

Sensor data without complete coordinates...is next to useless. [SRB01]

1.1 Motivation

As processor, circuitry, and wireless networking technology advances, the in-

terest in (WSN) increases all the more. These advances enable the use of cheap,

small, low-powered, computing devices to sense events or phenomena and transmit

that information via wireless communication. Collections of these wireless nodes form

a WSN and have great potential uses in a wide variety of fields. The ability of these

networks to collect data over a vast area, and correlate and aggregate the information

simultaneously provides a unique and powerful capability. Wireless sensor networks

are being deployed for applications such as target tracking, intrusion detection, en-

vironmental monitoring, climate control, and disaster management [MGZN03]. With

such data gathering capabilities, wireless sensor networks show great promise for mil-

itary applications as well. For example, WSNs can gather intelligence over vast areas

that are difficult to monitor via conventional means. A thousand wireless sensor nodes

each with a 50ft (15.24m) sensing range can be deployed over a 1 square kilometer

area to monitor and detect movement. The information can be collected, correlated

and relayed in near real time to observers far from the monitored location. This

capability enables remote, unobtrusive, continuous monitoring of difficult or hard to

access terrain, or tracking border crossings in mountainous or desert environments.

However, for wireless sensor networks to be used in military environments, nodes need

to be durable, cheap, flexible, low maintenance and self sustaining over long periods

of time.
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Crucial to any wireless sensor network application is the ability of a node to

know its position either globally or relative to other nodes. The process to determine

this location information is called localization. To be useful, the localization process

must provide accurate position estimates. At the same time, it should be energy

efficient to promote long network lifetimes. Ideally, localization does not restrict

network flexibility by adding additional hardware or specialized nodes to determine

position. Balancing these different needs drives the development of wireless sensor

networks, and their uses and is the subject of much of the current wireless sensor

network localization research [TP03] [NN01] [SPS02].

1.2 Background

Wireless sensor nodes have a variety of features, benefits and drawbacks. Sensor

nodes use different power sources, sensing hardware, and communication capabilities.

In general, most have some processing capability, an RF transceiver, and a sensor.

Specialized nodes may also have hardware with Global Positioning System (GPS) ca-

pability providing global coordinates, making them ideal anchors or beacons for other

nodes. GPS is useful for localization, but cannot be used everywhere and is costly.

For example, GPS does not work indoors or in areas with significant terrain or fo-

liage. Furthermore, GPS increases the cost, energy usage and platform requirements

of the node. Anchors may have their positions set manually, but this method does not

scale well. In addition to communication, the RF transceiver can also provide coarse

position estimates via a Received Signal Strength Indicator (RSSI). This method con-

verts received power to a distance estimate. A major benefit of this method is it is

always available with nodes possessing an RF transceiver. More accurate measure-

ments can be made with acoustic or ultrasonic ranging, but these methods require

additional specialized hardware and again increase the cost and energy consumption

of the node.

There are six major classes of localization algorithms [PBDT03] [LSS04b]. Range-

Aware algorithms use distance or angle information gained from ranging to estimate
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position. Range-Free methods do not use this information, but typically use other

data such as connectivity and hopcounts to estimate positions. Anchor-Based al-

gorithms use anchors (nodes that have a priori knowledge of their position) in the

localization process. Anchor-Free methods do not. Incremental algorithms localize

very few nodes at first, then increase the area of localization node by node. Concur-

rent, or distributed, algorithms localize all nodes simultaneously. Each category has

different advantages and disadvantages, and the choice of any one type depends on the

application being used, the cost, energy, and hardware constraints, and performance

expected from the network.

The performance of any algorithm depends heavily on the operational environ-

ment which includes several network and node parameters. For example, the amount

of expected error in each distance estimate is critical to the accuracy of range-based

algorithms. Network size can influence the performance of incremental algorithms.

Since a node’s position estimate depends on those nodes which localized previously, a

large network may have more errors in nodes at the edge. Nodes near the edge accept

the errors of all the nodes localized before them. The node degree is the number of one

hop neighbors a node has. Degree is a network parameter that can affect algorithms

that depend on having many neighbors. Wireless sensor networks can be deployed

in a variety of ways. Grid placement makes localization very easy, but deployment is

time consuming and not flexible. Random placement is easy to accomplish, but can

result in networks that are not connected or have bad features, such as inconsistent

connectivity, which can cause some nodes to have many neighbors and others to have

very few. More constant distribution of nodes would be beneficial but would also

require significant control over the deployment process.

1.3 Research Focus

The most useful localization algorithms have flexible deployment requirements,

limit cost and specialized hardware, and are energy efficient while providing accurate

results. The type of algorithm that requires the least amount of specialized hardware
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are anchor-free methods relying on a ranging method such as RSSI. This type of al-

gorithm assumes all nodes are identical, and no specialized anchor nodes are needed.

Knowing the performance tradeoffs between energy consumption, accuracy, and the

major factors influencing those areas would help identify localization algorithms and

configurations for deploying rugged, long term, flexible wireless sensor network appli-

cations. To accomplish this, an incremental and concurrent range-aware, anchor-free

algorithm are evaluated in several environments that vary network size, degree, range

error and deployment method. The amount of energy used and accuracy achieved is

collected, analyzed and compared.

1.4 Objectives

This research has three major goals. The first is to determine which factor

most influences the energy consumption of incremental and concurrent algorithms.

Knowing this factor identifies what is most important to control in the deployment

of flexible energy efficient wireless sensor networks. The second goal is to determine

which type of range-aware, anchor-free algorithm provides the best position accuracy

and energy efficiency. The final goal is to build a model that predicts the expected

amount of energy consumed when using a particular algorithm under certain network

and node conditions. The model allows the energy performance of similar algorithms

to be evaluated in conditions not specifically tested in this research.

1.5 Approach

The amount of energy a node uses is the sum of energy expended while sensing,

transmitting, receiving, and processing. Sensing is not used during localization and

can be ignored. To evaluate energy costs, the number of transmissions and receptions

and the amount of processing time each node uses to localize is determined. Since

Anchor-Free algorithms do not produce absolute position estimates, the resulting

positions could be rotated and translated from the original reference. Instead, the

internodal distances are compared to determine the accuracy of the resulting position
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estimates. Accurate position estimates will have the same pair-wise distances between

all nodes. The impact of various network characteristics on energy consumption is

measured by how much each affects the number of transmissions, receptions, and

processing an algorithm needs to localize. To accomplish this, algorithms of different

types are modelled and simulated under various network conditions.

1.6 Summary

The primary focus of this research is to determine the most important factors in-

fluencing energy consumption in wireless sensor network localization. Two particular

types of algorithms are examined for accuracy and percent localized. This research

identifies the energy consumption characteristics of those algorithms. The Energy

Consumption Model predicts energy consumption without simulation or deployment

of actual nodes.

The remainder of this document is organized in the following way: Chapter

2 provides an overview of wireless sensor networks, ranging techniques, localization

algorithms, their performance and current research in the area. Chapter 3 describes

the method used to evaluate each algorithm. Chapter 4 presents and discusses the

experimental results and analysis. Chapter 5 summarizes the research, including

important results and conclusions and also covers areas of future work.
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II. Wireless Sensor Network Localization Background

2.1 Introduction

This chapter presents an overview of wireless sensor network localization algo-

rithms. Range-aware and range-free techniques are discussed as well as their cor-

responding benefits and drawbacks. Anchor-based methods and issues are briefly

covered, while anchor-free methods are discussed in some detail. Incremental and

concurrent methods are described and compared. This chapter ends with a com-

parison of the energy and error performance of current localization techniques and a

discussion of current energy reduction efforts.

2.2 Wireless Sensor Network Localization

The recent interest and growth in wireless communication and ubiquitous com-

puting has resulted in a corresponding interest in wireless sensor networks. A wireless

sensor network (WSN) is a collection of small, low power, limited computing ca-

pacity nodes that sense phenomenon such as temperature, humidity, light, and/or

movement and transmit sensor data to neighboring nodes and ultimately the user of

the network. These types of networks have been deployed for numerous applications

including target tracking, intrusion detection, environmental monitoring, climate con-

trol and disaster management [MGZN03]. The ability of a sensor network to sense,

collect, correlate, and aggregate data in parallel is one of its inherent strengths.

Wireless sensor networks applications often must know the position of nodes in

the network to operate. For example, some routing protocols depend on node position

to determine usable routes [LJD+00] [APL99]. Other protocols and sensor query

processing systems rely on node geographic information from a common coordinate

system [PBDT03]. Furthermore, information gathered from each sensor may only

be useful if the sensor location is known. Consider an intrusion detection system

implemented using a sensor network with no location information. This system would

be able to determine the presence of an intruder but not the location of the intrusion.

Determining this position information is known as localization. The objective of
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localization is to determine either virtual or physical coordinates for each node in the

sensor network. When nodes are placed in known locations, localization is merely

recording this data. This option is not available for ad hoc networks, or in networks

where deterministic placement of nodes is not possible. The process is complicated

by factors such as limited processing capacity, memory, and energy. Furthermore,

ranging techniques like ultrasonic ranging, are complex and error prone.

Each localization technique approaches the problem in a different way and can

be classified according to its use of radio range information or whether it uses one or

more beacons or anchors. Most localization algorithms have two basic phases. The

first is distance (or angle) estimation or ranging. In this phase, a node’s distance from

other nodes or its angle relative to other nodes is determined. The second phase is

location estimation. In this phase, distance or angle information from several nodes

is combined to produce a location estimate. Techniques to determine position include

triangulation, trilateration, iterative multilateration, and collaborative multilatera-

tion, or n-hop multilateration.

Figure 2.1: Triangulation. Positioning by measuring angles to anchors. [NN03]

Triangulation uses estimated angles between nodes and trigonometric axioms

to determine node location. Consider, for example, Figure 2.1. If the angles ∠BDA,
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∠ADC, and ∠CDB, are known, D’s position can be found by calculating the inter-

section of the three circles defined by the anchors and the known angles [NN03].

Unlike triangulation, trilateration uses the measured distance between the sub-

ject and each reference point. Trilateration uses these distances and the known lo-

cations of the references to determine the location of the node. With distance and

location information of at least 3 non-collinear references, a node can uniquely deter-

mine its position [SRL02]. In Figure 2.2, m is surrounded by anchors, a1, a2, and a3.

When m determines r, its distance to a1, it can conclude its position is somewhere

on the perimeter of the circle centered at a1, with radius r. When the distance to a2

is found, m determines its position is one of two points, the points where the circles

of a1 and a2 intersect. To find the unique location, the distance to the third anchor is

needed. The intersection of the three circles defines m’s location. If more than three

anchors are used, this is atomic multilateration. This can be extend to the three

dimensional case by using a fourth reference and intersecting spheres.

Figure 2.2: Trilateration. Positioning by measuring distances [SRL02]

Iterative multilateration extends trilateration and applies the process iteratively

to more and more nodes as their locations are determined. Initially, each node esti-

mates its position with trilateration. Some nodes may not have at least three anchors
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in range to estimate their position. Once a node does estimate its position, it acts as

an anchor to nodes without a position estimate. Nodes without a position estimate

try to localize again with the new anchors. Each iteration yields new anchors that can

be used to localize other nodes until the graph is fully localized or all nodes that can

be localized with this process have been [SPS02]. Consider Figure 2.3a where node

1 is able to localize itself using the location and distance information from 3 anchors

(in grey). Node 2, however, is only in range of 2 anchors and cannot localize. Once

node 1 has its position information, it acts as an anchor to node 2, allowing it to lo-

calize, as shown in Figure 2.3b. Although, this method is simple and computationally

inexpensive, it is subject to errors that propagate from one iteration to the next. It

is possible some nodes will not localize in sparse regions of the graph.

1

2

1

2

(a) (b) (c)

1

2

Figure 2.3: Iterative Multilateration (a,b) and Collaborative Multilateration (c)
(adapted from [Sav04])

Collaborative multilateration, also known as N-hop multilateration, also local-

izes nodes without enough anchors in range. This technique needs 3 non-collinear

neighbors with unique positions. If a node doesn’t have three neighbors with unique

solutions, neighbors are recursively called to determine if their positions are unique.

Nodes that use the other as a reference must have at least one unique reference node

between them [SPS02]. Figure 2.3c satisfies the criteria for collaborative multilatera-

tion. Both unknown nodes 1 and 2 have at least one independent reference and three

neighbors with unique non-collinear, positions. Once the node determines its location
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can be estimated, it bounds the possible area of location in the x and y axis with

distances to its reference. The center of the area is chosen as the position estimate

as illustrated in Figure 2.4. B’s coordinate on the x axis is bounded by the distance

from A and the 2 hop distance to C. The same is done in the y axis. Sometimes a

third phase refines or optimizes an estimate to further reduce location error.

Figure 2.4: Collaborative Multilateration position estimates [SPS02]

2.3 Range-Aware

Range-Aware or range-based localization methods use point to point distance or

angle estimates to determine location information. Distance is estimated by measur-

ing, for example, signal strength, signal propagation time, or incident angles. Other al-

gorithms use ranging techniques indirectly to determine the network topology. These

algorithms are known as partial range aware algorithms. Range-aware methods are

susceptible to ranging errors induced by changes in humidity, temperature and other

factors.

2.3.1 Received Signal Strength Indicator. The Received Signal Strength

Indicator (RSSI) is a measure of the “strength” of the radio signal at the receiver.

Given a known transmission power, effective propagation loss can be calculated at

the receiving node. Theoretical and empirical models convert this propagation loss

into an estimated distance. This method has the advantage of using hardware that is

typically on a wireless sensor node already and therefore does not include expensive
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hardware or energy costs. However, RSSI is susceptible to errors caused by back-

ground interference, multi-path fading, and irregular signal propagation properties.

Despite the potential error, the low cost and availability of the technique make it an

attractive option. RSSI is used in several systems such as RADAR [BP00], “Mote-

track” project [LW05], SPOT ON [HWB00], LANDMARC [NLLP03] and the Ferret

system [TGB+04]. These systems achieve accuracies on the order of one meter using

RSSI. The Ad Hoc Positioning System (APS) also uses RSSI as one of its ranging

techniques [NN01].

2.3.2 Time of Arrival, Time Difference of Arrival. Time of Arrival (TOA)

uses signal propagation time and a known propagation rate to determine distance.

Robots use this principle to determine the distance to obstacles by measuring the

time of flight of an ultrasonic signal bouncing off of them [Enc97]. Aircraft altimeters

use the time it takes an electromagnetic signal to reflect off the ground to determine

altitude. Global Positioning System (GPS) uses TOA as well. Similarly, Time Dif-

ference of Arrival (TDOA) uses the difference in signal propagation time to several

destinations or the different arrival times of different signals to the same destination to

estimate distance. Several different types of signals can be used with these techniques,

such as RF, acoustic, infrared, and ultrasound. For example, if a node sends an RF

signal and ultrasound signal at the same time, the receiving node can infer the range

using the difference in the arrival times of the two signals and the known propagation

rates of sound and light. RF transceivers are often incorporated into wireless sensors,

but other types of receivers usually have to be added to be able to use the difference

of two signals as the ranging technique. The additional hardware uses more energy

and adds cost and complexity to each node. Unfortunately, ultrasonic techniques also

greatly reduce detectable range and increase the required node density. However,

when the Ad Hoc Location System (AHLos) was implemented using both RSSI and

TDOA (with RF and ultrasound signals), the TDOA version produced more accurate

results and was less prone to error due to physical effects [SHS01]. The Cricket indoor
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location support system, developed at the Massachusetts Institute of Technology, was

originally designed to use RSSI to determine distance to the nearest beacon [PCB00].

However, this produced poor results because RF propagation characteristics within

buildings vary too greatly from empirical mathematical models. Instead, the beacons

were built to concurrently transmit a RF and an ultrasonic pulse. The time differ-

ence between the receipt of the first bit of the RF signal and the ultrasonic signal

determines the distance to that beacon.

2.3.3 Angle of Arrival. A technique known as Angle of Arrival (AOA)

uses the incident angles of signal reception at multiple nodes to estimate distance.

This requires nodes to sense the direction a signal arrived from. Either an antenna

array or several ultrasound receivers sense the angle of arrival which also provides

orientation information to the node. Antenna arrays would likely be prohibitive in

size and power consumption, but nodes with multiple ultrasound receivers have been

developed [PCB00]. The angle of arrival is determined using the known distance

between each ultrasound receiver, a designated node axis and the distance from the

receiver to the signal source [NN03]. A recent version of APS [NN03] uses AOA.

However, like TOA and TDOA, AOA is expensive in terms of hardware and energy;

therefore it is a less common ranging method.

2.3.4 Acoustic. Acoustic ranging uses the inverse square relationship be-

tween the intensity of a transmitted acoustic signal and the distance at which the

signal is received. The decay model depends on the size and shape of the source, the

surrounding environment and the frequencies of the propagating sound. Other factors

that influence the model include background noise, obstructions, wind strength and

direction, and foliage [SH03]. An environment with sufficient amounts of any of these

factors will degrade the performance of this localization method. Another disadvan-

tage is the additional hardware required to send and receive acoustic signals. This

method has been used in various systems for wireless sensor network localization as

well as target tracking [SH03] [CYE+03] [LH03].
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2.3.5 Partial Range Aware. Since a range technique may introduce signif-

icant location error for a given network, ranging techniques are sometimes used to

provide information about the network without using the range as a direct estima-

tion for distance. Partial range aware techniques do not use a ranging method for

distance estimation but as inputs to an algorithm to estimate locations. For example,

the Range Quantization (RangeQ) algorithm [LSS04b] uses partial range information

(PRI) to estimate locations. PRI is any type of measurement which monotonically

increases or decreases and has an unknown or environment dependent one-to-one rela-

tionship with the range measurement. For example, if the actual relationship between

RSSI and distance is unknown for a given environment, PRI can be used instead.

Consider a known RF range of a node. Each RSSI value can be mapped to a

certain quantization level. Once a node knows the quantization level of its neighbors,

it compares and orders its neighbors by distance. This quantization level does not

correspond to a particular distance but can be used to order nodes by distance from

a particular node. The simplest way to map PRI to quantization levels is by using

a linear model. For example, if 2 quantization levels are used and a node has 8

neighbors, the nodes with the 4 highest RSSI values will be have their distance set at

1/2 of the node range. The remaining 4 nodes will have their distance set at the node

range. Another method to determine a quantization level constructs a linear model

between the maximum and minimum received PRI.

Received PRI values can also be distributed proportional to area. The benefit

of this approach is it does not require extra hardware to implement, and the results

can be used by other shortest path distance based algorithms [LSS04b].

2.3.6 Range Errors. Each method of acquiring a range estimate is subject

to different error conditions. For RSSI, background interference causes signals to be

distorted or lost before being received at the destination nodes. In environments

with walls or obstacles, a signal may take multiple paths before being received at

the destination. If the different signals are in phase, they reinforce each other and
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result in a stronger signal. However, if they are out of phase, the received signal

will be weaker. A weaker received signal corresponds to a larger distance. Some

transmitters may have irregular signal propagation properties and don’t fit empirical

models built for RSSI. In practice, some empirical studies [GKW+00] [ZG03] [ZHS04]

have found that in most environments, RF signals are not isotropic, and there is little

or no correlation between signal strength degradation and the distance an RF signal

travels. Additionally, when a node runs low on available energy the transmitted power

will be less, changing range estimates. These factors result in an accuracy of 2 to 3

meters from a maximum range of 10 meters [Sav04].

TOA and TDOA are less error prone, but require additional hardware and

require a shorter inter-nodal range than RSSI networks. This smaller range equates

to a much higher required node density, which limits the utility and flexibility of the

network. TOA and TDOA are not susceptible to the error conditions described above

and enjoy an accuracy of 2 to 5 centimeters at a range of a few meters.

AOA has smaller errors than RSSI but is limited to the range of ultrasound

signals, creating an accuracy of about 5 degrees with a range of a few meters [NN03].

Acoustic ranging is susceptible to many errors. Background noise can mask acoustic

transmissions. Plants in the environment absorb and interfere with the acoustics

causing errors. Furthermore, wind alters the signal by changing its course, or by

making it weaker. These factors result in a range of tens of meters, with an accuracy of

10 cm [NN03]. Efforts to mitigate these errors include robust range estimation [GE01],

two-phase refinement positioning [SPS02,SRL02], and parameter calibration [WC02].

2.4 Range-Free

Range-Free localization methods make no assumptions about the availability of

distance information. This approach is used when coarse accuracy is sufficient because

it eliminates the hardware, processing and energy costs many range-aware algorithms

require, at the cost of granularity. Some WSN applications use range-free solutions

to the localization problem when the costs of the hardware required by range-based
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solutions may be inappropriate in relation to the required location precision. Since

range-free solutions don’t use node distance information, they generally require anchor

nodes. Range-Free algorithms determine location information for the remaining nodes

in a variety of ways.

2.4.1 Centroid Algorithm. The Centroid algorithm [BHE01] uses anchors to

periodically transmit known location information to all neighbors within range. If a

node receives enough of these messages, it determines it is in the range of the beacon.

After determining which beacons it is in the range of, the node calculates the average

of all the x and y coordinates of the beacons in its neighborhood. This is considered

the centroid and is used as the location for the node. In this case, the range to the

beacon is not estimated or used, but the known transmission range of the beacon is.

The advantage of this algorithm is it is simple and easy to implement.

2.4.2 DV-HOP. Distance Vector Hop (DV-Hop) [NN03] is a type of APS

[NN01]. DV-Hop uses a classic distance vector exchange so each node learns how many

hops it takes to get to each anchor. The node maintains a table of known anchors

and the distance to the anchors in hops which it exchanges with its neighbors. When

an anchor receives hop distances to other anchors, it estimates the average distance

per hop based on its position and the position of the anchor in the received update

and disseminates it as a correction to the network. This correction replaces any

previous average distance per hop values a node has. For example, in Figure 2.5

the anchor L1 computes a correction of (100+40)/(6+2) = 17.5 while L2 computes

(40+75)/(2+5) = 16.42 and L3 computes (75+100)/(6+5)=15.90. Nodes that receive

more than one correction, use and forward the first one received and discard the rest.

This ensures most nodes receive only one correction, usually from the closest anchor.

Using the average distance per hop and the known location of the anchors, the node

triangulates its own location. The advantage of this algorithm is its simplicity and it is

not susceptible to measurement errors. It is limited to isotropic networks, or networks

in which the graph properties (shape and density) are the same in all directions. Some
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variants of DV-Hop are DV-Distance, which uses radio signal strength instead of hop

count, and DV-Coordinates, where nodes create local coordinate systems and merge

them with those of its neighbors. Euclidean propagation [NN03], similar to DV-HOP,

uses distance estimates to 3 nodes, at least one of which is an anchor, to calculate

location with Pythagora’s generalized theorem of triangles. Similarly, Amorphous

Positioning uses estimates of hop distance but improves the estimate through neighbor

information [Nag99].

Figure 2.5: DV-HOP correction [NN01]

2.4.3 APIT. The Point in Triangulation (PIT) test [HHB+03] determines

if a point is inside or outside a triangle formed by three points with known locations.

It does this by “moving” the test point in various directions to see if it moves closer

or farther away from one or more of the known points. For example, in Figure 2.6a,

any direction M moves it will move closer to either A, B or C. In Figure 2.6b, if M

moves in the indicated direction, it will be farther away from A, B, and C. It isn’t

feasible to implement PIT on a small wireless sensor network, since it would require

an exhaustive search of all possible directions and assumes nodes can move.

Approximate Point in Triangulation (APIT) [HHB+03] tests whether a node

is inside a triangle of reachable anchors using neighbor information and radio signal

strength. If no neighbor of a node is farther away from all three anchor nodes, the test

node is likely inside the triangle. For example in Figure 2.7a, none of M ’s neighbors
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Figure 2.6: Point in Triangulation test [HHB+03]

are farther away from A, B, and C, while in Figure 2.7b, neighbor 4 is farther away

from A, B, and C than M .

Figure 2.7: Approximate Point in Triangulation Test [HHB+03]

Errors are introduced when a node is inside a triangle but near an edge, and it

has a neighbor on the outside of the triangle. A node can mistakenly be considered

inside the triangle if all of its neighbors are closer to the three anchors than it is.

Once a node has recorded the signal strength and location of all reachable anchors,

it exchanges this information with its neighbors and runs APIT on the neighbor data

to determine which triangles of anchors it is in. The node aggregates these results

by building a map and weighting locations by how many triangles overlap with the

location. The center of the area with the greatest weighting is taken to be location

estimate. Since APIT does not assume any relationship between signal strength and

absolute distance it is considered range-free.

2.5 Anchor-Based

Anchor-Based localization algorithms depend on access to one or more anchor

nodes or beacons, with a priori knowledge of their location in a defined coordinate
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system. Initial coordinates are typically set manually or using GPS. Anchors transmit

location information to the remaining nodes, while minimizing error, communication,

and/or energy consumption. The benefit of anchor-based algorithms is resulting node

locations are mapped to a global coordinate system. However, these systems are

limited in their utility. For some applications, it is not possible to deploy anchor

nodes or preplan locations, and GPS can be problematic in some environments. Many

anchor-based approaches have already been discussed in this chapter. Other examples

include N-Hop Multilateration [SPS02], and Hop-TERRAIN [SRL02].

2.5.1 Global Positioning System (GPS). GPS is a worldwide radio-navigation

system formed by a constellation of 24 satellites and their corresponding ground sta-

tions. The satellites transmit timing signals with orbit information embedded in the

signal. A GPS receiver can determine its location if it is in range of at least four

satellites. It uses the received signals to calculate its distance from each satellite, and

uses these distances to triangulate its position on earth [Tri05]. GPS, if available, can

simplify the localization process and produce a globally-available coordinate system.

GPS circuitry is becoming increasingly available on a variety of platforms, including

wireless sensors [Cro05]. Even though GPS may be able to fit on some wireless devices,

there are still limitations in its use. First, it depends on line of sight communication

with the satellites in the network, and so often does not work in indoor and urban

environments. Second, GPS hardware and energy costs can exceed what is available

or desired on a wireless sensor. If a WSN can be preplanned and manually deployed,

but nodes do not have GPS, Walking GPS [SHS04] can be used. This approach uses

a commercially-available GPS receiver, a modified wireless sensor, and a simple walk

through the network to transmit location information to each node. If a node does

not receive a location message, it queries its neighbor and estimates its position as the

centroid of its neighbors. Walking GPS produced an average localization error of 0.8

meters. Even though this error is smaller than many other algorithms, this approach

would not scale well for large networks and precludes ad-hoc and aerial deployment.
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2.5.2 Beacon Placement, Beacon Density. Localization algorithms that use

anchors, or beacons, also depend on the placement and density of the beacons. The

beacon nodes know their position and serve as a reference for the rest of the network.

The density and placement of the beacons controls the granularity of the localization

because it determines the size of the localization region [BHET04]. For example,

Figure 2.8 shows how increasing the density and placing the beacons closer together,

the granularity of the region becomes finer. This results in less error in the location

estimate.

Figure 2.8: Beacon density vs. granularity of localized regions [BHE01]

In many algorithms, the number of visible beacons and their placement is crucial.

Furthermore, there may be a minimum number of non-collinear beacons a node needs

in order to localize. This leads to several points of failure for the network. A uniform

distribution of beacons is an intuitive solution but may be too expensive. The terrain

or the environment may preclude this. Finally, if too many beacons are deployed,

the risk of collision among signal transmission increases, wasting energy [BHET04].

These issues have led to the development of algorithms that find areas in the network

with poor localization and optimal locations for new beacons in an already deployed

network [BHE01] [BHET04].

