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Abstract

In order to estimate the position and velocity of a target, most multistatic

radar systems require multiple independent target measurements, such as angle-of-

arrival, time-of-arrival, and Doppler information. Though inexpensive and reliable,

Doppler-only systems have not been widely implemented due to the inherent nonlin-

ear problem of determining a target’s position and velocity from their measurements.

We solve this problem. In particular, we first establish the lack of observability

in the Doppler-only bistatic system, thereby demonstrating the need for multiple

transmitters and/or receivers. Next, for a multistatic system with a sufficient num-

ber of transmitter-receiver pairs, we invoke classical optimization techniques, such

as gradient-descent and Newton’s method, to quickly and reliably find a numerical

solution to the system of nonlinear Doppler equations. Finally, we indicate a best de-

sign for the transmitter-receiver constellation to be employed in the aforementioned

optimization.
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DOPPLER-ONLY MULTISTATIC RADAR

I. Introduction

Radar is the process of estimating the attributes of an object by measuring its

effect on the passage of electromagnetic signals. Multistatic radar employs multiple

transmitters and/or receivers, while combining data at a central location [39, p. 4].

Most modern multistatic radar systems use multiple receiver sites, each collecting

several independent target measurements, such as the time-of-arrival, angle-of-arrival

and Doppler shift of the reflected signals. These measurements are then combined to

estimate the target state; that is, the target’s parameters of interest, such as position

and velocity.

Of the many multistatic systems operating today, few, if any, rely solely on

Doppler shift information, depending, at least in part, upon time and/or angle mea-

surements. The purpose of this thesis is to determine the extent to which a target

state can be estimated from Doppler-only measurements in a multistatic system.

Though we show that use of a single transmitter and receiver is insufficient, we fur-

ther establish that a Doppler-only multistatic system is feasible, provided enough

transmitters and receivers are available. To be precise, we show that determining

the target state from Doppler shifts is equivalent to solving a nonlinear optimization

problem, namely the minimization of a certain objective function. We then solve this

problem numerically, using an original analytic derivation of the objective function’s

gradient and Hessian.
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1.1 History of Multistatic Radar

Multistatic radars were first theoretically addressed in 1917. The August edi-

tion of The Electrical Experimenter included editor Hugo Gernsbach’s interview of

Nikola Tesla on “subjecting [submerged] enemy submarines” [30]. Tesla said:

...consider that a concentrated ray from a searchlight is thrown on a
balloon at night. When the spot of light strikes the balloon, the latter
at once becomes visible from many different angles. The same effect
would be created with the electric ray if properly applied. When the
ray struck the rough hull of a submarine it would be reflected, but not
in a concentrated beam — it would spread out; which is just what we
want. Suppose several vessels are steaming along in company; it thus
becomes evident that several of them will intercept the reflected ray and
accordingly be warned of the presence of the submarine... [34]

Despite Tesla’s anticipation for such technology, five years passed with no suc-

cessful implementation of his idea. Then, in September 1922, U.S. Navy civilian

engineer Dr Albert Hoyt Taylor and his assistant Leo Clifford Young, both of the

United States Naval Aircraft Radio Laboratory at Anacostia, DC, conducted tests

at the Naval Air Station, where “audible maxima and minima caused by reflections

from steel buildings were observed.” After this success, they put the receiver in a

car and drove it across the Potomac River. This time, reflections occurred from

several objects, including a modest-sized wooden steamer passing along the river.

Despite Taylor and Young’s success, their work received little support, and they in-

stead turned their focus towards ionic sounding experiments, a precursor of modern

radar experiments [39, pp. 17-18].

By the early 1930s, the employment of radar had become worldwide. Interest-

ingly, these original radars were primitive forms of multistatic radar, as conventional

radar would require the then-undeveloped technology of switching an antenna from

transmit to receive mode. However, the invention of the synchronizer in the mid-

1930s quickly shifted the world’s focus to just such monostatic radar, as dealing

with multistatic radar proved cumbersome. Consequently, of the many important
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developments in radar made during the Second World War, few were made in the

field of multistatic radar.

The Cold War induced an era of nuclear fear in the United States. Once the

Soviet Union launched Sputnik I in 1957, detecting and tracking such satellites be-

came a major national security issue [26]. To help remedy the situation, a wide

range of space-monitoring systems were deployed, and many are still in use. Many

of these sensors were designed to warn of strategic missile attacks [32]. Multistatic

radar technology proved to be quite useful in this effort. For example, the Multi-

static Measurements System, completed in 1980, used time-of-arrival and Doppler

information from multiple transmitters and receivers to locate and track airborne

objects such as ballistic missiles [39, p. 55].

Another significant application of multistatic radar was the continuous-wave

radar “fence” known as the Navy Space Surveillance System (NavSpaSur) [32]. This

system was developed in 1958 to detect and track satellites which transmitted signals,

as well as those that were “quiet.” It consists of three transmitters and six receivers

from California to Georgia, as well as a computational center at the NavSpaSur

headquarters in Dahlgren, Virginia. The system uses angle measurements from two

sites to estimate a target’s location/velocity [39, p. 39], and is capable of doing so

for basketball-sized objects up to 7,500 miles in altitude [26].

Today, NavSpaSur remains an essential element of the U.S. Space Command

Detection and Tracking System, as it is used for several purposes. It helps main-

tain and update the database of orbiting objects/debris [26] and provides continuous

surveillance of space objects orbiting over the contiguous United States [32]. Further,

NavSpaSur is “the only space surveillance system which provides satellite vulnera-

bility data to fleet units” [32].

In 1999, Lockheed Martin created a multistatic system, called Silent Sentry 2,

that uses time-of-arrival and Doppler measurements of everyday broadcast signals

to detect and track targets. Also, there are multiple multistatic systems, described

3



throughout the Internet, that are used by radio-astronomers to track meteors enter-

ing the atmosphere.

Having given a broad sense of the history of multistatic radar, we now review

the current literature, emphasizing the work related to Doppler-only systems.

1.2 Literature Review

Little has been written on Doppler-only multistatic radar. However, there is

a great deal of literature on other forms of radar, some of which is pertinent to our

problem. The types of radar are defined by how the transmitter, receiver and target

are related. For example, the typical active radar is characterized by a collocated

transmitter and receiver. A radar is passive when the target is either the transmitter

or the receiver. Finally, semi-active radar has a distinct transmitter, receiver and

target. Note that multistatic radar is often considered semi-active, since the receivers

tend to have little or no control of transmission. Though the literature sometimes

refers to this form of radar as “passive,” we shall strictly use “passive” to denote the

transmitting or receiving target scenario.

1.2.1 Active Radar. Monostatic radar has been exhaustively researched.

However, the significant structural differences between monostatic and bistatic sys-

tems make using monostatic results challenging. Nevertheless, there exist useful

results for our problem. For example, in 1980, Levanon [24] discussed derivatives of

Doppler-only information, assuming a constant target velocity. Here, he provided

explicit expressions for range, velocity, and the angle between the object’s position

and velocity in terms of the Doppler shift and its derivatives. Two years later, in

response to this paper, Webster [36] explained how three Doppler measurements, un-

der the same assumptions, suffice to discern these target state parameters. Chapter

IV of this thesis generalizes this use of Doppler derivatives.
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1.2.2 Passive Radar. There is a significant amount published in the lit-

erature about passive radar. So much, in fact, that our review is broken into three

areas: observability, target tracking and stochastic analysis.

1.2.2.1 Observability. Observability refers, in this context, to the

existence of a unique tracking solution. Initial discussions [14, 22] on target observ-

ability in passive radar date back to the early 1970s, and focused on general nonlinear

systems. In 1981, Shensa [31] used geometric considerations to derive sufficient ob-

servability conditions in Doppler-only tracking. Since then, it seems that addressing

observability with passive radar was strictly limited to angle measurements, that is,

until Becker [4] discussed observability from angle and frequency measurements. In

doing so, he provided simpler and more general necessary and sufficient observability

conditions.

1.2.2.2 Target Tracking. One problem, given by Weinstein and Lev-

anon in 1980, was to track a transmitter moving in a ballistic trajectory. Understand-

ing ballistic motion, they were able to determine a weighted least-squares estimate of

the track parameters [38]. Seven years later, Statman and Rodemich [33] introduced

a method for real-time estimation; that is, a method which did not involve compu-

tationally expensive iterative least-squares estimation. This method was used in the

simulation of an area weapons effects system that the Jet Propulsion Laboratory

developed for the U.S. Army.

In 1982, Weinstein considered the case of a passive radar in which an array of

collinear receivers yields Doppler measurements for tracking [37]. Knowing the time

differences of arrival permitted estimation of position from the Doppler information,

along with subsequent velocity estimation.

The 1990s proved to be a developing decade for Doppler-only passive radar.

Research shifted from special cases to more applicable results. In particular, Chan

and Jardine gave, analogous to [24] and [36], a method for estimating target state
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purely from sonar Doppler and rate of Doppler change information, see [6]. Radar

and sonar applications are very similar, differing only in signal type and medium

of passage. They used a grid-search to determine an initial estimate and a Kalman

filter to reduce the search for later estimates while tracking. In [8], Chan and Tow-

ers introduced a more efficient way to search by using intermediate equations to

effectively decrease the search dimension. Chan and Towers [9] applied this idea to

Doppler-only passive radar with multiple receivers, dubbed “sequential localization,”

so that initial estimation could occur earlier in real time.

Levesque and Bondaryk [25] later provided some insight on sequential local-

ization, as they applied it to state estimation of submarine targets. In particular,

they found that the use of more than four receivers is helpful only in certain array

configurations. Armstrong and Holeman [3] considered estimation of a slightly more

generalized target state, where target acceleration is assumed to be some nonzero

constant. With the help of time-differences-of-arrival information, Ho and Xu [17]

established an algebraic, noniterative solution to the target state. Finally, Becker

[5] generalized previously studied two-dimensional tracking with angle and Doppler

measurements by considering the problem in three dimensions. In particular, he

applied the problem to Airborne Warning and Control System (AWACS) scenarios.

1.2.2.3 Stochastic Analysis. When considering a radar signal, there

is inevitably noise in the reception. The noise is often modelled as random, which

is then addressed in research through stochastic analysis. For example, in 1979,

Schultheiss and Weinstein [29] exploited the structure of Gaussian noise to estimate

Doppler shift in the received signal. Abel [1] used stochastic analysis to determine an

optimal array configuration of receivers for target state estimation. Jauffret and Bar-

Shalom [20] estimated the target state from bearing and Doppler information from

a low signal-to-noise ratio environment, where false detections are common. Lastly,

Chan and Rudnicki [7] expanded on this by using instrumental variables, developed

from history measurements, to yield a recursive, unbiased target estimate.
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1.2.3 Semi-Active Radar. There is much discussed in the literature about

using bistatic radar cross sections for imaging [12, 13, 23, 40, 41]. There is also a

small amount of research on the incorporation of clutter in bistatic radar [16, 21, 42].

This thesis will not delve further into such research, as we are only concerned with

estimating the target state.

Much of the contemporary research in bistatic radar has focused on the am-

biguity function. Tsao et al. analyze this function [35], as it seems to arise when

observing a low-velocity target in white Gaussian noise. Ringer and Frazer [28] used

the ambiguity function to help assess the feasibility of multistatic radar; their con-

clusion was that such radar is, in fact, viable. Griffiths et al. [15] recently gave some

measurements of the ambiguity functions and commented on their form regarding

bistatic radar systems for localization.

Ironically, the research that has shown the most promise in Doppler-only mul-

tistatic radar used angle information along with Doppler measurements. In 1995,

Howland [18] demonstrated a working system that would detect, locate and track

airborne targets. After detecting the Doppler shift of a specific target over time,

known as the trace, he used a Kalman filter to help complete the trace. He then

used a modified Levenberg-Marquardt algorithm to determine a target state estimate

that would minimize the difference between expected and measured data. Four years

later, he published a more elaborate paper [19] that introduced the use of a genetic

algorithm to initialize the minimization close enough to the true optimal target state

estimate.

Other research includes Dommermuth’s model of bistatic Doppler shift as a

probabilistic quantity [11]. Here, he uses this stochastic assumption to achieve a

probability distribution for the target state. Two stochastic filters for bistatic surveil-

lance are presented in [16]. One uses a Kalman filter and Doppler information, while

the other uses a particle filter to both track and classify targets. We will not pursue

any of this further, as we shall attempt to discern the mathematical structure em-
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bedded within multistatic and bistatic radar, and thereby retrieve a deterministic

solution.

1.3 Thesis Outline

In Chapter II, we introduce the basic principles of the simplest case of mul-

tistatic radar, known as bistatic radar. Here, we explain what the Doppler effect

actually is and what it tells about the target. This chapter motivates the remain-

der of the thesis. Chapter III explains the calculus we will need to proceed. We

then assess the observability of the bistatic system with only Doppler information in

Chapter IV. Next, Chapter V provides a minimization algorithm to determine the

target state given multistatic Doppler measurements. Finally, Chapter VI considers

both the asymptotics of the objective function used in our minimization algorithm

and the optimality of multistatic configurations of transmitters and receivers.

8



II. Basic Principles of Doppler-Only Bistatic Radar

In this chapter, we present a mathematical treatment of the physical phenomenon

known as the Doppler effect. The results presented herein are commonly known —

we only include them for ease of understanding and completeness.

The simplest semi-active radar system is one with a single stationary transmit-

ter and a distinct stationary receiver; this is called a bistatic system. The transmitter

sends an omnidirectional signal with an assumed constant speed of light c. Once the

signal collides with an object, it is emitted a second time from the collision location

and both the original and reflected signals reach the receiver.

