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Abstract

The study of a system’s reliability has played a crucial role in business and

industry since the dawn of modern technology. Current graphical models utilized in

reliability theory are limited in that no one model or technique allows for a thor-

ough analysis of system reliability. This research introduces a new graphical model

and methodology to be used in the field of reliability that addresses this concern.

Event Occurrence Networks (EONs) and their solution methodologies provide an

all-inclusive graphical model that allows for the manipulation of several important

reliability measures. An EON is a probabilistic network that represents the super-

position of several terminating counting processes and is an efficient tool in both

non-repairable and repairable systems. Current methodologies are also restricted in

the distributions that characterize component life and repair times. This concern is

alleviated via EONs coupled with piecewise polynomial approximation.
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RELIABILITY OF SYSTEMS

USING

EVENT OCCURRENCE NETWORKS

I. Introduction

1.1 Background

The importance of products being reliable is self-evident. Counting on a par-

ticular system or component to get its intended job done in many applications is

critical. This measure is even more detrimental in the military profession, when the

freedom of our nation, and the lives of our soldiers and citizens are at stake. Our

growing dependency on advanced technologies and complex weapon systems, makes

reliability of greater concern now than ever before. Imagine perhaps the number of

civilian casualties, should the reliability of a precision guided munition not be con-

sidered. Why even bother guiding the weapon at all? Or not knowing if, should the

need arise, pulling the ejection handle will actually allow for safe departure from a

doomed aircraft. The need for reliability theory has been evident for many years and

continues to play a vital role in the military.

Reliability theory and its roots can be traced back as early as 1773, when Laplace

introduced the Laplace Transform [35]. Its theories have played a crucial role in

business and industry since the age of modern technology. More specifically the

theory grew from the demands of World War II stemming from complex military

systems in the early 50s and 60s [5]. Following the war, reliability analysis was

used in many diverse commercial fields such as the automotive and aircraft industry,

communications industry, and weapons systems industry [35]. As a result, many

theories that are still used today, were established.

Today reliability theory is utilized in a myriad of different areas. Automotive

manufacturers use reliability analysis throughout their production processes, from
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acquiring the assembly materials up to developing vehicle warranties. All major

manufacturing companies run their products through reliability testing to ensure they

are producing a quality product. The military tests weapons and equipment to ensure

the safety and effectiveness of our forces. Reliability is used extensively in life testing,

structural integrity testing, machine maintenance, and replacement problems, to name

a few. Having its uses in so many different fields, it is apparent that reliability theory

is extremely diverse and can be used in many different ways.

The term reliability has slightly different meanings depending on its field of use.

Reliability engineers define reliability as the probability that an item will perform

a required function, without failure under stated conditions, for a stated period of

time [5]. Actuaries, on the other hand, define reliability as the probability of survival

of a group of people [19]. The bio-statistician is concerned with the reliability or

lifetime of an organism. The most general of definitions describes reliability theory

as a “body of ideas, mathematical models, and models directed toward the solution

of problems in predicting, estimating, or optimizing the probability of survival, mean

life, or more generally, life distribution of components of systems; other problems con-

sidered in reliability theory are those involving the probability of proper functioning

of the system at either a specified time or an arbitrary time, or the proportion of time

the system is functioning properly,” [35]. For the purpose of this thesis, the reliability

of an item will be defined similar to the definition used by reliability engineers.

Reliability: probability that item will be adequately performing its specified pur-

pose for a specified period of time under specified environmental conditions.

The ambiguity in the above definition is necessary in generalizing the definition so

it can be applied to a vast number of reliability problems, and is resolved in specific

applications.

A simplifying assumption that is often made in reliability is that the components

or sub-systems are not repairable. That is, once the component or sub-system fails,

2



it is in a failed state for the remainder of time. This is an effective measure for

evaluating system effectiveness when down-time cannot be tolerated [18]. The entire

system in this type of model, can be represented by one of two states, up or down.

A system is a given configuration of subsystems and/or components whose proper

functioning over a stated interval of time determines whether the system will perform

as designed [25]. Another model that is widely used, assumes the amount of time that

an item spends out of service or down is negligible. This type of model is known as a

point process. For systems of this type, the probability that the system is operating

at a specified time, probability up, is the system’s reliability. In most real world

applications however, this is not the case. In other words components or sub-systems

can fail, which may or may not cause entire system failure, and then be repaired to be

as good as new. In this type of system, where short down-times are allowed, availability

replaces reliability as a more appropriate measure of system effectiveness [18]. For the

system with non-repairable components, availability is equivalent to reliability, and is

equal to the probability that a system works continuously from 0 to time t [16]. For

this reason the term availability, in terms of this thesis, also refers to system reliability

when dealing with systems comprised of non-repairable components.

Availability: the ability of a system to be in a state to perform its required function

under given conditions at a given instance in time.

These types of models, with repairable components, are known as alternating

renewal processes. An alternating renewal process is a stochastic process that alter-

nates between two states, up and down [22]. Initially the system is in the up state

and it stays there for a random amount of time then moves to a down state. The

system then stays in the down state for a random amount of time after which it cycles

back to the up state, this can theoretically happen for an indefinite amount of time.

Modeling this type of system is one of the primary objectives of this thesis.

3



1.2 Current Methods

System reliability is a stand-alone performance measure, where availability is

not. There are four types of availability measures: 1) limiting (long-term); 2) average;

3) instantaneous; and 4) limiting average availability. More often than not limiting

availability is used to determine whether a system is available or not.

1) Limiting Availability: the simplest steady-state situation, where availability is

equal to the mean time between failure (MTBF), divided by the mean time

between failure (MTBF) plus the mean time to repair (MTTR). In other words

Availability =
MTBF

MTBF + MTTR
.

2) Average Availability: most commonly approximated in simulation, average avail-

ability on an interval (0, c], is given by

Ac =
1

c

∫ c

0

A(t)dt.

where, A(t) is the instantaneous availability.

3) Instantaneous Availability: the probability that the item is operating at time

t.

4) Limiting Average Availability: the limiting expected proportion of time the

system is up. Or, mathematically,

Availability = lim
c→∞

Ac

[23].
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The correct representation for a give system’s availability depends on how the

system is to be used [24]. Limiting availability is often used because it is easy to

calculate. The other three measures are not as easy and are not typically found

analytically. Limiting availability is adequate so long as the instantaneous, or average

availability over a short time interval is not the measure of concern. Using limiting

availability to measure a systems’s availability lacks accuracy when the system of

concern is being evaluated for a short period of time. For this reason using the

limiting availability to describe the availability of many systems is undesirable.

For systems where average availability or the instantaneous availability is the

desired computation, the exponential distribution is often assumed and used to model

both the failure and repair times. The exponential distribution yields a closed form

solution when integrating the probability density function (pdf). In more complicated

situations with non-exponentially distributed times, Monte Carlo simulation is used

as opposed to analytical approaches [23]. If the exponential assumption is made, then

instantaneous availability can be obtained in closed form, and the system is easily

modeled as a continuous time markov chain (CTMC). The system can be modeled

as a CTMC even when failure and repair times are generally distributed, but these

types of models often do not lend themselves to closed form solutions.

There are three main graphical methods used to represent and analyze system

reliability. First, reliability block diagrams (RBD), and their techniques have been

used by engineers for years to model systems in areas such as computers, the aircraft

industry, and power plants [17]. RBDs are considered success space models. A success

space model describes a system in terms of component successes required for system

operation. A RBD portrays the required functional relationship between components

in an operational system. At higher-levels RBDs show the functional relationship

between sub-systems within the overall model.

The second graphical method, fault trees (FT), provide a compact, graphical,

intuitive representation [2]. Fault tree models are failure space models, meaning
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they describe events that cause system failure. The top event in a fault tree is any

undesired event and its branches are the causes of this event. Each branch point is

termed a gate. These gates can be and gates or or gates : and gates depict scenarios

where all of the descendent events must occur for the event at the current level to

occur; or gates on the other hand depict scenarios where only one of the descendent

events needs to occur for the event at the current level to occur. When applied to

the field of reliability, the top event is system failure, followed by all of the associated

elements that could cause the top event to occur. Thus, the top event can be thought

of as unreliability, or in systems with repairable components unavailability. There are

many methods to compute this top event probability. All of these methods use the

probabilities of the causes or basic events and most of them are based on minimal cut-

sets and boolean algebra. Minimal cut-sets are the minimum combination of events

such that, if non-operational, will cause system failure.

Third, event trees (ET), are a graphical representation that start with a cause

or initiating event and terminate at all possible system scenarios. For example, an

initiating event might be component one failure and the different scenarios would be

an operational or failed system. ETs typically use binary operations to find probability

measures. An event tree is an inductive or forward logic model, while a fault tree is

a deductive or backward logic model [44]. In order to provide a detailed reliability

analysis of a particular system, FTs and ETs are often combined. Typically this is

done by treating the branch point of an ET as a FT.

Lastly, simulation is an approximation method that is often utilized in relia-

bility theory. If you remove any of the simplifying assumptions or if the model is

more complex, then calculating system reliability or availability becomes much more

difficult [25]. Simulation often approximates average availability over the run-time

interval, by dividing the amount of time the system is up by the total run-time. How-

ever, it can be used to approximate all of the desired reliability measures, even when

failure and repair times are described by any general distribution. Thus, often times
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for systems where general distributions describe the component life and repair times,

simulation is used. All of these approaches have their down-falls and limitations.

1.3 Current Method Limitations

The analyst is often interested in availability at a specific instance in time, and

limiting availability will not yield an accurate assessment. Calculating the instanta-

neous availability however, is only straight forward when component life and repair

times are assumed to be exponentially distributed. If this assumption is made then

the system can be modeled via a CTMC. When the exponential distribution is not

used then the system becomes much more complicated and closed form solutions are

typically untractable. Unfortunately, assuming component life and repair times are

exponentially distributed is not always a valid assumption to make. For instance, if

exponential failure times are assumed then the component will fail at a continuous

rate regardless of how long it has already been operating. In many real world appli-

cations items may fail at a changing rate, whether increasing or decreasing. The tires

on your car, as an example, are more likely to fail as more miles are put on them. If

the exponential assumption is removed then our system’s instantaneous availability

becomes much more complicated to calculate, and other methods are used. So dif-

ficult in fact that very little work has been done when failure and repair times are

non-exponential [24].

Using CTMCs to calculate system availability typically does not allow for the

calculation of many other measures of concern, such as component importance mea-

sures. In CTMCs the system is often modeled in one of two states up or down. A

limitation of this method is that it does not yield the probability of a particular

component or group of components causing system failure. Often when studying a

system’s availability the component or components that drive the unavailability of

the system is of great concern. In other words it is imperative to know how important

components are to the system, especially if a cost effective component replacement

strategy is desired, with a goal of improving system availability. In this case it is
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important to know which component or components are the most important to the

system. Modeling the system as a CTMC does not make all of the desired perfor-

mance measures easy to calculate. When modeling these types of systems, transition

probabilities are of interest, but are difficult to calculate using CTMCs. Often times,

for this very reason, the limiting behavior of the CTMC is instead analyzed [22].

This is a limitation because the time element is of utmost importance in reliability.

Graphical techniques are much better at capturing all of these measures.

RBDs are very good at showing the relationships between components, and what

interactions between them are required for the system to be functional. They do not

however have obvious, intuitive solution techniques, especially when the system being

modeled is large. For this reason RBDs are converted to FTs.

FTs, are limited in the fact that they only depict and are focused on one relia-

bility measure, the top event reliability or availability. A complete analysis of complex

systems often results in thousands of combinations of events which can cause system

failure, the system’s cut-sets. If the FT has many minimal cut-sets then calculating

the top event probability will require extensive calculations, and is time consum-

ing [38]. Substantial improvement in computational utilization will only result from

a new approach. Thus, if interested in a more detailed analysis, including specific

component and combination of component failure probabilities, this method is not

effective. In addition, if a system consists of repairable components, then the anal-

ysis should also include the effects of repairs, which requires a sequence dependent

analysis [2]. If this is the case then the common methods used to solve FTs cannot

be used, and the top event probability is not obtainable. Accurate analysis requires

markov models, but even small FTs generate very large markov models and their ma-

nipulation is computationally expensive [2]. ETs share many of the same limitations

that FTs do.

Simulation, can be an effective way to calculate a complex system’s availability

over a specified time frame. However, for large systems, simulation can be extremely
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Figure 1: Example EON

costly and time consuming. Not to mention the fact that a simulation’s accuracy is

often in question. From this analysis it is evident that a more robust, all-inclusive,

reliability analysis method should be introduced.

1.4 Problem Approach

In order to meet this need, a graphical model termed an event occurrence net-

work (EON), is applied to this field (see Figure 1).

Event Occurrence Network: probabilistic network that represents the superposi-

tion of several terminating counting processes.

EONs received their introduction to the stochastics world via research done by

Denhard [12]. An EON is a probabilistic network in which an arc represents the

occurrence of an event from a group of (sequential) events before the occurrence of

a separate event or events from a different group. In this model arcs leaving a node

are a set of competing events, events between groups occur independently, and events

within a group occur sequentially [12].

Two separate types of nodes are used within an EON. Square nodes represent

the occurrence of an event that prohibits other events from occurring. This is termed a

concluding event, or a terminating node in the graph. It is equivalent to an absorbing

state in the probabilistic model. Circular nodes represent the occurrence of an event
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that is not a concluding event. This is termed an intermediate event in the graph and

translates to a transient state in the probabilistic model [12].

Terminating Node/Concluding Event: the occurrence of an event that prohibits

other events from occurring.

Intermediate Node: the occurrence of an event that does not prohibit other events

from occurring.

An EON represents the superposition of several terminating counting processes.

In this stochastic representation, each group of events has its own counting process

that counts the number of event occurrences in its respective group. If the events in

a given group are independently and identically distributed (iid) then the process is

a renewal process where the inter-arrival times are the event occurrence times.

RBDs, FTs and ETs can all be represented as EONs. In an EON however, the

set of nodes are mutually exclusive and collectively exhaustive, meaning the proba-

bility of being at any two nodes at a specific time t is zero and the sum of all the

node probabilities at any time t is equal to one. Survival at time t is the probability

of being at any of the intermediate nodes (transient states) at time t. In other words

the probability of the system functioning or being available at time t is the sum of all

the intermediate node probabilities at time t. Similarly failure at time t, P {T ≤ t},

the cumulative distribution function (cdf), is the probability of being at any of the

terminating nodes at time t. This probability is just the sum of all the terminating

node probabilities at time t.

The advantage of an EON is that it provides an all-inclusive graphical method

in which to conduct reliability analysis. EONs allow for the dissection of complex

systems into simple component and combination of component probabilities. Doing

so allows for a complete analysis of the entire system’s reliability. Using an EON, one

can look at the probability of being at any node at time t and find the probability
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that a specific set of events (failures) occurred. Thus, EONs allow an analyst to look

at specific causes of failure and their probabilities. If the analyst is interested in a

group of event occurrences, then all the analyst needs to do is sum their respective

probabilities, due to mutual exclusivity. This approach is most valuable when the

probability of component or components in a system causing system failure is the area

of concern. One can also easily look at event stream probabilities, the probability of

occurrence of a specific string of events. This cannot be done in Markovian models

since the Markov property is not satisfied, in other words the total history of the

system is required, not just knowledge of the previous state. EONs model competing

events as opposed to states of the system. EONs also graphically depict the system in

an intuitive, easy to understand manner. Looking at an EON it is easy to determine

which components or series of components will cause a system to fail or become

unavailable.

In this thesis, system reliability and availability will be found using EONs.

For systems with component life and repair times that are generally distributed, a

piecewise polynomial approximation technique is used to resolve probabilities that

do not have closed form integral solutions. If the times are assumed exponentially

distributed then system availability can be calculated exactly. This assumption will

be used as the baseline approach in order to validate the proposed model.

1.5 Research Scope

This research focuses on the reliability and instantaneous availability of systems

using event occurrence networks. This work follows that of [12], but applies techniques

he developed to a new field; reliability.

These techniques are used to develop a new, all-inclusive, robust method to

perform reliability analysis for any system, whether its made up of non-repairable or

repairable components. Some aspects of this analysis include probabilities of different

components or sub-systems or combinations of these causing system unavailability,
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component importance, and total system availability. The research outlines a method

to be used for complex systems in place of simulation with more accurate results.

1.6 Overview

This thesis is divided into six chapters. In this chapter the reliability of systems

using EONs, the background behind it, and its motivation was presented. Current

methods and their limitations were discussed in order to validate the need for new

techniques in this area. Lastly, a brief overview of the problem approach was given

and the scope of the research was defined.

Chapter 2 is divided into two main sections. The first gives a detailed introduc-

tion to EONs and their applications. More specifically, the first section goes over the

work done previously by Denhard in [12], and provides a thorough literature review on

his findings and sources. The second section provides a thorough review of reliability

theory.

EONs and their application to the reliability of non-repairable systems will be

the main topic for Chapter 3. This chapter shows how EONs can be used in many

different areas of reliability theory in an efficient manner. Chapter 4 extends the

methodology discussed in Chapter 3 to repairable systems.

Next, the results and illustrations are detailed in Chapter 5. Finally, Chapter 6

summarizes the results and provides a look at future research in this area. More pre-

cisely the chapter provides recommendations on areas to expand on the methodology

derived in this research.
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II. Literature Review

2.1 Overview of Event Occurrence Networks and Reliability Theory

This chapter provides a review of event occurrence networks and of reliability

theory. The chapter begins by discussing the probabilistic model introduced by [12],

termed an event occurrence network (EON). Following this introduction, a thorough

review of the reliability of systems with non-repairable and repairable components is

given, according to [3], [23], [25], and [19].

2.2 EON Introduction

An EON is used to model several groups of competing sequential events. More

specifically it is the superposition of several terminating counting processes [12]. This

chapter first gives a detailed description of EONs. Second, terms and notation used

throughout this thesis will be defined. Third, the underlying probabilistic models in

an EON will be discussed, focusing primarily on the probability of being at a node

or set of nodes at a particular time t: nodal probabilities. Last, the node explosion

problem associated with EONs is addressed.

2.3 Description [12]

An EON is a probabilistic model consisting of nodes and arcs. Generally speak-

ing, a probabilistic model is a simple way to model structural relationships between

events. Probabilistic models show possible paths of occurrence, graphically repre-

sent underlying probabilistic models, and are useful in helping to formulate possible

solution techniques for more complex problems. An arc in an EON represents the

occurrence of an event from a group of sequential events before the occurrence of

events from another group or groups of sequential events. Arcs leaving the same node

are a set of competing events. Events between groups occur independently of each

other and events within any one group occur sequentially.

In addition to arcs, EONs also consist of nodes. There are two types of nodes

used in an EON, intermediate and terminating nodes, representing intermediate and
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concluding events respectively. Intermediate events are represented by circles in the

model, and signify the occurrence of an event that is not a concluding event. These

intermediate nodes are equivalent to transient states in the probabilistic model. Ter-

minating nodes on the other hand are represented by squares in the model. Ter-

minating nodes or concluding events are events that preclude or prohibit any other

event from occurring. Concluding events are equivalent to absorbing states in the

probabilistic model. In order to make the next section easier to comprehend a new

term is introduced.

Tier: level in the EON graphical model or the number of events that have occurred

thus far.

Each tier is made up of all possible unique combinations of events that have

occurred thus far, where these unique combinations are represented by nodes. This

will become more clear with a simple example. To better understand this model,

the following notation will be used throughout. Suppose there are n groups of ki

sequential events, where i is the group number (i = 1, . . . , n).

G11, G12, . . . , G1k1

G21, G22, . . . , G2k2

...

Gn1, Gn2, . . . , Gnkn

Let Eie be the event occurrence (completion) time of event Gie where i is the group

number and e is the event number in group i with

• pdf- fEie
(t),

• cdf- FEie
(t), and

• Survivor Function- SEie
(t) where SEie

(t) = 1− FEie
(t).

14



1 

2 3 

E11 E21 

Figure 2: Simple EON

In addition, only one event can occur at any given instance in time. In other words

the probability of two or more events occurring at the same time is zero.

As stated before, an EON is the superposition of several terminating counting

processes. A counting process {N(t), t ≥ 0} is a stochastic process in which N(t)

counts the total number of events that have occurred up to time t. Mathematically,

let

Xn ≡ time interval between (n− 1)st and nth event,

{Xn, n ≥ 1} ≡ set of all time intervals,

Sn ≡ time occurrence of the nth event,

S0 = 0,

Sn = X1 + X2 + . . . + Xn, then

N(t) = sup{n ≥ 0 : Sn ≤ t}.

There is a counting process for each group of sequential events where Eie is the inter-

arrival time for group i. If all the Eie are independently and identically distributed

(iid) for a group, then {N(t), t ≥ 0} is a renewal process. Moreover if the interarrival

times, Eie, are exponentially distributed then {N(t), t ≥ 0} is a Poisson process.

As an example consider the simple EON shown in Figure 2. For this two event

EON, there are two event groups each containing one event, G11 and G21. In this
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example, and in all EONs for that matter, the top node (node one) represents the

non-event. This is the event where neither of the two events of interest have yet

occurred. The EON in 2 is made up of two tiers. Tier zero consists of node one, and

tier one is made up of nodes two and three. Note that, as stated before, tier zero

represents the case where no events have occurred. Similarly, tier one is made up of two

unique cases (nodes), each representing the occurrence of only one event. Generically

speaking, Pi(t) denotes the probability of being at node i at time t. Mathematically,

the probability of being at node one at time t, is the probability that none of the

events have occurred by time t, and is given as

P1(t) = P {E11 > t, E21 > t} .

The probability of being at node 2 at time t, the probability that arc 12 is chosen, is

equivalent to the probability that event G11 occurs before G21, for time less than t.

Assume that the random variable T represents the amount of time that has elapsed

thus far. The nodal probability expression is similar for node three. Mathematically

P2(t) = P {E11 < E21|T ≤ t} and

P3(t) = P {E21 < E11|T ≤ t} .

Both of these expressions can be solved via conditioning.

2.4 EON Solution Techniques

Many different standard stochastic operators are used in the analysis of EONs.

The main operators being conditioning and convolution. For example, suppose F is
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an event of interest and X is a random variable then, using a conditioning argument,

P {F} =
∑

x

P {F |X = x}P {X = x} in the discrete case,

P {F} =

∫ ∞

−∞
P {F |X = x} fX(x)dx in the continous case.

