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Abstract

This research focused on lightweight, in-plane actuated, deformable mirrors,

with the ultimate goal of developing a 20-meter or larger diameter light gathering

aperture for space telescopes. Membrane optics is the study of these structures which

may be stowed compactly and unfurled in orbit. Applications of the technology

could potentially revolutionize deep space exploration and earth surveillance. This

effort comprised four research areas in the field of membrane optics for quasi-static

applications: modelling, analytical solutions, surface control strategy, and scaling.

The underlying differential equations for a unimorph plate-membrane were de-

veloped. Unimorph actuation refers to a piezoelectric actuator offset from the planar

neutral axis that imparts a bending moment on the structure. The assumptions

for quasi-static piezoelectric theory, the piezoelectric-thermal analogy, and plate-

membrane elastic behavior were reviewed.

Initially, experimental results were compared to theory using a 0.127 meter di-

ameter deformable mirror testbed. The mirror was modelled using finite elements

with MSC.Nastran software, where a boundary tension field was determined using

laser vibrometer data. A non-linear solution technique was used to incorporate the

membrane stiffening from the applied tension. Statically obtained actuator influence

functions were compared to experimentally achieved data, and then a least squares

approach was used as the basis for creating a quasi-static control algorithm. Experi-

mental simultaneous tracking of Zernike tip, tilt, and defocus modes was successfully

demonstrated.

The analytical solutions to plate-membrane and beam-string ordinary differen-

tial equation representing the deformable mirror equations were developed. A simpli-

fied approach to modelling the axisymmetric cases was also presented. Significantly,

it was shown both analytically and through numerical analysis that static actuation
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for a mirror with a discrete electrode pattern and a high tension-to-stiffness ratio was

simply a localized piston displacement in the region of the actuator.

Next, a novel static control strategy, the Modal Transformation Method, was

developed for membrane mirrors. The method was implemented in finite element

simulation, and shows the capability of the in-plane actuated mirror to form Zernike

surfaces within an interior, or clear aperture, region using a number of statically-

actuated structural modes.

Lastly, the scaling problem for membrane optics was addressed. Linear mod-

elling was shown to correctly explain the behavior of small-scale laboratory models,

but full non-linear models were required to account for all the dominant terms which

govern full-scale large aperture membrane telescopes. In the test cases analyzed,

non-linear deformations of a full-scale mirror were orders of magnitude less than sug-

gested by linear theory. The results suggest non-linear effects must be considered in

feasibility studies for future large aperture membrane telescopes.

This document thus charts a rigorous course towards the goal of realizing large-

scale in-plane actuated space telescopes. From fundamental equations, assumptions,

and solutions; to control algorithms for small-scale deformable mirrors; and through

analysis designed to ease the transition to larger scale applications, this contemporary

discourse addresses a collection of fundamental challenges in the emerging field of

membrane optics.
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Lightweight In-Plane Actuated Deformable Mirrors

for Space Telescopes

I. Introduction

1.1 Introduction

The Air Force Office of Scientific Research (AFOSR), the sponsor agency of this

research effort, is extremely interested in the application of smart material tech-

nology to lightweight space-borne large-scale optical systems.

Increasing mirror aperture size will provide enormous benefits to the intelligence

community. For instance, using space-based surveillance, a single 30-meter membrane

mirror in a 5000-km equatorial orbit would obtain the same atmospheric-limited 10-

cm accuracy as current low earth orbit satellites, but could provide global (sub-polar)

coverage [9]! The motivation is clear–very large (20-meter and greater diameters)

rigid mirror structures are prohibitively large for all current and proposed launch

technologies. To overcome this severe packaging limitation, various flexible mirror

configurations involving active membrane elements, such as inflated lenticulars, dual

cylindrical parabolic dishes, and formation flights of flat membrane mirrors, have been

proposed to fulfill this critical niche [24,25,149]. A conceptual design of a large-scale

optical system is shown in Figure 1.1. Investigation of optical membrane structures,

a field of research here coined membrane optics, is the primary focus of this research

effort.

1.2 Research Goal

The research proposed in this document will develop static modelling procedures

for a space-based optical system reliant upon in-plane piezoelectric actuators to induce

surface deformations to micron-level precision. The technologies proposed may be

used either to create a deformable mirror for an adaptive optics system, or to increase
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(a) In this artist’s rendition of an earth-facing space telescope, an electron beam scans the
piezoelectric actuating layer on the non-reflective side of a membrane optic to precisely form
the mirror’s surface. The primary mirror is a membrane element 20-meters in diameter. It is
suspended in a torroidal ring of rigidizable material. A second satellite is placed at the focal
length of several hundred meters, and houses the secondary mirror surface and sensors. This
document investigates the surface shaping of the membrane optic–the satellite dynamics and
remote actuation mechanisms are other areas of on-going research.

Figure 1.1: Large space-based optics AFIT.

2



the surface stability by providing disturbance rejection to an otherwise non-active

mirror. Furthermore, the research seeks to bridge the gap between the terminology of

the optics community and the underlying structural behavior presented by the physics

of the flexible, deformable mirror structure. Thus, the objective of this research

project is to produce a model of the in-plane actuated mirror system suitable for

quasi-static structural control to optical commands. The scope of the research was

guided by the following research statement.

• Investigate and develop a method for low-order static modelling of in-plane actu-

ated, tensioned, lightweight, fixed-rigid boundary, circular apertures for control

of large space-based optics.

1.3 Mission Impact

The research detailed herein advances the state-of-the-art for membrane optics.

Successful contributions will increase likelihood of fielding a large-scale membrane

mirror to support Department of Defense surveillance activities. Significant gains

offered to the scientific community include

• Demonstrated first experimental closed-loop control of an in-plane actuated

structure on an optical scale;

• Developed axisymmetric plate-membrane solutions resulting in near finite-element

quality results in closed form;

• Developed the Modal Transformation Method, a directive strategy for Zernike

control on a membrane mirror, and demonstrated through simulation that when

used on an in-plane actuated membrane mirror, near error-free low-order Zernike

surfaces may be constructed;

• Performed scaling analysis for membrane optics which shows the path to large-

scale optics lies in non-linear analysis and highlights the key areas unique to

membrane mirrors and unimorph actuation.
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1.4 Document Organization

This document is organized into eight chapters.

• Chapter I introduces the research area and provides the thesis statement.

• Chapter II provides the contextual background of the research area, and provides

an outline of current research in the field of membrane optics.

• Chapter III outlines the development of piezoelectric theory, presents the piezoelectric-

thermal analogy, and develops the governing equation for an in-plane actuated

circular plate-membrane.

• Chapter IV presents the non-linear finite element modelling and experimental

closed-loop quasi-static control efforts performed on a 0.127m diameter test

article, the AFIT deformable mirror testbed.

• Chapter V analyzes the linear piecewise continuous axisymmetric ordinary dif-

ferential equation for an in-plane actuated beam-string and plate-membrane. An

analytical solution method is presented, as well as an approximation method,

and the results are compared to the non-linear finite element model of Chap-

ter IV.

• Chapter VI formulates the Modal Transformation Method. For circular aper-

tures, the Zernike basis set is used to describe the optical path disturbances

for control, but is incompatible with the fixed edge condition of the deformable

mirror. The Modal Transformation Method uses an algebraic combination of

Bessel-based statically actuated vibration mode shapes to perform static surface

control.

• Chapter VII discusses the problem of scale as it relates to membrane optics.

In much of the research to date, small-scale models are used to demonstrate

technologies. It is demonstrated through finite element simulation that the scale

of the model directly influences the shape and magnitude of surface deformation.
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Specifically, non-linear effects not readily observed in small-scale models may

be present in large-scale applications.

• Chapter VIII summarizes the salient points of this work, and presents a myriad

of possibilities as candidates for future research.

In addition to these chapters, supporting appendices fill in the technical details

associated with the experimental and analytical modelling, such as the operating

parameters of the optical measurement system and the source code for the finite

element computer models.

1.5 Summary

This chapter outlined the dissertation objective of producing a model for the

in-plane actuated mirror system suitable for structural control as it relates to space-

borne telescopes. The next chapter will provide a survey of the current literature on

the subject.
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II. A Survey of Membrane Optics

Chapter objectives:

• Provide description and key terms for membrane optics

• Present a survey of current literature

2.1 Introduction

Fielding a space telescope with a primary light gathering aperture composed of

lightweight, flexible material is a subject of intensive study over the last decade.

The primary geometry explored in this dissertation is the flat circular piezoelectric

in-plane actuated deformable mirror, of which extensive research has only been con-

ducted at the Air Force Institute of Technology. To understand the problem, and the

corresponding choice of the configuration for this investigation, a more general survey

of the field of space telescopes must be examined.

Thus, we embark on a study of the research in the field of large aperture,

lightweight space telescopes and the supporting technologies to date, the study which

comprises the field of Membrane Optics. This chapter is divided into sections focus-

ing on both essential background material and highlights of state-of-the-art reported

research which serves as the contextual backdrop. The sections are:

• Optics for space telescopes,

• Deformable mirror technology,

• Smart actuators,

• System design considerations for space telescopes.
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The first section is an overview of optical issues that arise when discussing a

space telescope that may not be familiar to the practicing mechanical or aerospace

engineer. The next section on deformable mirrors discusses the three primary acti-

vation strategies for flat deformable mirrors with respect to modelling and control.

This section shows the distinct advantages in-plane actuation offers for large aper-

ture space borne telescopes. Next, a discussion of smart actuators, or those materials

that undergo a strain in response to a certain stimuli such as voltage, outlines the

materials under investigation with regard to space applications. It is here we find

polyvinylidene fluoride (PVDF) is a likely candidate for space telescopes. Lastly, a

section on system design considerations details on-going efforts undertaken towards

the major issues facing the testing and fielding of a space telescope.

2.2 Optics for Space Telescopes

2.2.1 Definitions. As the intended audience for this dissertation is one

versed in structural mechanics, but not necessarily in optics, some elementary defi-

nitions are presented below. The definitions may be found in texts such as those by

Born and Wolf [28] or Hecht [63] except where otherwise noted.

• Areal density. For lightweight optics, the areal density is the mass of the mirror

divided by the area of the mirror.

• Clear aperture. The light gathering area of an optical system. The term may

also be used to indicate the diameter of a circular clear aperture region. In

general, the larger the aperture, the brighter the image.

• Focal length. For spherical mirrors, the focal length is one-half the radius. For

concave parabolic mirrors, it is the distance from focus closest to the mirror’s

surface to the mirror’s center. In general, the longer the focal length, the greater

the magnification.

• Fried parameter, r0 The minimum distance where a wavefront may be assumed

to be planar in the presence of atmospheric turbulence [63, p. 229]
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• Ground projected instantaneous field of view. The ground projected instanta-

neous field of view (GIFOV) is the “geometric projection of a single detector

width, w, onto the earth’s surface [122].” In its simplest form, it may be repre-

sented by the equation where f is focal length and H is altitude:

GIFOV =
wH

f
(2.1)

• Focal ratio/f-number. The ratio of the focal length, f , to the diameter of the

clear aperture region, D.

f/# ≡ f

D
(2.2)

• Influence Functions. As popularized by Menikoff, use his very general definition:

“The influence functions describe the shape to which the mirror will deform

when forces are applied to the actuators [89].”

• Optical quality. A generic term referring to the tolerance of a surface or wave-

front of visible wavelengths. For the purpose of this document, optical quality

is used to refer to micron-order or less displacements or tolerances.

• Paraboloidal. A 3-dimensional mirror shape of a rotated parabola about the

central axis designed to focus light rays from an infinite source at the focus, or

focal length. Note that a parabola of focal length f is defined as:

z(r) = ±
√

4fr. (2.3)

where r is the radial coordinate and z(r) describes the surface. Other mir-

ror types such as ellipsoidal and hyperboloidal may also be employed in space

telescopes.

• Paraxial region. The interior of a spherical mirror where the shape approaches

that of paraboloidal mirror.
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• Relative aperture. The inverse of the f-number.

• Quasi-static. For the purpose of this document, quasi-static is used to indicate

a frequency of interest below the fundamental structural resonant frequency.

The sole exception to this occurs in Section 3.2, where different assumptions are

applied in the development of piezoelectric theory.

• Zernike polynomials. Historically, the distortions of a wavefront through a cir-

cular aperture are described by the Zernike polynomial basis set as popularized

by Noll in his paper “Zernike Polynomials and Atmospheric Turbulence” [97].

The Zernike polynomials are a complete set of polynomials orthogonal over a

unit circle. The coefficients of Zernike polynomials are used to describe the ab-

berations in a wavefront, usually due to atmospheric disturbances, but may also

be used to describe any set of data (such as surface deflections) within a circular

aperture. Some low-order Zernike polynomials are provided in Table 2.1, with

the normalization constant used to achieve an orthonormal basis set. Note that

definition of the angle θ in comparison to the Cartesian coordinates may change

the orientation of the X- and Y-tilts. Zernike polynomials will be examined in

greater detail in Chapter VI.

Table 2.1: Zernike polynomials.
Traditional Index Normalization Function Name

1 1 1 Piston
2 2 rsin(θ) Y-Tilt
3 2 rcos(θ) X-Tilt

4
√

6 r2sin(2θ) 45 Astigmatism

5
√

3 2r2 − 1 Focus

6
√

6 r2cos(2θ) 0 Astigmatism

2.2.2 Adaptive Optics System. The major components of an earth-based

adaptive optics system are presented in Figure 2.1 such as presented by Hecht [63].

The light from a distant object, such as a star, is distorted by the atmosphere, and

then collected by a large concave primary mirror. The light rays are focused, and then
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sent through active optics. A fast-steering mirror is used to correct for disturbances in

tip and tilt, and then the image is further refined to correct higher order aberrations

with a deformable mirror. The image is then split using a beam splitter. A wavefront

sensor is used to determine the error signal for future correction commands to the

active optics, while imaging sensors gather the final image for interpretation.

Figure 2.1: Earth-based adaptive optics system.

A space-based telescope used for earth surveillance would presumably need the

same components if resolution were increased to where real-time atmospheric cor-

rections were required. A rudimentary calculation demonstrates this point. The

diffraction limited resolution s of a notional space-surveillance satellite with a pri-

mary mirror of diameter D = 2.0m, at an orbit of H = 500km, for visible light with

a max wavelength of λ = 660nm would be [63, p. 224]:

s = 1.22
λ

D
H = 1.22

660nm

2.0m
500km = 0.20m. (2.4)
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The scene is diffraction limited to a resolution of approximately 20 cm. This compares

to a Fried parameter which is of similar magnitude [63, p. 229], and thus in very

general terms is at the limit of resolution before adaptive optics are required. If the

mirror radius is increased without a corresponding change in altitude, adaptive optics

would be required for best performance for real-time imagery.

2.3 Deformable Mirrors

Deformable mirrors are used in adaptive optics systems to correct for atmo-

spheric aberrations, as described in the preceding section. For membrane optics in

space telescopes, deformable mirrors may be used in large scale structures to correct

for distortions in the mirror’s surface due to deployment or disturbances. Thus, the

study of deformable mirrors herein is not for the traditional application as presented

in Section 2.2.2, but instead to understand the mechanics required to create a space-

deployed primary mirror, which would very likely require active fine surface control

to maintain optical precision.

