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Abstract 

 Ionospheric scintillation is detrimental to radio signals, especially those from the global 

positioning system.  Such scintillation is caused when a signal permeates the ionosphere through plasma 

bubbles.  The signal’s phase and amplitude can be altered, and a receiver on the ground can lose lock on the 

GPS signal.  Measured using a zero to one index known as S4, scintillation severity is based upon season, 

solar cycle, time of day, location and frequency.  The most severe scintillation occurs at the equatorial 

anomaly, or fifteen degrees north and south of the equator.  Seven years of data from fifteen different 

locations around the equator were used in a Matlab program to determine if the current trends still apply.  

Previous research has found the S4 at the equator to peak during the months of September to March, 

between the hours of 2000 and 0300 local time, and when the sunspot number is above 60.  Matlab plots 

were generated to find peaks in scintillation based upon location and month.  These were compared to 

sunspot numbers during those months.  A new Matlab program was made to compile all of the plots into a 

climatological map of the seasonal data.  Trends similar to those found previously were discovered.  S4 

numbers peaked in the area of the anomaly, and between the months of October to March.  As the sunspot 

number increased, the yearly average scintillation also increased.  The hours of 000 to 0300 GMT also saw 

a peak in S4 scintillation, which agrees with previous findings.  This research showed that solar maximum 

years, the hours of 000 to 0300 GMT, and the months of October through March have the largest amount of 

scintillation.   

 iv



AFIT/GSS/ENP/06-02 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents and my husband 

 

 

 

 

 

 

 

 

 

 

 

 v



Acknowledgments 

 

 I would like to thank my advisor, Lt Col Steven Fiorino, my sponsor from AFRL, 

Dr. Keith Groves, and AFIT’s computer expert, Dr. Charles Leakeas.  Without their help, 

I would not have been able to complete this project.  I truly appreciate their hard work 

and dedication. 

 

 

                                 Katharine A. Wicker 

 vi



 

Table of Contents 

 

                      Page 
Abstract ………………………………………………………………………………………………..…….iv 
 
Acknowledgments ……………………………………………………………………………………….….vi 
 
List of Figures ……………………………………………………………………………………………..viii 
 
List of Tables ……………………………………………………………………………………….……….ix 
 
  I.  Introduction………………………………………………………………………………………….…...1 
 
  II. Literature Review……………………………………………………………………………….………..3 
  

A. GPS.............................................................................................................................................3 
B. Ionosphere...................................................................................................................................6 
C. Scintillation.................................................................................................................................7 
D. Research Data...........................................................................................................................15 

 
  III. Methodology………………………………………………………………………………………...…17 
 

A. Monthly Compilation…………………………………………………………………...….…17 
B. Yearly and Hourly Compilation………………………………………………………………18 
C. Statistics………………………………………………………..…………………..............…20 
D. Access Program……………………………………………...……………………..…………21 
E. Matlab Programs………………………………………….…………………………..………23 

 
  IV. Results and Analysis…………………………………………………………………………...………25 
 

A. General Location Information…………………………………………………………..….…25 
B. Seasonal Results………………………………………………………………………........…26 
C. Yearly Result.....……………………………………………….................…………….......…29 
D. Hourly Results………………………………………………………………………….......…30 
E. Matlab Plots..............................................................................................................................31 

 
  VI. Conclusions……………………………………………………………………………………..……..42 
  

A. Seasonal Trends……………………..………………………………………………..........…42 
B. Yearly Trends……………..…………………………………………………………..………48 
C. Hourly Trends….………………………..............................................................................…49 
D. Matlab Plots………………………………………………………………………..…………50 

 
Appendix A……………………………………………………………………........................................… 52 
 
Bibliography...................................................................................................................................................54 
 
Vita………………………………………………………………………………………………………… 56 

 vii



 
List of Figures 

 

  Figure Page 
 
1. Differential GPS................................................................................................................................6 

 
2. Ionospheric Plasma Flow ................................................................................................................10 

 
3. Regioins of the Ionosphere..............................................................................................................13 

 
4. Yearly Trends..................................................................................................................................29 

 
  5.  Hourly Scintillation Trends .............................................................................................................30 
 
  6.  Ancon 2001 Day 41, Hour 2200 GMT............................................................................................31 
 
  7.  Ancon 2001 Day 41, Hour 2300 GMT............................................................................................32 
 
  8.  Ancon 2001 Day 41, Hour 0000 GMT............................................................................................32 
 
  9. Ancon 2001 Day 41, Hour 0100 GMT.............................................................................................33 
 
  10.  Ancon 2001 Day 41, Hour 0200 GMT..........................................................................................33 
 
 11  Ancon 2001 Day 41, Hour 0300 GMT............................................................................................34 
 
 12.  Ancon 2001 Day 41, Hour 0400 GMT...........................................................................................34 
 
 13.  Ancon 2001 Day 41, Hour 0500 GMT...........................................................................................35 
  
 14.  Ancon 2001 Day 41, Hour 0600 GMT...........................................................................................35 
 
 15.  Ancon 2001 Day 41, Hour 0700 GMT...........................................................................................36 
 
 16.  Ancon 1998 Day 218, Hour 0000 GMT.........................................................................................36 
 
 17.  Ancon 1998 Day 218, Hour 0100 GMT.........................................................................................37 
  
 18.  Ancon 1998 Day 218, Hour 0200 GMT.........................................................................................37 
 
 19.  Ancon 1998 Day 218, Hour 0300 GMT.........................................................................................38 
 
 20.  Ancon 1998 Day 218, Hour 0400 GMT.........................................................................................38 
 
 21.  Ancon 1998 Day 218, Hour 0500 GMT.........................................................................................39 
 
22.   Ancon 2001 Day 41, Hour 0600 GMT...........................................................................................39 
 
23.   Ancon 2001 Day 41, Hour 0700 GMT...........................................................................................40 
   
24.  Northern Hemisphere Seasonal Trends ...........................................................................................43 
 
25. Equatorial Seasonal Trends ..............................................................................................................44 
 

 viii



 26.  Southern Hemisphere Seasonal Trends ..........................................................................................45 
 
 27.  Earth Orbit ......................................................................................................................................46 
 
 

 ix



List of Tables 

 

 Table Page 
  
  1.  Days of the Year..............................................................................................................................18 
 
  2.  Site Name Abbreviations.................................................................................................................20 
 
  3.  Hourly Time Table ..........................................................................................................................22 
 
  4.  Location Hourly Deviations ............................................................................................................23 
 
  5.  Latitude and Longitude of GPS Locations ......................................................................................25 
 
  6.  January-March Results ....................................................................................................................26 
 
7.  April-June Results ...........................................................................................................................26 

 
  8.  July-Sept Results .............................................................................................................................27 
 
  9.  October-December Results..............................................................................................................27 
 
  10. Yearly Averages .............................................................................................................................29  
 
  11. Hourly Averages.............................................................................................................................30 
   
  12. Sunspot Averages ...........................................................................................................................31 
 
  13. Northern Hemisphere Averages .....................................................................................................43 
  
  14. Equatorial Region Averages...........................................................................................................44 
 
  15. Southern Hemisphere Averages .....................................................................................................45 
  
  16.  Seasonal Trend Overview..............................................................................................................46 
 
  17.  Access Adjustments.......................................................................................................................52 
 

 x



 
 
 
 

A Climatological Study of Equatorial GPS Data 
 

and the Effects of Ionospheric Scintillation 
 
 
 

I. Introduction 
 
 

 
 

 Everyday, people use satellites to communicate with each other all over the world.  

As those communication signals pass from the user to the satellite and back again to the 

receiver station, many interruptions can occur.  The ionosphere of the earth, or the 

ionized gas region of the atmosphere, is very important to radio communication.  

However, the ionosphere can also contain plasma bubbles that make signals fluctuate and 

cause accuracy problems with the Global Positioning System. 

In the earth’s ionosphere, or between 80 and 1500 kilometers above the earth’s 

surface, there exists a phenomenon known as scintillation.  Scintillation is the rapid 

fluctuation of the phase and intensity of a radio signal as it is transmitted through plasma 

density irregularities in the earth’s ionosphere.  This is very common with signal-to-

ground propagation channels.  (Parkinson) 

 Scintillation by itself does not affect anything, but when coupled with the Global 

Positioning System, problems may arise.  The constant fluctuations interfere with the 

GPS accuracy as the radio waves also pass through the earth’s ionosphere. Scintillation 

results in signal power fading, phase cycle slips, and loss of satellite lock. 
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 Currently, there are few records of outages for GPS users in the equatorial region 

of the world, so when an outage occurs, the user has no idea if the problem is due to their 

equipment, their environment, or their enemy.  Through this research, we will be able to 

predict and help assess future GPS scintillation impacts. 

 This thesis, statistically determines a climatological pattern of GPS data collected 

at the equatorial region of the world.  Expected is a definite pattern present based on the 

season, yearly average and time of day.  If a pattern is found, this would greatly aid GPS 

capabilities in the future.  Such errors could be subtracted from the current data based 

upon the seasonal or yearly pattern developed.  