19



2.6 Anchor-Free

Anchor-Free localization algorithms provide location information without an-

chors using virtual coordinates. Since these algorithms typically rely on ranging

measurements or distance estimates, they generally have a larger position error. If

global coordinates are required, they can be obtained from an anchor-free solution if

at least 3 nodes know their actual position in global coordinates. Additionally, many

applications using wireless sensor networks do not require the accuracy of anchor-

based algorithms so much as they require efficiency in power consumption, flexibility,

robustness, and simplicity [MGZN03]. Even though there are fewer anchor-free algo-

rithms than anchor-based, anchor-free solutions use a variety of methods. Anchor-Free

examples include Self Positioning Algorithm (SPA) which uses local coordinate com-

bining in mobile networks [CHH01], cluster based localization [IS03], fold free forced

based relaxation, named anchor-free Localization (AFL) [PBDT03], its refined version

anchor-free Localization with Refinement (AFLR) [MGN03], Assumption Based Co-

ordinates (ABC) [SRB01] and Iterative Quality Based Localization (IQL) [EBD+02].

2.7 Incremental

Incremental algorithms start with a small number of nodes that have deter-

mined their location or positions relative to each other. They “increment” by re-

peatedly adding to the set of estimated nodes using the estimated distances to nodes

that already have a position estimate [PBDT03]. The new position calculations are

achieved by triangulation, trilateration or multilateration. This approach, however,

can propagate errors that often grow as nodes are added which produces poor overall

position coordinates. Quality can be improved somewhat by applying a refinement

algorithm to the estimates if the algorithm can improve on solutions obtained by local

minima. An example of an anchor-free incremental algorithm is ABC [SRB01].

ABC begins with a node, n0, selecting three nodes in its neighborhood and

assigning them coordinates according to their inter-node distances using n0 as the

origin. Distances are estimated with RSSI. This n0 node incrementally calculates the
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coordinates of other nodes using the distances to nodes that have already been cal-

culated. Although this algorithm produces a set of coordinates that are topologically

correct, simulations show about 60% average position error, for a range error (RE) of

5% [SRB01] due to errors propagated by the incremental approach.

Map Growing is an incremental algorithm developed to perform well in irregular

networks. An irregularly shaped network is a fully covered geometric shape, such

as a square, rectangle or circle, with some parts cut out. Examples of irregularly

shaped networks are O-shaped and C-shaped. Map Growing begins with a well-

connected node n0 as the origin. Using RSSI, n0 defines the coordinates of 2 of its

non-collinear neighbors using internode distances, localizing those neighbors. Once

localized, those nodes announce their position so unlocalized neighbors can use that

information and the RSSI distance to estimate location through trilateration. The

map grows as more nodes localize and announce their position for remaining nodes to

use. Unknown nodes that only receive 2 announcements use trilateration to estimate

two possible locations for their position. Exchanges of neighborhood information with

its 2 localized neighbors eliminate one of the possibilities. Any nodes not localized

after a certain time can use 3-6 of their closest neighbors to localize themselves. The

resulting coordinates can be transformed to an absolute coordinate system if at least

three of the nodes are actually anchors.

Figure 2.9: Typical incremental ap-
proach [PBDT03]

Figure 2.10: Typical concurrent ap-
proach [PBDT03]
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2.8 Concurrent

In concurrent algorithms, all nodes in the network calculate and refine their

coordinate information in parallel. By continually balancing global error, these algo-

rithms avoid error propagation and have a better chance of avoiding local minima,

especially in the presence of significant range errors [PBDT03]. In Figure 2.9, an

incremental algorithm is compared to a concurrent algorithm in Figure 2.10. In the

incremental approach the node distances not yet calculated are susceptible to all the

errors created or propagated by the nodes already calculated. In contrast, the con-

current approach calculates all nodes in parallel, so nodes are less susceptible to error

propagation.

AFL is a concurrent, anchor-free localization algorithm that uses polar coordi-

nates. The first phase of the algorithm starts by building a “fold-free” graph rep-

resentation of the network. In a fold free graph, every cycle in the graph has the

correct clockwise/counterclockwise orientation of nodes with respect to the original

graph [PBDT03]. This type of graph prevents “folds” from inducing local minima

solutions that the algorithm’s second phase cannot overcome. AFL arbitrarily picks

a node and uses hop count to find 4 nodes at the edge of the network which are suf-

ficiently far apart from each other that they form an approximate coordinate system

with another node that is approximately at the center. Figure 2.11 is an example of

the results of the first phase. Node n5 is the origin of this coordinate system and

each node calculates its polar coordinates using hop count to n5. The algorithm then

employs a mass-spring optimization to reduce the errors from the first phase. This

optimization compares calculated and RSSI measured distances between a node and

its neighbors. The difference puts a “force” between the two nodes, which alters the

position estimate in an attempt to balance global “forces”. The optimization iter-

ates until the resulting change drops below a threshold. The algorithm has a low

probability of converging to a local minima and is able to localize graphs that are at

least 6-connected [PBDT03], but at the cost of high communication overhead. The

building of the “fold-free” graph has 5 steps where a node must communicate with
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Figure 2.11: Result of AFL Phase 1 [PBDT03]

every other node. Furthermore, the optimization phase may require a large number

of neighbor exchanges before completion.

2.9 Related Research

Much of the current research focus is to create or optimize localization algo-

rithms to produce the smallest error. Each algorithm makes separate assumptions

and approaches localization in a different way. The localization algorithms discussed

thus far are listed in Table 2.1 according to their characteristics. This is by no means

an exhaustive listing of algorithms. However, the table is representative of localization

algorithms currently being studied or used. In general, range-based techniques are

susceptible to various error conditions and will restrict inter-nodal range or require

a certain node density. Range-free algorithms typically have the nodes exchange

hop count or coordinates instead of measured distances. Anchor-based algorithms

are usually more accurate than anchor-free techniques, but at the cost of flexibility.

Anchor-free approaches allow networks to be deployed ad hoc, but it is more diffi-

cult to find error free position estimates. Furthermore, anchor-free approaches cannot

produce node positions mapped to a global coordinate system.

Localization algorithms are naturally judged by the position error they produce,

but other factors that can affect the usefulness of the network such as communication
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Table 2.1: Characterization of localization algorithms (adapted from [PBDT03])
Range-Aware Range-Free

Incremental Concurrent Incremental Concurrent

Anchor APS(AOA,DV-Dist, TERRAIN [SRB01] APS(DV-Hop, Hop-Terrain [SRL02],

Based D-Eucl) [NN01,NN03], DV-Coord) GPS-Less [BHE01],

Collaborative [NN01], Walking RangeQ [LSS04b],

Multilateration [SPS02], GPS [SHS04] Centroid [BHET04],

AhLos [SHS01] APIT [HHB+03],

Anchor ABC [SRB01], SPA [CHH01], AFLR [MGZN03]

Free IQL [EBD+02], AFL [PBDT03],

Map Growing [LSS04a] Cluster Based [IS03]

overhead, should also be considered. Of the three power consumption modes, sensing,

communication and data processing, communication expends the most energy. It has

been shown for short range communication at low radiation power (∼0dbm), energy

costs of transmission and reception are nearly the same on a wireless sensor [ASSC02].

If a localization algorithm requires too much communication, the network can have a

diminished lifetime after localization is complete. If the communication is not evenly

spread, some nodes will fail earlier than others increasing the chance of a partitioned

network. When anchors are not available, position error and communication costs

become an important trade space. Unfortunately, not all algorithms are tested for

communication overhead or energy expended.

In terms of error, ABC by itself does not perform very well. Figure 2.12 com-

pares ABC’s performance against TERRAIN (Triangulation via Extended Range and

Redundant Association of Intermediate Nodes). Range Error is the percentage the

estimated range differs from the true distance. Average Estimated Position Error is

the average distance a node’s estimated position is from its true position given as a

percentage of the range. For a Range Error of just 5%, ABC produces nearly 60% Av-

erage Estimated Position Error, while TERRAIN produces about 39%. Even though

ABC is simple to implement, it relies heavily on the accuracy of RSSI. Additionally,

its incremental approach allows errors to propagate. ABC alone does not refine esti-

mates after they are determined. However, since the output of ABC is a reasonable

24



starting point, it is sometimes used for initial estimates, as in Iterative Quality Based

Localization (IQL) and TERRAIN [EBD+02] [SRB01].

Figure 2.12: ABC versus TERRAIN, 32 nodes total, 4 anchor nodes [SRB01]

IQL uses ABC as an initial estimate for node positions and then runs a Weighted

Least Squares algorithm to optimize the positions. Unfortunately, since a node po-

sition depends on the accuracy of previously calculated nodes, errors can grow in

the presence of inaccurate RSSI measurements, especially at the edge of the network.

IQL’s error is plotted in Figures 2.13 and 2.14. “S” is a measurement precision con-

stant and reflects the accuracy of the RSSI measurements. When S = 0.2, about 67%

of the points have a relative error less than 1. When S = 0.05, 68% of the nodes have

a relative error less than 6. Relative error is defined as δx = ∆x
x

= x0−x
x

= x0

x
−1 where

x is the true value, x0 is the computed value, and ∆x is the absolute error [Wei05].

The cluster-based approach uses local coordinate systems computed within a

cluster of nodes and combines them to form a global coordinate system in a cluster

hierarchy [IS03]. The goal of this approach is to reduce the time and communication

overhead to localize a network without anchors. Compared to approaches that do not

use clusters, the cluster-based approach converges faster and requires dramatically

less overhead [IS03]. Figure 2.15 compares the communication overhead of the Self

Positioning Algorithm (SPA), which does not use clusters, and the cluster-based ap-

proach. In SPA, node convergence includes updates on the angle measurements of all

its neighbors to all neighbors. The size of each update is proportional to the number
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of nodes in the neighborhood. In the cluster-based approach, each node only sends

updates of its master node neighbors. This reduces the size and number of messages

required [IS03].

AFL, as a concurrent algorithm, avoids the cascading errors of incremental

approaches. When tested and compared against an incremental approach, it localized

more nodes with less connectivity [PBDT03]. It also was found to be more robust to

measurement errors. The maximum error (the difference between the actual distance

and the estimated distance) between two unconnected nodes is a measure of how

much the graph has been deformed by the process. In Figure 2.16, the maximum error

Figure 2.13: IQL Relative error, 40
nodes, S=0.2, 8 anchors [EBD+02]

Figure 2.14: IQL Relative error 60
nodes, S=0.05, 4 anchor nodes [EBD+02]

Figure 2.15: Comm. overhead for cluster-based approach and SPA [IS03]
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between two unconnected nodes is compared to connectivity and range measurement

error. Since the maximum error is small in most cases, AFL is considered robust even

under situations of considerable range measurement error.
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Figure 2.16: AFL: Fraction of Max error
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between any two unconnected nodes
[PBDT03]

Anchor-free Localization with Refinement (AFLR) uses local coordinate systems

built by nodes and combines them into a global coordinate system around a “global

sink.” Since the global coordinate system grows from the center outward, nodes

farther from the sink tend to have larger errors than those that are closer. This

necessitates a refinement phase where neighbors exchange positions estimates in their

local coordinate system. Upon receipt of an update, a node takes a weighted average

of the update and others received based on its distance from the sink. After the

update, nodes transmit updates to their neighbors. Updates from nodes farther from

the sink are discarded. Nodes with 7 neighbors (a degree of 7) have error reduced by

10%. This increases to 30% when the node degree increases to 13. Figure 2.17 plots

the improvement versus the average node degree. This localization approach requires

each node to have a degree of 9 to localize 90% of the nodes [MGZN03]. Although
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position estimates improved after refinement, no measurement of actual position error

or relative error or comparison to another algorithm is available for this method.
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Figure 7: Global graph obtained after initialization phase
 

Figure 8: The rectangle area in Figure 7 

Figure 9: Global graph computed after refinement phase Figure 10: The rectangle area in Figure 9 
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Figure 12: Accuracy improvement of refinement 

 
 

Figure 2.17: AFLR accuracy improvement of refinement [MGZN03]

APIT and APS, both anchor-based algorithms, have been tested with respect

to communication costs. The APS study compared the DV-Hop, DV-Distance and

Euclidean methods of estimating and propagating positions. The DV-based methods

provide good estimates in most cases with the benefit of low signaling complexity

[NN01]. The Euclidean-based method is more accurate for nonisotropic networks and

is more predictable in performance but at the cost of more communication [NN01].

On average APS produced results within 1 hop from the true position and is usable

by geographic routing algorithms. The APIT study compared the performance of

Centroid, Amorphous Positioning, DV-Hop and APIT. Because of the flooding DV-

Hop and Amorphous Positioning require, the communication needed in those two

algorithms grow when either the number of anchors or node density increases. The

Centroid and APIT communication needs also grow but at a very much smaller rate

[HHB+03].

The performance summary of each algorithm in the study is listed in Table 2.2.

Anchors Heard is the average number of anchors heard by a node during estimation.

ANR is the Anchor to Node Range Ratio. This is the average distance an anchor

signal travels divided by the average distance a regular node signal travels. DOI is
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Table 2.2: Performance comparison of 4 anchor-based algorithms [HHB+03]
Centroid DV-Hop Amorp. APIT

Accuracy Fair Good Good Good
Node Density >0 >8 >8 >6

Anchors Heard >10 >8 >8 >10
ANR >0 >0 >0 >3
DOI Good Good Fair Good

GPS Error Good Good Fair Good
Overhead Smallest Largest Large Small

the degree of irregularity which is an indicator of radio pattern irregularity. Overhead

is the amount of communication used by the algorithm.

The communication cost of the distributed version is compared to a centralized

version of the algorithm. This comparison is shown in Figure 2.18. The figure shows

that the even though the overall cost is about the same, the communication is more

evenly spread in the distributed version. The centralized version has several nodes

with very high communication costs and some that use very little communication.

This unevenness in communication distribution can cause some nodes to expend their

energy sooner than others, leading to some nodes failing earlier than the rest which

increases the likelihood of a partitioned network. Since the last part of the process

includes small refinement of the position estimate, the higher level application can

terminate the position refinement to conserve energy while accepting slightly worse

results [SPS02].

2.10 Summary

This chapter introduces and discusses wireless sensor networks and localization

concepts relevant to this research. Many approaches exist for localization each with

their strengths and weaknesses. The tradeoff space includes error rate, hardware,

cost, flexibility, scalability, and energy consumption. Although position error is often

most important, significant work has also been done to limit communication in an

effort to conserve node energy consumption.
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terion ∆ in the interest of energy conservation.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have described collaborative multilater-

ation for node localization problems. We have shown that
using this three phase approach nodes that are indirectly
connected to beacon nodes can estimate their locations with
similar accuracies at the single hop multilateration. Also,
with our distributed approach colonies of constrained sensor
nodes can collectively solve a global optimization problem
that an individual node cannot solve. The use of a global
gradient for computing a global optimum locally reinforces a
distributed computation model with other potential applica-
tions in sensor networks. In addition to the distributed com-
putation model the collaborative multilateration appears to
be an attractive choice for assisting infrastructure based lo-
calization systems to better handle obstructions. In this
paper we have developed the computational part of collabo-
rative multilateration. The remaining challenge is to study
its feasibility with respect to the physical effects. To this
end, as part of our future work we plan to study the inter-
action of our algorithms with the physical world using our
sensor network testbed of Medusa MK-2 nodes.
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III. Methodology

3.1 Introduction

This chapter discusses the methodology to evaluate the error and energy per-

formance of anchorless wireless sensor network localization algorithms. First, the

problem is discussed and defined. Second, the goals and objectives are presented.

Next, the system, its services, the workload and metrics are covered, followed by a

discussion of the evaluation technique and experimental design. Finally, the technique

to analyze the data is covered in detail.

3.2 Problem Definition

3.2.1 Goals and Hypothesis. Wireless sensor networks need node position

information to operate and depend on localization to provide it. The most flexible

networks can be deployed ad-hoc and without anchors. However, anchorless networks

are more difficult to localize and as such use more energy to localize. Energy used

during localization is not available for the operation of the network. Additionally,

if some nodes in the network are more heavily used during localization they will

have disproportionately less energy available after localization. This makes network

partitions more likely. The goal of this research is to evaluate the communication and

energy costs of anchorless localization algorithms. Specifically, the goal is to determine

the conditions that most affect communication and energy cost in localization. The

research determines which type of anchorless range-aware algorithm provides the best

node position accuracy and the most efficient energy usage. This should identify which

kind of algorithms effectively prevent the partitioning of a network, while extending

network lifetime. The data from the research also enables a model that predicts

energy usage based on several network and algorithm factors.

The different characteristics of localization algorithms and network configura-

tions determine their accuracy and energy performance. In particular, whether an

algorithm is Range-Free or Range-Aware, Anchor-Based or Anchor-Free, incremental

or concurrent, drives the energy consumption characteristics of the algorithm. Node
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degree, the number of nodes a single node is in range of, is also an important fac-

tor. The number of nodes in the network will likely impact energy cost and accuracy

performance.

3.2.2 Approach. The amount of energy a node expends depends on the

amount of sensing, transmitting, receiving, and processing it does.

ETotal = ETransmissions + EReceives + ESensing + EProcessing (3.1)

To evaluate the energy costs of different localization algorithms, the number of trans-

missions and receptions and the amount of processing time each node uses to localize

is determined. Since localizing does not involve sensing, this method of energy con-

sumption is ignored. Since anchor-free algorithms can not produce position estimates

in an absolute coordinate system, the straightforward approach of measuring position

error cannot be used. The resulting position estimates will likely not have the same

origin and orientation as the actual network, but the distances between the nodes can

be compared. If an anchor-free localization algorithm is accurate, pair-wise distances

between all nodes should be the same. Determining the impact of various network

characteristics on energy cost and network lifetime is determined by how much these

characteristics change the number of transmissions, receptions, and processing an al-

gorithm needs to localize and the internodal distance error produced by the algorithm.

Thus, the algorithm is modelled and simulated under different network configurations

and conditions.

3.3 System Boundaries

The System Under Test (SUT) includes the wireless sensor nodes and anchors

within a wireless sensor network. These nodes receive, transmit, and process data.

The range of the node transceiver affects who it can communicate with and is also

part of the system. As shown in Figure 3.1, the transmitter and receiver are assumed

to have the same range in all directions, and the reception outside the node range
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is nil. Therefore, a node either receives a message completely or does not receive it

at all. Depending on the algorithm being studied, a node can estimate its distance

away from another node using Radio Signal Strength Indicator (RSSI), the incident

angles of reception, or the time of arrival. These capabilities are part of the SUT.

Since localization does not depend on a node’s sensing capabilities, this is not part of

the SUT. Anchors are the same as other nodes except they have a priori knowledge of

their location. None of the networks used in the experiment use anchors. The SUT

does not include the physical network layer - error free communication is assumed.

However, the medium access control (MAC) protocol is included since it controls

when and how often a node retransmits a packet and thus affects the energy a node

uses to localize. The SUT does not include any application that uses the location

estimates. Additionally, all nodes are stationary and are in a two dimensional space.

The component under test (CUT) is the localization algorithm the nodes use to find

their estimated location. For a given system, all nodes use the same localization

algorithm.

Figure 3.1: System Under Test
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3.4 System Services

The service the system provides is a node position estimation service. The

ideal localization algorithm localizes all nodes in the network to their position in

the shortest amount of time using the fewest messages. At the most basic level,

success is defined as a node being able to estimate its position. Failure is defined as

a node being unable to estimate a position for itself. Various conditions can cause

a failure. Each algorithm has different information it needs for a node to be able

to localize. Many require a node to have a certain number of available references

(anchors or other localized nodes) before it can be localized. If a node is isolated or

does not have enough qualified neighbors due to network configuration or insufficient

transmitter/receiver strength, the node will not localize. Not meeting the algorithm’s

criteria to localize is one cause for failure. If the network becomes partitioned for

whatever reason, one or more nodes may not localize. Other failures can be caused

by phenomenon that cause wireless traffic to fail, such as network congestion and

interference. Network congestion can cause a failure if node transmissions collide with

its neighbors often enough to prevent it from communicating effectively. Interference

occurs when wireless devices that are not part of the network operate within the same

radio frequency. This can also hinder communication enough to degrade or prevent

localization. For the purposes of this research, interference and network congestion is

not modelled, but all other failures are.

Localization algorithms achieve various levels of accuracy and use various amounts

of energy to accomplish the task. The required accuracy of a given network depends

on the application using the network. For example, a wireless sensor network built to

monitor environmental conditions on a sequoia tree may require more accurate and

precise position information than an intrusion detection network. Both need position

information, but the intrusion detection network can be useful if position information

is accurate to within a couple feet, whereas the sequoia monitoring system would

produce unreliable data if off by that much. Alternately, a network meant to operate

for a few weeks has much different energy requirements than one meant to operate
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for a few months or longer. Even though an algorithm may be successful by the defi-

nition proposed above, it may not be sufficient for some applications. Further, given

two successful algorithms, one may be preferable for a given purpose depending on

the error produced or energy expended. Complete success of a localization algorithm

depends on the domain or purpose of the network being built. This research uses the

definition of success above, but evaluates and compares how successful an algorithm

was based on performance metrics.

3.5 Workload

The workload for the system is the network configuration the localization al-

gorithm must operate within. The network configuration is the set of characteristics

that define the network and includes the number and placement of the nodes. The

placement of the nodes determines node density, or how many nodes there are per unit

area. The placement can be uniform or can be according to a certain distribution,

such as a normal or exponential distribution. Another characteristic is the average

node degree or the average number of nodes a given node can communicate with.

Network shape affects how messages propagates through the network. An isotropic

shape is the same or similar in all directions from the center of the network. An

example of a non-isotropic network is one in the shape of the letter “C”.

These characteristics are considered workload because they directly affect the

performance of localization algorithms. The more nodes there are in the network, the

more messages a localization algorithm will need to send. In a dense network, more

nodes receive each message. Conversely, some algorithms may require fewer messages

if more nodes hear each one. If node degree is low, it is more likely some nodes will

not localize at all. The placement distribution and network shape affect the required

time and energy to localize in a similar way.
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3.6 Performance Metrics

The following metrics are used to evaluate the performance of a localization

algorithm for a given network.

• Average Distance Error (ADE) - At the end of an anchor-free localization al-

gorithm, each localized node in the network will have their true absolute co-

ordinates and their relative coordinates estimated by the algorithm. Since the

relative coordinates will not be in the same coordinate system as the absolute

coordinates, it is not possible to use position error as a metric. Position error

measures the distance between the true absolute coordinates and the absolute

coordinates estimated by the localization algorithm. Instead Average Distance

Error is used. Despite the difference in the coordinate systems the distance be-

tween any pair of nodes should be the same. The average distance error is the

average of all the differences in the distances between a pair of nodes absolute

coordinates and relative coordinates. For example, given nodes i and j. The

absolute coordinates are (xi, yi) and (xj, yj). The relative coordinates are (x′i, y
′
i)

and (x′j, y
′
j). Between i and j, the distance error eij is the difference between the

true distance (dij) between i and j and the distance in the algorithm’s result

(d̂ij). Thus, the distance error is

eij = |dij − d̂ij| (3.2)

=

∣∣∣∣√(xi − xj)2 + (yi − yj)2 −
√

(x′i − x′j)
2 + (y′i − y′j)

2

∣∣∣∣ . (3.3)

The average distance error is the average of all distance errors between all pairs

of nodes, or

ADE =

∑
i,j:i<j eij

N
(3.4)
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where N is the number of localized nodes. ADE can be interpreted as the

average distance a node’s estimated position is from its true position relative to

another node. ADE also has the benefit of being expressed in meters.

• Average Transmitted Bits (ATB), Average Bits Received (ARB) - Energy used

in node operations are attributed to transmitting, receiving, sensing and pro-

cessing. Since the major energy cost in localization is communication, this is

collected as part of the energy consumed to localize. The total number of bits

sent and received is collected to find the total for the network and divided by

the number of nodes to find the average.

• Percentage Localized - Percentage Localized is the percentage of nodes able to

estimate a position before the algorithm finished. If a node does not localize,

it ca not participate in the operation of the network. The fewer nodes that

are localized, the fewer nodes that are available for operation. This is a global

network metric.

3.7 Parameters

The parameters discussed below affect localization performance.

3.7.1 System.

• Node Range - The node range is how far a node can transmit and receive packets.

This determines the nodes that are in range. If this range is large, a node is

able to communicate with more nodes, but the chance of collision is higher.

• Ranging Accuracy - The ranging accuracy is how close a distance, angle, or time

difference estimate is to the true value. The higher the accuracy, the less error

there is likely to be in the final position estimate.

• Antenna/Link Type - The nodes in this system have omnidirectional antennas

with bi-directional links. This means the antenna transmits in all directions, and

a node that can transmit to another node can also receive from it. Directional
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antennas and one-way links make localization much more complicated and are

typically not considered in localization research.

• Algorithm - The particular algorithm and its type (Range-Aware, Range-Free,

Anchorless, Anchor-Based) used in a localization system determines how much

time, how much error, and how much energy is expended to localize the network.
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3.7.2 Workload.

• Number of Nodes - The number of nodes in a network affects how much energy

a localization algorithm needs to estimate node positions. For some algorithms,

it may also affect position error. This parameter also indicates how well a

localization algorithm scales.

• Number of Anchors - For anchor-based algorithms, the number of anchors may

affect the accuracy and speed of the algorithm. The more anchors there are, the

more likely a node is of being in range of one. With more anchors in range, a

node is more likely to have more accurate results, since the anchors have precise

knowledge of their position. This parameter can also be defined as a percentage

of the total number of nodes in the network.

• Anchors Heard - For anchor-based algorithms, the more anchors heard by a

node means that a node is more likely to have enough anchors to localize and

estimates a more accurate position. This is directly affected by the number,

range and density of the anchors.

• Network Area/Node Density - The area the network covers combined with the

number of nodes in the network determine the node density (assuming a uniform

distribution). The node density also affects how many neighbors a node has

which affects how well a localization algorithm works.

• Node Degree - Node density and node range define the node degree, the number

of neighbors a node can communicate with. The higher the node degree the fewer

messages required to reach each node, but collisions become more likely. Node

degree also affects how many nodes are localized. The lower the node degree

the less likely a node meets the criteria to localize.

• Network Shape - The network shape locally affects the node degree in the net-

work. For example, an isotropic network often has a more consistent node degree

than one with an irregular shape. An irregularly shaped network likely has more
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nodes with lower node degree, causing them to have few neighbors and possibly

be isolated.

• Placement Distribution - The distribution of the node placement also affects

local node density and node degree in the network. If the placement distribution

is uniform, the node degree is expected to be consistent. However, if a different

distribution is used some portions of the network may suffer from having too

few neighbors or anchors in range. In terms of anchors, the placement affects

how many nodes are in range of the anchor and if that placement is beneficial

for localization. A node that is in range of 3 anchors that are collinear or close

to it, still cannot localize effectively.

3.8 Factors

The following are the different factors used in this research and their corre-

sponding levels.

• Algorithm

– Map Growing - Map Growing Localization [LSS04a] is a range-aware, incre-

mental, anchor-free algorithm designed to perform well in irregular shaped

networks. This algorithm starts with a non-collinear set of three nodes,

arbitrarily defines their coordinates, and incrementally adds nodes using

range information, and trilateration. Any nodes not localized after this

process use 3-6 of their closest neighbors to localize themselves through

trilateration. This algorithm was chosen as representative of incremental,

range-aware, anchor-free algorithms.

– Anchor-Free Localization (AFL) - AFL [PBDT03] is a range-aware, con-

current, anchor-free algorithm that tries to avoid false local minimum so-

lutions by creating relative polar coordinates for each node through hop

counts and using a mass-spring optimization to refine the estimates. This

algorithm represents concurrent, range-aware, anchor-free algorithms.
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• Number of Nodes These are typical sizes for small, medium and large networks

in WSN research.

– Small - 30 nodes represents a small network.