Deformable mirrors may be classified according to their actuation mechanism:

conventional, boundary, volume changing, and in-plane actuated. Table 2.2 details a

chronology of the modelling for flat deformable mirrors, together with construction

type and solution techniques.

From Table 2.2, pay particular attention to the circular in-plane actuated plate-

membrane mirror. This type of mirror has received attention from researchers at

AFIT, but the general academic community has provided little other insight. This is

a curious omission, as a space based membrane optic with in-plane actuation must

have both plate-like and membrane-like behaviors.

What is of particular interest is if the primary light gathering aperture of a space

telescope was able to respond to high-spatial bandwidth surface shaping commands,

it is conceivable that it could combine the light gathering and active optics functions

into a single device, simplifying a space-based system. This potentially could offer
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Table 2.2: Modelling chronology for deformable mirrors.

Author(s) Date Mirror type Domain & model Influence function [89] Remarks

Adelman [4] 1977 In-plane
(unimorph)

Circular plate (clamped
central support)

Analytic Introduced the term uni-
morph.

Pearson and
Hansen [106]

1977 Conventional Circular membrane Experimental curve fit Compared performance to
segmented mirror.

Steinhaus
and Lip-
son [133]

1979 In-plane
(unimorph)

Rectangular Plate Experimental and analyti-
cal

Plate glass mirror with
PZT actuator regions.

Albertinetti [7] 1979 Conventional Circular plate Experimental

Halevi [60] 1983 In-plane
(unimorph)

Rectangular plate Fourier series Static cases replicated ear-
lier experimental work of
Stenhaus and Lipson.

Claflin and
Bareket [32]

1986 Conventional
(electro-
static)

Circular membrane Least squares fit to analyt-
ical solution

Introduced the concept
of optically active (later,
clear aperture) region for
Zernike polynomial fits for
circular domains.

Menikoff [89] 1991 Conventional Circular plate Fourier series Actuators were coupled
through a backing struc-
ture, which was effective
at removing pinning error.

Hiddleston,
Lyman, and
Schafer [64]

1991 Conventional Rectangular plate Curve fit to finite element
data using bi-cubic spline

Less susceptible to pinning
error than traditional curve
fit.

Wang and
Hadaegh [147]

1996 Conventional
(electro-
static)

Circular membrane Contraction mapping Accounted for non-linear
throw of actuator.

Redmond et
al [114]

1999 In-plane (bi-
morph)

Beam and rectangular
plate

Analytic Optical tolerances not
achieved.

Wagner,
Agnes, and
Magee [144]

2000 In-plane
(unimorph)

Circular plate-membrane Experimental Demonstration of micron
level deflections.

Agnes and
Wagner [6]

2001 In-plane
(unimorph)

Circular plate-membrane
with spring support

Asymptotic for actuated
region only

Solution method used
beam boundary condi-
tions.

Errico et
al [43]

2002 Conventional
(electro-
static)

Circular membrane Analytic

Lee, Uhm,
Lee, and
Youn [76]

2003 Conventional Plate Localized deflections based
on beam theory

Influence functions were in-
dependent of the domain of
the mirror.

Rogers [117] 2003 In-plane (bi-
morph)

Axisymmetric circular
plate-membrane

Asymptotic finite element

Flint and De-
noyer [45]

2003 In-plane Circular membrane Numerical least squares fit Actuators modelled as
line loads and as in-plane
forces.

Bush et
al (Intel-
lite) [29]

2004 Conventional
(electro-
static)

Circular membrane Slope control based on fi-
nite element least squares
curve fit together with an-
alytical solution

Results compared to exper-
imental data.

Todovinin,
Thomas, and
Vdovin [136]

2004 Conventional
(electro-
static)

Circular membrane Discrete analytical solu-
tion.

Noted difficulty in obtain-
ing offset bias for large
aperture applications nec-
essary for electrostatic con-
trol.

Sumali et
al [134]

2005 In-plane Rectangular plate with
pinned corners

Analytic Compared to experimen-
tal data with area of least
agreement at boundary
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significant improvements in overall system performance, and provides impetus to this

research.

2.3.1 Conventional. For the purpose of this document, conventional de-

formable mirrors are those structures typically discussed by the optics community.

Conventional refers to an actuation scheme where actuators act directly on the non-

reflecting side of a mirror with a deformable face, and require a backing structure

to which actuators are attached. Conventional deformable mirrors are the type of

deformable mirror pictured in the texts by Goodman [54] and Hecht [63]. A graphic

showing a conventional deformable mirror is presented in Figure 2.2.

Figure 2.2: Side view of conventional deformable mirror.

Menikoff, in defining the term influence function, was attempting to character-

ize a conventional deformable mirror’s response to point load actuators applied to

the backing surface of a plate-like glass mirror as seen in Figure 2.3 [89]. Menikoff

modelled the mirror as a deformable plate without any tension and with actuators

connected as linear springs. The resulting differential equations are solved using a

Fourier series approach.

By coupling the impact of one actuator to another through the deformable

mirror, Menikoff alleviated a common problem with linear solutions to a deformable

mirror problem, referred to as pinning error. Pinning error occurs when a summation

of linear models is used and linear supposition does not apply [140]. If all actuators

are actuated equally, a simple summation of linear solutions shows a surface of bumps,

but in reality a flat surface between actuators should be observed.
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Figure 2.3: Menikoff conventional mirror modelling scheme

Electrostatic mirrors fall under the category of conventional deformable mirrors,

and were proposed for use in a space telescope by Angel [9]; Gorinevsky, Hyde, and

Cabuz [55]; Stamper et al [130]; and Errico et al [43]. An electrostatic mirror uses

the attraction between electrodes to exert a pressure on the surface.

Of interest is the 50-mm 79-acutator electrostatic membrane deformable mirror

constructed and investigated in the paper by Tokovinin et al [136]. Only the interior

35-mm “pupil” region was actuated–the remainder of the membrane was unused, a

“transition zone to the fixed boundary.” The researchers used a discrete solution of

Poisson’s equation, ∇2w = f , and iteratively solved for influence functions. The re-

searchers also concluded that for large membranes the distance between electrodes and

the membrane mirror would necessarily be large, increasing required control voltages

thus making large scale membranes difficult to control.

Tokovinin’s conclusions, together with the electrostatic mirror’s characteristics

of non-linear actuation forces (inversely proportional to the distance between elec-

trodes), bias requirements (the force between electrodes is attractive only), and re-

liance upon a stiff (and presumably heavy) backing structure, lead us to seek an

alternate approach for lightweight space telescope applications.

As another aside, it may be seen that researchers on electrostatic membranes

struggled with representing Zernike mode shapes with membrane deformable mir-
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rors, due to incompatible boundary conditions. This issue is addressed directly in

Chapter VI.

2.3.2 Boundary. Boundary control relies upon actuators along the mirror

boundary to provide shear and moment inputs at the edge. In 1982, Malin et al [83]

demonstrated the concept by performing closed-loop computer control of a hexagonal

shaped mirror. In 1983, the concept was extended to a circular deformable mirror

in a journal article authored by members of the Air Force Weapons Laboratory in

Kirtland, NM [96]. The researchers noted several areas of concern with cross coupling

of boundary control actuators, diminishing the ability to perform surface control. The

concerns included: low tolerance to miss-match in actuator performance, susceptibility

to small deviations of actuator alignment, and the requirement for the mirror to be

perfectly isotropic.

Boundary manipulation of a curved shell was modelled in finite elements by

Marker and Jenkins [85] and by Bishop [26]. Solter, Horta, and Panetta [129] ex-

perimentally characterized boundary actuators acting on thin-film flat membranes.

Lindler and Flint [78,79] and Hall, Lindler, and Flint [61] experimentally used bound-

ary actuators to improve the surface precision of doubly curved shells. The results

show that boundary control may be used to initially achieve a global parabolic shape

from a near-parabolic curved shell domain, and dynamically excite vibration mode

shapes, but also serve to show that finer static actuation of the surface beyond the

parabolic shape was not possible. This limits boundary control’s applicability for

thermal disturbance rejection and fine surface control required of an active optical

element.

2.3.3 Volume Changing. Imagine a two-dimensional surface that could

change its thickness locally in the direction normal to the surface. Ideal static shape

control would be possible. That is the concept under investigation as reported by

Ruggiero, Jacobs, and Babb [120]. They report the use of micro-electro-mechanical

(MEM) devices that use electrostatic actuation to actively reduce the individual ac-
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tuator thickness in the out-of-plane direction. These devices will have void areas

through which the electrode actuators will sweep, changing the element thickness,

without an attendant change of mass. Layers of these MEMs devices are hypothe-

sized to create surface deformations of up to 5 millimeters with areal densities on the

order of 1.75 kg/m2. This technology is in its infancy, and surface resolutions are not

reported. The method would require a significant grid of electrodes to be effective,

and will require further development before the technology may be applied to a full

scale problem. A single volume changing MEMs element is presented in Figure 2.4.

Dielectric

Electrodes

Dielectric

Electrodes

Figure 2.4: MEMs volume changing element using electrostatic actuation.

2.3.4 In-plane Actuated. In-plane actuated deformable mirrors rely on

piezoelectric (or other types of electro- or magnetostrictive actuators) regions to strain

offset from and parallel to the structure’s neutral axis, thus imparting a surface cur-

vature. The term in-plane actuation was chosen in lieu of the term bimorph corrector

mirrors used by Tyson [140] to describe this class of deformable mirrors, due to the

fact that the term bimorph is overly precise. The class may be further subdivided into

three types based on the actuation mechanism, as shown in Figure 2.5 and described

below.

• Unimorph The unimorph deformable mirror utilize piezoelectric actuators bonded

to the mirror backing plate. Each piezoelectric actuator expands or contracts,

and based upon its difference from the composite structure’s neutral axis, in-

duces a surface curvature. The regions of actuation corresponding to the elec-
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Figure 2.5: In-plane actuated deformable mirrors

trode pattern on the faces of the piezoelectric layer. The term unimorph was

suggested for this type of actuator configuration by Adelman in 1977 [4].

• Bimorph Similar to the unimorph, the bimorph utilizes piezoelectric actuators,

but in pairs at each actuator location. The piezo-pair act in opposite directions

to produce a local curvature. As the mirror coating is reduced, the system

approaches a symmetric structure, which is easier to model. However, the man-

ufacturing complexity is increased by having to apply opposite voltages on each

piezo component of the piezo-pair. Some caution must be used when searching

the early literature as the term bimorph was used in 1979 by Itek corporation

to describe a class of mirrors that utilized piezo-beam cantilevers acting on

pushrods connected to the mirror in a conventional actuator configuration [7].

• Discrete The discrete in-plane actuator utilizes fixed blocks affixed to the back-

ing side of the continuous mirror. A piezo-actuator pushes laterally on the

blocks, which pivot on a central axis. The surface therefore deforms in segments.

This type of in-plane actuated mirror is generally best suited to micro-electrical-
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mechanical systems such as those proposed by Yang [153]. A derivative of this

approach that used longerons and ribs to transmit the forces to a deformable

mirror plate was developed by Philen and Wang [108, 109]. Anderson, Lindler

and Flint [8] proposed a hybrid piezoelectric-hydraulic actuator. The actuator

could potentially miniaturized for use as a discrete in-plane actuator.

The great advantage of in-plane actuation is the weight savings due to the lack

of requirement for a backing structure, increased stroke versus conventional mirrors,

and the potential to reduce or eliminate the need for substantial boundary supports.

AFIT researchers Rogers and Agnes developed a comprehensive series of articles

espousing the method of integral multiple scales approach to solve the piezoelectric-

actuated beam-string problem, culminating with the modelling of an axisymmetric

optical bimorph deformable mirror [6, 115–118]. The methods used greatly simpli-

fied finite element modelling where typical beam shape functions were replaced with

asymptotic shape functions which approximated the non-linear analytical behavior

of a piezoelectrically actuated beam. Isoparametric elements were not developed,

and the model as presented was not applicable for unimorph construction nor non-

axisymmetric deformable mirrors, limiting the method’s applicability.

2.4 Smart Actuators

A smart, or shape changing, strain inducing, actuator embedded within the

physical structure is required for any type of in-plane actuation. Piezoelectric materi-

als have long been the material of choice, but alternatives such as thermal, dielectric

elastomers, and ionic electroactive polymer actuators will be discussed below with an

eye towards space-borne applications in an optical sensing system.

2.4.1 Thermal Actuation. Thermal actuation of a structure for optical

applications has not been well investigated. Control could theoretically be applied

with a heat load using any material with a coefficient of thermal expansion. The slow

time constants, the rate difference of heating and cooling, and difficulty in maintaining
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a temperature field all appear to limit this as an actuation method for high bandwidth,

high precision optical applications.

Shape memory alloys most commonly rely on a change in temperature to acti-

vate. Das et al [37] correctly point out that a shape memory alloy is an alloy material

that may be deformed at a low temperature, and upon heating returns to its original

state. Pollard and Jenkins [110] investigated this actuation method to deploy a mem-

brane mirror. The binary (2-phase) nature of this material makes it impractical to use

for fine surface control, plus shape memory alloys suffer the same temperature control

liability as does thermal actuation. Although under investigation for use in MEMs

devices [65], its usage for post-deployment surface control of space-borne telescopes

appears limited.

2.4.2 Dielectric Elastomers. Dielectric elastomer actuators are perhaps the

least complex of the strain-inducing actuators whose characteristics were summarized

by Madden [81] and are briefly repeated here. Two metallic plates, which are posi-

tively attracted to each other in the presence of an electric field are used to sandwich

a layer of a dielectric polymer such as silicone, as in Figure 2.6.

Elastomer

Electrode

Electrode

Elastomer

Electrode

Electrode

(a) Dielectric elas-
tomer construction.

VV

(b) Dielectric elastomer under an applied
voltage.

Figure 2.6: Dielectric elastomer.

When a voltage is applied, the plates compress the dielectric with a pressure

proportional to the relative permittivity and free space permittivity and the square of

the quantity of voltage divided by the spacing of the electrodes. Assuming the layer

is incompressible, the dielectric polymer material displaces in the axial directions.
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Simply stated, this relationship means when the dielectric polymer is squeezed in one

direction, it must expand in the other two.

Although elegantly simple in concept, the main drawback of dielectric elas-

tomer actuators are the high voltages required for thick polymer layers. However,

it is proposed that using 100 nanometer layers will reduce required voltages to the

neighborhood of 10 volts. Another drawback is the reliance on incompressible mate-

rials for actuation, which, for now are currently limited in the temperature operating

range they can withstand. For instance, a silicone-based dielectric elastomer actua-

tor is limited from -100oC to 250oC [81]. Thermal control will be required for space

applications. The use of dielectric elastomer actuators for optical and aerospace ap-

plications have been proposed by Apollonov et al [14], Costen, Su, and Harrison [34],

and Ruggiero, Jacobs and Babb [120].