 This academic effort will focus on four main areas.  First, there will be a literature 

research, where previous Global Positioning System and scintillation work will be 

discussed in detail, and how they may affect this topic.  Second, will be the methodology 

used to determine a climatological pattern using FORTRAN, Matlab, and Access, and as 

statistical and climatological tools to interpret the data.  Third, the raw results will be 

presented for the basic overall pattern depending on month and solar cycle.  Fourth and 

lastly, the conclusion will discuss how these patterns can be used.  
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II. Literature Review 

General Issue 

 When using the Global Positioning System, many different topics must be 

understood before one can determine the accuracy of the signal.  First, the basics of GPS, 

how the system bands are used, and how the entire system works together must be 

explored.  Second, the idea of total electron content, differential GPS, and degree-of- 

precision are keys to understanding the current problem.  Third, the scintillation problem 

and multipath ideas are discussed to round out the problem description.  Once all of these 

areas are covered, the effect of ionospheric scintillation on the GPS data can be 

determined. 

Global Positioning System 

GPS consists of a number of satellites that transmit precisely timed GPS signals at 

two L band frequencies, at 1.57542 GHz (L  band) and 1.2276 GHz (L1 2 band).  These 

bands, along with L3 band at 1.38105 gigahertz were selected and filtered as to minimize 

interference with the radio astronomy bands.  The L bands also give acceptable received 

signal power, reasonable satellite transmit power levels, and earth coverage satellite 

patterns.  By using both the L  and L1 2 bands, the dual frequency allows for ionospheric 

corrections and ionospheric group delay measurement. In general, GPS signals have 

different perturbations due to the specific L bands used.  These bands were selected for 

their ability to limit the ionospheric delay effects.  However, the elevation angle and 

environment the signal traverses causes scintillation to persist. (Parkinson) 
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 Each GPS signal has imbedded navigational data composed of the precise satellite 

clock time and the satellite's position.  The user can then determine the satellite's time and 

position at time of transmission.  This navigational data is uploaded, via S-band 

telemetry, to each satellite from the GPS control segment, and then stored in memory in 

the satellite for readout.  Each control segment also uploads the satellite orbit, exact 

position in that orbit versus time, and a satellite clock correction.  This correction 

calibrates the offset of the satellite clock relative to the GPS system time.  (Parkinson) 

 Each GPS has a satellite based augmentation system.  They are used for 

navigation and precision approach that allows GPS to achieve good accuracy.  Each SBA 

currently has a delay locked loop (DLL) or phase locked loop (PLL) installed to give 

users the ability to handle moderate scintillation.  While DLL/PLL helps with some 

scintillation around the equator, a better system must be developed to predict and subtract 

the damaging effects. (Parkinson) 

          Today there are about 360 global positioning system, or monitoring, stations 

worldwide. “Each receiver at these stations is capable of receiving L-band dual frequency 

signals from 8+ GPS satellites simultaneously in different directions.” 

(http://iono.jpl.nasa.gov/scint.html)  GPS data is now being used to measure and detect 

ionospheric scintillation effects.  The signal phase fluctuation is measured, and then 

classified by the total electron content (TEC) index.  The TEC index is used to show the 

difference between quiet time ionospheric variations and fluctuating times.  One unit of 

TEC i.e. 1x10^16 el/m^2, introduces a range error of 0.16 m at the L1 1.6 GHz frequency 

of GPS.  During these non-quiet times, the GPS signal can become degraded.  

(http://www.nwra-az.com/ionoscint/) 
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 The fading of GPS signals is caused by variations in ionospheric total electron 

densities, which produce a statistical decrease in satellite variability.  Pseudorange errors 

can also occur because of signal delays, or the TEC, for the signal path of the satellite.  

“The difference between satellite clock time and user clock time when the user clock is 

not precise is termed psuedorange” (Parkinson). These errors are from reference receivers 

that determine pseudorange errors that will be sent to other nearby receivers. These errors 

can disturb, or scintillate, the phase and amplitude of radio signals that pass through the 

ionosphere.  The phase of a radio signal refers to its’ direction, and the amplitude refers 

to the radio signal’s height.  If either of the phase or amplitude is altered, the receiving 

station does not know from where the signal originated (Parkinson).  

 Another type of GPS is differential GPS, or DGPS. “If two GPS receivers operate 

in relatively close proximity (less than 100 km), many of the errors inherent in two GPS 

position solutions are common to both solutions.” (Parkinson)  The difference between 

the two can cause problems with the satellite clock time, or ionospheric error to arise.  

Such errors can usually be fixed by knowing the location of one of the receivers.  That 

receiver will then transmit correction information to other neighboring receivers, thereby 

increasing the level of accuracy for the other users.  Basically, each reference station 

transmits corrections for each satellite in view on a separate radio frequency carrier, or a 

pseudorange.  This correction data also includes an almanac giving locations of other 

DGPS reference stations, so that users can choose the one closest to their current location.  

The DGPS system is limited to users and reference stations about 100 kilometers apart.  

Wide area differential GPS, or WADGPS, can also be used in cases where the distance is 
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too great, to use normal DGPS.  (Parkinson)  The basic differential global positioning 

system can be seen in Figure 1 below.  

    
 

Fig.1 

(From Parkinson)   

Figure 1. Differential GPS 

Ionosphere 

 The ionosphere is a layer of the atmosphere full of ionized gases.  The amount of 

gas present depends on the day, time, season, and solar cycle.  These same criteria apply 

to the fluctuation of scintillation, due to its ionospheric origins.  These gases cause a 

change in how fast the signal passes though the ionosphere, or propagation velocity, and 

are also dependent on the incident angle of the signal.  Most of the ionosphere’s electron 

content is located 200 to 400 kilometers above the earth’s surface, and fluctuates from 

day to night.  Unlike the troposphere, the refractive index, or n=c/v, where n is the 

refractive index, c is the speed of light, and v is the propagation velocity, changes with 

frequency.  Since this varies, group delay, carrier phase advance, and scintillation occurs.  

(Parkinson) 

 6



 Group delay and carrier phase advance are dependent on signal path and the 

amount of electron density the signal encounters.  The group delay of a signal is directly 

proportional to its ionospheric TEC.  The carrier phase is calculated from equations that 

involve receiver pseudorange measurements, and the L1 and L2 frequencies.  

Scintillation, on the other hand, has been found to change the phase and amplitude of the 

signal with respect to time.  Group delay, phase advance, and scintillation all depend on 

the frequency of the received signal.  Ionospheric delay is equal to vertical TEC over the 

frequency squared, so the dual frequencies measured at L1 and L2 bands can be used to 

calculate the delay.   

 

 Ionospheric Delay = Vertical TEC / (frequency)^2   (Equation 1) 

 

Faraday rotation and ray bending also change how long it takes a signal to 

traverse the ionosphere, but they are not relevant to this scintillation study due to their 

minor effect.  (Parkinson) 

Scintillation 

 Scintillation is caused by radio signals traversing through plasma irregularities in 

the ionosphere.  The formation of these bubbles is caused by the Rayleigh-Taylor 

Instability, which creates a perturbation.  These form on the underside of the F2 

ionospheric layer, and become larger at the magnetic equator.  The F2 layer of the 

atmosphere is located 250 to 500 kilometers above the surface of the earth.  It is known 

as the dominant reflecting layer of the ionosphere, so signals that encounter this region 

may have a delayed transmission.  The aforementioned perturbations produce a bubble of 
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depleted ionization that continues to move to higher altitudes.   Over time, this breaks 

down into smaller irregularities that continue down the magnetic field lines.  These 

bubbles cover a number of scale sizes that make up a random diffraction screen for any 

signal passes through.  (Thomas) 

 One way to scintillate and effect GPS is with multipath signal reflections. 

Multipath signal reflections and ionospheric variations effect differential GPS or DGPS 

in different ways.  Differential GPS has a receiving end of the signal is that is stationary, 

while the transmitting end moves.  This results in two different frequencies to find timing 

errors, which causes propagation effects.  However, DGPS is still prone to scintillation, 

which cannot be removed.  In 1996, Bruce Nordwall researched this topic and found a 

lower output from the current satellites and problems during solar cycle peaks.  At the 

time, manufacturers were making GPS receivers to receive the current strength, but the 

satellites were specified for a lower level.  Therefore, manufacturing differences could 

lead to a power difference of a few decibels.  (Nordwall)  

The equatorial electrojet causes some of the problems observed at the equator.  

Since the magnetic field at the earth’s equator is horizontal, the flow around the equator 

is altered based upon time of day.  During the day, energy flows eastward, and at night it 

flows westward.  (Tascione) 

 In the F region of the ionosphere, plasma convection occurs to further support the 

irregularities encountered in this project.  Plasma flows up and westward during the day, 

and down and eastward at night.  In the daytime, the plasma is brought up to higher 

latitudes where more plasma can be reproduced.  This phenomenon is due to slow 

recombination at these latitudes.  An increase in the plasma production makes ionization 
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peaks around the equator, known as the equatorial anomaly, or the fountain effect.  