T R

x(t)

ẋ(t)

Figure 1 The Bistatic System

To be precise, consider the arrangement depicted in Figure 1, with a fixed

transmitter and receiver located at positions T,R ∈ RN , respectively, and a moving

object whose location at time t is given by the function x : R → RN . Let sT denote

the transmitted signal, sR the directly received signal, and sx the reflected signal.

Though the received signal will be some superposition of sR with sx, we assume that

sR and sx have been correctly identified. In practice, one usually relies upon well-

established signal processing-based techniques to accomplish this decomposition.
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As the direct signal travels from T to R at the speed of light, we have

sR(t) = sT (t− |R− T |/c). (1)

Similarly, the reflected signal is

sx(t) = sT (t− %(t)/c), (2)

where %(t) is the length of the path travelled by the reflected signal which was

received at time t. As the receiver and transmitter are stationary, sR is simply a

time-delayed version of sT . However, even when T and R are fixed, the delay in

the reflected signal, namely %(t)/c, will not be constant in general. That is, sx is a

time-delayed version of sT , where the delay itself is a function of time. In the case

where sT is sinusoidal, the nonconstant time-delay causes a phenomenon known as

the Doppler effect.

2.1 Derivation of the Doppler Effect

For the sake of mathematical simplicity, let us assume that our transmitted

signal is complex with unit amplitude

sT (t) = e2πiα(t),

where 2πα(t) is the angle of the signal in the complex plane at time t. It follows

that α(t + h) − α(t) is the number of cycles that the signal has traversed over an

interval of time [t, t + h], and therefore the ratio

α(t + h)− α(t)

h

is the mean frequency over the same interval. Since the instantaneous frequency is

defined to be the limit of average frequencies as the length of time over which the

10



average was taken tends to zero, we have

freq(sT (t)) ≡ lim
h→0

α(t + h)− α(t)

h
= α̇(t). (3)

In this case, the directly received (1) and reflected signals (2) are also sinusoidal:

sR(t) = sT (t− |R− T |/c) = e2πiα(t−|R−T |/c),

sx(t) = sT (t− %(t)/c) = e2πiα(t−%(t)/c).

It follows from (3) that the frequency of the direct signal is

freq(sR(t)) =
d

dt
α(t− |R− T |/c) = α̇(t− |R− T |/c), (4)

while the frequency of the reflected signal is

freq(sx(t)) =
d

dt
α(t− %(t)/c) = α̇(t− %(t)/c)(1− %̇(t)/c). (5)

We now note that in practice, a receiver in a bistatic system may only have knowledge

of sR(t) and sx(t), with little to no knowledge of the original transmission. That is,

one may know the frequencies (4) and (5) without having the original frequency α̇(t).

Fortunately, this difficulty can be overcome when the frequency of the original signal

changes slowly. In particular, if the original frequency is constant, namely α̇(t) = β

for all t, then (4) and (5) give

freq(sx(t)) = β(1− %′(t)/c) = β − β

c
%̇(t) = freq(sR(t))− 1

λ
%̇(t) (6)

where λ = c/β is the wavelength of the original signal. We now note that, even in

the case where the frequency of the original transmission is constant, the frequency

of the reflected signal sx is not exactly that of the direct signal sR. In fact, the gap

between these two received frequencies is proportional to the rate of change of the
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reflected distance %(t) with respect to time. This change in frequency, caused by the

nonconstant time-delay in the expression for sx, is known as a Doppler shift, and is

explicitly derived from (6):

freq(sx(t))− freq(sR(t)) = −1

λ
%̇(t). (7)

Thus, if one, through appropriate time-frequency analysis, explicitly computes this

shift, one may, in fact, determine something about the target, namely %̇(t). Unfor-

tunately, the exact relationship between %̇(t) and the position of the object x(t) is

quite complicated. Nevertheless, when the object is moving significantly slower than

the speed of light, the quantity %̇(t) is extremely close to another quantity which has

a relatively simple dependence upon x(t), which we now discuss.

2.2 Start-Stop Approximation

For the bistatic system depicted in Figure 1, recall that the quantity %(t)

represents the length of the path travelled by the reflected signal which was received

at time t. From the point of view of the receiver operator, this quantity is difficult

to determine, as the target’s location is unknown. However, when the speed of the

target is significantly less than the speed of light, the distance %(t) is almost exactly

the same as the distance from transmitter to moving body to receiver at the time of

reception, namely the bistatic distance

ρ(t) = |x(t)− T |+ |x(t)−R|. (8)

As ρ(t) ∼= %(t) when |ẋ(t)| � c, one intuitively expects ρ̇(t) ∼= %̇(t), and so the

Doppler shift given in (7) is approximately proportional to the rate of change of

the bistatic distance. To discuss these matters more formally, consider the following
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proposition, recalling the standard dot product on RN ,

x · y ≡
N∑

n=1

xnyn,

which leads to the Euclidean norm,

|x| ≡
√

x · x =

[ N∑
n=1

x2
n

]1/2

.

Proposition 2.2.1. If x : R → RN is continuously differentiable and sup |ẋ(t)| < c,

then there exists a unique t0 ≥ 0 such that |x(t0)| = ct0.

Proof: To show that t0 exists, note that if |x(0)| = 0, we are done. Suppose

|x(0)| > 0, let a ≡ sup |ẋ(t)|, and consider the continuous function defined by y(s) ≡

|x(s)| − cs for all s ≥ 0. Thus, y(0) = |x(0)| > 0. Furthermore, taking t such that

t > |x(0)|/(c− a), we have

|x(t)| ≤ |x(0)|+
∣∣∣∣∫ t

0

ẋ(t) dt

∣∣∣∣ ≤ |x(0)|+ at < ct,

and so y(t) < 0. The Intermediate Value Theorem then gives t0 ∈ (0, t) such that

y(t0) = 0, that is, |x(t0)| = ct0. To show that t0 is unique, suppose t0 < t1 both

satisfy the condition, namely ct0 = |x(t0)| and ct1 = |x(t1)|. The Reverse Triangle

Inequality then gives

c(t1 − t0) = |x(t1)| − |x(t0)| ≤ |x(t1)− x(t0)| =
∣∣∣∣∫ t1

t0

ẋ(t) dt

∣∣∣∣ ≤ a(t1 − t0). (9)

Since t1 > t0, (9) implies c ≤ a, a contradiction. �

Returning to the bistatic system of Figure 1, note that for any time t ∈ R,

Proposition 2.2.1 guarantees that there exists a unique time τ < t such that

|x(τ)−R| = c(t− τ). (10)
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This time τ corresponds to the moment when the signal which was received at time

t had reflected off of the moving object. Thus, the distance travelled by the signal

received at time t was actually the bistatic distance (8) at time τ < t, that is,

%(t) = ρ(τ). This implies that

%̇(t) =
d

dt
ρ(τ) = ρ̇(τ)

dτ

dt
. (11)

Further, since

d

dτ

[
|x(τ)−R|

]
=

d

dτ

[ N∑
n=1

(xn(τ)−Rn)2

]1/2

=

[ N∑
n=1

(xn(τ)−Rn)2

]−1/2 N∑
n=1

(xn(τ)−Rn)ẋn(τ)

=
x(τ)−R

|x(τ)−R|
· ẋ(τ), (12)

we have, by differentiating (10), that

(
x(τ)−R

|x(τ)−R|
· ẋ(τ)

)
dτ

dt
=

d

dt
|x(τ)−R| = c

(
1− dτ

dt

)
.

From here, rearranging gives

dτ

dt
= c

[
x(τ)−R

|x(τ)−R|
· ẋ(τ) + c

]−1

,

so that, considering (11), we have by Triangle and Reverse Triangle Inequalities that∣∣∣∣ %̇(t)

ρ̇(τ)
− 1

∣∣∣∣ =

∣∣∣∣dτ

dt
− 1

∣∣∣∣ ≤ |ẋ(τ)|
c− |ẋ(τ)|

.

That is, ρ̇(t) ∼= %̇(t) when |ẋ(t)| � c, and so the Doppler shift given in (7) is

approximately proportional to the rate of change of the bistatic distance, as desired.

Let us now determine this rate of change.
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Considering (12), we see that

d

dt

[
|x(t)− T |

]
=

x(t)− T

|x(t)− T |
· ẋ(t),

d

dt

[
|x(t)−R|

]
=

x(t)−R

|x(t)−R|
· ẋ(t),

so that the Doppler shift is approximately proportional to the rate of change of the

bistatic distance

ρ̇(t) =

(
x(t)− T

|x(t)− T |
+

x(t)−R

|x(t)−R|

)
· ẋ(t). (13)

Note that (13) is symmetric between the transmitter and receiver locations,

meaning that interchanging their locations will not change the Doppler measurement.

Also notice that (13) is an underdetermined vector differential equation. It follows

that if enough bistatic measurements are made using multiple distinct transmitters

and receivers, a solution for x(t) could possibly be resolved if only an initial condition

were established.

Figure 2 illustrates the two vectors whose dot product yields the rate of change

of the bistatic distance. The ellipse depicted about foci T and R is a curve of constant

T R

x(t)
ẋ(t)

x(t)− T

|x(t)− T |

x(t)−R

|x(t)−R|

Figure 2 Geometry of the Bistatic System

bistatic distance. In R3, the contour takes the form of a prolate spheroid with the
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Figure 3 Curves of Constant Bistatic Distance

same foci. Note that the sum of the bearing vectors is orthogonal to this contour.

This is given by the fact that the gradient of a functional is orthogonal to its level

curves. In particular, the prolate spheroid is the level curve of ρ and the bearing

sum is its gradient.

Thus, the quantity ρ̇(t) represents a scaled version of the “amount” of ẋ(t) that

is crossing the level curve |x−T |+|x−R| = ρ(t) at time t. In particular, if the target

is moving towards the inside of the ellipsoid, then the dot product ρ̇(t) is positive,

and sx, in turn, has a higher frequency than sR. Meanwhile, if the target is moving

towards ellipsoids of greater size, then the bistatic distance ρ(t) is increasing. In this

case, ρ̇(t) > 0, and so the Doppler shift is negative. Finally, an object travelling

along the surface of such an ellipsoid would produce no Doppler shift at all.

It is important to understand that these confocal ellipsoids are not parallel

by any means. Consider the list of contours illustrated in Figure 3. We notice

two asymptotic tendencies of the ellipsoids. Ellipsoids that tend closer to the foci

approach the line segment connecting the foci, while the larger ellipsoids approach
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the sphere centered between the foci of radius ρ/2. Let us now consider an example

of the bistatic distance derivative.

2.3 An Example

Consider the bistatic system illustrated in Figure 1, in which the transmitter is

located at T , the receiver at R, and target at x(t). If the reflected signal is received

at time t = 0, then by Proposition 2.2.1, there exists a unique time τ < 0 at which

the target reflected this signal. Furthermore, this time satisfies

−cτ = |x(τ)−R|,

where c is the speed of light. Suppose the target is travelling with constant velocity.

Then

x(t) = x + th,

for all t, for some vectors x, h ∈ RN , where N is the spatial dimension. Solving for

the time τ of reflection, we have

c2τ 2 = |x + τh−R|2 = |x−R|2 − 2(x−R) · hτ + |h|2τ 2,

or equivalently,

(c2 − |h|2)τ 2 + 2(x−R) · hτ − |x−R|2 = 0.

Solving for t < 0 via the Quadratic Formula yields

τ = − 1

c2 − |h|2

{
(x−R) · h +

[
[(x−R) · h]2 − (c2 − |h|2)|x−R|2

]1/2}
. (14)

The speed of light being large, we see that τ ∼= 0, as desired. Applying the previous

section’s notation, the distance actually travelled by the signal received at time zero
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is expressed by

%(0) = |x(τ)− T |+ |x(τ)−R|,

for τ given in (14) above. The actual distance between the transmitter and the

receiver at time zero is given by

ρ(0) = |x− T |+ |x−R|.

For τ ∼= 0, these two distances are extremely close, and so there is no great harm in

using ρ(0) instead of %(0).

Let us now determine ρ̇(t) for all t. To do this, we will first consider the term

x(t)− T

|x(t)− T |
· ẋ(t).

By completing a square, we see that the square of the denominator is

|x(t)− T |2 = |x− T + th|2

= |x− T |2 + 2(x− T ) · ht + |h|2t2

= |h|2
[(

|x− T |
|h|

)2

−
(

(x− T ) · h
|h|2

)2

+

(
t +

(x− T ) · h
|h|2

)2
]

= |h|2B2
T

[
1 + [(t− AT )/BT ]2

]
, (15)

where

AT = −(x− T ) · h
|h|2

, BT =

[(
|x− T |
|h|

)2

−
(

(x− T ) · h
|h|2

)2
]1/2

.

Note that the radicand of BT is positive by the Cauchy-Schwartz Inequality. We

also have numerator

(x(t)− T ) · ẋ(t) = (x + th− T ) · h
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= |h|2t + (x− T ) · h

= |h|2BT [(t− AT )/BT ]. (16)

Combining (15) and (16) gives the fraction:

x(t)− T

|x(t)− T |
· ẋ(t) = |h|

[
(t− AT )/BT√

1 + [(t− AT )/BT ]2

]
.

Simple replacement of T with R yields a similar expression:

x(t)−R

|x(t)−R|
· ẋ(t) = |h|

[
(t− AR)/BR√

1 + [(t− AR)/BR]2

]
,

and so we have the following rate of change of bistatic distance:

ρ̇(t) = |h|

[
(t− AT )/BT√

1 + [(t− AT )/BT ]2
+

(t− AR)/BR√
1 + [(t− AR)/BR]2

]
.

We see that this rate is merely the sum of two shifted and dilated functions of

the form
t√

1 + t2
.