– Medium - 100 nodes represents a medium sized network.

– Large - 300 nodes is considered a large network.

• Average Node Degree A node degree of 8 is used as a typical value in WSN

research. This is taken as low, while other levels are based on that.

– Low - An average node degree of 8 represents a low node degree.

– Medium - An average node degree of 12 represents a medium node degree.

– High - An average node degree of 16 represents a very node degree.

• Range Error Ranging accuracy is often measured as Range Error, or the per-

centage a distance is from the true distance. For example, if the true distance

between 2 nodes is 10m but the ranging method reports a distance of 11m, the

Range Error is 11−10
10

= 0.1 = 10%. The Range Error in the experiment is mod-

elled as a normal Gaussian distribution [EBD+02] with the mean set at 0 error

and the level used as the standard deviation. For instance, a Range Error level

of 10% results in a normal Gaussian distribution, with the mean at 0, and a 0.1

standard deviation. In this case, 66.7% of the range estimates will be between

-10% and +10% of the true distance. Typical experimental values for range

error vary from 0 to 10% and is reflected in the levels below.

– Low - A Range Error of 2% represents low ranging error.

– Medium - A Range Error of 5% represents medium ranging error.

– High - A Range Error of 10% represents high ranging error.

• Placement Distribution

– Constant Density (CD) - The constant density distribution represents net-

works where deployment is controlled. Using this distribution, the network
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area is partitioned into grids and nodes are evenly divided amongst these

grids (uniformly random distribution within each grid). The resulting net-

work is also guaranteed to be connected, meaning that every node has

at least one communication path to every other node. Appendix A has

examples of CD networks for each size and degree.

– Random Uniform (RU) - Random distribution represents networks where

there is little control over deployment. Nodes are placed in any possible

position in the network using a uniformly random distribution. These

networks are also guaranteed to be connected. The major difference is

that some areas of the network have a lower density than other areas. Also,

there are no guarantees on the minimum or maximum degree of individual

nodes. Appendix A has examples of RU networks for each size and degree.

3.9 Evaluation Technique

To evaluate the system, OPNET 10.5A, a network simulation environment,

models and simulates the network. Simulation is used for various reasons. Since no

general analytical models exist for localization algorithms, one would have to be cre-

ated to evaluate this system. In addition, the time and resources necessary to create

and run actual wireless sensor networks of 30-300 nodes make direct measurement in-

feasible. The controlled, repeatable environment of a simulation make it the preferred

choice for this research.

The algorithms used in the system are designed and programmed in OPNET.

The implementation of these algorithms is validated against a manual execution of

each algorithm on a smaller network. Furthermore, the results of the experiment

are compared to results using similar configurations found in other work [LSS04a]

[PBDT03]. Results are not expected to agree exactly, but should have the same

trends and general behavior.
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3.10 Experimental Design

To evaluate the interaction between all the factors, a full factorial design is used.

There are five factors, with 2, 3, 3, 3, and 2 levels. A full factorial design requires

2×3×4×3×2 = 108 experiments. Sufficient statistical basis for analysis is expected

to be achieved with no more than 30 replications. This results in a total of 3240

experiments. Each experiment only needs to be run until the localization algorithm

finishes. The network area is determined by the required node degree, while the node

range is 15 meters. None of the networks used are irregularly shaped. The nodes

are modelled using omnidirectional antennas and bi-directional links. The MAC layer

protocol is the IEEE 802.11 wireless local area network (LAN) protocol. Even though

802.11 is used at the MAC protocol, collision, congestion, and retries are not modelled.

All messages are received.

The random seed is changed before each simulation run to ensure each is inde-

pendent. Errors are assumed to be normally distributed. Similar to [HHB+03], a 90%

confidence interval is used. Given all the factors of the network that are controlled,

the randomness in the node position and degree should have little impact. Thirty

repetitions should be sufficient to ensure a small variance.

3.11 Analysis

The analysis of the data supports the goals of the research. To allocate the

variation in the energy and error, an Analysis of Variance (ANOVA) on each commu-

nication response is performed. This shows if the variance in performance is due to

experimental error or real differences in the factors. A computation of effects calcula-

tion shows how much each level of each factor affects energy and error. To determine

if two levels of a factor are significantly different, a confidence interval for contrasts

is used. Finally, a linear regression to predict the energy used given the type of algo-

rithm, network size, average degree, network type and range error will be developed

with calculations for confidence intervals on the regression.
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To perform an ANOVA and a linear regression, several assumptions are made

and can be verified with visual tests on the data [Jai91]. To verify that errors are

independently and identically distributed (IID) the residuals are plotted versus the

predicted response. The plot is examined for any trends that suggests the errors are

not independent. By ensuring no trends in the spread of the residuals, the plot also

confirms that the standard deviation is constant. Experimental errors are verified to

be normally distributed by examining a plot of the quantiles of the residuals versus a

quantile of the normal distribution. A linear plot indicates that experimental errors

are normally distributed.

3.12 Summary

Wireless Sensor Networks is an exploding field of study and commerce. Their

dependence on location information, however, makes an effective and efficient local-

ization algorithm crucial. The most flexible WSNs are ad-hoc without anchors. Small

position error is important but is pointless unless node energy has been properly con-

served. This trade space is where algorithms need to be evaluated. The goal of this

research is to determine the factors that most influence energy usage and error in

anchorless localization algorithms as well as develop a model to predict localization

energy consumption. Below is a list of expected results of this research.

• Map Growing, the incremental algorithm, is expected to use less energy than

AFL, the concurrent algorithm. Once a node localizes in Map Growing it does

not need to communicate unless it is needed by a neighbor in the final phase.

This is the benefit of the incremental approach, once a node localizes, it is

essentially done (unless a refinement phase is added). However, with AFL, a

node may trade position broadcasts with its neighbors many times, depending

on the accuracy of the initial estimate and range error conditions. This may

lead to high communication costs. On the other hand, AFL’s optimization phase

makes it a good candidate to achieve less error.
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• Low degree networks are expected to need more energy to localize than high

degree networks. Since each node is in range of fewer other nodes, it takes more

messages to reach all the nodes in the network. With a higher node degree, a

single message reaches more nodes, reducing network traffic. Also, high degree

networks should be more accurate since each node should have more information

to use for localization.

• In general, incremental algorithms are expected to have lower accuracy. Error

tends to accumulate in incremental algorithms, causing large position errors at

the edges of the network. Concurrent algorithms avoid this problem.

• The larger networks should produce less accurate positions with Map Growing,

since the error will be able to propagate more in a larger network. This should

not affect AFL, a concurrent algorithm, since error only depends on a node’s

immediate neighborhood.

• A higher range error should force the accuracy to decrease and may require

more communication. A discrepancy in a distance may force nodes to delay

localization requiring more messages.

• Map Growing claims to localize 100% of the nodes. AFL only requires con-

nectivity to be localized, so it should have a high localized percentage. Higher

range error and lower degrees should negatively impact the percent localized.

This chapter defines the methodology used in this research to evaluate the energy

costs and error of anchorless localization algorithms. The node position estimation

system, its services, and workload are described in detail. The performance metrics,

system parameters, and experimental factors are defined. A complete description of

the experimental design and method of analysis is also provided.
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IV. Experiments, Data and Analysis

4.1 Introduction

This chapter discusses the energy and position error results from wireless sen-

sor network localization experiments using the Map Growing and AFL localization

algorithms. First, the validation and verification of the localization algorithms is

discussed followed by an overview of the data collection methods. Next, the error

performance of each algorithm is examined with respect to each factor, and the same

is done with localization error. The percent localized results are also discussed. Fi-

nally, the energy consumption model is presented which provides insight into the key

energy consumption finding.

4.2 Validation of Localization Assumptions

To simplify the localization simulations and analysis, several assumptions are

made. The transmission and reception range are assumed to be equal and consistent

across all nodes. Furthermore, this range is assumed to be equidistant in all directions.

Thus, if node A can hear node B then B can hear A. Some research suggests actual

node ranges vary by direction and by node [AV04], making it possible for B not to

hear A. However, most current WSN localization makes similar assumptions to make

simulations and analysis tenable. In actual practice, typical node operation mirrors

these assumptions [AV04]. Nodes are assumed to be on a planar region, that is in only

two dimensions. While it is possible to deploy a WSN in three dimensions (on hills

and buildings as well as the ground), two dimensional deployment is a common case

for applications such as environment monitoring and target tracking. Furthermore, at

this time, there are only a few localization algorithms that have been extended to three

dimensions [SRZF03]. The algorithms used herein only operate in two dimensions.

An additional simplifying assumption is that collisions and congestion is not modelled.

In the OPNET implementation of both algorithms, IEEE 802.11 is used as the MAC

protocol. IEEE 802.11 would not typically be used by wireless sensor nodes since

it requires the transceiver to be continuously on. Wireless sensor nodes would more
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likely use scheduled based MAC protocols that try to conserve battery power. IEEE

802.11 is used in the simulation instead because OPNET wireless sensor node MAC

protocols are not currently available and the power consumed due to localization,

not the MAC protocol, is the area of interest. With 802.11, if a message is not

acknowledged, the node retransmits until it is acknowledged or the retransmit limit is

reached. Both algorithm implementations only count the bits transmitted once, not

once for every retransmission. Also, when a node needs to transmit during a time

other nodes may transmit, the localization algorithm chooses a random time between

zero and five seconds to reduce the number of actual collisions in the simulation.

This has the effect of making collisions very unlikely. For example, during the initial

flooding phase of AFL to find the five reference nodes, the network averages about

5.17 retransmissions per node (300 nodes, average degree 8, Random Uniform network,

10% Range Error). After, adding the random delay, this is reduced to about 1.27.

While collisions occurs in WSNs, trial runs and analysis of the algorithms used has

determined it is not a significant factor with AFL and Map Growing. The most

common and largest packet sizes and typical transmission rates during localization,

along with trial data are also examined and while collisions can occur they do not

significantly affect the operation of either algorithm.

4.3 Localization Algorithm Validation

To compare the performance of the AFL and Map Growing localization al-

gorithms, each algorithm is implemented in OPNET 10.5A. OPNET is a network

simulation environment which allows a user to set up experiments from predefined

models and alter various model and network parameters. Although OPNET has sev-

eral models for ad hoc wireless networking, none are currently available for wireless

sensor networks, let alone those that implement localization algorithms. Thus new

OPNET models are developed, implemented, and validated against the published

results of each algorithm. OPNET is used for various reasons. It is a widely used

environment, allows great flexibility in development and statistic collection, and has
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built in functionality to handle node deployment and packet transmission. In imple-

menting each localization algorithm, the goal is to realize an algorithm whose behavior

exhibited the same trends as the target algorithm. For example, when implementing

Map Growing, the goal is to produce an algorithm that is range-aware and incre-

mental and whose error and performance follows the same trends as the published

results. Statistically identical behavior would be ideal, but detailed descriptions of

the algorithms have not been published so certain assumptions had to be made.

4.3.1 Map Growing. The published Map Growing results [LSS04a] use sev-

eral different types of networks and range error conditions to illustrate performance.

The two used to validate the OPNET implementation (referred to as OPNET-MG

when compared to the published results) are 1) 100 nodes placed in a grid with some

variance in the position resulting in an average degree of 6.47 and 2) 200 nodes placed

randomly in a 100m × 100m square resulting in an average degree of 12.35. The

published Map Growing results from both scenarios are compared against OPNET-

MG in Figure 4.1 and 4.2. In both scenarios, OPNET-MG was run on 30 randomly

created networks that were created using 30 different random seeds. Figures 4.1 and

4.2 are plotted with the 95% confidence interval of those 30 repetitions. In Scenario
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Figure 4.1: OPNET-MG Verification, 100 Nodes, Grid with variance
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1, the variance in the grid positions is implemented by creating networks with nodes

positioned at multiples of 10m apart in both the x and y axes and adding a value to

each coordinate drawn from a normal distribution with µ = 0 and σ2 = 0.25. This

results in a network with an average degree between 6.36 and 6.54, and the average

degree of all 30 repetitions is 6.45. The networks for Scenario 2 are generated in the

same manner as described in [LSS04a]. The resulting networks have an average degree

between 11.74 and 13.18, and the average degree of all 30 repetitions is 12.655.
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Figure 4.2: OPNET-MG Verification, 200 Nodes, Random Placement

In Scenario 1, OPNET-MG consistently results in a lower position error at range

error levels of 0.02 and higher and is identical below 0.02 range error. However, in

Scenario 2, OPNET-MG consistently results in a higher position at range error levels

of 0.01 and higher. In both scenarios, the error behavior of OPNET-MG had the same

trends as the published results. In Scenario 2, the position error increases gradually

and levels off or grows more slowly at range errors 0.07 to 0.12. With no range error in

the network, OPNET-MG produces no position error. This shows the implementation

is functional and able to correctly localize the network in the same way described

in [LSS04a]. Inspection of the localization times of each node of several runs confirmed

that OPNET-MG does indeed localize the network in an incremental fashion. In other
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words, the area of localized nodes grows out from the starting triangle. The difference

in behavior can be caused by one or more several possible factors. No original code or

any supporting data (including confidence intervals) used to create and test the Map

Growing algorithm was available for the development of OPNET-MG. Furthermore,

the original Map Growing algorithm was implemented and tested in Matlab which is

a much different development environment from OPNET. OPNET is a discrete event

simulation environment, while Matlab is a matrix driven computation and simulation

environment. The fundamental difference is that OPNET models the passage of time

while Matlab does not. Since the only specification of the algorithm is the paper

in which it was published, several details of the algorithm are vague and left to

interpretation.

For example, at the start of the algorithm, [LSS04a] assumes each node knows

the one-hop distance to each of its neighbors. In OPNET-MG, this is accomplished

by an exchange of messages in which each node broadcasts a “HELLO” and responds

to each received “HELLO”. This enables each node to build a list of neighbors. Since,

later in the algorithm, each node needs to know the neighbors of its neighbors, each

node also broadcasts a message that includes its neighbor list. In [LSS04a], the

starting node is required to have a degree no smaller than any of its neighbors, but is

chosen randomly. In an effort to choose the best starting node possible, OPNET-MG

implements a flood-based voting algorithm in which only messages originally from the

node with the higher degree get forwarded on, until eventually all nodes are aware of

the starting node. Once the starting node is picked, [LSS04a] chooses 2 nodes that

form a triangle with no angle less than 30o, and sets the coordinates for each of these

nodes based on the one-hop distances between each pair of nodes and trigonometry.

After the initial 3 nodes have their position, they broadcast it to all their neighbors.

If another node receives 3 different position broadcasts it can use trilateration and

the known one-hop distance estimate to localize itself. The trilateration method is

not disclosed in [LSS04a]. OPNET-MG implements the trilateration method outlined

in [LR03]. This method is described in detail in Appendix B. This method also
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uses residue to signal an inconsistent result. Residue is essentially an average of the

differences between the given one-hop distances and the distance resulting from the

trilateration. The residue equation is also included in Appendix B. From empirical

testing, it was found that rejecting trilateration results with a residue greater than

RANGE
12

produced the best results. Thus, the algorithm could be selective and reject

combinations of neighbor positions that would result in erroneous position estimates.

If a node does not have 3 localized neighbors, it uses the 2 beacon solver pro-

vided. First the node estimates the two possible positions it can be at based on its 2

localized neighbors. Now the node leverages the constraint that his localized neigh-

bors have neighbors the node doesn’t know about. For example, in Figure 4.3, P is

able to determine his position is either at p1 or p2. Assuming the position broadcast

messages from A and B also included a list of localized nodes that they know about,

P can deduce that, since it does not know about N , its position cannot be p1 and

must be p2. In practice, a node may have more than 3 localized neighbors but not

be able to localize accurately with any combination of them, because the residual is

too high. In this case, the node can use one of the many combinations of 2 nodes

and the 2 beacon solver to estimate its position. The description of Map Growing

in [LSS04a] did not specify a clear way to proceed in this situation. Based on pilot

studies, it was found that the best results were obtained when a node averaged the

results of all the combinations and then discarded any results far from the average. A

p1N p2

B

A

b

a

P

Figure 4.3: Two Beacon Solver: Nodes A, B, and N have localized. P uses infor-
mation about N to eliminate p1 or p2 as a possible position
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combination of ranging errors and geometry made it possible for the 2 beacon solver

to actually give the wrong answer. Discarding results far from the average prevented

these from being used in the estimate. The threshold at which to discard a result was

empirically found to be RANGE
3

.

The authors of Map Growing claim that the algorithm will localize all nodes

because of a final phase that uses 3-6 of their closest neighbors and lateration. The

percent OPNET-MG localized in both scenarios is plotted in Figure 4.4. This claim

implies the resulting estimate is accepted no matter how high the residue value may

be. In testing of OPNET-MG, this method provided localized nodes with very high

position errors. This often happened when a node could not localize in a previous

phase because its localized neighbors were collinear. Accepting the trilateration results

of 3 collinear localized neighbors provides very poor position estimates. As a result,

OPNET-MG only allows a node to localize in the final phase if it finds a set of three

neighbors that trilaterates with a residue < RANGE. The result is that less than

100% of the nodes are localized, especially in high range error conditions, but it avoids

the position error of the nodes localized with a high residue in the final phase.
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The final phase of Map Growing is only used if anchors are available and global

coordinates are desired. During this phase, all anchors broadcast their global and

relative coordinates. This information is relayed across the network until all nodes

have information about all anchors. The nodes then use three of the anchors and

a two-dimensional affine coordinate transformation to determine their global coordi-

nates [WG97]. This phase is implemented for the purposes of verifying OPNET-MG,

but it is not used in the actual experiments, since the focus of the work is on anchorless

localization algorithms.

While the performance of the OPNET-MP did not exactly match the published

results exactly, the major trends in its behavior performed similarly. Also, OPNET-

MG was confirmed to localize the network in an incremental fashion. This meets the

two major goals of the OPNET-MG and allows it to be compared against a concurrent

localization algorithm.

4.3.2 AFL. The published AFL results [PBDT03] used several scenarios to

test different aspects of the algorithm and to compare it to other types of algorithms.

The scenario that most closely resembled the intended use of AFL herein is used

to validate the OPNET version of AFL (referred to as OPNET-AFL when being

compared to the published results). The scenario includes 10 repetitions on a 250

node network with fractional range errors ranging from 0.01 to 0.07 and the average

degree of the network ranging from 5 to 13. The fractional error is modelled as

described in [PBDT03]. According to [PBDT03], one-sided errors are more difficult to

overcome, so the ranging error is taken as a sample from a uniform random distribution

between zero and a fraction of the true distance between two nodes. For example,

if the range error level is 0.01, and the true distance between two nodes is 10m, a

value sampled from a uniform random distribution between 0 and 0.1m would be

multiplied by the true distance, used as the range error and then simply added to the

true distance. Even though this range error model is used for validation, the range

error model described in the previous chapter is used in the actual experiments. The
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metric used in [PBDT03] is Global Energy Ratio (GER). The intent of this metric is

to capture the global structural property of the resulting network and report errors

due to variation in range accuracy. GER is the root-mean-square normalized error

value of the node-to-node distances [PBDT03]. GER is

GER =

√∑
i,j:i<j êij

2

N(N − 1)/2
(4.1)

Where eij is the difference between the true distance and the localized distance, and

the error normalized by the true distance is êij =
d̂ij−dij

dij
. Since the denominator

includes N(N − 1)/2 this metric reports disproportionately smaller GER values for

larger networks. As such, it cannot be used to compare performance of networks of

different sizes. However, to compare OPNET-AFL against its published results, GER

is collected and reported. The performance of the OPNET-AFL and AFL’s published

results are shown in Figures 4.5 and 4.6. Two dimensional versions of these graphs

split up by degree are included in Appendix C. Examining the graphs and their source

GER
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Figure 17: The value of global-error-ratio for AFL under dif-
ferent error and connectivities.
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Figure 18: Ratio of GER of incremental scheme vs AFL.

often larger by more than 10, an order of magnitude. The ra-
tio increases with small increases in ranging error (which is
never more than 1% in the experiments).

Figure 19 shows the maximum error between any two nodes
after running the AFL algorithm. When the graph undergoes
some physical deformation, this is identical to some points
in the graph moving with respect to other points. Hence the
maximum error between any two points corresponds to the
maximum deformation the graph has undergone. Figure 19
shows the superior performance of AFL under ranging errors,
since the maximum distance error between any two points is
small most of the time. In most cases the absolute position
error is smaller than the radio range, showing a degree of ro-
bustness to error that is significantly better than in previously
published schemes.

Finally, Figure 20 shows the ratio of the maximum error be-
tween any two unconnected nodes in the incremental algo-
rithm and AFL. As mentioned earlier, the maximum error be-

(Maximum AFL error)/(range)
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Figure 19: Maximum error between any two unconnected
nodes as a fraction of the range.
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Figure 20: The ratio of the maximum errors between any two
unconnected nodes in incremental and AFL respectively .

tween unconnected nodes is a good measure of the overall
structural accuracy of the resulting graphs. Hence as far as
total structural rigidity is concerned, AFL easily outperforms
the incremental algorithm.

6 Conclusion

Many sensor network applications require that each node’s
sensor stream be annotated with its physical location in some
common coordinate system. Manual measurement and con-
figuration methods for obtaining location don’t scale and are
error-prone, and equipping sensors with GPS is often expen-
sive and does not work in indoor and urban deployments.
Sensor networks can therefore benefit from a self-configuring
method where nodes cooperate with each other, estimate lo-
cal distances to their neighbors, and converge to a consistent
coordinate assignment.

11

Figure 4.5: AFL Published GER
[PBDT03]
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Figure 4.6: OPNET-AFL GER

data shows that OPNET-AFL performs similarly and often better than the baseline

version with degrees 6 and above. In both versions, GER increases as connectivity

drops and as fractional error increases. The performance numbers are also very close.

The only major difference is with networks of degree 5. OPNET-AFL performs much

worse in this case. If a graph of the network is considered a bar-and-joint framework,
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it is rigid if it cannot be flexed while preserving the distances (as in a rectangle, for

example). Even if the graph is rigid, it may be subject to local flips. For example,

if there are just two triangles sharing an edge, one triangle can be reflected through

that edge without any distances changing. We call such a graph rigid but not globally

rigid. For AFL to work given just edge lengths, we need a globally rigid graph that

has exactly one embedding [PBDT03]. The AFL authors report necessary precautions

were taken to reduce the possibility of non-rigid graphs, which is very important with

low degree networks. A uniform local density was maintained by adding nodes to

those positions that had a number of neighbors below a certain threshold based on

the average degree of the network. Despite requesting details about this method of

network generation, the actual method was not available to replicate. Instead, the

constant density network generation method was used, in which the network area is

split into a grid and an equal number of nodes are randomly placed in each square.

This method seems to be sufficient for degrees 6 and higher, but for degree 5 it did not

effectively prevent non-rigid graphs resulting in poor performance on those networks.

Upon inspection of the GER values for the degree 5 experiments, 3 samples are found

to be consistently 2-3 times worse than the others in the set for all fractional range

errors. These networks are likely non-rigid graphs and drive the GER values up, while

also increasing the 95% confidence interval to 30-60% of the value. Fortunately, since

networks with an average degree less than 8 are not used in this research, this is not

a critical issue.

As with the Map Growing algorithm, some details of AFL are not explicitly

defined. One instance of this occurs in the first phase of the algorithm. During this

phase, an arbitrary node n0 uses hop counts (h0,1 is the number of hops from node n1

to n0) to determine which node, n1, is farthest away. Node n2 is chosen by finding the

node that maximizes h1,2. Node n3 minimizes |h1,3−h2,3| while maximizing h1,3+h2,3.

This causes n3 to be roughly equidistant to n1 and n2 but also on or near the edge

of the network. Node n4 is similarly found as the node that minimizes |h1,4 − h2,4|

and maximizes h3,4. At this point, nodes 1-4 are on the edge of the graph and form a
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set of axes that are roughly perpendicular. Node n5 is the approximate center of the

network and is found by minimizing |h1,5−h2,5| and minimizing |h3,5−h4,5|. Once all

5 reference nodes are found, and all nodes know their hopcount to each, each node can

estimate its position using polar coordinates. In OPNET-AFL, this is accomplished

with 5 rounds of a node requesting all others to send it their hopcounts. Care was

taken to prevent repeated traffic if possible. For instance, subsequent copies of the

same request are ignored by a node.

A node uses polar coordinates converted to cartesian coordinates as its initial

position. Once it has its initial position, the node broadcasts its position to its

neighbors. The description of AFL in [PBDT03] specifies each node will periodically

send this position estimate out to all its neighbors. A node is to estimate its position

based on its current estimated position, the measured distances between itself and

its neighbors and the estimated positions of its neighbors. However, the timing of

broadcasting a node’s position estimate, receiving estimates from all of its neighbors,

and estimating a new position was not described in [PBDT03]. In OPNET-AFL,

a node updated its position every 5 seconds and sent out a broadcast of this new

position immediately after. This seemed to allow enough time for a node to collect

enough updates to make the effort of a new estimate worth it, while not wasting

too much time waiting for updates. When it was time to estimate a new position, a

node ni calculates the estimated distance d̂i,j to each neighbor nj. It already has the

measured distance, ri,j to each neighbor from the first phase. Let v̂i,j represent the

unit vector in the direction of the estimated position of ni to the estimated position

of nj. The force
−→
F i,j in the direction v̂i,j is

−→
F i,j = v̂i,j(d̂i,j − ri,j). (4.2)

The sum of the forces from all neighbors gives the resulting force on the node ni

−→
F i =

∑
i,j

−→
F i,j. (4.3)
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The difference between the measured and estimated distances creates a corresponding

position energy Ei,j and has a magnitude of
−→
F 2

i,j. The total position energy of a node

ni is

Ei =
∑

j

Ei,j =
∑

j

(d̂i,j − ri,j)
2. (4.4)

The position energy of each node reduces when it moves an infinitesimal distance

in the direction of resultant force. The distance the node moves should satisfy two

conditions. 1) The energy of the new position must be less than the energy of the

current position. 2) Moving to the new position does not result in a local minima.

Since the energy at the current and new position can be calculated, the algorithm

can guarantee the first condition is met. The second condition is met by moving only

small amounts inversely proportional to the number of neighbors |
−→
F i|
2mi

. This value

was empirically selected by [PBDT03] and is used in OPNET-AFL. The last part of

the algorithm determines how a node decides to stop estimating new positions which

is not explained in [PBDT03]. Early testing of OPNET-AFL, indicated a simple

threshold for the move distance did not perform consistently in all network sizes and

all degrees. Monitoring of the position energy of the nodes reveals the behavior of

the refinement. As can be seen in Figure 4.7, the position energy starts very high

because the phase one position estimate is quite inaccurate. The position energy drops

rapidly, then levels off, and drops more slowly. At first glance it seems this supports

the usage of a simple threshold for the change in energy. Unfortunately, different

nodes bottom out at different levels, Additionally, this position energy also depends

on node degree. Figure 4.8, shows the energy for a node through the end of the run.

A very low move distance threshold is used in Figure 4.8 to observe the behavior over

time. From this figure and observing similar plots from other nodes, it is evident

that the energy eventually rises slowly. This is possible because the neighbors of the

observed node are still updating their positions causing the energy of the observed

node to change. Through testing it is known that this period also signals the end of
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Figure 4.7: Position Energy of a Sample AFL Node vs First 100 iterations

useful iterations. As a result OPNET-AFL maintains a count of the current number

of iterations completed and an average of the previous window of position energy

values for that node. Once a new average surpasses a previous average, the node can

stop estimating positions. An average is used to ensure the general trend is moving

up. The size of the window depends on the degree of the node.