(Tascione) 

 For a large portion of the areas analyzed, their results can be attributed to the 

South Atlantic Anomaly and the Southeast Asian Anomaly.  The South Atlantic Anomaly 

is due to the earth’s tilted geomagnetic field.  This field does not line up with the 

geographic equator, so the radiation belts are close to the South Atlantic area of the 

world.  Trapped particles in these belts go to lower altitudes, where they interact with 

neutral, and cause further F region irregularities.  The Southeast Asian Anomaly is 

responsible for the D region absorption in this area due to higher energy particles being 

present. (Tascione) 

 Many different factors contribute to the scintillation fluctuation, but the main 

cause is spread F.  A nighttime equatorial occurrence, this F region anomaly can last 

anywhere from a few minutes to several hours.  It is caused by turbulence that alters 

electron density in the ionosphere.  The F region becomes fatter than normal, and can 

distort radio waves.  Some researchers believe spread F to be caused by buoyancy factors.  

This is due to low ion dense areas moving up to create waves.   

  “When the waves move upward, steep density gradients  

  along the edges can become the source of smaller scale  

  irregularities which produce intense distortion of gigahertz  

  frequency radio waves.“ (Tascione) (see figure 2 below)  
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Figure 2

       Figure 2. Ionospheric plasma flow   

 The ionosphere can do one of four things to a radio wave.  First, it can attenuate 

the signal, or amplify it.  This is done by taking energy from the wave using charged 

particles.  Secondly, the ionosphere can limit, or decrease the signal’s range.  Limiting is 

accomplished by absorbing the wave’s energy.  Third, the ionosphere can change the 

direction of the wave by altering the electromagnetic density.  Lastly, the region can 

reflect the radio wave away from its’ intended target.  While each of these cause 

problems for Global Positioning System users, the one that limits the downrange distance 

is the most severe problem at the equatorial anomaly. 

 Scintillation Trends 

 Normally, ionospheric variations are not a problem at GPS frequencies and in mid 

latitudes, but there is a problem during solar maximum.  “Scintillation effects are greatest 

in the several years at the peak levels of the eleven year solar activity (sunspot) cycle. 
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(Bishop 1, 1994).  "It seems likely that the ionosphere will have some important impacts 

on GPS at solar maximum, both link outages due to scintillation, and navigation errors 

due to large-scale structures." (Nordwall, 1996).  Many experts use this critical 

information to focus their research only on the solar maximum periods. 

 “The severity of scintillation varies with frequency, location, time of day, season 

and sunspot cycle.” (Bishop 1, 1996). However, certain aspects are known about the 

scintillation effects at the earth’s equator.  The effects decrease as frequency increases, 

and the equator at solar maximum causes these problems to arise more often.  

 Scintillation itself is actually estimated in terms of power spectral density of 

phase.  The frequency of the wave, a strength parameter, and a unitless slope variable are 

all entered into an equation to determine S4 index.  S4 is calculated using Equation 2 

below, where I is the signal intensity. (Fu) 

 

 S4 = √ ((< I 2> - <  I > 2  ) / < I > 2 )                                              (Equation 2) 

 

Since scintillation is a function of solar cycle, time of day, time of year, and location, it is 

not possible to plot all these factors on one plot.  S4 was developed to create a wider 

understanding of the amplitude fading in a certain area.  A value of zero for S4 means no 

scintillation, and a value of one means severe scintillation.  (Parkinson) 

 Scintillation can cause severe fades in a radio signal or phase gradients that 

decrease a user's chance of "locking" onto a signal.  The GPS satellite signals can also 

have data loss, which may cause a decrease in signal performance or tracking 

capabilities.  When the earth is experiencing solar maximum, significant disturbances can 
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occur to the GPS system.  At solar maximum, the ionosphere has lower or higher regions 

of electron densities, so this greatly affects the GPS, especially near the equatorial 

anomaly.  The equatorial anomaly region, which consists of two belts, several degrees 

wide, and fifteen degrees north and south of the equator, is the region of the worst 

scintillation in the world.  This unique region of the world experiences fading up to 

twenty decibels during the hours of 2000 to 2400 local time.  (Groves) 

 Scintillations primarily occur during the few hours before midnight, and can last 

until after midnight during geomagnetic storms, or when the Kp index is higher than one.  

Kp is a three hour geomagnetic planetary index that is based upon the K index that has 12 

stations around the world.  Among their research conducted on equatorial GPS data, the 

scintillation peaks were found to vary up to twenty decibels, and the signal level often 

faded three decibels or more.  The lab also found that changes experienced on days 

without noticeable scintillation, or quiet day oscillations, are due to multipath errors.  

(Knight) 

 Multipath effects are another type of interference common with GPS.  "They 

occur when satellite signals reflected from surfaces near the receiving antenna interfere 

with the direct satellite signal." (Nordwall, 1996).  While multipath effects are always in 

the atmosphere, they cause the most havoc for the high precision DGPS, and also make 

up the largest source of error. (Nordwall) 

 Ionospheric fading, or scintillation, is determined by ionospheric domain and the 

system application used.  When dealing with the ionosphere, researchers must consider 

the elevation angle of the satellite path.  At lower elevation angles, ionospheric path 

lengths are longer, and the magnitude effect is also greater.  As the atmosphere becomes 
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more disturbed, the fading of the radio signal increases.  Phase rate errors can cause 

apparent changes in the frequency of more than one Hertz per second.  This kind of shift 

makes the error outside of the tracking ability of most receivers.   (Bishop 2) 

 As already stated, scintillation is dependent on geographical location.  Severe 

cases are also seen in the polar and auroral regions of the world, but not with the strong 

fading experienced in the equatorial region.  However, polar scintillation can extend to 

1000 kilometers in diameter, which can affect more than one satellite at the same time.  

The major scintillation regions of the earth can be seen in Figure 3 below.  This research 

is interested in the equatorial region only.  (Bishop 2)  

Figure 3 

 
 

 Figure 3. Regions of the Ionosphere 
  

 For GPS, ionosphereic scintillation can cause many problems.  A reference station 

and navigation receiver could observe the same satellite with very different ionosphereic 

errors, and the location would be perceived to be higher or lower in altitude than it is in 
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reality.  This is because vertical direction positioning can be influenced by one satellite’s 

signal.  (Parkinson) 

 Higher frequency signals are more likely to have a GPS outage due to ionospheric 

scintillation.  Therefore, during strong scintillation, a dual frequency GPS user would 

first lose his ionospheric correction.  This would cause a decrease in range accuracy, 

without the user even knowing it has occurred.  (Bishop 1)  

 The dilution-of-precision, or DOP, uses pseudorange and positioning accuracy to 

determine the capability for GPS satellites.  DOP is not the only means of determining 

positioning accuracy, but it is the most widely used.  Position accuracy is similar to 

ranging accuracy by the direction of the satellite signal's arrival.  To find a specific 

accuracy for positioning, the ranging accuracy and ranging geometry must be found.  The 

unit vectors to each of the satellites are used to calculate the DOP, and if the value is 

greater than six, the satellite geometry is determined to be poor.  (Parkinson) 

 While many other researchers have written on this topic, few have performed a 

climatological study of this sort.  Bishop, Basu, Knight, Groves and other have 

established good overall trends for the region.  Different researchers have agreed upon 

similar thresholds for the seasons, time of day, and solar cycle at the equatorial anomaly.  

The months of October to March have the greatest amount of scintillation in the 

equatorial anomaly region.  Between the hours of 2000 and 0000 local time, the 

scintillation numbers are the greatest in this are.  When the year is a solar maximum year, 

the S4 scintillation numbers are higher than solar minimum years.   
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Research Data 

 Currently, the Air Force Research Laboratory takes fifteen intervals of data for 

their scintillation network decision aid (SCINDA), which makes three dimensional tri- 

color maps of the world.  Such maps are used by scientists to better understand how 

scintillation structures develop, and also by operators to find practical ways to maintain 

good communication.  All of the AFRL's SCINDA data is used to create predictions for 

scintillation regions of interest.  SCINDA data is available from eleven locations 

worldwide which includes scintillation data (or S4) and ion drift velocities from available 

satellite links.  (www.vs.afrl.af.mil)   

 The locations selected for use in this project were done so due to their 

geographical locations.  All of the receiver stations are in the equatorial anomaly band 

that is 15 degrees north and south of the equator.   

Scintillation Classification System 

 In 1994, Hajkowski conducted a study of scintillation at sunspot maximums, and 

developed a classification system for all regions of the globe.  The three different types 

found are N, P, and S types.  The N type is defined to occur north of the equatorial 

boundary.  The P type occurs at the equator and is due to the electrical density 

irregularity patches that bend the signal in the ionosphere.  Each patch is made of rod 

shaped field aligned irregularities (FAIs), that are associated with F2 layer disruptions.  