Now suppose the event of interest (what was termed F above), is the event where one

random variable occurs prior to the other. This is exactly the probability expression

shown above, in the simple EON example. In other words the quantity of interest

is P {X1 < X2}. If X1 and X2 are exponentially distributed with respective rates λ1

and λ2, then this probability is easy to find. It is given as

P {X1 < X2} =

∫ ∞

0

P {X1 < X2|X1 = x} fX1(x)dx

=

∫ ∞

0

P {X2 > x}λ1e
−λ1xdx

=

∫ ∞

0

SX2(x)λ1e
−λ1xdx

=

∫ ∞

0

e−λ2xλ1e
−λ1xdx

=

(
−λ1

λ1 + λ2

)
e−(λ1+λ2)x

∣∣∣∣∞
0

=

(
λ1

λ1 + λ2

)
.

In addition to conditioning, convolution is another operator that is valuable

when looking for nodal probabilities in an EON.

Convolution: mathematical operator which takes two functions and produces a third

function that represents the amount of overlap between the two functions [7].

This is also known as the folding of the two functions [7]. For example suppose

X and Y are independent continuous random variables with pdf’s fX and fY and

cdf’s given by FX and FY respectively. If Z = X + Y is the random variable of
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interest then fZ , Z’s pdf, is the convolution of fX and fY . Where as FZ , Z’s cdf, is

the convolution of FX and FY . According to [22]

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx =

∫ ∞

−∞
fY (x)fX(z − y)dy and

FZ(z) =

∫ ∞

−∞
FY (z − x)dFX(x) =

∫ ∞

−∞
FX(z − y)dFy(y).

If X and Y are two discrete, independent random variables then the probability mass

function (pmf) of Z, pZ(z), is

pZ(z) =
∑

x

pX(x)pY (z − x).

As an example consider the case when X and Y are iid exponentially distributed

random variables with rate λ. The cdf, FZ is given as

FZ(z) =

∫ ∞

−∞
FY (z − x)dFX(x)

=

∫ z

0

(1− e−λ(z−x))λe−λxdx

= λ

∫ z

0

e−λx − e−λzdx

= 1− e−λz − λze−λz. (1)

Note the sum of two iid exponential (λ) random variables is Gamma distributed with

cdf equal to the expression shown above [22]. The pdf for this convolution is

fz(z) = λ2ze−λz.

Similarly, if X and Y are two independent exponentially distributed random

variables with different respective rates γ1 and γ2 (γ1 6= γ2), then the cdf for Z is
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found using the above convolution formula which gives

FZ(z) =

∫ z

0

FY (z − x)fx(x)dx

=

∫ z

0

(
1− e−γ2(z−x)

)
γ1e

−γ1xdx

= γ1

∫ t

0

e−γ1x − eγ2ze(γ2−γ1)xdx

= 1− e−γ1z − γ1e
−γ2z

∫ z

0

e(γ2−γ1)xdx

= 1− e−γ1z −
(

γ1e
−γ2z

γ2 − γ1

)(
e(γ2−γ1)z − 1

)
= 1 +

−γ2e
−γ1z + γ1e

−γ1z − γ1e
−γ1z + γ1e

−γ2z

γ2 − γ1

= 1 +
−γ2e

−γ1z + γ1e
−γ2z

γ2 − γ1

. (2)

This is the cdf for what is termed the hypo-exponential distribution [7]. It has pdf

fz(z) =
γ1γ2

γ1 − γ2

(
e−γ2z − e−γ1z

)
. (3)

2.5 Underlying Probabilistic Model

As in the example given above, in EONs the probability of being at a node or

set of nodes at time t is the measure of greatest interest. According to [12], “the

probabilistic model generated by the EON structure is a non-Markovian probabilistic

model.” In other words, to calculate the probability of being at any particular node

in the network requires a knowledge of the history of all completed events. In a

Markovian model only knowledge of the previous state is required. The states of the

underlying probabilistic model correspond on a one-to-one basis with the nodes of

the EON. This means that in the EON, event sequences that end with a concluding

event are equivalent to absorbing states in the probabilistic model. Similarly, event

sequences that end with an intermediate event in the EON are equivalent to transient

states in the underlying probabilistic model [12].
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As was seen in the simple EON example given in Figure 2 on page 15, finding

the probability of being at a particular node is equivalent to finding the probability of

the associated event order relationship occurring. Now if the analyst is interested in

the probability of being at a group of nodes at time t then the sum of their respective

probabilities at time t, is the desired computation. These features are what make

EONs desirable in system reliability modeling.

2.6 Piecewise Polynomial Approximation [12]

Finding the probability of being at a node or set of nodes at some time t typically

involves integral or multiple integral expressions. These integral expressions are made

up of the event’s probability density functions and require multiplication, convolution

and conditional arguments. Often times these expressions cannot be solved in a closed

form and for this reason piecewise polynomial approximation or simulation is used.

Per [12], piecewise polynomial approximation with bucket analysis (Section 2.7), has

shown the most promise as a solution technique for EONs.

Piecewise Polynomial (ρ(x)): polynomial that is continuous over a closed interval

[a, b], made up of n− 1 different polynomials that are each in-turn defined over

n− 1 subintervals, Ik ∈ [a, b].

More precisely define the sub-intervals as shown. If

a = x1 < x2 < . . . < xn = b, then

Ik =
{

[xk, xk+1] for k = 1, 2, . . . , n− 1.

Now define

Pm ≡ linear space of all polynomials of degree m.

In other words,

Pm = {p(x) : p(x) =
m∑

j=0

cjx
j, cj ∈ R}.
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Now, it is possible to define ρ(x). There exists polynomials,

pk(x) ∈ Pm such that

ρ(x) = pk(x) for x ∈ Ik, k = 1, 2, . . . , n− 1.

To ensure ρ(x) is continuous and smooth between the polynomials at the knots (xk),

the following must hold:

dlpi

dx
(xi+1) =

dlpi+1

dx
(xi+1) for i = 1, 2, . . . , n− 2 and l = 0, . . . ,m.

Denhard, makes use of these polynomials in approximating the area (probability)

under the given curves for the associated nodal probability expressions.

2.7 Node Explosion Problem and Bucket Analysis

There is however one problem associated with EONs. Due to the fact that

unique occurrence sequences are modeled, the number of nodes required in the network

can be quite large. As one might imagine, as the number of events is increased the

number of unique event streams grows at an exponential rate.

The technique used by [12] to deal with this is node truncation. Truncation, is

the process by which nodes and event sequences are eliminated. In this process, event

sequences with small chances of occurrence and their associated nodes are eliminated

from the EON graph and underlying probabilistic model. This results in smaller

networks at a cost of lost explicitness in the model. The process by which this is

accomplished is termed bucket analysis [12].

In bucket analysis, intermediate nodes are transformed into terminating nodes.

This reduces the number of nodes in subsequent tiers in the EON. One might think of

this as pruning the network. This method truncates rare (as defined by the analyst)

event sequences with their top-level associated nodes. When nodes are truncated by

the method described above, event sequences from remaining nodes are removed as
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well. To describe this a little more clearly, a fluid analogy is used. At t = 0 the

probability of being at node one (the non-event) is equal to one. As time goes on, the

probability flows down to the other nodes, collecting in the concluding event nodes.

Thus, the concluding events (absorbing states), can be thought of as buckets, hence

the term bucket analysis. Intermediate nodes are thought of as leaky buckets, where

fluid (probability) is collected but then leaked to subsequent nodes in lower tiers. As

time goes to infinity, only the terminating nodes contain fluid (probability) [12]. Using

bucket analysis and the fluid analogy, a leaky bucket is replaced, and an intermediate

node is turned into a terminating node, pruning subsequent event tiers.

2.8 Reliability Theory Introduction

As was mentioned in Chapter 1, the reliability of an item is the probability

that it will be adequately performing its specified purpose for a specified period of

time under specified environmental conditions. This half of the chapter will review

several different topics in reliability theory. First, coherent system analysis and its

applications will be reviewed. Second, lifetime distributions are discussed. Third, an

analysis of repairable systems is given.

2.9 Coherent System Analysis

In order to conduct a thorough study of reliability theory, it is first necessary

to define some terms and review some basic theory. To analyze system reliability it is

necessary to have knowledge of the configuration of components, the failure mode of

each component, and the states in which the system is considered failed [25]. Coherent

system analysis addresses all of these issues.

The most intuitive way in which to represent systems when trying to determine

the reliability of a given system, is via a diagram consisting of binary functions,

generally known as a structure function [23], [25]. In this system the state of a
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component i, xi, termed a state variable, is defined as

xi =

 1 component working

0 component failed.

These systems are known as reliability block diagrams (RBDs), which will be discussed

in greater detail later in the section. The state of all the components in a system of

n components at a particular instance in time, known as the system’s state vector, is

defined as

x = (x1, x2, . . . , xn).

Similarly, the structure function φ(x), is the status of the entire system with

state vector x, and

φ(x) =

 1 system functioning when state vector is x

0 system failed when state vector is x.

Any vector x, for which φ(x) = 1 is called a path for the structure φ. Similarly, any

vector x, for which φ(x) = 0 is called a cut for the structure φ.

Coherent System: according to [25], “a system which is in a failed state when

all of its components are in failed states; is in a functioning state when all

of its components are in functioning states; and, if initially in a functioning

state for a state of its components, remains in a functioning state whenever

some components that were initially in failed states are restored to function-

ing states.” Alternatively, [3] and [23] suggest that a system of components

is coherent if φ(x) is non-decreasing in x (or φ(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤

φ(x1, . . . , xi−1, 1, xi+1, . . . , xn) for all i) and each component is relevant.

A non-decreasing structure function implies that the system’s state will not

improve if a component degrades. A component is irrelevant if its state has no impact
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Figure 3: RBD of 3 Components in Series

on system performance, or the structure function [23]. The remainder of this section

is devoted to discussing methods used in coherent system analysis.

There are two basic configurations of components in a RBD, series or parallel.

Series System: system that only functions when all of its components function.

Mathematically, using the notation just discussed,

φ(x) =

 1 if x = 1

0 otherwise.

This is also written as

φ(x) = min{x1, x2, . . . , xn}

=
n∏

i=1

xi.

A RBD of a simple system with 3 components in series is shown in Figure 3.

Parallel System: system that operates when k or more of its components are func-

tioning. If k = 1, the system is called purely parallel. A purely parallel system

fails only when all of its components fail. When k > 1 then the system is re-

ferred to as a k out of n system.

Note that, both series and parallel systems are a special case of a k out of n

system [25]. If k = n then this is a series system. Mathematically, for a purely parallel

24



Figure 4: RBD of 3 Components in Parallel

system,

φ(x) = max{x1, x2, . . . , xn}

= 1−
n∏

i=1

(1− xi).

The RBD of a simple 3 component purely parallel system is shown in Figure 4.

In addition to simple systems that consist of components that are all in parallel

or in series, any combination of these arrangements is possible. These systems can

all be represented as k out of n systems, where any combination of k out of n of the

components are required to function in order for the system to be operational [23].

Mathematically, the structure function for a k out of n system is defined as

φ(x) =

 1 if
∑n

i=1 xi ≥ k

0 if
∑n

i=1 xi < k.

It is important to note that the aforementioned series and parallel system’s struc-

ture functions place bounds on all coherent system’s structure functions [3], more

specifically
n∏

i=1

xi ≤ φ(x) ≤ 1−
n∏

i=1

(1− xi).

Now that some of the basic arrangements of components has been discussed,

a review of some important reliability terms will be given. The first is structural

importance. The structural importance is a quantity used to measure how critical a
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certain component is to a given system. For the ith component it is defined as

Iφ(i) =
1

2n−1

∑
{x|xi=1}

[φ(1i,x)− φ(0i,x)] .

In other words the importance of component i is the sum of structure function with

component i operating minus the structure function without component i operating

over all values of x such that xi = 1, times a constant. It is worthwhile to note that

this measure will always produce a number between 0 and 1. This measure is notable,

because it provides a way to identify crucial components, thus producing an effective

method used when attempting to improve system reliability [23].

Other areas of study in reliability use methods that utilize minimal path and

cut sets.

Path Vector: a vector x is termed a path vector for a coherent system if, the system

operates under the state it describes, i.e. φ(x) = 1.

Minimal Path Vector: a vector x, such that if any of the components described

by it shutting down will cause the system to stop functioning.

Mathematically

x < y ⇔ xi ≤ yi ∀ i and xi < yi for at least one i.

Using the above definition, a minimal path vector is a vector x, such that

φ(y) = 0 for any y < x (not unique).

The opposite of a path vector is a cut vector.
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Cut Vector: a vector x is termed a cut vector for a coherent system if, the system

does not operate under the state it describes, i.e. φ(x) = 0.

Minimal Cut Vector: cut vector x such that any component turning on will cause

the system to operate [23], [25], [19].

Mathematically, a cut vector x is called a minimal cut vector if

φ(y) = 1 ∀ y > x.

A path vector x has an associated path set corresponding to the functioning

components, while a cut vector has a corresponding cut set consisting of the failed

components. More common, minimal path and cut sets, are the sets that correspond

to the respective minimal path and cut vectors for the given system. Minimal cut

sets are used throughout reliability and related fields such as risk analysis [19]. In

reliability theory, RBDs, structure functions, minimal path sets, and minimal cut sets

for a specified system are equivalent and completely define system reliability. The

question becomes how are all of these used?

Some baseline reliability calculation techniques are now presented. In order to

develop these baseline techniques, simplifying assumptions need to be made. First,

assume that the models are not repaired, repairable systems will be discussed later in

this thesis. Second, assume that components operate independently of one another.

Now some terms are defined that allow for a better description of the methods used,

first let

pi ≡ P {xi = 1} .

The vector made up of these pi, p, is called a reliability vector. The reliability function,

r(p), is the quantity of most interest. It is defined as the probability that the system
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is functioning or

r(p) = P {φ(x) = 1} .

There are four main and equivalent ways to calculate r(p): 1) the method

of expectation; 2) the path vector technique; 3) the cut vector technique; 4) and

decomposition.

1) Method of Expectation: uses the fact that the expected value of an indicator

variable is equivalent to the probability that the indicator variable is equal to

one. Thus,

r(p) = E[φ(x)] = P {φ(x) = 1} (1) + P {φ(x) = 0} (0)

= P {φ(x) = 1} .

2) Path Vector Technique: finds system reliability via summing the probabilities

that correspond to the all of the different possible path vectors for the system.

This method works so long as the components are independent, which makes

the path vectors mutually exclusive.

According to [3], if Pj represents the jth minimal path set where j = 1 . . . p, and

p is the number of minimal path sets, then

φ(x) = 1−
p∏

j=1

1−
∏
i∈Pj

xi

 .

In other words the system functions if and only if all of the components in one

of its minimal path sets function.
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3) Cut Vector Technique: similar to the path vector technique, but takes the op-

posite route and finds r(p) by calculating one minus the sum of all the proba-

bilities of the cut vectors. The sum of the probabilities that correspond to the

cut vectors is equal to system unreliability. As in the path vector technique,

component independence must be assumed. The path and cut vector techniques

illustrate the fact that system reliability and system unreliability must sum to

1.

Once again, according to [3], if Kj represents the jth minimal cut set where

j = 1 . . . k, and k is the number of minimal cut sets, then

φ(x) =
k∏

j=1

1−
∏
i∈Kj

(1− xi)

 .

In other words the system fails if and only if all of the components in one of its

minimal cut sets fail.

4) Decomposition: finds r(p) by finding a key component and conditioning on its

state (functioning or failed). Used, due to its simplification qualities, in more

complex systems [23].

It is important to note that there are two main rules that can be used when

finding the reliability of a given system. First, if the components are all in series

then the reliability of the system is just the product of the component probabilities.

Mathematically for a series system with n components,

r(p) =
n∏

i=1

pi.

This is known as the product rule [25]. Now, if the components are all arranged in

parallel, only one component needs to operate in order for the system to work thus
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the reliability of the system is one minus the probability that all of the components

failed,

r(p) = 1−
n∏

i=1

(1− pi).

Although not specifically mentioned thus far, component lifetimes have been thought

of as discrete. In the real-world however lifetimes probabilities can be discrete or

continuous. Common ways in which lifetimes are distributed are discussed next.

2.10 Lifetime Distributions

There are five different lifetime distributions that are commonly used in the

field of reliability. All of the distributions are equivalent and once one distribution

is obtained they all can be derived from it. The five distributions are the survivor

function, the pdf, the hazard function, the cumulative hazard function, and the mean

residual life.

1. Survivor Function

As discussed before the survivor function is the probability that the system in

functioning at time t, or one minus the cdf. The survivor function satisfies the

following properties:

(a.)

S(0) = 1

(b.)

lim
t→∞

S(t) = 0

(c.)

S(t) is non-increasing

2. pdf

The pdf is no different than pdfs used in other fields and vastly in statistics. It

must satisfy the following properties:
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(a.) ∫ ∞

0

f(t)dt = 1

(b.)

f(t) ≥ 0 ∀ t

3. The Hazard Function

The hazard function is commonly referred to as the instantaneous failure rate

or just the failure rate and is equal to the quotient of the pdf over the survivor

function,

h(t) =
f(t)

S(t)

and h(t) must satisfy:

(a.) ∫ ∞

0

h(t)dt = ∞

(b.)

h(t) ≥ 0 ∀ t

4. Cumulative Hazard Rate

The next distribution is derived in an intuitive manner, having found h(t), you

integrate it to get H(t). This is exactly what is done when obtaining the cdf from

the pdf.

H(t) =

∫ t

0

h(u)du

It satisfies the following:

(a.)

H(0) = 0

(b.)

lim
t→∞

H(t) = ∞
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5. Mean Residual-Life Function

Lastly, the mean residual-life function gives the expected remaining life, given that

the item has survived to some time t.

L(t) = E[T − t|T ≥ t]

=
1

S(t)

∫ ∞

t

(uf(u)du)− t.

The mean residual-life function satisfies the following properties:

(a.)

L(t) > 0

(b.)

L′(t) ≥ −1

(c.) ∫ ∞

0

(
dt

L(t)

)
= ∞

[23].

If the assumption of non-repairable components is lifted then system reliability

becomes the probability that the system is available at a particular moment in time

and this is termed availability. Martz, [25] defines availability as “a measure of the

effectiveness of a maintained system that incorporates the concepts of both reliability

and maintainability.” If the system has no repair capability then system availability is

equal to system reliability. However, in general system reliability is less than system

availability, since the reliability measure requires failure-free operation to time t [25].

2.11 Repairable Systems

In most real-world applications systems have repairable components and the

analyst is interested in the probability that the system will be available for use. If

this is the case then information on both the life and repair time of the component is
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required. In its most general state

Availability =
Operating Time

Operating + Down Time
.

There are four types of availability that are of interest: instantaneous; limiting; av-

erage; and limiting average availability [23]. Instantaneous availability, A(t), is the

availability at a particular instance in time, t. In other words the probability that

the system is functioning at t. Instantaneous availability is the most valuable of these

measures, because all three of the other measures can be derived from it:

Limiting availability A = lim
t→∞

A(t);

Average availability on (0, c] Ac =
1

c

∫ c

0

A(t)dt (for c > 0); and

Limiting average availability on (0, c] A∞ = lim
c→∞

Ac.

The representation of availability depends on the specific circumstance under which it

is being used: limiting availability for systems that are operated continuously; average

availability for systems used in cycles; and instantaneous for systems that are required

to perform at any random time [24]. Instantaneous availability is also the availability

measure that is most similar to the reliability definition discussed previously, and the

focus of this research.

When components are repairable then availability replaces reliability as the

measure of interest. Due to the time parameter, expressions for availability in most

situations are hard to obtain, and deriving a closed form expression for A(t) is very

difficult [25]. Calculating component availability alone can be quite difficult. When

life and repair times are not exponentially distributed explicit, closed form solutions

for availability are extremely difficult to compute. Component availability can be

found explicitly, when component life and repair times are exponentially distributed.

For example, suppose simple system, consisting of one component is being analyzed,

with up and down states whose failure and repair times are exponentially distributed,
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with rates λ and µ respectively, system availability can be found via conditioning as

shown below.

P {sys available at time t+∆t} = P {sys doesn’t fail in t+∆t}A(t)

+ P {sys repaired in t+∆t} (1− A(t))

= A(t + ∆t) = (1− λ∆t)A(t) + µ∆t(1− A(t))

= A(t)− λ∆tA(t) + µ∆t− A(t)µ∆t.

This leads to the differential equation,

A(t + ∆t)− A(t)

∆t
= −λA(t) + µ− A(t)µ.

Letting ∆t → 0 gives,

˙A(t) = −(λ + µ)A(t) + µ,

with initial condition

A(0) = A0 = 1.

For a differential equation of the form;

ẋ = ax + b with initial condition x0,

the solution is given as

x(t) =

(
x0 +

b

a

)
eat − b

a
.

Therefore,

A(t) =

(
1− µ

λ + µ

)
e−(λ+µ)t +

(
µ

λ + µ

)
=

(
λ

λ + µ

)
e−(λ+µ)t +

(
µ

λ + µ

)
(4)

[23].
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Figure 5: Transition Diagram for Alternating Renewal Process

The above result (Eq. (4)) can also be used to find the average availability on

the interval (0, c].

Ac =
1

c

∫ c

0

A(t)dt (for c > 0)

=
1

c

∫ c

0

[(
λ

λ + µ

)
e−(λ+µ)t +

(
µ

λ + µ

)]
dt

=
1

c

[(
µc

λ + µ

)
+

(
λ(1− e−(λ+µ)c)

(λ + µ)2

)]
. (5)

Note that, in this case, the limiting values of Equations (4) and (5) give the

limiting availability, A [40]. In other words A = A∞, where

A = lim
t→∞

A(t) =

(
µ

λ + µ

)
,

and

A∞ = lim
c→∞

Ac =

(
µ

λ + µ

)
.

Note that this system is known as an alternating renewal process, and can also be

modeled as a Continuous Time Markov Chain (CTMC), with state space S = {0, 1},

where “0” describes an operating system and “1” a failed system. Modeling this

system as a CTMC, system availability can be derived via Laplace transforms [14],

as outlined below. The transition diagram for this case is shown in Figure 5.

Using first principles, the differential-difference equations describing the stochas-

tic behavior of the system can be obtained, where Pk(t) is the probability of being in
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state k at time t [14]. They are

dP0(t)

dt
= −λP0(t) + µP1(t), and

dP1(t)

dt
= λP0(t)− µP1(t).

Now the Laplace transform of these two equations with initial conditions P0(0) = 1,

and P1(0) = 0, since the system is assumed to be functioning at time 0. For notational

purposes let f ∗(s) = L{f(t)}, in other words f ∗(s) is the Laplace transform of f(t).

Solving this system of equations for P ∗
0 (s) and taking the inverse transform gives the

instantaneous availability, A(t).