2.4.3 Ionic Electroactive Polymers. Ionic Electroactive Polymers (EAP), or

“artificial muscles”, may offer a host of new capabilities for future efforts in quasi-

static shape control of deformable mirrors. Ionic EAP, such as Carbon Nanotubes,

Conductive Polymers (CP), and Ionic Polymer Metallic Composites (IPMC) produce

a strain by a redistribution of ions from oppositely charged electrodes transported via

a conducting electrolyte [81]. When placed under a voltage potential, cations in a

polymer matrix immediately swell clusters on the side nearest the negative electrode

(cathode), and shrink on the side nearest the positive electrode (anode). However,

over time, the pressure gradient in the structure replaces the lost volume of cation

with a similar amount of liquid, until equilibrium is achieved. A diagram depicting

actuation and eventual relaxation of the IPMC is shown in Figure 2.7.

Advantages for aerospace applications were summarized by Bar-Cohen et al [19–

21,124] and include the ability to produce large strain/bending displacements at low

voltage levels . Demonstrated rates of 50 percent strain were shown by Tung et al [139],

versus normal piezoelectric (see Section 2.4.4) rates of less than one percent. How-

ever, all at present require a liquid electrolyte to operate, and although ideal for naval
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(a) The IMPC is com-
posed of a polymer ma-
trix sandwiched between
electrodes. The polymer
allows the free transport
of cations to embedded
clusters within the struc-
ture.

(b) Under an initial applied
voltage, the cations quickly
migrate through the matrix
to clusters near the cathode
region. A pressure gradient,
depicted by the red arrow,
develops due to the swelling
and contraction of the clus-
ters. Bimormph type of ac-
tuation results, depicted by
the green arrows.

(c) After the initial ex-
pansion phase, the IMPC
fatigues as the liquid is
pumped from the swollen
clusters to the shrunken clus-
ters by the pressure gradient
until equilibrium is achieved.

Figure 2.7: Ionic Polymer Metallic Composite theory of operation.

locomotive applications [103], this limitation must be overcome for space applications,

as a liquid electrolyte requires thermal control and is massive. Furthermore, individ-

ual drawbacks include high current requirements for CP, poor efficiencies for Carbon

Nanotubes, and inability to maintain a steady-state strain for Ionic Polymer Metallic

Composites [81, 139]. Recent analytical and experimental static and dynamic mod-

elling of EAP activated structures have been undertaken by Otake et al [98–100] and

Kaneda et al [70].

2.4.4 Piezoelectric . While dielectric elastomer and ionic polymer metallic

composites show future promise for use in smart structures, piezoelectric actuators

offer the best near-term solution. Piezoelectric gets its name from Piezein, which

is Greek for squeeze. Piezoelectric actuators “squeeze” when an electric field is ap-

plied [71]. The squeezing actually comes from a volume change of the piezo, which

differentiates these actuators from dielectric elastomers. Classical modelling of piezo-

electric materials may be found in the texts by Tiersten [135] and Mindlin [90], with

21



modern nomenclature given by the IEEE standard on piezoelectricty [1]. A distinct

advantage of piezoelectric material is the ability to hold a constant strain under an

applied current. Figure 2.8 illustrates the volume change of a piezoelectric actuator

under electric potential.

Figure 2.8: Piezoelectric actuator before and after applied voltage.

Piezoelectric materials may be ceramic- or polymer-based, along with naturally

occurring quartz and other crystals. Ceramic-based piezoelectric material generally

is directional, due to a process called poling, where the piezoelectric properties are

strengthened by applying an electric field at high temperatures, leaving a residual

polarization [71]. The most widely investigated piezoelectric material is the ceramic

lead zirconate titanate (PZT). The investigation of PZT as an in-plane actuator was

conducted by Steel, Harrison, and Harper, including the directional effects of poling,

hysteresis, and strain [131]. Steinhaus and Lipson created a PZT forced deformable

plate mirror [133]. Further investigations, including detailed hysteretic data, is avail-

able in the report by Haertling et al [59]. In general, however, PZT is too stiff for

membrane optics applications, whereas piezoelectric polymers offer a much more suit-

able compliance.

The most common piezoelectric polymer in membrane optics applications is

polyvinylidene fluoride (PVDF). The use of PVDF as an actuator for a deformable

mirror has been experimentally investigated by researchers at AFIT [80, 107, 127,

128, 137, 143, 144] and Sandia [134]. Polymer-based piezoelectric actuators generally

require much greater voltages than ceramic-based actuators [21]. However, efforts by

Sessler and Berraissoul [123] and Huang et al [67] to increase the strain rates available
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from PVDF through excitation by electrons during the poling process, and work by

Dargaville et al [36] to space qualify PVDF, increase the interest in the actuation

method.

A significant enabling technology for the use of piezoelectric actuators on the

in-plane actuated deformable mirrors of Section 2.3.4 is the electron gun remote ac-

tuation, as demonstrated by researchers at the University of Kentucky [57, 58, 82, 95]

and investigated numerically by Bao et al [18]. By using an electron beam to charge

the electrode field of the piezoelectric actuators, wiring to the individual electrodes is

eliminated. In a space application, one could have a single beam generator to control

the system that is not attached to the mirror structure itself except for the ground

electrode, simplifying and isolating the mirror structure and control system.

Unfortunately, the strain response has shown to be non-linear as the speed and

predictability of the strain differs depending on positive or negative control voltage.

For positive voltage, the results are linear with small time constants. In contrast,

negative voltage deflections are characterized by greatly increased time constants,

and reduced precision due to un-characterized non-linear behavior [57,58].

The most recent published experimental results for electron gun piezoelectric

actuation were from Choi et al at the NASA Langley Research Center and Norfolk

State University who demonstrated piezoelectric static actuation of a unimorph mem-

brane with voltages up to 230V using 18 Watt X-band microwave drivers positioned

1.8 meters from the membrane [31] in 2004.

Although beyond the scope of this work, it is noted that piezoelctric materials

such as PZT and PVDF may also be used as sensors. Piezoelectric actuators are

pyroelectric, that is, they give off a charge when heated. Experimental investigation

of this behavior may be found in the work by Dias [39]. Also, piezoelectric materials

may be used as strain rate sensors, as investigated analytically and experimentally by

Lee and O’Sullivan [75] and Lee, Chiang, and O’Sullivan [73].
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2.4.5 Photostrictive. Photostrictive actuators convert high energy light,

such as laser light, into mechanical strain energy, and are analogous to piezoelectric

actuators. Shih and Tzou [126] and Shih, Smith, and Tzou [125] investigated the

modelling of smart structures with this type of actuation. The compound exhibiting

the photostrictive behavior was PLZT, composed of lead, lanthanum, zirconium and

titanium. Like ceramic based piezoelectric actuators, it is most likely too stiff for

membrane applications. The primary advantage of such an actuator would be the

non-contacting nature of the control input (light) without the need for individual

electrodes as is the case for piezoelectric material. Another advantage is that existing

modelling techniques for piezoelectric actuators is directly analogous for this actuation

method.

2.5 System Design Considerations for Large Space Telescopes

Design of a large aperture space telescope has unique challenges beyond the

already substantial task associated with launching and maintaining a surveillance

satellite. Some specific research areas such as scaling, optical surface measurement,

dynamic testing, mirror construction, as well as a host of other fields well outside of

the scope this research effort are identified in the following sections.

2.5.1 Scaling of Laboratory Testing to Actual Flight Vehicles. There is

limited research specifically identifying the scaling issues of small-scale deformable

mirror laboratory testing to large scale in-plane actuated space-borne optical systems.

The issue of scaling for membrane optics is discussed in Chapter VII.

2.5.2 Static Measurement of Optical Surfaces. Actual experimental testing

of large scale optical membrane mirrors is limited–in fact no membrane optical surface

in the 20-meter class has been constructed or tested to date. Some methods which

may be employed in the future are summarized in this section.
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Photogrammetry is used for measurement of a surface by tracking a series of

projected coordinates, or “dots” on a surface with camera equipment and processing

of the visual images. Videogrammetry is the same method applied a series of frames

of images to gather dynamic data. The method has been used extensively by NASA

researchers in their work on Gossamer structures [40,41], and the method is described

in detail by Pappa et al [102]. As noted by Papa et al, photogrammetry relies on an

opaque surface so that the images of the surface are captured, and usually the white

dots are affixed to transparent or reflective surfaces. However, by using special manu-

facturing techniques to embed a laser fluorescent dye in the test article, new methods

using laser illumination may overcome this restriction. Surface measurements are on

the order of 1-millimeter accuracy, well-above optical quality.

Ronchigrams, or images from Ronchi tests, are used to identify the aberra-

tions of a spherical lens. An overview of the test methodology was provided by

Mansuripur [84]. Briefly summarized, it involves shining coherent, monochromatic

light from a test source through a grating (the “Ronchi ruling”), and then viewing

the resulting image for defects. This is a widely accepted test method to visually

observe low order errors in a lens’ profile.

Interferometry uses the destructive and constructive features of light to deter-

mine a change in optical path, which can be equated to a change in displacement of

a reflective surface, such as a deformable mirror. The Michelson Interferometer, as

described by Hecht [63], uses a beam splitter to divide a laser light source, one of

which is directed to a test mirror, the second of which is reflected off of a reference

mirror. The images are then recombined at a sensor, and then added constructively

so that a change in beam path results in a lower intensity at the sensor. Nanometer

level surface metrology is possible, however, for distortions in the surface greater than

one wavelength of light (usually 635 nanometers), the sensor suffers from ambiguity,

and is therefore not appropriate for measuring large surface displacements without

another input (such as an accurate model of the surface). For a current example, the

method was used by Bush et al [29] to measure electrostatic mirror deflection.
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Shack-Hartmann wavefront sensing is a common method for determining the

surface deformation of a deformable mirror, the theory of which may be found in the

text by Roggeman [119] among other sources. Generally stated, the Shack-Hartmann

method determines the local slope across a mirror’s surface, to which a 2-dimensional

surface is fitted. A light source is used to illuminate the surface, and then the incoming

reflected wavefront is directed through a sub-aperture grid onto a charge-coupled

device (CCD). The change in incident angle through the sub-aperture lenslets result

in a change in position of highest intensity light on the array corresponding to a

change in the surface slope. The resolution performance of the Shack-Hartmann

wavefront sensor is governed by the fineness of the CCD array. Also, the more closely

spaced the sub-aperture lenslets, the lower the maximum measurable slope, as an

ambiguity between adjoining sensors develops. Shack-Hartmann sensing is used for

the experimental testing herein.

2.5.3 Dynamic Testing of Large-scale Membranes. Researchers at NASA

Langley have conducted dynamic analysis of many lightweight structures. The in-

flatable/rigidizable hexapod with tensioned reflective membrane was subjected to a

battery of tests to compare experimental data to the finite element model of the

hexapod/membrane structure [5, 25]. The 673-node MSC.Nastran model utilized

CQUAD4 elements for the membrane, and CBEAM, CTRIA3, and rigid elements for

the frame. Non-linear solution techniques were used, and compared to a state-space

model generated by an Eigenstructure Realization Algorithm (ERA). Air damping was

found to be small, as the structure was lightly damped, and further testing revealed

frame modes as well as membrane modes were present in the composite structure.

Preliminary work in support of the NASA Gossamar Spacecraft Initiative ex-

periments was conducted on a 40-in. square, thin polyamide Kapton membrane with

tethered corner boundary conditions [49,50]. Unlike the optical membrane, this solar

sail membrane was lightly tensioned. Testing with shaker and impact hammer ex-

citation showed that variation in membrane tension and non-linear responses made

26



characterization of modes difficult. Furthermore, the primary mode of the structure

was difficult to precisely excite; a condition the researchers attributed to ambient

noise from air circulation around the test article.

A larger scale test from the same program was NASA’s evaluation of the 10-m

Solar Sail [49]. The testing is some of the only dynamic testing of a large scale mem-

brane in near vacuum conditions, and took place at the highly specialized Plum Brook

facility. Vacuum chamber testing was determined to be necessary since air damping

effects on a large scale membrane were significant: “air within two millimeter of either

side of the sail surface is alone equal in mass to a 3-micron sail film.” Unfortunately,

testing was hampered by laser radar scanner difficulties with the surface reflection

and low-level air currents in the near-vacuum atmosphere which excited the primary

mode of the structure. Photogrammetry methods for data analysis were not used

due to the data acquisition systems’ inability to operate in a non-pressurized envi-

ronment. Therefore, the testing was inconclusive, and led to the recommendation for

future testing to be conducted in 2005. Figure 2.9 is a photograph of the solar sail

inside the vacuum chamber at the Plum Brook facility.

From the research reported to date, it appears that smaller scale testing will

continue to be an important aspect of membrane space telescope development in the

future due to the difficulties with limited test sites and lack of proven large scale

measurement equipment. Small-scale testing at the Air Force Institute Technology

was pioneered by Wagner [144] and Sobers [128]. The test set up used by these early

researchers, including the measures taken to reject environmental disturbances while

performing optical level measurements, will be reviewed as part of the experimental

testing presented in Section 4.2.2.

2.5.4 Primary Mirror Construction. In 1980, Vaughan [142] published the

algorithm to pressurize a flat membrane into a parabolic shape. In 1986, Holmes et al [66]

documented the development of the first large scale membrane mirror, where the Ger-

man company, Schlaich and Partner, created a 17-meter parabolic solar collector. The
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Figure 2.9: Solar sail at Plum Brook facility courtesy NASA.

shaping was from a pressure force of a vacuum applied to the non-reflective side. The

mirror was far from lightweight, as the optical coating consisted of glass tiles bonded

to the surface.

This inflated lenticular concept dominated the research efforts of the 1990’s and

into this decade, with works by Steele et al [132], Bishop [26], Wilkes [150,151], Rogers

and Agnes [116] and Bao [18] all using this as the baseline configuration. The concept

suffers in space-borne applications for one main reason: in space, vacuum cannot

be applied to a structure to induce the parabolic curvature. Instead, a membrane

lenticular is inflated, and must have an clear canopy over the light gathering region.

This canopy must be completely transparent (not physically realizable) or partially

negate the benefits of increased aperture size. This canopy and the reflector must

also contain the pressurizing gas without leaking, and thus should be impervious to

space debris, as just a small leak could conceivably require tons of gas to maintain

inflation, negating any lightweight advantages of the membrane mirror. Thus, an
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inflated lenticular of a lightweight large aperture is of limited utility for a space-based

telescope.

Manufacturing a mirror with intrinsic stresses to hold the mirror shape upon

deployment is another type of mirror construction. Modelling the response of mem-

brane structures with an embedded strain field was the focus of the publication by

Ash et al [15]. Glaese et al [53] and Mevicon corporation [44, 47] have researched

and manufactured a series of doubly curved membrane shell mirrors. The meter class

mirrors are of near optical quality, and may be rolled flat. Pictures of the mirrors are

presented in Figure 2.10.

Figure 2.10: Mevicon form stiffened shell lightweight mirrors c©Mevicon Inc., used
with permission.

The tensioned membrane and thin shell mirror is the final concept investigated.

Proposed first by Bekey [24], it proposes using thin shell with piezoelectric elements to

shape the surface into a desired parabolic shape. Later, Wilkes et al [152] would pro-

pose using a tensioned membrane with a plunger in the center to create the necessary

curvature. The Bekey concept is further discussed Chapter VII.