Thus, even in this case where the target’s travel is linear, that is, ẍ = 0, there

are still five unknown quantities that determine the Doppler shift. Therefore, any

successful application of Doppler-only radar will require several measurements over

time and/or multiple transmitter-receiver pairs; that is, multistatic radar.

2.4 What Remains

In Chapter IV, we determine the theoretical limitations of using multiple time

steps in a bistatic system. Mathematically, having multiple time measurements is

similar to having knowledge of the time derivatives of the Doppler signal ρ̇(t). We

will see that even in this case, while assuming constant velocity, the most one can
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ever expect to determine about the target’s position is the target’s distances from

the transmitter and receiver. Discovering this fact, we see that a Doppler-only

requirement forces us to use a multistatic system. But, before we can attempt to

consider either system, we must first develop a better understanding of the underlying

calculus.
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III. Distance and Bearing Derivatives

As discussed in the previous chapter, Doppler information is proportional to the

rate at which the bistatic distance changes. Such rates of change are, by definition,

derivatives. In this chapter, we develop the mathematical groundwork upon which

the rest of our work will be based. Though the techniques used in this chapter are

standard tools of multivariable Taylor series and tensor analysis, we could not find

the results given below in the literature. As our motivating problem is the only one

of which we know that requires these derivatives, we believe these results could be

original.

3.1 Fréchet Derivatives

The Fréchet derivative of a differentiable function f : RN1 → RN2 at x is the

linear operator Df(x) : RN1 → RN2 such that

lim
h→0

|f(x + h)− f(x)−Df(x)h|
|h|

= 0.

Meanwhile, for any M > 1, the Mth Fréchet derivative of f at x is recursively defined

to be the symmetric M -multilinear operator DMf(x) : RM×N1 → RN2 that satisfies

lim
h→0

1

|h|M

∣∣∣∣f(x + h)−
M∑

m=0

1

m!
Dmf(x)hm

∣∣∣∣ = 0.

Moreover, when f is real-valued and (M + 1)-times Fréchet differentiable at x, then

the (M +1)th derivative of f at x in the directions (h1, . . . , hM+1) is the dot product

of final direction hM+1 with the gradient of the Mth derivative in the directions

(h1, . . . , hM):

DM+1f(x){hm}M+1
m=1 = [∇x(D

Mf(x){hm}M
m=1)] · hM+1. (17)

21



Thus, the “entries” of DMf(x), given by DMf(x){ekm}M
m=1, are the Mth mixed

partial derivatives of f . The background material for these generalized derivatives,

including a generalized Product Rule and Chain Rule, is given in the appendix.

3.2 The Euclidean Norm Functional

The first derivative of the paraboloid | · |2 : RN → R is

D|x|2h = ∇|x|2 · h = 2x · h, (18)

where ∇|x|2 = 2x is the gradient of |x|2. Meanwhile, the second derivative of |x|2 is

D2|x|2(h1, h2) = 2h1 · h2, (19)

since the Hessian of |x|2 is 2I. All higher order derivatives of |x|2 are zero:

DM |x|2{hm}M
m=1 = 0, M > 2. (20)

Using the Product Rule, one may then use these derivatives of |x|2 to compute the

derivatives of |x|. In particular, using the Product Rule, (18) becomes

2x · h = D|x|2h = 2|x|D|x|h,

and so the first derivative of the Euclidean norm functional is

D|x|h =
x

|x|
· h = b · h (21)

where b = x/|x|. Similarly, under two applications of the Product Rule, (19) becomes

2h1 · h2 = D2|x|2(h1, h2) = 2|x|D2|x|(h1, h2) + 2D|x|h1D|x|h2. (22)
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Using the expression of the first derivative (21), we may further simplify (22),

2h1 · h2 = 2|x|D2|x|(h1, h2) + 2 (b · h1) (b · h2) ,

and so the second derivative of the norm is

D2|x|(h1, h2) =
1

|x|
[h1 · h2 − (b · h1)(b · h2)]. (23)

Continuing in this manner, we may use the Product Rule as well as the first and

second derivatives of |x| above to find the third derivative. Specifically, we have

0 =
1

2
D3|x|2(h1, h2, h3)

= |x|D3|x|(h1, h2, h3) + D|x|h3D
2|x|(h1, h2)

+ D|x|h2D
2|x|(h1, h3) + D|x|h1D

2|x|(h2, h3)

= |x|D3|x|(h1, h2, h3) +
b · h3

|x|
[h1 · h2 − (b · h1)(b · h2)]

+
b · h2

|x|
[h1 · h3 − (b · h1)(b · h3)] +

b · h1

|x|
[h2 · h3 − (b · h2)(b · h3)],

and so the third derivative of the norm is

D3|x|(h1, h2, h3) =
1

|x|2
[3(b · h1)(b · h2)(b · h3)

− (b · h1)(h2 · h3)− (b · h2)(h1 · h3)− (b · h3)(h1 · h2)]. (24)

Although it is cumbersome to determine the Mth derivative of the Euclidean norm

functional in this way, we are able to observe a pattern in (21), (23) and (24): each

expression contains dot products of the bearing b with the directions hm, as well as

dot products of the directions with each other.

This pattern inspired the following result, in which we find a closed form ex-

pression for a general Mth-order derivative of |x|. As far as we know, this result is
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original. However, due to the long history and wealth of literature on the topic, as

well as the relative simplicity of the techniques used in our proof, we suspect the

result may already be known, perhaps as folklore. The result itself makes use of the

double factorial function, recursively defined as

n!! ≡

 n(n− 2)!! for n ≥ 1,

1 for n = 0,−1.

Thus, for n positive and even, n!! is the product of all positive even numbers less

than or equal to n, while for n positive and odd, n!! is the product of all positive

odd numbers less than or equal to n.

We also introduce a new symbol to remove the need for tensor notation in our

expression for the M -multilinear function DM |x|. In particular, let {hm}M
m=1 ⊆ RM

and take A ⊆ {1, . . . ,M} such that the cardinality of A, denoted |A|, is even. Let

P (A) be the set of all partitions of A into pairs. The distinct product of {hk}k∈A is

dp{hk}k∈A ≡
∑

P∈P (A)

∏
{hi,hj}∈P

(hi · hj).

Thus, the distinct products of a collection of two and four vectors are

dp(h1, h2) = h1 · h2,

dp(h1, h2, h3, h4) = (h1 · h2)(h3 · h4) + (h1 · h3)(h2 · h4) + (h1 · h4)(h2 · h3),

respectively, while the distinct product of a collection of six vectors is

dp(h1, h2, h3, h4, h5, h6) = (h1 · h2)(h3 · h4)(h5 · h6) + (h1 · h2)(h3 · h5)(h4 · h6)

+ (h1 · h2)(h3 · h6)(h4 · h5) + (h1 · h3)(h2 · h4)(h5 · h6)

+ (h1 · h3)(h2 · h5)(h4 · h6) + (h1 · h3)(h2 · h6)(h4 · h5)

+ (h1 · h4)(h2 · h3)(h5 · h6) + (h1 · h4)(h2 · h5)(h3 · h6)

24



+ (h1 · h4)(h2 · h6)(h3 · h5) + (h1 · h5)(h2 · h3)(h4 · h6)

+ (h1 · h5)(h2 · h4)(h3 · h6) + (h1 · h5)(h2 · h6)(h3 · h4)

+ (h1 · h6)(h2 · h3)(h4 · h5) + (h1 · h6)(h2 · h4)(h3 · h5)

+ (h1 · h6)(h2 · h5)(h3 · h4).

By convention, the distinct product of the empty set is one: dp∅ ≡ 1.

Theorem 3.2.1. For any M ≥ 1, the M th derivative of the Euclidean norm is

DM |x|{hm}M
m=1 =

1

|x|M−1

bM/2c∑
`=0

(−1)M+`+1(2M−2`−3)!!
∑

A⊆{1,...,M}
|A|=2`

dp{hk}k∈A

∏
j /∈A

(
hj ·

x

|x|

)
.

Proof: We first verify the result when M = 1. As stated above, we have by convention

that (−1)!! ≡ 1 and dp∅ = 1, and so our conjectured expression for D|x|h is

1

|x|0
(−1)2(−1)!! dp∅

(
h · x

|x|

)
= h · x

|x|
,

which is consistent with our previous derivation of the first derivative (21). Similarly,

for M = 2, our conjectured expression for D2|x|(h1, h2) is

1

|x|1

[
(−1)31!! dp∅

(
h1 ·

x

|x|

)(
h2 ·

x

|x|

)
+ (−1)4(−1)!! dp(h1, h2)

]
=

1

|x|

[
h1 · h2 −

(
h1 ·

x

|x|

)(
h2 ·

x

|x|

)]

which is consistent with our earlier computation of the second derivative (23). As

our result holds for M = 1, 2, we proceed by induction, supposing the claim holds

for some M ≥ 2. Letting

cM,` ≡ (−1)M+`+1(2M − 2`− 3)!!, (25)
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we have

DM |x|{hm}M
m=1 =

1

|x|M−1

bM/2c∑
`=0

cM,`

∑
A⊆{1,...,M}

|A|=2`

dp{hk}k∈A

∏
j /∈A

(
hj ·

x

|x|

)
. (26)

To begin evaluating the M + 1 derivative, recall that by the symmetry of mixed

partial derivatives, the (M + 1)-multilinear function DM+1 is symmetric, that is

DM+1|x|{hm}M+1
m=1 = DM+1|x|{hσ(m)}M+1

m=1

for any permutation σ of the indices {1, . . . ,M + 1}. In particular, we may make

each hm the final direction, in order to exploit the recursive means of computing

higher-order derivatives, as given in (17):

DM+1|x|{hm}M+1
m=1 =

1

M + 1

M+1∑
n=1

DM+1|x|{hm}M+1
m=1

=
1

M + 1

M+1∑
n=1

DM+1|x|(h1, . . . , hn−1, hn+1, hM+1, hn)

=
1

M + 1

M+1∑
n=1

[∇(DM |x|(h1, . . . , hn−1, hn+1, hM+1))] · hn (27)

The summands of (27) are given by the inductive hypothesis (26):

DM+1|x|{hm}M+1
m=1

=
1

M + 1

M+1∑
n=1

∇
[

1

|x|M−1

bM/2c∑
`=0

cM,`

∑
A⊆{1,...,M}
n/∈A, |A|=2`

dp{hk}k∈A

∏
j /∈A∪{n}

(
hj ·

x

|x|

)]
· hn. (28)

Interchanging summation and distributing the gradient in (28) then gives
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DM+1|x|{hm}M+1
m=1

=
1

M + 1

bM/2c∑
`=0

cM,`

M+1∑
n=1

∑
A⊆{1,...,M}
n/∈A, |A|=2`

dp{hk}k∈A∇
[

1

|x|M−1

∏
j /∈A∪{n}

(
hj ·

x

|x|

)]
· hn. (29)

We now directly evaluate the gradient in (29), using the Product Rule:

∇
[

1

|x|M−1

∏
j /∈A∪{n}

(
hj ·

x

|x|

)]
· hn (30)

= (∇|x|1−M)
∏

j /∈A∪{n}

(
hj ·

x

|x|

)
· hn +

1

|x|M−1
∇
∏

j /∈A∪{n}

(
hj ·

x

|x|

)
· hn

= (1−M)|x|−M
∏

j /∈A∪{n}

(
hj ·

x

|x|

)
(∇|x| · hn) (31)

+
1

|x|M−1

∑
j /∈A∪{n}

∏
i/∈A∪{n}∪{j}

(
hi ·

x

|x|

)[
∇
(

hj ·
x

|x|

)]
· hn. (32)

The gradient in (31) is actually a special case of our overall computation — it

represents a first order derivative of the norm function, as derived above in (21):

∇|x| · hn = D|x|hn = hn ·
x

|x|
. (33)

Likewise, the gradient in (32) is related to the second derivative of the norm (23):

[
∇
(

hj ·
x

|x|

)]
· hn = [∇(D|x|hj) · hn

= D2|x|(hj, hn)

=
1

|x|

[
hj · hn −

(
hj ·

x

|x|

)(
hn ·

x

|x|

)]
. (34)

Substituting (33) for (31) and (34) for (32), (30) becomes

∇
[

1

|x|M−1

∏
j /∈A∪{n}

(
hj ·

x

|x|

)]
· hn =

1−M

|x|M
∏
j /∈A

(
hj ·

x

|x|

)
(35)
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+
1

|x|M
∑

j /∈A∪{n}

∏
i/∈A∪{n}∪{j}

(
hi ·

x

|x|

)
(hj · hn)

− 1

|x|M
∑

j /∈A∪{n}

∏
i/∈A

(
hi ·

x

|x|

)
. (36)

We now note that (36) is a sum of multiple copies of the same vector. In particular,

the number of indices j which are not in A ∪ {n} is the total number of indices,

namely M + 1, minus the number of indices in A ∪ n, namely 2` − 1. Thus, (36)

becomes

− 1

|x|M
∑

j /∈A∪{n}

∏
i/∈A

(
hi ·

x

|x|

)
= −M − 2` + 2

|x|M
∏
i/∈A

(
hi ·

x

|x|

)
. (37)

Collecting common terms, we obtain a simplified version of (35):

∇
[

1

|x|M−1

∏
j /∈A∪{n}

(
hj ·

x

|x|

)]
· hn

=
1

|x|M

[ ∑
j /∈A∪{n}

∏
i/∈A∪{n}∪{j}

(
hi ·

x

|x|

)
(hj · hn)− (2M − 2`− 1)

∏
j /∈A

(
hj ·

x

|x|

)]
. (38)

Using (38), we may return to our expression for the (M + 1)th derivative (29):

(M + 1)|x|MDM+1|x|{hm}M+1
m=1

=

bM/2c∑
`=0

cM,`

M+1∑
n=1

∑
A⊆{1,...,M}
n/∈A, |A|=2`

dp{hk}k∈A

∑
j /∈A∪{n}

∏
i/∈A∪{n}∪{j}

(
hi ·

x

|x|

)
(hj · hn) (39)

−
bM/2c∑
`=0

cM,`

M+1∑
n=1

∑
A⊆{1,...,M}
n/∈A, |A|=2`

dp{hk}k∈A(2M − 2`− 1)
∏
j /∈A

(
hj ·

x

|x|

)
. (40)

To continue, we simplify (39) by noting
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M+1∑
n=1

∑
A⊆{1,...,M+1}−{n}

|A|=2`

dp{hk}k∈A

∑
j /∈A∪{n}

(hj · hn)
∏

i/∈A∪{n}∪{j}

(
hi ·

x

|x|

)

= 2(` + 1)
∑

B⊆{1,...,M+1}
|B|=2(`+1)

dp{hk}k∈B

∏
j /∈B

(
hj ·

x

|x|

)
, (41)

since, for a given B ⊆ {1, . . . ,M + 1}, |B| = 2` + 1, we may pull out any of the

` + 1 products hj · hn, and what remains is a term from the distinct product of

A ⊆ {1, . . . ,M + 1} − {n}, |A| = 2`. The extra “2” factor comes from the fact that

we count both hj ·hn and hn ·hj, thus over-counting the terms of a distinct product.