A(t) = L−1{P ∗
0 (s)} =

(
λ

λ + µ

)
e−(λ+µ)t +

(
µ

λ + µ

)
.

And note that this is the same expression that was found before for A(t) using dif-

ferential equations in Equation (4). To see explicitly how this is done see Appendix

A.

Exponentially distributed failure times are common-place, and hence typically

accepted as a valid assumption [25], [24]. This is due to the fact that many electrical

and similar components fail due to over-stress, as opposed to deterioration and fatigue,

and these over-stressed conditions are randomly distributed. On the other hand,

exponential repair times, yielding constant repair rates, physically mean that the

repairman learns nothing about the cause of the failure as he continues to work

[25]. Thus, by assuming that repair times are exponentially distributed a level of

explicitness in modeling real-world applications is lost. In many situations repair

times are best described by the log-normal distribution [24].

If the availability for each of the components in the system can be found, then

system availability can be derived in a similar fashion to that of reliability shown in

Section 2.9. For example, if the system of concern consists of n components in series,
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such that component i has availability Ai, then the system’s availability is

Asys =
n∏

i=1

Ai.

Conversely if these n components are arranged in parallel, then

Asys = 1−
n∏

i=1

(1− Ai).

In all other cases, when the failure and repair times are not exponentially dis-

tributed, explicit solutions cannot be found for availability and simulation is often

used. This is a concern, because, as will be shown later, simulation does not always

yield accurate results.

2.12 Summary of EON and Reliability Theory Literature

This chapter gave a brief, but thorough review of EONs and reliability theory.

The chapter began by reviewing the probabilistic model introduced by Denhard in [12].

Initially, EONs, their components, and their uses were outlined. The underlying

probabilistic model was visited next, with an emphasis on the probability of being

at a particular node at time t. A shortcoming to the technique, node explosion, was

discussed last and a solution methodology to deal with this problem was provided.

In the reliability theory section, an analysis of the reliability of coherent systems

was presented. The analysis includes a discussion of important reliability measures

and techniques used to calculate them. Next, the distribution types that are com-

monly used to describe component lifetimes were discussed. In the last section a brief

discussion of repairable systems was given. This section outlines the different types of

availability measures and shows why instantaneous availability is the most robust and

inclusive measure for systems with repairable components. In the following chapter,

EONs and reliability theory are combined to develop a new methodology used to find

the reliability of non-repairable systems.
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III. EONs and Reliability Theory

3.1 Methodology Overview for Non-Repairable Systems

Introducing event occurrence networks (EONs) to this field will provide an ef-

ficient method that alleviates many of the current concerns. Particularly, current

methods are weak in analyzing time-specific reliability measures, modeling systems

with non-exponentially distributed failure and repair times [25], and in capturing

multiple, different reliability measures through one method [2]. The EON structure

and solution techniques are not limited in these areas and EONs can be solved via

different numerical methods, with piecewise polynomial approximation being one.

This chapter, provides a methodology for calculating the reliability of systems

with non-repairable components via EONs. A proof is given that shows all coherent

systems can be represented as EONs, and demonstrates the validity of the technique.

Next, an algorithm is given that shows how any reliability block diagram (RBD)

or structure function can be transformed into an EON. Last, examples of different

systems are given to demonstrate some of the techniques’ specifics.

3.2 Methodology

EONs allow for the computation of reliability in addition to other important

measures, that are currently more difficult to capture, in a single reliability model.

For this analysis, assume that component lifetimes are independent of each other and

that once the system is in a failed state, no more component failures can take place.

In this model, the EON still represents the superposition of several terminating

counting processes; however, the process terminates when a component failure causes

system failure. The EON is made up of several event groups with each group rep-

resenting a component in the system. Each group has only one event, namely that

component’s failure. An arc in this graphical depiction represents the failure of a com-

ponent before the occurrence of other competing component failures. Events between

the groups still occur independently, meaning that the components in the system are

independent of each other and fail independently of each other. Terminating nodes,
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representing concluding events, denote event streams that result in system failure. In

contrast, intermediate nodes (with the exception of node one) denote event streams

where components have failed, but have not caused system failure.

The number of nodes in an EON for any coherent system with n components is

bounded above by the associated purely parallel system of n components, and below

by the system with all n components in series. If the system consists of n components

in parallel (purely parallel system), then there are no terminating streams until the

last tier of the EON (when all components have failed). Thus, for any tier t, every

possible combination of t component failures is feasible (system still operating). On

the other hand, if the system consists of n components in series, the first tier contains

all terminating nodes (one for each component failure) and other tiers are not feasible.

If the system is purely parallel, then the number of nodes in each tier t, of the

EON is given by n choose t,
(

n
t

)
. This is true, since for a purely parallel system with n

components, there are n component failures before the system fails and thus there are

n possible tiers in the EON. Therefore the total number of nodes in a purely parallel

system is

=
n∑

i=0

(
n

i

)
.

If the system consists of all components in a series arrangement, then there can be

at most one component failure before system failure, and hence only one tier level in

the EON. Thus for this system there are

1∑
i=0

(
n

i

)
= n + 1

total nodes. Therefore, in general, the total number of nodes for any system is

bounded above and below in the following manner,

n + 1 ≤ total number of nodes ≤
n∑

i=0

(
n

i

)
.
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To find the reliability of a system, using an EON, the path vector or cut vector

technique can be used. Each of the event streams that end in an intermediate node

in an EON, represents a path vector in the associated system. Thus, finding the

reliability is easily accomplished by summing the probabilities of being at any of the

intermediate nodes at time t. The event streams ending with terminating nodes, on

the other hand represent system cut vectors. Therefore, finding the probability of

failure of a system at time t, is done via summing the probabilities of being at any of

the terminating nodes at time t. These results are proved below.

3.2.1 Proof. This proof seeks to show that event streams ending in in-

termediate (terminating) nodes in an EON correspond to path (cut) vectors in the

RBD and vice versa. First, it is imperative to realize that each event in a reliabil-

ity EON represents the occurrence of a failed component. Thus each node in the

EON corresponds to a state vector x for the system. For example, node one (the

non-event), corresponds to x = 1 (i.e. all components working). Different nodes in

the EON correspond to instances where different event streams or component failures

have occurred and each node has a different and unique event stream leading to it.

Uniqueness refers to the events that have occurred thus far, and not necessarily the

order they occur in. For example, E1, E2, E3 ≡ E2, E1, E3, and both of these event

streams correspond to the failure of components one, two, and three. If the set of

events corresponding to a specific node was not unique, then the EON would contain

redundant nodes. Thus, every node in the EON has a unique state vector associated

with it. Hence, for each node, there is a unique associated state vector x = [xj],

j = 1, . . . , n, such that

xj =

 1 if event j has not occurred

0 if event j has occurred.
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General k out of n System:

From before, it is known that any coherent system can equivalently be repre-

sented as a k out of n system [3], [25]. The k out of n system is the most general form

that exists for coherent systems and its structure can be used to prove these results

for any given system. Thus these results hold true for any coherent system. Recall

that for any k out of n system, with 1 ≤ k ≤ n

φ(x) =

 1 if
∑n

i=1 xi ≥ k

0 if
∑n

i=1 xi < k.

1. Node one - first intermediate node

If at node one (the non-event) then

n∑
i=1

xi = n since x = 1

⇒ φ(x) = 1.

Thus, node one represents a path vector for the system.

Alternatively if x is a path vector for this RBD such that x = 1, then no

events have occurred and this path vector is associated with node one, the first

intermediate node.

2. Any intermediate node

Now suppose that an event stream occurs leaving the system at any intermediate
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node in the EON, this occurs when

⇔ no concluding events have occurred

⇔ other events can still occur

⇔ system is still functioning

⇔ φ(x) = 1

⇔ this node represents a path vector for the system

Thus any intermediate node in the EON corresponds to a path vector in the

RBD and any path vector in the RBD corresponds to an intermediate node in

the EON.

3. Any terminating node

Similarly, suppose an event stream has occurred that leaves the system at any

terminating node, this occurs when

⇔ a concluding event has occurred

⇔ no other events can occur

⇔ system is in a failed state

⇔ φ(x) = 0

⇔ this node represents a cut vector for the system.

Thus any terminating node in the EON corresponds to a cut vector in the RBD

and any cut vector in the RBD corresponds to a terminating node in the EON.

Therefore it can be concluded, for any k out of n system, i.e. any coherent

system, an intermediate node in an EON corresponds to a path vector in the associated

RBD and a terminating node in an EON corresponds to a cut vector in the associated

RBD. Likewise, it can definitively be claimed that a path (cut) vector in a RBD

corresponds to an intermediate (terminating) node in the associated EON.
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3.2.2 Algorithm. Having shown that any coherent system can be represented

as an EON, the algorithm describing how to do so is now given. It is important to

note that the main contribution of the algorithm and code (Appendix B) is that it

produces all of the path and cut vectors for a given system. This is equivalent to de-

riving all of the event streams in the corresponding EON. In order for the algorithm

to be used all of the system’s minimal cut sets must be apriori. There has been much

work in the area of minimal cut set algorithms with little agreement on an optimal

cut set algorithm [5]. For this reason, this thesis does not include a specific minimal

cut set algorithm within the EON reliability algorithm.

Algorithm

1. Find all of the minimal cut sets for the RBD.

2. Use the minimal cut sets and boolean algebra to generate all of the possible path

and cut vectors for the system. The Matlabr code to do this is shown in Appendix

B.

(a.) Form V, a matrix that contains exactly one row for each minimal cut set. If

there are m minimal cut sets and the system has n components, then V has

size m × n. Each row in V is made up of ones and zeros. A “1” in row i,

column j, means that the jth component is an element of the ith minimal cut

set. These are the minimal cut vectors for the system.

(b.) Generate all possible state vectors of dimension n (n = no. of components).

(c.) Compare each state vector with each of the minimal cut sets for the system

in-turn, using boolean algebra (AND operations).

(d.) If any of the resultant vectors from the previous step is all zero’s then that

particular state vector is a cut vector. This corresponds to a terminating

node. Otherwise this particular vector is a path vector and corresponds to an

intermediate node in the EON.
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3. Use the path and cut vectors for the system to find the possible event streams for

each tier of of the system’s EON.

(a.) If the event stream corresponds to a path vector then the last node in the

stream is an intermediate node.

(b.) If the event stream corresponds to a cut vector then the last node in the

stream is a terminating node.

4. Determine which tier the event stream (state vector) corresponds to.

(a.) If the sum of the components of a state vector is equal to n − j then that

state vector corresponds to a node on the jth tier. This means j events have

occurred.

(b.) If the vector is a cut vector then it will have no arcs leaving it, going to

descendent tiers (determined from previous step).

3.2.3 Other Measures . In addition to system reliability, EONs can be used

to determine other reliability measures. The probability that a specific component or

group of components will cause system failure, is easily computed via the associated

event streams in the EON. Lastly, minimal cut sets are easily found via boolean alge-

bra. Since, it was shown that event streams ending in terminating nodes correspond

to cut vectors and their respective cut sets, minimal cut sets are determined by taking

the union of the intersection of the events in every terminating stream.

For the purpose of this thesis the following notation will be used. Let Gi be the

event that component i fails and Ei be the event occurrence time of this failure (event

Gi). Recall that Pi(t) denotes the probability of being at node i at time t. In addition,

for clarity, assume the random variable T denotes the amount of time elapsed thus far.

The following simple two-component examples should aid in clarifying this notation

and how EONs can be used to determine system reliability.
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3.3 Reliability of Simple Two Component Systems

Assume the system of interest is comprised of two independent components

with exponential lifetime distributions. The associated lifetime distributions are given

below.

pdf:

f1(t) = λ1e
−λ1t

f2(t) = λ2e
−λ2t

cdf:

F1(t) = 1− e−λ1t

F2(t) = 1− e−λ2t

Survivor Function:

S1(t) = e−λ1t

S2(t) = e−λ2t

The desired measure is the probability of the system functioning at time t, ST (t),

and the probabilities of failure at time t from each possible cause. Examples for both

possible basic system arrangements, series and parallel, are given next.

3.3.1 Series System. This system fails when either of the components fail.

The EON of this system is shown in Figure 6 on the following page.
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Figure 6: EON of 2 Components in Series

The probability that component one causes the failure by time t, is the proba-

bility of being at node two at time t, P2(t), or

P {E1 < E2|T ≤ t} =

∫ t

0

P{E1 < E2|E1 = x}fE1(x)dx

=

∫ t

0

P{E2 > x}fE1(x)dx

= λ1

∫ t

0

e−(λ1+λ2)xdx

=

(
λ1

λ1 + λ2

)
(1− e−(λ1+λ2)t).

Similarly, the probability that component two causes the failure by time t, which

is the probability of being at node three by time t, P3(t), is

P {E2 < E1|T ≤ t} =

∫ t

0

P{E2 < E1|E2 = y}fE2(y)dy

=

∫ t

0

P{E1 > y}fE2(y)dy

= λ2

∫ t

0

e−(λ1+λ2)ydy

=

(
λ2

λ1 + λ2

)
(1− e−(λ1+λ2)t).
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To calculate the system survival at time t, ST (t), the complement of the sum of

the previous two expressions is taken.

ST (t) = 1− (P2(t) + P3(t))

= 1− (P {E1 < E2|T ≤ t}+ P {E2 < E1|T ≤ t})

= 1− P {E1 < E2|T ≤ t} − P {E2 < E1|T ≤ t}

= 1−
(

λ1

λ1 + λ2

)
(1− e−(λ1+λ2)t)−

(
λ2

λ1 + λ2

)
(1− e−(λ1+λ2)t)

= 1−
(

λ1

λ1 + λ2

)
−
(

λ2

λ1 + λ2

)
+

(
λ1

λ1 + λ2

+
λ2

λ1 + λ2

)
e−(λ1+λ2)t.

Which simplifies to

= 1− 1 + e−(λ1+λ2)t

= e−(λ1+λ2)t.

This is equivalent to finding the probability that both components are function-

ing, or the probability of being at node one (the non-event) at time t,

ST (t) = P1(t)

= P{E1 > t, E2 > t}

= P{E1 > t}P{E2 > t}

= e−(λ1+λ2)t.

This RBD can also be modeled as a continuous time markov chain (CTMC),

and the probabilities found using standard CTMC techniques. For example, let X(t)

denote the status of the system at time t, and S denote the sample space for X(t).

S = {0, 1, 2} ,
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where “0” represents the state where no components have failed, “1” represents the

state where component one has failed and the system is failed, and “2” represents the

state where component two has failed and the system is failed. The rate at which

the system jumps from state i to state j is qij. The qij’s make up the infinitesimal

generator matrix Q, such that

Q =

 qij if i 6= j

−
∑

j qij if i = j.

The conditional probabilities, pij(t), associated with this process are the measures of

interest. Where

pij(t) = P {X(t) = j|X(0) = i}

and P(t), the transition probability matrix, is made up of the pij(t)’s for all i and j.

P(t) is found via solving the the Chapman-Kolmgorov differential equations,

dP(t)

dt
= P(t)Q.

The solution to this system of equations is given by

P(t) = eQt =
∞∑

n=0

(Qt)n

n!
,

with initial condition P(0) = I [22].

The above equation is not easy to solve, even through the use of approximation

techniques and doing so is both timely and computationally expensive. This is why,

as stated in Section 1.3, a CTMCs long-term behavior is typically analyzed. To see

this technique more specifically suppose λ1 = 1, and λ2 = 2. Then,

Q =


−3 1 2

0 0 0

0 0 0

 .
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P(t) =


e−3t −1

3
e−3t + 1

3
−2

3
e−3t + 2

3

0 1 0

0 0 1

 .

From P(t) it is easy to pull off the performance measures that were found above

using EONs. However, finding these performance measures with EONs was much

simpler and computationally inexpensive. This observation becomes more evident as

the coherent structures become more complicated.

3.3.2 Parallel System. The EON of this system is shown in Figure 7. The

probability that the system is not functioning at time t is the probability that both

components have failed, or the probability of being at node four, by that time.

Mathematically the probability that both components have failed by time t is

P4(t) = P{E1 < t, E2 < t}

= P{E1 < t}P{E2 < t}

=
(
1− e−λ1t

) (
1− e−λ2t

)
= 1− e−λ1t − e−λ2t + e−(λ1+λ2)t.
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Now to calculate system survival, the probability of being at node one, two, or

three at time t is derived;

ST (t) = P1(t) + P2(t) + P3(t)

= P{E1 > t, E2 > t}+ P{E1 < t, E2 > t}+ P{E1 > t, E2 < t}

= P{E1 > t}P{E2 > t}+ P{E1 < t}P{E2 > t}+ P{E1 > t}P{E2 < t}

= e−(λ1+λ2)t + (1− e−λ1t)e−λ2t + (1− e−λ2t)e−λ1t

= e−λ1t + e−λ2t − e−(λ1+λ2)t.

This is equivalent to the complement of the expression found for the system not

functioning at time t.

3.4 Non-Repairable Systems Methodology Summary

The primary strength of EONs in reliability theory is the all-inclusive, intu-

itive, graphical nature of the EON structure. This chapter showed how EONs can

be used in reliability theory in calculating many different reliability measures in an

efficient manner. This chapter showed the methodology of the technique, followed

by a proof showing that EONs can be derived for any coherent system. Next, an

algorithm providing steps of how to develop the associated EON for any coherent

system was given. To demonstrate the techniques introduced in this chapter, some

simple examples were given. In these examples the components were assumed to have

exponentially distributed lifetimes so that an exact analytical expression could be de-

rived for system reliability. Next, more difficult, but at the same time more realistic

systems are analyzed; those comprised of repairable components.
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IV. EONs and Availability

4.1 Methodology Overview for Repairable Systems

If concerned with modeling repairable systems, then the aforementioned event

occurrence network (EON) alone will not allow for the calculation of availability

measures. The underlying probability model has changed, thus the graphical structure

must change to reflect this. The graphical structure for this type of system will be

referred to as an availability graph.

Availability Graph: graphical structure used to represent repairable systems.

This chapter first discusses the details and qualities of an availability graph

and analyzes the probabilistic model that describes it. The first methodology section

makes use of some simplifying assumptions to reduce the complexity of repairable

systems. In this section some basic examples are given to demonstrate how EONs can

still be used to model systems with repairable components, once these assumptions are

made. In the second methodology section the number of assumptions are reduced and

a more robust algorithm is devised to better handle all of the important availability

measures.

4.2 Methodology

The underlying probabilistic model, now represents the superposition of sev-

eral non-terminating counting processes and due to the repair times, the counting

processes are no longer independent. In this model, the counting processes do not

terminate, because the system can go from non-functioning to functioning with the

repair of a component or group of components. More specifically the probabilistic

model now represents the superposition of several alternating renewal processes. As

in reliability, there is still a group for each component in the system, but now each

group consists of an infinite series of sequential alternating component failure and

repair events. In this case, events between groups can no longer occur independently,
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because a specific component failure may cause the system to fail and this failure will

inhibit all other events from other groups from occurring. If this is the case, then the

only possible next event that can occur is that of the specific component’s repair.

If a couple of simplifying assumptions are made, then EONs, in the classical

sense, can still be used. The first assumption is that the components and the system

itself are repaired to a good as new state. This assumption allows the process to

start over when a component is repaired, not allowing for components that have not

yet failed to accrue time. In other words, every component is modeled as new when

the component causing system failure is repaired. Obviously this is a large practical

limitation and will be dealt with later in this thesis. For the second assumption, the

counting processes must terminate after some specified amount of time or number of

failures, i.e. the process is estimated with a finite, terminating counting process. Ad-

ditionally, as was the case in repairable systems, assume that when the system is down

no other failures or repairs can take place. If these assumptions are made, then EONs

can be used to model the availability of each component separate from the system and

component availability can be estimated using piecewise polynomial approximation.

Also, assuming that the failure and repair times are independent of one another (a

typical assumption for repairable systems), the availabilities of each component can

be treated as discrete probabilities and then used to find system availability at time

t. EONs and piecewise polynomial approximation, for these types of systems, are

only valuable when component life or repair times are not exponentially distributed.

Otherwise CTMCs or Equation (4) can be used to find each components respective

availability exactly. The analysis shown in this chapter utilizes the explicit solutions

found via exponentially distributed life and repair times so that the techniques and

approximations found within can be validated.

Examples of systems with repairable components and calculations of different

availability measures for these systems are now given. Using slightly different notation

from Chapter 3, let Gij be the event that component i fails for the jth time and Eij

be the event occurrence time of this failure (event Gij), where i = 1, . . . , n and
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j = 1, . . . ,m. The indices are used to represent both the component (i) and the

number of times it has failed (j). In addition to the failure events there are now

repair events as well. Thus, let Hij represent the event that component i is repaired

for the jth time and Rij denote component i’s, jth repair completion (occurrence) time.

In this notation E and R denote a component’s failure and repair events respectively.

Additionally, Asys(t) gives the system’s instantaneous availability at time t, while

Ai(t) gives the instantaneous availability for component i at time t.

4.2.1 Availability of a Simple One Component System . Assume that the

system of interest is comprised of one component that is repairable. If both the com-

ponent life and repair times are exponentially distributed then, from equation (4),

system availability at any time t can be calculated explicitly (reference Section 2.11).

This system is an alternating renewal process and its availability can be modeled and

estimated by an EON and piecewise polynomial approximation. Theoretically the

probabilistic model for this system is an infinite series of alternating functioning and

failed states. In order to use an EON coupled with piecewise polynomial approxi-

mation to approximate the availability of this system the sequence must terminate

at some specified point, denoted by node n, since EONs model terminating counting

processes [12] (see Figure 8 on the following page). The more nodes, or events used

the more accurate the availability approximation will be. The last node in this system

can be thought of as the final failure, or where our approximation ends. If the number

of nodes in this approximation were infinite then the approximation will be exact. In

other words, if AEON(t) denotes the approximated availability using an EON coupled

with piecewise polynomial approximation and n denotes the number of nodes in the

EON approximation, then

lim
n→∞

AEON(t) = A(t).

The odd numbered nodes in the EON represent times when the system or component

is not in a failed state, while the even numbered nodes represent times when the

component is in a failed state and being repaired. Thus, system availability can be
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Figure 8: EON of System With One Repairable Component

estimated by summing the probabilities of all of the odd numbered nodes at time

t. Using the EON approximation, the last node, n, will collect the remainder of

the probability, thus skewing the results slightly, depending on whether it is an even

(failure) or odd (repair) numbered node.

As an example assume that a system identical to the one described above is

analyzed with the following parameters:

λ (failure rate) = 1 (per hour) and

µ (repair rate) =
1

2
(per hour).