This type of scintillation occurs most often during the nighttime or during the maximum 

in spread F occurrence at solar minimum.  S type scintillation occurs at the equatorial 

edge of the auroral scintillation belt.  This type causes the worst of the scintillation at the 

mid-latitude stations.  S type scintillation is correlated to a peak in the 10.7 cm solar radio 
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flux that occurs at solar maximum.  During the summer daytime S type is found to occur 

due to sporadic E.  Sporadic E is a regular daytime occurrence in the equatorial regions fo 

the world that peak in early springtime and summer.  (Hajkowski)    

Summary 

 In summary, scintillation wreaks havoc at the equatorial anomaly based upon 

season, time of day, frequency, and solar cycle.  The months with the most scintillation in 

the southern hemisphere are September to March. (Bishop) The most scintillation is also 

found between the hours of 2000 to 0300 local time, or from sunset until before sunrise.  

For frequency, as it increases, the scintillation increases.  Lastly, scintillation is the 

greatest during the peak of a solar cycle, or when the sunspot number is greater than 

sixty.   

 By understanding the basics of GPS, and the problems that the earth’s ionosphere 

poses to satellite signals, we can pursue our climatological study of the data.  While most 

of this research has not been done before, many thresholds will be referenced for 

comparison.  The GPS and the earth’s ionosphere require a correction system for the 

equatorial anomaly region, so one must be developed for the part of the sky covered by 

the scintillation problems.   
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III.  Methodology 

Overview 

 The methodology for this thesis will include FORTRAN, Access, and Matlab 

programs that will provide a climatological study of the ionosphere’s effect on the global 

positioning system’s data collected at locations around the earth’s equator.  For each 

satellite, the data was recorded using Universal Time (UT) with corrected S4 in the range 

of zero to one.  Scintillation found to be larger than one was attributed to multipath 

propagation, and was ignored for this project.  

FORTRAN Program 

 First the data was put into a FORTRAN program that separated the data into 

seven distinct columns.  The areas of interest were the year, date, time, S4 scintillation 

number, satellite latitude, satellite altitude, and satellite longitude.  If the S4 scintillation 

number is equal to 9.999, the data is an error value and the FORTRAN program deletes 

this value.  Our research was not concerned with the satellite's altitude since all of these 

numbers were between 4.1 and 4.2 kilometers.  These small differences were enough to 

ignore the altitude factor for our equations.  Instead, we focused on three main areas of 

interest.  First, we took the day of the year to create maps of the worst scintillation 

months of each year.  Second, we used the time of day, to create maps of the worst 

scintillation times of day.  Third, we used sunspot number tables to determine if solar 

cycle had any effect on the S4 data collected around the world.   

Monthly Data Compilation 

 To determine the worst scintillation months of the year, a specific Matlab 

program had to be generated.  The files were separated into years, and then into months.   
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The data was not originally sorted by month, so I determined the days of each year from 

1997 until 2004, and put each file into its appropriate month folder. (see Table 1 below) 

     Table 1. Days of the Year 
  

Days of the Year 
  

Month Non Leap Leap 
 (97,98,99,01,02,03) (00,04) 

 
 Jan 1 to 31 1 to 31 

Feb 32 to 59 32 to 60 
 Mar 60 to 90 61 to 91 

Apr 91 to 120 92 to 121 
 May 121 to 151 122 to 152 

Jun 152 to 181 153 to 182  
Jul 182 to 212 183 to 213 
Aug 213 to 243 214 to 244  
Sept 244 to 273 245 to 274 
Oct 274 to 304 275 to 305  
Nov 305 to 334 306 to 335 

 Dec 335 to 365 336 to 366 

 

Since I did not know how to create a script to automate file loading, I needed a way to 

load the data.  I could either individually load each file for each month, which was 

sometimes more than fifty files, or I could assemble one large file for each month of each 

year.  I choose the later, and began making large text files for each month of each year.  

This task alone was a great deal of work, since each month had at least twenty files, and 

there were eight years worth of data.  After compiling a file for each month of each year, 

I was able to load one file at a time and use a specific Matlab program to create 

‘meshgrid’ plots of the S4 data based the month of the year.   
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 Previous research did not focus on each month individually, but rather on seasons 

of the year.  I then divided each year into four seasons that fell January to March, April to 

June, July to September, and October until December.  This data will henceforth be 

referred to as seasonal data in the next two chapters.  

Yearly Data Compilation 

 The data from the eleven different equatorial locations were already divided into 

years, so I found the average and standard deviation for each year.  The results of these 

calculations can be found in Table 10 in Chapter 4.  

Hourly Data Compilation 

 Next I tackled the time of day issue for the data.  I created a Matlab program that 

sorted the data according to time of day.  The time in the data is all recorded in seconds in 

Zulu time, or Greenwich Mean Time.  These times were adjusted for local time. 

For our purposes, I ignored the elevation angle for the data analysis.  While the 

elevation and azimuth angles do affect how much of the ionosphere the radio signal must 

traverse, it was beyond the scope of this research endeavor.   

I then proceeded to import the data into Access.  Access is a database program 

that is part of the Microsoft Office package.  Each month’s data was imported and the S4 

column was sorted into useful and non-useful data.  All of the useful S4 data had to be 

between zero and one, and not be an error value of 9.999 or 9.990.  By using Access to 

run a query of all S4 data lines less than one, I was able to circumvent Matlab code and 

find the data I needed to later import into Matlab.  Once each month’s usable data was 

assembled, the lines of data with 9.990 or 9.999 were deleted.  This final product was 

then imported to Matlab to create a multicolor 2D plot of the the S4 data based upon 
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latitude and longitude.  Each location has one plot for each month, one plot for each hour 

of the day, and one plot for each year’s solar minimum and maximum.  All of the eleven 

locations are referred to in the data by a 2-letter abbreviation. These abbreviations were 

provided by the AFRL researchers who collected the data. (see Table 2 below) 

 
 

 

 

 

 

 

 

Statistics 

After all S4 values greater than one and errors have been removed, statistical 

values can be determined.  Values greater than one were found, and since S4 is a zero to 

one index, any number greater than one is assumed to be an error value.  First, Matlab 

was used to find the arithmetic mean of each month for each location for each year. The 

mean is a statistical value equal to ( xi)/N., or the sum of all the values divided by the 

number of values.  Second, Matlab was also used to calculate the standard deviation from 

those means for each month for each location for each year.  Standard deviation is a 

commonly used measure of variation that tells how far from the mean your values are 

located.  Standard deviation is found by the following formula:  

= [ (xi-µ)2/N]1/2                                            (Equation 3) 

Site Name Abbreviation
Ancon GB 

Antofagasta GA 
Asccension GE 

Bahrain GG 
Darwin GF 
Diego GH 
Fang GX 
Guam GC 

Parepare GW 
Pontianak GY 
Vanimo GZ 

Table 2. Site Name Abbreviations
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The same process was repeated for each time period for each location for each year, and 

for each solar minimum and maximum for each year.                                                                

 To further explain average and standard deviation, here is a sample calculation.  

Suppose one wants to find the average and standard deviation of the following four 

numbers: 1.25, 2.00, 1.42, and. 2.25.   

 Average =  (1.25 + 2.00 + 1.42 + 2.25) / 4 

    = 1.73 

Solar Cycle  

 For the solar cycle part of the project, I found an internet table at 

ftp://ftp.ngdc.noaa.gov/ that was referenced for each month’s sunspot number.  The 

number of sunspots can be used as a proxy for the level of solar activity and position in 

the solar cycle.  The average sunspot numbers for each season of each year was 

calculated and recorded in Table 12 in Chapter 4.  These calculated numbers will be 

discussed in future chapters for their relevance to the seasonal and yearly data analyzed.   

Access Program                                                                                                                       

 Access was used to delete erroneous data and import the large amounts of data 

into Matlab.  (See Appendix A) Once corrected, the entire location’s year of data is 

imported into a large database.  These were renamed with monikers such as “Ancon98”, 

depending on the location and year.  Each database was then run through a query to 

eliminate S4, or Field 4, data that was greater than one.  This was done because valid S4 
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values are only between the values of zero and one.  Any values greater than one are 

assumed to be errors in the data.  A second query was then run to separate the remaining 

good data into months of the year.                                                                                         

 A third query was conducted for each hour at each location for each year.  For 

example, a new file would be named “Ancon9800” to signify it contained all of hour 

zero’s data from Ancon for year 1998.  Since the time listed in the data is Universal Time 

(UT), and recorded in seconds, it was necessary to determine the hours of the day in 

seconds.  (see Table 3 below) 

Table 3. Hourly Time Table 

Universal Time Table 
Hour Start Second End Second 

0 0 3600 
1 3600 7200 

 2 7200 10800 
3 10800 14400 
4 14400 18000 

 5 18000 21600 
6 21600 25200 
7 25200 28800 
8 28800 32400  
9 32400 36000 
10 36000 39600 
11 39600 43200  12 43200 46800 
13 46800 50400 
14 50400 54000 

 15 54000 57600 
16 57600 61200 
17 61200 64800 

  18 64800 68400 
19 68400 72000 
20 72000 75600 
21 75600 79200  
22 79200 82800 
23 82800 86400 
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By using Table 4 above, I could find a trend in the data based upon the time of day.  