Similarly, we may simplify (40) by noting

M+1∑
n=1

∑
A⊆{1,...,M+1}−{n}

|A|=2`

dp{hk}k∈A

∏
j /∈A

(
hj ·

x

|x|

)

= (M − 2` + 1)
∑

B⊆{1,...,M+1}
|B|=2`

dp{hk}k∈B

∏
j /∈B

(
hj ·

x

|x|

)
, (42)

since, for a given B ⊆ {1, . . . ,M + 1}, |B| = 2`, one may write B as A ⊆ {1, . . . ,M + 1}−

{n}, |A| = 2`. Specifically, each such B can be written as such an A exactly M−2`+1

times — one for each n ∈ {1, . . . ,M + 1} − A.

Substituting (41) and (42) into (39) and (40), respectively, we have

DM+1|x|{hm}M+1
m=1

=
2(` + 1)

(M + 1)|x|M

bM/2c∑
`=0

cM,`

∑
B⊆{1,...,M+1}
|B|=2(`+1)

dp{hk}k∈B

∏
j /∈B

(
hj ·

x

|x|

)

− (2M − 2`− 1)(M − 2` + 1)

(M + 1)|x|M

bM/2c∑
`=0

cM,`

∑
B⊆{1,...,M+1}

|B|=2`

dp{hk}k∈B

∏
j /∈B

(
hj ·

x

|x|

)
.
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Considering (26), this equivalently means that the coefficients of the (M + 1)th

derivative can be recursively obtained in terms of the coefficients of the Mth deriva-

tive:

cM+1,` =
1

M + 1
[2`cM,`−1 − (2M − 2`− 1)(M − 2` + 1)cM,`] (43)

for all `. Recalling the definition of the Mth coefficients (25), we now verify that the

(M + 1)th coefficient is of the same form:

cM+1,` =
1

M + 1
[2`cM,`−1 − (2M − 2`− 1)(M − 2` + 1)cM,`]

=
1

M + 1
[2`(−1)M+`(2M − 2`− 1)!!

− (2M − 2`− 1)(M − 2` + 1)(−1)M+`+1(2M − 2`− 3)!!]

=
(−1)M+`

M + 1
[2`(2M − 2`− 1)!! + (M − 2` + 1)(2M − 2`− 1)!!]

=
(−1)M+`

M + 1
(M + 1)(2M − 2`− 1)!!

= (−1)(M+1)+`+1(2(M + 1)− 2`− 3)!!,

proving the result. �

Corollary 3.2.2. For any M ≥ 1,

DM |x|hM

=
|h|M

|x|M−1

bM/2c∑
`=0

(−1)M+`+1 M !

2M(2M − 2`− 1)

(
2M − 2`

M − `, M − 2`, `

)(
h · x
|h||x|

)M−2`

.

Proof: The previous result gives

DM |x|{hm}M
m=1 =

1

|x|M−1

bM/2c∑
`=0

(−1)M+`+1(2M−2`−3)!!
∑

A⊆{1,...,M}
|A|=2`

dp{hk}k∈A

∏
j /∈A

(
hj ·

x

|x|

)
.
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Taking hm = h for all m = 1, . . . ,M gives

∏
j /∈A

(
hj ·

x

|x|

)
=

(
h · x

|x|

)M−2`

since the number of j ∈ {1, . . . ,M} such that j /∈ A is M − 2`. Next, note that for

any ` = 1, . . . , bM/2c and any A ⊆ {1, . . . ,M} such that |A| = 2`, the total number

of distinct dot products of {hk}k∈A is

(
M

2`

)(
2`

2, . . . , 2

)
1

`!
,

as there are
(

M
2`

)
ways to pick the terms to be formed into dot products,

(
2`

2,...,2

)
ways

to break them into pairs, remembering to divide by `!, so as to count each product

of ` distinct dot products exactly once. Moreover, since hk = h for all k ∈ A, every

term of dp{hk}k∈A is a product of ` copies of h · h, namely |h|2`. Thus,

DM |x|{hm}M
m=1

=
1

|x|M−1

bM/2c∑
`=0

(−1)M+`+1(2M − 2`− 3)!!

(
M

2`

)(
2`

2, . . . , 2

)
1

`!
|h|2`

(
h · x

|x|

)M−2`

.

Notice that, assuming M > 2,

(2M − 2`− 3)!!

(
M

2`

)(
2`

2, . . . , 2

)
1

`!

=
(2M − 2`− 3)!

2M−`−2(M − `− 2)!

M !

(M − 2`)!(2`)!

(2`)!

2``!

=
M !

2M−2

(2M − 2`− 2)(2M − 2`− 1)(2M − 2`)

(2M − 2`− 2)(2M − 2`− 1)(2M − 2`)

=
M !

2M(2M − 2`− 1)

(2M − 2`)!

(M − `)!(M − 2`)!`!

=
M !

2M(2M − 2`− 1)

(
2M − 2`

M − `, M − 2`, `

)
,

and so we have our desired result for M ≥ 3. Evaluation at M = 1, 2 also holds. �
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The results above allow us to take Mth derivatives of the Euclidean norm

functional. This will become useful as we establish their connection to time deriva-

tives of the Doppler information in the following chapter. They may also be used

in a Taylor approximation of the Euclidean norm functional. The following figures

illustrate what appears to be Taylor series convergence in two dimensions. That is,

we consider
M∑

m=0

Dm|x|hm

m!
, (44)

where Dm|x|hm is given by Corollary 3.2.2. In particular, the graphs on the left show

this Taylor approximation (44) for different numbers of terms M , whereas the graphs

on the right show the error when the Euclidean norm functional is subtracted from

this approximation. In these graphs, the darker shades represent lower values, while

the lighter shades represent higher values. The center of each of the graphs is an

arbitrary vector x 6= 0, and the circle drawn in the righthand graphs is given by the

set of points {x+h : h ∈ R2, |h| = |x|}. Furthermore, the origin is the leftmost point

of each of these circles. In the righthand graphs, gray represents points close to zero;

that is, points in which the truncated Taylor series is close to the Euclidean norm

that it is approximating. As one expects, it appears that these Taylor polynomials

do converge to the norm function on a neighborhood of x as M grows large. Let us

now consider derivatives of the bearing function, as they will arise in Chapter VI.

3.3 Derivatives of the Bearing Function

For any positive integer N , the bearing function b : RN → RN is defined by

b(x) =
x

|x|
.

The following theorem follows naturally from Theorem 3.2.1.
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Figure 4 Taylor Series Approximation (1, 2, 6 terms)
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Figure 5 Taylor Series Approximation (20, 40 terms), Euclidean Norm Functional
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Theorem 3.3.1. For any M ≥ 1,

DM x

|x|
{hm}M

m=1 =
1

xM

dM/2e∑
`=0

(−1)M+`(2M − 2`− 1)!!

×
{ M∑

k=1

[ ∑
A⊆{1,...,M}−{k}

|A|=2(`−1)

dp{hk′}k′∈A

∏
j /∈A∪{k}

(
hj ·

x

|x|

)]
hk

+
∑

A⊆{1,...,M}
|A|=2`

dp{hk}k∈A

[∏
j /∈A

(
hj ·

x

|x|

)]
x

|x|

}
.

Proof: The result is immediate when M = 1. For M ≥ 2, fix any h0 ∈ RN . We then

consider derivatives of the real-valued function
x

|x|
· h0, recalling

x

|x|
· h0 = D|x|h0:

DM

(
x

|x|
· h0

)
{hm}M

m=1 = DM (D|x|h0) {hm}M
m=1 = DM+1|x|{hm}M

m=0.

By Theorem 3.2.1, we therefore have

DM

(
x

|x|
· h0

)
{hm}M

m=1

=
1

|x|M

dM/2e∑
`=0

(−1)M+`(2M − 2`− 1)!!
∑

A⊆{0,...,M}
|A|=2`

dp{hk}k∈A

∏
j /∈A

(
hj ·

x

|x|

)

=
1

|x|M

dM/2e∑
`=0

(−1)M+`(2M − 2`− 1)!!

×
{ M∑

k=1

∑
B⊆{1,...,M}−{k}

|B|=2(`−1)

dp{hk′}k′∈B(hk · h0)
∏

j /∈B∪{0}∪{k}

(
hj ·

x

|x|

)

+
∑

A⊆{1,...,M}
|A|=2`

dp{hk}k∈A

[ ∏
j /∈A−{0}

(
hj ·

x

|x|

)](
h0 ·

x

|x|

)}
.

Since our choice for h0 is arbitrary, our theorem naturally follows in this case. �
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As an immediate corollary, note the first derivative to the bearing function is

D
x

|x|
(h) =

1

|x|

[
h− h · x

|x|2
x

]
.

Finally, after proceeding as we did in the proof of Corollary 3.2.2, one arrives at the

following corollary.

Corollary 3.3.2. For any M ≥ 2 ,

DM x

|x|
hM =

|h|M

|x|M

dM/2e∑
`=0

(−1)M+` M !

2M

(
2M − 2`

M − `, M − 2`, `

)

×
(

h · x
|h||x|

)M−2` [
2`

M − 2` + 1

(
h · x
|h||x|

)
h

|h|
+

x

|x|

]
.

Now that we have calculated these derivatives, we can apply them to the re-

mainder of this thesis. The first of these applications is to establish the observability

of the Doppler-only bistatic system.
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IV. Observability of the Doppler-Only Bistatic System

Bistatic radar uses two antennas at different locations: one for transmission and the

other for reception. In this chapter, we will mathematically derive the limitations

of Doppler-only bistatic radar. In particular, we show that even for a target moving

at a constant velocity, the Doppler information provided by a single transmitter and

receiver is wholly inadequate in determining the target’s position at any time. This

is not to say that Doppler derivative information is useless, as we do discover an

original result that does narrow down the target’s location to some extent.

As we are restricted to a single transmitter and a single receiver, our hope in

being able to determine the target state lies with making multiple measurements over

time. However, rather than assume we have measured ρ̇(tk) for M distinct times,

we instead make the mathematically simpler assumption that we have knowledge of

M − 1 derivatives of ρ̇ at a single time t. For example, instead of having ρ̇(t0) and

ρ̇(t1), we assume we have ρ̇(t) and ρ̈(t) for some t. Therefore, in practical applications

where only the Doppler is given explicitly, the techniques of this chapter would first

require the estimation of the derivatives of the Doppler shift. This would most likely

be accomplished by measuring ρ̇(t) at several distinct times, and then using finite

differences of these measurements to approximate ρ(M)(t).

In this chapter, we first establish the relationship between derivatives of the

Euclidean norm functional and time derivatives of the bistatic distance. Applying

this understanding to the Doppler information will then establish the extent to which

one can estimate the target state.
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4.1 Derivative Relationship

Suppose x : R → RN is a function of t. By the Chain Rule, as given in the

appendix, it follows that

d

dt
|x(t)| = D|x|ẋ(t)

∣∣∣∣
x=x(t)

=
x(t)

|x(t)|
· ẋ(t),

and further,

d2

dt2
|x(t)| =

d

dt
[D|x|ẋ(t)]

∣∣∣∣
x=x(t)

= D|x|ẍ(t)

∣∣∣∣
x=x(t)

+ D2|x|(ẋ(t), ẋ(t))

∣∣∣∣
x=x(t)

=
x(t)

|x(t)|
· ẍ(t) +

1

|x(t)|

[
|ẋ(t)|2 − (x(t) · ẋ(t))2

|x(t)|2

]
.

Assuming ẍ(t) = 0 for all t, we inductively see that

dM

dtM
|x(t)| = DM |x|ẋ(t)M

∣∣∣∣
x=x(t)

,

as all other terms will contain the multilinear operators Dm, m < M , evaluated at

second or higher degree derivative of x, all of which are identically zero. In particular,

we have

d

dt
|x(t)| = x(t)

|x(t)|
· ẋ(t),

d2

dt2
|x(t)| = 1

|x(t)|

[
|ẋ(t)|2 − [x(t) · ẋ(t)]2

|x(t)|2

]
.

Interestingly, one can iteratively arrive at the same conclusion without using Fréchet

derivatives. To do this, let x, y : R → RN be n-times differentiable. Then, suppress-

ing dependence on t, repeated application of the Product Rule yields a Binomial
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Theorem version of the Product Rule:

dn

dtn
(x · y) =

n∑
k=0

(
n

k

)
x(k) · y(n−k).