The verification of OPNET-AFL shows it behaves very closely to or better than

the published results in almost every situation. The only situation that it does not

match closely is with networks with an average degree of 5 due to differences in the

network generation method. Like the Map Growing algorithm, several implementation

decisions had to be made in the absence of an explicit description of the algorithm

details.

4.4 Data Collection Methods

Using OPNET implemented versions of an incremental (Map Growing) and

concurrent (AFL) wireless sensor network localization algorithm, the experiment seeks

to determine 1) the most important factors to energy consumption in localization, 2)

the type of anchorless algorithms that provide the best position accuracy and the most
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Figure 4.8: Position Energy of a Sample AFL Node through the end of the run

efficient energy usage and 3) to develop an energy consumption model to predict

energy consumption of incremental and concurrent algorithms in various networks

environments. To this end, the localization models are run on a set of network of

differing types (Constant Density and Random Uniform), differing sizes (30, 100 and

300), differing average degrees (8, 12 and 16) under differing range error conditions

(normal distributed errors averaging 2, 5 and 10% of the actual distance). Networks

are created by using Perl scripts, listed in Appendix D. The Perl scripts read in a

list of seed numbers then generate a network for each seed varying the size, degree

and type for all 18 (2 types, 3 sizes, 3 target degrees) desired combinations. The

scripts check that the graph is connected and is within the desired range of the target

degree. Networks in this experiment have an average degree in the range of the

target degree ±0.05. Data is collected by text output from the OPNET model that

reports the factors and other data on a per node and per run basis. The data is then

aggregated and analyzed. For the average transmitted and received bits, the OPNET

model implementing the algorithm also attributed a number of bits associated with

every field in every packet sent and received through the end of the simulation. The
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number of bits and messages sent and received is totaled and averaged over all nodes

in the network, yielding the average number of bits received and transmitted for that

run. The average distance error is calculated at the end of the simulation after every

node has either localized or finished trying. The percent localized is calculated and

written to the output file at this time also. In all graphs and tables in this section, a

confidence interval of 90% is used.

4.5 Error Performance

The ultimate goal of any localization algorithm is to accurately determine the

position of all the nodes in the network. For both AFL and Map Growing the average

distance error performance is analyzed with respect to each factor. A computation

of effects is also used to determine how the levels of each factor affect accuracy.

Additionally, Appendix E includes graphs of the networks on which AFL and Map

Growing achieved their best, worst and average performance. Graphs of the resulting

position estimates from both algorithms are also included for comparison. This should

provide a qualitative assessment of the performance for each.

4.5.1 Algorithm. Since AFL uses significant refinement in its position es-

timation, it is expected to produce more accurate localization results. As shown, in

Figure 4.9, AFL meets expectations. In both CD and RU networks, AFL has a much

lower resulting Average Distance Error (ADE) than Map Growing. On the average,

with CD networks the ADE of Map Growing is well over twice that of AFL. For RU

networks, they are closer but AFL is still much better due to the extensive refinement

that AFL does. Map Growing has higher errors for several reasons. Map Growing

is an incremental algorithm that starts with 3 localized nodes and expands to the

edges of the network. The accuracy of every node’s position estimate is dependent

on the accuracy of the two or three neighbors that nodes uses to localize with. These

conditions allow errors in earlier position estimates to be carried into estimates made
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by nodes that localize later. As a result, errors often grow the farther a node is from

the starting triangle. With no refinement, these errors remain in the final estimate.
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Figure 4.9: Plot of Average Distance Error by Algorithm and Network Type

4.5.2 Network Type. While Map Growing performs statistically no different

on CD and RU networks (according to Table H.8 in Appendix H), AFL has a signif-

icantly higher ADE for RU networks. CD networks are more evenly spread out over

the network area and all nodes tend to have very similar degrees. RU networks are

randomly deployed and often have areas with much higher degrees and other areas

with much lower degrees. Since Map Growing only needs two or three eligible nodes

to localize with, the degree is less important. Additional neighbors do not help at all.

AFL is different. Each node uses input from all its neighbors to refine is position and

the more neighbors it has, the more position “force” corrections it can use. Since RU

networks have areas with lower degrees, these nodes suffer from having less neighbors

and result in worse position estimates. CD networks have less of these type of nodes,

so AFL is able to localize them all equally well. Similarly, when using AFL, nodes

are better served by having their neighbors spread around the node evenly, rather on

one side only. This creates more directions from which the position corrections are

provided. Nodes that have neighbors only on one side do not have this benefit and

their position accuracy suffers. If a network is more concave, or curves inward, in
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many places, more nodes fall in this category. With fewer directions to help balance

the position “forces”, the node requires more iterations and achieves less accuracy.

This phenomenon is confirmed by comparing ADE performance with images of the

network layout such as those in Appendix G, which has examples of concave and

convex networks. There are more RU networks that have this behavior than CD net-

works. This is another reason AFL performs worse on RU networks. On the other

hand, Map Growing only depends on the direction to two or three of its neighbors,

so it is less susceptible to this effect.
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Figure 4.10: Average Distance Error vs Network Type and Range Error

4.5.3 Range Error. For most localization algorithms, range error negatively

affects the accuracy of the position estimates. As seen in Figure 4.10, this is also the

case with AFL and Map Growing. Both algorithms perform significantly worse as

range error is increased. The only difference between the two algorithms is that the

ADE of Map Growing degrades much more quickly than AFL. This is also probably

due to the refinement AFL does. Map Growing accepts the distance estimate with all

the range error it may have, while AFL iteratively refines the position estimate and

reduces the effect of errors in the distance estimate.
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Figure 4.11: Average Distance Error vs Network Type and Size

4.5.4 Network Size. Examining how ADE changes with network size gives

an indication of how well a localization algorithm scales. The ADE of both AFL and

Map Growing versus Network Size and Type is shown in Figure 4.11. The figure

suggests that Map Growing does not scale nearly as well as AFL. As size increases for

Map Growing, the ADE increases very quickly as compared to AFL. Also, for AFL

as the network size grows from 100 to 300, the ADE levels off and does not increase

as much. The ADE for Map Growing increases by large amounts for increases in the

size. For instance, the ADE for Map Growing with 300 nodes is about double the

ADE of AFL in RU networks and more than triple in CD networks. Map Growing

allows errors in previous estimates to be carried forward to degrade future estimates

of other nodes. If a network is larger, this propagation of errors is carried further.

The further it is carried, the worse the error gets until the map grows to the edge of

the network.

4.5.5 Degree. AFL depends heavily on node degree for its refinement. A

node will localize quicker and more accurately with more neighbors. On the other

hand, Map Growing only depends on having two or three eligible neighbors. Anything

beyond that does not make much of a difference in terms of accuracy. These trends

are both illustrated in Figure 4.12. The figure shows that the ADE of AFL drops
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Figure 4.12: Average Distance Error vs Network Type and Degree

dramatically as the degree is increased. ADE is best when the degree is highest.

According to table H.8 in Appendix H, which is the table of effects for ADE using

Map Growing, the effect of degree 8 and 12 is not significantly different. Also, the

effect of degree 16 (±0.2) is very slight. This indicates the accuracy of Map Growing

does not change very much as the average degree of the network changes. While

increasing the degree of the network when using AFL will improve ADE, there are

diminishing returns above degree 12. The amount of improvement between degree

8 and 12 is much more than between 12 and 16. This is true for both CD and RU

networks. This is likely because once a node has a certain number of neighbors and

is able to localize effectively, more neighbors do not help as much.

4.5.6 Computation of Effects on Average Distance Error. A computation

of effects determines the effect each level of a factor has on a response. Figures 4.13

and 4.14 plot the main effects of each level of each factor for ADE. The AFL main

effects plot shows how ADE increases with network size but increases more slowly

after 100 nodes. Increasing the degree reduces ADE but levels off at higher degrees.

AFL performs better on CD networks than RU because of the more stable degree

and less incidence of concave areas in CD networks. Range error degrades ADE for

AFL in an approximately linear fashion. Figure 4.14 shows how poorly Map Growing
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Figure 4.13: AFL Main Effects Plot of Average Distance Error

scales in terms of accuracy. It also shows how degree and type have little effect on

Map Growing position accuracy. Similar to AFL, increasing the range error results

in a linear increase in ADE. The ADE Computation of Effects table for both Map
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Figure 4.14: Map Growing Main Effects Plot of Average Distance Error
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Table 4.1: Table of Effects for Map Growing Average Distance Error
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 6.79 0.08 6.65 6.93
0.02 -3.09 0.12 -3.29 -2.89

RE 0.05 -0.46 0.12 -0.65 -0.26
0.10 3.55 0.12 3.35 3.74
8 -0.07 0.12 -0.27 0.13

Degree 12 -0.13 0.12 -0.33 0.07
16 0.20 0.12 0.00 0.40
30 -5.18 0.12 -5.38 -4.98

Size 100 -1.85 0.12 -2.04 -1.65
300 7.03 0.12 6.83 7.23

Type CD -0.07 0.08 -0.21 0.07
RU 0.07 0.08 -0.07 0.21

Growing and AFL is included in Appendix H. A summary of the ADE effects is

shown in Tables 4.1 and 4.2. The tables show that Map Growing network size has the

largest effect on the mean followed by range error. It also shows that neither degree 8,

12 nor 16 are significantly different than the mean. For AFL, the tables show degree

has the largest effect on the mean followed by range error and network size, which

have similar effects. All levels of all factors for the ADE of AFL are significantly

different than the mean. Tables for the contrasts of each pair of levels for all factors

and both algorithms are included in Tables H.9 and H.18 in Appendix H. At a 90%

confidence level, the contrasts reveal there is no statistical difference in ADE between

degree 8 and 12 and either type for Map Growing. For AFL, all levels of all factors are

significant at the 90% confidence level. This suggests Map Growing performs equally

well in terms of accuracy on networks of either type, with degrees 8 or 12.

4.6 Percent Localized

The percentage localized metric indicates how many of the nodes an algorithm

is expected to localize under different conditions. The better coverage an algorithm

has, the more likely the localization results can be used for sensor coordinates or

location based routing.
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Table 4.2: Table of Effects for AFL Average Distance Error
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 3.36 0.06 3.25 3.46
0.02 -1.53 0.09 -1.68 -1.38

RE 0.05 -0.32 0.09 -0.47 -0.17
0.10 1.85 0.09 1.70 2.00
8 3.95 0.09 3.80 4.10

Degree 12 -1.47 0.09 -1.62 -1.32
16 -2.48 0.09 -2.63 -2.33
30 -1.69 0.09 -1.84 -1.54

Size 100 0.28 0.09 0.13 0.43
300 1.41 0.09 1.26 1.56

Type CD -0.93 0.06 -1.03 -0.82
RU 0.93 0.06 0.82 1.03

4.6.1 Algorithm. For AFL, any node connected to the network will receive

all hopcount requests from the 5 reference nodes, since the requests are flooded. If

all hopcount requests are received, the node is able to estimate a position using the

polar coordinates described earlier. Once it has this position estimate, it is technically

considered localized. Even if it has only one neighbor, it can still refine the position

considerably. Since connectivity is all that is needed for a node to localize in AFL

and since all networks in this research are connected, AFL localized all nodes under

all configurations. This is shown in Figure 4.15.

Map Growing has different localization requirements. To 3-beacon localize, a

node must have at least 3 neighbors that are non-collinear with a sufficiently small

residual. The residual is a measure of the difference between the localized distances

and the true distances. If there is error in the estimated distance (such as with RSSI)

this increases the chance of a poor residual. For 2-beacon localization a node must

have 2 neighbors that are non-collinear with the node and one must have a localized

neighbor. Given these requirements, a low degree, error in the distance estimates, or

poor geometry of nodes can all cause a node to not localize. This effect is reflected in

Figure 4.15. Map Growing overall localizes 90% or more of the networks, but does not

consistently localize 100% as AFL does. Since AFL networks localized all networks,
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the main effect plots and table of effects are trivial and not included. The table of

computation of effects, effects summary and contrasts for the AFL percent localized

are included in Appendix H.
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Figure 4.15: Plot of Percent Localized by Algorithm and Network Type

4.6.2 Network Type. Figure 4.15 also shows Map Growing does not localize

RU networks as well as CD networks. This is likely due to RU’s inconsistent degree

across the network. Some areas of the network do not have enough nodes or not

enough eligible nodes to localize with. Furthermore, with lower degrees it is possible

a node that connects 2 components will not localize. In this case the component not

yet localized may never localize, since the map cannot grow to it. For these reasons,

Map Growing does not localize as many nodes on RU networks compared to CD

networks.

4.6.3 Range Error. Figure 4.16 shows that range error has little effect on the

percent localized using Map Growing. The average for a range error of 0.1 is slightly

lower for both CD and RU networks, but it is within the 90% confidence interval of

0.05 in both cases. While range error may cause some nodes to not localize due to

bad resulting residuals, this case is rare and does not affect Map Growing percent

localized nearly as much as other factors.
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Figure 4.16: Percent Localized vs Network Type and Range Error

4.6.4 Network Size. For CD networks, network size does not affect the

percent localized nearly as much as it does in RU networks as shown in Figure 4.17.

RU 100 and 300 node networks perform significantly worse than 30 node networks,

while all CD networks perform similarly. This is likely due to map partitioning. When

two components of a network are connected by very few nodes, and those nodes do

not localize, the entire unreached component is not localized. This effect is more

probable as the network grows. Additionally, with an inconsistent degree across the

network, as with RU networks, this effect becomes very common.

4.6.5 Degree. Figure 4.18 shows that in both CD and RU networks, Map

Growing localizes significantly less with degree 8 networks, while achieving close to

100% with degree 12 and 16. In degree 8 networks, the partitioning effect discussed

above is much more common. As a result, the percentage localized drops.

4.6.6 Computation of Effects on Percent Localized. Figure 4.19 plots the

main effects of all factors on Map Growing percent localized. Range error is the only

factor with little effect on percent localized. Degree has the largest effect on percent

localized and degree 8 networks have the worst percent localized of any other single

category. This plot also shows that the worst type of network for Map Growing is
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Figure 4.17: Percent Localized vs Network Type and Size
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Figure 4.18: Percent Localized vs Network Type and Degree

RU, with 100 or 300 nodes and degree 8. This is the worst category of networks for

Map Growing by far. The average percent localized for this category is 65.85%, while

all other networks average 98.54%. With so few nodes localizing in this category,

the effect can be seen in other responses. There are fewer nodes broadcasting their

position and localized neighbors and the broadcasts that do occur are smaller. This

drives down the number of messages and bits transmitted and received. Since so

few nodes localized in this category and the behavior is drastically different than

networks that localize more than 90%, the residuals of this category are not normally
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distributed. This prevents the ANOVA and linear regression assumptions from being

met. As a result, degree 8 networks are removed from the Average Transmitted and

Received Bits ANOVA and regression. The table of effects for Map Growing percent

localized is included in Table 4.3.
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Figure 4.19: Map Growing Main Effects Plot of Percent Localized

Table 4.3: Table of Effects for Map Growing Percent Localized
Parameter Level Mean Effect Std Dev Upper CL Lower CL

Mean 94.90 0.21 94.56 95.25
0.02 0.31 0.30 -0.18 0.80

RE 0.05 0.26 0.30 -0.23 0.75
0.10 -0.57 0.30 -1.06 -0.08
8 -9.44 0.30 -9.93 -8.95

Degree 12 4.42 0.30 3.93 4.91
16 5.02 0.30 4.53 5.51
30 3.81 0.30 3.32 4.30

Size 100 -1.02 0.30 -1.51 -0.53
300 -2.79 0.30 -3.28 -2.30

Type CD 3.40 0.21 3.06 3.75
RU -3.40 0.21 -3.75 -3.06
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4.7 Energy Performance

Since communication is the most expensive operation of a WSN, the number

of bits transmitted and received is important to the overall energy consumption of

a node. The following section analyzes the energy performance of each algorithm

with respect to each factor. An ANOVA and computation of effects is presented to

determine which factors contribute most to the energy variation and how much each

level of the factors affects energy use.
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Figure 4.20: Average Transmitted & Received Bits by Algorithm & Network Type

4.7.1 Algorithm. To compare the communication cost of each algorithm, the

average performance of average bits transmitted and received is plotted in Figure 4.20.

The figure shows that AFL requires much more communication than Map Growing. In

fact, on average AFL requires over 5 times as many transmitted bits and over 36 times

as many received bits. The major reason for this difference is the AFL refinement

phase which takes many iterations. For a typical network of any appreciable size, the

AFL refinement can take between 700 and 2,500 iterations depending on the degree

of the network. During each iteration, each node broadcasts its position and receives

position broadcasts from all of its neighbors. As a comparison, Map Growing averages

35.43 messages for the entire algorithm. Additionally, during AFL’s first phase to find

the 5 reference nodes, all nodes are required to respond to a hopcount request from
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one of the reference nodes 5 times. Each time, the request is flooded to all nodes

in the network and every reply from all nodes is flooded back to the reference node.

This phase is also expensive compared to Map Growing.

4.7.2 Network Type. Figure 4.20 also illustrates the average number of

transmitted and received bits for each network type. In both, average bits transmitted

and average bits received, Map Growing performed similarly in both the RU and

CD networks. As shown in Table H.3 in Appendix H, the Map Growing Average

Transmitted Bits is not statistically different for either type of network. At the same

time, AFL is more sensitive to the difference and performs worse on RU networks than

CD networks. Map Growing performs similarly on each network because the algorithm

does not depend as much on the degree of each node. The algorithm depends more

on the geometry of a node’s neighbor. For Map Growing, having 8 neighbors is

the same as 16 if no subset of 3 are non-collinear. On the other hand, AFL uses a

“force” correction from each neighbor to refine the position. The more neighbors,

the more information for refinement. The low degree areas of the RU networks have

less information to refine with, so they work longer with more messages to balance

the “force” corrections. As a result, AFL requires more messages for RU networks,

causing more bits to be sent and received.

4.7.3 Range Error. Since range errors cause range aware algorithms to

localize on less accurate information, range errors are expected to cause the number

localization criteria fail more often forcing algorithms to take longer to localize and

use more energy in the process. As Figures 4.21 and 4.22 show, the communication

of both AFL and Map Growing is affected little by varying range errors. In the Map

Growing plots, for both Average Received and Transmitted Bits, the mean at each

range error level is within the confidence interval of the other range error levels, which

means that the means of each range error level are not statistically different from each

other. Since the confidence intervals of all the range errors also contain the mean,

the range error factor does not have a significant effect on either Average Received or
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Transmitted Bits. It turns out that range errors only causes the localization criteria to

fail in a few cases for Map Growing. Similarly, the mean of the Average Transmitted

and Received Bits at each range error level is within the mean of the other levels,

indicating that each range error level is not statistically different from each other and

that range error is not a significant factor for AFL communication also.
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Figure 4.21: Average Transmitted Bits vs Network Type and Range Error
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Figure 4.22: Average Transmitted Bits vs Network Type and Range Error

4.7.4 Network Size. Similar to range error, the size of the network does

not change the average communication of Map Growing. In Figure 4.23 and 4.24,
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the different levels of the network size factor are not significantly different from each

other, implying that the Average Transmitted and Received Bits does not change

significantly in response to changes in the network size. This is true because with

Map Growing there is little network-wide traffic that causes the average node com-

munication to increase. On the initial starting node vote requires messages to traverse

the network. The rest of the algorithm is dependent on the immediate neighborhood

of the node. The size of the network would not change the characteristics of this

immediate neighborhood and therefore has little effect on average node communica-

tion costs. As for AFL, an increase in the size of the network slightly increases the

average number of transmitted and received bits as shown in Figures 4.23 and 4.24.

Unlike Map Growing, AFL has several steps in the algorithm that require network

wide communication. To find all 5 reference nodes a request is flooded to all nodes

and a response from all nodes is flooded back to the requester. With more nodes in

the network a single node is likely required to forward more replies, increasing that

node’s number of transmits and receives. Since the reference node finding phase uses

much less communication than the refinement phase, this phenomenon has only a

modest effect on the average transmitted and received bits. The refinement phase

does not depend on the size of the network and also accounts for most (well over

90%) of the transmitted and received bits in AFL. In Random Uniform networks,

AFL transmitted and received bits increases with network size. Since RU have areas

with differing node degrees, they are more likely to have areas that are connected

by only one or two links between nodes. This creates a “bottleneck” path for net-

work wide communication. Nodes along this path transmit and receive an inordinate

amount because of the extra traffic to forward. RU networks are randomly deployed

so there is no guarantee that there will be any nodes in a given area. As a result,

RU networks are more likely not to have a direct path between nodes. As a result,

the network wide traffic has to traverse around areas with no nodes increasing the

communication used. CD networks avoid both of these issues by having a relatively

constant degree across the network.
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Figure 4.23: Average Transmitted Bits vs Network Type and Size
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Figure 4.24: Average Received Bits vs Network Type and Size

4.7.5 Degree. Unlike range error and network size, degree has a very signifi-

cant effect on both Map Growing and AFL communication, as can be seen in Figures

4.25 and 4.26. The effect is dramatic but opposite in each algorithm. With Map

Growing, as the degree increases so does the Average Transmitted Bits. This increase

is more related to larger packets rather than to more packets. When a node localizes,

it broadcasts its position estimate as well as a list of all the neighbors along with their

estimated position if known. As the degree increases, each node knows about more
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other nodes. This increases the size of each position broadcast packet, causing each

node to transmit more as the degree rises. This is not the trend with AFL.

In AFL, the size of each transmission does not depend on the number of neigh-

bors a node has, so it is fairly constant. As discussed earlier, if a node has a higher

degree it has more information to refine with and is able to balance the position

“forces” much quicker than if it had fewer nodes. As a result, the higher the de-

gree, the less refinement iterations a node uses, the less messages and bits it needs to

transmit. With lower degrees, more iterations are needed driving up transmissions.

For 300 nodes, degree 16 networks required about 700 - 900 iterations, while degree

8 networks typically required over 2,000. After degree 12, increasing the degree has

diminishing returns. The decrease in Average Transmitted Bits from degree 12 to

degree 16 is much less than that between degree 8 and degree 12. This suggests that

at or around this degree, the node is able to refine efficiently and a higher degree does

not help as much. This is also supported by the ADE data.
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Figure 4.25: Map Growing Average Transmitted Bits vs Network Type and Degree

For Map Growing, the trend in Average Received Bits follows almost exactly

the Average Transmitted Bits trend. As seen in Figure 4.27, with higher degrees,

nodes broadcast with from about more neighbors increasing the message size and

increasing the number of bits received at the same time. The trend for AFL Average
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Figure 4.26: AFL Average Transmitted Bits vs Network Type and Range Error

Received Bits does not follow the Average Transmitted Bits as closely. As the degree

increases from 8 to 12, the Average Received Bits drops in much the same way as it

did for Average Transmitted Bits. However, between degree 12 and 16, the Average

Received Bits actually rises significantly. This counterintuitive trend is actually the

result of two separate phenomenon occurring at opposite ends of the factor levels.

As the degree rises, the most influential trend is the one discussed earlier. The more

neighbors a node has the more information it can use to refine to a balanced position

quicker. Above degree 12, another trend is at work. For each message broadcast, a

node’s entire neighborhood hears it. So as the degree rises, the number of nodes that

hear a single message also rises. Between degree 8 and 12, this effect is not as strong

as the quicker refinement effect. Above degree 12, when the benefit of increasing

degree diminishes, the effect of having more listeners becomes dominant. As a result

the Average Received Bits is significantly higher for degree 16 networks. For degrees

greater than 16, the trend should continue and received bits should rise more. This

effect also explains why the Average Received Bits increases more sharply between

degree 12 and 16 for Map Growing.

4.7.6 Computation of Effects on Communication. Figures 4.29 to 4.32 plot

the main effects of each factor on Average Transmitted Bits and Average Received
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Figure 4.27: Map Growing Average Received Bits vs Network Type and Degree
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Figure 4.28: AFL Average Received Bits vs Network Type and Degree

Bits for both algorithms. In all four figures, range error is shown to have very little

if any effect on either response for either algorithm. The network type and network

size also does not effect Map Growing very much. While network type and network

size do affect the communication of AFL, the factor that has the largest effects for

both algorithms is degree. The degree drives Average Transmitted and Received Bits

up for Map Growing. At the same time, higher degrees require fewer transmitted

bits for AFL. The received bits reflects two phenomenon at work. First, the Average

Received Bits drop due to quicker refinement times for higher degrees. Then, it rises
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Figure 4.29: AFL Main Effects Plot of Average Transmitted Bits
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Figure 4.30: Map Growing Main Effects Plot of Average Transmitted Bits

for degree 16, since more nodes hear each broadcast and the speed of refinement has

less of an effect. The tables for the effects of each factor on Average Transmitted and

Received Bits is included in Tables H.2, H.5, H.14 and H.17 in Appendix H.
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Figure 4.31: AFL Main Effects Plot of Average Received Bits
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Figure 4.32: Map Growing Main Effects Plot of Average Received Bits

4.7.7 Energy ANOVA. To determine which factors account for variation in

localization communication more than variation due to errors, an ANOVA is used.

The ANOVA identifies how much variation in the system is due to each response and
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how much is due to random error. For the results of an ANOVA to be valid, several

assumptions must be met [Jai91]:

1. The effects of various factors are additive.

2. Errors are additive.

3. Errors are independent of the factor levels.

4. Errors are normally distributed.

5. Errors have the same variance for all factor levels.

Several visual tests are used to verify these assumptions. First a normal probability

quantile-quantile plot of the residuals is prepared and checked to confirm that the

plot is approximately linear. If so, normality of the errors can be assumed. A scatter

plot of the residuals versus fitted values is checked to verify that there are no trends

in the residuals. This makes sure the errors are independent. This plot is also checked

to confirm there is no trend in the spread of the residuals, verifying that errors have

the same variance for all factor levels. For each ANOVA presented, these plots are

used and are included in Appendix F. Also included in Appendix F is a discussion

regarding the reasoning behind the natural log transformation of the AFL data, the

removal of some extreme outliers, and the partitioning of the Map Growing data. The

AFL ANOVA uses the natural log of both Average Transmitted and Received Bits

to adjust for a wide variance in response values and non-homoscedatic data (non-

constant variance). The Map Growing ANOVA does not include degree 8 results,

due to the different mode of operation when networks localize fewer than 75% of the

nodes. Once an ANOVA is run, the p-value of each factor is examined. In this case,

the p-value is the probability that the variation attributed to the factor is actually

due to measurement errors. This is also a sign that the factor is not significant to

the response. If the p-value is greater than the α (for 90% Confidence Intervals,

α = 0.1), then it is probable the variation attributed to that factor is actually due

to measurement error and the factor is pooled. When a factor is pooled, it and all

interaction terms that include it are removed from the ANOVA and its variation is
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attributed to measurement errors. The ANOVAs presented are the final versions with

insignificant factors not included. The communication ANOVAs for both AFL and

Map Growing are shown in Tables 4.4 to 4.7.

Table 4.4: Map Growing Average Transmitted Bits ANOVA
Sum Percentage Mean F

Component of Squares of Variation DOF Square Computed p

y SSY 0 828

ȳ SS0 0 1

y − ȳ SST 3.87E+10 100.00% 827

Size SSA 15996552 0.04% 2 7998276 76.82 < 0.0005

Degree SSB 3.85E+10 99.52% 1 3.85E+10 369472.2 < 0.0005

Type SSC 59833423 0.15% 1 59833423 574.64 < 0.0005

Size*Degree SSAB 4989188 0.01% 2 2494594 23.96 < 0.0005

Size*Type SSAC 16785803 0.04% 2 8392902 80.61 < 0.0005

Degree*Type SSBC 1993943 0.01% 1 1993943 19.15 < 0.0005

Size*Degree*Type SSABC 964241 0.00% 2 482120.5 4.63 0.01

Error SSE 84964461 0.22% 816 104123.1

R-Sq(adj) = 99.78% se =
√

MSE =
√

104123.114 = 322.6811

The Map Growing Average Transmitted Bits ANOVA in Table 4.4 does not

include range error as it is insignificant to the response. Degree is responsible for over

99.52% of the variation in Average Transmitted Bits and all other factors explain

less than 1%, with 0.22% of the variation explained by error. This is consistent with

the interval and main effects data discussed earlier. This suggests the best way to

control transmissions when using Map Growing is to tightly control the degree. The

coefficient of determination (R2 adjusted) is 99.78%. This is a higher better “goodness

of fit” metric which accounts for pooled factors and interactions. The value is the

percentage of total variation explained by the regression model. Thus, this ANOVA

provides a very good fit of the data, meaning the regression explains nearly all the

variation in the response.