Instantaneous availability for this system is calculated using an EON with one

event group and 48 events (nodes): 24 representing system availability; and 24 repre-

senting system unavailability. The series terminates at node number 48, representing

a failed system, and the remainder of the system probability is consolidates there. To

approximate the availability for this system, piecewise polynomials are used. More
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Table 1: Actual vs. Estimated Instantaneous Availability via EONs

t A(t) AEON(t)
0 1 1
1 0.482086773 0.479624447
2 0.366524712 0.362068425
3 0.340739331 0.336790917
4 0.334985835 0.331493226
5 0.333702056 0.330445695
6 0.333415607 0.330104113
7 0.333351691 0.329574885
8 0.333337429 0.329940456
9 0.333334247 0.330253842

10 0.333333537 0.330636263

specifically, the computer code written by Denhard [12], is used. As a comparison,

the average as opposed to instantaneous, availability of this system was estimated

using Raptor R© version 6.0, a widely used reliability software package. Calculating

a system’s instantaneous availability via Raptor R© is not straight-forward. Despite

this discrepancy, the results still produce a fair comparison, because exact analyt-

ical solutions can be found for both instantaneous and average availability in the

case of exponentially distributed life and repair times. Additionally, in the case of

exponentially distributed life and repair times, limt→∞ A(t) = limc→∞ Ac = A (Sec-

tion 2.11), thus both measures are approaching the same number, A = 1
3
. In this

case average availability was approximated by taking the mean average availability

from 100 replications of the system from time 0 to c. Since the failure and repair

times are exponentially distributed, average and instantaneous availabilities can be

calculated exactly using the results found in equations (4) and (5). The actual and

estimated instantaneous availabilities using EONs and piecewise polynomial approxi-

mation for this system, for different times, are shown in Table 1. Similarly the actual

and estimated average availabilities using Raptor R©, for different intervals, are shown

in Table 2 on the next page.

As can be seen from Tables 1 and Table 2, estimating availability measures via

these methods produces fairly accurate results. Note from Table 1, that AEON(t) <

55



0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10
Time

P
ro

b
ab

ili
ty

A(t) via EON

A(t) 

Figure 9: Actual vs. Estimated Instantaneous Availability via EON

Table 2: Actual vs. Estimated Average Availability via Raptor

c Ac ARap

0 1.0000000 1.0000000
1 0.6786088 0.6678013
2 0.5444918 0.5379340
3 0.4798357 0.4797897
4 0.4441690 0.4401924
5 0.4221731 0.4202572
6 0.4073983 0.4167049
7 0.3968236 0.4178025
8 0.3888885 0.4535390
9 0.3827160 0.4117084

10 0.3777778 0.3890766

A(t) this is due to the fact that the approximation ended in a failed state (node 48),

thus the results are skewed slightly in favor of system unavailability. Graphs of these

approximations versus the actual instantaneous and average availabilities are shown in

Figures 9 and 10, respectively. It is apparent, that estimates produced from piecewise

polynomial approximation and EONs are very accurate with the largest error being

0.0046072. Simulation via Raptor R© produces errors a magnitude larger, with the

largest from this example being 0.0646505. It should be noted that as time goes on

simulation produces more accurate results, but overall the approximation techniques

using EONs, especially in the short-term, provide better estimates of availability.
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Figure 10: Actual vs. Estimated Average Availability via Raptor

4.2.2 Availability of Three Component Systems. The system of interest

now consists of three repairable components in some particular configuration. To

allow for a comparison with actual (instantaneous) availability, assume also that the

failure and repair times of each component i are exponentially distributed with rate

λi and µi respectively. This allows for an analytical exact computation of component

availability to be used in calculating the system’s availability.

4.2.2.1 Series System. For this example the system of interest consists

of three repairable components in series. Conceptually, a probabilistic model for this

system is an infinite repeating subsystem of nodes, and can be approximated via a

finite repeating subsystem of nodes, like the one shown in Figure 11 on the following

page.

However, the typical EON representation will not work in approximating this

case, because it allows for infeasible event streams (e.g. E11, E21, E31, R11 etc.). This

is because the independence assumption between event groups in an EON is no longer

valid. Many event streams are not feasible, because once a component fails, the system

does not function again until the failed component is repaired. In other words, other

components cannot fail during this time. The availability for this system, Asys(t), is

found by analyzing component availability, Ai(t), as it relates to the system configu-
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Figure 11: Availability Graph for 3 Repairable Components in Series

ration, at a particular time t. In other words for this particular system,

Asys(t) =
3∏

i=1

Ai(t),

where Ai(t) is derived for each component at time t analytically (using equation (4)

since times are exponentially distributed), or estimated using an EON and piecewise

polynomial approximation. Each component’s availability will be found as was done

in the simple one component system above, in Section 4.2.1. To show the accuracy of

the EON and piecewise polynomial approximation method, both techniques will be

utilized and the results compared. Thus, for this system

Asys(t) =
3∏

i=1

[(
λi

λi + µi

)
e−(λi+µi)t +

(
µi

λi + µi

)]
.
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Table 3: Actual Availability for 3 Component Series System

t A1(t) A2(t) A3(t) Asys(t)
0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
1 0.645903118621619 0.816416999724780 0.952630834209485 0.502347279940387
2 0.584370307180994 0.801347589399817 0.952382263640445 0.445985125447514
3 0.573677507885363 0.800110616874030 0.952380959261811 0.437148064797317
4 0.571819377985238 0.800009079985952 0.952380952417060 0.435676851921384
5 0.571496483425050 0.800000745330634 0.952380952381142 0.435426297803778
6 0.571440372764007 0.800000061180464 0.952380952380953 0.435383174449708
7 0.571430622193168 0.800000005021998 0.952380952380952 0.435375714880246

Now suppose that the specific components in this system have the following parame-

ters:

λ1 = .75 λ2 = .5 λ3 = .25

µ1 = 1 µ2 = 2 µ3 = 5.

Using this method and the parameters above, the actual availability of this system and

its components for different values of t is shown in Table 3. The estimated availability

is shown in Table 4 on the following page. Once again component availabilities are

skewed slightly in favor of unavailability, since the EON approximation ends at a node

representing a failed state. Clearly, approximating a system’s availability using the

EON method and piecewise polynomial approximation produces very accurate results

with errors that are relatively small (shown in Table 5 on the next page). Graphs

of the actual versus estimated availabilities for this system are shown in Table 12 on

the following page. Note, from Table 5 that the error seems to grow with time t, this

is because both the actual and estimated availability are approaching the system’s

limiting availability. As time goes on both the actual and approximated instantaneous

availability will reach an asymptotic value, and thus the error will remain constant.

The table alone can be misleading, and as can be seen in Figure 12, the error has

reached its largest value and will not continue to grow by time t = 7.

4.2.2.2 Parallel System. Next look at a parallel system, using the same

parameters as those used in the previous three component series system. The EON

59



Table 4: Estimated Availability for 3 Component Series System Using EON

t A1(t) A2(t) A3(t) Asys(t)
0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
1 0.644519299022326 0.815201897481508 0.955272217508395 0.501912781242280
2 0.582932069599997 0.801250447090181 0.955697507796866 0.446382013389881
3 0.574020368799340 0.803736893153764 0.958890761373812 0.442395134085091
4 0.573372432396805 0.805739664833655 0.962237267474981 0.444542947809599
5 0.573882995273686 0.806735306728708 0.962422871551706 0.445574528148476
6 0.575176945093117 0.807797897617949 0.962224230146017 0.447075094697202
7 0.576000973011723 0.808893854858888 0.962051244306088 0.448242424792374

Table 5: Errors for Series System Availability

t Error
0 0.000000000000000
1 0.000434498698107
2 0.000396887942367
3 0.005247069287773
4 0.008866095888215
5 0.010148230344698
6 0.011691920247494
7 0.012866709912128

Series System Availability
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Figure 12: Actual vs. Estimated Instantaneous Availability via EON for Series
System
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Table 6: Actual Availability for 3 Component Parallel System

t A1(t) A2(t) A3(t) Asys(t)
0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
1 0.645903118621619 0.816416999724780 0.952630834209485 0.996920712056687
2 0.584370307180994 0.801347589399817 0.952382263640445 0.996068401579742
3 0.573677507885363 0.800110616874030 0.952380959261811 0.995942032016772
4 0.571819377985238 0.800009079985952 0.952380952417060 0.995922274454096
5 0.571496483425050 0.800000745330634 0.952380952381142 0.995919029336293
6 0.571440372764007 0.800000061180464 0.952380952380953 0.995918480989156
7 0.571430622193168 0.800000005021998 0.952380952380952 0.995918386980519

approximation for this system is a finite repeating subsystem of nodes, represented

in cycles, shown in Figure 13 on the next page (note the actual system would be an

infinite series). The generic notation Xij represents the time to failure or repair of node

i for the jth time, depending on which way the arc is followed. If moving downward

in the EON then Xij = Eij and similarly if moving upwards then Xij = Rij. The

component availabilities are computed in the same manner and results are obviously

identical to those in Tables 3 on page 59 and 4 on the page before. The system’s

availability is however computed slightly differently, and is

Asys(t) = 1−
3∏

i=1

(1− Ai(t))

= 1−
3∏

i=1

(
1−

[(
λi

λi + µi

)
e−(λi+µi)t +

(
µi

λi + µi

)])
.

Using this equation the results shown in Table 6 are derived. Now using the EON ap-

proach, system availability at different times is given in Table 7 on the next page. This

approximation has small relative error as well (Table 8 on the following page). Plots

showing the difference between actual and estimated availability for this system are

shown in Figure 14 on page 63. Once again both the actual and estimated instanta-

neous availabilities are approaching the system’s limiting availability as t grows, thus

the error between the two is also approaching a finite number and will not continue

to grow.
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Figure 13: Availability Graph for 3 Repairable Components in Parallel

Table 7: Estimated Availability for 3 Component Parallel System Using EON

t A1(t) A2(t) A3(t) Asys(t)
0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
1 0.644519299022326 0.815201897481508 0.955272217508395 0.997061735399832
2 0.582932069599997 0.801250447090181 0.955697507796866 0.996327674949925
3 0.574020368799340 0.803736893153764 0.958890761373812 0.996563099683737
4 0.573372432396805 0.805739664833655 0.962237267474981 0.996870345030053
5 0.573882995273686 0.806735306728708 0.962422871551706 0.996905396754085
6 0.575176945093117 0.807797897617949 0.962224230146017 0.996915537210786
7 0.576000973011723 0.808893854858888 0.962051244306088 0.996925057121163

Table 8: Errors for Parallel System Availability

t Error
0 0.000000000000000
1 0.000141023343146
2 0.000259273370184
3 0.000621067666964
4 0.000948070575957
5 0.000986367417792
6 0.000997056221630
7 0.001006670140644
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Figure 14: Actual vs. Estimated Instantaneous Availability via EON for Parallel
System

4.3 Methodology with Fewer Simplifying Assumptions

In the previous methodology section it was necessary to assume that the entire

system was repaired to a good as new state with the repair of a single component. This

assumption is now removed so that availability graphs can be used to model systems

in a more realistic manner. Due to this system’s complexity, a limit must be placed

on the number of failures and repairs that are allowed to take place, which means that

the availability measures calculated are estimates for the real system availability. In

other words the infinite non-terminating counting process is estimated with a finite

terminating process. It should be mentioned that this assumption more closely models

real-world systems, since an infinite number of failures and repairs is unrealistic.

Additionally, some other assumptions are necessary. First, assume that the

components do not fail or age (wear) when the system is in a failed state. Second,

assume that the components are repaired to a good as new state. Last, once again,

failure and repair times are assumed to be independent of one another.

The following example goes to show the complexity of systems of this type.

Suppose that the system of concern is made up of one repairable component. The

system is limited to only one repair, the availability graph for this system is shown
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Figure 15: Availability Graph for a Repairable Component (One Repair)

in Figure 15. The dashed arcs in this representation (availability graphs), represent

times when the system is undergoing repair.

Once again to ensure the integral expressions for the nodal probabilities are

tractable in a closed form assume that the component’s life and repair time are ex-

ponentially distributed with rates λ1 and µ1 respectively. These probabilities for a

specific time t are calculated below. In this availability graph node one represents the

case where the component has yet to fail by time t,

P1(t) = P {E11 > t} = e−λ1t.

Node two is the event where the component has failed once and has not yet

been repaired (under-going repair), by time t,

P2(t) = P {E11 < t, E11 + R11 > t} .
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Conditioning on E11 yields

=

∫ t

0

P {R11 > t− x} fE11(x)dx

=

∫ t

0

(
e−µ1(t−x)

)
λ1e

−λ1xdx

= λ1e
−µ1t

∫ t

0

e(µ1−λ1)xdx

=

(
λ1e

−µ1t

µ1 − λ1

)(
e(µ1−λ1)t − 1

)
=

(
λ1

µ1 − λ1

)(
e−λ1t − e−µ1t

)
.

Node three represents the event stream where the component has failed and

been repaired by time t,

P3(t) = P {E11 + R11 < t, E11 + R11 + E12 > t}

=

∫ t

0

P {E12 > t− x} fE11+R11(x)dx (hypo-exponential)

=

∫ t

0

(
e−λ1(t−x)

)( λ1µ1

λ1 − µ1

)(
e−µ1x − e−λ1x

)
dx

=

(
λ1µ1e

−λ1t

λ1 − µ1

)∫ t

0

e(λ1−µ1)x − 1dx

=

(
λ1µ1e

−λ1t

λ1 − µ1

)(
e(λ1−µ1)t − 1

λ1 − µ1

− t

)
=

(
λ1µ1

λ1 − µ1

)(
e−µ1t − e−λ1t

λ1 − µ1

− te−λ1t

)
.
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Lastly, node four represents the event stream where the component has failed

for its second and final time by time t,

P4(t) = P {E11 + R11 + E12 < t}

=

∫ t

0

P {E12 < t− x} fE11+R11(x)dx

=

∫ t

0

(
1− e−λ1(t−x)

)( λ1µ1

λ1 − µ1

)(
e−µ1x − e−λ1x

)
=

(
λ1µ1

λ1 − µ1

)∫ t

0

(
e−µ1x − e−λ1x − e−λ1te(λ1−µ1)x + e−λ1t

)
dx

=

(
λ1µ1

λ1 − µ1

)(
1− e−µ1t

µ1

+
e−λ1t − 1

λ1

+
e−λ1t − e−µ1t

λ1 − µ1

+ te−λ1t

)
.

To ensure that the expressions above are correct one can take their sum at

any time t. Since the states of the nodes in the availability graph are collectively

exhaustive and mutually exclusive, they should sum to one for any time t. To ensure

that this is the case the sum of all the nodes is taken,

= P1(t) + P2(t) + P3(t) + P4(t)

= e−λ1t +

(
λ1

µ1 − λ1

)(
e−λ1t − e−µ1t

)
+

(
λ1µ1

λ1 − µ1

)(
e−µ1t − e−λ1t

λ1 − µ1

− te−λ1t

)
+

(
λ1µ1

λ1 − µ1

)(
1− e−µ1t

µ1

+
e−λ1t − 1

λ1

+
e−λ1t − e−µ1t

λ1 − µ1

+ te−λ1t

)
.

=
e−λ1t(λ2

1 − 2λ1µ1 + µ2
1)

(λ1 − µ1)
2 +

λ1(λ1 − µ1)(e
−µ1t − e−λ1t)

(λ1 − µ1)
2

+
λ1µ1e

−µ1t − λ1µ1e
−λ1t − λ2

1µ1te
−λ1t + λ1µ

2
1te

−λ1t

(λ1 − µ1)
2

+
λ2

1 − 2λ1µ1 + µ2
1 − λ2

1e
−µ1t − µ2

1e
−λ1t + 2λ1µ1e

−λ1t + λ2
1µ1te

−λ1t − λ1µ
2
1te

−λ1t

(λ1 − µ1)
2 .
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Figure 16: Availability Graph for 2 Repairable Components in Series (One Repair)

More simplification yields,

=

(
1

(λ1 − µ1)
2

)(
λ2

1e
−λ1t − 2λ1µ1e

−λ1t + µ2
1e
−λ1t + λ2

1e
−µ1t − λ2

1e
−λ1t − λ1µ1e

−µ1t

+ λ1µ1e
−λ1t + λ1µ1e

−µ1t − λ1µ1e
−λ1t − λ2

1µ1te
−λ1t + λ1µ

2
1te

−λ1t + λ2
1 − 2λ1µ1 + µ2

1

− λ2
1e
−µ1t − µ2

1e
−λ1t + 2λ1µ1e

−λ1t + λ2
1µ1te

−λ1t − λ1µ
2
1te

−λ1t
)

=
λ2

1 − 2λ1µ1 + µ2
1

(λ1 − µ1)
2

= 1.

Thus it can be certain that the above nodal probability expressions are correct.

Limitations to this method are that the number of nodes grow increasingly

large as more system failures and repairs are allowed to take place, even for simple

systems. As another example suppose that the system being modeled is a simple

series arrangement of two repairable components. Allowing each component to be

repaired only one time produces an availability graph with eleven nodes (Figure 16).
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Figure 16, shows all of the possible events that can occur in this system. The

dashed lines represent times when the system is in a failed state and non-failed compo-

nents are not aging. Once again the terminating nodes, represent event streams that

end in a concluding event. Now all that is left to do is to find the nodal probabilities,

or the probability of being at a particular node i at time t (Pi(t), for i = 1, . . . , 11).

Expressions for these probabilities turn out to be more difficult than one might imag-

ine and doing so is left as an exercise in the following chapter.

4.4 Repairable Systems Methodology Summary

This chapter provided an analysis of repairable systems. It began by analyzing

repairable systems using EONs and piecewise polynomial approximation techniques.

This can only be done when it is assumed that the process starts over when a com-

ponent is repaired. This assumption does not allow for components that have not yet

failed to accrue time. If this assumption is made then the instantaneous availability

for each component can be approximated via EONs and finite terminating counting

processes through piecewise polynomial approximation. These component availabili-

ties are then used to find the system’s instantaneous availability via techniques used

in the reliability analysis of coherent systems. A few basic examples illustrated how

the technique can be used and the accuracy of the results. The results are compared

to ones produced via a trusted reliability software tool, Raptor R© version 6.0, in order

to demonstrate the efficiency of the given technique.

Following this, some of the simplifying assumptions were removed and a more

robust methodology was introduced. This methodology allows for components that

have not caused system failure to pick up where they left off when the system failed.

This also makes the instantaneous availability much more difficult to capture. An

example of this type of system is analyzed in the following chapter.
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V. Illustrations and Results

5.1 Implementation Overview

Specific examples using the methodologies introduced in Chapter 3 and 4 are

discussed next. This discussion is divided into two main sections. The first section

consists of examples of systems with non-repairable components. These examples val-

idate the desirableness of event occurrences networks (EONs) in the field of reliability.

The second section contains a specific example of a system with repairable compo-

nents. All of the examples of systems in this chapter are comprised of components with

exponentially distributed life and repair times. This is done so that exact solutions

can be obtained. In the case of generally distributed failure and repair times an ap-

proximation technique is needed, one technique of which being piecewise-polynomial

approximation.

5.2 Reliability of Systems with Non-Repairable Components

In dealing with systems made up of non-repairable components, the probability

that the system is operating over a specified period of time is the system’s reliability.

EONs make the evaluation of many reliability measures easier than any of the existing

methods. Specifically the system’s reliability and the probability of system failure

from each possible cause are easy to calculate using EONs.

5.2.1 Reliability of Simple Three Component Series and Parallel Combination

System. Assume this system is made up of three components that have lifetimes

described by the exponential distribution, where component i’s lifetime has rate λi,

i = 1, 2, 3. As was the case previously, the probability of the system functioning at

time t, ST (t), and the probabilities of system failure at time t from each possible cause

are the measures of interest.

Suppose the first two components are in parallel, and they together are in series

with the third. This system fails when components one and two fail or when compo-
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Figure 18: EON of System with Components in Series and Parallel

nent three fails. This system’s reliability block diagram (RBD) is shown in Figure 17,

and its EON in Figure 18.

The probability that the system fails due to components one and two failing is

equivalent to the probability of being at node six at time t, or

P6(t) = P {E1 < E2, E2 < E3|T ≤ t}+ P {E2 < E1, E1 < E3|T ≤ t}

=

∫ t

0

P {E1 < E2, E3 > E2|E2 = x} fE2(x)dx +

∫ t

0

P {E2 < E1, E3 > E1|E1 = y} fE1(y)dy

=

∫ t

0

P {E1 < x}P {E3 > x} fE2(x)dx +

∫ t

0

P {E2 < y}P {E3 > y} fE1(y)dy

= λ2

∫ t

0

(
1− e−λ1x

)
e−(λ2+λ3)xdx + λ1

∫ t

0

(
1− e−λ2y

)
e−(λ1+λ3)ydy

= λ2

∫ t

0

(
e−(λ2+λ3)x − e−(λ1+λ2+λ3)x

)
dx + λ1

∫ t

0

(
e−(λ1+λ3)y − e−(λ1+λ2+λ3)y

)
dy.
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Which after integration yields

=

(
λ2

λ2 + λ3

)(
1− e−(λ2+λ3)t

)
−
(

λ2

λ1 + λ2 + λ3

)(
1− e−(λ1+λ2+λ3)t

)
+

(
λ1

λ1 + λ3

)(
1− e−(λ1+λ3)t

)
−
(

λ1

λ1 + λ2 + λ3

)(
1− e−(λ1+λ2+λ3)t

)
. (6)

The probability that the system fails due to component three failing is the sum

of the chance of being at node four, five, or seven at time t,

P4(t) + P5(t) + P7(t) = P {E3 < E1, E3 < E2|T ≤ t}+ P {E1 < E3, E3 < E2|T ≤ t}

+ P {E2 < E3, E3 < E1|T ≤ t} .

The components of this expression are

P4(t) = P {E3 < E1, E3 < E2|T ≤ t}

=

∫ t

0

P{E3 < E1, E3 < E2|E3 = x}fE3(x)dx

=

∫ t

0

P{E1 > x}P{E2 > x}fE3(x)dx

=

∫ t

0

λ3e
−(λ1+λ2+λ3)xdx

=

(
λ3

λ1 + λ2 + λ3

)
(1− e−(λ1+λ2+λ3)t),
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P5(t) = P {E1 < E3, E3 < E2|T ≤ t}

=

∫ t

0

P{E1 < E3, E3 < E2|E3 = x}fE3(x)dx

=

∫ t

0

P{E1 < x}P{E2 > x}fE3(x)dx

=

∫ t

0

λ3e
−(λ2+λ3)x(1− e−λ1x)dx

=

(
λ3

λ2 + λ3

)
(1− e−(λ2+λ3)t)

−
(

λ3

λ1 + λ2 + λ3

)
(1− e−(λ1+λ2+λ3)t), and

P7(t) = P {E2 < E3, E3 < E1|T ≤ t}

=

∫ t

0

P{E2 < E3, E3 < E1|E3 = x}fE3(x)dx

=

∫ t

0

P{E2 < x}P{E1 > x}fE3(x)dx

=

∫ t

0

λ3e
−(λ1+λ3)x(1− e−λ2x)dx

=

(
λ3

λ1 + λ3

)
(1− e−(λ1+λ3)t)

−
(

λ3

λ1 + λ2 + λ3

)
(1− e−(λ1+λ2+λ3)t).