Since the time was recorded in UT, each location is a deviation from Greenwich Mean 

Time, or Universal Time.  This will allow us to compare the different locations and still 

refer to the same hour in all locations.  (see Table 4 below) 

            Table 4. Location Hourly Deviations 

Location Deviation from GMT 
(hours)  

Ancon -5 
 Antofagasta -4 

Asccension 0 
Bahrain 3  
Cuiaba -4 
Darwin 9.5 
Diego 6  Fang 7 
Guam 10 
Manila 8 

 Marakparak 0 
Parepare 8 
Pontianak 7 

  Singapore 8 
Vanimo 10 

MatlabPlots                                                                                                                          

 After trying to make a geomap with Grid Analysis and Display System, or 

GrADS, a new Matlab program was created and used to find differences between a solar 

minimum day and a solar maximum day.  First, Access was used to find the day in 1998, 

our solar minimum year, that had the least activity and had the lowest S4 values.  The 

same process was done for 2001, which is our solar maximum year.  The solar minimum 

day was day 41 for year 1998 as recorded at Ancon, Peru.  The solar maximum day was 

day 218 for year 2001 as recorded at Ancon, Peru.  Each of these days was separated into 

each hour’s data.  For example, hour 01 had three text files made: hr01lat.txt (latitude), 
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hr01lon.txt (longitude), and hr01s4.txt (S4 data).  These were loaded into a Matlab 

program that plotted the points onto a map of the world.                                                                             

Summary                                                                                                                        

 After receiving the scintillation data, a FORTRAN program used to put the year, 

day, time, S4, satellite latitude, and satellite longitude into one large matrix.  Then this 

matrix was imported by year into Access database program.  Queries were run to sort 

each location’s data into months and hours of the day.  The resulting files were then 

loaded into Matlab and each year and each season’s average and standard deviation was 

found.  Due to lack of time, only Antafagasta’s diurnal, or hourly, data is presented in the 

next chapter.  Finally, all of the season’s data was put into a second Matlab program, and 

then a Matlab program geomapped the data on a map of the world.  
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                                                                IV. Results 

 After completing all of the procedures necessary for this project, each location’s 

results were compiled.  Each of the season’s data will be presented here, and their 

relevance will be discussed in the following section.                                                       

General Location Information 

 All eleven of the Global Positioning System receiver stations are located near the 

equator, but their exact location determined the severity of scintillation.  Three locations 

are in the Northern Hemisphere, four are in the Southern Hemisphere, and the remaining 

four are at the equatorial region of the earth.  Each location’s exact location on the globe 

can be seen in the table below. (See Table 5 below) 

Table 5. Latitude and Longitude of GPS Receiver Locations 
Location Latitude Longitude

Ancon 11 S 77 W 
Antofagasta 23 S 70W 
Asccension 7 S 14 W 

Bahrain 27 N 81 E 
Cuiaba 15 S 56 W 
Darwin 12 S 130 E 
Diego 34 S 59 W 
Fang 19 N 99 E 
Guam 13 N 144 E 
Manila 14 N 121 E 

Marakparak 5 S 120 E 
Parepare 4 S 119 E 
Pontianak 0 S 109 E 
Singapore 1 N 103 E 

Vanimo 2 S 141 E 

Bahrain, Fang, and Guam are three of the eleven locations that are in the Northern 

Hemisphere.  Antofagasta, Ancon, Ascension Island, and Diego Garcia Island are four of 
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the eleven locations that are located in the Southern Hemisphere.  Darwin Island, 

Pontianak, Marak Parak, and Vanimo are the four of the eleven locations that are in the 

equatorial region of the world.                                                                                            

Seasonal Results                                                                                                       

January to March           

 

                                            

 

    

  

                                                                                                      

April to June 

 

  

 

 

 

 Jan-Mar  
Location Average St. Dev. 

0.0875 0.0071 Antofagasta 
0.081 0.01285 Guam 
0.0745 0.01169 Asc. Island 
0.0877 0.00273 Ancon 
0.087 0.01236 Bahrain 
0.0572 0.0172 Darwin 
0.1164 0.00978 Diego 
0.1263 0.1422 Fang 
0.0914 0.0802 Marak Parak 
0.069 0.0718 Pontianak 
0.1479 0.0811 Vanimo 

Overall: Average = 0.0933 
Standard Deviation=0.0408 

Table 7. April-June Results 

 Apr-Jun  
Location Average St. Dev. 

0.053 0.01 Antofagasta 
0.112 0.00953 Guam 

0.0721 0.00217 Asc. Island 
0.0734 0.00377 Ancon 
0.0947 0.0055 Bahrain 
0.054 0.0153 Darwin 

0.1135 0.01269 Diego 
0.1113 0.1287 Fang 
0.1167 0.0927 Marak Parak 
0.0758 0.0872 Pontianak 
0.1412 0.1169 Vanimo 

Overall: Average = 0.0925 
Standard Deviation=0.044 
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July to September 

Table 8. July-Sept Results 

 Jul-Sep  
Location Average St. Dev. 

0.0512 0.0108 Antofagasta 
0.121 0.01239 Guam 
0.0793 0.02058 Asc. Island 
0.0693 0.00538 Ancon 
0.0826 0.00476 Bahrain 

0.06 0.00981 Darwin 
0.1032 0.00585 Diego 

0.12 0.1959 Fang 
0.1292 0.06428 Marak Parak 
0.0791 0.0884 Pontianak 
0.1606 0.1256 Vanimo 

Overall: Average = 0.0923  
Standard Deviation=0.049 

October to December 

Table 9. October-December Results 
  Oct-Dec 

Location Average St. Dev. 
0.0803 0.0032 Antofagasta 
0.0965 0.01115 Guam 
0.1174 0.00128 Asc. Island 
0.078 0.0024 Ancon 
0.081 0.00639 Bahrain 
0.075 0.00934 Darwin 
0.112 0.00852 Diego 

0.1125 0.1372 Fang 
0.1336 0.1047 Marak Parak 
0.0726 0.0758 Pontianak 
0.1579 0.0988 Vanimo 

Overall: Average = 0.1015  
Standard Deviation=0.0423 
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Each location had a different S4 average scintillation maximum, but all but four of the 

eleven locations had their maximum between October and March.  Antofagasta, Ancon, 

Diego, and Fang, had an average S4 scintillation peak in the months between Januaary 

and March.  Only Bahrain had an average S4 scintillation peak during the months of 

April, May and June.  Guam, Pontianiak, and Vanimo saw an average S4 scintillation 

peak in July, August and September.  Ascension Island, Darwin, and Marak Parak all had 

their highest average S4 number between October and December.  Between the months 

October and March, there is an increased S4 scintillation present.  October to December 

has the largest amount of average S4 scintillation with 0.1015 and a standard deviation of 

0.423.                                                                                                                                        

 First, each season was analyzed for its scintillation trends.  The largest values of 

scintillation occurred during the months of October until March.  The values ranged from 

0.1015 during these peak months. During the rest of the year, the values were between 

0.0423.  While this trend is consistent with the findings of Bishop, Groves, and other 

researchers, I was surprised to find such low values.  S4 scintillation is a zero to one 

range value, but with the current data a low value makes sense.  All of the data was 

recorded between the hours of 2200 and 0700 Greenwich Mean Time.  This means a 

large amount of spread F is present for half of the time, and not for the other half that is 

after 0000 GMT.  Averaging such data will only give the user a basic idea of seasonal 

trends, and not the presence of spread F.                                                                 
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Yearly Results                                                                                                                            

 Each year’s data was averaged and compiled into the following table.  The 

average and standard deviation was found, and then they were put into a graph to show 

yearly trends for scintillation S4 number.  (see Table 10 and Figure 4 below)  

 Table 10. Yearly Trends 

Year Average St. Dev. 
 1998 0.0287 0.03 

1999 0.0583 0.0729 
2000 0.0815 0.0866 
2001 0.0863 0.0700  
2002 0.0728 0.073 
2003 0.0577 0.0919 
2004 0.0466 0.0695 
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Figure 4.Yearly Trends 
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Hourly Results                                                                                                                         

 Each location only had hourly data for hours zero thru seven GMT in the 

morning, and hours 2200 GMT and 2300 GMT at night, so only these hours could be 

analyzed.  Due to time constraints, only Antofagasta’s hourly data was compiled and 

averaged.  (see Table 11 and Figure 5 below) 

Table 11. Hourly Average 
 Hour 

(GMT) Average

0 0.00597 
   1 0.0885 

2 0.0953 
3 0.0923 
4 0.0801  
5 0.0629 
6 0.0524 
7 0.048   22 0.0469 
23 0.0466 

Hourly Scintillation Trends
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Figure 5. Hourly Scintillation Trends 
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Sunspot Yearly Averages                                                                                                     

 The sunspot numbers for each year were found recorded in the table below.  