It follows that if g : R → R is defined by g(t) ≡ |x(t)| for all t, then

n∑
k=0

(
n

k

)
g(k)g(n−k) =

n∑
k=0

(
n

k

)
x(k) · x(n−k).

Suppose our parameterized path x has constant velocity, that is, ẍ = 0. Then,

considering the case n = 1 for our above equation gives

gġ + ġg = x · ẋ + ẋ · x,

and so

ġ =
x · ẋ
g

=
x · ẋ
|x|

.

For n = 2, we have

gg̈ + 2ġġ + g̈g = 2ẋ · ẋ,

and so

g̈ =
|ẋ|2 − (ġ)2

g
=

1

|x|

[
|ẋ|2 − (x · ẋ)2

|x|2

]
,

as expected. This same technique may be used to iteratively find g(m) for all m.

4.2 Bistatic Observability

To reiterate, assuming ẍ = 0, we have

dM

dtM
|x(t)| = DM |x|ẋ(t)M

∣∣∣∣
x=x(t)

.
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If we then apply Corollary 3.2.2 to the case where the x(t) from the corollary is taken

to be x(t) − T , and then x(t) − R, we obtain the following expression for the Mth

derivative of the bistatic distance:

Theorem 4.2.1. We have

(−1)M+12M

M !
ρ(M)(t) = s(t)

bM/2c∑
`=0

(−1)`

2M − 2`− 1

(
2M − 2`

M − `, M − 2`, `

)
× [pT (t)M−1 cosM−2` θT (t) + pR(t)M−1 cosM−2` θR(t)],

where s(t) = |ẋ(t)|, py(t) =
|ẋ(t)|

|x(t)− y|
and cos θy(t) =

ẋ(t) · (x(t)− y)

|ẋ(t)||x(t)− y|
, for y = T, R.

Recall that we are assuming the derivatives ρ(M)(t) are given data for all M ,

and so we only have unknowns s(t), pT (t), pR(t), cos θT (t), and cos θR(t). Suppressing

dependence on t, the first five equations are

ρ̇ = s(cos θT + cos θR)

−2ρ̈ = s[pT cos2 θT + pR cos2 θR − 2(pT + pR)]

1

3
ρ(3) = s[(p2

T cos3 θT + p2
R cos3 θR)− (p2

T cos θT + p2
R cos θR)]

−1

3
ρ(4) = s[5(p3

T cos4 θT + p3
R cos4 θR)− 6(p3

T cos2 θT + p3
R cos2 θR) + (p3

T + p3
R)]

1

15
ρ(5) = s[7(p4

T cos5 θT + p4
R cos5 θR)− 10(p4

T cos3 θT + p4
R cos3 θR)

+ 3(p4
T cos θT + p4

R cos θR)].

Clearly, it is difficult to solve this system of equations. Gaussian elimination, al-

gebraic geometry and numerical techniques have all been applied in search of the

solution, with no successful conclusion.

But for now, suppose we acquired enough derivatives to resolve these un-

knowns. Dividing s by pT and pR would yield |x − T | and |x − R|, respectively.

Having the distances of x from both the transmitter and receiver, the location x(t)

would be determined up to a circle. Meanwhile, as cos θT and cos θR give the an-
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gles between ẋ(t) and x(t) − T and x(t) − R, respectively, knowledge of these five

constants would also completely determine the components of ẋ(t) which lie in the

plane spanned by x(t)−T and x(t)−R. Since we would also have |ẋ(t)|, this would

determine ẋ(t) up to two distinct points.

However, we note that the symmetry in our polynomials is such that we can

never distinguish pT from pR, and so we could only hope to resolve location up to two

symmetric circles. We therefore conclude, even with infinitely differentiable Doppler

information coupled with a known constant-velocity target, that the Doppler-only

bistatic system can only ever at most determine the target’s position up to a circle,

and from that, determine the target’s velocity up to two distinct vectors. Thus, even

with the harsh assumption that ẍ(t) = 0 for all t, the Doppler-only bistatic system

is insufficient for target observability.

Therefore, if one wishes to have a Doppler-only radar system in which a target’s

position can be completely determined, one is forced to employ multiple transmitters

and/or receivers, that is, a nontrivial bistatic system.
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V. Doppler-Only Multistatic Target State Estimation

Let us now consider the case where we have measurements from multiple transmitter-

receiver pairs at a fixed time. Given enough pairs, we determine the target’s position

and velocity — a previously unsolved problem. To be precise, we characterize the

target state as the global minimizer of a certain objective function. We then de-

termine the gradient and Hessian of this objective function, and, further, provide a

simple minimization algorithm to find this global minimizer, thereby yielding a tar-

get state estimate. These results constitute a significant improvement over previous

results; both those given in the previous chapter, as well as those found elsewhere in

the literature. Here, not only do we completely determine the position and velocity

of a target, but we also do so without assuming the velocity of the target is constant.

In this chapter, let N be the spatial dimension, typically either 2 or 3, and P

be the number of transmitter-receiver pairs. We will use a dot (·) and | · | to indicate

the dot product and norm for RN , respectively; and 〈·, ·〉 and ‖ · ‖, similarly, for

RP . Let {Tp}P
p=1 ⊆ RN be the locations of the transmitters, and {Rp}P

p=1 ⊆ RN the

locations of the receivers. In the theory below, we do not assume the transmitter

and receiver locations are necessarily distinct — that is, one may have Ti = Tj for

i 6= j and similarly for receivers. For example, a real-world system consisting of a

single receiver and four transmitters would have T1, T2, T3 and T4 all being distinct,

while R1 = R2 = R3 = R4.

5.1 The Objective Function

We define the bearing matrix to be a function of position B : RN → RP×N

whose pth row is given by

[Bp,·(x)]T =
x− Tp

|x− Tp|
+

x−Rp

|x−Rp|
. (45)
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Recall that if Doppler measurements are without error, we have

[
x(t)− Tp

|x(t)− Tp|
+

x(t)−Rp

|x(t)−Rp|

]
· ẋ(t) = ρ̇p(t). (46)

Letting d : R → RP be defined by

d(t) =


ρ1(t)

ρ2(t)
...

ρP (t)

 ,

we may express the system of equations given by (46) for p = 1, 2, . . . , P as a single

matrix-vector equation:

B(x(t))ẋ(t) = d(t). (47)

If P is large enough, then the system of differential equations in (47) is not under-

determined. If only we had an initial condition, namely, if we actually knew x(t)

for some t, we could track the target using numerical ordinary differential equation

solvers. This approach is a subject of ongoing research, and is not discussed further

here. Indeed, we instead show that given enough transmitter-receiver pairs, the in-

formation contained in (47) is enough to determine the position of the target, even

when the Doppler measurements are only given for a single time. In particular, we

fix t and attempt to solve the equation

B(x)v = d (48)

for the target’s position x ∈ RN and velocity v ∈ RN . We note that (48) is equivalent

to solving

‖B(x)v − d‖ = 0,
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and pose it as a minimization problem; that is, we wish to find the target state

(x∗, v∗) that satisfies

‖B(x∗)v∗ − d‖ = min
x,v∈RN

‖B(x)v − d‖. (49)

Note that a solution to (49) will exist even when a solution to (48) does not, which

could happen when P > N and d has been corrupted, either by measurement error

or quantization.

Since our expression for d is linear in v, solving (49) is equivalent to minimizing

the function Υ : RN → R defined by

Υ(x) ≡ min
v∈RN

‖B(x)v − d‖2. (50)

For a fixed x ∈ RN , the minimizer of the linear least-squares problem ‖B(x)v − d‖2

is given by

v∗(x) = [B(x)]†d, (51)

where [B(x)]† = [(B(x))T B(x)]−1(B(x))T is the pseudoinverse of B(x). Note that

we assume B(x) is of full rank so that this pseudoinverse exists. Furthermore, with

the projection onto the orthogonal complement of the range of matrix B(x) given

by

PB(x)⊥ ≡ I −B(x)[B(x)]†,

it follows, by direct substitution of (51) into (50), that

Υ(x) = ‖PB(x)⊥d‖2. (52)

Figure 6 illustrates a two-dimensional example of our objective function, where the

lighter regions indicate values of the objective function Υ(x) which are close to zero,

and the darker regions correspond to larger values of Υ(x). In this example, a “◦”
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denotes a transmitter location, “+” denotes the receiver location and “♦” denotes

the target location.

Figure 6 Example of Objective Function

In a real-life application, one would know the positions of the transmitters and

receiver, as well as the Doppler information, all of which will yield the objective func-

tion. However, the true location of the target would not be known. In other words,

one would not see the diamond in Figure 6, and instead would need to determine its

location by finding the lightest point of the graph. The purpose of this chapter is to

show how to find the diamond; that is, how to minimize this objective function, as

its global minimum corresponds to the target state in question.
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To minimize (52), first note that

0 ≤ Υ(x) = ‖PB(x)⊥d‖2 ≤ ‖PB(x)⊥‖2‖d‖2 ≤ ‖d‖2,

for all x ∈ RN . Furthermore, we know that the value of the objective function Υ

evaluated at the target’s true location is, in fact, zero. It follows that the target’s

location gives a global minimum to the objective function. Unfortunately, as (52)

is defined in terms of a nonlinear matrix-valued function B(x), it appears unlikely

that any closed form expression for the minimizers can be found. We therefore focus

on a numerical approach to find the minimizers.

5.2 The Gradient of the Objective Function

To reiterate, the location of the target is the minimizer of (52). In this section,

we explicitly compute the gradient of (52), the natural first step in solving any

such optimization problem. As the existing methods for estimating the target state

in a Doppler-only multistatic system are completely different than our own, this

computation is original.

Throughout the proof of the next result and the rest of this thesis, we denote

partial derivatives parenthetically with the following superscript convention. For a

function g of several real variables, let

g(n1,n2,...,nk)(x) ≡ ∂kg(x)

∂xnk
· · · ∂xn2∂xn1

.

We note this notation is nonstandard, as g(n) usually denotes an nth order derivative

with respect to the same variable.

Theorem 5.2.1. The gradient of the objective function (52) is given by

∇Υ(x) = −2

{
P∑

p=1

[PB(x)⊥d]p

[
P(x−Tp)⊥

|x− Tp|
+

P(x−Rp)⊥

|x−Rp|

]}
[B(x)]†d.
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Proof: We first notice the following alternative expression for the objective function

(52), based upon the fact that PB(x)⊥ = P T
B(x)⊥ = P 2

B(x)⊥ . Suppressing dependence

on x:

Υ = ‖PB⊥d‖2 = 〈PB⊥d, PB⊥d〉 = 〈P T
B⊥PB⊥d, d〉 = 〈PB⊥d, d〉 = dT PB⊥d.

Since d does not depend upon xn, we have

∂Υ(x)

∂xn

≡ Υ(n)(x) = dT P
(n)

B(x)⊥
d = 〈P (n)

B(x)⊥
d, d〉. (53)

Thus, finding Υ(n)(x) reduces to finding P
(n)

B(x)⊥
. Note that for a matrix-valued

function A(x) such that A(x) has a matrix inverse [A(x)]−1 for all x, we have

A(x)[A(x)]−1 = I, and so the Product Rule yields

([A(x)]−1)(n) = −[A(x)]−1A(n)(x)[A(x)]−1.

Suppressing dependence on x, the Product Rule further gives

P
(n)

B⊥ = [I −BB†](n)

= [I −B(BT B)−1BT ](n)

= −B(n)(BT B)−1BT −B[(BT B)−1](n)BT −B(BT B)−1(BT )(n)

= −B(n)B† + B(BT B)−1(BT B)(n)(BT B)−1BT − (B†)T (B(n))T

= −B(n)B† + (B†)T [(B(n))T B + BT B(n)]B† − (B†)T (B(n))T

= −B(n)B† + (B†)T (B(n))T BB† + (B†)T BT B(n)B† − (B†)T (B(n))T

= −B(n)B† + (B†)T (B(n))T PB + P T
B B(n)B† − (B†)T (B(n))T

= PBB(n)B† −B(n)B† + (PBB(n)B†)T − (B(n)B†)T

= −PB⊥B(n)B† − (PB⊥B(n)B†)T . (54)
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Substituting (54) into the expression for Υ(n)(x) above (53) gives

∂Υ(x)

∂xn

= 〈P (n)

B⊥d, d〉

= −〈PB⊥B(n)B†d, d〉 − 〈(PB⊥B(n)B†)T d, d〉

= −〈PB⊥B(n)B†d, d〉 − 〈d, PB⊥B(n)B†d〉

= −2〈PB⊥B(n)B†d, d〉

= −2〈B(n)B†d, PB⊥d〉. (55)

What remains is to determine partial derivatives of B(x). Letting h = en, where en

is the nth column of the N ×N identity matrix, Theorem 3.3.1 gives

∂

∂xn

x

|x|
=

1

|x|

[
en −

en · x
|x|2

x

]
=

Px⊥en

|x|
. (56)

Since the pth row of B(x) is given by (45), we see from (56) that

B(n)
p,· (x) = eT

n

[
P(x−Tp)⊥

|x− Tp|
+

P(x−Rp)⊥

|x−Rp|

]
. (57)

Thus, substituting (57) into (55) gives the following explicit inner product evaluation:

∂Υ(x)

∂xn

= −2〈B(n)(x)[B(x)]†d, PB(x)⊥d〉

= −2
P∑

p=1

[B(n)(x)[B(x)]†d]p[PB(x)⊥d]p

= −2eT
n

{
P∑

p=1

[PB(x)⊥d]p

[
P(x−Tp)⊥

|x− Tp|
+

P(x−Rp)⊥

|x−Rp|

]}
[B(x)]†d.