Thus, their sum (P4(t) + P5(t) + P7(t)), the probability of component three causing

system failure, is

=

(
λ3

λ2 + λ3

)
(1− e−(λ2+λ3)t) +

(
λ3

λ1 + λ3

)
(1− e−(λ1+λ3)t)

−
(

λ3

λ1 + λ2 + λ3

)
(1− e−(λ1+λ2+λ3)t). (7)

To find total system unreliability at time t, the analyst need only take the sum

of the probabilities found for component three causing system failure and that for

components one and two causing system failure. In other words the sum of Equations
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(6) and (7), this sum is

= 1− e−(λ2+λ3)t + 1− e−(λ1+λ3)t − 1 + e−(λ1+λ2+λ3)t

= 1− e−(λ1+λ3)t − e−(λ2+λ3)t + e−(λ1+λ2+λ3)t. (8)

Now in order to find the reliability of the system at any time t, the complement

of the system’s unreliability, Equation (8), can be taken or the probability of being at

any of the transient nodes can be found. This probability is equivalent to summing

the probabilities of being at nodes one, two, or three at time t. Summing these

expressions gives the probability of system survival at time t, ST (t). This expression

is given as

P1(t) + P2(t) + P3(t) = P{E1 > t}P{E2 > t}P{E3 > t}

+ P{E1 < t}P{E2 > t}P{E3 > t}

+ P{E1 > t}P{E2 < t}P{E3 > t}

= e−(λ1+λ2+λ3)t + (1− e−λ1t)e−(λ2+λ3)t + (1− e−λ2t)e−(λ1+λ3)t

= e−(λ1+λ2+λ3)t + e−(λ2+λ3)t − e−(λ1+λ2+λ3)t + e−(λ1+λ3)t

− e−(λ1+λ2+λ3)t

= e−(λ1+λ3)t + e−(λ2+λ3)t − e−(λ1+λ2+λ3)t. (9)

To check our answer for the system’s reliability the system’s structure function

can be used. Using this technique the system’s reliability is

= e−λ3t
(
1−

(
1− e−λ1t

) (
1− e−λ2t

))
= e−λ3t

(
e−λ2t + e−λ1t − e−(λ1+λ2)t

)
= e−(λ1+λ3)t + e−(λ2+λ3)t − e−(λ1+λ2+λ3)t. (10)
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Figure 19: FT of System with Components in Series and Parallel

Clearly, this result (Equation (10)) is the same expression found in Equation (9) and

in the complement of Equation (8). The standard technique is noticeably less complex

than the one used above via EONs, however it does not produce the probabilities of

system failure from each possible cause at time t. Thus, using EONs to calculate a

system’s reliability produces a more detailed analysis.

5.2.1.1 Fault Tree and Minimal Cut Set Analysis. A fault tree (FT)

for the above three-component system is given in Figure 19, and is the minimal tree

that can be drawn for the system. This means that all of the minimal cut sets are

in series (or gate) with each of their elements in parallel (and gate). As can be seen

from Figure 19, the minimal cut sets are components one and two, and component

three.

As stated before in Section 3.2.3, the minimal cut sets for a given coherent

system can be found via boolean algebra. More specifically, the minimal cut sets are

found by taking the union of the intersection of the basic events for each terminating

event stream. In other words, by taking the union of the terminating nodes, where
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each terminating node is broken down into the intersection of its basic events. The

example that follows demonstrates how this technique is used. In this example ∪

represents the union of two events and ∩ denotes the intersection. In addition, ⊕

denotes the boolean plus operation and ⊗ the boolean times operation. Using this

notation the minimal cut sets are given as

Node 4 ∪ Node 5 ∪ Node 6 ∪ Node 7 = Event 3 ∪ ( Event 1 ∩ Event 3)

∪ (Event 1 ∩ Event 2) ∪ (Event 2 ∩ Event 3)

= 3⊕ (1⊗ 3)⊕ (1⊗ 2)⊕ (2⊗ 3)

= 3⊕ (1⊗ 2).

This shows that, from the EON system representation, the minimal cut sets are in

fact component three and components one and two, as was found previously.

5.2.2 Reliability of a Complex System. Now suppose an analysis of the

reliability of the complex system with RBD shown in Figure 20 on the following page

is desired. As can be seen from the EON for this system, Figure 21 on the next

page, an EON grows larger and more complex as the number of possible path and cut

vectors grows. As was shown in the previous examples, the probabilities can be found

via conditioning and closed form solutions are available for systems with exponentially

distributed life times. This example demonstrates how the number of nodes in the

EON required for complex systems grows, since the enumeration of all possible event

streams is required. As evidenced from Denhard in [12], this node explosion can be

overcome by bucket analysis in which the EON structure and underlying stochastic

model is truncated for rare event streams.

A table showing the events that have occurred by each node is shown in Ta-

ble 9 on page 77. This is done to help eliminate confusion in determining which event

streams have occurred at each node in Figure 21 on the next page.
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Figure 21: EON of Complex System
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Table 9: Nodes with Associated Event Streams

Node Events Occurred
1 Non-event
2 E1

3 E2

4 E3

5 E4

6 E5

7 E1, E3

8 E1, E4

9 E1, E5

10 E1, E2

11 E2, E3

12 E2, E4

13 E2, E5

14 E3, E4

15 E3, E5

16 E4, E5

17 E1, E2, E3

18 E1, E3, E4

19 E1, E3, E5

20 E1, E2, E4

21 E1, E4, E5

22 E1, E2, E5

23 E2, E3, E4

24 E2, E3, E5

25 E2, E4, E5

26 E3, E4, E5

27 E1, E3, E4, E5

28 E1, E2, E3, E4

29 E1, E2, E3, E5

30 E2, E3, E4, E5

31 E1, E2, E4, E5
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The nodal probabilities for this system can be calculated in a similar manner

to the examples given previously. To demonstrate how this is accomplished a few of

these probability calculations are now shown. An exhaustive demonstration of the

nodal probabilities for all of the nodes in this system is given in Appendix C. For this

system assume that component i’s lifetime is exponentially distributed with rate λi

for i = 1, . . . , 5. Additionally assume that the components fail independently of each

other. The nodal probabilities for all of the intermediate nodes is exactly the same

as was done previously, so this example will focus on the absorbing nodes (system

failure). The probability expressions for absorbing nodes on the same tier are similar,

so one calculation for a generic terminating node per tier is sufficient.

The first terminating node in this system, is located on tier two. Node ten

represents the event stream where both components one and two have failed and thus

the system is in a failed state, its probability expression is given as

P10(t) = P {E1 < E2, E2 < E3, E2 < E4, E2 < E5|T ≤ t}

+ P {E2 < E1, E1 < E3, E1 < E4, E1 < E5|T ≤ t} .

Conditioning on E2 in the first integral expression and E1 in the second gives

=

∫ t

0

P {E1 < x}P {E3 > x}P {E4 > x}P {E5 > x} fE2(x)dx

+

∫ t

0

P {E2 < y}P {E3 > y}P {E4 > y}P {E5 > y} fE1(y)dy

= λ2

∫ t

0

(
1− e−λ1x

)
e−(

∑5
i=2 λi)xdx

+ λ1

∫ t

0

(
1− e−λ2y

)
e−(

∑5
i=1;i6=2 λi)ydy

= λ2

∫ t

0

e−(
∑5

i=2 λi)x − e−(
∑5

i=1 λi)xdx

+ λ1

∫ t

0

e−(
∑5

i=1;i6=2 λi)y − e−(
∑5

i=1 λi)ydy.
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The resulting integration gives

=
λ2

(
1− e−(

∑5
i=2 λi)t

)
∑5

i=2 λi

+
λ2

(
e−(

∑5
i=1 λi)t − 1

)
∑5

i=1 λi

+
λ1

(
1− e−(

∑5
i=1;i6=2 λi)t

)
∑5

i=1;i6=2 λi

+
λ1

(
e−(

∑5
i=1 λi)t − 1

)
∑5

i=1 λi

.

The next tier, tier three, consists of event streams where three different events

have occurred. Each node has either two or three paths coming into it. Nodes with

only two paths (17, 20 and 22) are missing the path from parent node 10, which is

not feasible since node 10 represents an absorbing state.

The absorbing nodes in this tier (nodes 17, 20-23, and 26), represent specific

sequences of component failures that eventually lead to system failure at this tier.

To simplify matters a generic sequential failure sequence is analyzed. In general

the probability of component a failing first followed by component b, followed by

component c where component d and e have not yet failed, is given as

P {Ea < Eb, Eb < Ec, Ec < Ed, Ec < Ee|T ≤ t}

=

∫ t

0

∫ y

0

P {Ea < x}P {Ed > y}P {Ee > y} fEb
(x)dxfEc(y)dy

= λbλc

∫ t

0

∫ y

0

(
1− e−λax

)
e−(λc+λd+λe)ye−λexdxdy

= λbλc

∫ t

0

∫ y

0

(
e−λbx − e−(λa+λb)x

)
e−(λc+λd+λe)ydxdy

= λbλc

∫ t

0

(
1

λb

(
1− e−λby

)
+

1

λa + λb

(
e−(λa+λb)y − 1

))
e−(λc+λd+λe)ydy

= λc

∫ t

0

(
e−(λc+λd+λe)y − e−(λb+λc+λd+λe)y

)
dy

+
λbλc

λ1 + λ2

∫ t

0

(
e−(λa+λb+λc+λd+λe)y − e−(λc+λd+λe)y

)
dy.
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Carrying out the integration

=
λc

λc + λd + λe

(
1− e−(λc+λd+λe)t

)
+

λc

λb + λc + λd + λe

(
e−(λb+λc+λd+λe)t − 1

)
+

λbλc

λa + λb

(
1− e−(λa+λb+λc+λd+λe)t

λa + λb + λc + λd + λe

+
e−(λc+λd+λe)t − 1

λc + λd + λe

)
. (11)

The expressions for the absorbing nodes can now be expressed by plugging the

relevant failure sequences into Equation (11). As stated before nodes 17, 20 and

22 only have two different paths from parent nodes in tier two, yielding a total of

four different possible event stream combinations that conclude at these nodes. The

remaining absorbing nodes on tier three, nodes 21,23 and 26, have three different

paths from their respective parent nodes, yielding a total of six possible event stream

combinations leading to these nodes. This means that each possible failure sequence

must be substituted into Equation (11) for each terminating node and these results

summed to obtain total node probability. For example

P17(t) = P {E1 < E3, E3 < E2, E2 < E4, E2 < E5|T ≤ t}

+ P {E3 < E1, E1 < E2, E2 < E4, E2 < E5|T ≤ t}

+ P {E2 < E3, E3 < E1, E1 < E4, E1 < E5|T ≤ t}

+ P {E3 < E2, E2 < E1, E1 < E4, E1 < E5|T ≤ t} .
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Which after substitution into Equation (11) gives

=
λ2

λ2 + λ4 + λ5

(
1− e−(λ2+λ4+λ5)t

)
+

λ2

λ2 + λ3 + λ4 + λ5

(
e−(λ2+λ3+λ4+λ5)t − 1

)
+

λ2λ3

λ1 + λ3

(
1− e−(λ1+λ2+λ3+λ4+λ5)t

λ1 + λ2 + λ3 + λ4 + λ5

+
e−(λ2+λ4+λ5)t − 1

λ2 + λ4 + λ5

)
+

λ2

λ2 + λ4 + λ5

(
1− e−(λ2+λ4+λ5)t

)
+

λ2

λ1 + λ2 + λ4 + λ5

(
e−(λ1+λ2+λ4+λ5)t − 1

)
+

λ1λ2

λ1 + λ3

(
1− e−(λ1+λ2+λ3+λ4+λ5)t

λ1 + λ2 + λ3 + λ4 + λ5

+
e−(λ2+λ4+λ5)t − 1

λ2 + λ4 + λ5

)
+

λ1

λ1 + λ4 + λ5

(
1− e−(λ1+λ4+λ5)t

)
+

λ1

λ1 + λ3 + λ4 + λ5

(
e−(λ1+λ3+λ4+λ5)t − 1

)
+

λ1λ3

λ2 + λ3

(
1− e−(λ1+λ2+λ3+λ4+λ5)t

λ1 + λ2 + λ3 + λ4 + λ5

+
e−(λ1+λ4+λ5)t − 1

λ1 + λ4 + λ5

)
+

λ1

λ1 + λ4 + λ5

(
1− e−(λ1+λ4+λ5)t

)
+

λ1

λ1 + λ2 + λ4 + λ5

(
e−(λ1+λ2+λ4+λ5)t − 1

)
+

λ1λ2

λ2 + λ3

(
1− e−(λ1+λ2+λ3+λ4+λ5)t

λ1 + λ2 + λ3 + λ4 + λ5

+
e−(λ1+λ4+λ5)t − 1

λ1 + λ4 + λ5

)
.

Finally, tier four, the last tier in this particular EON is comprised solely of

terminating nodes. Each node represents the failure of four different components.

The nodes with only one parent node in the previous tier, nodes 28 and 31, have a

total of six possible component failure sequences leading to them, while the remaining

nodes have a total of twelve different component failure sequences. Once again, as was

done in tier three, a generic failure sequence is analyzed to simplify the calculation of

the nodal probabilities for this tier. Consider the case when component a fails first,

followed by b, c, then d, leaving component e as the only one that has not failed. The
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probability of this event sequence is given as

P {Ea < Eb, Eb < Ec, Ec < Ed, Ed < Ee|T ≤ t}

=

∫ t

0

∫ z

0

∫ y

0

P {Ea < x}P {Ee > z} fEb
(x)dxfEc(y)dyfEd

(z)dz

= λbλcλd

∫ t

0

∫ z

0

∫ y

0

(
1− e−λax

)
e−(λd+λe)ze−λbxe−λcydxdydz

= λbλcλd

∫ t

0

∫ z

0

∫ y

0

(
e−λbx − e−(λa+λb)x

)
e−λcye−(λd+λe)zdxdydz

= λcλd

∫ t

o

∫ z

0

(
1− e−λby +

λb

λa + λb

(
e−(λa+λb)y − 1

))
e−λcye−(λd+λe)zdydz

= λcλd

∫ t

o

∫ z

0

(
e−λcy − e−(λb+λc)y +

λb

λa + λb

(
e−(λa+λb+λc)y − e−λcy

))
e−(λd+λe)zdydz

= λd

∫ t

0

(
1− e−λcz +

λc

λb + λc

(
e−(λb+λc)z − 1

)
+

λbλc

λa + λb

(
1− e−(λa+λb+λc)z

λa + λb + λc

+
e−λcz − 1

λc

))
e−(λd+λe)zdz.

Splitting up these expressions into a sum of separate integrals gives

= λd

∫ t

0

e−(λd+λe)zdz − λd

∫ t

0

e−(λc+λd+λe)zdz +
λcλd

λb + λc

∫ t

0

e−(λb+λc+λd+λe)zdz

− λcλd

λb + λc

∫ t

0

e−(λd+λe)zdz +
λbλcλd

(λa + λb)(λa + λb + λc)

∫ t

0

e−(λd+λe)zdz

− λbλcλd

(λa + λb)(λa + λb + λc)

∫ t

0

e−(λa+λb+λc+λd+λe)zdz +
λbλd

λa + λb

∫ t

0

e−(λc+λd+λe)zdz

− λbλd

λa + λb

∫ t

0

e−(λd+λe)zdz

=

(
λd −

λcλd

λb + λc

+
λbλcλd

(λa + λb)(λa + λb + λc)
− λbλd

λa + λb

)∫ t

0

e−(λd+λe)zdz

+

(
λbλd

λa + λb

− λd

)∫ t

0

e−(λc+λd+λe)zdz +
λcλd

λb + λc

∫ t

0

e−(λb+λc+λd+λe)zdz

− λbλcλd

(λa + λb)(λa + λb + λc)

∫ t

0

e−(λa+λb+λc+λd+λe)zdz.
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Which finally yields the desired solution

=

(
λd −

λcλd

λb + λc

+
λbλcλd

(λa + λb)(λa + λb + λc)
− λbλd

λa + λb

)(
1− e−(λd+λe)t

λd + λe

)
+

(
λbλd

λa + λb

− λd

)(
1− e−(λc+λd+λe)t

λc + λd + λe

)
+

(
λcλd

λb + λc

)(
1− e−(λb+λc+λd+λe)t

λb + λc + λd + λe

)
+

(
λbλcλd

(λa + λb)(λa + λb + λc)

)(
e−(λa+λb+λc+λd+λe)t − 1

λa + λb + λc + λd + λe

)
. (12)

Now as was done previously, the different failure sequences that pertain to a

particular node are substituted into Equation (12) and then summed in order to

obtain the probability of being at that node at time t.

To verify that the above expressions are in fact correct, the path vector technique

can be used to find this system’s reliability. To use this technique all of the path

vectors for the system must be found. The path vectors can be found via the code

given in Appendix B. This code requires the minimal cut sets, they are

S = {{1, 2}, {3, 4, 5}, {1, 4, 5}, {2, 3, 4}}.

The minimal cut sets are then used to create the V matrix,

V =


1 1 0 0 0

0 0 1 1 1

1 0 0 1 1

0 1 1 1 0

 .

Based on the minimal cut sets, the code produces all of the path vectors and places

them in a matrix P. P contains a row for every possible path vector for the given

83



system, it is given as

P =



0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1



.

The reliability of this system is the sum of the probabilities for each path vector

(rows of P). There are 19 total path vectors corresponding to the 19 rows of P. As

an example the probability of the path vector corresponding to the first row of P is

= P {E1 < t, E3 < t, E4 < t, E2 > t, E5 > t} ,
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Table 10: Limiting Probabilities for Absorbing Nodes in Complex EON

Node Limiting Probability
10 0.0197802198
17 0.0120379620
20 0.0186036186
21 0.0894660895
22 0.0274420024
23 0.0903263403
26 0.3191558442
27 0.0693001443
28 0.0119047619
29 0.0455017205
30 0.2480935731
31 0.0483877234

Sum 1.0000000000

which is precisely the expression for P18(t). Starting at the top and finding the

probabilities associated with each row and then summing these expressions:

= P18(t) + P19(t) + P7(t) + P8(t) + P9(t) + P2(t) + P24(t) + P11(t) + P25(t) + P12(t)

+ P3(t) + P13(t) + P14(t) + P15(t) + P4(t) + P16(t) + P5(t) + P6(t) + P1(t).

This is precisely the sum of all of the intermediate nodes for this system’s EON. Thus,

it can be certain that the above expressions are correct for the intermediate nodes.

As another check, one can analyze the limiting probabilities of the terminating

nodes. More specifically, one can look at the sum of the limit as t goes to infinity of the

terminating nodes. In the long-term analysis, the terminating nodes are collectively

exhaustive, and this sum should result in one. Rather than showing all of the lengthy

algebra for the general case where component i’s life is exponentially distributed with

rate λi, assume that component i’s lifetime is exponentially distributed with rate i,

i = 1, . . . , 5. Doing this gives the limiting nodal probabilities shown in Table 10.

Thus, it is certain that the nodal probability expressions pertaining to this example

are correct.
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5.3 Reliability of Systems with Repairable Components

The focus is now switched to systems made up of repairable components. In

order to compute availability measures for this type of system, the number of com-

ponent failures and repairs that are allowed must be limited, which means that the

availability measures calculated are estimates for the true system availability. Addi-

tionally, assume that the components do not fail or age (wear) when the system is in

a failed state and that when repaired the components are good as new. Last, failure

and repair times are assumed to be independent of one another.

Once again let Eij denote the time until the jth failure for component i and Rij

denote the jth repair time for component i, where i = 1, . . . , n, j = 1, . . . ,m. FEij
,

SEij
, and fEij

respectively denote the cdf, the survivor function, and the pdf that

describe the jth lifetime for component i (FRij
, SRij

, and fRij
for the repair events).

5.3.1 Instantaneous Availability of a 2 Component Series System. As an

illustration, assume the system under study is made up of two repairable components

in series. Only one component repair is allowed to take place before the next com-

ponent failure places the system in a permanent failed state. Assume that both the

component life and repairs time are exponentially distributed with rates λi and µi,

i = 1, 2, respectively. The availability graph for this system is shown in Figure 22 on

the next page. This figure shows how one component failing will cause the system to

fail, but will be back in operational status as soon as that component is repaired. The

dashed arrows represent repair events, where the non-failed components are not aging.

The computations used to find all of the nodal probabilities are shown in Appendix

D.

The probability that this system is available at any time t is equivalent to the

probability of being at node one, four, five, or ten at any given time t. In addition to

instantaneous availability, availability graphs allow the system to be decomposed and

thus provide the means necessary to calculate other availability measures. As was the

case with EONs and non-repairable systems, availability graphs make the calculation
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Figure 22: Availability Graph for 2 Repairable Components in Series (One Repair)

of the probability of the system being unavailable due to any specific cause, at any

time t, relatively easy to determine.

To see these features more clearly assume that the system of concern is identical

to the one described above with the following rates;

λ1 = 5, µ1 = 4,

λ2 = 6, µ2 = 3.