(www.noaa.com) (see Table 12 below)    

               Table 12. Sunspot Numbers  
Year Annual
1997 21.5 

 1998 64.3 
1999 93.3 
2000 119.6 

 2001 110.9 
2002 104.1 
2003 63.6 
2004 40.5  

Average 77.2 

Matlab Plots             

 Ancon, Year 2001, Day 41 (Solar Maximum, Active Day) 

 Hour 2200 GMT (5pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

   Figure 6. Ancon 2001 Day 41 Hr 2200 
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 Hour 2300 GMT (6pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 7. Ancon 2001 Day 41 Hr 2300 
 

 Hour 0000 GMT (7pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 8. Ancon 2001 Day 41 Hr 0000 GMT  
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 Hour 0100 GMT (8pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 9. Ancon 2001 Day 41 Hr 0100 GMT 
 

 Hour 0200 GMT (9pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 10. Ancon 2001 Day 41 Hr 0200 GMT  
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 Hour 0300 GMT (10pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 11. Ancon 2001 Day 41 Hr 0300 GMT  

 Hour 0400 GMT (11pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 12. Ancon 2001 Day 41 Hr 0400 GMT  
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 Hour 0500 GMT (12am Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 13. Ancon 2001 Day 41 Hr 0500 GMT 
 

 Hour 0600 GMT (1am Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 14. Ancon 2001 Day 41 Hr 0600 GMT  
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 Hour 0700 GMT (2am Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 15. Ancon 2001 Day 41 Hr 0700 GMT 
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Ancon, Year 1998, Day 218 (Solar Minimum, Non-active Day) 

Hour 0000 GMT (7pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 16. Ancon 1998 Day 218 Hr 0000 GMT  

 

 Hour 0100 GMT (8pm Local Time) 

↑ 0S4

↓0.1S4

←0.075S4

←0.025S4

←0.05S4

Figure 17. Ancon 1998 Day 218 Hr 0100 GMT 
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 Hour 0200 GMT (9pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 18. Ancon 1998 Day 218 Hr 0200 GMT  

  

 

 Hour 0300 GMT (10pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 19. Ancon 1998 Day 218 Hr 0300 GMT 
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 Hour 0400 GMT (11pm Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 20. Ancon 1998 Day 218 Hr 0400 GMT  

  

 

 Hour 0500 GMT (12am Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 21. Ancon 1998 Day 218 Hr 0500 GMT 
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 Hour 0600 GMT (1am Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 22. Ancon 1998 Day 218 Hr 0600 GMT  

  

 

 Hour 0700 GMT (2am Local Time) 

↑ 0S4

↓0.5S4

←0.375S4

←0.125S4

←0.25S4

Figure 23. Ancon 1998 Day 218 Hr 0700 GMT 
 

 40



  

Summary          

 In summary, by running all the necessary computer programs, I have found trends 

based upon season, year, and hour.   Seven of the eleven sites had their highest 

scintillation between the months of October and March, with October, November, and 

December having the highest average S4 numbers.  By calculating the averages of the 

years, 1998 is shown to have a lower average scintillation than 2001.  The yearly 

averages are also seen to follow the sunspot number cycle.  By plotting the hourly data, it 

can be seen that between 2100 and 2300 local time (0100 and 0300 GMT), Antofagasta 

has the greatest average scintillation.  It should also be noted here again that the data only 

recorded between the hours of 2200 and 0700 GMT.  Not all locations had all these hours 

recorded, as can be seen in the Matlab plots.  With the Matlab plots, it is clear that the 

non-active day in 1998 has less S4 scintillation present as compared to the active day in 

2001.   
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V.Conclusions 

 

After months of research, many new conclusions have formed.  First, the seasonal 

trends agree with previous researchers that October to March is the time of most severe 

scintillation.  Second, as the solar cycle reaches a maximum, the yearly S4 scintillation 

average also reaches a maximum.  Third, the average scintillation at the equator peaks a 

few hours after midnight local time, and then proceeds to decrease in the morning hours 

following.  Fourth, Matlab maps can be used predict the regions are seasons of most 

scintillation.  More research in the area of maps will become useful to researchers and 

GPS users alike. 

  The seasonal peak in S4 scintillation can be attributed to the spread F anomaly 

and the equatorial electrojet.  Spread F is caused by turbulence in the ionosphere, which 

in turn causes creates more plasma bubbles.  An increase in ionospheric plasma bubbles 

means a more disturbed path for a radio signal, or increased scintillation.  Spread F peaks 

at midnight and then rapidly falls in the following hours.   

 All but four of the eleven sites had their maximum S4 average during the months 

of October to March.  The yearly averages saw an increase as the years reached solar 

maximum in 2001.  The lowest S4 average was during solar minimum in 1998, and only 

increased as the years reached 2001.  Then the average scintillation began to decrease 

until the data ended in 2004.  The hourly trends saw a peak between the hours of 2100 

and 2300 local time, which agrees with previous findings.  As stated before, the most S4 

scintillation is usually found between the hours after sunset and midnight local time.  The 
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Matlab plots were created after a failed attempt at creating a feasible set of GrADS maps.  

While these do show the path of the satellite better than the GrADS, the exact location of 

the S4 scintillation is still unknown.  The scintillation is recorded by the satellite 

according the satellite’s position at that time.  This tells us where the satellite is, and not 

where the actual scintillation may be present. These maps do show us that by comparing 

a solar minimum, non-active day to a solar maximum, active day, we can see a 

difference.  The solar minimum day had less S4 scintillation present over the entire day 

than the solar maximum day.  These maps also demonstrate the hourly peak first noted in 

the Antofagasta data.  Both years saw a peak in scintillation between sunset and 

midnight, which agrees with previous findings. 

Seasonal Trends 

As the solar sunspot number increased from a solar minimum year in 1998 to a 

solar maximum year of 2001, the yearly S4 number increased.  In 1998, the average 

scintillation S4 number was 0.0287 with a standard deviation of 0.03.  In 2001, the 

average S4 number was 0.0863 with a standard deviation of 0.07.  

 Based upon the location of the receiver locations, many researchers have found 

similarities in the scintillation values.  The seasonal trends for the Northern Hemisphere 

are shown in Table 13 and Figure 24.  In this hemisphere, Bahrain and Guam have a 

similar basic trend, they do not match the trend found in Fang.    
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 Table 13. Northern Hemisphere Averages 

 
Northern Hemisphere 

 
Location Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

0.0861 0.0934 0.0838 0.08094 Bahrain  
0.1263 0.1113 0.12 0.11252 Fang 
0.0917 0.118 0.1244 0.09969 Guam  

Nothern Hemisphere Seasonal Trends
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Figure 24. Northern Hemisphere Seasonal Trends 

 

The seasonal trends for the equatorial region are displayed in Table 14 and  11.  

There is a general trend present that July, August and September has the highest average 

scintillation.  This occurrence can be related to the higher average sunspot number during 

this time of the year, and the presence of the equatorial electrojet at these locations.  

Severe scintillation is present when the year in question is a solar maximum year in the 

eleven year solar cycle.  Located at the equator, these locations are the most susceptible 

to scintillation effects.  
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 Table 14. Equatorial Regions Averages 

 Equatorial Areas 
 

Location Jan-Mar Apr-Jun Jul-Sep Oct-Dec 
0.0629 0.0574 0.0611 0.07405 Darwin  
0.069 0.0758 0.0791 0.07266 Pontinak 

0.1479 0.1412 0.1606 0.15785 Vanimo  0.0914 0.1167 0.1292 0.13364 Marak Parak 

 

Equatorial Seasonal Trends
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Figure 25. Equatorial Seasonal Trends 

 

The southern hemisphere locations had a more definite trend than the northern or 

equatorial regions.  Their seasonal trend results can be seen in Table 15 and Figure 26.   

These figures show that during the months of January thru March, and between October 

and December, the average scintillation is at its highest.  The highest average is found in 

October, November and December when the earth is in its closest orbit to the sun.  At this 
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time of the year, the planet is 5 million kilometers closer to the sun, allowing the earth to 

be more susceptible to a larger range of solar radiation.  (see Figure 25 below)  When 

solar radiation enters the ionosphere, more plasma bubbles are created and scintillation 

becomes more severe.  The southern hemisphere is the only region that researchers focus 

on due to the wealth of receiver stations and data available.  Our results support their 

findings that the worst scintillation is between the months of October and March.   