Combining elements of both the tensioned membrane and the intrinsic stress

mirror is the NASA L2 proposal [3]. In the NASA L2 proposal, shape memory alloy

is used to create the initial parabolic shape (the intrinsic stress) and with piezoelectric

actuators reacting on the tensioned surface.

2.5.5 Other System Considerations. Research to develop a fully-functional

space telescope with a membrane primary aperture beyond the scope of the work
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presented above will be required in areas such as deployment, materials, wrinkling,

formation station keeping, and orbital mechanics.

Deployment of a membrane mirror may be broken into two areas: unfurling from

a stowed configuration and the actuating mechanism. Simply rolling a pre-curved

mirror flat and letting in unfurl due to an embedded tension field is the method

proposed by Flint [47]. A proposed membrane folding technique was suggested by

Furuya and Inoue [48] for membrane solar sails, although it is not clear if a reflective

material could withstand the plastic yields folding would cause. Shape memory alloys

are candidates for pulling the membrane mirror into its deployed shape, and have been

separately examined by Hill et al [65] and Pollard and Jenkins [110], and Duvvuru

and Jenkins [42]. The thermal control problem that ensues remains unresolved.

Materials research in fields of perfecting optical quality polymer membranes is

on-going. Kapton has been experimentally evaluated for use in space membranes by

Heald, Potvin and Jiang [62] and for the James Webb Space Telescope heat shield

by Waldie and Gildman [145], especially in regard to thermal stability and change

in flatness due to temperature. SRS Technology produced CP-1 polyamide has been

reported by Patrick and Moore [105] and Patrick et al [104] to have excellent optical

properties in tensioned membrane applications.

Wrinkling will surely be an issue for any membrane structure, presumably due to

the profoundly negative impacts it would have on an optical presentation. Wrinkling

effects on the optical problem are not well-investigated at present, although Blandino,

Johnston, and Dharamsi [27] and Blandino et al [27] have investigated the effects of

wrinkling specifically in regard to the gossamer membrane problem.

Station keeping and orbital mechanics problem of a large earth facing space

telescope have not been directly investigated in the open literature. The formation

station keeping problem for the NASA L2 membrane mirror experiment was outlined

by Açikmeşe et al [3]. Tragessor and Tuncay [138] presented an earth-facing teth-
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ered satellite constellation that could possibly be extended to the long focal length

membrane mirror problem.

2.6 Summary

This chapter provided the contextual background for research in the field of

membrane optics. A summary of current research and literature encompassing space

telescope optics, deformable mirror technology, different smart actuation mechanisms,

and space system test and design considerations was presented. From this survey, the

piezoelectric in-plane actuated deformable mirror is found to have several potential

advantages for the use in membrane optics systems. The advantages include weight

savings due to no requirement for a backing structure, increased stroke, and lack of a

requirement for boundary supports. To further the advancement in our understanding

of this type of mirror, let us begin the next chapter with a discussion of established

modelling techniques. Chapter III outlines the equations chosen to describe the struc-

tural behavior of the in-plane actuated deformable mirror.
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III. Modelling of Smart Structures

Chapter objectives:

• Present piezoelectric theory and assumptions

• Develop the piezoelectric-thermal analogy

• Introduce the model for in-plane actuated structures

3.1 Introduction

To enable a study of the in-plane actuated deformable mirror, a review of the

mechanics which govern the actuation and structural responses must be under-

taken. The purpose of this chapter is to develop an analytical framework for analysis,

and to provide a comprehensive list of the assumptions and constraints under which

the framework is valid.

The nature of the actuating mechanism, the piezoelectric actuator, is the sub-

ject of Section 3.2. An analogy between piezoelectric-induced and thermal strain is

reviewed in Section 3.3 for inclusion in analytical modelling or finite element models.

The derivation of a circular composite plate-membrane with in-plane piezoelectric ac-

tuation forms Section 3.4 based on the work of Nayfeh and Pai [94]. The derivation

provides the governing equations for the work contained herein.

3.2 Linear Theory of Piezoelectricity

Throughout this document, the linear theory of piezoelectricity is used in all

of the models presented. This is common in the literature, as the IEEE Standard of

Piezoelectricity [1] gives the constitutive piezoelectric relationships as linear functions.

To understand the assumptions that go into the linear theory, a short review of the

foundational work on which the standard is based is in order.
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The linear theory of piezoelectricity from the IEEE Standard on Piezoelectric-

ity [1] was based on the derivations presented in Tiersten’s 1969 text titled Linear

Piezoelectric Plate Vibrations [135]. By the author’s own account, this “monograph”

was based upon a series of classes taught by the author from 1965 to 1966 to the

Piezoelectric Crystal Device Department of Bell Telephone Laboratories to expound

the theory of piezoelectric crystals as developed by Professor Mindlin of Columbia

University [90, pp. 281-290]. During the period of the lectures, the “monolithic crys-

tal filter” was discovered independently by researchers in the U.S. and Tokyo, and

consequently was introduced into the lecture material forming the nucleus of the book.

Now, some 40 years later, the original derivations form the backbone of the standard,

but bear re-examination to see the underlying assumptions of piezoelectric1 linear

theory. This section is taken in its entirety from the two volumes cited unless specifi-

cally stated, otherwise with only clarifying remarks provided by this author, and with

no claim or pretense of originality.

Four equations set the scene for the derivation, and are the result of multiple

linearizing assumptions.

3.2.1 Stress Equation of Motion. The force equations of motion, assuming

the stress vector varies in a continuous fashion over a unit volume, is given in tensor

notation as as the three equations represented by:

τij,i + fj = ρüj. (3.1)

The stress tensor is symmetric, that is τij = τji and the state of stress can be

given in six versus nine values. For this problem, the external force is assumed to be

fj = 0. To refresh our familiarity with tensor notation, one can expand Equation 3.1

for j = 1 under the zero external force assumption to be:

1Piezoelectric, or equivalently biased electrostriction, as presented in the early literature.
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∂τ11

∂x1

+
∂τ21

∂x2

+
∂τ31

∂x3

+ 0 = ρü1. (3.2)

The linear derivation of the components of stress are the classical equations

of elastic displacement in a Lagrangian coordinate system, that is, for the deformed

body, one cannot distinguish between pre- and post- deformation values of stress [121].

3.2.2 Quasi-Static Electric Field. To arrive at a linear theory for piezoelec-

tric behavior, the assumptions behind a quasi-static2 electric field must be introduced.

Piezoelectric actuators yield a force in the presence of an electric field. The second

equation for linear piezoelectric field relates the electric field directly to the scalar

electric potential, as shown below.

Piezoelectric actuators are considered polarizable but non-magnetizable such

that magnetic field intensity is then the same as the magnetic flux vector. This

simplifying assumptions allows the use of units in the familiar classical mechanics

terms of mass (M), length (L), and time (T).3

For piezoelectric systems which are polarizable (but not magnetizable), the mag-

netic field intensity is assumed to equal the magnetic flux vector. Thus, Maxwell’s

equations may be written as:

2Later, in Chapter IV, the term quasi-static shall be used to describe motion of the piezoelectric
mirror below its fundamental mechanical vibration mode frequency. For these low frequency signals,
the quasi-static assumptions of this chapter will also apply.

3The complete derivation of Maxwell’s equations makes use of electromagnetic theory where the
one constant, c, the velocity of light in a vacuum is the fundamental constant. For a thorough
description of units and dimensions in electromagnetic theory, the reader is directed to the text
Classical Electricity and Magnetism by Panofsky and Phillips [101].
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eijkHk,j =
1

c

∂Di

∂t
(3.3)

Hk = eklmAm,l (3.4)

Ei = −φ,i − 1

c

∂Ai

∂t
(3.5)

Di = Ei + 4πPi (3.6)

Di,i = 0. (3.7)

Table 3.1: Maxwell’s equations symbology for piezoelectricity.

A* vector electric potential
D electric displacement vector
E electric field intensity
H magnetic field intensity
P polarization
c material wave speed
eijk alternating symbol
φ scalar electric potential
* Bold indicates vector quantity (example q) with com-

ponents < q1, q2, q3 >.

Electromagnetic waves are assumed to uncouple from the elastic waves in the

piezoelectric material through the assumption

∣∣1
c

∂Ai

∂t

∣∣ ¿
∣∣φ,i

∣∣. (3.8)

In words, this means the time rate of change of the applied electric field normalized

by the wave speed constant is much less than the rate of change of the associated

scalar electric potential in the chosen direction. Following from this assumption, one

may neglect the contribution of 1
c

∂Ai

∂t
and Equation 3.5 is approximated by

Ei = −φ,i (3.9)
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which relates the electric field directly to the scalar electric potential.

3.2.3 Strain Displacement Relationship. For a vector displacement field

where u∗−u = du represents the difference in displacement after deformation. Given

the assumption of an infinitesimal fiber4, the displacement field u may be expanded

termwise in a Taylor series as such that the displacement of a coordinate on one end

of the infinitesimal fiber to the other may be represented as

u∗i = ui +
∂ui

∂xj

dxj + higher order terms. (3.10)

For an infinitesimal fiber, the linearizing assumption is that higher order terms are

negligible. Thus write the relative displacement as

dui =
∂ui

∂xj

dxj. (3.11)

Since ∂ui

∂xj
is a second rank (dyadic) tensor in a Lagrangian coordinate system, it may

be decomposed into symmetric and antisymmetric terms:

Sij =
1

2
(ui,j + uj,i) (3.12)

and

ωij =
1

2
(uj,i − ui,j). (3.13)

The sum of Equations 3.12 and 3.13 yields:

ui,j = Sij + ωji. (3.14)

4An infinitesimal fiber may be thought of as a fiber so small, its deformation may be described
solely by changes in length and rotation.
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Therefore, the relative displacement is the taken from the derivative of Equation 3.14

dui = Sijdxj + wjidxj. (3.15)

If one makes a linearizing assumption of no rigid body rotation then one can set

wji = 0 which in effect says that the relative displacement between two infinitesimally

close coordinates is therefore

dui = Sijdxj. (3.16)

3.2.4 First Law of Thermodynamics for Piezoelectricity. By conservation

of energy, one may write the following relationship for a piezoelectric body with a

surface area, (S), and volume, (V ). First make the assumption that the piezoelectric

energy equation is isothermal. The rate of increase of kinetic and internal energy is set

equal to the rate of work performed by the surface tractions minus the flux of electric

energy outward from the surface. The conservation of energy equation is presented

using the symbology in Table 3.2:5

∂

∂t

∫

V

1

2
ρu̇ju̇j + UdV =

∫

S

tju̇j − njφḊjdS. (3.18)

Begin by applying the divergence theorem (Gauss’ Equation) to the right hand

side terms. Recall the divergence theorem as

∫

S

F · n dS =

∫

V

∇ · FdV. (3.19)

5The equation for the electric displacement vector was given in Equation 3.6 in Gaussian units.
In M-L-T units, the equation is

D = εE + P (3.17)

where ε is the material permittivity (ε0 represents the permittivity of free space, 8.8542 ×
10−12C2N−1m−2. )
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Table 3.2: Conservation of energy symbology.

n unit outward normal
t traction (stress vector)
u displacement field
τij stress tensor
U internal energy function
ρ mass density
V volume
S surface

Thus, recognize the equivalent volume integrals, utilizing the relationship tj = njτij

where ni represents the components of the normal vector, and recalling τij is sym-

metric (note: tj = τijnj = τjinj = τijnj = njτij):

∫

S

njτiju̇jdS =

∫

V

(τiju̇j),i dV (3.20)
∫

S

−njφḊjdS =

∫

V

− ∂

∂xj

(φḊj)dV

=

∫

V

−(φḊj),j dV (3.21)

Rewriting Equation 3.18 with the terms above yields

∂

∂t

∫

V

1

2
ρu̇ju̇j + UdV =

∫

V

(τijuj),i−(φḊj),j dV. (3.22)

Since the linearizing assumption that we cannot distinguish between pre- and post-

deformation position has already been made, one may further assume that density

and volume remain constant with respect time, thus allowing the time derivative to

be brought inside the integrand. Then, because the integration volume is arbitrary,

the terms inside the integrand must be equal for the integrals to be equal, and one is

left with the equation

ρ(u̇jüj + üju̇j) + U̇ = (τiju̇j),i−(φḊj),j . (3.23)
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Taking advantage of τij symmetry, one may write

ρu̇jüj + U̇ = τiju̇j,i +τij,i u̇j − φḊj,j −φ,j Ḋj. (3.24)

From the earlier sections, make use of Equation 3.1, the stress equation of motion,

setting the external forces to zero such that

τij,i = ρüj (3.25)

and using the charge equation of electrostatics, Equation 3.7, further simplifying

Equation 3.24 to

U̇ = τiju̇j − φ,j Ḋj. (3.26)

Now, taking advantage of the strain displacement symmetry6 (where ωij = 0 in Equa-

tion 3.14, effectively eliminating rigid body rotation of the infinitesimal element) and

stress tensor symmetry and substituting for the electric field potential in Equation

3.9, and further simplifying the expression. The result is what Tiersten called the first

law of thermodynamics for piezoelectricity. The first law of thermodynamics for piezo-

electricity relates the time rate of change of internal energy in terms of mechanical

and electric functions:

U̇ = τijṠij + EiḊi. (3.27)

In other words, the time rate of change mechanical energy of the system τijṠij

and the electric field multiplied by the time rate of change of the applied electric

displacement field, or flux, combine to form the total energy change for a piezoelectric

material. This is the second important equation for analyzing piezoelectric material.

6The strain tensor is thus Sij . Readers may be more familiar with the symmetric tensor in the
notation εij . This notation is avoided since E, ε and e are used in this section.
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3.2.5 Piezoelectric Constitutive Equations. In this section, the final two

important equations for the linear theory of piezoelectricity, the piezoelectric consti-

tutive equations, are derived. In order to formulate the equations, a method is used by

Tiersten where he defines electric enthalpy in an analogous manner to the definition

of enthalpy in heat transfer7.

Begin by defining the electric enthalpy8, H, as the scalar expression

H ≡ U − EiDi. (3.28)

If one takes the time derivative dH/dt = Ḣ this results in

Ḣ = U̇ − EiḊi − ĖiDi. (3.29)

Substituting into Equation 3.27 results in the electric enthalpy rate of change equation

Ḣ = τijṠij −DiĖi. (3.30)

One can see that H is simply a function of the strain tensor and electric field, and

may be written as H(Sij, Ei). Thus, one may alternately write Equation 3.30 as

Ḣ =
∂H(Sij, Ei)

∂Sij

Ṡij +
∂H(Sij, Ei)

∂Ei

Ėi. (3.31)

Substituting this result into Equation 3.30, the following relationship is obtained

(τij − ∂H

∂Sij

)Ṡij − (Di +
∂H

∂Ei

)Ėi = 0. (3.32)

7Enthalpy in heat transfer is simply E = U + PV , where E is enthalpy, U is total energy, and
PV represents pressure times volume.