As shown in Table 4.5, the average node degree is responsible for 98.4% in

received bits which follows the same trend as Average Transmitted Bits. This is not

surprising since received bits and transmitted bits are closely related for Map Growing.

Like the transmitted bits ANOVA, Range Error is insignificant and is removed. All
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Table 4.5: Map Growing Average Received Bits ANOVA

Sum Percentage Mean F

Component of Squares of Variation DOF Square Computed P

y SSY 0 828

ȳ SS0 0 1

y − ȳ SST 2.29E+13 100.00% 827

Size SSA 5.40E+10 0.24% 2 2.7E+10 174.46 < 0.0005

Degree SSB 2.25E+13 98.40% 1 2.25E+13 145206.8 < 0.0005

Type SSC 1.19E+11 0.52% 1 1.19E+11 767.45 < 0.0005

Size*Degree SSAB 10747096585 0.05% 2 5.37E+09 34.7 < 0.0005

Size*Type SSAC 39208863813 0.17% 2 1.96E+10 126.61 < 0.0005

Degree*Type SSBC 11934033382 0.05% 1 1.19E+10 77.07 < 0.0005

Size*Degree*Type SSABC 4671349523 0.02% 2 2.34E+09 15.08 < 0.0005

Error SSE 1.26E+11 0.55% 816 1.55E+08

R-Sq(adj) = 99.44% se =
√

MSE =
√

154845588.2 = 12443.7

other factors account for less than 1% of the variation with 0.55% of the variation

attributed to error. The coefficient of determination is computed as 99.44%, indicating

a very good fit of the data.

The AFL ANOVA of the natural log of Average Transmitted Bits (ln(ATB)) is

presented in Table 4.6. The pooled interactions are Type*Range Error and

Size*Degree*Range Error and all others that include these interactions. From the ta-

ble, it is clear that degree is the most important factor in this situation as well. Degree

accounts for 92.57% of the variation in ln(ATB). Network size is the next significant

factor, responsible for 3.31% of the variation. All other factors and interactions are

less than 1% with 2.56% of the variation attributed to error. The goodness of fit for

this ANOVA is 97.38%, again indicating the ANOVA describes the behavior of the

data very well.

The AFL ANOVA on the natural log of Average Received Bits (ln(ARB)) is

presented in Table 4.7. The pooled interactions are also Size*Type*Range Error and

Degree*Type*Range Error and the four factor interaction. Degree is also the most

important factor in this ANOVA, accounting for 75.94% of the variation. Size explains

6.34% of the variation, while Type explains 2.41%. Variation due to error accounts for
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Table 4.6: AFL ln(Average Transmitted Bits) ANOVA
Sum Percentage Mean F

Component of Squares of Variation DOF Square Computed p

y SSY 153906 1134

ȳ SS0 153703.5 1

y − ȳ SST 202.4766 100.00% 1133

Size SSA 6.7018 3.31% 2 3.3509 737.96 < 0.0005

Degree SSB 187.4295 92.57% 2 93.71475 19984.93 < 0.0005

Type SSC 1.7426 0.86% 1 1.7426 372.28 < 0.0005

Range Error SSD 0.0708 0.03% 2 0.0354 7.6 0.001

Size*Degree SSAB 0.3604 0.18% 4 0.0901 19.2 < 0.0005

Size*Type SSAC 0.2373 0.12% 2 0.11865 25.54 < 0.0005

Size*Range Error SSAD 0.2243 0.11% 4 0.056075 11.89 < 0.0005

Degree*Type SSBC 0.3298 0.16% 2 0.1649 35.31 < 0.0005

Degree*Range Error SSBD 0.078 0.04% 4 0.0195 4.11 0.003

Size*Degree*Type SSABC 0.118 0.06% 4 0.0295 6.29 < 0.0005

Error SSE 5.184 2.56% 1106 0.004687

R-Sq(adj) = 97.38% se =
√

MSE =
√

0.0046872 = 0.068463

11.66%. The coefficient of determination is 88.03%. This indicates the ANOVA that

does not fit the data as well as the previous. There is some variation in the ln(ARB)

not explained by the regression. This is likely due to the behavior of Average Received

Bits as degree increases. As discussed earlier, the Average Received Bits initially drops

when degree is increased from 8 to 12, then rises when degree is increased to 16. The

initial drop is due to the less iterations required to refine the position when nodes

have a higher degree. After degree 12, this effect diminishes. At this point the fact

that more nodes can hear each message is more relevant. This drives up received bits

more than the shorter refinement drives it down. Since this behavior is not linear,

it cannot be accounted for by an ANOVA that requires the response to be additive.

While the coefficient of determination is not as high as desired, it is high enough to

be useful as rough order magnitude estimate of the variation in the response.

4.8 Energy Consumption Model

To predict energy consumption in configurations not tested in this work, a model

is required. As stated in Chapter II, the energy used by a node is the sum of the
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Table 4.7: AFL ln(Average Received Bits) ANOVA
Sum Percentage Mean F

Component of Squares of Variation DOF Square Computed p

y SSY 221491.7 1134

ȳ SS0 221457.6 1

y − ȳ SST 34.1447 100.00% 1133

Size SSA 2.1293 6.24% 2 1.06465 299.64 < 0.0005

Degree SSB 25.9281 75.94% 2 12.96405 3598.86 < 0.0005

Type SSC 0.8244 2.41% 1 0.8244 227.37 < 0.0005

Range Error SSD 0.0221 0.06% 2 0.01105 3.08 0.047

Size*Degree SSAB 0.166 0.49% 4 0.0415 11.44 < 0.0005

Size*Type SSAC 0.1177 0.34% 2 0.05885 16.56 < 0.0005

Size*Range Error SSAD 0.2738 0.80% 4 0.06845 18.84 < 0.0005

Degree*Type SSBC 0.3753 1.10% 2 0.18765 52.39 < 0.0005

Degree*Range Error SSBD 0.0758 0.22% 4 0.01895 5.14 < 0.0005

Type*Range Error SSCD 0.0424 0.12% 2 0.0212 5.72 0.003

Size*Degree*Type SSABC 0.2088 0.61% 4 0.0522 14.48 0

Error SSE 3.9809 11.66% 1104 0.003606

R-Sq(adj) = 88.03% se =
√

MSE =
√

0.0036059 = 0.060049

energy used from transmitting, receiving, sensing and processing. Sensing is not used

in localization so the Energy Consumption Model is

Energy = ETransmission + EReceives + EProcessing (4.5)

For each algorithm, a multiple linear regression predicts the number of bits transmit-

ted and received by a node in the average case. The amount of processing executed by

a node is not collected in any of the experiments. To approximate this portion of the

model, a worst-case analysis of the code for each algorithm is performed to produce

an upper limit of the number of lines of code executed by a node using that algorithm.

Once the number of bits transmitted and received and the number of processing cy-

cles are known, each is converted to energy consumed, using conversions from typical

wireless sensor nodes. These values are combined to form the total energy used to

localize the network. The total from this method assumes that the receiver is turned

on and off precisely when bits start to arrive and when they are done arriving. In
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reality, the node receiver will be on for more time than just when it is receiving bits.

To account for this, an alternate version of the model is presented that assumes the

receiver is on continuously during localization. The time to localize is taken from a

worst case estimate for both algorithms based on the size of the network.

The multiple linear regression for bits transmitted and received, or the natural

log of bits transmitted and received, is based on a model of the factors and errors in

the system. Since the network type factor is categorical and not numerical, CD is

assigned the value of 1 and RU is assigned 0. The model is

y = b0 + b1x1 + b2x2 + b3x3 + ... + bkxk + e (4.6)

where bi are the different coefficients, xi are the different factors, k is the number

of predictors, and e is the error. The standard deviation of the prediction (sŷp), the

standard deviation of the parameters (sbj
) and the confidence interval on the mean

of m future observations (ŷp) are

sŷp = se

√{
1

m
+ xT

p (XTX)−1xp

}
(4.7)

sbj
= se

√
Cjj (4.8)

Lower CI = ŷp − sŷpt[1−α/2;n−k−1] (4.9)

Upper CI = ŷp + sŷpt[1−α/2;n−k−1] (4.10)

where n is the number of samples [Jai91]. The vector xp is (1, x1p, x2p, ..., xkp) which

are the inputs to the predictor variables. X is a matrix of sample inputs taken from

the experiment. The matrix xT
p (XTX)−1 is also referred to as C and is included in

Appendix H for all regressions. Since n is high (828 for Map Growing, 1134 for AFL),

the z-variate is used at α = 0.1, for 90% confidence intervals (1.645). To determine

the best regression, different combinations of first, second and third order terms were

examined. The R2(adj) value is checked. The highest combinations are kept. If a

lower order regression is within 1% of a higher order regression with a better R2(adj),
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the simpler, low order regression is used. For Map Growing, the regressions are only

valid for networks with degree higher than 8, since degree 8 networks were removed

as a separate mode of operation. The AFL regressions are on ln(ATB) and ln(ARB)

and are converted as necessary for the Energy Consumption Model. The symbols in

Table 4.8 are used in the development of the regressions.

Table 4.8: Regression Symbols
Symbol Meaning

S Network Size
D Average Degree of a Network
T Network Type (CD = 1, RU = 0)

4.8.1 Map Growing Regressions. The Map Growing regression for Average

Transmitted Bits (ATB) is listed in (4.11) with the corresponding coefficient of de-

termination and standard deviation of errors. Note the regression does not include

range error, and that coefficient for the degree parameter is much greater than the

coefficient for size and type.

ATB = −20123− 0.574S + 3408D − 538T (4.11)

R2(adj) = 99.7 (4.12)

se = 384.986 (4.13)

From the above information, the regression data in Table 4.9 is generated. With a high

coefficient of determination, this regression explains a high percentage of the variation

and closely fits the data. Using various example configurations, the regression in

Table 4.9: Map Growing Regression Data for Average Transmitted Bits
Predictor bi sbj

Lower CL Upper CL p
Constant -20123.3 97 -20282.865 -19963.7 < 0.0005

Size -0.5736 0.1169 -0.7659005 -0.3813 < 0.0005
Degree 3408.15 6.69 3397.14495 3419.155 < 0.0005

Type -537.63 26.76 -581.6502 -493.61 < 0.0005

Equation 4.11 is evaluated for 1, 10 and 100 future observations (m). The predicted
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ATB, standard deviation (sŷp) and 90% confidence intervals on the prediction are

provided in Table 4.10.

Table 4.10: Map Growing Example Regression Results, Average Transmitted Bits
S D T ATB m sŷp Lower CL Upper CL

400 14 CD 26823.73 1 386.857 26187.35 27460.11
400 14 CD 26823.73 10 127.536 26613.93 27033.53
400 14 CD 26823.73 100 54.095 26734.74 26912.72
200 10 RU 13843.48 1 386.495 13207.7 14479.26
200 10 RU 13843.48 10 126.436 13635.49 14051.47
200 10 RU 13843.48 100 51.447 13758.85 13928.11

1000 18 CD 39453.19 1 400.594 39453.19 40771.15
1000 18 CD 39453.19 10 164.569 39841.45 40382.89
1000 18 CD 39453.19 100 117.234 39919.32 40305.02

The Map Growing regression for Average Received Bits (ARB) (4.14) along with

R2(adj) and standard deviation of errors is shown below. The high R2(adj) indicates

a regression that explains nearly all of the variation. Again, the coefficient for the

degree parameter is by far the largest and range error is not included.

ARB = −697537− 62.7S + 82394D − 23960T (4.14)

R2 = 99.1 (4.15)

se = 15750.0 (4.16)

Table 4.11 lists the standard deviation of each parameter as well as the upper and

lower confidence levels and p-value for each parameter. Using the same example con-

Table 4.11: Map Growing Regression Data for Average Received Bits
Predictor Mean St Dev Lower CL Upper CL p

Constant -697537 3969 -704066.005 -691007.995 < 0.0005
Size -62.652 4.784 -70.52168 -54.78232 < 0.0005

Degree 82394.3 273.7 81944.0635 82844.5365 < 0.0005
Type -23960 1095 -25761.275 -22158.725 < 0.0005

figurations, the regression in (4.14) is evaluated for 1, 10 and 100 future observations
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(m). The predicted ATB, standard deviation, and 90% confidence intervals on the

prediction are provided in Table 4.12.

Table 4.12: Example Map Growing Regression Results for Average Received Bits
S D T ARB m sŷp Lower CL Upper CL

400 14 CD 406962.4 1 15826.51 380927.8 432997.01
400 14 CD 406962.4 10 5217.58 17165.83 415545.32
400 14 CD 406962.4 100 2213.05 403321.9 410602.86
200 10 RU 113875.6 1 15811.73 87865.31 139885.9
200 10 RU 113875.6 10 5172.56 105366.7 122384.46
200 10 RU 113875.6 100 2104.72 110413.3 117337.87

1000 18 CD 698948.4 1 16388.52 671989.3 725907.52
1000 18 CD 698948.4 10 6732.62 687873.2 710023.57
1000 18 CD 698948.4 100 4796.11 691058.8 706838.01

4.8.2 AFL Regressions. The AFL regression on ln(ATB) is presented in

(4.17). Like the previous two regressions, range error is not included and there is a

strong fit of the data with a high R2(adj) value of 96.4%. Again degree is the most

significant factor, but in this case the coefficient is negative. This reflects how the

transmitted bits tend to drop as degree increases. The conversion to ATB is included

in (4.20).

ln(ATB) = 15.4 + 0.000647S − 0.547D − 0.0786T + 0.0179D2 (4.17)

R2 = 96.4 (4.18)

se = 0.0804320 (4.19)

ATB = e15.4+0.000647S−0.547D−0.0786T+0.0179D2

(4.20)

The standard deviations of the parameters, their confidence intervals and p-values are

listed in Table 4.13.

Table 4.14 shows the results from running the regression for ln(ATB) on the

three example configurations. In addition to the prediction, standard deviation and

confidence interval, the data is converted from ln(bits) to bits.
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Table 4.13: AFL Regression Data for ln(ATB)
Predictor Mean St Dev Lower CL Upper CL p

Constant 15.3847 0.0434 15.313307 15.456 < 0.0005
Size 0.00064658 0.00002086 0.00061227 0.0007 < 0.0005

Degree -0.547101 0.007635 -0.5596606 -0.5345 < 0.0005
Type -0.078613 0.004777 -0.0864712 -0.0708 < 0.0005

Degree2 0.0179057 0.0003167 0.0179055 0.0179 < 0.0005

Table 4.14: AFL Example Regression Results for ln(ATB) with transformation to
ATB

S D T ln(ATB) m sŷp Lower CL Upper CL ATB Lower CL Upper CL

400 14 CD 11.4148 1 0.07794 11.2866 11.543 90653.52 79745.85 103053.1
400 14 CD 11.4148 10 0.02598 11.3721 11.4576 90653.52 86864.09 94617.72
400 14 CD 11.4148 100 0.01163 11.3957 11.4339 90653.52 88938.46 92401.64
200 10 RU 11.8336 1 0.07763 11.7059 11.9613 137805.7 121285.2 156576.5
200 10 RU 11.8336 10 0.02502 11.7924 11.8747 137805.7 132243.5 143587.5
200 10 RU 11.8336 100 0.009276 11.8183 11.8488 137805.7 135713.3 139916.3

1000 18 CD 11.9063 1 0.08112 11.7728 12.0397 148197.3 129676.7 169346.1
1000 18 CD 11.9063 10 0.03436 11.8498 11.9628 148197.3 140056.3 156811.5
1000 18 CD 11.9063 100 0.02532 11.8646 11.9479 148197.3 142144.6 154492.4

The AFL regression on ln(ARB) is (4.21) below. Also listed is the standard

deviation of errors and coefficient of determination of 84.5%. A low value is expected

since the corresponding ANOVA also has a lower than desired R2(adj) value. This

indicates the regression does not explain all of the variation in ln(ARB). The un-

explained variation is due to the same factor discussed with the ANOVA for AFL

ln(ARB). The factor causing the unexplained variation is the two opposite trends

in the Average Received Bits (high degree nodes use fewer iterations requiring fewer

messages to refine, higher degree nodes also cause more nodes to hear each message).

While the R2(adj) is lower than desired, it is acceptable for rough order of magnitude

estimation on the natural log of average received bits. The conversion to Average

Received Bits (ARB) is included in (4.24).

ln(ARB) = 16.3 + 0.00108S − 0.397D − 0.0539T − 2E-06S2 + 0.0153D2(4.21)

R2 = 84.5 (4.22)

se = 0.0683044 (4.23)

ARB = e16.3+0.00108S−0.397D−0.0539T−2E-06S2+0.0153D2

(4.24)
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Table 4.13 lists the predictors, their coefficients as well as their standard deviations,

confidence intervals and p-values. The results of the regression (4.21) using the three

Table 4.15: AFL Regression Data for ln(ARB)
Predictor Mean St Dev Lower CL Upper CL p

Constant 16.3148 0.0371 16.254 16.376 < 0.0005
Size 0.0010809 0.0001116 0.0009 0.0013 < 0.0005

Degree -0.396969 0.006484 -0.4076 -0.3863 < 0.0005
Type -0.053926 0.004057 -0.0606 -0.0473 < 0.0005
Size2 -2.08E-06 0.00000032 -3E-06 -2E-06 < 0.0005

Degree2 0.015293 0.0002689 0.01485066 0.015735341 < 0.0005

example configurations is shown in Table 4.16, including conversions from ln(bits) to

bits.

Table 4.16: AFL Example Regression Results for ln(ARB) with transformation to
ARB

S D T ln(ARB) m sŷp Lower CL Upper CL ARB Lower CL Upper CL

400 14 CD 13.8003 1 0.08035 13.6681 13.9324 984904.5 862939.6 1123995.0
400 14 CD 13.8003 10 0.04751 13.7221 13.8785 984904.5 910819.5 1065016.0
400 14 CD 13.8003 100 0.04287 13.7298 13.8708 984904.5 917859.9 1056846.0
200 10 RU 14.0074 1 0.07738 13.8908 14.124 1211537.0 1078196.0 1361367.0
200 10 RU 14.0074 10 0.02877 13.9601 14.0547 1211537.0 1155565.0 1270219.0
200 10 RU 14.0074 100 0.02019 13.9742 14.0406 1211537.0 1171974.0 1252435.0

1000 18 CD 13.07126 1 0.1323 12.8536 13.2889 475092.1 382162.0 590603.4
1000 18 CD 13.07126 10 0.11537 12.8815 13.261 475092.1 392974.5 574353.3
1000 18 CD 13.07126 100 0.1135 12.8844 13.258 475092.1 394115.8 572632.8

4.8.3 Processor Usage. To estimate the power used due to processing, a

worst case analysis is done on both algorithms to estimate the upper bound on the

number of instructions processed by a node to localize the network. An upper bound

ensures that the true power due to processing does not exceed the estimate. The

analysis is executed by altering the localization OPNET C code so it can be compiled

on an Intel x86 CPU. OPNET specific library calls and print statements and other

functions not available on a WSN are either removed or replaced with analogous code.

After compilation, the assembly code is examined. The number of assembly lines of

code are counted for each state and function. Then the number of times each state

and function are executed is estimated as function of the highest degree node found in
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the experiment. The highest degree node in all 540 networks had 36 neighbors. The

numbers of assembly lines of code executed for each state and function are summed

for a total representing the worst case estimate for number of instructions executed to

localize with that particular algorithm. It is assumed that each instruction requires

roughly 1 cycle to execute. Table 4.17 show the results of the analysis.

Table 4.17: Worst Case Estimate for Instructions Executed during Localization
Algorithm Instructions

Map Growing 134,318,931
AFL 2,295,169

Map Growing is by far more processor intensive. This is largely due to its

localization process that attempts to 3 Beacon localize or 2 Beacon localize with

all combinations of 3 or 2 neighbors in its neighbor list. Attempting all possible

combinations available allows it to achieve the result with the lowest residual. This

leads to double or triple “for” loops through all neighbors, which quickly drives up the

number of instructions executed. Actual implementations may limit the number of

combinations attempted or optimize the search for the best. AFL is simpler mainly

because it does little processing through a list of neighbors. During the reference

node search phase, each node does need to keep track of the lowest hop count to each

reference node. This can require a single pass search through its list of neighbors for

each neighbor. In AFL’s second phase, everything also completed in a single pass.

For most messages received, the information is only used to update the position of a

neighbor. For the remaining, the node actually refines its position but only requires a

single pass through the neighbor list to accomplish this. Even with the potential for

very large numbers of messages transmitted and received, this simplicity keeps the

number of instructions executed relatively low.

4.8.4 Power Conversions. With the number of bits transmitted and received

and instructions processed by a node, each can be converted to an amount of energy

consumed by the node. Since batteries are typically rated in mA-hr, these are the units
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used to determine how much of the battery is actually used by a node using a particular

localization algorithm and configuration. The General Energy Consumption Model

(adapted from [ASSC02]) in (4.29) produces the number of mA-hr used given the

number of bits transmitted and received, and instructions processed, and the relevant

node parameters. Table 4.18 lists all the symbols used in the conversions and the

development of the model.

Table 4.18: Table of Symbols
Symbol Meaning

bT Bits Transmitted
bR Bits Received
I Instructions Executed by an Algorithm
r Data Rate (bits/sec)
h Processor Clock Rate (hertz)
dT Current Draw from Transmitting (mA)
dR Current Draw from Receiving (mA)
dP Current Draw from Processing (mA)
ETx Energy Consumed from Transmitting (mA-hr)
ERx Energy Consumed from Receiving (mA-hr)
EP Energy Consumed from Processing(mA-hr)
E Total Energy Consumed (mA-hr)

ETx =
bT × dT

3600r
(4.25)

ERx =
bR × dR

3600r
(4.26)

EP =
I × dP

3600h
(4.27)

E = ETx + ERx + EP (4.28)

The General Energy Consumption Model is

E =
bT × dT(
3600 s

hr

)
r

+
bR × dR(
3600 s

hr

)
r

+
I × dP(

3600 s
hr

)
h
. (4.29)
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4.8.5 Energy Consumption Model. Using the Map Growing regressions for

ATB, ARB ((4.11) and (4.14)) in place of bT and bR and the upper bound estimate

for instructions executed in place of I, the complete General Map Growing Energy

Consumption Model is shown in (4.31). This model predicts the upper bound of

mA-hr used by an average node to localize using Map Growing, given the size, degree

and type of network. (Note: The usefulness of this model degrades for degrees 8 or

less because of the different communication behavior of Map Growing when it can

not localize over 90% of the connected nodes.)

The General Map Growing Energy Consumption Model is

E = (−20123− 0.574S + 3408D − 538T )× dT(
3600 s

hr

)
r

+(−697537− 62.7S + 82394D − 23960T )× dR(
3600 s

hr

)
r

(4.30)

+134, 318, 931instr× dP(
3600 s

hr

)
h
.

Actual values from wireless nodes can be used for r, h, dT , dR, and dP . The MICA2

Wireless Measurement System is a wireless node built and distributed by Crossbow

Technology Inc [Cro05]. This node is commonly used in current wireless sensor net-

work research [AV04]. The summary of MICA2 data is presented in Table 4.19. Using

Table 4.19: MICA2 Data Summary [Cro05]
Processor Full Operation 8mA (7.37Mhz)
Radio, Receive 10mA
Radio, Transmit (full power) 27mA
Data Rate 38.4 Kbaud
Typical Battery 2×AA (Alkaline)
Typical Battery Capacity 2000mA-hr
Operating Voltage Range 3.6 to 2.7 Volts
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these values, the Map Growing Energy Consumption Model for the MICA2 is

E =
(−20123− 0.574S + 3408D − 538T )× 27mA(

3600 s
hr

) (
38400bits

s

)
+

(−697537− 62.7S + 82394D − 23960T )× 10mA(
3600 s

hr

) (
38400bits

s

) (4.31)

+
134, 318, 931× 8mA(

3600 s
hr

)
7.37× 106 instr

s

E = (−20123− 0.574S + 3408D − 538T )× 1.95313E-07
mA-hr

bit

+(−697537− 62.7S + 82394D − 23960T )× 7.2338E-08
mA-hr

bit
(4.32)

+0.0405002mA-hr

The sample configurations presented earlier are again presented in Table 4.20 using

the complete Map Growing Energy Consumption Model to estimate the mA-hr and

percent of battery used. The data from the MICA2 wireless sensor node is used.

Table 4.20: Example Map Growing Energy Consumption Model Results

Predicted Predicted mA-hr % of
S D T ATB ARB Consumed Batt. Consumed

400 14 CD 26823.73 406962.4 0.075178 0.003759
200 10 RU 13843.48 113875.6 0.051442 0.002572

1000 18 CD 39453.19 698948.4 0.098766 0.004938
Average Map Growing Response 21225.04 317935.8 0.067645 0.003382

The AFL regressions for ln(ATB) and ln(ARB) ((4.17) and (4.21)) are trans-

formed and then substituted into (4.29) along with the AFL upper bound instruction

estimate to produce the complete General AFL Energy Consumption Model, shown

in (4.34). This model predicts the upper bound of mA-hr used by an average node

to localize using AFL, given the size, degree and type of network. Substituting the

MICA2 values in provides the AFL Energy Consumption Model for the MICA2.
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The General AFL Energy Consumption Model is

E = e(15.4+0.000647S−0.547D−0.0786T+0.0179D2) × dT(
3600 s

hr

)
r

+e(16.3+0.00108S−0.397D−0.0539T−2E-06S2+0.0153D2) × dR(
3600 s

hr

)
r

(4.33)

+2, 295, 169instr× dP(
3600 s

hr

)
h
.

The AFL Energy Consumption Model for the MICA2 is

E = e(15.4+0.000647S−0.547D−0.0786T+0.0179D2) × 1.95313E-07
mA-hr

bit

+e(16.3+0.00108S−0.397D−0.0539T−2E-06S2+0.0153D2) × 7.2338E-08
mA-hr

bit
(4.34)

+0.000692046mA-hr.

The sample configurations presented earlier are used with the AFL Energy Consump-

tion Model for the MICA2 to estimate the mA-hr and percentage battery consumed.