        
Table 15. Southern Hemisphere Averages 

Southern Hemisphere 

Location Jan-Mar Apr-Jun Jul-Sep Oct-Dec 
0.0896 0.0586 0.0591 0.08594 Antofagasta 
0.0877 0.0734 0.0693 0.07804 Ancon 
0.0804 0.0614 0.0604 0.08478 Ascension 
0.1183 0.1159 0.1058 0.10913 Diego 

Southern Hemisphere Seasonal Trends 
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Figure 26. Southern Hemisphere Seasonal Trends 
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(from http://www.physicalgeography.net/fundamentals/6h.html) 

 

For each season, or three-month interval, their average S4 scintillation and 

standard deviation numbers were calculated and presented in Chapter 4.                               

 When the sun has a large number of sunspots present, the sun emits a larger 

amount of solar radiation towards the earth.  At this solar maximum, the more solar 

radiation causes more plasma bubbles to form in the ionosphere.  These bubbles are 

Location Jan-Mar Apr-Jun Jul-Sep Oct-Dec 
Table 16. Seasonal Trends Overview

Ancon 0.09 0.07 0.07 0.08 
Antofagasta 0.09 0.06 0.06 0.09 
Ascension 0.08 0.06 0.06 0.08 

Bahrain 0.09 0.09 0.08 0.08 
Darwin 0.06 0.06 0.06 0.07 
Diego 0.12 0.12 0.11 0.11 
Fang 0.13 0.11 0.12 0.12 
Guam 0.09 0.12 0.12 0.10 

Marak Parak 0.09 0.12 0.13 0.13 
Pontinak 0.07 0.08 0.08 0.07 
Vanimo 0.15 0.14 0.16 0.16 

Figure 25. Earth’s distance from the Sun 

Figure 27. Earth Orbit 
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formed by ionospheric plasma convection triggered by range spread F.  When more 

bubbles are present, more irregularities are present, so the radio signals can become 

distorted.  The intensity of solar radiation is directly proportional to the inverse of the 

squared distance of the earth to the sun.  Therefore, every one percent decrease in 

distance from the earth to the sun equals a two percent decrease in solar radiation that 

reaches the earth.   

Yearly Trends 

 Each year’s average was found and those results can be seen in Table 10 in 

Chapter 4.  Year 2001 and 1998 were found to be the highest and lowest averages, 

respectively.  In 2001, a solar maximum year, the average sunspot number was 109, 

while in 1998, the number was 40.  Thus, the yearly trends found that a high average 

sunspot number correlates to a high average scintillation number for the year in question.  

While previous researchers have concluded that scintillation is related to the solar cycle, 

and therefore the sunspot number, few have related it to any yearly trends.  It seems quite 

obvious though, since 2001 was a solar maximum year that the year’s average 

scintillation numbers would be just as high.   

The solar minimum years saw lower scintillation values at the equatorial anomaly 

region than solar maximum years.  This data is consistent with previous research that S4 

scintillation increases as solar sunspot numbers increase.  A solar maximum year has 

significantly more sunspots than a solar minimum year.  Once every eleven years, one 

year is considered to be a solar maximum year.   
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Hourly Trends 

 As mentioned before, I was unable to complete all of the hourly data for each 

location.  However, I will comment on Antofagasta’s hourly results found in Table 11 in 

Chapter 4.  At hour 0200 Greenwich Mean Time, the average scintillation is at its 

highest, and then slowly decreases until hour 0700 Greenwich Mean Time.  Each 

location’s data contained a gap from hour 0800 Greenwich Mean Time until hour 2100 

Greenwich Mean Time, so no data analysis is available for this time period.  

 The diurnal occurrence that causes the greatest scintillation after sunset is due to 

range spread F.  Range spread F is most prominent at equatorial regions between the 

hours of 2100 and 0200 local time.  Basically, radio waves hit the disturbed, or 

scintillated, ionosphere, and the wave is returned at different altitudes.  This return affects 

the range of the radio wave’s signal, or how far the signal can travel.  Range spread F is 

different from frequency spread F, which uses density gradients to bend the radio waves.  

This bending causes the frequency to change, or make multiple frequencies. (Tascione) 

 Researchers have shown that the most intense scintillation is after sunset until 

midnight local time. (Bishop)  To determine what each hour is in local time, I referred to 

Table 5 in Chapter 4, and found Antafagasa is 4 hours off Greenwich Mean Time.  This 

means that 0200 Greenwich Mean Time is really 2200 local time, so the peak in our data 

is right after sunset.  Then the data stays at a peak until after midnight, or 0400 

Greenwich Mean Time.  At this time the scintillation is 0.0801, and by 0100 local time, 

the scintillation has dropped to 0.0629.  After midnight, the scintillation begins to weaken 

rapidly until sunrise, when the average dropped from 0.0801 to 0.048, or decreased by 

half in only three hours.   
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 The hourly trends present for Antofagasta agree with previous finding that range 

spread F is the culprit for local time scintillation.  Between 20 and 60 degrees of the 

geomagnetic equator, little can be said for the causes of scintillation.  All that is 

understood is that abrupt changes in the ionosphere can cause range spread F scintillation.   

 In order to know when scintillation will occur, one must know of ionospheric 

irregularities due to the ionosphere’s plasma bubbles, sunset terminator, and geomagnetic 

anomalies.  Regions of the world must also be found to respond to the sudden changes in 

the ionosphere’s intensity of orientation.  Then, one could predict when and where 

scintillation will occur.  For the time being, many questions must still be answered, and 

more equatorial research must be conducted.   

Matlab Plots 

 By making Matlab maps of a solar minimum day with limited activity and solar 

maximum day with great activity, some general conclusions can be formed.  First, since 

all of the maps have the same scale of zero to 0.5 S4 scintillation numbers, we can 

compare the two days’ data.  The amount of 0.25 and above data during the solar 

maximum day, is greater than solar minimum day.  Therefore, the solar minimum day has 

more data points that are less than 0.25.  Solar minimum days have lower S4 values than 

solar maximum days, as can be seen in the Matlab maps.  Since both days were separated 

according to each hour’s data, these maps can also be compared to the hourly data from 

Antofagasta, as seen in Chapter 4.  The hours between sunset and midnight local time 

have the greatest scintillation regardless of solar activity.  This agrees with the findings 

from Antofagasta and previous researchers. 

 50



 It should be noted future research of this project would have to deal with the 

complex geometry of the situation.  The Matlab maps show where the satellite is when it 

records a scintillation value.  This is not necessarily the location of the scintillation at that 

point in time.  By using geometry, future researchers can determine the exact location of 

where the scintillation is when the satellite records it.  Without this information, we 

cannot compare our findings to equatorial anomaly data that shows scintillation peaks in 

different locations.  

Summary 

 After analyzing years of scintillation data collected at equatorial sites, many 

conclusions have formed.  First, when the solar cycle is a maximum, the equatorial S4 

scintillation is also at a peak for the yearly average.  Second, the months of October until 

March see the largest amount of scintillation at the equatorial anomaly.  Third, as the sun 

sets in these locations, the S4 number increases until it peaks at midnight and quickly dies 

off in the hours after the peak.   

 These seasonal, hourly, and yearly trends agree with the findings of Groves, 

Bishop, Basu and countless others.  By using such trends, researchers can determine what 

causes the problems with their GPS systems.  If one researcher knows the basic 

scintillation trends at the equatorial anomaly, they can determine if their problem is 

mechanical or atmospheric in nature.  This can save a great deal of time and money by 

not sending missions out into the region when it is know they cannot communicate with 

anyone via their GPS system.   
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Appendix A 

Matlab Program 

>> load janfebmars4.txt 

load janfebmarlat.txt 

load janfebmarlon.txt 

x=linspace(-91.3,64.2,200); 

y=linspace(-56.2,55.9,200); 

y=y'; 

ss=griddata(lon,lat,ss,x,y); 

i=find(isnan(ss)); 

ss(i)=zeros(size(i)); 

save ss.dat ss /ascii 

 

Access Data Sorting 

First, each year’s data was sorted into the eleven locations.  Then each location’s 1998, 

1999, 2000, 2001, 2002, 2003, and 2004 data is individually imported into Access.  

Initially this created incorrect number configurations in some columns, or whole columns 

would be blank.  After realizing, this was due to the lack of column width space, I used 

the advanced button on the import table to alter the widths.  (see Table 16 below)  
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Table 16. Access Adjustments

Field Start Width 
 Year 1 2 

Day 3 4 
Time 7 7 

 S4 14 9 
Latitude 23 9 
Altitude 32 9 

 Longitude 41 9 

 53



Bibliography 

1.      Ionospheric and Atmospheric Remote Sensing, http://iono.jpl.nasa.gov/scint.html
 
2.      Northwest Research Associates, Inc., Ionospheric Scintillation Prediction Pages, 

http://www.nwra-az.com/ionoscint/ 
 
3.      Bishop G., Basu S., Holland E., and Secan J., “Impacts of ionospheric fading on 

GPS navigation integrity”, Proceedings of ION GPS-94, Institute of Navigation, 
577-585, 1994. 