8The same derivation is provided in Reddy’s text Mechanics of Laminated Composite Plates:
Theory and Analysis [113]. In the text he provides an alternate name for enthalpy, the electric Gibbs
free-energy function.
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Since Equation 3.32 must hold true for any arbitrary Ṡij and Ėi, then

τij =
∂H

∂Sij

(3.33)

Di = − ∂H

∂Ei

. (3.34)

Tiersten then constructed the quadratic form of H, further restricting the de-

velopment of the equations to linear theory only. The quadratic form chosen was

H =
1

2
cE
ijklSijSkl − eijkEiSjk − 1

2
εS

ijEiEj (3.35)

where there are 21 elastic stiffness constants cE
ijkl such that cE

ijkl = cE
ijlk = cE

jikl = cE
klij,

there exist 18 piezoelectric coupling coefficients eijk satisfying the relationship eijk =

eikj, and 6 dielectric constants εS
ij with symmetry such that εS

ij = εS
ji. The following

result is the piezoelectric constitutive equation9:

τij = cE
ijklSkl − ekijEk (3.36)

Di = eiklSkl − εS
ikEk. (3.37)

Equations 3.36 and 3.37 therefore serve to show that a stress in a piezoelectric

medium is a function of mechanical strain and applied electric field. In the next

section, alternate expressions of the two equations are provided introducing variables

commonly provided by piezoelectric manufacturers.

3.2.6 Material Symmetry and Alternate Expressions of the Piezoelectric Con-

stitutive Equation. Equations 3.36 and 3.37 may be expressed in matrix form10 [35]

9In the IEEE Standard on Piezoelectricity [1], the letter T is substituted for τ .
10At this time, a small point of confusion when dealing with the piezoelectric nomenclature from

an elastician’s background is addressed. Hooke’s law may be more familiar in the traditional form
ε = Eσ. Rewriting Equation 3.36 using this notation results in the stress-strain relation
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{
τ
}

=
[
cE

] {
S
}
−

[
e
]T {

E
}

(3.39)
{

D
}

=
[
e
]{

S
}

+
[
ε
]{

E
}

(3.40)

where the stress vector convention is

{
τ
}

=





σ11

σ22

σ33

σ23

σ13

σ12





. (3.41)

Tiersten recognized that polarized ferroelectric ceramics, what is now given the

general term of piezoelectric actuator, possess “symmetry of a hexagonal crystal”.

The transversely isotropic stiffness matrix has the form

cE =




c1111 c1122 c1133 0 0 0

c1122 c2222 c1133 0 0 0

c1133 c1133 c3333 0 0 0

0 0 0 c1313 0 0

0 0 0 0 c1313 0

0 0 0 0 0 1
2
(c1111 − c1122)




(3.42)

{
σ
}

=
[
E

]−1 {
ε
}− [

e
]T {

E
}

(3.38)

which is equivalent to Equation 3.39.

42



which is written in a more compact notation in Tiersten’s text as

cE =




c11 c12 c13 0 0 0

c12 c22 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66




(3.43)

where c66 = 1
2
(c11 − c12). Furthermore, the piezoelectric coupling coefficient matrix

and dielectric coefficient matrix reduce to the following

[
e
]

=




0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e32 e33 0 0 0


 (3.44)

and

[
ε
]

=




ε11 0

0 ε11 0

0 0 ε33


 . (3.45)

For the actuation problem, one is most interested in the the constitutive rela-

tionship of Equation 3.36. However, the piezoelectric coupling coefficient matrix
[
e
]

is not generally provided in manufacturer data. In its place, the piezoelectric coupling

matrix [d] is provided such that it satisfies

[
e
]T

=
[
cE

] [
d
]T

(3.46)
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or equivalently

[
e
]

=
[
d
] [

cE

]T

=




0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d32 d33 0 0 0




[
cE

]T

. (3.47)

Furthermore, most manufacturers neglect reporting the cross terms d15. With

those terms neglected, a direct analogy to thermal elements may be made. This

is the linear piezoelectric constitutive relationship that will be used throughout the

remainder of this document.

3.3 Piezoelectric to Thermal Analogy for Finite Elements

The use of finite elements to model piezoelectric-actuated structures is hardly

surprising given the similarity between thermal-elastic and piezoelectric-elastic re-

lationships. Using the piezoelectric-thermal analogy to overcome the limitation in

MSC/NASTRAN of not including piezoelectric elements was reported in the AIAA

Journal in 1997 [16]. Cote and researchers from Université de Sherbrooke, Canada

outlined the identical method updated with more recent MSC/NASTRAN nomencla-

ture [35]. This section presents a synopsis of their methodology.

Hooke’s law with thermal strain effects (but without piezoelectric effects) may

be found in any fundamental elasticity textbook as

{
τ
}

=
[
cE

]
(
{

S
}
−

{
α
}

∆T ) (3.48)

where αi are the thermal expansion coefficients and ∆T = T − T0 represents the

change in temperature from an initial temperature. Rewriting Equation 3.39 with

the substitution for the piezoelectric coupling coefficient matrix in Equation 3.46

results in {
τ
}

=
[
cE

]
(
{

S
}
−

[
d
]T {

E
}

) (3.49)
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where it may readily be seen that a direct analogy may be drawn between piezoelectric

and thermal strains through the relationship

[
d
]T {

E
}

=
{

α
}

∆T. (3.50)

Due to the sparsity of the piezoelectric coupling matrix, d, only five equations

remain. The electric field vector may be written in terms of the applied voltage Vi

and actuator thickness hp, that is

1

hp

{
V

}
=

{
E

}
. (3.51)

If the simplifying assumption is made that only the out-of-plane voltage is consid-

ered (i.e., the voltage across the electrodes, V3) and in-plane voltages are considered

negligible and ignored (V1 = V2 = 0), Equation 3.50 reduces to the result of Cote’s

derivation of the piezoelectric-thermal analogy

d31

hp

V3 = α1∆T (3.52)

d32

hp

V3 = α2∆T (3.53)

d33

hp

V3 = α3∆T . (3.54)

For implementation into finite element programs such as MSC/NASTRAN, set the

reference temperature to zero (no initial electric field or corresponding piezoelectric-

strain). The applied voltage V3 may then be applied as a corresponding temperature
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T with 



α1

α2

α3

α4

α5

α6





=
1

hp





d31

d32

d33

0

0

0





. (3.55)

Alternately, the effect of actuator thickness could be shifted to a scale on the

applied voltage by dividing V3 by hp.

Cote notes two limitations of the piezoelectric-thermal analogy. One is the rela-

tionship of the applied voltage and actuator thickness, especially when in-plane effects

are ignored. Second, these equations are useful for actuators, but not as sensor equa-

tions, as applying a strain does not provide a corresponding change in temperature

in the thermal relationship. The most obvious limitation of the piezoelectric-thermal

analogy is the limited inability to introduce both thermal loads and piezoelectric forc-

ing. Although thermal loads could be scaled to act through the piezoelectric coeffi-

cients, heat transfer problems and those problems where non-linear thermal expansion

coefficients do not match the piezoelectric coefficients may not be addressed through

this analogy. This limitation is addressed in the development of a piezoelectric-elastic-

thermal model developed by Tzou [141]. Although a restrictive limitation, for the

experimental work presented later in this document, thermal effects are negligible.

3.4 Model of Circular Plate-Membrane with Embedded Piezoelectric El-

ements

To conduct modelling of a circular deformable mirror, it is essential to have a

basic understanding of plate theory as it applies to the circular plate problem. This

section begins with a development of the equations for a linear plate. Then, the mod-

elling for a non-linear in-plane actuated plate-membrane through the use of the von

Kármán strain field is presented in an abbreviated form, as the development follows
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the methods for a linear plate. By making a series of simplifying assumptions, one

governing equation is arrived upon, which is then further simplified for use throughout

this document. The purpose of this section therefore seeks to present a methodical

approach for arriving at the governing equations for the membrane optics in this

document, while cataloging a list of assumptions made along the way.

The equations for a circular plate may easily be derived in cylindrical coordi-

nates. Although available in a number of text books, the method by Nayfeh and

Pai sets a basic foundation which may be readily expanded to include non-linear

terms, composite layers, and piezoelectric-thermal actuation terms. The method that

follows is entirely based upon their text Linear and Non-Linear Structural Mechan-

ics [94, ch. 7, pp. 371-468], with clarifying notes and equations added as necessary.

3.4.1 Linear Plate Theory. Consider a circular plate over the domain 0 ≤
r ≤ R and 0 ≤ θ ≤ θ0. The undeformed position vector (P of an arbitrary point on

the plate is given by the three parameter family r, θ, z as shown in Figure 3.1 and

given here as:

Figure 3.1: Cylindrical coordinate system

P = r cos θı̂x + r sin θı̂y. (3.56)

Obtain the tangent and normal vectors to the surface:
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̂r =
∂P

∂r
= cos θı̂x + sin θı̂y (3.57)

̂θ =
1

r

∂P

∂θ
= − sin θı̂x + cos θı̂y (3.58)

̂z = ̂r × ̂θ = ı̂z (3.59)

Thus the base vectors of the x, y, z coordinate system are related to the base vectors

of the cylindrical coordinate system r, θ, z by the familiar transformation:





̂r

̂θ

̂z





=




cos θ sin θ 0

− sin θ cos θ 0

0 0 1








ı̂x

ı̂y

ı̂z





(3.60)

Further noting the unit vectors maintain the relationship along the curvilinear axes

∂̂r

∂y
=

1

r
̂θ (3.61)

∂̂θ

∂y
= −1

r
̂r. (3.62)

Nayfeh and Pai [94, pg. 357] then define the initial curvature matrices K0
r and K0

θ

such that:

K0
r =




̂r,x · ̂r ̂r,x · ̂θ ̂r,x · ̂z

̂θ,x · ̂r ̂θ,x · ̂θ ̂θ,x · ̂z

̂z,x · ̂r ̂z,x · ̂θ ̂z,x · ̂z


 (3.63)

K0
θ =




̂r,y · ̂r ̂r,y · ̂θ ̂r,y · ̂z

̂θ,y · ̂r ̂θ,y · ̂θ ̂θ,y · ̂z

̂z,y · ̂r ̂z,y · ̂θ ̂z,y · ̂z


 (3.64)
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where the comma signifies differentiation.

Thus K0
r = 0 and

K0
θ =




0 1
r

0

−1
r

0 0

0 0 0


 (3.65)

With a coordinate system defined, write a displacement vector in cylindrical

coordinates from Kirchhoff theory. The theory assumes plane sections remain plane

so there is no warping, and plane sections further remain perpendicular to the neutral

axis such there is no transverse shear. Therefore, the displacement vector u as pictured

in Figure 3.2 has the form:

u = u1̂r + u2̂θ + u3̂z (3.66)

= (u− zwr)̂r + (v − z

r
wθ)̂θ + (w)̂z. (3.67)

Note that a simplified notation where the subscript of a scalar amount indicates a

derivative. This is consistent with Nayfeh and Pai’s notation [94, ch. 7] and also the

work of Rogers [117]. The components of linear strain are defined by the relation-

ships:11

11It may be more familiar to see the linear strain-displacement relationship in the form

εrr =
∂u1

∂r
, εθθ =

u1

r
+

1
r

∂u2

∂θ
, εzz =

∂u3

∂z

γrθ =
1
r

∂u1

∂θ
+

∂u2

∂r
− u2

r
, γrz =

∂u1

∂z
+

∂u3

∂r
, γθz =

∂u2

∂z
+

1
r

∂u3

∂θ
.

However, these relationships are equivalent to the work presented. To see this, perform Nayfeh’s
method in the text. Begin by calculating the following to calculate εrθ:

∂u
∂r

=
∂u1

∂r
̂r +

∂u2

∂r
̂θ

1
r

∂u
∂θ

= (
1
r

∂u1

∂θ
− u2

r
)̂r + (

u1

r
+

∂u2

∂r
)̂θ.
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Figure 3.2: Cylindrical coordinate system depicting Kirchhoff displacements.

εrr =
∂u

∂r
· ̂r

εθθ =
1

r

∂u

∂θ
· ̂θ

εzz =
∂u

∂z
· ̂z

εrθ =
∂u

∂r
· ̂θ +

1

r

∂u

∂θ
· ̂r

εrz =
∂u

∂r
· ̂z +

∂u

∂z
· ̂r

εzθ =
∂u

∂z
· ̂θ +

1

r

∂u

∂θ
· ̂z (3.68)

Next, write the equation for εrθ

εrθ =
∂u
∂r

· ̂θ +
1
r

∂u
∂θ

· ̂r = (
1
r

∂u1

∂θ
+

∂u2

∂r
− u2

r
).

Again, from Nayfeh and Pai’s terminology, they have substituted ε for what is classically given the
variable γ for shear strain. The normal components are exactly equivalent.
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It may be quickly shown that εzz = εrz = εzθ = 0. However, the spatial derivatives

of the unit vectors must be taken using the chain rule, and the in-plane strains make

use of the curvature matrices such that:

εrr = (
∂u1

∂r
̂r + uK0

r) · ̂r

εθθ = (
1

r

∂u2

∂r
̂θ + uK0

θ) · ̂θ

εrθ = (
∂u2

∂r
̂θ + uK0

r) · ̂θ + (
1

r

∂u1

∂r
̂r + uK0

θ) · ̂r (3.69)

One may use the relationships noted in Equation 3.62. Specifically, note the derivative

of the displacement vector with respect to the θ variable is

∂u

∂θ
= (uθ − zwrθ − v +

z

r
wθ)̂r + (vθ − z

r
wθθ + u− zwr)̂θ +

1

r
wθ ̂z (3.70)

Therefore, the strains of Equation 3.69 are:





εrr

εθθ

εrθ





=





ur − zwrr

1
r
(vθ + u− z

r
wθθ − zwr)

vr + 1
r
(uθ − v − 2zwrθ + 2z

r
wθ)





(3.71)

An energy approach based on Hamilton’s principle is used to obtain equations

of motion. Hamilton’s principle without body forces is given by the variational for-

mulation

∫ t

0

(δT − δV + δWnc)dt (3.72)

where Wnc is the problem-specific non-conservative work. Nayfeh and Pai provide the

following definitions for the variations of kinetic energy δT and potential energy δV :
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δT = −
∫

z

∫

S

ρü · δu rdrdθdz (3.73)

δV =

∫

z

∫

S

σ · δε rdrdθdz (3.74)

It is straightforward to compute the values for ü and δu. Once computed, substitute

into Equation 3.73. To simplify the bookkeeping, Nayfeh and Pai define the area-

normalized moments of inertia terms

I0 ≡
∫

z

ρdz, I1 ≡
∫

z

zρdz, I2 ≡
∫

z

z2ρdz. (3.75)

The kinetic energy equation is therefore:

δT = −
∫

S

[
(I0ü− I1ẅr)δu + (I0v̈ − 1

r
I1ẅθ)δv + I0ẅδw + · · ·

(I2ẅr − I1ü)δwr +
1

r
(
1

r
I2ẅθ − I1v̈)δwθ

]
rdrdθ. (3.76)

Exchanging the order of differentiation and variation yields:

δT = −
∫

S

[
(I0ü− I1ẅr)δu + (I0v̈ − 1

r
I1ẅθ)δv + I0ẅδw + · · ·

(I2ẅr − I1ü)
∂

∂r
δw +

1

r
(
1

r
I2ẅθ − I1v̈)