The nodal probabilities for this availability graph are shown in Tables 11 on the

following page and 12 on page 89. Additionally, the nodal probabilities are plotted

over time in Figure 23 on the following page. From the figure and tables note that

all of the terminating node probabilities approach a finite value as time goes on

to infinity. This is expected since the terminating nodes represent absorbing states

in the probabilistic model. Similarly, the intermediate nodal probabilities, since they

represent transient states in the model, go to zero as t goes to infinity. The probability

of being at node one is initially equal to one, since the system starts in an operational

87



Table 11: Nodal Probabilities - 2 Component Series Availability Graph

Time(t) P1(t) P2(t) P3(t) P4(t) P5(t) P6(t) P7(t)
0 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.25 0.063928 0.217108 0.306329 0.078399 0.078914 0.059082 0.055698
0.5 0.004087 0.093749 0.164283 0.047733 0.057008 0.141457 0.093660

0.75 0.000261 0.035376 0.078853 0.019655 0.029129 0.181544 0.076266
1 0.000017 0.013071 0.037328 0.007421 0.013960 0.197294 0.048542

1.25 0.000001 0.004812 0.017638 0.002746 0.006611 0.203176 0.027598
1.5 0.000000 0.001770 0.008332 0.001011 0.003124 0.205347 0.014759

1.75 0.000000 0.000651 0.003936 0.000372 0.001476 0.206146 0.007606
2 0.000000 0.000240 0.001859 0.000137 0.000697 0.206440 0.003826

2.25 0.000000 0.000088 0.000878 0.000050 0.000329 0.206549 0.001893
2.5 0.000000 0.000032 0.000415 0.000019 0.000156 0.206588 0.000926

2.75 0.000000 0.000012 0.000196 0.000007 0.000073 0.206603 0.000449
3 0.000000 0.000004 0.000093 0.000003 0.000035 0.206608 0.000216

3.25 0.000000 0.000002 0.000044 0.000001 0.000016 0.206610 0.000104
3.5 0.000000 0.000001 0.000021 0.000000 0.000008 0.206611 0.000050

3.75 0.000000 0.000000 0.000010 0.000000 0.000004 0.206611 0.000024
4 0.000000 0.000000 0.000005 0.000000 0.000002 0.206612 0.000011

4.25 0.000000 0.000000 0.000002 0.000000 0.000001 0.206612 0.000005
4.5 0.000000 0.000000 0.000001 0.000000 0.000000 0.206612 0.000003

4.75 0.000000 0.000000 0.000000 0.000000 0.000000 0.206612 0.000001
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.206612 0.000001

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.5 1 1.5 2 2.5 3
Time(t)

P
ro

b
ab

ili
ty

Node 9
Node 11

Node 6

Node 12

Node 1

Intermediate 
Nodes

Figure 23: Nodal Probabilities for 2 Component Series Availability Graph
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Table 12: Nodal Probabilities - 2 Component Series Availability Graph

Time(t) P8(t) P9(t) P10(t) P11(t) P12(t) Sum
0 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000

0.25 0.041774 0.068368 0.017060 0.006064 0.007276 1.000000
0.50 0.070245 0.175601 0.046128 0.048204 0.057845 1.000000
0.75 0.057199 0.238543 0.045509 0.108029 0.129635 1.000000

1 0.036406 0.269540 0.031743 0.156672 0.188007 1.000000
1.25 0.020699 0.284294 0.018944 0.187946 0.225536 1.000000
1.5 0.011069 0.291272 0.010420 0.205861 0.247033 1.000000

1.75 0.005704 0.294569 0.005465 0.215488 0.258586 1.000000
2 0.002870 0.296126 0.002782 0.220465 0.264558 1.000000

2.25 0.001420 0.296862 0.001387 0.222974 0.267569 1.000000
2.5 0.000694 0.297210 0.000682 0.224217 0.269061 1.000000

2.75 0.000337 0.297374 0.000332 0.224826 0.269791 1.000000
3 0.000162 0.297451 0.000161 0.225121 0.270146 1.000000

3.25 0.000078 0.297488 0.000077 0.225264 0.270316 1.000000
3.5 0.000037 0.297505 0.000037 0.225332 0.270399 1.000000

3.75 0.000018 0.297513 0.000018 0.225365 0.270438 1.000000
4 0.000008 0.297517 0.000008 0.225380 0.270456 1.000000

4.25 0.000004 0.297519 0.000004 0.225388 0.270465 1.000000
4.5 0.000002 0.297520 0.000002 0.225391 0.270470 1.000000

4.75 0.000001 0.297520 0.000001 0.225393 0.270472 1.000000
5 0.000000 0.297520 0.000000 0.225394 0.270472 1.000000
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Table 13: Availability Measures - 2 Component Series Availability Graph

Time(t) A(t) Repair 1 Repair 2 Repair U1(t) U2(t)
0 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.25 0.238301 0.258882 0.362027 0.620909 0.324027 0.437672
0.5 0.154956 0.163994 0.257943 0.421937 0.353656 0.491389

0.75 0.094554 0.092575 0.155119 0.247694 0.382148 0.523298
1 0.053141 0.049477 0.085869 0.135346 0.403443 0.543416

1.25 0.028302 0.025511 0.045236 0.070746 0.416633 0.555065
1.5 0.014556 0.012840 0.023091 0.035931 0.424048 0.561396

1.75 0.007313 0.006356 0.011542 0.017897 0.427990 0.564696
2 0.003616 0.003109 0.005685 0.008794 0.430015 0.566370

2.25 0.001767 0.001508 0.002771 0.004279 0.431031 0.567202
2.5 0.000857 0.000727 0.001341 0.002067 0.431532 0.567611

2.75 0.000413 0.000349 0.000645 0.000994 0.431778 0.567810
3 0.000198 0.000167 0.000309 0.000476 0.431896 0.567906

3.25 0.000095 0.000079 0.000147 0.000227 0.431954 0.567952
3.5 0.000045 0.000038 0.000070 0.000108 0.431981 0.567974

3.75 0.000021 0.000018 0.000033 0.000051 0.431994 0.567984
4 0.000010 0.000009 0.000016 0.000024 0.432000 0.567989

4.25 0.000005 0.000004 0.000008 0.000012 0.432003 0.567992
4.5 0.000002 0.000002 0.000004 0.000005 0.432005 0.567993

4.75 0.000001 0.000001 0.000002 0.000003 0.432005 0.567994
5 0.000001 0.000000 0.000001 0.000001 0.432006 0.567994

state with both of its components operating. As stated previously, the system’s

instantaneous availability for any time t is equal to P1(t) + P4(t) + P5(t) + P10(t).

Instantaneous availability, A(t), is shown in Table 13 for different values of t.

In addition to instantaneous availability, the availability graph can be dissected

and many other important measures can be found using this decomposition. For

example, the probability that the system is unavailable because component one is

awaiting repair is given as the sum of node two and eight’s nodal probabilities. Sim-

ilarly, the probability that the system in unavailable as a result of component two

awaiting repair, is the probability of being at nodes three or seven at time t. These

quantities are shown in Table 13, under the Repair 1 and Repair 2 columns. The

probability that the system is unavailable because it is awaiting repair, at any time t,

is the sum of the associated probabilities for each component. This quantity is shown

under the Repair column in Table 13.
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Last, one can analyze the probability that the system in unavailable due to

different causes of failure. The probability that the system is unavailable due to

component one for any time t, denoted U1(t), is

U1(t) = P2(t) + P6(t) + P8(t) + P11(t).

The probability that the system is unavailable due to component two for any time t

is computed in a similar fashion,

U2(t) = P3(t) + P7(t) + P9(t) + P12(t).

These measures are also shown in Table 13, for different values of t. Note that as

t grows indefinitely the probability that the system is unavailable is equal to one.

Thus the sum of U1(t) and U2(t), since these are the only possible causes of system

unavailability, as t →∞ is also equal to one. Finally, the analyst can be certain that

the above nodal probabilities are correct, because their sum is equal to one for all

time t (Table 12).

5.4 Illustration Summary

This chapter began by showing how to implement the techniques introduced

in Chapter 3 for a specific three component non-repairable system. The system’s

reliability, and the contributional probabilities for each component causing the system

to fail were derived. Additionally, a fault tree for the system was depicted and used

to find the minimal cut sets. This was done to show how these techniques can be used

in finding the minimal cut sets from an EON. This section concluded with a RBD for

a complex system. The EON for this system was depicted and the conditional nodal

probabilities were presented.

The second section of this chapter provided an example of a system with re-

pairable components. The system was limited by the number of repairs that are
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allowed to occur, prior to the system remaining in a failed state. The nodal probabil-

ities for this system are derived in Appendix D. This example demonstrated how an

availability graph can be used to analyze a repairable system’s instantaneous avail-

ability. Additionally, it was shown how the availability graph and its associated nodal

probabilities allow for the computation of other valuable availability measures: the

probability of a system being unavailable due to specific causes; and the probability

of the system being unavailable because it is awaiting repair. This example is fairly

simplistic in nature, when analyzing more complex repairable systems or when the

aforementioned constraints are relaxed, calculating an availability graph’s associated

nodal probabilities explicitly, becomes more difficult.
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VI. Conclusion

6.1 Overview

This chapter presents the conclusions that the author has drawn from conduct-

ing this research. First, deductions are made from the topic’s relevant background

and literature. These deductions lead to the methods introduced in Chapters 3 and 4.

Next, the methodology on reliability theory is analyzed to determine what conclusions

can be drawn from this analysis. The research in this area is once again divided into

two sections; one on the methodology for non-repairable system, and the other on the

methodology used in the analysis of repairable systems. Following this, an outline for

future research relevant to this thesis is given, with the hope that this work will be

continued. Last, some final overarching recommendations are made.

6.2 Background and Literature Conclusions

A thorough analysis of reliability theory shows how vast and diverse the field

really is. Despite this, some of the most basic reliability techniques are limited in

many different ways. To start, there are many different graphical models that are

used to capture and analyze the reliability of a given non-repairable system. None of

these models possesses the diversity necessary to compute multiple different reliability

measures.

Reliability block diagrams (RBDs) portray a system’s functional relationship

and the interaction between the system’s components [23]. RBDs and the techniques

associated with them, i.e. structure functions, can be used to capture overall system

reliability. They are not so good, however, at capturing other reliability measures,

like the probability of a component or group of components causing the system to fail.

RBDs can also be used to find the minimal cut sets for a given system, but typically

fault trees (FTs) are used in this area.

In addition to finding minimal cut sets, FTs are also used in determining the

causes of system failure. They cannot however be used as a stand alone representa-

tion of a system, because they do not depict the interactions between components.
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Additionally, if the system has many minimal cut sets, then calculating the system’s

reliability via FTs can be both costly and time consuming [38]. Event trees (ETs)

are limited in the same areas that FTs are. For these reasons a graphical model that

shows component dependencies and interactions and allows for the calculation of all

of these reliability measures is desired.

Typically, component lifetimes are assumed to be exponentially distributed.

This is done so that exact analytical solutions for system reliability can be found.

However, this assumption reduces the models explicitness for a given system [24].

Often, lifetimes are better represented by different (non-exponential) distributions.

However, when general distributions are used the system’s reliability become much

harder to calculate and it is for this reason that simulation is used [23]. Simulation

can produce fairly accurate results but with more complex systems is very costly and

time consuming.

Yet another approach involves the use of continuous time markov chains (CTMCs).

CTMCs are often used in reliability analysis, but are limited in their modeling capabil-

ities. When used to determine the probability of a component or group of components

causing system failure at a specific time t, difficult calculations must be made due

to the complexity of the expression needed to find the transition probability ma-

trix. Additionally, the number of states required to model a coherent system with a

CTMC grows increasingly large as the number of components and the complexity of

the system increases. For these reasons a more robust reliability analysis should be

examined.

When systems with repairable components are analyzed, the number of limita-

tions increases. Due to the complex nature of availability measures, limiting availabil-

ity is typically the only measure that is analyzed [23]. The instantaneous availability

however is the most robust, because all of the other three measures can be derived

from it. The correct availability measure is determined by analyzing how the system

under scrutiny is to be used [24]. The complexity in calculating instantaneous, aver-
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age, and limiting average availability drive analysts to use simulation. However, as

stated previously, simulation is not always cost effective or accurate.

As is the case with non-repairable components, typically component life and re-

pair times are assumed to be exponentially distributed. If the exponential assumption

is lifted then the system’s availability, more specifically the system’s instantaneous

availability, becomes extremely difficult to calculate and non-analytical techniques

are used. Finding a system’s, with non-exponential failure and repair times, instanta-

neous availability is so difficult that little to no work has been done in this area [24].

For these reasons an all-inclusive graphical reliability model that is diverse

enough to handle all of the above requirements is desired. This longing leads to

the application of a new graphical and probabilistic model.

6.3 Methodology Conclusions

As was shown in Chapters 3 and 4, event occurrence networks (EONs) can be

used to model any coherent structure, whether the components are repairable or not.

The EON structure allows for the computation of many different reliability measures.

The techniques and assumptions used to do so are slightly different depending on

whether the system consists of repairable components or non-repairable components.

If the system of concern is made up of non-repairable components then the EON

structure can efficiently be utilized in reliability analysis. It was proved in Chapter

3 that every RBD can be transformed into its corresponding EON. This EON can

then be used to calculate probabilities associated with the system’s reliability. More

specifically, this probabilistic model grants the analyst the tools necessary to calculate

the probability of a component or group of components causing system failure, along

with system reliability at a specific time t. This dissection breaks even the most

complex system into simple component and groups of component probabilities. These

probabilities are not intuitive and their calculations are not straight-forward using

existing models and techniques. However, these calculations are essential in reliability
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analysis, because they provide the analyst a way in which to cost-effectively improve

system reliability.

In addition to these measures, EONs provide the analyst with the system’s

minimal cut sets. Previous techniques depend on yet another graphical model, FTs,

to find these extremely valuable sets. The EON structure allows for the calculation of

system reliability, contributional probabilities, and minimal cut sets in one intuitive

graphical model.

Lastly, EONs can be used alongside with numerical approximation techniques

when component failures are generally distributed (non-exponential). When model-

ing systems with generally distributed component lifetimes, simulation is often used,

which is timely and expensive. As was shown in [12], piecewise polynomial approxi-

mation can be used coupled with EONs to produce results that are very accurate.

The application of EONs to reliability theory leads to the main contribution of

this thesis: the introduction of a graphical model that is robust enough to handle many

different reliability measures, that at the same time presents an intuitive graphical

depiction of the system at hand. The only downside to using the aforementioned

technique (EONs) to calculate system reliability measures is that, just like other

techniques, more complicated systems require extensive and involved calculations.

Additionally, the state space for more complex systems grows unmanageably large,

making the development of a software package that handles this a necessity.

Changing the focus to systems with repairable components makes this analysis

much more complicated. The probabilistic model now represents the superposition

of several non-terminating, interdependent counting processes that must be approxi-

mated with finite, terminating counting processes. The structure that reflects these

changes for this type of system, termed an availability graph, is based on that of an

EON. Theoretically, in an availability graph, components can fail and be repaired

an infinite number of times. Thus, for this reason, each component’s lifetime can be

modeled as an alternating renewal process. To handle this complication, the analyst
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must assume that only a finite number of repairs are allowed to take place. Addition-

ally, events between groups no longer occur independently of one another. For these

reasons, EONs alone, cannot be used to calculate a given system’s availability.

Despite the complications, if it is assumed that once a component that has failed

and caused system failure is repaired and the entire system is now good as new, then

EONs paired with structure functions can be used to calculate the system’s availabil-

ity. In doing so the classical EON model is used, coupled with piecewise polynomial

approximation, to estimate each component’s availability. Each component’s avail-

ability is then used in the system’s structure function to find the system’s overall

availability.

Through the above described technique it was shown that very accurate results

for system availability can be produced using piecewise polynomial approximation

and EONs. The results were compared to those produced via simulation and it was

shown that EONs and these techniques produce more accurate results than simulation,

especially when the system is only analyzed for a short period of time. Furthermore,

using EONs to calculate a system’s availability is computationally less expensive than

that of simulation. Thus, so long as this assumption does not detract from the model’s

explicitness of the given system, these techniques can be used.

Removing the assumption that the entire system is restored to a good as new

condition when the failed component is repaired, makes availability calculations ex-

tremely difficult. The time element is no longer consistent amongst components. For

example, if component one fails prior to component two and causes system failure,

then following component one’s repair, the clock starts over for component one but

picks up where it left off for component two. This fact makes the calculation of even

the simplest system’s availability nearly untractable and explains why little work has

been done in this area. The examples shown in Chapters 4 and 5 model very simple

systems.
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In addition to a system’s instantaneous availability, these examples show how

availability graphs may be used to calculate multiple different availability measures.

As is the case for non-repairable systems, the availability graph allows for a useful

decomposition of the given system. This decomposition provides the tools necessary

to calculate the probability the system is unavailable due to specific causes, yielding

a much more thorough analysis of the system’s availability. However, even after strict

limitations are placed on the systems (one repair), the instantaneous availability is

still not easy to compute. This also explains why a system of this type’s transient

behavior is rarely analyzed.

From the analysis done for systems of this type, it is apparent that more work

needs to be done in order to develop a more straight-forward technique that can

handle any coherent structure. The research done thus far has not shed light on a

method or pattern common to coherent systems that can be used to simplify these

calculations. This leads to other areas where more research is necessary.

6.4 Future Research Opportunities

First, the work done with EONs and non-repairable systems can still be ex-

panded. There are many other areas of reliability that could be analyzed using the

EON structure. Some of these include component importance, phase-type distribu-

tions, competing risks, accelerated life testing, and censoring. The hope is that the

EON structure will make the analysis in some of these areas simpler than existing

techniques. Next, the code written is based on the availability of minimal cut sets.

As it stand now, this code only produces all of the path and cut vectors for a given

system, based on the minimal cut sets. It is well known that if the minimal cut sets

can be found, then the exact system’s reliability can be found [23]. This code should

be adapted so that the minimal cut sets are not required and thus significantly ad-

vance the use of EONs in this field. Once done an analysis should be undergone that

determines whether the EON structure can find the minimal cut sets more efficiently
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than existing methods. Computer code also needs to be written that can depict any

coherent system as an EON graphically.

The next area of future research concerns systems with repairable components.

The examples shown here are very limited and in future studies need to be expanded

in many regards. First, the examples given were only limited to one repair event. Ex-

panding this to a larger number of repairs and eventually letting this number approach

infinity will result in a system’s true instantaneous availability. The techniques for

this type of system need also be expanded for other coherent systems. Perhaps first a

simple parallel structure and then the results generalized for any coherent structure.

Doing so will allow for the calculation of any system’s instantaneous availability and

will break new ground in an area that has had very little to no attention. Eventually

computer code is necessary to deal with the complexity of these systems, and their

sometimes involved calculations.

6.5 Final Recommendations

This research leads to many different overarching recommendations. To start,

the main push is for EONs and their techniques to be adopted in the study of relia-

bility. This will address and alleviate many of the problems with reliability analysis

and current techniques.

EONs should be included in the realm of reliability theory for many reasons.

First and foremost, EONs and their techniques allow for a more thorough system re-

liability analysis than any of the aforementioned graphical models that are currently

being used. EONs, more specifically, allow for the calculation of many reliability mea-

sures that currently require multiple different graphical depictions. EONs can also be

efficiently used, coupled with piecewise polynomial approximation, when component

life and repair times are not exponentially distributed. Additionally, the EON struc-

ture represents an intuitive depiction of the system being studied. For these reasons

EONs offer, what this author has termed an all-inclusive graphical model, to the field

of reliability.

99



When the systems of concern are made up of repairable components then a

model derived from EONs can be used to better understand an area where little

research has been done. These techniques and what is termed an availability graph,

opens the door to a relatively new area of study; namely the analysis of a system’s

instantaneous availability.

This work is beneficial to all of the areas that utilize reliability theory. As was

stated in Chapter 1, these areas are as vast and diverse as can be imagined, and the

contributions of this research are just as wide-spread.
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Appendix A. Instantaneous Availability via CTMC’s and Laplace

Transforms

Using first principles, the differential-difference equations, describing the stochastic

behavior of the system can be obtained, where Pk(t) is the probability of being in

state k at time t [14].

dP0(t)

dt
= −λP0(t) + µP1(t) (13)

dP1(t)

dt
= λP0(t)− µP1(t). (14)

Now take the Laplace transform of these two equations with the initial conditions

P0(0) = 1, and P1(0) = 0, since it is assumed that the system is functioning at time 0.

For notational purposes assume f ∗(s) = L{f(t)}, in other words f ∗(s) is the Laplace

transform of f(t). Thus for equation (13),

L
{

dP0(t)

dt

}
= L{−λP0(t) + µP1(t)}

sP ∗
0 (s)− P0(0) = −λP ∗

0 (s) + µP ∗
1 (s)

⇒ P ∗
1 (s) =

(
s + λ

µ

)
P ∗

0 (s)− 1

µ
.

Similarly with equation (14),

L
{

dP1(t)

dt

}
= L{λP0(t)− µP1(t)}

sP ∗
1 (s)− P1(0) = λP ∗

0 (s)− µP ∗
1 (s)

⇒ P ∗
0 (s) =

(
s + µ

λ

)
P ∗

1 (s).
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Solving this system of equations for P ∗
0 (s) yields

P ∗
0 (s) =

(
s + µ

λ

)[(
s + λ

µ

)
P ∗

0 (s)− 1

µ

]
⇒ P ∗

0 (s)

[
1−

(
s + µ

λ

)(
s + λ

µ

)]
= − 1

µ

⇒ P ∗
0 (s) = −

1
µ

1−
(

s+µ
λ

) (
s+λ
µ

)
⇒ P ∗

0 (s) =
1(

s+µ
λ

)
(s + λ)− µ

.

Now the quantity of interest, the instantaneous availability A(t), is the inverse trans-

form of P ∗
0 (s), or

A(t) = L−1{P ∗
0 (s)} =

(
λ

λ + µ

)
e−(λ+µ)t +

(
µ

λ + µ

)
.
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Appendix B. Matlabr Code for Obtaining all of the Path and Cut

Vectors for a Coherent System

%*******************************************************************

%Greg Steeger *

%Thesis EON Code *

%In this code an mxn binary matrix V is inputted, consisting of the*

%m minimal cut sets, for the given system. A "1" in row i column *

%"j" means that the jth component is an element of the ith minimal *

%cut set. The code then outputs all of the path and cut vectors. *

%*******************************************************************

function [X,P,C]=EON(A)

XX=[];

X=[]; % X is a matrix of all possible state vectors with dimension n

C=[]; % C is a matrix of all of the cut vectors

P=[]; % P is a matrix of all of the path vectors

[m,n]=size(V); % system has m cut vectors of dimension n (n components)

y=zeros(m,n);

for i=0:((2^n)-1)

XX=[XX;dec2bin(i,n)];

end

for j=1:(2^n)

for k=1:n

X(j,k)=str2num(XX(j,k));

end

end

for a=(1:(2^n))

for h=1:m

y(h,:)= X(a,:) & V(h,:);

t0(h)= max (y(h,:));

end

t= min (t0);

if t==0

C=[C;X(a,:)];

end

if t==1

P=[P;X(a,:)];

end

end
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Appendix C. Nodal Probabilities for Complex EON

This appendix shows the calculations used to find the nodal probabilities for the

complex system shown in Figures 20 and 21 on page 76. For this system assume

that component i’s lifetime is exponentially distributed with rate λi for i = 1, . . . , 5.

Additionally assume that the components fail independently of each other.