 
4.      Nordwall B., “Atmospheric/multipath concerns for DGPS”, Aviation Week, 145,     

60-61, 14 October 1996. 
 
5.      Knight M. and Finn A., “The impact of ionospheric scintillations on GPS 

performance”, Proceedings of ION GPS-96, Institute of Navigation, 555-564, 1996.  
 
6.     Aarons, J., Mendillo M., and Yantosca R., “GPS phase fluctuations in the equatorial 

region during solar minimum”, Radio Science, 32, 1535-1550, 1997. 
 
7.     Bishop G., Basu S., Groves K., Smitham M., Lehnis K., Jacobs D., Gehred P., 

Howell D., Bainum G., and Goldizen D., “Upcoming ionospheric impacts on GPS 
at solar max - what do we know / what do we need?”, Proceedings of ION GPS-96, 
Institute of Navigation, 595-604, 1996. 

 
8.      Kelley, M., Heelis, R., The earth's ionosphere : plasma physics and 

electrodynamics, San Diego : Academic Press, 1989.
 
9.      Parkinson, Bradford W., Spilker, James J., The global positioning system : theory 

and applications, Washington D.C., American Institute of Aeronautics and 
Astronautics, 1996. 

 
10.    Devore, Jay L. , Probability and statistics for engineering and the sciences, 

Belmont, CA, Thomson-Brooks/Cole, 2004. 
 
11.   Groves, K., Ionospheric scintillation and its effects on systems, PowerPoint   
 presentation, CISM Summer School, Boston University, 26 July – 6   
 August, 2004.  
 
12.    McHarg, G., AFIT Overview November 2004: Space Physics and Atmospheric 

Research Center, 17 Nov 04. 
 
13.    Air Force Research Laboratory, Space Vehicles Directorate,  

http://www.vs.afrl.af.mil

 54

http://iono.jpl.nasa.gov/scint.html
http://horizon.afit.edu/ipac20/ipac.jsp?session=1B2V871O60875.1413&profile=scw&uri=link=3100017@!203441@!3100001@!3100002&ri=2&aspect=basic_search&menu=search&source=129.92.253.23@!horizon
http://horizon.afit.edu/ipac20/ipac.jsp?session=1B2V871O60875.1413&profile=scw&uri=link=3100017@!200056@!3100001@!3100002&ri=2&aspect=basic_search&menu=search&source=129.92.253.23@!horizon
http://horizon.afit.edu/ipac20/ipac.jsp?session=1B2V871O60875.1413&profile=scw&uri=link=3100017@!200056@!3100001@!3100002&ri=2&aspect=basic_search&menu=search&source=129.92.253.23@!horizon
http://horizon.afit.edu/ipac20/ipac.jsp?session=1U2239D78068I.4425&profile=scw&uri=link=3100017@!178453@!3100001@!3100002&ri=7&aspect=basic_search&menu=search&source=129.92.253.23@!horizon
http://horizon.afit.edu/ipac20/ipac.jsp?session=1U2239D78068I.4425&profile=scw&uri=link=3100017@!178454@!3100001@!3100002&ri=7&aspect=basic_search&menu=search&source=129.92.253.23@!horizon
http://horizon.afit.edu/ipac20/ipac.jsp?session=1U2239D78068I.4425&profile=scw&uri=link=3100017@!179385@!3100001@!3100002&ri=10&aspect=basic_search&menu=search&source=129.92.253.23@!horizon
http://www.vs.afrl.af.mil/


14.    Thayer, J., “The convergence of magnetospheric energy flux in the polar 
atmosphere”, The Journal of Atmospheric and Solar-Terrestrial Physics, 66, 807-
824, 2004. 

 
15.    National Oceanic and Atmospheric Administration, www.noaa.com 
 
16.    Time and Date Calendars, http://www.timeanddate.com/calendar/ 
 
17.    Datta-Barua, S., “Ionospheric Scintillation Effects on Single and Dual Frequency    

GPS Positioning”, Institute of Nav., GPS/GNSS Meeting, Portland OR, Sept 2003. 
 
18.    Brown, A., “GPS Ionospheric scintillation measurements using a bean steering 

antenna array for improved signal/noise”, NAVSYS Corp., ION Meeting, Denver, 
CO, June 1998.  

 
19.    Fu, W., “Real-Time Ionospheric Monitoring”, 12th Int. Tech. Meeting of Satellite 

Division of the U.S. Institute of Navigation, GPS ION 99, Nashville, TN, Sept 
1999, 1461-1471. 

 
20.    Thomas, R. M., “Statistics of GPS Satellite Links in the Presence of Equatorial 

Scintillation”, Workshop on Applications of Radio Science, LaTrobe University, 
Australia, April 2000, 142-148.  

 
21.    Fundamentals of Physical Geometry, 

http://www.physicalgeography.net/fundamentals/6h.html 
 
22.    Tascione, Thomas F., Introduction to the Space Environment, Malabar, Florida,   

Krieger Publishing Company, 1988. 
 
23.    Hajkowski, “Fringe Effects in Mid-Latitude Scintillations over a Solar Maximum”,   

Aberystwth, UK, University of Wales, 1994. 

 55



 
 
 

Vita 
 
 
 

 Lieutenant Katharine A. Wicker graduated from Loveland High School in  

Loveland, Ohio.  She attended Bowling Green State University in Bowling Green, Ohio, 

where she participated in AFROTC at Detachment 620.  She graduated with a Bachelor 

of Science in Biology, and received a commission into the United States Air Force to 

attend the Graduate School of Engineering and Management at the Air Force Institute of 

Technology is her first assignment. Upon graduation she will be attending Space and 

Missile training at Vandenberg AFB, California.   

 

 

 56



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
 14 Mar 06  

2. REPORT TYPE  
Master’s Thesis     

3. DATES COVERED (From – To) 
23 May 04 – 23 Mar 06 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 

A Climatological Study of Equatorial GPS Data And the Effects on 
Ionospheric Scintillation 

   
 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Wicker, Katharine, A., 2nd Lieutenant, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
     Air Force Institute of Technology 
    Graduate School of Engineering and Management (AFIT/EN) 
  2950 Hobson Way 
     WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GSS/ENP/06-02 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
     Dr. Keith M. Groves 
     29 Randolph Road, Air Force Research Laboratory 
     Space Weather Center of Excellence, Space Vehicles Directorate 
     Hanscom AFB, MA 01731 
     (781)377-3137 

11.  SPONSOR/MONITOR’S 
REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
13. SUPPLEMENTARY NOTES  
 
14. ABSTRACT  
 Ionospheric Scintillation is detrimental to radio signals, especially those from global positioning systems, or GPS.  Such 
scintillation is caused when a signal permeates the ionosphere through plasma bubbles.  The signal’s phase and amplitude can 
be altered, and a receiver on the ground can lose lock on the GPS signal.  Measured using an zero to one index known as S4, 
scintillation severity is based upon season, solar cycle, time of day, location and frequency.  The most severe scintillation 
occurs at the equatorial anomaly, or fifteen degrees north and south of the equator.  Seven years of data from fifteen different 
locations around the equator were put into a Matlab program to determine if the current trends still apply.  Previous research 
has found the S4 at the equator to peak during the months of September to March, between the hours of 2000 and 0300 local 
time, and when the sunspot number is above 60.  Matlab plots were generated to find peaks in scintillation based upon location 
and month.  These were compared to an table to sunspot numbers during those months.  A new Matlab program was made to 
compile all of the plots into a climatological map of the seasonal data.  Trends similar to those found previously were 
discovered.  S4 numbers peaked in the area of the anomaly, and between the months of October to March.  As the sunspot 
number increased, the yearly average scintillation also increased.  The hours of 2200 local time and 2400 local time also saw a 
peak in S4 scintillation, which agrees with previous findings. 
 
15. SUBJECT TERMS 
      Ionospheric Scintillation, Global Positioning Satellite, Equatorial Anomaly, Equatorial Electrojet, Ionosphere, S4 
Scintillation, Solar Minimum/Maximum, Ionospheric Seasonal Trends, Ionospheric Diurnal Trends, GrADS 
16. SECURITY CLASSIFICATION 
OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Lt. Col. Steve Fiorino 

REPORT 

U 
ABSTRACT 

U 
c. THIS PAGE 

U 

17. LIMITATION OF  
     ABSTRACT 
 

UU 

18. NUMBER  
      OF 
      PAGES 

66 19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636 x4506; e-mail: Steven.Fiorino 
@afit.edu 

Standard Form 298 (Rev: 8-98) 
Prescribed by ANSI Std. Z39-18 


	A Climatological Study of Equatorial GPS Data and the Effects on Ionospheric Scintillation
	Recommended Citation

	title pages.doc
	paper intro.doc
	paper.doc
	I. Introduction
	1.      Ionospheric and Atmospheric Remote Sensing, http://iono.jpl.nasa.gov/scint.html


	Templates24 298.doc