∂

∂θ
δw

]
rdrdθ. (3.77)

Integrate by parts to eliminate the partial operators ∂
∂r

and ∂
∂θ

. For instance, to

integrate the ∂
∂r

terms by parts, let u = r(I2ẅr − I1ü) and let dv = ∂
∂r

δwdr. Thus

integration by parts yields:
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δT = −
∫

S

[
(I0ü− I1ẅr)δu + (I0v̈ − 1

r
I1ẅθ)δv + · · ·

{
I0ẅ − 1

r

∂

∂r
(I2rẅr − I1rü)− 1

r

∂

∂θ

(1

r
I2ẅθ − I1v̈

)}
δw

]
rdrdθ − · · ·

∫

θ

[
r(I2ẅr − I1ü)

]r=R

r=0
δwdθ −

∫

r

[1

r
I2ẅθ − I1v̈

]θ=θ0

θ=0
δwdr . (3.78)

Now that the terms for kinetic energy in Hamilton’s equation have been defined,

the potential energy terms are addressed. It is necessary to define some bookkeeping

notation so the equations remain manageable. Utilizing the planar stress assumption

that the principal stress normal to the surface is much smaller than the in-plane

stresses, one may write σzz = 0 and define the constitutive relationship:





σrr

σθθ

σrθ





= cE





εrr

εθθ

εrθ





=




c11 c12 c16

c21 c22 c26

c61 c62 c66











ur

1
r
(vθ + u)

1
r
(uθ + rvr − v)




− z





wrr

1
r2 (wθθ + rwr)

1
r2 (2rwrθ − 2wθ)






 , (3.79)

where for transversely isotropic layers with Young’s modulus E and Poisson’s ratio ν

the constitutive stiffness matrix is [121]12

12When computing the constitutive relationship for planar stress, an incompressible material with
a Poisson’s value of ν → 0.5 is easily accounted for. This is not the case if plane strain assumptions
are made. For plane strain where εzz = 0,




c11 c12 c16

c21 c22 c26

c61 c62 c66


 =

E

(1 + ν)(1− 2ν)




1− ν ν 0
ν 1− ν 0
0 0 (1− 2ν)


 . (3.80)

Thus it is seen that stiffness entries become infinite effectively preventing displacement, or “locking”
the equations. This is not the case for plane stress.
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


c11 c12 c16

c21 c22 c26

c61 c62 c66


 =

E

1− ν2




1 ν 0

ν 1 0

0 0 1
2
(1− ν)


 . (3.81)

Define the in-plane extension force intensities, N1 and N2, and the in-plane

shear intensity, N6, as well as moment intensities on edge of plate element, M1,M2

and M6 as:





N1

N2

N6




≡

∫

z





σrr

σθθ

σrθ





dz,





M1

M2

M6




≡

∫

z

z





σrr

σθθ

σrθ





dz (3.82)

One may note that there are no terms for transverse shear intensity, such as would

be required with a Mindlin formulation. The terms could easily be added, as Nayfeh

and Pai do in another section of their text. Now combine Equations 3.82 and 3.79 to

yield





N1

N2

N6

M1

M2

M6





=


Aij Bij

Bij Dij








ur

1
r
(vθ + u)

1
r
(uθ + rvr − v)

−wrr

−1
r2 (wθθ + rwr)

−1
r2 (2rwrθ − 2wθ)





for i, j= 1, 2, 6. (3.83)

If the plate is a laminated structure, such as a piezoelectric actuator layer and a

substrate layer which comprise the AFIT deformable mirror introduced in Section 2.3,

it would be helpful to expand Equation 3.83 to incorporate this characteristic. In

general, Nayfeh and Pai provide for N laminae, where the kth laminae is located
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between the two planes z = zk and z = zk+1 and the total thickness is t, resulting in

the following expressions:

Aij =
N∑

k=1

∫ zk+1

zk

cE(k)dz for i, j = 1,2,6, (3.84)

Bij =
N∑

k=1

∫ zk+1

zk

cE(k)zdz for i, j = 1,2,6, (3.85)

Dij =
N∑

k=1

∫ zk+1

zk

cE(k)z2dz for i, j = 1,2,6. (3.86)

similar expression could be written for the inertia terms in equation 3.75.

Now one is ready to write the potential energy term by applying Equation 3.74.

It is at this point that Nayfeh and Pai introduce the transverse shear intensities, Q1

and Q2.
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δV =

∫

S

{
N1δur +

1

r
N6δuθ +

1

r
N2δvθ + N6δvr · · ·

−M1δwrr − 1

r2
M2δwθθ − 1

r
M6δwrθ − 1

r
M6δwθr · · ·

+
1

r
N2δu− 1

r
N6δv − 1

r
M2δwr +

2

r2
M6δwθ · · ·

Q1δwr +
1

r
Q2δwθ −Q1δwr − 1

r
Q2δwθ

}
rdrdθ (3.87)

=

∫

S

{
[
∂

∂r
(rN1) +

∂

∂θ
N6 −N2]δu · · ·

+[
∂

∂θ
N2 +

∂

∂r
(rN6) + N6]δv · · ·

[
∂

∂θ
(rQ1) +

∂Q2

∂θ
]− [

∂

∂r
(rM1) +

∂

∂θ
M6 − r!1 −M2]δwr · · ·

−1

r
[
∂

∂θ
M2 +

∂

∂r
(rM6) + 2M6]

}
drdθ · · ·

+

∫

θ

[
N1δu + N6δv + (Q1 +

1

r

∂

∂θ
M6)δw −M1δwr

]r=R

r=0
rdθ · · ·

+

∫

r

[
N6δu + N2δv + (Q2 +

∂

∂r
M6)δw − 1

r
M2δwθ

]θ=θ0

θ=0
dr · · ·

−2M6δw
∣∣∣
(r,θ)=(0,0),(R,θ0)

(r,θ)=(R,0),(0,θ0)
. (3.88)

Now substituting the kinetic and potential equations into Hamilton’s equation,

Equation 3.72, setting the coefficient of the variational terms equal to zero yields

the following system of equations [94, pp. 409-410]. It is at this stage that Nayfeh

and Pai choose to introduce linear viscous damping coefficients, µi, to the velocity

terms [94, pg 391]. Although not rigorously developed the terms are consistent with

the introduction of damping in linear systems and are included here. Equivalent

damping ratio terms as presented by De Silva are shown in Table 3.3.
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∂

∂r
N1 +

1

r

∂

∂θ
N6 +

1

r
(N1 −N2) = I0ü− I1ẅr + µ1u̇ (3.89)

∂

∂r
N6 +

1

r

∂

∂θ
N2 +

2

r
N6 = I0v̈ − 1

r
I1ẅθ + µ2v̇ (3.90)

∂Q1

∂r
+

1

r

∂Q2

∂θ
+

Q1

r
= I0ẅ + µ3ẇ (3.91)

− ∂

∂r
M6 − 1

r

∂

∂θ
M2 − 2

r
M6 + Q2 =

1

r
I2ẅθ − I1v̈ (3.92)

∂

∂r
M1 +

1

r

∂M6

∂θ
+

1

r
(M1 −M2)−Q1 = −I2ẅr + I1ü. (3.93)

Table 3.3: Equivalent damping-ratio expressions for common types of damping
where ω is frequency and x is dependent variable [38].

type force per unit mass

viscous µẋ
hysteretic µ

ω
ẋ

structural µ|x|sgn(ẋ)
structural Coulomb µ sgn(ẋ)

To solve for the motion of the plate, apply the boundary conditions as shown if

Table 3.4.1. The boundary conditions are obtained by, in Meirovitch’s words, “invok-

ing the arbitrariness of the virtual displacements in a judicious manner.” [88]13 In order

to do that, Hamilton’s equation must be examined. Either the virtual displacement

or its coefficient in the boundary terms must vanish. For example, in Equation 3.88,

the first term in the line integral evaluated at r = 0, R is N1δu. Therefore, either N1

or u must vanish when evaluated at r = 0, R. The remainder of the table is easily

constructed.

For an isotropic plate of thickness h, modulus E, and Poisson’s ratio ν, Bij = 0 and

Aij = −12
h2 DDij where D is the flexural rigidity of the plate defined as

13For a thorough explanation in terms of arbitrary admissible functions and the principle of least
action, the reader is referred to Calculus of Variations by Gelfand and Fomin [51], or equivalent.
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Table 3.4: Boundary conditions for circular plate with Kirchhoff hypothesis.

position value 1 value 2
r = 0, R δu = 0 N1

r = 0, R δv = 0 N6

r = 0, R δw = 0 Q1 + 1
r

∂
∂θ

M6

r = 0, R δwr = 0 M1

θ = 0, θ0 δu = 0 N6

θ = 0, θ0 δv = 0 N2

θ = 0, θ0 δw = 0 Q2 + ∂
∂r

M6

θ = 0, θ0 δwθ = 0 M2

(r, θ) = (0, 0) δw = 0 M6

(r, θ) = (R, 0) δw = 0 M6

(r, θ) = (0, θ0) δw = 0 M6

(r, θ) = (R, θ0) δw = 0 M6

D ≡ Eh3

12(1− ν2)
. (3.94)

In this case, I1 = 0 (integration of an odd function over a symmetric interval)

and the system of equations of motion reduce to the single equation for w = w(r, θ):

D∇4w + ρhẅ − I2ẅ + µ3ẇ = 0 (3.95)

3.4.2 Mode Shapes. To analyze Equation 3.95, define κ ≡ ρh − I2, and

assume the separable solution by letting w(r, θ, t) = e(−α+iβ)tW (r, θ)

e(−α+iβ)t
[
D∇4W (r, θ)+κ(α2−2iαβ−β2)W (r, θ)+µ3(−α+ iβ)W (r, θ)

]
= 0. (3.96)

Solving for the mode shapes is accomplished by letting α = µ3

2κ
. Then the mode shape

portion of Equation 3.96 becomes

D∇4W (r, θ)− κ(
µ2

3

4κ2
− β2)W (r, θ) = 0. (3.97)
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Mode shapes are obtained for a given boundary condition for a chosen β. Furthermore,

the strength of the damping term directly is observed to affect the frequency of the

mode shape. Finally, for the thin plate assumption, the quantity κ must be positive

(see Equation 3.75).

For the cases where the inertia and damping terms are relatively small and thus

neglected, Equation 3.95 becomes

D∇4w + ρhẅ = 0 (3.98)

as presented in elementary texts such as the one by Meirovitch [88].

3.4.3 In-plane Actuated Plate-membrane. To make the above equations

useful for our study of in-plane actuated deformable mirrors, the in-plane forces must

be introduced. In the previous derivation, the in-plane relationships are uncoupled

from the out-of-plane displacements equations, due to the strain field chosen. By using

a non-linear strain field, coupling that occurs will allow us to introduce both tension

fields (membrane characteristics) as well as use unimorph and bimorph piezoelectric

actuators.

To do so, Nayfeh and Pai use the von Kármán strains by adding the components

1
2
w2

r to the εrr term,
w2

θ

2r2 to the εθθ term, and wrwθ

r
to the εrθ term. Thus, Equation 3.71

becomes:

εrr = e1 − zwrr

εθθ = e2 − z
(wθθ

r2
+

wr

r

)

εrθ = γ6 − 2z
(wrθ

r
− wθ

r2

)

εzz = εrz = εθz = 0 (3.99)
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where

e1 = ur +
1

2
w2

r

e2 =
vθ

r
+

u

r
+

w2
θ

2r2

γ6 =
uθ

r
− v

r
+ vr +

wrwθ

r
. (3.100)

The piezoelectric forcing is introduced as well, but must be carefully treated. In

the Nayfeh and Pai text, it is assumed in the derivations that the material coordinate

system for the forcing elements could be formed in the (r, θ) polar coordinate system.

More than likely, the piezoelectric forcing elements will align in the x − y Cartesian

coordinate system, and thus are introduced as such.

The equations for in-plane piezoelectric forcing elements with the piezoelectric-

thermal analogy for transversely isotropic material properties of Young’s modulus of

Ep and Poisson’s ratio of νp and piezoelectric coefficients d31 and d32 aligned in the x−
and y−direction (and hence must be transformed for use in this coordinate cylindrical

system). The terms are:

NP
1 =

Ep

1− νp

∫

Z

(
cos2 θd31 + sin2 θd32

)V3

hp

dz (3.101)

NP
2 =

Ep

1− νp

∫

Z

(
sin2 θd31 + cos2 θd32

)V3

hp

dz (3.102)

NP
6 =

Ep

1− νp

∫

Z

(
cos θ sin θd31 − cos θ sin θd32

)V3

hp

dz. (3.103)

V3 is the applied voltage in the perpendicular (z−direction) and hp is the thickness of

the actuator, consistent with the Section 3.3. One may also write the moment terms

for the piezoelectric actuators:
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MP
1 =

Ep

1− νp

∫

Z

(
cos2 θd31 + sin2 θd32

)V3

hp

zdz (3.104)

MP
2 =

Ep

1− νp

∫

Z

(
sin2 θd31 + cos2 θd32

)V3

hp

zdz (3.105)

MP
6 =

Ep

1− νp

∫

Z

(
cos θ sin θd31 − cos θ sin θd32

)V3

hp

zdz. (3.106)

To introduce membrane forcing is relatively simple. Begin by adding the pre-

strains to Equation 3.83. Assuming the pre-strain acts on the neutral axis, membrane

tension can be added by adding the constant N0 to the N1 and N2 terms.

The resulting system of equations then compares to the derivation by Nayfeh

and Pai [94, pg. 415]:





N1

N2

N6

M1

M2

M6





=


 [Aij] [Bij]

−[Bij] −[Dij]








e1

e2

γ6

∂2

∂r2 w

(1
r

∂
∂r

+ 1
r2

∂2

∂θ2 )w

2(1
r

∂2

∂r∂θ
+ 1

r2
∂
∂θ

)w





+ I6×6





−NP
1 + N0

−NP
2 + N0

−NP
6

−MP
1

−MP
2

−MP
6





. (3.107)

3.4.4 Neutral Axis Calculations. To write the equations at this point for

unimorph actuation would still leave us with a series of coupled, non-linear equations,

due to the non-symmetric ply lay up and the corresponding matrix coefficients in the

Aij, Bij, and Dij.

In order to address these coupling terms, the neutral axis of the composite,

unimorph structure must be found. First, observe Figure 3.3, where hs is the thickness

of the substrate, hp is the thickness of the piezoelectric actuator, and dNA is the

unknown distance between the bottom surface of the composite and the neutral axis.
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Calculate the neutral axis by summing the in-plane stress over the thickness and

setting equal to zero (
∑

Mcw+):

Figure 3.3: Neutral axis depiction.