Tier Zero

For the first node, the non-event,

P1(t) = P {E1 > t, E2 > t, E3 > t, E4 > t, E5 > t}

= e−(
∑5

i=1 λi)t.

Tier One

For node j + 1, j = 1, . . . , 5 on the first tier

Pj+1(t) = P {Ej < t, Ei > t} for i = 1, . . . , 5; i 6= j

=
(
1− e−λjt

)
e−(

∑5
i=1;i6=j λi)t.

As an example,

P2(t) = P {E1 < t, E2 > t, E3 > t, E4 > t, E5 > t}

=
(
1− e−λ1t

)
e−(

∑5
i=2 λi)t.

Tier Two

The probability expressions for the nodes on the second tier are all similar, with the

exception of node ten which represents the first terminating node in this particular

EON. Node ten represents the event stream where both components one and two

have failed and thus the system is in a failed state, its probability expression is given
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as

P10(t) = P {E1 < E2, E2 < E3, E2 < E4, E2 < E5|T ≤ t}

+ P {E2 < E1, E1 < E3, E1 < E4, E1 < E5|T ≤ t}

=

∫ t

0

P {E1 < x}P {E3 > x}P {E4 > x}P {E5 > x} fE2(x)dx

+

∫ t

0

P {E2 < y}P {E3 > y}P {E4 > y}P {E5 > y} fE1(y)dy

= λ2

∫ t

0

(
1− e−λ1x

)
e−(

∑5
i=2 λi)xdx

+ λ1

∫ t

0

(
1− e−λ2y

)
e−(

∑5
i=1;i6=2 λi)ydy

= λ2

∫ t

0

e−(
∑5

i=2 λi)x − e−(
∑5

i=1 λi)xdx

+ λ1

∫ t

0

e−(
∑5

i=1;i6=2 λi)y − e−(
∑5

i=1 λi)ydy

=
λ2

(
1− e−(

∑5
i=2 λi)t

)
∑5

i=2 λi

+
λ2

(
e−(

∑5
i=1 λi)t − 1

)
∑5

i=1 λi

+
λ1

(
1− e−(

∑5
i=1;i6=2 λi)t

)
∑5

i=1;i6=2 λi

+
λ1

(
e−(

∑5
i=1 λi)t − 1

)
∑5

i=1 λi

.

The remainder of the nodes on the second tier are transient and represent event

streams where two components have failed, but the system is still in an operational

state. In general, the probability expression for node m, an intermediate node on

this tier, if components a and b have failed, is given as

Pm(t) = P {Ea < t, Eb < t, Ek > t} for k = 1, . . . , 5; k 6= a, b

=
∏
i=a,b

(
1− e−λit

)
e−(

∑5
j=1;j 6=a,b λj)t. (15)
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The expressions for these nodes are found using Equation (15) and are shown below:

P7(t) = P {E1 < t, E3 < t, Ek > t} for k = 1, . . . , 5; k 6= 1, 3

=
∏
i=1,3

(
1− e−λit

)
e−(

∑5
j=1;j 6=1,3 λj)t;

P8(t) = P {E1 < t, E4 < t, Ek > t} for k = 1, . . . , 5; k 6= 1, 4

=
∏
i=1,4

(
1− e−λit

)
e−(

∑5
j=1;j 6=1,4 λj)t;

P9(t) = P {E1 < t, E5 < t, Ek > t} for k = 1, . . . , 5; k 6= 1, 5

=
∏
i=1,5

(
1− e−λit

)
e−(

∑5
j=1;j 6=1,5 λj)t;

P11(t) = P {E2 < t, E3 < t, Ek > t} for k = 1, . . . , 5; k 6= 2, 3

=
∏
i=2,3

(
1− e−λit

)
e−(

∑5
j=1;j 6=2,3 λj)t;

P12(t) = P {E2 < t, E4 < t, Ek > t} for k = 1, . . . , 5; k 6= 2, 4

=
∏
i=2,4

(
1− e−λit

)
e−(

∑5
j=1;j 6=2,4 λj)t;

P13(t) = P {E2 < t, E5 < t, Ek > t} for k = 1, . . . , 5; k 6= 2, 5

=
∏
i=2,5

(
1− e−λit

)
e−(

∑5
j=1;j 6=2,5 λj)t;
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P14(t) = P {E3 < t, E4 < t, Ek > t} for k = 1, . . . , 5; k 6= 3, 4

=
∏
i=3,4

(
1− e−λit

)
e−(

∑5
j=1;j 6=3,4 λj)t;

P15(t) = P {E3 < t, E5 < t, Ek > t} for k = 1, . . . , 5; k 6= 3, 5

=
∏
i=3,5

(
1− e−λit

)
e−(

∑5
j=1;j 6=3,5 λj)t;

P16(t) = P {E4 < t, E5 < t, Ek > t} for k = 1, . . . , 5; k 6= 4, 5

=
∏
i=4,5

(
1− e−λit

)
e−(

∑5
j=1;j 6=4,5 λj)t.

Tier Three

The next tier consists of event streams where three different events have occurred.

Each node has either two or three paths coming into it. Nodes with only two paths

(17, 20 and 22) are missing the path from parent node ten, which is not feasible

since ten is an terminating node.

The terminating nodes in this tier (nodes 17, 20-23, and 26), represent specific

sequences of component failures that eventually lead to system failure at this tier.

To simplify matters a generic sequential failure sequence is analyzed. In general

the probability of component a failing first followed by component b, followed by
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component c where component d and e have not yet failed, is given as

P {Ea < Eb, Eb < Ec, Ec < Ed, Ec < Ee|T ≤ t}

=

∫ t

0

∫ y

0

P {Ea < x}P {Ed > y}P {Ee > y} fEb
(x)dxfEc(y)dy

= λbλc

∫ t

0

∫ y

0

(
1− e−λax

)
e−(λc+λd+λe)ye−λexdxdy

= λbλc

∫ t

0

∫ y

0

(
e−λbx − e−(λa+λb)x

)
e−(λc+λd+λe)ydxdy

= λbλc

∫ t

0

(
1

λb

(
1− e−λby

)
+

1

λa + λb

(
e−(λa+λb)y − 1

))
e−(λc+λd+λe)ydy

= λc

∫ t

0

(
e−(λc+λd+λe)y − e−(λb+λc+λd+λe)y

)
dy

+
λbλc

λ1 + λ2

∫ t

0

(
e−(λa+λb+λc+λd+λe)y − e−(λc+λd+λe)y

)
dy

=
λc

λc + λd + λe

(
1− e−(λc+λd+λe)t

)
+

λc

λb + λc + λd + λe

(
e−(λb+λc+λd+λe)t − 1

)
+

λbλc

λa + λb

(
1− e−(λa+λb+λc+λd+λe)t

λa + λb + λc + λd + λe

+
e−(λc+λd+λe)t − 1

λc + λd + λe

)
. (16)

The expressions for the terminating nodes can now be expressed by plugging the

relevant failure sequences into Equation (16). As stated before nodes 17, 20 and

22 only have two different paths from parent nodes in tier two, yielding a total of

four different possible event stream combinations that conclude at these nodes. The

remaining concluding nodes on tier three, nodes 21, 23 and 26, have three different

paths from their respective parent nodes, yielding a total of six possible event stream

combinations leading to these nodes. This means that each possible failure sequence

must be substituted into Equation (16) for each terminating node and these results
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summed to obtain total node probability. For example

P17(t) = P {E1 < E3, E3 < E2, E2 < E4, E2 < E5|T ≤ t}

+ P {E3 < E1, E1 < E2, E2 < E4, E2 < E5|T ≤ t}

+ P {E2 < E3, E3 < E1, E1 < E4, E1 < E5|T ≤ t}

+ P {E3 < E2, E2 < E1, E1 < E4, E1 < E5|T ≤ t}

=
λ2

λ2 + λ4 + λ5

(
1− e−(λ2+λ4+λ5)t

)
+

λ2

λ2 + λ3 + λ4 + λ5

(
e−(λ2+λ3+λ4+λ5)t − 1

)
+

λ2λ3

λ1 + λ3

(
1− e−(λ1+λ2+λ3+λ4+λ5)t

λ1 + λ2 + λ3 + λ4 + λ5

+
e−(λ2+λ4+λ5)t − 1

λ2 + λ4 + λ5

)
+

λ2

λ2 + λ4 + λ5

(
1− e−(λ2+λ4+λ5)t

)
+

λ2

λ1 + λ2 + λ4 + λ5

(
e−(λ1+λ2+λ4+λ5)t − 1

)
+

λ1λ2

λ1 + λ3

(
1− e−(λ1+λ2+λ3+λ4+λ5)t

λ1 + λ2 + λ3 + λ4 + λ5

+
e−(λ2+λ4+λ5)t − 1

λ2 + λ4 + λ5

)
+

λ1

λ1 + λ4 + λ5

(
1− e−(λ1+λ4+λ5)t

)
+

λ1

λ1 + λ3 + λ4 + λ5

(
e−(λ1+λ3+λ4+λ5)t − 1

)
+

λ1λ3

λ2 + λ3

(
1− e−(λ1+λ2+λ3+λ4+λ5)t

λ1 + λ2 + λ3 + λ4 + λ5

+
e−(λ1+λ4+λ5)t − 1

λ1 + λ4 + λ5

)
+

λ1

λ1 + λ4 + λ5

(
1− e−(λ1+λ4+λ5)t

)
+

λ1

λ1 + λ2 + λ4 + λ5

(
e−(λ1+λ2+λ4+λ5)t − 1

)
+

λ1λ2

λ2 + λ3

(
1− e−(λ1+λ2+λ3+λ4+λ5)t

λ1 + λ2 + λ3 + λ4 + λ5

+
e−(λ1+λ4+λ5)t − 1

λ1 + λ4 + λ5

)
.

This substitution can be applied to the remainder of the nodes on this tier as well,

but is not shown in an effort to save space. The expressions for the remainder of the

terminating nodes are:

P20(t) = P {E1 < E4, E4 < E2, E2 < E3, E2 < E5|T ≤ t}

+ P {E4 < E1, E1 < E2, E2 < E3, E2 < E5|T ≤ t}

+ P {E2 < E4, E4 < E1, E1 < E3, E1 < E5|T ≤ t}

+ P {E4 < E2, E2 < E1, E1 < E3, E1 < E5|T ≤ t} ;
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P21(t) = P {E1 < E4, E4 < E5, E5 < E2, E5 < E3|T ≤ t}

+ P {E4 < E1, E1 < E5, E5 < E2, E5 < E3|T ≤ t}

+ P {E1 < E5, E5 < E4, E4 < E2, E4 < E3|T ≤ t}

+ P {E5 < E1, E1 < E4, E4 < E2, E4 < E3|T ≤ t}

+ P {E4 < E5, E5 < E1, E1 < E2, E1 < E3|T ≤ t}

+ P {E5 < E4, E4 < E1, E1 < E2, E1 < E3|T ≤ t} ;

P22(t) = P {E1 < E5, E5 < E2, E2 < E3, E2 < E4|T ≤ t}

+ P {E5 < E1, E1 < E2, E2 < E3, E2 < E4|T ≤ t}

+ P {E2 < E5, E5 < E1, E1 < E3, E1 < E4|T ≤ t}

+ P {E5 < E2, E2 < E1, E1 < E3, E1 < E4|T ≤ t} ;

P23(t) = P {E2 < E3, E3 < E4, E4 < E1, E4 < E5|T ≤ t}

+ P {E3 < E2, E2 < E4, E4 < E1, E4 < E5|T ≤ t}

+ P {E2 < E4, E4 < E3, E3 < E1, E3 < E5|T ≤ t}

+ P {E4 < E2, E2 < E3, E3 < E1, E3 < E5|T ≤ t}

+ P {E3 < E4, E4 < E2, E2 < E1, E2 < E5|T ≤ t}

+ P {E4 < E3, E3 < E2, E2 < E1, E2 < E5|T ≤ t} ;
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and

P26(t) = P {E3 < E4, E4 < E5, E5 < E1, E5 < E2|T ≤ t}

+ P {E4 < E3, E3 < E5, E5 < E1, E5 < E2|T ≤ t}

+ P {E4 < E5, E5 < E3, E3 < E1, E3 < E2|T ≤ t}

+ P {E5 < E4, E4 < E3, E3 < E1, E3 < E2|T ≤ t}

+ P {E3 < E5, E5 < E4, E4 < E1, E4 < E2|T ≤ t}

+ P {E5 < E3, E3 < E4, E4 < E1, E4 < E2|T ≤ t} .

The intermediate nodes in this tier, nodes 18, 19, 24 and 25 are much easier to

analyze. They represent event streams where three components have failed but the

system is still in an operational state. Their nodal probabilities are

P18(t) = P {E1 < t, E3 < t, E4 < t, E2 > t, E5 > t}

=
(
1− e−λ1t

) (
1− e−λ3t

) (
1− e−λ4t

)
e−(λ2+λ5)t,

P19(t) = P {E1 < t, E3 < t, E5 < t, E2 > t, E4 > t}

=
(
1− e−λ1t

) (
1− e−λ3t

) (
1− e−λ5t

)
e−(λ2+λ4)t,

P24(t) = P {E2 < t, E3 < t, E5 < t, E1 > t, E4 > t}

=
(
1− e−λ2t

) (
1− e−λ3t

) (
1− e−λ5t

)
e−(λ1+λ4)t,

and

P25(t) = P {E2 < t, E4 < t, E5 < t, E1 > t, E3 > t}

=
(
1− e−λ2t

) (
1− e−λ4t

) (
1− e−λ5t

)
e−(λ1+λ3)t.
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Tier Four

Tier four being the last tier in this particular EON is comprised solely of terminating

nodes. Each node represents the failure of four different components. The nodes

with only one parent node in the previous tier, nodes 28 and 31, have a total of six

possible component failure sequences leading to them, while the remaining nodes

have a total of twelve different component failure sequences. Once again, as was

done in tier three, a generic failure sequence is analyzed to simplify the calculation

of the nodal probabilities for this tier. Consider the case when component a fails

first, followed by b, c, then d, leaving component e as the only one that has not

failed. The probability of this event sequence is given as

P {Ea < Eb, Eb < Ec, Ec < Ed, Ed < Ee|T ≤ t}

=

∫ t

0

∫ z

0

∫ y

0

P {Ea < x}P {Ee > z} fEb
(x)dxfEc(y)dyfEd

(z)dz

= λbλcλd

∫ t

0

∫ z

0

∫ y

0

(
1− e−λax

)
e−(λd+λe)ze−λbxe−λcydxdydz

= λbλcλd

∫ t

0

∫ z

0

∫ y

0

(
e−λbx − e−(λa+λb)x

)
e−λcye−(λd+λe)zdxdydz

= λcλd

∫ t

o

∫ z

0

(
1− e−λby +

λb

λa + λb

(
e−(λa+λb)y − 1

))
e−λcye−(λd+λe)zdydz

= λcλd

∫ t

o

∫ z

0

(
e−λcy − e−(λb+λc)y +

λb

λa + λb

(
e−(λa+λb+λc)y − e−λcy

))
e−(λd+λe)zdydz

= λd

∫ t

0

(
1− e−λcz +

λc

λb + λc

(
e−(λb+λc)z − 1

)
+

λbλc

λa + λb

(
1− e−(λa+λb+λc)z

λa + λb + λc

+
e−λcz − 1

λc

))
e−(λd+λe)zdz.
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Splitting up these expressions into a sum of separate integrals gives

= λd

∫ t

0

e−(λd+λe)zdz − λd

∫ t

0

e−(λc+λd+λe)zdz +
λcλd

λb + λc

∫ t

0

e−(λb+λc+λd+λe)zdz

− λcλd

λb + λc

∫ t

0

e−(λd+λe)zdz +
λbλcλd

(λa + λb)(λa + λb + λc)

∫ t

0

e−(λd+λe)zdz

− λbλcλd

(λa + λb)(λa + λb + λc)

∫ t

0

e−(λa+λb+λc+λd+λe)zdz +
λbλd

λa + λb

∫ t

0

e−(λc+λd+λe)zdz

− λbλd

λa + λb

∫ t

0

e−(λd+λe)zdz

=

(
λd −

λcλd

λb + λc

+
λbλcλd

(λa + λb)(λa + λb + λc)
− λbλd

λa + λb

)∫ t

0

e−(λd+λe)zdz

+

(
λbλd

λa + λb

− λd

)∫ t

0

e−(λc+λd+λe)zdz +
λcλd

λb + λc

∫ t

0

e−(λb+λc+λd+λe)zdz

− λbλcλd

(λa + λb)(λa + λb + λc)

∫ t

0

e−(λa+λb+λc+λd+λe)zdz.

Which finally yields the desired solution

=

(
λd −

λcλd

λb + λc

+
λbλcλd

(λa + λb)(λa + λb + λc)
− λbλd

λa + λb

)(
1− e−(λd+λe)t

λd + λe

)
+

(
λbλd

λa + λb

− λd

)(
1− e−(λc+λd+λe)t

λc + λd + λe

)
+

(
λcλd

λb + λc

)(
1− e−(λb+λc+λd+λe)t

λb + λc + λd + λe

)
+

(
λbλcλd

(λa + λb)(λa + λb + λc)

)(
e−(λa+λb+λc+λd+λe)t − 1

λa + λb + λc + λd + λe

)
. (17)

Now as was done previously, the different failure sequences that pertain to a partic-

ular node are substituted into Equation (17) and then summed in order to obtain
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the probability of being at that node at time t. The different expressions are

P27(t) = P {E1 < E3, E3 < E4, E4 < E5, E5 < E2}

+ P {E3 < E1, E1 < E4, E4 < E5, E5 < E2}

+ P {E4 < E1, E1 < E3, E3 < E5, E5 < E2}

+ P {E4 < E3, E3 < E1, E1 < E5, E5 < E2}

+ P {E3 < E4, E4 < E1, E1 < E5, E5 < E2}

+ P {E1 < E4, E4 < E3, E3 < E5, E5 < E2}

+ P {E1 < E3, E3 < E5, E5 < E4, E4 < E2}

+ P {E1 < E5, E5 < E3, E3 < E4, E4 < E2}

+ P {E3 < E1, E1 < E5, E5 < E4, E4 < E2}

+ P {E3 < E5, E5 < E1, E1 < E4, E4 < E2}

+ P {E5 < E1, E1 < E3, E3 < E4, E4 < E2}

+ P {E5 < E3, E3 < E1, E1 < E4, E4 < E2} ,

P28(t) = P {E1 < E3, E3 < E4, E4 < E2, E2 < E5}

+ P {E1 < E4, E4 < E3, E3 < E2, E2 < E5}

+ P {E3 < E1, E1 < E4, E4 < E2, E2 < E5}

+ P {E4 < E1, E1 < E3, E3 < E2, E2 < E5}

+ P {E3 < E4, E4 < E1, E1 < E2, E2 < E5}

+ P {E4 < E3, E3 < E1, E1 < E2, E2 < E5} ,
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P29(t) = P {E2 < E3, E3 < E5, E5 < E1, E1 < E4}

+ P {E2 < E5, E5 < E3, E3 < E1, E1 < E4}

+ P {E5 < E2, E2 < E3, E3 < E1, E1 < E4}

+ P {E5 < E3, E3 < E2, E2 < E1, E1 < E4}

+ P {E3 < E2, E2 < E5, E5 < E1, E1 < E4}

+ P {E3 < E5, E5 < E2, E2 < E1, E1 < E4}

+ P {E1 < E3, E3 < E5, E5 < E2, E2 < E4}

+ P {E1 < E5, E5 < E3, E3 < E2, E2 < E4}

+ P {E3 < E1, E1 < E5, E5 < E2, E2 < E4}

+ P {E3 < E5, E5 < E1, E1 < E2, E2 < E4}

+ P {E5 < E1, E1 < E3, E3 < E2, E2 < E4}

+ P {E5 < E3, E3 < E1, E1 < E2, E2 < E4} ,

P30(t) = P {E2 < E4, E4 < E5, E5 < E3, E3 < E1}

+ P {E2 < E5, E5 < E4, E4 < E3, E3 < E1}

+ P {E4 < E2, E2 < E5, E5 < E3, E3 < E1}

+ P {E4 < E5, E5 < E2, E2 < E3, E3 < E1}

+ P {E5 < E4, E4 < E2, E2 < E3, E3 < E1}

+ P {E5 < E2, E2 < E4, E4 < E3, E3 < E1}

+ P {E2 < E3, E3 < E5, E5 < E4, E4 < E1}

+ P {E2 < E5, E5 < E3, E3 < E4, E4 < E1}

+ P {E3 < E5, E5 < E2, E2 < E4, E4 < E1}

+ P {E3 < E2, E2 < E5, E5 < E4, E4 < E1}

+ P {E5 < E2, E2 < E3, E3 < E4, E4 < E1}

+ P {E5 < E3, E3 < E2, E2 < E4, E4 < E1} ,
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and finally

P31(t) = P {E2 < E4, E4 < E5, E5 < E1, E1 < E3}

+ P {E2 < E5, E5 < E4, E4 < E1, E1 < E3}

+ P {E4 < E2, E2 < E5, E5 < E1, E1 < E3}

+ P {E4 < E5, E5 < E2, E2 < E1, E1 < E3}

+ P {E5 < E2, E2 < E4, E4 < E1, E1 < E3}

+ P {E5 < E4, E4 < E2, E2 < E1, E1 < E3} .
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Appendix D. Nodal Probabilities for Availability Graph with 2

Components in Series

This appendix shows the calculations used to find the nodal probabilities for the

system shown in Figure 22. For this system assume that component i’s life and

repair time are exponentially distributed with rates λi and µi respectively for i = 1, 2.

Additionally assume that the component life and repair times are independent, and

that the components are repaired to a good as new state. It must also be assumed

that the components do not fail or wear when the system is in a failed state. This

example is also constrained in that only one repair event is allowed to take place.

With this constraint in mind, this analysis assumes that the life and repair rates do

not change for each failure and repair, however the same technique can be used in the

case where the failure and repair rates do change in subsequent failures and repairs.

With these assumptions and limitations in mind, the probability for being at node i

at any time t, Pi(t), i = 1, . . . , 12, is derived next. In these derivations, due to the

symmetry in the given problem, the nodal probabilities will only be computed for

the nodes on the left hand side of the availability graph. Following each derivation,

the substitutions necessary to obtain the probability expressions for the nodes on the

right hand side will be stated and their associated probabilities explicitly written.