The results are shown in Table 4.21

Table 4.21: Example AFL Energy Consumption Model Results
Predicted Predicted mA-hr % of

S D T ATB ARB Consumed Batt. Consumed
400 14 CD 90653.52 984904.54 0.08964 0.004482
200 10 RU 137805.70 1211536.57 0.1153 0.005762

1000 18 CD 148197.33 475092.12 0.0640 0.003200
Average AFL Response 125394.72 1194295.65 0.1116 0.005579

4.9 Worst Case Energy Consumption Model

The previous Energy Consumption Model assumes the receiver is turned on

and off precisely when bits start to arrive and when they stop arriving. Actual

receivers of wireless sensor nodes are controlled by MAC protocols that will likely

obey sleep schedules to conserve power. Even in these cases, the receiver is probably

on more than just the time it is receiving. To account for this time, the Worst Case
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Energy Consumption Model is the same as the previous but assumes the receiver

is on during the entire localization process. The time to localize is taken from the

worst case estimate for both algorithms and is included in Table 4.22. This estimate

is calculated by examining the number of messages and the amount of processing

required as well as the size and degree of the network. The equations represent an

upper bound estimate in the growth of running time as size increases. Running time

for AFL depends on degree also, but small degrees are assumed to maintain an upper

bound estimate. Similarly for Map Growing, large degrees are assumed. With these

Table 4.22: Approximate Running Times (min)
AFL Map Growing

12+0.04Size -0.3+0.041Size

equations the Worst Case General Energy Consumption Model is

E =
bT × dT(
3600 s

hr

)
r

+
tR × dR(
3600 s

hr

) +
I × dP(

3600 s
hr

)
h
. (4.35)

given that tR is the time the receiver is on, which is defined by the equations in Table

4.22. From (4.35), the Worst Case Map Growing Energy Consumption Model for the

MICA2 is

E = (−20123− 0.574S + 3408D − 538T )× 1.95313E-07
mA-hr

bit

+
(−0.3 + 0.041S)min× 60× s

min × 10mA(
3600 s

hr

)
+0.0405002mA-hr

E = (−20123− 0.574S + 3408D − 538T )× 1.95313E-07
mA-hr

bit

+(−0.05 + 6.8333E-3S)mA-hr (4.36)

+0.0405002mA-hr.
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The Worst Case AFL Energy Consumption Model for the MICA2 is

E = e(15.4+0.000647S−0.547D−0.0786T+0.0179D2) × 1.95313E-07
mA-hr

bit

+(2 + 6.6667E-3S)mA-hr (4.37)

+0.000692046mA-hr.

Using the equations (4.37) and (4.38) and the example configurations presented pre-

viously, Tables 4.23 and 4.24 present the results for the Worst Case Energy Model for

both Map Growing and AFL using the MICA2.

Table 4.23: Example Worst Case Map Growing Energy Consumption Model Results
Predicted Approx. Run mA-hr % of Batt.

Size Degree Type ATB Time(min) Consumed Consumed
400 14 CD 26823.73 16.1 2.729072548 0.136453627
200 10 RU 13843.48 7.9 1.359870677 0.067993534

1000 18 CD 39453.19 40.7 6.831539240 0.341576962
Average Map Growing Response 21225.04 5.563 0.971812388 0.048590619

Table 4.24: Example Worst Case AFL Energy Consumption Model Results
Predicted Approx. Run mA-hr % of Batt.

Size Degree Type ATB Time(min) Consumed Consumed
400 14 CD 90653.51582 28 4.685064477 0.234253224
200 10 RU 137805.6999 20 3.360940555 0.168047028

1000 18 CD 148197.3336 52 8.696303504 0.434815175
Average AFL Response 125394.72 17.72 2.978516535 0.148925827

4.10 Energy Consumption Findings

The development and application of the Energy Consumption Model for both

AFL and Map Growing reveal that relatively very little energy is expended during

localization. Among the example configurations, none expend more than a half of a

percent of the battery. In addition to the MICA2, the model is applied to the same

configurations using the MICA2DOT. The parameters and calculations are found

in Appendix I. The only difference in this wireless node is the form factor is much

smaller, the processor is less powerful (4MHz) and the battery capacity is much smaller

(560mA-hr). Even on this smaller node and using the worst case model, none of the
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example configurations expend more than 1.55% percent of the battery. The single

most energy expensive simulation (AFL, 30 Nodes, degree 8, RU, RE = 0.02) uses at

most 0.11% of the MICA2 battery and 0.4% of the MICA2DOT battery, under the

worst case model.

Since the Energy Consumption Model is based on limited data and may not

account for all behavior, it is only able to provide a rough order magnitude estimate

of the energy costs due to localization. Simulating with more levels of each factor

would provide more data and allow for more confidence in the model results. However,

given these limitations, the model still reports small amounts of energy consumed in

all cases. This is still true even when the receiver is assumed to be continuously on.

Even though, on average, AFL requires almost 6 times more transmitted bits

and almost 4 times more received bits than Map Growing, neither use a significant

amount of the battery. This result is contrary to much of the current localization re-

search which aims to conserve overhead messages sent in an effort to conserve precious

battery power [IS03] [NN01] [SPS02] [TP03]. This result implies less energy efficient

localization algorithms can be tolerated, especially if they provide much better results

in terms of accuracy, as in the case of AFL over Map Growing. Additionally, when

energy does indeed need to be conserved, there is not much savings available within

the localization algorithm. More savings will be found in the operation of the WSN,

MAC protocol, and routing method.

Another goal of this work is to find the factors that most influence localization

energy costs. According to the analysis on the communication computation of effects

and ANOVA for both algorithms, node degree is by far the biggest factor (among Size,

Type, Degree and Range Error) affecting localization communication costs. Node de-

gree consistently had the largest effect, and explained the largest amount of variation

in communication. No other factor is close. This means that if energy truly does need

to be conserved down to the hundredth of a percent of battery capacity in the local-

ization process the factor that should be tightly controlled is degree. Additionally,
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the analysis illustrates the choice of an algorithm can have an relatively large effect on

communication. AFL, the concurrent algorithm, required much more communication

than Map Growing, the incremental algorithm. This trend is expected, but the rela-

tive size of the difference between the two algorithms is startling. AFL consistently

requires orders of magnitude more communication that Map Growing. Despite the

difference in communication performance, AFL outperforms Map Growing in terms

of accuracy in every configuration, also by large amounts. Depending on the localiza-

tion needs of a network, concurrent algorithms with refinement, like AFL, should be

chosen if position accuracy is most important, while incremental algorithms, like Map

Growing, should be chosen if coarse accuracy is sufficient but all sources of energy

consumption need to be tightly controlled. Even though the experiment methodology

assumes all messages are received, collisions can be tolerated in an actual system with

the same conclusions.

4.11 Summary

The results of the WSN localization experiments show that algorithm type and

degree are the largest factors affecting performance. AFL uses much more communi-

cation, while providing consistently much better position estimates. Also, increased

degree drives Map Growing communication costs up, while it drives AFL communica-

tion costs down for degrees at or below 12. Beyond that, having many nodes hearing

each message drives the number of received bits up. This dual effect on AFL received

bits caused the ANOVA and regression for that response to have a low coefficient of

determination. All others were very high. Regressions are used as part of an En-

ergy Consumption Model to predict the energy used by a localization algorithm given

parameters about the node and network conditions. Results from this model show

that little energy is actually used during the localization process, reducing the need

to conserve messages and the risk of partitioning the network.
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V. Conclusions

5.1 Introduction

This chapter summarizes the objectives and outcomes of this research. First the

objectives are reviewed and discussed to determine they are met. Next the impact of

this research is presented, followed by an overview of the contributions of this research.

Possible areas of future work are described last.

5.2 Meeting the Objectives and Impact

The primary goal of the research is to determine which factor is most important

to energy consumption in wireless sensor network localization. The second goal is

to identify which algorithm provides more accurate position estimates and is more

energy efficient. The last goal is to develop an Energy Consumption Model that can

be used to estimate the energy consumption without simulation or deployment of an

actual system.

5.2.1 Energy Consumption Factor. For both AFL and Map Growing, node

degree is the most important factor. Degree accounts for over 90% of the variation in

Average Transmitted and Received Bits ANOVAs for Map Growing and over 90% and

75% percent in the respective ANOVAs for AFL. The only difference is that increased

degree causes Map Growing communication to drastically increase, while it causes

AFL transmissions to decrease. With more neighbors, Map Growing nodes send

larger packets containing more information. AFL’s refinement phase, which is always

its most costly in terms of energy, is much shorter when nodes have larger degrees.

Above degree 12, the number of receive bits rises due to the increased number of nodes

that hear each message. The remaining factors have relatively very little effect. Since

degree is by far most important to localization energy consumption, it is possible that

it is also the most relevant factor in other wireless sensor network operations such as

routing.
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5.2.2 Algorithm Comparison. AFL is found to use more energy by far. In

every case it requires many more transmitted and received bits than Map Growing;

it needs an average of almost 6 times as many transmitted bits and almost 4 times as

many received bits. At the same time, AFL achieves a much better Average Distance

Error than Map Growing. AFL’s refinement estimates accurate positions, but requires

much more communication to do so. Depending on the degree, a node can require

between 700 and 2,500 iterations, broadcasting its position and receiving a broadcast

from all neighbors during each iteration. On average Map Growing only transmits 35

messages while receiving 261. The extra communication helps AFL achieve half the

Average Distance Error on average.

5.2.3 Energy Consumption Model. Using the experimental data, an Energy

Consumption Model for both AFL and Map Growing is developed. The model is

applied using data from the MICA2 and MICA2DOT wireless sensor nodes. The

model estimates energy consumption given the node parameters, size and degree of

the network, typical range errors, and deployment type. The model uses the AFL and

Map Growing data, but since worst case estimates are used for processing and RF

power consumption, the model can be applied to other incremental and concurrent

algorithms as a rough, order of magnitude estimate.

5.2.4 Energy Finding. The most significant result of this research is wire-

less sensor network localization does not expend a significant amount of energy in a

typical node. This indicates efforts to conserve communication costs in localization

algorithms will not be as effective as hoped [IS03] [NN01] [SPS02] [TP03]. In the

most extreme example (MICA2DOT, using a worst-case simulation and the worst

case model), the energy expended by localization is 0.4%. 500mA-hr batteries are

expected to last between 3-5 months under typical WSN conditions [Cro05]. 0.4% of

3 months (2,160 hours) accounts for about 8.64 hours of operation. So, in essence the

potential for energy conservation in localization is at most 9 hours over 3 months.
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5.3 Research Contributions

This research is the first known effort to evaluate the energy costs and error

performance of wireless sensor network localization algorithms. It is the only (known)

work that systematically quantifies and compares the energy costs for localization.

Additionally, the resulting Energy Consumption Model for localization is an effective

tool to predict the energy costs of other incremental and concurrent algorithms under

a variety of conditions. The method used and presented also provides a framework to

evaluate the energy costs of other areas of wireless sensor network operation. Using the

presented method, energy consumption models may be developed for WSN routing,

MAC protocols, target tracking and many other applications. In addition, the idea

that degree most affects energy usage very likely extends to other node operations

such as the WSN application, routing, and MAC protocols. Finally, the key energy

finding that localization algorithms do not expend a significant amount of energy

is an important result that can allow researchers to concentrate on other aspects of

localization research such as accuracy, scalability, coverage and resilience.

5.4 Future Work

This research is limited in that only two algorithms are implemented, tested

and modelled. Future research in this area should implement more algorithms and

more types of algorithms to expand the Energy Consumption Model for Range Free

algorithms and fully centralized algorithms. The behavior of AFL received bits ex-

hibited two trends: 1) a drop when degree is increased from 8 to 12 because of quicker

refinements with higher degrees, and 2) an increase when degree is increased from 12

to 16 because of the fact more nodes can hear each message. The behavior for the de-

gree levels between 8 and 16 can be further investigated to find an optimal degree for

AFL to operate at. This would ensure the best accuracy for the energy costs for that

algorithm. Additionally, the energy costs due to processing is found to be significant,

but is not examined closely. Future work may be able to more accurately investigate

the processing energy costs involved and determine if it is beneficial to employ certain
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speed optimizations to save energy at the cost of possible loss of accuracy. In terms

of the algorithms themselves, improvements to both AFL and Map Growing can be

investigated. For example, Map Growing does not use any neighbor data to restrict

a position estimate to a bounded area. As a result, a node may accept a position

that is far from its true position and far from its neighbors. Also, it is possible for

the starting node in Map Growing to localize more of its neighbors instead of just

two. This may reduce some error that gets propagated. For AFL, the number of

messages needed in the reference node finding phase can be reduced. Only a subset

of the nodes actually need to participate in the flooding to determine hopcounts to

each reference node. After the phase is complete, nodes that did not participate only

need to ask their neighbor that did and add 1 or -1 to each hopcount total to obtain

their estimate. Since the initial estimate is already coarse, this approximation should

not sacrifice accuracy but can save messages. Furthermore, this idea can extend AFL

to be a simple but accurate localization algorithm for mobile wireless sensor nodes.

Also, AFL exhibited the most error when nodes had few nodes. A modification can

have low degree nodes try to use three neighbors to trilaterate or use the 2-Beacon

Solver to find a position.

5.5 Summary

Wireless Sensor Networks are an exploding field of research, commerce and de-

velopment. They can be found in an ever growing list of applications and fields. Since

wireless sensor nodes are small and low powered with limited resources, significant

work has been done to conserve the energy available in all phases of operation. Local-

ization is critical to any data that the node provides for without location information,

data can be useless [SRB01]. While accuracy has been an important measure of lo-

calization, energy consumption is also a localization concern. This work determines

the single most important factor to localization energy consumption is node degree.

The Energy Consumption Model can be used to estimate energy usage in a variety

of situations for incremental and concurrent algorithms. Additionally, this research
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presents a method used to quantify, evaluate and compare actual energy expended

during localization and finds a significant amount of energy is not used during this

process.
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Appendix A. Graphs of Example Networks

This appendix contains graphs that represent the different types of networks that are

used in this research. Not all graphs represent the x and y axis on the same scale.

Lines between nodes indicate that the endpoints are within range of each other (15

meters) and are able to communicate.
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Figure A.1: 30 Nodes, Constant Density,
Degree 8
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Figure A.2: 30 Nodes, Random Uniform,
Degree 8
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Figure A.3: 30 Nodes, Constant Density,
Degree 12

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
Random Uniform, 30 Nodes, Width 33.3, Seed 1682

x

y

Figure A.4: 30 Nodes, Random Uniform,
Degree 12
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Figure A.5: 30 Nodes, Constant Density,
Degree 16
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Figure A.6: 30 Nodes, Random Uniform,
Degree 16
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Figure A.7: 100 Nodes, Constant Density, Degree 8
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Figure A.8: 100 Nodes, Random Uniform, Degree 8
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Figure A.9: 100 Nodes, Constant Density, Degree 12
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Figure A.10: 100 Nodes, Random Uniform, Degree 12
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Figure A.11: 100 Nodes, Constant Density, Degree 16
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Figure A.12: 100 Nodes, Random Uniform, Degree 16
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Figure A.13: 300 Nodes, Constant Density, Degree 8
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Figure A.14: 300 Nodes, Random Uniform, Degree 8
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Figure A.15: 300 Nodes, Constant Density, Degree 12
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Figure A.16: 300 Nodes, Random Uniform, Degree 12
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Figure A.17: 300 Nodes, Constant Density, Degree 16
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Figure A.18: 300 Nodes, Random Uniform, Degree 16

120



Appendix B. Lateration Method

The following describes the lateration method for an unknown node to estimate its

position using the known positions of 3 neighbors and distance estimates to each

neighbor. This method is adapted from [LR03].

From the estimated distances, di, to each localized neighbor and the positions

of each neighbor (xi, yi), the following system of equations is derived. The unknown

position is denoted as (x, y).

(x1 − x)2 + (y1 − y)2 = d2
1 (B.1)

(x2 − x)2 + (y2 − y)2 = d2
2 (B.2)

(x3 − x)2 + (y3 − y)2 = d2
3 (B.3)

The system is linearized by subtracting the last equation from the first 2 equations.

x2
1 − x2

3 − 2(x1 − x3)x + y2
1 − y2

3 − 2(y1 − yn)y = d2
1 − d2

3 (B.4)

x2
2 − x2

3 − 2(x2 − x3)x + y2
2 − y2

3 − 2(y2 − yn)y = d2
2 − d2

3 (B.5)

The terms are reordered to create a proper system of linear equations in the form

Ax = b.

A =

 2(x1 − x3) 2(y1 − y3)

2(x2 − x3) 2(y2 − y3)



b =

 x2
1 − x2

3 + y2
1 − y2

3 + d2
3 − d2

1

x2
2 − x2

3 + y2
2 − y2

3 + d2
3 − d2

2


The system is solved using a standard least-squares approach: x̂ = (AT A)−1AT b. In

rare cases, the matrix is not invertible and the lateration fails. An additional check

can be used to verify that the result is consistent. The residue between the given

distances, di, and the distance to the location estimate x̂ is calculated for this check.

residue =

∑3
i=1

(√
(xi − x̂)2 + (yi − ŷ)2 − di

)
3

(B.6)
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In essence, this is the average difference between the given distances and the distances

resulting from the lateration. Large residue indicates an inconsistent set of equations.

The location x̂ should be rejected if the residue exceeds the radio range.
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Appendix C. Validation Figures for OPNET-AFL

This appendix includes the figures comparing the OPNET-AFL against the published

results for degrees 5 to 13 at fractional range errors 0.01 to 0.07. OPNET-AFL is

plotted with 95% confidence intervals on the 10 repetitions of each experiment.
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Figure C.1: OPNET-AFL and published
AFL results, avg degree = 13
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Figure C.2: OPNET-AFL and published
AFL results, avg degree = 12
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Figure C.3: OPNET-AFL and published
AFL results, avg degree = 11

Global Energy Ratio of Published AFL and OPNET-AFL at Degree 10
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Figure C.4: OPNET-AFL and published
AFL results, avg degree = 10
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Global Energy Ratio of Published AFL and OPNET-AFL at Degree 9
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Figure C.5: OPNET-AFL and published
AFL results, avg degree = 9
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Figure C.6: OPNET-AFL and published
AFL results, avg degree = 8
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Figure C.7: OPNET-AFL and published
AFL results, avg degree = 7

Global Energy Ratio of Published AFL and OPNET-AFL at Degree 6
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Figure C.8: OPNET-AFL and published
AFL results, avg degree = 6

Global Energy Ratio of Published AFL and OPNET-AFL at Degree 5
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Figure C.9: OPNET-AFL and published AFL results, avg degree = 5
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Appendix D. Network Generation Perl Script

This appendix lists the Perl code that created all the Constant Density and Random

Uniform networks used in this research.

getmygraphs3.pl

#!/usr/local/ActivePerl-5.6/bin/perl -w

#getmygraphs3.pl

#takes a file of carriage return delimited random numbers

#creates 18 networks for each random number

#All combinations of size 30,100, 300, degree 8,12,16,

#and type constant density (CD) and random uniform (RU).

if(@ARGV>1){

$seeds = $ARGV[0];

$thresh = $ARGV[1];

}else {

print "give me a file of random numbers\n";

exit(0);

} open(NUMS, $seeds) or die "can’t read ".$seeds; @lines = <NUMS>;

close(NUMS); foreach $line (@lines){

chop($line);

chop($line);

for($i = 2; $i < 5; $i++)

{

@lista = ("perl", "graphgen3.pl", 30 , $i*4, "CD", $line, $thresh);

system (@lista) == 0 or die "system @lista failed: $?";

@listb = ("perl", "graphgen3.pl", 30 , $i*4, "RU", $line, $thresh);

system (@listb) == 0 or die "system @listb failed: $?";

@listc = ("perl", "graphgen3.pl", 100 , $i*4, "CD", $line, $thresh);

system (@listc) == 0 or die "system @listc failed: $?";

@listd = ("perl", "graphgen3.pl", 100 , $i*4, "RU", $line, $thresh);

system (@listd) == 0 or die "system @listd failed: $?";

@liste = ("perl", "graphgen3.pl", 300 , $i*4, "CD", $line, $thresh);

system (@liste) == 0 or die "system @liste failed: $?";

@listf = ("perl", "graphgen3.pl", 300 , $i*4, "RU", $line, $thresh);

system (@listf) == 0 or die "system @listf failed: $?";

}

}

#------------end getmygraphs3.pl-------------------------
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graphgen3.pl

#!/usr/local/ActivePerl-5.6/bin/perl -w

#

#graphgen3.pl - takes number of nodes, target degree, nw type, seed and threshold

# and produces a graph within threshold of the target degree.

# Also outputs a file that can be used in Matlab to create a graph of the network.

# Also generates a connected.csv that identifies the graph file,

# and tells whether its connected or not and the actual average degree

# v2 - Makes sure CD/RU graphs are connected

# v3 - better uses makemfile and allows range about target degree to be editable

if(@ARGV>4){

$numnodes = $ARGV[0];

$target = $ARGV[1];

$type = $ARGV[2];

$seed = $ARGV[3];

$thresh = $ARGV[4];

if(!($type eq "RU") && !($type eq "CD"))

{

print "Valid types are RU and CD\n";

exit(0);

}

}else {

print "give me a number of nodes, target degree, nw type, and seed\n";

exit(0);

} #$mfile = $numnodes.".".$target.".".$type.".".$seed."."."m";

%pos = (); #create a hash used to store positions and node ids.

srand($seed); #seed the PRNG

$avgdeg = $target - 3; #while the average degree is far from the target

while ( $avgdeg < ($target-$thresh) || $avgdeg > ($target+$thresh)) {

if ($type eq "RU"){

if($numnodes == 300){ #equations based on regressions to calculate network width

$width = -0.0514*$target*$target*$target

+ 2.2657*$target*$target - 37.218*$target + 334.41; }

if($numnodes == 100){

$width = -0.0307*$target*$target*$target

+ 1.3565*$target*$target - 22.286*$target + 194.51;}

if($numnodes == 30){

$width = -0.0134*$target*$target*$target

+ 0.6121*$target*$target - 10.716*$target + 96.872;}

if($numnodes != 300 && $numnodes != 100 && $numnodes != 30){

print "I can only handle 300, 100 or 30 right now\n";

exit(0);}

#print "$width\n";

$nn = sprintf("%03i", $numnodes);

$w = sprintf("%02.1f", $width);

$s = sprintf("%09i", $seed);

$pfile = "2".$nn.$w.$s."."."pos"; #build the file name of the position file

$connected = 0;

while($connected == 0){

for($i = 0; $i<$numnodes; $i++)

{

$namex = $i."x"; #for each node, randomly

$namey = $i."y"; #select an x and y anywhere in network

$currx = rand($width);

$curry = rand($width);

$pos{$namex}= $currx;

$pos{$namey}= $curry;

}

open(POUT, ">$pfile"); #print $pfile, "\n";

for($i = 0; $i < $numnodes; $i++)

{ #write positions to a file

print POUT "$i,".$pos{$i."x"}.",".$pos{$i."y"}."\n";

}

close(POUT); #call consoleconntest.pl to see if its connected
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$response = ‘perl consoleconntest.pl $pfile‘;

print $response; #and learn the average degree of the network

@resplist = split(’,’, $response);

$connected = $resplist[1];

$avgdeg = $resplist[2];

}

}

if ($type eq "CD")

{

if($numnodes == 300){ #equations based on regressions to calculate network width

$width = -0.0659*$target**3 + 2.6785*$target**2

- 40.138*$target + 330.78;}

if($numnodes == 100){

$width = -0.068*$target**3 + 2.5276*$target**2

- 33.219*$target + 219.23;}

if($numnodes == 30){

$width = -0.0247*$target**3 + 1.0128*$target**2

- 15.104*$target + 110.25; }

$nn = sprintf("%03i", $numnodes);

$w = sprintf("%02.1f", $width);

$s = sprintf("%09i", $seed);

$pfile = "5".$nn.$w.$s."."."pos"; #build the position file name

$side = int(sqrt($numnodes/3)); #number of squares on one side

$unit = $width/$side; #width of one square

$unitset = $numnodes/($side*$side);#Number of nodes in one square

$connected = 0;

while ($connected == 0) #ensure network is connected

{

for($i = 0; $i<$numnodes; $i++)

{

if($i < $unitset*$side*$side && $i != 0) #put 0 in a random place

{ #all others are placed in their

$minx = (int($i/($unitset))%$side)*$unit;

$maxx = $minx+$unit;#corresponding square based on their node id

$miny = int($i/($unitset*$side))*$unit;

$maxy = $miny+$unit;

if((($i+1)%$unitset)== 0)

{

if($unit > 15) #if the side of a square is bigger than the

{ #range of the node, one node in square is placed

$minx = $minx+($unit-15+.5);#in an area

$miny = $miny+($unit-15+.5);#to promote connectivity

}

}

if($i != 0 && $i != 1) #for nodes with id > 1, make sure they

{ #are connected to at least one other node

$tempdeg = 0;

while($tempdeg == 0 )

{

$namex = $i."x";

$namey = $i."y";

$currx = $minx + rand($maxx - $minx);

$curry = $miny + rand($maxy - $miny);

$pos{$namex}= $currx;

$pos{$namey}= $curry;

$tempdeg = 0;

for($j=0; $j<$i || $tempdeg == 0; $j++)

{

$dist = sqrt(($pos{$j."x"}-$currx)**2

+($pos{$j."y"}-$curry)**2 );

if($dist<=15.0)

{

$tempdeg++;

}

}

}
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}

else

{

$namex = $i."x";

$namey = $i."y";

$currx = $minx + rand($maxx - $minx);

$curry = $miny + rand($maxy - $miny);

$pos{$namex}= $currx;

$pos{$namey}= $curry;

}

}

else

{

$namex = $i."x";

$namey = $i."y";

$currx = rand($width);

$curry = rand($width);

$pos{$namex}= $currx;

$pos{$namey}= $curry;

}

}

open(POUT, ">$pfile"); #print $pfile, "\n";

for($i = 0; $i < $numnodes; $i++)

{ #write positions to a file

print POUT "$i,".$pos{$i."x"}.",".$pos{$i."y"}."\n";

}

close(POUT); #call consoleconntest.pl to see if its connected

$response = ‘perl consoleconntest.pl $pfile‘;

print $response; #and learn the average degree of the network

@resplist = split(’,’, $response);

$connected = $resplist[1];

$avgdeg = $resplist[2];

}

}

}

print "SUCCESS!! "; #call conntest.pl to write connectivity

@conncall = ("perl", "conntest.pl", $pfile); #and degree to a separate file

system (@conncall) == 0 or die "system @conncall failed: $?";

$degresponse = ‘perl consolemakemfile.pl $pfile‘; #call consolemakemfile.pl to

print $degresponse; #write Matlab graph to a file

#------------end graphgen3.pl-------------------------

conntest.pl (consoleconntest.pl is the same script, except the
connectedness and average degree are written to the command line)

#!/usr/local/ActivePerl-5.6/bin/perl -w

# conntest.pl

# takes a position file and outputs a file

# that says if it is connected or not

# and the average degree

if(@ARGV>0){

$input = $ARGV[0];

}else {

print "give me a file name\n";

exit(0);

}

#$output = $input;

if($input =~ /\/|\\/){ #I have a file in another directory

@dirs = split /\/|\\/, $input;

$numdirs = @dirs;

$dirs[$numdirs-1] = "connected.csv";

$output = "";

for($t = 0; $t< $numdirs-1; $t++){
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$output = $output.$dirs[$t]."\\";

}

$output = $output.$dirs[$numdirs-1];

}else {

$output ="connected.csv";

}

%actual = (); #create hash

@names = (); #create array

open(INFILE, $input) or die "can’t read ".$input;

@lines = <INFILE>; #read in all lines of file

close(INFILE);

$i = 0;

$length = @lines;

@tmp = (); #temporary array to store a list of a nodes neighbors

@conn = (); #a 2 dimensional array to store all the list of neighbors

@reach = (); #an array of nodes that 0 can reach

$reached = 0; #the number that 0 can reach

@test = split(’,’, $lines[0]);

if(!($test[0] eq "0")){

print "$input not formatted correctly: word1: $test[0]\n";

exit 0;

}

print "$input -> $output\n";

if ( open (OUTFILE, $output) ){

close (OUTFILE);

open(OUTFILE, ">>$output");

} else{

close (OUTFILE);

open(OUTFILE, ">>$output");

print OUTFILE "Filename, Connected, AvgDeg\n";

}

open(OUTFILE, ">>$output");

foreach $line (@lines){ #loop through all lines

$linenum++;

@words = split(’,’, $line);