∫ −dNA+hp

−dNA

Ep

1 + νp

zdz +

∫ hp+hs−dNA

−dNA+hp

Es

1 + νs

zdz = 0. (3.108)

Define the parameter, γ, as

γ ≡ 1 + νp

1 + νs

. (3.109)

Next, multiply Equation 3.108 by the quantity (1 + νp) to yield

∫ −dNA+hp

−dNA

Epzdz +

∫ hp+hs−dNA

−dNA+hp

γEszdz = 0. (3.110)

Integrate and multiply by 2 to leave the expression:

Ep

{(
(hp − dNA)2 − (dNA)2

)}
+ γEs

(
hp + hs − dNA

)2 −Es

(
hp − dNA

)2
= 0. (3.111)

With some algebra, one may solve for dNA as

dNA =
1

2

Ephp
2 + γEs(2hphs + hs

2)

Ephp + γEshs

(3.112)
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A quick check of the work is made by checking the case where Ep = Es ≡ E and

γ = 1, such as for a homogenous plate. In this case, letting hp = hs ≡ h results in

dNA = h, or exactly half the thickness of the plate, as expected.

Next, make the following observations. In many cases in the literature, the

assumption hp ¿ hs is made (such is the case in the text by Preumont [112, pg. 48]).

Then, Equation 3.112 reduces to

dNA =
1

2
hs. (3.113)

However, restraint must be exercised when implementing this assumption. With

this result it is implicitly assumed that the order of the Young’s modulus for the

piezoelectric material is the same or smaller than the order of the substrate modulus.

For PZT actuators on an aluminum beam, this may be valid, but for the construction

of deformable mirrors, this may not always be the case, and will be addressed in the

subsequent section.

To minimize areal density (for unimorph construction), the mirror should be

constructed so that in no case is dNA < hp. When dNA > hp, actuating moment is

being added at the expense of areal density. In general (assuming similar material

densities), construct the mirror such that hp = dNA. From Equation 3.112, one

may solve this case to determine desired thickness of the substrate layer for a given

piezoelectric material thickness,

hs = hp

√
Ep

γEs

. (3.114)

Now one is ready to examine the governing equations for a structure with a

non-symmetric ply lay-up, specifically the case for unimorph actuation.

3.4.5 Matrix Coefficients for Force and Moment Equations. Having defined

the terms that locate system’s neutral axis, our desire at this point is to write the

63



matrices Aij, Bij, and Dij for the unimorph system as modelled by Equation 3.83.

Specifically, it is desired to set the conditions necessary to look at the uncoupled

behavior when the terms of Bij are equal to zero such that one may write a single

governing equation of the form earlier presented as Equation 3.95.

Begin by first analyzing Equation 3.85 for Bij. Writing B11 with the neutral

axis terms previously defined, one has

B11 =

∫ −dNA+hp

−dNA

Ep

1− ν2
p

zdz +

∫ hs+hp−dNA

−dNA+hp

Es

1− ν2
s

zdz

=
1

2

Ep

1− ν2
p

{(
(hp − dNA)2 − (dNA)2

)}
+

1

2

Es

1− ν2
s

(
hp + hs − dNA

)2 − . . .

1

2

Es

1− ν2
s

(
hp − dNA

)2
. (3.115)

It is desired this term to equal zero to uncouple the series of equations. If the mirror

is constructed such that dNA = hp, Equation 3.115 reduces to:

B11 = −1

2

Ep

1− ν2
p

hp
2 +

1

2

Es

1− ν2
s

hs
2. (3.116)

Next, introduce γ from Equation 3.109, in order to write

B11 = −1

2

Ep

1− νp
2
hp

2 +
1

2

γEs

(1− νp)(1− νs)
hs

2. (3.117)

Applying the results specifying the relationship between thickness and modulus for

unimorph construction of materials of the same density as set fourth in Equation 3.114

yields

B11 =
1

2

Ephp
2

1− ν2
p

(
−1 +

1− νp

1− νs

)
(3.118)

=
1

2

Ephp
2

1− ν2
p

(
η − 1

)
. (3.119)
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where η is the non-dimensional parameter here defined as

η ≡
(1− νp

1− νs

)
. (3.120)

Next, compute compute B12 under the same conditions as applied to the previous

computation for B11 to obtain

B12 =
1

2

Ephp
2

1− ν2
p

(
−νp + νsη

)
. (3.121)

To put this term in a more easily analyzed form, add and subtract the quantity νp to

the right hand side of the equation.

B12 =
1

2

Ephp
2

1− ν2
p

(
−νp + νpη − νpη + νsη

)
, (3.122)

=
1

2

Ephp
2

1− ν2
p

(
νp(η − 1) + (νs − νp)η

)
. (3.123)

Next, define δ, which will be a small non-dimensional parameter used to decouple the

leading order equations:

δ ≡ νs − νp. (3.124)

For ease of notation, define two matrices Eij and Ẽij:

[Eij] ≡




1 ν 0

ν 1 0

0 0 1−ν
2


 (3.125)

[Ẽij] ≡




0 1 0

1 0 0

0 0 −1
2


 . (3.126)
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Then apply the same methodology to write the other terms of Bij resulting in the

equation:

[Bij] =
1

2

Ephp
2

1− ν2
p

{
(η − 1)[Eij] + δη[Ẽij]

}
(3.127)

One final bit of simplification shows that δ multiplies the entire equation as

[Bij] = δ
1

2

Ephp
2

1− ν2
p

{ 1

1− νs

[Eij] + η[Ẽij]
}

. (3.128)

Using the same procedure, one may write the terms for Aij and Dij. The terms

are:

[Aij] =
Ephp

1− ν2
p

{
(1 +

hp

hs

η)[Eij] + δ
hp

hs

η[Ẽij]
}

(3.129)

[Dij] =
1

3

Ephp
3

1− ν2
p

{
(1 +

hs

hp

η)[Eij] + δ
hs

hp

η[Ẽij]
}

. (3.130)

Pause to look at the equations as written. Observe that δ determines the

strength of the cross-coupling terms of Bij. If one assumes the difference between

the material constants νp and νs is small, a leading order equation may be written:

[Aij] = AE[Eij], (3.131)

[Bij] = [0]3×3, (3.132)

[Dij] = −DE[Eij]. (3.133)

where
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AE ≡ Ephp

1− ν2
p

(1 +
hp

hs

η), (3.134)

DE ≡ 1

3

Ephp
3

1− ν2
p

(1 +
hs

hp

η).. (3.135)

Thus, to put our modelling in a tractable form, one may choose only to model

to leading order. Later, in Chapter IV, the AFIT deformable mirror testbed where

the substrate Poisson’s ratio is νs = 0.497, and the piezoelectric Poisson’s ratio is

νp = 0.3 is introduced. This results in one of the largest δ terms constructed of

current materials. Future constructs would generally have both Poisson’s ratios in

the neighborhood of ν = 0.25 to 0.30. It is also noted that the Young’s modulus of

both layers should be similar, as it affects the ratio of hs to hp as per Equation 3.114,

and could serve to offset the small term δ. For the AFIT deformable mirror, hp

hs
≈ 0.01.

Thus, the Aij and Bij terms are equally valid, but the Dij term would contain error

when truncated.

3.4.6 Governing Equations. With the coupling terms assumed small, write

the leading order behavior of the system as a single equation for the static case. The

dynamic case is ignored as beyond the scope of this research, but the inertia term

corresponding to the non-symmetric lay up would have to be treated as well if the

dynamic case was important.

The equation was derived using exactly the same procedures as in Section 3.4.1,

with the added terms as defined in Sections 3.4.3 through 3.4.5.

The resulting differential equation is:
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DE∇4w = · · ·
{
N1

∂2

∂r2
+ N2

(1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
+ 2N6

(1

r

∂2

∂r∂θ
− 1

r2

∂

∂θ

)}
w · · ·

− { ∂2

∂r2
+

2

r

∂

∂r

}
MP

1 −
{ 1

r2

∂2

∂θ2
− 1

r

∂

∂r

}
MP

2 · · ·

− {2

r

∂2

∂r∂θ
+

2

r2

∂

∂θ

}
MP

6 , (3.136)

Boundary conditions from Table 3.4.1 are amended to include those in Ta-

ble 3.4.6

Table 3.5: Revised boundary conditions for non-linear plate.

position value 1 value 2

r = 0, R δw = 0 Q1 + 1
r

∂
∂θ

M6 + N1
∂w
∂r

+ N6

r
∂w
∂θ

θ = 0, θ0 δw = 0 Q2 + ∂
∂r

M6 + N2
∂w
∂θ

+ N6
∂w
∂r

Again, it is emphasized that this governing equation is for unimorph construc-

tion. To do so, write the axial tension piezoelectric terms and the moment terms

below for this case from Equation 3.106 using the definitions in Section 3.4.414

14Before proceeding further, it is noted that the piezoelectric terms are cumbersome because of
our chosen coordinate system. If one had chosen a Cartesian coordinate system, the operator on the
piezoelectric terms would be of a much more compact form. In a Cartesian frame, the piezoelectric
force in the x-direction is:

M
P (x)
1 =

Ep

1− νp

∫

Z

(
d31 + d32

)V3

hp
zdz. (3.137)

The y-direction is the same except the terms d31 and d32 are exchanged. Then, the operator on the
piezoelectric terms on the right-hand side of Equation 3.136 becomes − ∂2

∂x2 M
P (x)
1 − ∂2

∂x2 M
P (y)
2 .
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NP
1 = V3

Ep

1− νp

(
cos2 θd31 + sin2 θd32

)
, (3.138)

NP
2 = V3

Ep

1− νp

(
sin2 θd31 + cos2 θd32

)
, (3.139)

NP
6 = V3

Ep

1− νp

(
cos θ sin θd31 − cos θ sin θd32

)
, (3.140)

MP
1 = −1

2
V3

Ep

1− νp

(
cos2 θd31 + sin2 θd32

)
hp, (3.141)

MP
2 = −1

2
V3

Ep

1− νp

(
sin2 θd31 + cos2 θd32

)
hp, (3.142)

MP
6 = −1

2
V3

Ep

1− νp

(
cos θ sin θd31 − cos θ sin θd32

)
hp. (3.143)

It may be beneficial to write Equation 3.136 in a form where one can see the in-plane

elastic, piezoelectric, and membrane pretension effects. To do so, define the in-plane

axial force terms 



N e
1

N e
2

N e
6




≡ AE[Eij]





e1

e2

γ6





(3.144)

Thus defined, the axial force from Equation 3.107 and the AE from Equation 3.135

has the form:





N1

N2

N6





=





N e
1 −NP

1 + N0

N e
1 −NP

1 + N0

N e
6 −NP

6





(3.145)

Then, rewrite Equation 3.136 by making the above substitutions yielding:
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DE∇4w −N0∇2w = · · ·
{
(N e

1 −NP
1 )

∂2

∂r2
+ (N e

2 −NP
2 )

(1

r

∂

∂r
+

1

r2

∂2

∂θ2

) · · ·

+ 2(N e
6 −NP

6 )
(1

r

∂2

∂r∂θ
− 1

r2

∂

∂θ

)}
w · · ·

−{ ∂2

∂r2
+

2

r

∂

∂r

}
MP

1 −
{ 1

r2

∂2

∂θ2
− 1

r

∂

∂r

}
MP

2 · · ·

− {2

r

∂2

∂r∂θ
+

2

r2

∂

∂θ

}
MP

6 . (3.146)

The voltage function V3(r, θ) deserves emphasis here. The equations are devel-

oped such that the voltage could be any arbitrary function applied over the interior

of structure. However, in many cases, one may think of the voltage as occurring

between an electrode on the top and bottom surface. For these discrete applications,

each electrode will have its own associated voltage function. The area that the elec-

trode covers may be defined as area Si. In this case, the voltage for the ith actuator

will be some magnitude Vi times an indicator function Hi(r, θ) is simply the indicator

function defined as:

Hi(r, θ) =





1, (r, θ) ∈ Si (and hence an active piezoelectric area),

0, (r, θ) /∈ Si.
. (3.147)

Now further simplifications are introduced to arrive at the equations used later

in this document. Analytical analysis of the governing equation is performed in Chap-

ters V, VI, and VII.

In Chapter V, the in-plane terms for N ε and NP are ignored, such that a piece-

wise linear equation results. Further simplifications include analyzing the axisymmet-

ric case such that θ dependence vanishes and d31 = d32. Furthermore, only a single

electrode is considered. Therefore, MP
1 = MP

2 ≡ MH where H is again the indicator
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function from Equation 3.147 and M is the magnitude from Equations 3.141 and 3.143.

Equation 3.146 reduces to:

DE∇4w −N0∇2w = −M∇2H, (3.148)

where in this case the Laplacian operator is ∇2 = ∂2

∂r2 + 1
r

∂
∂r

.

In Chapter VI, an even simpler form of the equation is used, where the in-

plane actuated structure is seen to act essentially as a “bed of nails” in response to

an applied voltage. If the plate term DE is very small, and d31 = d32, and again the

in-plane effects are ignored, arriving at the following equation for J discrete actuators:

−N0∇2w(r, θ) = Mi∇2

J∑
i=1

Hi(r, θ), (3.149)

where

Mi =
1

2

Epd31

1− νp

hpVi. (3.150)

Finally, in Chapter VII the axisymmetric non-linear equation is analyzed. Since

the equation assumes an isotropic material (that is, the Young’s modulus and Pois-

son’s of both the substrate and the piezoelectric material are the same), DE = D.

D∇4w(r)−NO∇2w(r) + NP∇2w(r) . . .

−N ε
1

(∂w(r)

∂r

)2 ∂2

∂r2
w(r)−N ε

2

(∂w(r)

∂r

)2 1

r

∂

∂r
w(r) . . .

= ∇2MP . (3.151)
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One final point is to be emphasized. In many of the works in the literature, the

structural stiffening of the piezoelectric layer is neglected. The magnitude of the

forcing has the form M = 1
2
Epd31hsV . Thus noted, the linear model may be compared

directly to those in the works by Lee et al [72–75], Bailey and Hubbard [17], and

Preumont’s text [112, pp. 48-51].

3.5 Summary of Modelling Techniques

This chapter introduced the basics of modelling a smart structure. A rigorous re-

examination of the linear theory of piezoelectric theory makes clear the fundamental

assumptions in linear piezoelectric theory. The piezoelectric-thermal analogy was

detailed, and will form the basis for finite element and continuous models seen later

in Chapters IV and V. Finally, the analytical model for an in-plane actuated plate-

membrane were developed in the polar coordinate system.

The assumptions and observations made in this chapter are summarized here.

The assumptions for quasi-static linear piezoelectric theory were:

• Piezoelectric material may be polarized, but not magnetizable in direction. Thus

the magnetic flux and magnetic field intensity are interchangeable fields.

• Electromagnetic forcing is uncoupled from elastic waves.

• Strain-displacement relationships are for an infinitesimal fiber, with symmetry

(zero rotation).

• Density and volume remain constant, and the piezoelectric reactions are isother-

mal.

• Electric enthalpy is assumed to be quadratic, restricting the relationships to

linear terms.

The assumptions for the piezoelectric-thermal analogy were:

• The effects of the in-plane electric field were ignored.
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• Piezoelectric sensing is not addressed.

• Thermal and piezoelectric forces should not be simultaneously applied, except

in the case of purely linear expansion coefficients. The heat transfer problem

may not be addressed.

The assumptions for the developing a plate membrane model were:

• Unimorph construction was assumed.

• Dynamic cases were ignored.

• Density of membrane substrate and piezoelectric are equal for the purpose of

determining best layer thickness.

• Difference in Poisson ratio differences between the substrate and actuator were

assumed small and coupling terms are ignored..