As Υ(n)(x) is the nth component of ∇Υ(x), the proof is complete. �

While the gradient is all that is needed in many optimization algorithms, better

performance can usually be obtained by making use of curvature information; that

is, with second derivatives.
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5.3 The Hessian of the Objective Function

As in the previous section, methods and results below are unique to this thesis,

not appearing in the preexisting literature.

Theorem 5.3.1. The Hessian of the objective function (52) is given by

[∇2Υ(x)]n,m = −2dT [PB(x)⊥B(n)(x)[B(x)]†](m)d,

where the middle factor is given by

[PB(x)⊥B(n)(x)[B(x)]†](m)

= −[PB(x)⊥B(m)(x)[B(x)]† + (PB(x)⊥B(m)(x)[B(x)]†)T ]B(n)(x)[B(x)]†

+ PB(x)⊥B(n,m)(x)[B(x)]†

+ PB(x)⊥B(n)[B(x)]†[(PB(x)⊥B(m)(x)[B(x)]†)T −B(m)(x)[B(x)]†], (58)

while B(n)(x) is given by its pth row in (57):

B(n)
p,· (x) = eT

n

[
P(x−Tp)⊥

|x− Tp|
+

P(x−Rp)⊥

|x−Rp|

]
,

and B(n,m)(x) is similarly given by

B(n,m)
p,· (x) = −

[
P(x−Tp)⊥

|x− Tp|
(emeT

n + ene
T
m) +

(
eT

n

P(x−Tp)⊥

|x− Tp|
em

)
I

]
x− Tp

|x− Tp|

−
[
P(x−Rp)⊥

|x−Rp|
(emeT

n + ene
T
m) +

(
eT

n

P(x−Rp)⊥

|x−Rp|
em

)
I

]
x−Rp

|x−Rp|
. (59)

Proof: The entries of the Hessian are given by partial derivatives of the entries of

the gradient. That is, considering (55), we see that entries of the Hessian are of the

form

Υ(n,m)(x) ≡ ∂2Υ(x)

∂xm∂xn

=
∂

∂xm

Υ(n)(x) =
∂

∂xm

[−2dT PB(x)⊥B(n)(x)[B(x)]†].
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Further, since d does not vary with x, we have by the Product Rule that

Υ(n,m)(x) = −2dT [PB(x)⊥B(n)(x)[B(x)]†](m)d.

To express the middle term, we have by the Product Rule that,

[PB⊥B(n)B†](m) = P
(m)

B⊥ B(n)B† + PB⊥B(n,m)B† + PB⊥B(n)(B†)(m), (60)

suppressing dependence on x. We also notice that with the Product Rule, BB† = PB

gives

B(m)B† + B(B†)(m) = P
(m)
B .

Subtracting B(m)B† and multiplying the resulting equation on the left by B† gives

(B†)(m) = B†[P
(m)
B −B(m)B†]. (61)

Substituting (61) into (60) yields

[PB⊥B(n)B†](m) = P
(m)

B⊥ B(n)B† + PB⊥B(n,m)B† + PB⊥B(n)B†[P
(m)
B −B(m)B†]. (62)

Now, we substitute (54) into (62) to get

[PB⊥B(n)B†](m) = −[PB⊥B(m)B† + (PB⊥B(m)B†)T ]B(n)B† + PB⊥B(n,m)B†

+ PB⊥B(n)B†[PB⊥B(m)B† + (PB⊥B(m)B†)T −B(m)B†]. (63)

Here, we notice that

B†PB⊥ = (BT B)−1BT [I −B(BT B)−1BT ] = 0,

and so (63) reduces to (58).
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At this point, the expression for B(n) given in the result is simply a restatement

of (57) from the proof of the previous result. We therefore have only to determine

B(n,m). Considering Theorem 3.3.1, we have

∂2

∂xm∂xn

x

|x|

= D2 x

|x|
(en, em)

=
1

|x|2

{
3

(
en ·

x

|x|

)(
em · x

|x|

)
x

|x|

−
[(

en ·
x

|x|

)
em +

(
em · x

|x|

)
en + (en · em)

x

|x|

]}
=

1

|x|3

{
3

|x|2
xeT

nxeT
mx−

[
emeT

nx + ene
T
mx + xeT

nem

]}
= − 1

|x|3

{[
emeT

nx− xeT
mxeT

nx

|x|2

]
+

[
ene

T
mx− xeT

nxeT
mx

|x|2

]
+

[
xeT

nem − xeT
nxeT

mx

|x|2

]}
= − 1

|x|3

{[
em − x

eT
mx

|x|2

]
eT

n +

[
en − x

eT
nx

|x|2

]
eT

m + eT
n

[
em − x

eT
mx

|x|2

]
I

}
x

= − 1

|x|3
[
Px⊥(emeT

n + ene
T
m) + (eT

nPx⊥em)I
]
x. (64)

As the rows of the bearing matrix B(x) are given by (45), our expression for (59)

follows from (64). �

Assuming Υ has sufficient smoothness, the Hessian must be symmetric by the

symmetry of mixed partial derivatives. However, the expression above does not

make this fact obvious. To convince the reader that the expression for the Hessian

given in Theorem 5.3.1 is correct, we now verify that it is indeed symmetric; that is,

[∇2Υ(x)]n,m = [∇2Υ(x)]m,n.

Let A ∈ RP×P be a matrix. Then, we have

dT Ad = 〈d,Ad〉 = 〈AT d, d〉 = 〈d,AT d〉 = dT AT d. (65)
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Further, rearranging (58) gives

[PB⊥B(n)B†](m) = PB⊥B(n,m)B† (66)

− PB⊥B(m)B†B(n)B† − PB⊥B(n)B†B(m)B† (67)

− (PB⊥B(m)B†)T B(n)B† + PB⊥B(n)B†(PB⊥B(m)B†)T . (68)

We see that the expressions in (66) and (67) are symmetric with respect to m and

n. Finally, (68) satisfies

− (PB⊥B(m)B†)T (PB⊥B(n)B†) + (PB⊥B(n)B†)(PB⊥B(m)B†)T

= [−(PB⊥B(n)B†)T (PB⊥B(m)B†) + (PB⊥B(m)B†)(PB⊥B(n)B†)T ]T ,

that is, taking the transpose of (68) is equivalent to interchanging m and n. By (65),

this implies that the Hessian is symmetric, as desired.

5.4 A Minimization Algorithm

With expressions for the gradient and Hessian of the objective function es-

tablished in Theorems 5.2.1 and 5.3.1, respectively, we now use these results to

determine the target state in a Doppler-only multistatic system, provided we have

enough transmitter-receiver pairs. Specifically, recall that the target’s position is

the minimizer of objective function Υ(x). Using standard, well-known techniques

of optimization, we now numerically determine this minimizer. Though the expres-

sions for the gradient and Hessian of Υ(x) given in the previous sections are new,

our application of them in this section makes judicious use of ideas that appear in

well-known optimization textbooks, such as [27].

Recall that the gradient is the direction of greatest instantaneous increase, and

the negative gradient that of greatest decrease. Gradient descent is a greedy opti-

mization algorithm, taking steps in the direction of greatest instantaneous decrease,
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that is, negative of the gradient direction. A more efficient optimization algorithm

is Newton’s method. Here, the idea is to approximate the objective function by its

second order multivariable Taylor polynomial

Υ(x + h) ∼= Υ(x) + [∇Υ(x)]T h +
1

2
hT [∇2Υ(x)]h,

and move in the direction of the vertex of this paraboloid, given by the vector

−[∇2Υ(x)]−1∇Υ(x), assuming that the Hessian is, in fact, positive-definite.

However, the Hessian of objective function Υ(x) is not always positive-definite.

Therefore, in defining the iteration of our algorithm

xk+1 = xk + αkpk, (69)

where pk is the search direction and αk is the step length, we need to be careful in

establishing pk, as we cannot always employ Newton’s method. We therefore arrive

at the following piecewise-defined search direction:

pk =

 −∇Υ(xk) when ∇2Υ(xk) is not positive-definite

−[∇2Υ(xk)]
−1∇Υ(xk) when ∇2Υ(xk) is positive-definite

.

We need to further establish how the step length αk is determined. To ensure

some sense of convergence [27, pp. 41–42], we use a backtracking line search, given

by the following algorithm:

α = 1;
while Υ(xk + αpk) > Υ(xk) + εα∇Υ(xk)

T pk

α = α/2;
end

αk = α;

where 0 < ε < 1.
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In practice, this algorithm is quite effective. Figures 7 and 8 show two simula-

tions that employ this algorithm to find the target’s location, given only Doppler in-

formation. In these graphs, lines that connect iteration points are of different shades,

depending on how the search direction was chosen according to our piecewise-defined

rule. Specifically, lighter lines indicate gradient-based search directions, whereas

darker lines indicate use of the Newton direction.

By contrast, Figure 9 depicts a simulation in which our algorithm converges

to a local minimum, that is, a location other than the target’s. This illustrates

that our algorithm still requires some fine-tuning. More specifically, we recommend

a reasonable grid-search to determine starting points for multiple iterations. Since

the functions are relatively inexpensive to evaluate, performing multiple runs from

different starting points can help avoid local minima.

Recall Figure 6, which first illustrated an example of our objective function

Υ(x). Figure 10 depicts, in white, the set of all points which, when used as a starting

point for our algorithm, induce an iteration that converges to the true location of the

target from Figure 6. It appears that if a starting point is chosen close enough to the

true location of the target, indicated by a diamond, then it would be reasonable to

expect that our algorithm will converge to this location. Next, Figure 11 expresses

the number of steps necessary to converge to any local minimum of the graph in

Figure 6. In particular, darker points represent starting points whose iteration took

longer to converge. Notice that points close to the true target location converge

quickly, as expected. Interestingly, this graph appears to have fractal behavior.

In summary, our suggestion for acquiring the optimal target state estimate

starts with applying a grid-search. This grid-search will yield the first point in

our iteration. To find the following point, one first determines a search direction

according to the piecewise-defined rule, which depends on whether the Hessian is

positive-definite. Next, the step length is determined via backtracking, and so we

arrive at the next iteration point. Continuing the iteration in this manner seems to
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Figure 7 Example of Convergence to Global Minimum
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Figure 8 Example of Convergence to Global Minimum
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Figure 9 Example of Convergence to Local Minimum
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Figure 10 Starting Points for Convergence to Global Minimum (White)

frequently yield convergence to a local, or even global, minimizer provided the iter-

ations do not diverge to infinity. Further, the chances of converging to the optimal

target state estimate naturally increase with a finer initial grid-search. In the fol-

lowing section, we will mathematically assess the convergence of algorithms similar

to our own.
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Figure 11 Number of Steps to Converge

5.5 Convergence Issues

An iteration {xk}∞k=0, given by (69), is defined by a search direction pk and a

step length αk. To assure convergence, Wolfe Conditions are often used to determine

the step length [27, p. 39]. These are sufficient decrease and curvature conditions,

given by

f(xk + αkpk) ≤ f(xk) + c1αk[∇f(xk)]
T pk, (70)

∇f(xk + αkpk)
T pk ≥ c2[∇f(xk)]

T pk. (71)
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With this information in mind, we come to the following theorem [27, p. 43].

Theorem 5.5.1. Consider any iteration of the form (69), where pk is a descent

direction and αk satisfies the Wolfe Conditions, (70) and (71). Suppose that f is

bounded below in Rn and that f is continuously differentiable in an open set N

containing the level set L ≡ {x : f(x) ≤ f(x0)}, where x0 is the starting point of the

iteration. Assume also that the gradient ∇f is Lipschitz continuous on N ; that is,

there exists a constant L > 0 such that

‖∇f(x)−∇f(x̃)‖ ≤ L‖x− x̃‖,

for all x, x̃ ∈ N . Then,

∞∑
k=0

(
∇f(xk) ·

xk+1 − xk

|xk+1 − xk|

)2

< ∞.

Recall the induced operator norm ‖ · ‖2 is defined by

‖A‖2 ≡ sup
‖v‖=1

‖Av‖,

for all matrices A. We also recall the Frobenius norm ‖ · ‖F , defined by

‖A‖F ≡
[∑

i,j

a2
ij

]1/2

,

for all matrices A. We therefore come to the following theorem, which applies The-

orem 5.5.1 to our objective function Υ, given in (52).

Theorem 5.5.2. Let C be a constellation such that B(x) has full column rank for

all x ∈ RN −C. Then, every bounded iteration {xk}∞k=0 satisfying Wolfe Conditions
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(70) and (71), and further satisfying

inf
k∈N
y∈C

|xk − y| > 0

and
∇Υ(xk)

|∇Υ(xk)|
· xk+1 − xk

|xk+1 − xk|
≤ −δ

for all k, for some δ > 0, also satisfies lim
k→∞

|∇Υ(xk)| = 0.

Proof: We first show that the Hessian of our objective function is bounded on a

set which contains our iteration. We then show that this implies that the gradient

of our objective function is Lipschitz continuous. Finally, we add other functions

of Lipschitz continuous gradients, defined to be zero at each of the points of our

iteration, to our objective function to illustrate our desired result.

Pick an iteration {xk}∞k=0, and let

ε ≡ 1

3
min

{
inf
k∈N
y∈C

|xk − y|, 1

2
min

y1,y2∈C
|y1 − y2|

}

and

R ≡ 3 max

{
sup
k∈N

|xk − µ|, ε + max
y∈C

|y − µ|
}

,

where µ is the center of the constellation C, defined by

µ ≡ 1

2P

P∑
p=1

(Tp + Rp).