#grab the data

$name = $words[0]; #first is node id

$actx = $words[1];

$acty = $words[2];

$nameactx = $name."actx";

$nameacty = $name."acty";

$actual{$nameactx}=$actx;

$actual{$nameacty}=$acty;

$names[$i]=$name;

$i++;

if($linenum == $length){

#determine if network is connected. ###############

#first store connecitivity

$deg = 0;

for($j = 0; $j<$i; $j++){

$n = 0;

for($k=0; $k<$i; $k++){

$dij = sqrt(($actual{$j."actx"}-$actual{$k."actx"})**2+

($actual{$j."acty"}-$actual{$k."acty"})**2 );

if($dij <= 15){

$tmp[$n]=$k;

$n++;

if($j!=$k){$deg++;}

}

}

$conn[$j]=[ @tmp ];

@tmp = ();

}

$avgdeg = $deg/$i;

#Can node 0 reach all nodes????
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@reach = @{$conn[0]}; # node 0 can reach all its neighbors

$reached = $#{$conn[0]}+1;

$r = 0;

while($r <= $#reach){

$ss = $#{$conn[$reach[$r]]};

for $s (0 .. $ss ){

if(memberofreach($conn[$reach[$r]][$s])==0){

$reach[$reached] = $conn[$reach[$r]][$s];

$reached++;

}

}

$r++;

}

if($reached < $i){ #if node 0 can’t reach every other node,

$connected = 0; #it is not connected

}else {

$connected = 1; #otherwise its connected

}

##################################################

print OUTFILE "$input,$connected,$avgdeg\n";

$avgdeg = 0;

$i = 0; #clear count for next set

}

}

close(OUTFILE);

sub memberofreach {

my $test = $_[0];

my $res = 0;

$w = 0;

while($w <= $#reach && $res == 0){

if($reach[$w]==$test){

$res = 1;

}

$w++;

}

return $res;

}

#------------end conntest.pl-------------------------

consolemakemfile.pl (makemfile.pl does the same except doesn’t write
average degree to the command line)

#!/usr/local/ActivePerl-5.6/bin/perl -w

#

#makemfile.pl - takes in a .pos file and spits out a file that can be

#opened in Matlab to display a graph of the network

#also outputs to stdout the filename and average degree to be possibly

#read by another script

if(@ARGV>0){

$filename = $ARGV[0];

#print $filename."\n";

}else {

print "give me a filename\n";

exit(0);

}

if($filename =~ /\/|\\/){ #I have a file in another directory

@dirs = split /\/|\\/, $filename;

$numdirs = @dirs;

$fname = $dirs[$numdirs-1];

}else{

$fname = $filename;

}
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$l = length($fname);

if($l<23){

$type = substr($fname, 0, 1);

$numnodes = substr($fname, 1, 3);

$seed = int(substr($fname, $l-13, 9));

if($l == 21){

$width = substr($fname, 4, 4);

}else{

if($l == 22){

$width = substr($fname, 4, 5);

}

}

if($type == 2 || $type == 6) {

$ntype = "RU";

$fulltype = "Random Uniform";

}else{

if($type == 4 || $type == 5 || $type == 7){

$ntype = "CD";

$fulltype = "Constant Density";

}else{

$ntype = "NA";

$fulltype = "Unknown Type";

}

} #create a file name of a standard form

$mfile = "m".$numnodes.$ntype.$width.$seed.".m";

$mfile =~ s/\./\_/;

}else{ #longer than expected, just strip out zeros, and set pos extension

$mfile = $fname;

$pos = ".pos"; $nada = ""; $zeros = "00000";

$mfile =~ s/$pos/$nada/;

$mfile =~ s/\./$nada/;

$mfile =~ s/$zeros/$nada/;

$mfile = "m".$mfile.".m";

}

if($filename =~ /\/|\\/){ #I have a file in another directory

$dirs[$numdirs-1] = $mfile;

$output = "";

for($t = 0; $t< $numdirs-1; $t++){

$output = $output.$dirs[$t]."\\";

}

$output = $output.$dirs[$numdirs-1];

$mfile = $output;

}

%pos = (); #a hash of node ids and positions

@deg = (); #an array of degrees of each node

open(INFILE, $filename) or die "can’t read ".$filename;

@lines = <INFILE>; #read in all lines of file

close(INFILE);

$numnodes = 0;

foreach $line (@lines){ #loop through all lines

chop($line);

chop($line);

@words = split(’,’, $line);

#grab the data

$name = $words[0]; #first is node id

$x = $words[1];

$y = $words[2];

$namex = $name."x";

$namey = $name."y";

$pos{$namex}= $x;

$pos{$namey}= $y;

$numnodes++;

}

open(MOUT, ">$mfile");

print MOUT "function createmap()\n \%\% Create figure\n";
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print MOUT "figure1 = figure;\n\%\% Create axes\n";

print MOUT "axes1 = axes(’Parent’,figure1);\n";

print MOUT "title(axes1,’".$fulltype.", ".$numnodes." Nodes, Width ".$width.

", Seed ".$seed."’);\n"

print MOUT "xlabel(axes1,’x’);\n ylabel(axes1,’y’); \n";

for($i = 0; $i<$numnodes; $i++)

{

print MOUT "line([".$pos{$i."x"}.",".$pos{$i."x"}."],";

print MOUT "[".$pos{$i."y"}.",".$pos{$i."y"}."],";

print MOUT " ’Color’, ’b’, ’Marker’, ’o’, ’MarkerSize’, 5, ’MarkerFaceColor’, ";

print MOUT "’r’)\n";

$d=0;

for($j=0; $j<$numnodes; $j++)

{

$dist = sqrt(($pos{$j."x"}-$pos{$i."x"})**2+($pos{$j."y"}-$pos{$i."y"})**2 );

if($dist <= 15 && $i!=$j)

{

print MOUT "line([".$pos{$i."x"}.",".$pos{$j."x"}."],[".$pos{$i."y"}.",";

print MOUT "$pos{$j."y"}."], ’Color’, ’b’, ’Marker’, ’o’, ’MarkerSize’, 5,";

print MOUT " ’MarkerFaceColor’, ’r’)\n";

$d++;

}

}

$deg[$i] = $d;

}

close(MOUT);

$totdeg = 0;

for($i = 0; $i < $numnodes; $i++)

{

$totdeg = $totdeg + $deg[$i];

}

$avgdeg = $totdeg/$numnodes;

print "$filename,$avgdeg,\n";

#------------end consolemakemfile.pl-------------------------
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Appendix E. Best, Worst and Average ADE Performance Graphs

This appendix contains graphs of the networks on which AFL and Map Growing

had their best, worst and average ADE performance. For each network, the original

graph and the resulting output from AFL and Map Growing are presented. Since

both algorithms can produce networks in a rotated and flipped coordinate system

from the original, the graphs resulting from the algorithms have been rotated and

flipped by hand to best approximate the original coordinate system for comparison.

In each of the resulting graphs, white nodes indicate the node 0 and the five reference

nodes for AFL or the starting triangle for Map Growing.
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Figure E.1: Graph of Best AFL Network
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Figure E.2: AFL results, ADE=0.072
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Figure E.3: Map Growing results, ADE=0.795
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Figure E.5: Map Growing results,
ADE=0.26
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Figure E.6: AFL results, ADE=0.11
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Figure E.7: Average AFL Graph
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Figure E.8: AFL results, ADE=3.36
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Figure E.9: Map Growing results, ADE=8.62
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Figure E.10: Average Map Growing Graph
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Figure E.11: Map Growing results, ADE=6.81
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Figure E.12: AFL results, ADE=0.33

136



0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90
Random Uniform, 100 Nodes, Width 87.3, Seed 5090

x

y

Figure E.13: Worst AFL Graph
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Figure E.14: AFL results, ADE=45.5
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Figure E.15: Map Growing results,
ADE=1.35
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Figure E.16: Worst Map Growing Graph
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Figure E.17: Map Growing results, ADE=32.0
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Figure E.18: AFL results, ADE=2.53
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Appendix F. Verification of ANOVA Assumptions

This appendix includes the figures that verify the ANOVA assumptions. Also, addi-

tional figures are included that illustrate why some data points are removed from the

study.

Map Growing

Upon initial inspection of the normal probability plot and residuals versus fitted

values plot, the Map Growing Average Transmitted Bits exhibited a high number

of low outliers that were linear but at a different slope than the normal distribution

line. This is shown in Figures F.1 and F.2. This suggested that there were at least

two modes of operation within the data. Examining the low outliers revealed that

most of the data points corresponded to Random Uniform, degree 8, larger sized

networks. The RU, degree 8 networks with 100 or 300 nodes also have the lowest

percent localized results. Figure H.10 in Appendix H shows that the only group of

networks that localize less than 90% with Map Growing are RU, degree 8, with 100

or 300 nodes. The average percent localized for this class of networks is 65.85%. All

other networks localize 98.54% using Map Growing.
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Figure F.1: Original Residual Plots of Map Grow Average Transmitted Bits
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Since RU networks have areas of high degree nodes and areas with low degree

nodes, they are more likely than the CD networks to not localize all nodes, when

using Map Growing. The low degree nodes in RU networks have more trouble finding

eligible nodes to localize with (noncollinear with acceptable residual, or having local-

ized neighbors that can be used with the 2 Beacon Solver). The lower the average

degree of the entire network, the worse this effect becomes. The phenomenon worsens

as the network size grows. With only 30 nodes, it is more likely the map can grow to

all nodes. With 300 nodes, there is more of a chance that the map growth will not

reach more nodes because of areas of low degree. As a result, Map Growing with RU,

degree 8 networks with 100 and 300 nodes localizes a low percentage of nodes. Since

fewer nodes localize, fewer nodes are broadcasting their positions, and their localized

neighbors. Overall, messages decrease as well as transmitted bits. This effect causes

a second mode of operation - one in which few nodes localize (<75%).
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Figure F.2: Original Residual Plots of Map Grow Average Received Bits

To produce a valid ANOVA, the degree 8 networks were partitioned from the

data set. Additional, outliers were also removed, data points corresponding to a high

number of received bits. Examining the histogram of degrees of the nodes in the

network and comparing it to a typical performing network shows why this outlier
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network received an usually high number of bits. Figure F.3 is a histogram of the

degrees from the outlier network. Figure F.4 is a histogram of the degrees from a

typical network. In the outlier network, a disproportionately high number of nodes

have a very high degree offset by nodes that have a very low degree. In the typical

case, the degrees are more normally distributed with most nodes having degrees close

to or at 16 and less nodes having degrees far from 16. Since the outlier network had

an usually high number of nodes with a very high degree, most of the messages sent

were heard by more than the typical number of nodes. This effect drives up the overall

number of bits heard. Since the goal is to characterize typical behavior, this seed was

removed from every set. As such, the Map Growing ANOVAs do not reflect behavior

that includes networks with nodes that have a distribution of degrees favoring high

degrees.
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Figure F.3: Histogram of Node Degree - Outlier Case, 100 Nodes, Random Uniform,
Avg Degree 16

Lastly, a set of data points were observed to have a very low number of trans-

mitted bits. Examining the degrees of the three starting nodes reveals that the outlier

data points all had sets of starting nodes with unusually high degrees. The starting

nodes are the first set of 3 that localize in Map Growing. Once they localize, they
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Figure F.4: Histogram of Node Degree - Typical Case, 100 Nodes, Random Uni-
form, Avg Degree 16

broadcast their information to their neighbors. If a node hears all three broadcasts

and the starting nodes are not collinear, it can immediately localize. If the starting

nodes have a very high degree, it is more likely that more nodes can instantly localize,

eliminating the need to transmit any more bits. This results in a very easy graph for

Map Growing to localize, and not the typical case. The removal of these points and

others to keep the experiment balanced leaves 23 repetitions for each configuration in

the Map Growing data set.

The Normal Probability Plot of the Map Growing Average Received Bits and

Average Transmitted Bits are shown in Figures F.5 and F.7. These plots show that

the residuals approximately follow the normal distribution line and confirms that

the residuals in the measurements are normally distributed. To confirm errors are

independent of the factor levels, a plot of the Residuals vs Fitted Values is observed

to confirm no trends are present. The same plot can be used to verify that the errors

have the same variance for all factor levels by confirming a constant height in the

spread of residuals. As can be seen in Figure F.6 and F.8, there are no trends in the

residuals versus fitted data for either average bits transmitted or average bits received
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and the height of the residual plots are generally consistent. Additionally, since the

magnitude of the residuals are less than an order of magnitude than the fitted value,

any trends can be ignored [Jai91]. The errors are independent and the variance is

constant.
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Figure F.5: Map Growing: Normal Probability Plot of Map Growing Average
Received Bits
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Figure F.7: Map Growing: Normal Probability of Plot of Map Growing Average
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Figure F.8: Map Growing: Residuals vs Fitted Values of Map Growing Average
Transmitted Bits

AFL

The original residual versus fitted value graphs indicates an increase in variance

of the errors as degree increased. This suggests a system that is not additive and

requires a transformation in the data [Jai91]. The transformation that reduced the

variance in the errors, trends in the variance and resulted in errors that are normally

distributed is a natural log transformation. As a result, the AFL ANOVAs operate

on the natural log of the average received bits and average transmitted bits.
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Figure F.9: AFL: Normal Probability Plot of ln(ARB)

Initial residual plots for AFL communication data also had a series of outliers at

both ends for both transmitted and received bits. In general, nodes can require more

iterations if they happen have neighbors with high errors in opposite directions. This

would create a set of position forces that would require many iterations for the node to

balance. This is made worse if a node has a low degree. With a low degree, there are

fewer sources from which a position correction can be provided. Similarly, a node with

a given number of neighbors is better served by having those neighbors spread around

the node evenly, rather on one side only. This creates more directions from which the

position corrections are provided. In the case of the outliers, most are networks that

have many areas that are concave, or that curves inward. With many concave areas,

there are more nodes that seem like the are on the edge of the network with most of

their neighbors on one side. For these nodes, there are less directions to help balance

the position forces, causing them to require more iterations, and more transmitted

and received bits. Most of the low AFL outliers were found to be networks that are

very balanced in terms of the degrees of the nodes and are mostly convex, with no or

few curves inward from the edge of the network. This represented the other extreme

from the concave networks. In order to characterize the typical performance both sets
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Figure F.10: AFL: Residuals vs Fitted Values of ln(ARB)

were removed as well as repetitions from other configurations to maintain a balanced

experiment. This leaves 21 repetitions of each configuration.

The final residual plots for the AFL communication data is in Figures F.9 to

F.12. The AFL normal probability plots for Natural Log of Average Transmitted

Bits (ln(ATB)) and Average Received Bits (ln(ARB)), in Figures F.9 and F.11, are

both approximately linear confirming that these errors are also normally distributed.

The Residuals versus Fitted Values figures for both responses confirm that the errors

are independent with constant variance. The magnitude of the errors are an order

of magnitude less than the fitted values, allowing any trends, if they existed, to be

ignored.
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Figure F.11: AFL: Normal Probability Plot of ln(ATB)
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Figure F.12: AFL: Residuals vs Fitted Values of ln(ATB)
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Appendix G. Concave and Convex Networks

This appendix contains examples of concave and convex networks.
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Figure G.1: Concave Example: 100 Nodes, Random Uniform, Degree 8, ADE =
43.5

148



0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90
Random Uniform, 100 Nodes, Width 87.3, Seed 9011

x

y

Figure G.2: Convex Example: 100 Nodes, Random Uniform, Degree 8, ADE = 1.1
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Appendix H. Experimental Data and Analysis Tables

(For all computations and tables , α = 0.1, RE = Range Error, Col = Column.)

Map Growing

Table H.1: Computation of Effects for Map Growing Average Transmitted Bits

CD RU

Degree Degree Degree Degree Degree Degree Row Row Row

Size RE 8 12 16 8 12 16 Sum Mean Effect

0.02 10216.23 20325.38 33778.88 10312.49 20557.14 33946.62 3874102.40 21522.79 297.75

30 0.05 10243.71 20309.55 33777.02 10152.42 20561.92 33997.74 3871270.90 21507.06 282.02

0.10 10178.55 20339.17 33793.70 10132.24 20553.60 33961.20 3868754.23 21493.08 268.04

0.02 9962.86 20358.35 33996.65 8714.71 20765.61 34869.07 3860017.87 21444.54 219.50

100 0.05 9477.03 20379.65 34007.19 8681.73 20753.71 34871.91 3845136.87 21361.87 136.83

0.10 9300.37 20329.12 34079.64 8439.60 20707.08 34778.23 3829021.42 21272.34 47.30

0.02 9796.87 20035.53 33328.30 7417.04 20579.54 34421.62 3767367.98 20929.82 -295.23

300 0.05 9447.61 19996.78 33337.30 7468.64 20300.64 34445.90 3749905.86 20832.81 -392.23

0.10 9088.53 19990.98 33357.29 6945.28 20175.70 34408.69 3718994.01 20661.08 -563.97

Col Sum 2631353.17 5461935.54 9103679.31 2347924.34 5548648.45 9291029.73 34384570.55

Col Mean 9745.75 20229.39 33717.33 8696.02 20550.55 34411.22 21225.04

Col Effect -11479.29 -995.65 12492.29 -12529.03 -674.49 13186.18

Table H.2: Table of Effects for Map Growing Average Transmitted Bits
Parameter Mean Effect Std Dev Confidence Interval

Mean 21225.04 21.83 21189.13 21260.96
Range Error Effects

0.02 74.01 30.88 23.21 124.80
0.05 8.87 30.88 -41.92 59.67
0.10 -82.88 30.88 -133.67 -32.08

Degree Effects
8.00 -12004.16 30.88 -12054.95 -11953.36

12.00 -835.07 30.88 -885.87 -784.28
16.00 12839.23 30.88 12788.44 12890.03

Size Effects
30.00 282.60 30.88 231.81 333.39

100.00 134.54 30.88 83.75 185.34
300.00 -417.14 30.88 -467.94 -366.35

Type Effects
CD 5.78 21.83 -30.14 41.70
RU -5.78 21.83 -41.70 30.14
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Table H.3: Contrast Results for Map Growing Average Transmitted Bits
Parameter LevelA LevelB Mean Difference Lower CL Upper CL

0.02 0.05 65.14 14.34 115.93
RE 0.02 0.1 91.75 106.09 207.68

0.05 0.1 156.88 40.95 142.54
8 12 -11169.09 -11219.88 -11118.29

Degree 8 16 -24843.39 -24894.19 -24792.60
12 16 -13674.31 -13725.10 -13623.51
30 100 148.06 97.26 198.85

Size 30 300 699.74 648.95 750.54
100 300 551.68 500.89 602.48

Type CD RU 11.56 -39.23 62.36

Table H.4: Computation of Effects for Map Growing Average Received Bits
CD RU

Degree Degree Degree Degree Degree Degree Row Row Row

Size RE 8 12 16 8 12 16 Sum Mean Effect

0.02 92342.39 271562.20 597316.93 94694.58 278208.64 603247.39 58121163.97 322895.36 4959.56

30 0.05 92473.05 271256.52 597378.73 93424.35 278255.19 604352.99 58114224.80 322856.80 4921.01

0.10 92059.30 271713.22 597654.43 93250.52 278204.95 603472.24 58090640.13 322725.78 4789.99

0.02 85503.03 265968.51 596308.01 81694.88 283508.99 639740.57 58581719.89 325454.00 7518.21

100 0.05 81363.50 266358.54 596478.56 81268.06 283451.98 639431.22 58450555.92 324725.31 6789.52

0.10 79988.63 265869.06 597588.99 79394.22 283001.76 638560.47 58332094.17 324067.19 6131.40

0.02 80975.60 249637.62 558135.38 67174.66 274897.24 613592.66 55332394.58 307402.19 -10533.60

300 0.05 77854.70 249131.67 558426.17 67874.19 271077.74 614268.44 55158987.26 306438.82 -11496.97

0.10 74836.38 249158.76 558846.85 62956.41 269733.59 613608.08 54874202.40 304856.68 -13079.11

Col Sum 22721897.35 70819683.26 157744021.71 21651955.87 75010202.88 167108222.06 515055983.12

Col Mean 84155.18 262295.12 584237.12 80192.43 277815.57 618919.34 317935.79

Col Effect -233780.62 -55640.67 266301.33 -237743.36 -40120.23 300983.55

151



Table H.5: Table of Effects for Map Growing Average Received Bits
Parameter Mean Effect Std Dev Confidence Interval

Mean 317935.79 385.30 317301.97 318569.61
Range Error Effects

0.02 648.06 544.90 -248.30 1544.41
0.05 71.19 544.90 -825.17 967.54
0.10 -719.24 544.90 -1615.60 177.11

Degree Effects
8 -235761.99 544.90 -236658.34 -234865.64

12 -47880.45 544.90 -48776.80 -46984.09
16 283642.44 544.90 282746.08 284538.79

Size Effects
30 4890.19 544.90 3993.83 5786.54

100 6813.04 544.90 5916.69 7709.39
300 -11703.23 544.90 -12599.58 -10806.88

Type Effects
CD -7706.65 385.30 -8340.47 -7072.84
RU 7706.65 385.30 7072.84 8340.47

Table H.6: Contrast Results for Map Growing Average Received Bits
Parameter LevelA LevelB Mean Difference Lower CL Upper CL

0.02 0.05 576.87 -319.48 1473.22
RE 0.02 0.1 790.43 470.95 2263.65

0.05 0.1 1367.30 -105.93 1686.78
8 12 -187881.54 -188777.90 -186985.19

Degree 8 16 -519404.43 -520300.78 -518508.07
12 16 -331522.88 -332419.24 -330626.53
30 100 -1922.85 -2819.21 -1026.50

Size 30 300 16593.42 15697.06 17489.77
100 300 18516.27 17619.92 19412.62

Type CD RU -15413.31 -16309.66 -14516.95
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Table H.7: Computation of Effects for Map Growing Average Distance Error
CD RU

Degree Degree Degree Degree Degree Degree Row Row Row

Size RE 8 12 16 8 12 16 Sum Mean Effect

0.02 0.85 0.72 0.54 1.01 0.72 0.58 132.67 0.74 -6.05

30 0.05 1.74 1.47 1.11 2.29 1.43 1.29 279.89 1.55 -5.24

0.10 2.93 2.68 2.10 3.03 2.31 2.15 456.49 2.54 -4.26

0.02 3.09 1.78 2.02 2.92 2.86 2.04 441.25 2.45 -4.34

100 0.05 5.15 3.87 3.80 4.77 4.85 3.89 789.97 4.39 -2.40

0.10 8.02 7.63 7.69 6.56 9.05 8.98 1437.98 7.99 1.20

0.02 8.90 5.82 8.29 8.10 8.16 8.20 1423.96 7.91 1.12

300 0.05 14.02 11.46 14.25 11.82 13.09 13.73 2351.10 13.06 6.27

0.10 19.69 19.47 22.30 16.09 22.50 22.88 3687.95 20.49 13.70

Col Sum 1931.86 1647.54 1862.95 1697.42 1949.16 1912.33 11001.27

Col Mean 7.16 6.10 6.90 6.29 7.22 7.08 6.79

Col Effect 0.36 -0.69 0.11 -0.50 0.43 0.29

Table H.8: Table of Effects for Map Growing Average Distance Error
Parameter Mean Effect Std Dev Confidence Interval

Mean 6.79 0.08 6.65 6.93
Range Error Effects

0.02 -3.09 0.12 -3.29 -2.89
0.05 -0.46 0.12 -0.65 -0.26
0.10 3.55 0.12 3.35 3.74

Degree Effects
8 -0.07 0.12 -0.27 0.13
12 -0.13 0.12 -0.33 0.07
16 0.20 0.12 0.00 0.40

Size Effects
30 -5.18 0.12 -5.38 -4.98
100 -1.85 0.12 -2.04 -1.65
300 7.03 0.12 6.83 7.23

Type Effects
CD -0.07 0.08 -0.21 0.07
RU 0.07 0.08 -0.07 0.21

153



Table H.9: Contrast Results for Map Growing Average Distance Error
Parameter LevelA LevelB Mean Difference Lower CL Upper CL

0.02 0.05 -2.64 -2.83 -2.44
RE 0.02 0.1 -4.00 -6.83 -6.44

0.05 0.1 -6.64 -4.20 -3.81
8 12 0.06 -0.14 0.26

Degree 8 16 -0.27 -0.47 -0.07
12 16 -0.33 -0.53 -0.13
30 100 -3.33 -3.53 -3.14

Size 30 300 -12.21 -12.41 -12.01
100 300 -8.88 -9.07 -8.68

Type CD RU -0.14 -0.34 0.05

Table H.10: Computation of Effects for Map Growing Percent Localized
CD RU

Degree Degree Degree Degree Degree Degree Row Row Row

Size RE 8 12 16 8 12 16 Sum Mean Effect

0.02 96.56 100.00 100.00 96.22 99.89 100.00 17780.00 98.78 3.87

30 0.05 97.67 100.00 100.00 95.33 99.89 100.00 17786.67 98.81 3.91

0.10 96.67 100.00 100.00 94.89 99.78 100.00 17740.00 98.56 3.65

0.02 96.77 99.47 99.90 72.03 98.33 99.80 16989.00 94.38 -0.52

100 0.05 93.87 99.57 99.87 73.37 98.50 99.83 16950.00 94.17 -0.74

0.10 92.27 99.23 99.97 69.10 98.27 99.77 16758.00 93.10 -1.80

0.02 95.11 99.88 100.00 61.11 98.98 99.81 16646.67 92.48 -2.42

300 0.05 94.39 99.86 100.00 62.44 98.46 99.84 16649.67 92.50 -2.41

0.10 93.49 99.79 100.00 57.02 97.93 99.88 16443.33 91.35 -3.55

Col Sum 25703.33 26933.67 26992.00 20445.67 26700.67 26968.00 153743.33

Col Mean 95.20 99.75 99.97 75.72 98.89 99.88 94.90

Col Effect 0.29 4.85 5.07 -19.18 3.99 4.98
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Table H.11: Table of Effects for Map Growing Percent Localized
Parameter Mean Effect Std Dev Confidence Interval

Mean 94.90 0.21 94.56 95.25
Range Error Effects

0.02 0.31 0.30 -0.18 0.80
0.05 0.26 0.30 -0.23 0.75
0.10 -0.57 0.30 -1.06 -0.08

Degree Effects
8 -9.44 0.30 -9.93 -8.95

12 4.42 0.30 3.93 4.91
16 5.02 0.30 4.53 5.51

Size Effects
30 3.81 0.30 3.32 4.30

100 -1.02 0.30 -1.51 -0.53
300 -2.79 0.30 -3.28 -2.30

Type Effects
CD 3.40 0.21 3.06 3.75
RU -3.40 0.21 -3.75 -3.06

Table H.12: Contrast Results for Map Growing Percent Localized
Parameter LevelA LevelB Mean Difference Lower CL Upper CL

0.02 0.05 0.05 -0.44 0.55
RE 0.02 0.1 0.82 0.39 1.37

0.05 0.1 0.88 0.33 1.32
8 12 -13.86 -14.35 -13.37

Degree 8 16 -14.46 -14.96 -13.97
12 16 -0.60 -1.09 -0.11
30 100 4.83 4.34 5.32

Size 30 300 6.61 6.11 7.10
100 300 1.77 1.28 2.26

Type CD RU 6.81 6.32 7.30
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Anchor Free Localization

Table H.13: Computation of Effects for AFL Average Transmitted Bits
CD RU

Degree Degree Degree Degree Degree Degree Row Row Row

Size RE 8 12 16 8 12 16 Sum Mean Effect

0.02 173068.47 80976.19 70682.51 186646.16 89868.18 71253.08 20174837.73 112082.43 -13312.29