In finding the specific nodal probabilities for this system it is useful to first solve

the following integral expressions for a general parameter γ:

∫ t

0

ze−γzdz = −ze−γz

γ

∣∣∣∣t
0

−
∫ t

0

−e−γz

γ
dz (via integration by parts)

= −ze−γz

γ

∣∣∣∣t
0

−e−γz

γ2

∣∣∣∣t
0

= −te−γt

γ
+

1− e−γt

γ2

=
1− e−γt − γte−γt

γ2

=
1− e−γt(γt + 1)

γ2
; (18)
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and

∫ t

0

z2e−γzdz = −z2e−γz

γ

∣∣∣∣t
0

−
∫ t

0

−2ze−γz

γ
dz (via integration by parts)

= −t2e−γt

γ
+

2− 2e−γt(γt + 1)

γ3
(equation (18))

=
2− γ2t2e−γt − 2e−γt(γt + 1)

γ3

=
2− e−γt(γ2t2 + 2γt + 2)

γ3
. (19)

Tier Zero

For the first node, the non-event,

P1(t) = P {E11 > t, E21 > t}

= e−(λ1+λ2)t.

Tier One

Node two represents the event stream where component one has failed for the first

time and not yet been repaired. Its probability is given as

P2(t) = P {E11 < E21|T ≤ t, E11 + R11 > t}

=

∫ t

0

P {E21 > x}P {R11 > t− x} fE11(x)dx

= λ1e
−µ1t

∫ t

0

e(µ1−λ1−λ2)xdx

=

(
λ1

µ1 − λ1 − λ2

)
(e−(λ1+λ2)t − e−µ1t).
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Similarly, the expression for the probability of being at node three at time t, is the

same where λ2 and µ2 replace λ1 and µ1 respectively.

P3(t) = P {E21 < E11|T ≤ t, E21 + R21 > t}

=

(
λ2

µ2 − λ1 − λ2

)
(e−(λ1+λ2)t − e−µ2t).

Tier Two

The nodes on tier two represent event streams where a component has failed and

been repaired by time t. More specifically, node four represents this exact scenario

for component one. Its probability is

P4(t) = P {E11 + R11 < t, E21 + R11 > t, E11 + E12 + R11 > t}

=

∫ t

0

∫ t−r

0

P {E21 > t− r}P {E12 > t− x− r} fE11(x)dxfR11(r)dr

= λ1µ1e
−(λ1+λ2)t

∫ t

0

∫ t−r

0

e(λ1+λ2−µ1)rdxdr

= λ1µ1e
−(λ1+λ2)t

∫ t

0

(t− r)e(λ1+λ2−µ1)rdxdr

= λ1µ1

(
te−µ1t − te−(λ1+λ2)t

λ1 + λ2 − µ1

+
e−µ1t ((µ1 − λ1 − λ2)t + 1)− e−(λ1+λ2)t

(µ1 − λ1 − λ2)
2

)
= λ1µ1

(
te−(λ1+λ2)t

µ1 − λ1 − λ2

+
e−µ1t − e−(λ1+λ2)t

(µ1 − λ1 − λ2)
2

)
.

Once again the same derivation can be done for node five where λ2 and µ2 replace

λ1 and µ1 respectively. Applying this substitution gives

P5(t) = P {E21 + R21 < t, E11 + R21 > t, E21 + E22 + R21 > t}

= λ2µ2

(
te−(λ1+λ2)t

µ2 − λ1 − λ2

+
e−µ2t − e−(λ1+λ2)t

(µ2 − λ1 − λ2)
2

)
.

Tier Three

Tier three is comprised of nodes that denote event streams consisting of three events.

Node six represents the first terminating node in the graph and thus its nodal proba-
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bility should approach a finite number as t goes to infinity. It depicts the case where

component one has failed and been repaired, but then fails again prior to component

two failing. The probability of being at node six at any time t is

P6(t) = P {E11 + E12 + R11 < t, E11 + E12 < E21|T ≤ t−R11}

=

∫ t

0

∫ t−r

0

P {E21 > x} fE11+E12(x)dxfR11(r)dr

= λ2
1µ1

∫ t

0

∫ t−r

0

xe−(λ1+λ2)xdxe−µ1rdr

=
λ2

1µ1

(λ1 + λ2)
2

∫ t

0

(
e−µ1r − ((λ1 + λ2)t + 1)e−(λ1+λ2)te(λ1+λ2−µ1)r

+ (λ1 + λ2)e
−(λ1+λ2)tre−(µ1−λ1−λ2)r

)
dr

=
λ2

1µ1

(λ1 + λ2)
2

(
1− e−µ1t

µ1

+
(λ1 + λ2)t + 1

λ1 + λ2 − µ1

(e−(λ1+λ2)t − e−µ1t)

+
λ1 + λ2

(µ1 − λ1 − λ2)
2

(
e−(λ1+λ2)t − e−µ1t((µ1 − λ1 − λ2)t + 1)

))
.

The node that is similar to this on the other side of the graph is node nine and its

probability expression is

P9(t) = P {E21 + E22 + R21 < t, E21 + E22 < E11|T ≤ t−R21}

=
λ2

2µ2

(λ1 + λ2)
2

(
1− e−µ2t

µ2

+
(λ1 + λ2)t + 1

λ1 + λ2 − µ2

(e−(λ1+λ2)t − e−µ2t)

+
λ1 + λ2

(µ2 − λ1 − λ2)
2

(
e−(λ1+λ2)t − e−µ2t((µ2 − λ1 − λ2)t + 1)

))
.

If interested in the long-run behavior at these nodes then the limit of their probability

expressions is taken as t goes to infinity,

lim
t→∞

P6(t) =
λ1

2

(λ1 + λ2)
2 and

lim
t→∞

P9(t) =
λ2

2

(λ1 + λ2)
2 .
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This is exactly what is expected to happen in the long-term analysis of a terminating

node since it represents an absorbing state.

The other nodes on this tier are nodes seven and eight. The nodal probability for

node seven, given that T ≤ t−R11, is

P7(t) = P {E21 + R11 < t, E21 + R11 + R21 > t, E11 < E21, E21 < E11 + E12}

=

∫ t

0

∫ t−r

0

∫ y

0

P {R21 > t− y − r}P {E12 > y − x} fE11(x)dxfE21(y)dyfR11(r)dr

= λ1λ2µ1e
−µ2t

∫ t

0

∫ t−r

0

∫ y

0

e−(λ1+λ2−µ2)ydxdye(µ2−µ1)rdr

= λ1λ2µ1e
−µ2t

∫ t

0

∫ t−r

0

ye−(λ1+λ2−µ2)ydxdye(µ2−µ1)rdr

=
λ1λ2µ1e

−µ2t

(λ1 + λ2 − µ2)
2

∫ t

0

(
e(µ2−µ1)r − ((λ1 + λ2 − µ2)t + 1)e−(λ1+λ2−µ2)te(λ1+λ2−µ1)r

+ (λ1 + λ2 − µ2)e
−(λ1+λ2−µ2)tre(λ1+λ2−µ1)r

)
dr

=
λ1λ2µ1

(λ1 + λ2 − µ2)
2

(
e−µ1t − e−µ2t

µ2 − µ1

+
(λ1 + λ2 − µ2)t + 1

λ1 + λ2 − µ1

(e−(λ1+λ2)t − e−µ1t)

+
λ1 + λ2 − µ2

(µ1 − λ1 − λ2)
2 (e−(λ1+λ2)t − e−µ1t((µ1 − λ1 − λ2)t + 1))

)
.

The nodal probability for node eight is the same as that of seven’s where λ2 and µ2

replace λ1 and µ1 respectively. Given that T ≤ t−R11

P8(t) = P {E11 + R21 < t, E11 + R11 + R21 > t, E21 < E11, E11 < E21 + E22}

=
λ1λ2µ2

(λ1 + λ2 − µ1)
2

(
e−µ2t − e−µ1t

µ1 − µ2

+
(λ1 + λ2 − µ1)t + 1

λ1 + λ2 − µ2

(e−(λ1+λ2)t − e−µ2t)

+
λ1 + λ2 − µ1

(µ2 − λ1 − λ2)
2 (e−(λ1+λ2)t − e−µ2t((µ2 − λ1 − λ2)t + 1))

)
.

Tier Four

Node ten on tier four represents the event stream where both component one and

two have failed and been repaired by time t. Since there are two paths coming into
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it, its probability expression is the sum of two separate expressions. The probability

of being at this node for any time t, P10(t), given that T ≤ t− (R11 + R21), is

= P {E11 + E12 + R11 + R21 > t, E21 + E22 + R11 + R21 > t, E21 + R11 + R21 < t, E11 < E21}

+ P {E11 + E12 + R11 + R21 > t, E21 + E22 + R11 + R21 > t, E11 + R11 + R21 < t, E21 < E11}

=

∫ t

0

∫ t−r

0

∫ y

0

P {E12 > t− x− r}P {E22 > t− y − r} fE11(x)dxfE21(y)dyfR11+R21(r)dr

+

∫ t

0

∫ t−r

0

∫ y

0

P {E12 > t− x− r}P {E22 > t− y − r} fE21(x)dxfE11(y)dyfR11+R21(r)dr

=
λ1λ2µ1µ2e

−(λ1+λ2)t

µ1 − µ2

∫ t

0

∫ t−r

0

∫ y

0

e(λ1+λ2−µ2)r − e(λ1+λ2−µ1)dydr

+
λ1λ2µ1µ2e

−(λ1+λ2)t

µ1 − µ2

∫ t

0

∫ t−r

0

∫ y

0

e(λ1+λ2−µ2)r − e(λ1+λ2−µ1)dydr

=
2λ1λ2µ1µ2e

−(λ1+λ2)t

µ1 − µ2

∫ t

0

∫ t−r

0

∫ y

0

e(λ1+λ2−µ2)r − e(λ1+λ2−µ1)dydr

=
2λ1λ2µ1µ2e

−(λ1+λ2)t

µ1 − µ2

∫ t

0

∫ t−r

0

y
(
e(λ1+λ2−µ2)r − e(λ1+λ2−µ1)

)
dr

=
λ1λ2µ1µ2e

−(λ1+λ2)t

µ1 − µ2

∫ t

0

(t− r)2 (e(λ1+λ2−µ2)r − e(λ1+λ2−µ1)
)
dr

=
λ1λ2µ1µ2

µ1 − µ2

(
t2e−µ2t − t2e−(λ1+λ2)t

λ1 + λ2 − µ2

+
t2e−(λ1+λ2)t − t2e−µ1t

λ1 + λ2 − µ1

+
2te−µ2t((µ2 − λ1 − λ2)t + 1)− 2te−(λ1+λ2)t

(µ2 − λ1 − λ2)
2

+
2te−(λ1+λ2)t − 2te−µ1t((µ1 − λ1 − λ2)t + 1)

(µ1 − λ1 − λ2)
2

+
2e−(λ1+λ2)t − e−µ2t((µ2 − λ1 − λ2)

2t2 + 2t(µ2 − λ1 − λ2) + 2)

(µ2 − λ1 − λ2)
3

+
e−µ1t((µ1 − λ1 − λ2)

2t2 + 2t(µ1 − λ1 − λ2) + 2)− 2e−(λ1+λ2)t

(µ1 − λ1 − λ2)
3

)
.

Tier Five

The last tier is comprised of nodes eleven and twelve, both of which are terminating

nodes. Node eleven represents the event stream where component one has failed and

been repaired, component two has failed and been repaired, followed by component
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one failing for its final time by time t. This probability is

P11(t) = P {E11 + E12 < E21 + E22, E21 < E11 + E12|T < t− (R11 + R21)}

=

∫ t

0

∫ t−r

0

∫ y

0

P {E22 > y − x} fE21(x)dxfE11+E12(y)dyfR11+R21(r)dr

=
λ2

1λ2µ1µ2

µ1 − µ2

∫ t

0

∫ t−r

0

∫ y

0

e−λ2yeλ2xe−λ2xdxye−λ1ydy(e−µ2r − e−µ1r)dr

=
λ2

1λ2µ1µ2

µ1 − µ2

∫ t

0

∫ t−r

0

(
y2e−(λ1+λ2)y

)
dy(e−µ2r − e−µ1r)dr

=
λ2

1λ2µ1µ2

(µ1 − µ2)(λ1 + λ2)
3

∫ t

0

(
2− e−(λ1+λ2)te(λ1+λ2)r

(
(λ1 + λ2)

2(t− r)2

+ 2(t− r)(λ1 + λ2) + 2
))(

e−µ2r − e−µ1r
)
dr

=
λ2

1λ2µ1µ2

(µ1 − µ2)(λ1 + λ2)
3

∫ t

0

(
2− e−(λ1+λ2)te(λ1+λ2)r

(
(λ1 + λ2)

2t2 + 2t(λ1 + λ2) + 2
)

+ 2e−(λ1+λ2)t
(
t(λ1 + λ2)

2 + λ1 + λ2

)
re(λ1+λ2)r − (λ1 + λ2)

2e−(λ1+λ2)tr2e(λ1+λ2)r

)
(
e−µ2r − e−µ1r

)
dr

=
λ2

1λ2µ1µ2

(µ1 − µ2)(λ1 + λ2)
3

(∫ t

0

2
(
e−µ2r − e−µ1r

)
dr (20)

− e−(λ1+λ2)t
(
(λ1 + λ2)

2t2 + 2t(λ1 + λ2) + 2
)∫ t

0

e(λ1+λ2)r
(
e−µ2r − e−µ1r

)
dr

(21)

+ 2e−(λ1+λ2)t
(
t(λ1 + λ2)

2 + λ1 + λ2

)∫ t

0

re(λ1+λ2)r
(
e−µ2r − e−µ1r

)
dr (22)

− (λ1 + λ2)
2e−(λ1+λ2)t

∫ t

0

r2e(λ1+λ2)r
(
e−µ2r − e−µ1r

)
dr

)
. (23)

For clarity the above expressions are evaluated separately, this analysis is conducted

without including the constant expression that is multiplied times all of the integral

expressions. First the integral expression shown in (20) is

∫ t

0

2e−µ2r − 2e−µ1rdr =
2− 2e−µ2t

µ2

+
2e−µ1t − 2

µ1

. (24)
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Next, Equation (21)

= −e−(λ1+λ2)t
(
(λ1 + λ2)

2t2 + 2t(λ1 + λ2) + 2
)∫ t

0

e(λ1+λ2−µ1)r − e(λ1+λ2−µ2)rdr

=
(
(λ1 + λ2)

2t2 + 2t(λ1 + λ2) + 2
)(e−µ1t − e−(λ1+λ2)t

λ1 + λ2 − µ1

+
e−(λ1+λ2)t − e−µ2t

λ1 + λ2 − µ2

)
.

(25)

The expression in (22)

= 2e−(λ1+λ2)t
(
t(λ1 + λ2)

2 + λ1 + λ2

)∫ t

0

re−(µ2−λ1−λ2)r − re−(µ1−λ1−λ2)rdr

=
(
2t(λ1 + λ2)

2 + 2λ1 + 2λ2

)(e−(λ1+λ2)t − e−µ2t
(
(µ2 − λ1 − λ2)t + 1

)
(µ2 − λ1 − λ2)

2

+
e−µ1t

(
(µ1 − λ1 − λ2)t + 1

)
− e−(λ1+λ2)t

(µ1 − λ1 − λ2)
2

)
. (26)

Finally, the expression shown in Equation (23)

= (λ1 + λ2)
2e−(λ1+λ2)t

∫ t

0

r2e−(µ1−λ1−λ2)r − r2e−(µ2−λ1−λ2)rdr

= (λ1 + λ2)
2

(
2e−(λ1+λ2)t − e−µ1t

(
(µ1 − λ1 − λ2)

2t2 + 2t(µ1 − λ1 − λ2) + 2
)

(µ1 − λ1 − λ2)
3

e−µ2t
(
(µ2 − λ1 − λ2)

2t2 + 2t(µ2 − λ1 − λ2) + 2
)
− 2e−(λ1+λ2)t

(µ2 − λ1 − λ2)
3

)
. (27)

Thus the total probability of being at node eleven at time t is equal to the constant

shown initially times the sum of the expressions shown in Equations (24), (25), (26),

and (27). Or

P11(t) =
λ2

1λ2µ1µ2

(µ1 − µ2)(λ1 + λ2)
3 ((24) + (25) + (26) + (27)) .
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As was stated previously the expression for P12(t) is similar where λ2 replaces λ1.

P12(t) =
λ1λ

2
2µ1µ2

(µ1 − µ2)(λ1 + λ2)
3

(
2− 2e−µ2t

µ2

+
2e−µ1t − 2

µ1

+
(
(λ1 + λ2)

2t2 + 2t(λ1 + λ2) + 2
)(e−µ1t − e−(λ1+λ2)t

λ1 + λ2 − µ1

+
e−(λ1+λ2)t − e−µ2t

λ1 + λ2 − µ2

)

+
(
2t(λ1 + λ2)

2 + 2λ1 + 2λ2

)(e−(λ1+λ2)t − e−µ2t
(
(µ2 − λ1 − λ2)t + 1

)
(µ2 − λ1 − λ2)

2

+
e−µ1t

(
(µ1 − λ1 − λ2)t + 1

)
− e−(λ1+λ2)t

(µ1 − λ1 − λ2)
2

)

+ (λ1 + λ2)
2

(
2e−(λ1+λ2)t − e−µ1t

(
(µ1 − λ1 − λ2)

2t2 + 2t(µ1 − λ1 − λ2) + 2
)

(µ1 − λ1 − λ2)
3

e−µ2t
(
(µ2 − λ1 − λ2)

2t2 + 2t(µ2 − λ1 − λ2) + 2
)
− 2e−(λ1+λ2)t

(µ2 − λ1 − λ2)
3

))
.

To be sure that the above expressions for the terminating nodes are correct, one can

look at the limiting behavior of these nodes. The limit of the nodal probabilities for

the terminating nodes is collectively exhaustive. For node eleven this limit is

lim
t→∞

P11(t) =
λ2

1λ2µ1µ2

(µ1 − µ2)(λ1 + λ2)
3

(
2

µ2

− 2

µ1

)
=

2λ2
1λ2

(λ1 + λ2)
3 .

Similarly for node twelve

lim
t→∞

P12(t) =
2λ1λ

2
2

(λ1 + λ2)
3 .

The sum of the limiting probabilities for nodes eleven and twelve yields

lim
t→∞

(P11(t) + P12(t)) =
2λ2

1λ2 + 2λ1λ
2
2

(λ1 + λ2)
3

=
2λ1λ2

(λ1 + λ2)
2 .
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Thus, the sum of all the limiting probabilities for the terminating nodes is

lim
t→∞

(P6(t) + P9(t) + P11(t) + P12(t)) =
λ2

1 + λ2
2 + 2λ1λ2

(λ1 + λ2)
2

= 1.
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Glossary

availability graph graphical structure used to represent repairable sys-

tems, 51

convolution mathematical operator which takes two functions and

produces a third function that represents the amount

of overlap between the two functions, 17

CTMC a stochastic process that possesses the Markov property

and takes on values from amongst the elements of a

discrete set called the state space, 5

cut vector a vector such that the system does not operate under

the state it describes, 27

EON probabilistic network that represents the superposition

of several terminating counting processes, 9

intermediate node the occurrence of an event that does not prohibit other

events from occurring, 10

minimal cut vector cut vector such that any component that is currently off

turning on will cause the system to become functional,

27

minimal path vector path vector such that any component that is currently

on turning off will cause the system to fail, 26

parallel system a system that operates when k or more of its compo-

nents are functioning, 24

path vector a vector such that the system operates under the state

it describes, 26

RBD binary diagram that depicts the functional relationship

between components in an operational system, 6
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reliability of an item the probability that it will be adequately performing its

specified purpose for a specified period of time under

specified environmental conditions, 2

series system system that only functions when all of its components

function, 24

system availability the ability of a system to be in a state to perform its

required function under given conditions at a given in-

stance in time, 3

terminating node/concluding event the occurrence of an event that prohibits other events

from occurring, 10

tier level in graphical model (EON) or number of events

that have occurred, 14

132



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2006 Master’s Thesis Sept 2004 — Mar 2006

RELIABILITY OF SYSTEMS
USING
EVENT OCCURRENCE NETWORKS

Steeger, Gregory M., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GOR/ENS/06-17

Approval for public release; distribution is unlimited.

The study of a system’s reliability has played a crucial role in business and industry since the dawn of modern
technology. Current graphical models utilized in reliability theory are limited in that no one model or technique allows
for a thorough analysis of system reliability. This research introduces a new graphical model and methodology to be used
in the field of reliability that addresses this concern. Event Occurrence Networks (EONs) and their solution
methodologies provide an all-inclusive graphical model that allows for the manipulation of several important reliability
measures. An EON is a probabilistic network that represents the superposition of several terminating counting processes
and is an efficient tool in both non-repairable and repairable systems. Current methodologies are also restricted in the
distributions that characterize component life and repair times. This concern is alleviated via EONs coupled with
piecewise polynomial approximation.

event occurrence networks, reliability, availability

U U U UU 145

Lt Col David Denhard

(937) 255–3636, ext 4624


	Reliability of Systems Using Event Occurrence Networks
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Current Methods
	Current Method Limitations 
	Problem Approach
	Research Scope
	Overview

	Literature Review
	Overview of Event Occurrence Networks and Reliability Theory
	EON Introduction
	Description Denhard2001
	EON Solution Techniques
	Underlying Probabilistic Model
	Piecewise Polynomial Approximation Denhard2001
	Node Explosion Problem and Bucket Analysis
	Reliability Theory Introduction
	Coherent System Analysis 
	Lifetime Distributions
	Repairable Systems
	Summary of EON and Reliability Theory Literature

	EONs and Reliability Theory
	Methodology Overview for Non-Repairable Systems
	Methodology
	Proof
	Algorithm
	Other Measures 

	Reliability of Simple Two Component Systems
	Series System
	Parallel System

	Non-Repairable Systems Methodology Summary

	EONs and Availability
	Methodology Overview for Repairable Systems
	Methodology
	Availability of a Simple One Component System 
	Availability of Three Component Systems

	Methodology with Fewer Simplifying Assumptions
	Repairable Systems Methodology Summary

	Illustrations and Results
	Implementation Overview
	Reliability of Systems with Non-Repairable Components
	Reliability of Simple Three Component Series and Parallel Combination System
	Reliability of a Complex System

	Reliability of Systems with Repairable Components
	Instantaneous Availability of a 2 Component Series System

	Illustration Summary

	Conclusion
	Overview
	Background and Literature Conclusions
	Methodology Conclusions
	Future Research Opportunities
	Final Recommendations

	Instantaneous Availability via CTMC's and Laplace Transforms
	Matlab"472 Code for Obtaining all of the Path and Cut Vectors for a Coherent System
	Nodal Probabilities for Complex EON
	Nodal Probabilities for Availability Graph with 2 Components in Series
	Bibliography
	Glossary