We first show that the Hessian of the objective function is bounded on

N (ε, R) ≡

[
RN −

⋃
y∈C

B(y, ε)

]
∩B(µ, R).
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Recall that ‖A‖2 ≤ ‖A‖F , see [10, p. 28]. Considering Theorem 5.3.1, the Hessian

expression yields

|[∇2Υ(x)]n,m|2 ≤ 2‖d‖4‖[PB(x)⊥B(n)(x)[B(x)]†](m)‖2
2. (72)

We have by (59) that

|B(n,m)
p,· (x)| ≤ 3

|x− Tp|
+

3

|x−Rp|
≤ 6

ε
,

and so

‖B(n,m)(x)‖2 ≤ ‖B(n,m)(x)‖F =

(
P∑

p=1

|B(n,m)
p,· (x)|2

)1/2

≤ 6
√

P

ε
.

Also note, from (57), that

|B(n)
p,· (x)| ≤ 1

|x− xpT
|
+

1

|x− xpR
|

=
2

ε
,

and so, similarly,

‖B(n)(x)‖2 ≤
2
√

P

ε
.

We wish to also determine an upper bound for ‖[B(x)]†‖2. Since B(x) has full column

rank for all x ∈ RN −C, we know [B(·)]† is continuous. Further, N (ε, R) ⊂ RN −C

is compact. It follows that ‖[B(·)]†‖2 achieves its maximum, which we shall denote,

q, in N (ε, R). It follows, in summary, that

‖B(n,m)(x)‖2 ≤ 6
√

P

ε
,

‖B(n)(x)‖2 ≤ 2
√

P

ε
,

‖[B(x)]†‖2 ≤ q,
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and so by (58) and the Triangle Inequality, we have

‖[PB(x)⊥B(n)(x)[B(x)]†](m)‖2 ≤
16q2P

ε2
+

6q
√

P

ε
.

Finally, (72) gives

‖∇2Υ(x)‖2 ≤ ‖∇2Υ(x)‖F

=

[ N∑
n=1

N∑
m=1

|[∇2Υ(x)]n,m|2
]1/2

≤
[ N∑

n=1

N∑
m=1

2‖d‖4

(
16q2P

ε2
+

6q
√

P

ε

)2]1/2

= N
√

2‖d‖2

(
16q2P

ε2
+

6q
√

P

ε

)
, (73)

as desired.

Since the Hessian of our objective function is bounded on N (ε, R), we claim

that our gradient is consequently Lipschitz continuous on this same region. Pick

a, b ∈ N (ε, R) and minimum-length path r : [0, 1] → RN such that r(0) = a and

r(1) = b. Then, if a 6= b, we have, by the Fundamental Theorem of Line Integrals,

that

|∇Υ(b)−∇Υ(a)|
|b− a|

=
1

|b− a|
|∇Υ(r(1))−∇Υ(r(0))|

=
1

|b− a|

∣∣∣∣∫ 1

0

∇2Υ(r(t))ṙ(t) dt

∣∣∣∣
≤ 1

|b− a|

∫ 1

0

‖∇2Υ(r(t))‖2|ṙ(t)| dt

≤ K

|b− a|

∫ 1

0

|ṙ(t)| dt,

where K denotes the bound (73). Notice that
∫ 1

0
|ṙ(t)| dt is the length of the path

r[0, 1]. Further, this shortest path is usually a straight line from a to b. However,
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if the straight line from a to b does not lie entirely in N (ε, R), due to the fact

that it passes through an ε-ball about a point in the constellation, then the path

of minimum length is no longer than that which curves along the geodesic of the

ε-ball’s surface. Moreover, the ratio

1

|b− a|

∫ 1

0

|ṙ(t)| dt

is maximized when a and b are located at opposite ends of a common ε-ball. It follows

that choosing L ≡ Kπ/2 implies Lipschitz continuity of the gradient on N (ε, R), as

desired.

We now consider twice-differentiable functions s1, s2 : R → R with the follow-

ing properties:

s1(t) > ‖d‖2, t ∈ [0, ε2] s2(t) = 0, t ∈ [0, R2/4]

s1(t) = 0, t ∈ [4ε2,∞) s2(t) > ‖d‖2, t ∈ [R2,∞).

Then, we have

∇2si(|x|2) = 2ṡi(|x|2)I + 4s̈i(|x|2)xxT

for i = 1, 2. We see that these Hessians are bounded on RN − B(0, ε) and B(0, R),

respectively. Let us define another function Υ̂ : RN → R by

Υ̂(x) ≡ Υ(x) + s2(|x− µ|2) +
∑
y∈C

s1(|x− y|2). (74)

Since each of the terms in (74) have a bounded Hessian, we know Υ̂ also has a

bounded Hessian. Furthermore, the iteration {xk}∞k=0 also satisfies Wolfe Conditions

(70) and (71) on Υ̂, since {xk}∞k=1 ⊂ int[N (2ε, R/2)], and Υ̂(x̃) = Υ(x̃) for all

x̃ ∈ int[N (2ε, R/2)]. We see that Υ̂ is continuously differentiable in the open set

N ≡ int[N (ε, R)], which contains all level sets of the form {x : Υ̂(x) ≤ Υ̂(x0)}.

Further, since ∇Υ̂ is Lipschitz continuous, by bounded Hessian on N , Theorem
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5.5.1 gives
∞∑

k=0

(
∇Υ(xk) ·

xk+1 − xk

|xk+1 − xk|

)2

< ∞.

It follows that (
∇Υ(xk)

|∇Υ(xk)|
· xk+1 − xk

|xk+1 − xk|

)2

|∇Υ(xk)|2 → 0,

and since our theorem statement gives

(
∇Υ(xk)

|∇Υ(xk)|
· xk+1 − xk

|xk+1 − xk|

)2

≥ δ2 > 0,

we have |∇Υ(xk)|2 → 0, as desired. �

Note the condition on the constellation that was used in the statement of the

theorem: that B(x) has full column rank for all x ∈ RN −C. It is important to note

that not all constellations have this characteristic. For example, no constellation of

one or two pairs satisfies this condition, since the bearing matrix at a point between

a transmitter-receiver pair will have rank of at most one. Furthermore, consider a

constellation in which each transmitter and receiver is used exactly once in a pair,

and in which the open line segments between each of these pairs all intersect at a

point x̂. Then, we see that B(x̂) = 0, and so B(x̂) consequently has rank zero. For

each of these examples, Theorem 5.5.2 does not apply.

However, Theorem 5.5.2 does say something meaningful. For non-pathological

constellations containing enough transmitter-receiver pairs, any iteration which sat-

isfies the Wolfe Conditions (70) and (71), which neither diverges to infinity nor is

attracted to constellation points, and which tends to move in the general direction

opposite the gradient, does, in fact, converge. As the algorithm given in the previous

section does not take the curvature condition (71) into account, the previous result

does not absolutely guarantee its convergence. However, experimentation indicates

that convergence is the rule, rather than the exception.
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VI. Further Applications of Bearing Derivatives

The results of this chapter are new, and represent the beginnings of future work on

the study of the objective function Υ(x), introduced in the previous chapter. To

be precise, we study both the asymptotic behavior of Υ(x) for a fixed constella-

tion, as well as begin the important task of determining the optimal placement of

transmitters and/or receivers in a Doppler-only multistatic system.

6.1 Asymptotic Analysis

In order to effectively optimize the objective function of the previous chapter,

it is important to have an idea of where the local minima lie. More specifically, it is

important that they are not too far away from the constellation of transmitters and

receivers, or else the objective function becomes unstable. These things considered,

we want a symbolic approximation to the objective function at infinity, that is, an

asymptotic approximation.

6.1.1 Asymptotic Analysis of the Multistatic Bearing Operator. In order to

get an asymptotic approximation for Υ, we first need an asymptotic approximation

for B. Considering the form of the rows of B, this means that we need an approxi-

mation for x/|x|. We already have a Taylor series for x/|x|, and amazingly this same

computation yields the asymptotics we desire, that is, the Taylor series at infinity.

In the rest of the chapter, we shall have 1P ∈ RP denote the column vector of ones.

Theorem 6.1.1. For any µ ∈ RN ,

B(x) =
2

|x− µ|

{
1P (x− µ)T + [1P µT −X]P(x−µ)⊥

}
+ O

(
1

|x|2

)
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as |x| → ∞. Further, when µ is taken to be the center of the constellation, defined

to be

µ ≡ 1

2P

P∑
p=1

(Tp + Rp),

the ranges of 1P (x− µ)T and [1P µT −X]P(x−µ)⊥ are orthogonal subspaces of RP .

Proof: Taylor’s Theorem gives that∣∣∣∣∣ x + h

|x + h|
−

M∑
m=0

1

m!
Dm x

|x|
hm

∣∣∣∣∣ ≤ 1

(M + 1)!
max
|k|≤|h|

|DM+1f(x + k)hM+1|.

Considering Corollary 3.2.2 and letting M = 1, we therefore have∣∣∣∣ x + h

|x + h|
−
[

x

|x|
+

1

|x|
Px⊥h

]∣∣∣∣
≤ 1

2
max
|k|≤|h|

|h|2

|x + k|2

∣∣∣∣∣3
(

h · (x + h)

|h||x + k|

)2
x + k

|x + k|
− 2

(
h · (x + h)

|h||x + k|

)
h

|h|
− x + k

|x + k|

∣∣∣∣∣
≤ 3|h|2

(|x| − |h|)2
,

for |h| < |x|. Considering the symmetry between x and h, we also have∣∣∣∣ x + h

|x + h|
−
[

h

|h|
+

1

|h|
Ph⊥x

]∣∣∣∣ ≤ 3|x|2

(|h| − |x|)2
, |h| > |x|.

That is, for large |h|, we have

x + h

|x + h|
=

h

|h|
+

1

|h|
Ph⊥x + O

(
1

|h|2

)
.

Pick µ ∈ RN . Then, for large |x|, it follows that

x− Tp

|x− Tp|
=

(µ− Tp) + (x− µ)

|(µ− Tp) + (x− µ)|
=

x− µ

|x− µ|
+

1

|x− µ|
P(x−µ)⊥(µ− Tp) + O

(
1

|x|2

)
,
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and similarly

x−Rp

|x−Rp|
=

x− µ

|x− µ|
+

1

|x− µ|
P(x−µ)⊥(µ−Rp) + O

(
1

|x|2

)
,

so that

[Bp,·(x)]T = 2
x− µ

|x− µ|
+

1

|x− µ|
P(x−µ)⊥(2µ− Tp −Rp) + O

(
1

|x|2

)

and so

[B(x)]T =
2

|x− µ|

{
(x− µ)1P + P(x−µ)⊥ [µ1T

P −X
T
]

}
+ O

(
1

|x|2

)
.

Our asymptotic expression for B(x) naturally follows. Now, pick any u, v ∈ RN and

set

µ =
1

2P

P∑
p=1

(Tp + Rp).

Then, we have

〈1P (x− µ)T u, [1P µT −X]P(x−µ)⊥v〉

= 〈(x− µ)T u,1T
P [1P µT −X]P(x−µ)⊥v〉

=

〈
(x− µ)T u,

PµT −

(
P∑

p=1

Tp + Rp

2

)T
P(x−µ)⊥v

〉

= 〈(x− µ)T u, 0〉

= 0,

thereby yielding orthogonality. �

6.1.2 Asymptotic Analysis of the Objective Function. To better understand

our objective function, we will study its asymptotic behavior. We have the following

results.
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Corollary 6.1.2. We have lim|x|→∞∇Υ(x) = 0.

Proof: Clearly B(x) → 2
|x−µ|1P (x− µ)T , and so B†d → 1T

P d

2|x−µ|(x− µ). Thus, since

∇Υ(x) = −2

{
P∑

p=1

[PB(x)⊥d]p

[
P(x−Tp)⊥

|x− Tp|
+

P(x−Rp)⊥

|x−Rp|

]}
[B(x)]†d,

we have ∇Υ(x) → 0. �

Corollary 6.1.3. We have

lim
|x|→∞

〈
x

|x|
,
∇Υ(x)

|∇Υ(x)|

〉
= 0.

Proof: Since B†d → 1T
P d

2|x−µ|(x− µ) and P(x−x0)⊥ → Px⊥ for all x0 ∈ RN , we see from

our gradient expression that

〈
x

|x|
,
∇Υ(x)

|∇Υ(x)|

〉
→
〈

x

|x|
, Px⊥

(
−B†(x)d

|Px⊥B†(x)d|

)〉
= 0,

as desired. �

Conjecture 6.1.4. There exists a unique constellation center µ ∈ RN such that

lim
|x|→∞

〈
x− µ,

∇Υ(x)

|∇Υ(x)|

〉
= 0.

Further,

µ =
1

2P

P∑
p=1

(Tp + Rp).

This conjecture claims that the level curves of our objective function approach

asymptotes which all intersect at a unique constellation center, expressible in terms

of the constellation.

69



6.2 Optimizing the Doppler-Only Multistatic Constellation

6.2.1 Constellation Objective Function. Consider a field of transmitters.

How does one determine how to best situate a corresponding field of receivers to best

track a given target? One could consider the impact of transmitter-receiver distances

on the amplitude of Doppler-shifted signals. However, we will simply consider the

effectiveness of the algorithms described in the previous chapter.

In particular, we want to measure how well our algorithms perform, given a

specific constellation. In our noise-free situation, we have only to be concerned with

the form of the objective function, which is the only portion of our algorithms which

depends explicitly on the constellation. Consider the condition number

κ(BC(x)) ≡ ‖BC(x)‖2‖[BC(x)]†‖2,

where BC(x) is the bearing matrix at point x ∈ RN , given constellation C. This

number provides a bound on how inaccurate v∗ = [BC(x)]†d will be after our nu-

merical solution. But, this simply measures the “badness” of the constellation at a

specific point x ∈ RN . To include all points in our objective function, we consider a

weight distribution F : RN → R and subsequent objective function

∫
RN

κ(BC(x))dF (x).