30 0.05 181839.96 82782.74 70639.44 188891.13 93453.58 71599.39 20676187.07 114867.71 -10527.01

0.10 188526.03 82241.79 70910.82 194840.21 92614.46 71692.31 21024768.63 116804.27 -8590.45

0.02 190034.11 87044.22 75132.58 205562.89 103067.00 82030.29 22286132.59 123811.85 -1582.87

100 0.05 200657.39 89084.23 75153.27 210312.12 103295.38 81516.29 22800560.14 126669.78 1275.06

0.10 205201.65 90502.43 75244.33 215421.95 107333.53 82777.37 23294438.07 129413.54 4018.83

0.02 201666.27 98848.15 84329.84 224997.04 119152.24 93007.21 24660022.05 137000.12 11605.40

300 0.05 203059.25 95329.45 82937.19 215691.14 113600.56 88760.97 23981356.79 133229.76 7835.04

0.10 210833.16 95930.12 82317.44 216713.45 114290.96 87952.94 24241142.08 134673.01 9278.29

Col Sum 52646588.18 24082179.31 20620422.52 55772282.86 28100276.43 21917695.85 203139445.16

Col Mean 194987.36 89193.26 76371.94 206564.01 104075.10 81176.65 125394.72

Col Effect 69592.64 -36201.46 -49022.78 81169.29 -21319.62 -44218.07

Table H.14: Table of Effects for AFL Average Transmitted Bits
Parameter Mean Effect Std Dev Confidence Interval

Mean 125394.72 311.53 124882.25 125907.19
Range Error Effects

0.02 -1096.59 440.57 -1821.33 -371.84
0.05 -472.30 440.57 -1197.05 252.44
0.10 1568.89 440.57 844.15 2293.63

Degree Effects
8 75380.97 440.57 74656.22 76105.71

12 -28760.54 440.57 -29485.29 -28035.80
16 -46620.43 440.57 -47345.17 -45895.68

Size Effects
30 -10809.92 440.57 -11534.66 -10085.17

100 1237.00 440.57 512.26 1961.75
300 9572.91 440.57 8848.17 10297.66

Type Effects
CD -5210.53 311.53 -5723.01 -4698.06
RU 5210.53 311.53 4698.06 5723.01
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Table H.15: Contrast Results for AFL Average Transmitted Bits
Parameter LevelA LevelB Mean Difference Lower CL Upper CL

0.02 0.05 -624.28 -1349.03 100.46
RE 0.02 0.1 -2041.19 -3390.22 -1940.73

0.05 0.1 -2665.47 -2765.94 -1316.45
8 12 104141.51 103416.77 104866.25

Degree 8 16 122001.39 121276.65 122726.14
12 16 17859.88 17135.14 18584.63
30 100 -12046.92 -12771.67 -11322.18

Size 30 300 -20382.83 -21107.57 -19658.08
100 300 -8335.91 -9060.65 -7611.16

Type CD RU -10421.07 -11145.81 -9696.32

Table H.16: Computation of Effects for AFL Average Received Bits
CD RU

Degree Degree Degree Degree Degree Degree Row Row Row

Size RE 8 12 16 8 12 16 Sum Mean Effect

0.02 1269896.05 913464.48 1083715.82 1357551.85 995013.74 1089910.81 201286582.73 1118258.79 -76036.85

30 0.05 1325961.56 930610.90 1081732.83 1360886.20 1027861.41 1093842.82 204626871.20 1136815.95 -57479.69

0.10 1369998.78 922421.51 1084686.69 1400030.65 1009490.23 1093955.35 206417496.40 1146763.87 -47531.78

0.02 1398226.00 938357.03 1094976.57 1433504.66 1077326.60 1173811.43 213486068.69 1186033.71 -8261.93

100 0.05 1475500.92 951977.52 1096669.38 1453762.10 1060996.59 1157161.28 215882034.08 1199344.63 5048.99

0.10 1509099.58 958860.58 1097249.36 1480432.48 1082369.34 1165573.11 218807533.02 1215597.41 21301.76

0.02 1468991.56 1018817.89 1153295.55 1570946.80 1214467.47 1268869.06 230861649.74 1282564.72 88269.08

300 0.05 1470589.65 971904.73 1128761.14 1486182.98 1133013.70 1194512.22 221548932.69 1230827.40 36531.76

0.10 1524085.56 971172.25 1116637.97 1481768.42 1126512.41 1174549.26 221841776.45 1232454.31 38158.67

Col Sum 384370489.87 257327606.65 298131759.28 390751984.10 291811544.62 312365560.48 1934758945.00

Col Mean 1423594.41 953065.21 1104191.70 1447229.57 1080783.50 1156909.48 1194295.65

Col Effect 229298.76 -241230.44 -90103.94 252933.93 -113512.15 -37386.16
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Table H.17: Table of Effects for AFL Average Received Bits
Parameter Mean Effect Std Dev Confidence Interval

Mean 1194295.65 2441.06 1190280.11 1198311.18
Range Error Effects

0.02 1323.43 3452.17 -4355.40 7002.26
0.05 -5299.65 3452.17 -10978.48 379.18
0.10 3976.22 3452.17 -1702.61 9655.05

Degree Effects
8 241116.34 3452.17 235437.52 246795.17

12 -177371.29 3452.17 -183050.12 -171692.46
16 -63745.05 3452.17 -69423.88 -58066.23

Size Effects
30 -60349.44 3452.17 -66028.27 -54670.61

100 6029.61 3452.17 350.78 11708.43
300 54319.83 3452.17 48641.01 59998.66

Type Effects
CD -34011.87 2441.06 -38027.41 -29996.33
RU 34011.87 2441.06 29996.33 38027.41

Table H.18: Contrast Results for AFL Average Received Bits
Parameter LevelA LevelB Mean Difference Lower CL Upper CL

0.02 0.05 6623.08 944.25 12301.91
RE 0.02 0.1 -9275.87 -8331.61 3026.04

0.05 0.1 -2652.79 -14954.69 -3597.04
8 12 418487.63 412808.81 424166.46

Degree 8 16 304861.40 299182.57 310540.22
12 16 -113626.24 -119305.07 -107947.41
30 100 -66379.05 -72057.87 -60700.22

Size 30 300 -114669.28 -120348.10 -108990.45
100 300 -48290.23 -53969.06 -42611.40

Type CD RU -68023.74 -73702.57 -62344.92
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Table H.19: Computation of Effects for AFL Average Distance Error
CD RU

Degree Degree Degree Degree Degree Degree Row Row Row

Size RE 8 12 16 8 12 16 Sum Mean Effect

0.02 1.33 0.92 0.26 2.23 0.96 0.23 177.94 0.99 -2.37

30 0.05 2.35 1.02 0.52 3.80 1.13 0.37 275.87 1.53 -1.82

0.10 4.47 1.45 0.75 5.95 1.58 0.63 444.89 2.47 -0.89

0.02 1.96 0.38 0.20 6.81 0.87 0.57 323.81 1.80 -1.56

100 0.05 5.24 0.91 0.49 10.15 1.99 1.05 594.66 3.30 -0.05

0.10 10.93 1.91 0.97 14.68 4.44 1.95 1045.83 5.81 2.45

0.02 2.49 0.65 0.37 10.21 1.81 0.68 486.22 2.70 -0.66

300 0.05 5.76 1.53 0.89 12.91 3.19 1.36 768.99 4.27 0.91

0.10 12.77 3.33 1.81 17.54 5.85 2.72 1320.90 7.34 3.98

Col Sum 1418.66 363.05 187.46 2528.44 654.76 286.75 5439.11

Col Mean 5.25 1.34 0.69 9.36 2.43 1.06 3.36

Col Effect 1.90 -2.01 -2.66 6.01 -0.93 -2.30

Table H.20: Table of Effects for AFL Average Distance Error
Parameter Mean Effect Std Dev Confidence Interval

Mean 3.36 0.06 3.25 3.46
Range Error Effects

0.02 -1.53 0.09 -1.68 -1.38
0.05 -0.32 0.09 -0.47 -0.17
0.10 1.85 0.09 1.70 2.00

Degree Effects
8 3.95 0.09 3.80 4.10

12 -1.47 0.09 -1.62 -1.32
16 -2.48 0.09 -2.63 -2.33

Size Effects
30 -1.69 0.09 -1.84 -1.54

100 0.28 0.09 0.13 0.43
300 1.41 0.09 1.26 1.56

Type Effects
CD -0.93 0.06 -1.03 -0.82
RU 0.93 0.06 0.82 1.03
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Table H.21: Contrast Results for AFL Average Distance Error
Parameter LevelA LevelB Mean Difference Lower CL Upper CL

0.02 0.05 -1.21 -1.36 -1.06
RE 0.02 0.1 -2.17 -3.53 -3.23

0.05 0.1 -3.38 -2.32 -2.02
8 12 5.42 5.28 5.57

Degree 8 16 6.43 6.28 6.58
12 16 1.01 0.86 1.16
30 100 -1.97 -2.12 -1.82

Size 30 300 -3.11 -3.26 -2.96
100 300 -1.13 -1.28 -0.98

Type CD RU -1.85 -2.00 -1.70

Table H.22: Computation of Effects for AFL Percent Localized
CD RU

Degree Degree Degree Degree Degree Degree Row Row Row

Size RE 8 12 16 8 12 16 Sum Mean Effect

0.02 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

30 0.05 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

0.10 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

0.02 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

100 0.05 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

0.10 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

0.02 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

300 0.05 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

0.10 100.00 100.00 100.00 100.00 100.00 100.00 18000.00 100.00 0.00

Col Sum 27000.00 27000.00 27000.00 27000.00 27000.00 27000.00 162000.00

Col Mean 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Col Effect 0.00 0.00 0.00 0.00 0.00 0.00
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(Note: Since all networks are connected and only connectivity is required for AFL to

localize all nodes, AFL achieved 100% localized on all networks and all configurations.)

Table H.23: Table of Effects for AFL Percent Localized
Parameter Mean Effect Std Dev Confidence Interval

Mean 100.00 0.00 100.00 100.00
Range Error Effects

0.02 0.00 0.00 0.00 0.00
0.05 0.00 0.00 0.00 0.00
0.10 0.00 0.00 0.00 0.00

Degree Effects
8 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00

Size Effects
30 0.00 0.00 0.00 0.00

100 0.00 0.00 0.00 0.00
300 0.00 0.00 0.00 0.00

Type Effects
CD 0.00 0.00 0.00 0.00
RU 0.00 0.00 0.00 0.00

Table H.24: Contrast Results for AFL Percent Localized
Parameter LevelA LevelB Mean Difference Lower CL Upper CL

0.02 0.05 0.00 0.00 0.00
RE 0.02 0.1 0.00 0.00 0.00

0.05 0.1 0.00 0.00 0.00
8 12 0.00 0.00 0.00

Degree 8 16 0.00 0.00 0.00
12 16 0.00 0.00 0.00
30 100 0.00 0.00 0.00

Size 30 300 0.00 0.00 0.00
100 300 0.00 0.00 0.00

Type CD RU 0.00 0.00 0.00
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Table H.25: C Matrix Used in Map Growing Regression on Average Transmitted
Bits


0.0634899 −0.0000132 −0.0042271 −0.0024155
−0.0000132 0.0000001 0 0
−0.0042271 0 0.0003019 0
−0.0024155 0 0 0.0048309



Table H.26: C Matrix Used in Map Growing Regression on Average Received Bits


0.0634899 −0.0000132 −0.0042271 −0.0024155
−0.0000132 0.0000001 0 0
−0.0042271 0 0.0003019 0
−0.0024155 0 0 0.0048309



Table H.27: C Matrix Used in AFL Regression on ln(Average Transmitted Bits)


0.290584 −0.0000095 −0.0505922 −0.0018 0.0021
−0.00001 0.0000001 0 0 0
−0.050592 0 0.0090113 0 −0.0004
−0.001766 0 0 0.0035 0
0.002067 0 −0.000372 0 2E − 05



Table H.28: C Matrix Used in AFL Regression on ln(Average Received Bits)


0.29577 −0.0001257 −0.0505687 −0.0018 3E − 07 0.0020659
−0.000126 0.0000027 −0.0000005 4E − 07 0 0
−0.050569 −0.0000005 0.0090114 −1E − 07 0 −0.000372
−0.001784 0.0000004 −0.0000001 0.0035 0 0

0 0 0 0 0 0
0.002066 0 −0.000372 0 0 0.0000155
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Appendix I. MICA2DOT Calculations

Table I.1: MICA2DOT Data Summary [Cro05]
Processor Full Operation 8mA (4Mhz)
Radio, Receive 10mA
Radio, Transmit (full power) 27mA
Data Rate 38.4 Kbaud
Typical Battery Coin (Li-ion)
Typical Battery Capacity 560mA-hr
Operating Voltage Range 3.6 to 2.7 Volts

Map Growing Energy Consumption Model for the MICA2DOT

E = (−20123− 0.574S + 3408D − 538T )× 1.95313E-07
mA-hr

bit

+(−697537− 62.7S + 82394D − 23960T )× 7.2338E-08
mA-hr

bit

+0.074621628mA-hr (I.1)

Table I.2: Example Map Growing Energy Consumption Model Results
Predicted Predicted mA-hr % of Batt.

S D T ATB ARB Consumed Consumed
400 14 CD 26823.73 406962.4 0.109299469 0.019517762
200 10 RU 13843.48 113875.6 0.085562962 0.015279100

1000 18 CD 39453.19 698948.4 0.132887833 0.023729970
Average Map Growing Response 21225.04 317935.8 0.101765971 0.018172495

AFL Energy Consumption Model for the MICA2DOT

E = e(15.4+0.000647S−0.547D−0.0786T+0.0179D2) × 1.95313E-07
mA-hr

bit

+e(16.3+0.00108S−0.397D−0.0539T−2E-06S2+0.0153D2) × 7.2338E-08
mA-hr

bit

+0.001275094mA-hr (I.2)
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Table I.3: Example AFL Energy Consumption Model Results
Predicted Predicted mA-hr % of Batt.

S D T ATB ARB Consumed Consumed
400 14 CD 90653.51582 984904.5383 0.090226847 0.016111937
200 10 RU 137805.6999 1211536.565 0.115830357 0.020683992

1000 18 CD 148197.3336 475092.1195 0.064587082 0.011533407
Average AFL Response 125394.72 1194295.65 0.112159165 0.020028422

Worst Case Map Growing Energy Consumption Model for the MICA2DOT

E = (−20123− 0.574S + 3408D − 538T )× 1.95313E-07
mA-hr

bit

+(−0.05 + 6.8333E-3S)mA-hr

+0.074621628mA-hr (I.3)

Table I.4: Example Worst Case Map Growing Energy Consumption Model Results
Predicted Approx Run mA-hr % of Batt.

Size Degree Type ATB Time(min) Consumed Consumed
400 14 CD 26823.73 16.1 2.763193971 0.493427495
200 10 RU 13843.48 7.9 1.3939921 0.248927161

1000 18 CD 39453.19 40.7 6.865660663 1.226010833
Average Map Growing Response 21225.04 5.563 1.005933811 0.179631038

Worst Case AFL Energy Consumption Model for the MICA2DOT

E = e(15.4+0.000647S−0.547D−0.0786T+0.0179D2) × 1.95313E-07
mA-hr

bit

+(2 + 6.6667E-3S)mA-hr

+0.001275094mA-hr (I.4)

Table I.5: Example Worst Case AFL Energy Consumption Model Results
Predicted Approx. Run mA-hr % of Batt.

Size Degree Type ATB Time(min) Consumed Consumed
400 14 CD 90653.51582 28 4.685647526 0.836722772
200 10 RU 137805.6999 20 3.361523603 0.600272072

1000 18 CD 148197.3336 52 8.696886552 1.553015456
Average AFL Response 125394.72 17.72 2.979099584 0.531982069

164



Bibliography

APL99. K. Amouris, S. Papavassiliou, and M. Li. A position-based multi-zone
routing protocol for wide area mobile ad-hoc networks. In Proceedings of
the Vehicular Technology Conference (VTC ’99), Houston, TX, May 16-20
1999.

ASSC02. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wire-
less sensor networks: A survey. Computer Networks (Elsevier) Journal,
38(4):393–422, March 2002.

AV04. C. Alippi and G. Vanini. Wireless sensor networks and radio localization:
A metrological analysis of the MICA2 received signal strength indicator. In
In Proceedings 29th IEEE Local Computer Networks. Institute of Electrical
and Electronics Engineers (IEEE), 2004.

BHE01. N. Bulusu, J. Heidemann, and D. Estrin. Adaptive beacon placement. In
Proceedings of the 21st Annual International Conference on Distributed
Computing Systems (ICDCS-21), volume 2, April 2001.

BHET04. N Bulusu, J. Heidemann, D. Estrin, and Tran T. Self-configuring local-
ization systems: Design and experimental evaluation. ACM Transactions
on Embedded Computing Systems, 3:24–60, 2004.

BP00. P. Bahl and V. N. Padmanabhan. Radar: An inbuilding RF-based user
location and tracking system. In Proceedings of the Nineteeth Annual Joint
Conference of the IEEE Computer and Communications Societies (IEEE
Infocom 2000), volume 2, March 26-30 2000.

CHH01. S. Capkun, M. Hamdi, and J.P. Hubaux. GPS-free positioning in mo-
bile ad-hoc networks. In Proceedings of the 34th Hawaiian International
Conference on System Sciences (HICCSSS’01), Maui, Hawaii, 2001.

Cro05. Crossbow Technology Incorporated. http://www.xbow.com/, July 2005.

CYE+03. J. Chen, L. Yip, J. Elson, H. Wang, D. Maniezzo, R.E. Hudson, K. Yao,
and D. Estrin. Coherent acoustic array processing and localization on
wireless sensor networks. In Proceedings of the IEEE, volume 91, pages
1154–1162, August 2003.

EBD+02. L. Evers, W. Bach, D. Dam, M. Jonker, J. Scholten, and P. J. M. Havinga.
An iterative Quality-Based localization algorithm for ad hoc networks. In
1st Int. Conf. on Pervasive Computing (Pervasive), pages 55–61, Zurich,
Switzerland, Aug 2002.

Enc97. Encoder: The Newsletter of the Seattle Robotics Society. Ultrasonics and
Robotics. http://www.seattlerobotics.org/encoder/may97/sonar2.html,
1997.

165



GE01. L. Girod and D. Estrin. Robust range estimation for localization in ad hoc
sensor networks. http://lecs.cs.ucla.edu/girod/papers/NLOS.ps, 2001.

GKW+00. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker. Complex behavior at scale: An experimental study of low-
power wireless sensor networks. Technical Report UCLA Technical Re-
port UCLA/CSD-TR 02-0013, University of California at Los Angeles,
University of California at Los Angeles, Los Angeles, CA, 2000.

HHB+03. T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher. Range-free
localization schemes for large scale sensor networks. In Proceedings of the
9th ACM International Conference on Mobile Computing and Networking
(MobiCom ’03), pages 81–95, San Diego, CA, September 2003.

HWB00. J. Hightower, R. Want, and G. Borriello. Spoton: An indoor 3D location
sensing technology based on RF signal strength. Technical Report UW
CSE Tech. Rep. 00-02-02, University of Washington, University of Wash-
ington, Department of Computer Science and Engineering, Seattle, WA,
February 2000.

IS03. Rajagopal Iyengar and Biplab Sikdar. Scalable and distributed GPS free
positioning for sensor networks. website, Rensselaer Polytechnic Institute,
Troy, NY, 2003.

Jai91. Raj Jain. The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurment, Simulation, and Modeling.
Wiley-Interscience, New York, NY, May 1991.

LH03. Dan Li and Yu Hen Hu. Energy-based collaborative source localizatn
using acoustic microsensor array. In EURASIP Journal on Applied Signal
Processing, pages 321–337, March 2003.

LJD+00. J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable loca-
tion service for geographic ad-hoc routing. In Proceedings of the 6th ACM
International Conference on Mobile Computing and Networking (Mobi-
Com ’00), pages 120–130, August 2000.

LR03. Koen Langendoen and Niels Reijers. Distributed localization in wireless
sensor networks: a quantitative comparison. In Elsevier Computer Net-
works 43, pages 499–518, Netherlands, 2003.

LSS04a. Xiaoli Li, Hongchi Shi, and Yi Shang. A map-growing localization al-
gorithm for ad-hoc wireless sensor networks. In Proceedings of 10th In-
ternational Conference on Parallel and Distributed Systems(ICPADS-10),
pages 395–402, July 2004.

LSS04b. Xiaoli Li, Hongchi Shi, and Yi Shang. A partial-range-aware localiza-
tion algorithm for ad hoc wireles sensor networks. In Proceedings of the
29th Annual IEEE International Conference on Local Computer Networks,
pages 77–83, November 2004.

166



LW05. K. Lorincz and M. Welsh. Motetrack: A robust, decentralized location
tracking system for disaster response. http://www.eecs.harvard.edu/ kon-
rad/projects/motetrack/, 2005.

MGZN03. Jian Ma, Min Gao, Yanmin Zhu, and Lionel M. Ni. Quality
based anchor-free localization with refinement in sensor networks.
http://ihome.ust.hk/ zhuym/research/publications/conference/Localiza-
tion submission version.pdf, 2003.

Nag99. R. Nagpal. Organizing a global coordinate system from local information
on an amorphous computer. website, Massachusetts Institute of Technol-
ogy, Boston, MA, 1999.

NLLP03. L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. Landmarc: Indoor location
sensing using active RFID. In Proceedings of IEEE PerCom 2003, Dallas,
TX, March 2003.

NN01. D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proceed-
ings of GLOBECOM, San Antonio, TX, November 2001.

NN03. D. Niculescu and B. Nath. Ad hoc positioning system (aps) using aoa. In
Proceedings of the Twenty Second Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE Infocom 2003)IEEE IN-
FOCOM, pages 2037–2040, Salt Lake City, UT, April 2003.

PBDT03. Nissanka B. Priyantha, Hari Balakrishnan, Erik Demaine, and Seth Teller.
Anchor Free Distributed Localization in Sensor Networks. MIT Press,
Boston, MA, 2003.

PCB00. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket
location-support system. In Proceedings of the 6th ACM International
Conference on Mobile Computing and Networking (MobiCom ’00), Boston,
MA, August 2000. ACM.

Sav04. A. Savvides. Location discovery part II net-
worked embedded systems and sensor networks.
http://www.eng.yale.edu/enalab/courses/eeng460a/lec05.ppt, 2004.

SH03. X. Sheng and Y. Hu. Energy based acoustic source localization. In Proceed-
ings of Second Annual Information Processing in Sensor Networks, pages
285–300. IEEE Aerospace and Electronic Systems Society, April 2003.

SHS01. A. Savvides, C. Han, and M. Srivasta. Dynamic fine-grained localization
in ad-hoc networks of sensors. In Proceedings of 7th ACM International
Conference on Mobile Computing and Networking (MobiCom ’01), pages
166–179, July 2001.

SHS04. R. Stoleru, T. He, and J. A. Stankovic. Walking GPS: A practical solution
for localization in manually deployed wireless sensor networks. In 1st IEEE

167



Workshop on Embedded Networked Sensors (EmNetS), Tampa, Florida,
2004.

SPS02. A. Savvides, H. Park, and M. Srivastava. The bits and flops of the n-hop
multilateration primitive for node localization problems. In In First ACM
International Workshop on Wireless Sensor Networks and Application,
Atlanta, GA, September 2002.

SRB01. C. Savarese, J. Rabaey, and J. Beutel. Locationing in distributed ad-hoc
wireless sensor networks. In Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’01), pages 2037–
2040, Salt Lake City, UT, May 2001.

SRL02. C. Savarese, J. Rabaey, and K. Langendoen. Robust positioning algo-
rithms for distributed ad-hoc wireless sensor networks. In Proceedings
of USENIX Annual Technical Conference, General Track, pages 317–327,
Monterey, CA, June 2002.

SRZF03. Yi Shang, Wheeler Ruml, Ying Zhang, and Marcus Fromherz. Local-
ization from mere connectivity. In Proceedings of Fourth Annual ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2003), pages 201–212. ACM, June 2003.

TGB+04. M. Terwilliger, A. Gupta, V. Bhuse, Z. H. Kamal, and M.A. Salahuddin.
A localization system using wireless network sensors: A comparison of two
techniques. In In Proc. of the First Workshop on Positioning, Navigation
and Communication, Hannover, Germany, March 2004.

TP03. Ankur Tarnacha and Thomas F. La Porta. E-strobe: An adaptive beacon
activation algorithm for sensor localization. In Proceedings of IEEE Vehic-
ular Technology Conference (VTC) 2003 Symposium on Wireless Ad hoc,
Sensor, and Wearable Networks (VTC ’03), Orlando, Florida, October
2003. IEEE.

Tri05. Trimble. All about gps. http://www.trimble.com/gps/triangulating3.html,
May 2005.

WC02. Kamin Whitehouse and David E. Culler. Calibration as parameter esti-
mation in sensor networks. In WSNA, pages 59–67, 2002.

Wei05. Eric W. Weisstein. Relative error. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/RelativeError.html, 2005.

WG97. Paul R. Wolf and Charles D. Ghilani. Adjustment Computations: Statics
and Least Squares in Surveying and GIS. Wiley-Interscience, New York,
NY, 1997.

ZG03. Y. J. Zhao and R. Govindan. Understanding packet delivery performance
in dense wireless sensor network. In 1st ACM Conference on Embedded
Networked Sensor Systems (SenSys), Los Angeles, CA, 2003.

168



ZHS04. G. Zhou, T. He, and J. A. Stankovic. Impact of radio asymmetry on wire-
less sensor networks. In 2nd International Conference on Mobile Systems,
Applications, and Services (Mobisys), Boston, MA, 2004.

169



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2006 Master’s Thesis Aug 2004 — Mar 2006

Evaluation of Energy Costs
and Error Performance of

Range-Aware, Anchor-Free Localization Algorithms
for Wireless Sensor Networks

Gustav Julio Jordt, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way Bldg 640
WPAFB OH 45433-7765

AFIT/GCE/ENG/06-02

Mr. William Koenig (William.Koenig@wpafb.af.mil)
AFRL/IFSC (AFMC)
2241 Avionics Circle
WPAFB, OH 45433
DSN785-4709x3172

Approval for public release; distribution is unlimited.

. . . . . . . . .This research examines energy and error tradeoffs in Anchor-Free Range-Aware Wireless Sensor Network
(WSN) Localization algorithms. A concurrent and an incremental algorithm (Anchor Free Localization (AFL) and Map
Growing) are examined under varying network sizes, densities, deployments, and range errors. Despite current
expectations, even the most expensive configurations do not expend significant battery life (at most 0.4%), implying little
energy can be conserved during localization. Due to refinement, AFL is twice as accurate, using 6 times the
communication. For both, node degree affects communication most. As degree increases, Map Growing communication
increases, while AFL transmissions drop. Nodes with more neighbors refine quicker with fewer messages. At high degree,
many nodes receive the same message, overpowering the previous effect, and raising AFL received bits. Built from
simulation data, the Energy Consumption Model predicts energy usage of incremental and concurrent algorithms used in
networks with varying size, density, and deployments. It is applied to current wireless sensor nodes. Military WSNs
should be flexible, cheap, and long lasting. Anchor-Free, Range-Aware algorithms best fit this need.

Wireless Sensor Networks (WSN), wireless sensor nodes, ad-hoc, localization, autolocalization, range-aware, anchor-free,
distributed algorithms, energy conservation, power conservation

U U U UU 180

Dr. Rusty O. Baldwin

(937) 255–6565, ext 4445


	Evaluation of Energy Costs and Error Performance of Range-Aware Anchor-Free Localization Algorithms for Wireless Sensor Networks
	Recommended Citation

	tmp.1592861745.pdf.neYtp