We see that this function shall effectively measure the “badness” of a constellation in

our context, as long as our distribution appropriately weights RN . However, it will be

difficult to determine the gradient of this function, as the condition number, having

no closed form in terms of the entries of B, is probably impossible to differentiate

symbolically. Rather than attempting numerical derivatives, we shall consider

K(BC(x)) ≡ ‖BC(x)‖F‖[BC(x)]†‖F .
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Notice

κ(BC(x)) ≤ K(BC(x)) ≤ Nκ(BC(x)),

and so κ and K are of similar size. We further note that finding the gradient of

Θ(C) ≡
∫

RN

[K(BC(x))]2dF (x)

will be much more manageable.

6.2.2 Gradient Descent. In order to establish minima of our objective func-

tion Θ(C), we will employ the gradient descent method. In this setting, the iteration

is of vectors which list the locations of the receivers in a constellation. Therefore,

visually, the iteration will resemble a multibody problem, where the receivers move

in different directions to decrease the value of the objective function. But, before we

can employ this algorithm, we must first find the gradient. Consider the following

theorem.

Theorem 6.2.1. The gradient of our expression is given by

∇RpΘ = 2

∫
RN

P(x−Rp)⊥Q(x)epdF (x)

|x−Rp|
,

where

Q ≡
{
[Tr(BT B)](BT B)−2 + [Tr(BT B)−1]I

}
BT .

Proof: We first note, suppressing dependence on C, that

B′(x) ≡ ∂

∂Rp(n)
B(x)

= ep
∂

∂Rp(n)

(
x− Tp

|x− Tp|
+

x−Rp

|x−Rp|

)T

=
−1

|x−Rp|
ep(P(x−Rp)⊥en)T .
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Further, suppressing dependence on x,

∂

∂Rp(n)
‖B‖2

F = Tr

[
∂

∂Rp(n)
(BT B)

]
= Tr[(B′)T B + BT B′]

= Tr(BT B′).

Considering our expression for B′, we have

∂

∂Rp(n)
‖B(x)‖2

F = Tr[(B(x))T B′(x)]

=
−2

|x−Rp|
Tr[(B(x))T epe

T
nP(x−Rp)⊥ ]

=
−2

|x−Rp|
eT

nP(x−Rp)⊥(B(x))T ep,

and so

∇Rp‖B(x)‖2
F =

−2

|x−Rp|
P(x−Rp)⊥(B(x))T ep.

Also, suppressing dependence on x,

B†(B†)T = (BT B)−1.

Thus,

∂

∂Rp(n)
‖B†‖2

F =
∂

∂Rp(n)
Tr[B†(B†)T ]

=
∂

∂Rp(n)
Tr[(BT B)−1]

= Tr

[
∂

∂Rp(n)
(BT B)−1

]
= Tr

[
−(BT B)−1

(
∂

∂Rp(n)
(BT B)

)
(BT B)−1

]
= Tr[−(BT B)−1(BT )′(B†)T −B†B′(BT B)−1]

= −2Tr[B†B′(BT B)−1]
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= −2Tr[B′(BT B)−2BT ],

and considering our expression for B′, we have

∂

∂Rp(n)
‖[B(x)]†‖2

F = −2Tr

[(
∂

∂Rp(n)
B(x)

)
[(B(x))T B(x)]−2(B(x))T

]
=

2

|x−Rp|
Tr[epe

T
nP(x−Rp)⊥ [(B(x))T B(x)]−2(B(x))T ]

=
2

|x−Rp|
eT

nP(x−Rp)⊥ [(B(x))T B(x)]−2(B(x))T ep.

It follows that

∇Rp‖[B(x)]†‖2
F =

2

|x−Rp|
P(x−Rp)⊥ [(B(x))T B(x)]−2[B(x)]T ep.

We further see that

∇Rp‖B(x)‖2
F‖[B(x)]†‖2

F =
2P(x−Rp)⊥Q(x)ep

|x−Rp|
,

where Q is as defined in the proposition statement. From here, our theorem naturally

follows. �

6.2.3 Using Gradient Descent. In practice, this algorithm seems to be ex-

tremely consistent. The following convergence examples were created with a Gaus-

sian weight function of mean T .
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Figure 12 Example of Constellation Convergence with 5 Receivers
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Figure 13 Example of Constellation Convergence with 11 Receivers
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6.2.4 Apparent Discoveries. As the reader can gather from these con-

vergence examples, the minimum of our objective function seems unique. Also,

considering the convergence tendency of a constellation appears to be independent

of its size, we arrive at the following conjecture.

Conjecture 6.2.2. Suppose N = 2, and let Θ have Gaussian weight function of

mean T . Then, the one-transmitter constellation which minimizes Θ has each of its

receivers uniformly distributed along a circle centered at T .

One could make a similar conjecture for the case where N = 3, but we have not

studied this case enough to settle the ambiguity of an analogous uniform distribution

on the sphere.
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VII. Conclusion

This thesis gives the first deterministic solution to the problem of finding a target’s

position and velocity from Doppler shift information alone. We have shown that

any solution to this problem requires the use of multiple transmitters and receivers.

Moreover, when multiple fixed transmitters and receivers are available, we have

shown that determining the target state from Doppler shifts is equivalent to solving

a nonlinear optimization problem. In particular, a target’s position is the minimizer

of a specific objective function. Using standard techniques from multivariable calcu-

lus and linear algebra, we have discovered a previously unknown formula for every

derivative of the Euclidean norm, and used this calculation to determine the gradient

and Hessian of this objective function. We then employed our analytic, closed-form

expressions for the gradient and Hessian to numerically find the minimizer of our

objective function. In so doing, we have found a quick and reliable method for deter-

mining a target’s position from Doppler-only multistatic measurements. The only

noteworthy limitation on the accuracy of our algorithm is the precision with which

the Doppler shifts are measured. These results pave the way for a real-world im-

plementation of a Doppler-only multistatic system in which targets can be precisely

located and tracked.

Further research in this area could begin with determining the effect of noisy

Doppler measurements on our algorithm. In particular, one could study how sen-

sitive the objective function’s global minimum is to perturbations in the Doppler

information. Another natural next step is to generalize the objective function given

in Chapter V so as to include multiple Doppler measurements over time, as well as

over multiple transmitter-receiver pairs. Such consideration could potentially lessen

the required number of transmitters and/or receivers. Another research topic is the

extension of our notion of constellation optimality, introduced in Chapter VI, to

more practical cases, that is, constellations with more than one transmitter. Further
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generalizations should also consider the rate of decay of a signal’s strength, so as to

maximize the area over which a Doppler-only multistatic system is useful. Finally,

this thesis has left a list of open questions for further research: whether a system of

Doppler equations can have a closed-form solution, whether the constellation cen-

ter bears the given asymptotic property, and whether an optimal single-transmitter

constellation in two dimensions is circular.
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Appendix A. Multivariable Derivatives

A.1 Derivatives of Functionals

Let f : RN → R be a differentiable functional. Then, we consider Df : RN →

L(RN , R) such that for each x ∈ RN , we have linear functional Df(x) : RN → R

defined by

Df(x)u ≡ lim
t→0

f(x + tu)− f(x)

t
= ∇f(x) · u,

for each u ∈ RN . Further, we iteratively define DM+1f ≡ D(DMf). We see that

D2f(x)(h1, h2) ≡ [D2f(x)h2]h1

=

[
D2f(x)

N∑
n=1

h2(n)en

]
h1

=
N∑

n=1

h2(n)[D2f(x)en]h1

=
N∑

n=1

h2(n)

[
∂

∂xn

Df(x)

]
h1

=
N∑

n=1

h2(n)
∂

∂xn

[Df(x)h1]

= ∇[Df(x)h1] · h2.

One can inductively see that

DM+1f(x){hm}M+1
m=1 = ∇[DMf(x){hm}M

m=1] · hM+1.

We therefore have some understanding of how to take an Mth derivative of some

differentiable functional on RN . To do so, one must “build up” to this derivative

by first taking lower derivatives. Another way to look at the Mth derivative in
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directions {hm}M
m=1 is by the following evaluation rule:

DMf(x){hm}M
m=1 = DMf(x)

{
M∑

km=1

hm(km)ekm

}M

m=1

=
∑

k1,...,kM

[
M∏

m=1

hm(km)

]
DMf(x){ekm}M

m=1.

Here, derivatives can be taken in {hm}M
m=1 once derivatives are calculated in the

standard directions {em}M
m=1. Let us now consider the product rule for this form of

differentiation.

A.2 The Product Rule

Consider functions f, g : RN → R. Then, we have first derivative

D(fg)(x)h = ∇(fg)(x) · h

= [f(x)∇g(x) + g(x)∇f(x)] · h

= f(x)(∇g(x) · h) + g(x)(∇f(x) · h)

= f(x)Dg(x)h + g(x)Df(x)h,

second derivative

D2(fg)(x)(h1, h2) = ∇(f(x)Dg(x)h1 + g(x)Df(x)h1) · h2

= [Dg(x)h1∇f(x) + f(x)∇Dg(x)h1

+ Df(x)h1∇g(x) + g(x)∇Df(x)h1] · h2

= Dg(x)h1Df(x)h2 + f(x)D2g(x)(h1, h2)

+ Df(x)h1Dg(x)h2 + g(x)D2f(x)(h1, h2),
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and third derivative

D3(fg)(x)(h1, h2, h3) = ∇D2(fg)(x)(h1, h2) · h3

= f(x)D3g(x)(h1, h2, h3) + Df(x)(h3)D
2g(x)(h1, h2)

+ Df(x)(h2)D
2g(x)(h1, h3) + Df(x)(h1)D

2g(x)(h2, h3)

+ D2f(x)(h1, h2)Dg(x)(h3) + D2f(x)(h1, h3)Dg(x)(h2)

+ D2f(x)(h2, h3)(h1) + D3f(x)(h1, h2, h3)g(x).

One can inductively see that

DM(fg)(x){hm}M
m=1 =

M∑
k=0

∑
A⊆{1,...,M}

|A|=k

Dkf(x){hi}i∈ADM−kg(x){hj}j /∈A.

Notice that if hm = h for all m, then our product rule would follow the Binomial

Theorem, as expected.

A.3 The Chain Rule

The chain rule naturally extends to our derivatives, as expected. Consider the

following proposition.

Proposition A.3.1. Suppose x : R → RN is differentiable at t, and f : RN → R is

differentiable at x(t). Then, we have

d

dt
f(x(t)) = Df(x(t))ẋ(t).

Proof: Let ∆t be an increment in t, ∆x an increment in x(t) and ∆f in f(x(t)).

Then, we see that

|∆x| = |ẋ(t)|∆t + o(∆t) =

[
|ẋ(t)|+ o(∆t)

∆t

]
∆t
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∆f = ∇f(x(t)) ·∆x + o(|∆x|) =

[
∇f(x(t)) · ∆x

|∆x|
+

o(|∆x|)
|∆x|

]
|∆x|,

and so we have

∆f

∆t
=

[
∇f(x(t)) · ∆x

|∆x|
+

o(|∆x|)
|∆x|

] [
|ẋ(t)|+ o(∆t)

∆t

]
.

It follows that

d

dt
f(x(t)) = lim

∆t→0

∆f

∆t

= lim
∆t→0

∇f(x(t)) · |ẋ(t)|
|∆x|

∆x

= ∇f(x(t)) · ẋ(t)

= Df(x(t))ẋ(t),

as desired. �

Further, an extended chain rule also holds.

Proposition A.3.2. We have

d

dt
Dnf(x(t))(y1(t), . . . , yn(t))

= Dn+1f(x(t))(y1(t), . . . , yn(t), ẋ(t))

+
n∑

j=1

Dnf(x(t))(y1(t), . . . , ẏj(t), . . . , yn(t)).

Proof: Let N ≡ {1, . . . , N}. Then, using the notation for mixed partial derivatives

from Chapter V, since

Dnf(x(t))(y1(t), . . . , yn(t)) =
∑

a∈Nn

f (a)(x(t))
n∏

i=1

yi(t)(ai),
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we have

d

dt
Dnf(x(t))(y1(t), . . . , yn(t))

=
d

dt

∑
a∈Nn

f (a)(x(t))
n∏

i=1

yi(t)(ai)

=
∑

a∈Nn

[(
d

dt
f (a)(x(t))

) n∏
i=1

yi(t)(ai) +
n∑

j=1

f (a)(x(t))ẏj(t)(aj)
∏
i6=j

yi(t)(ai)

]

=
∑

a∈Nn

(
∇f (a)(x(t)) · ẋ(t)

) n∏
i=1

yi(t)(ai) +
∑

a∈Nn

n∑
j=1

f (a)(x(t))ẏj(t)(aj)
∏
i6=j

yi(t)(ai)

= ∇

[∑
a∈Nn

f (a)(x(t))
n∏

i=1

yi(t)(ai)

]
· ẋ(t) +

n∑
j=1

Dnf(x(t))(y1(t), . . . , ẏj(t), . . . , yn(t))

= ∇Dnf(x(t))(y1(t), . . . , yn(t)) · ẋ(t) +
n∑

j=1

Dnf(x(t))(y1(t), . . . , ẏj(t), . . . , yn(t))

= Dn+1f(x(t))(y1(t), . . . , yn(t), ẋ(t)) +
n∑

j=1

Dnf(x(t))(y1(t), . . . , ẏj(t), . . . , yn(t)),

as desired. �
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