• Membrane tension was assumed to act only on the composite structure neutral

axis, and was assumed constant (no active boundary control).

• Piezoelectric forces were assumed to be applied only on the interior of the struc-

ture, and not at the boundary.

With the modelling efforts complete, a study of in-plane actuated deformable

mirrors may begin. In the next chapter, analytical solutions to the equations devel-

oped in this chapter are presented. Later, we will return to examine the effects of

scaling on the differential equations in Chapter VII.
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IV. Finite Element Modelling and Experimental

Closed-Loop Control

Chapter objectives:

• Introduce the MSC.Nastran finite element model

• Develop quasi-static control algorithm

• Report experimental closed-loop Zernike tracking results

4.1 Introduction

To demonstrate initial feasibility of the in-plane actuated deformable mirror, a

0.127 meter diameter test article was constructed, modelled using the finite

element method, and successfully controlled.

The research presented in this chapter compares experimental data with non-

linear finite element modelling using MSC.Nastran software, and implements control

algorithms developed from the results of the finite element modelling. By developing

a finite element model that is validated with experimental data, a truth source was

created upon which future modelling and control efforts may be tested without having

to conduct laboratory trials. It is presumed this will be a necessary approach for the

large membrane mirror space applications.

As a demonstration of the capability of the finite element modelling in this

chapter, a controller was built that relied upon influence functions derived solely

from the finite element modelling. The controller used a least squares approach to

create an influence function matrix in an integral controller.

Optical precision shaping of the test article mirror surface, expressed in terms of

a Zernike coefficient basis set as obtained from a Shack-Hartmann wavefront sensor,
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was demonstrated in a series of quasi-static closed-loop control tests. Micron-scale

control inputs to the defocus Zernike coefficient were tracked with an average absolute

accuracy of 0.16 microns. For a multiple output system, the control system tracked

the tip, tilt, and defocus modes with absolute average errors of 0.14, 0.09, and 0.18

microns, respectively, indicating that increasing the dimension of the control system

did not significantly degrade its performance.

Significantly, this is the first demonstration of experimental closed-loop control

for this class of deformable mirror.

4.2 Experimental Test Setup

A flat, circular, unimorph, in-plane actuated tensioned membrane mirror with

piezoelectric actuators was constructed for the experimental testing. The material

properties were characterized by direct measurement, manufacturer data, and the use

of a laser vibrometer for frequency analysis. Surface deflections were measured using a

Wavescope Shack-Hartmann wavefront sensor, converted from an output data stream

of 42 Zernike coefficients. The control signal was generated in Matlab/Simulink and

implemented using dSPACE to command seven power amplifiers. A flow chart depict-

ing the experimental test setup is shown in Figure 4.1. A more detailed description

of the test setup follows.

4.2.1 Test Article. The manufacture of a flat, circular, unimorph in-plane

actuated tensioned membrane mirror was covered in detail by Sobers, Agnes and

Mollenhauer [128]. In summary, the mirror is a composite structure of a 1.5 millimeter

Room Temperature Vulcanizing (RTV) Silicone substrate, with a near-optical quality

(optical quality for this document is defined as deflections or scales of one wavelength

of light, usually on the order of 633 nm) coating of gold approximately five microns

thick on the reflective side and a 52-micron polyvinylidene fluoride (PVDF) actuating

layer on the other. The boundary of the membrane mirror was clamped in tension

in a 0.127 meter diameter circular aluminum ring. Although every effort was made
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Figure 4.1: Experimental test setup.

to uniformly tension the mirror, frequency response data would later indicate a non-

uniform tension field existed (see Section 4.3.2).

A widely separated electrode pattern was etched in the bottom surface electrode

to form six radial actuators and one center axisymmetric circular actuator as shown

in Figure 4.2. The PVDF material was non-orthotropic in nature as the strength of

the piezoelectric coefficient in the y-direction was over seven times the strength of the

coefficient in the x-direction. The PVDF actuators were capable of being energized

singly or in combination with static and dynamic potentials up to plus and minus 600

volts.

Rather than bonding leads directly to the deformable mirror, thin electrodes ran

to the boundary where the leads were attached. The small (and later neglected for

modelling purposes) electrode regions ran axially outwards from each actuator. An-

other design consideration was that all electrodes had to be manufactured (etched)

by hand, and resulting tolerances were not as tightly controlled as might be expected
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(a) Reflective mirror surface. (b) Piezoelectric electrode pattern on
the non-reflective (back) side of the
deformable mirror.

Figure 4.2: AFIT 0.127 meter diameter deformable mirror.

with computer-aided construction techniques. The design dimensions of the actu-

ators are presented in Table 4.1. The material properties are explicitly stated in

Tables 4.2 and 4.3. The values are from manufacturer data, with the exception of

the Poisson’s value for silicone, which was experimentally obtained by Lutz [80], and

the thickness of the silicone layer, which was derived by Trad [?] from the pre- and

post- silicone coating weight measurements of the structure and then dividing by the

material density.

Table 4.1: Deformable mirror dimensions.

Radius (mirror) 0.0635 m
Radius (center actuator) 0.0127 m

Inner radius (actuators 2-7) 0.0190 m
Outer radius (actuators 2-7) 0.0444 m

Arc length (actuators 2-7) 50 degrees

4.2.2 Mirror Surface Measurement. A flowchart depicting the experimental

setup was presented in Figure 4.1. The optical table was designed to reduce external

vibrations and was presented in the earlier work by Sobers et al [128], as a lightweight

membrane is highly susceptible to any environmental disturbances. The table floats

on four air-isolation legs, and has a plexiglass cover to attenuate airborne disturbances
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Table 4.2: GE silicone RTV615 material properties.

Parameter Value [12] Units
thickness 0.0015 m

Young’s modulus 1.013 106N/m2

Poisson’s ratio* 0.497
density 1020 kg/m3

shrinkage 0.2%
useful temperature range -60 to 204 ◦C
* The value for Poisson’s ratio was experimentally

determined.

Table 4.3: PVDF film properties.

Parameter Value [10] Units
thickness 52 micron, 10−6m

d31 3 10−12 m/m
V/m

or C/m2

N/m2

d32 23 10−12 m/m
V/m

or C/m2

N/m2

Young’s modulus 2-4 109N/m2

density 1780 kg/m3

useful temperature range -40 to 100 ◦C

such as acoustic noise and air currents. A 20-mWatt helium-neon laser (λ = 633 nm)

was used to illuminate the deformable mirror test article and reference mirror via a

beam splitter. The mirror was tested while in a horizontal position on the optics table

to allow the membrane surface to articulate freely constrained only by the clamped

frame boundary condition (see Figure 4.3). Light entering the WaveScope passes

through a monolithic lenslet module (MLM) that focuses the light onto an RS-170v

monochrome Shack-Hartmann wavefront sensor. The fidelity of the data collected

using the WaveScope depends on the size and number of the lenslets in the MLM.

The data may only be acquired over a limited region of the surface of the mirror

due to equipment limitations, an approximate 0.076 meter diameter region. For the

purposes of this work, this observable region is called the mirror’s clear aperture.

The WaveScope sensor sends surface data to a video frame grabber in a per-

sonal computer. When performing calibration, laser returns are reflected off of the de-
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Figure 4.3: Mirror (bottom left) with Shack-Hartmann sensor.

formable mirror test article and reference mirror into the WaveScope sensor. Regions

of the lenslet array which do not receive bright enough returns to provide accurate

measurements (presumably due to construction of the mirror surface) are automati-

cally discarded from the collected data. A minimum valid rate of 70% was achieved

for all tests. Images from the Shack-Hartmann sensor are shown in Figure 4.4.

The wavefront path difference of these valid data points are fitted with a WaveScope

proprietary algorithm. The algorithm calculates, displays, and exports up to 42

Zernike coefficients of the illuminated surface. The Zernike polynomials efficiently

describe classical abberations for a circular aperture of unit radius, the linear combi-

nation of which represent the surface deflection.

Recall from Chapter II, the Zernike functions are an orthogonal basis set over

a circular aperture of normalized radius. Use of the Zernike basis set for optical

applications was popularized by Noll [97], and a description of the terms are available

in any introductory optics text book as well as an expanded description in Chapter VI.

The Zernike polynomial basis set for Wavescope is presented in Appendix D.
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(a) Mirror surface clear aperture re-
gion at maximum laser illumination
level.

(b) Typical grid depicting 370/450
of available apertures used by Shack-
Hartmann sensor.

Figure 4.4: Mirror as viewed through Shack-Hartmann sensor.

Zernike coefficient values were updated at a maximum rate of 400 Hz, but due to

data transfer and integration issues with the dSPACE controller, experimental results

were limited to 2.5 Hz. Thus, some open-loop qualitative observations could be made

at the higher frequency, but analysis such as a power spectral density or transfer

functions could not be obtained for the combined WaveScope/dSPACE system.

4.2.3 Closed-Loop. Zernike coefficients calculated by the Wavescope sensor

were exported across an ethernet cable to a NPort ethernet-to-serial converter at the

2.5 Hz rate. The serial cable is connected to the dSPACE hardware interface board.

The dSPACE and second PC receive and store the data, implement real-time control

through a Simulink model and Control Desktop software, and output control voltages

to a stack of Trek PZD 700 Dual Channel Amplifiers. The loop is completed as each

of seven amplifiers powers its respective actuator to deform the test article mirror

surface. The control algorithm is explained in Section 4.4, after first describing the

development of the influence function matrix using the finite element model approach.
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4.3 Non-linear MSC.Nastran Finite Element Model

The governing linear analytical equation for the out-of-plane displacement w

of an isotropic plate-membrane with plate stiffness DE and membrane tension N0

undergoing piezoelectric actuation of uniform strength MP over a region defined by

an indicator function H of value one within the region, and zero outside of the region,

as was defined in Chapter III.

DE∇4w −N0∇2w = MP∇2H, (4.1)

where ∇2 is the Laplacian operator, which in cylindrical coordinates is ∇2 = ∂2

∂r2 +

1
r

∂
∂r

+ 1
r2

∂2

∂θ2 .

For the test mirror which is the subject of this investigation in this chapter,

it was not clear if such a simplified system would be applicable. The underlying

reason was that the tension field in the mirror (the membrane tension N0) could

not be assumed constant as in Equation 3.107. Furthermore, in Chapter III, it was

shown that the governing equations were only applicable if the difference between the

Poisson’s ratio of the substrate and the piezoelectric material was small. For this

case, the difference was 0.497 − 0.3 = 0.197, for which the small assumption would

appear invalid.

Instead, it was decided to create a non-linear finite element model in MSC.Nastran

based on the piezoelectric-thermal analogy detailed in Chapter III. The finite element

model would represent an analogous solution to the series of coupled non-linear equa-

tions as presented in Chapter III. The model was then compared to test data, and

would serve as a useful truth source for the remainder of this document.

Using 100 radial divisions and 72 angular divisions comprising 7201 nodes, the

model was built with 7128 CQUAD4 elements and 72 CRIA3 composite plate el-

ements. The element properties were defined using a PCOMP card modelling the

silicon substrate and PVDF layer. The PCOMP element derives equivalent internal
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PSHELL and MAT2 cards to capture the membrane, bending, coupling, and trans-

verse shear stiffness of the composite element [92]. A MAT1 card was used to enter

the material properties from Section 4.2.

(a) Grid of CQUAD4 and
CTRIA3 elements where or-
ange areas indicate active
piezoelectric region.

(b) Typical wireframe of static deflection under
load. In this example, the center actuator is acti-
vated.

Figure 4.5: MSC.Nastran model.

4.3.1 Piezoelectric-Thermal Analogy. The piezoelectric-thermal analogy is

implemented just as introduced in Chapter III, the active elements were given x-

and y-coefficients for planar thermal expansion in their piezoelectric layer using the

values from Table 4.3 and are colored orange in Figure 4.5. All other regions, plus the

silicone substrate, were left thermally inert. Voltage was then applied as an equivalent

temperature to the nodes of the corresponding actuators. In all cases, only a static

voltage was applied.

4.3.2 Modelling Edge Tension. When the deformable mirror was con-

structed, a suitable method of measuring and recording edge tension was not avail-

able. Although presumably the edge tension would be available for a commercially-

manufactured mirror, due to the handmade nature of the test article, an alternate

method to determine the pellicle tension field was required. It was decided to perform
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a dynamic analysis of the test article, and then implement a tension field in the finite

element model that would approximate the frequency and mode shapes for the first six

recorded modes. A laser vibrometer was used to scan the surface of the mirror when

excited by chirp signals produced by an air horn from 50-100 Hz and 100-250 Hz. It

was determined that mode 2 was not observed in the data based upon an eigenvector

analysis, the results of which are summarized in Figure 4.6; left image in each column

is laser vibrometer mode shape data, right image is MSC.Nastran modal analysis so-

lution. In the figure, the view of the mirror was of the reverse (non-reflective) side

and was rotated 100 degrees (the reflective surface was incompatible for use with the

laser vibrometer). The finite element model was of the same orientation.

Figure 4.6: Eigenvector comparison.

The natural frequency data and eigenvector data did not match the membrane

theoretical solution for a circular boundary because of an apparent asymmetry in the

tension field, despite best efforts to maintain symmetry when the mirror was con-

structed. Although a matching algorithm could likely prescribe a set of nodal forces

to exactly match the first seven eigenvalue/eigenvector pairs, it was hypothesized that

a perturbed elliptic tension field could provide satisfactory results without unneces-
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sarily complicating the model. To implement the proposed membrane strain field,

an edge tension, N , was implemented with a tangential force along the boundary

governed by the equation:

N(R, θ) = %(1 + ε cos2 (θ − θ0)). (4.2)

To match the laser vibrometer modal data for the deformable mirror, the values

of % = 170 Newtons/meter, ε = 0.7840, and an orientation of θ0 = 105o were pro-

grammed in the model. The values were chosen using an empirical comparison. Using

the modal analysis solution (SOL 103) the model eigenvalues and eigenvectors were

compared to the experimental test data. The agreement achieved using the proposed

strain field is shown in Figure 4.6 and Table 4.4, where the per cent error is simply:

%error =
ωtheory − ωexperimental

ωexperimental

× 100%. (4.3)

Table 4.4: Modal frequency comparison.

Mode Experimental Membrane* Error MSC.Nastran Error
1 76 2.4048κ = 76 0.0 % 76 0.0 %
2† – 3.8317κ = 121 NA 116 NA
3 129 3.8317κ = 121 -6.2 % 129 0.0%
4 146 5.1356κ = 162 11.0 % 155 6.1 %
5 163 5.1356κ = 162 -0.6 % 165 1.2 %
6 188 5.5201κ = 174 -7.4 % 186 1.1 %
7 228 6.3802κ = 202 11.4% 198 13.2 %

* The frequencies for membrane theory were normalized to the first ob-
served experimental modal frequency by the scale factor κ.

† The second modal frequency was not observed in the experimental test
data.

4.3.3 MSC.Nastran Solution Strategy. Linear solutions to the finite element

model as presented cannot accurately represent the surface deflections of the physi-

cal structure. This is because the stiffening effect of the membrane tension from the

boundary loading conditions is not present–the linear solution is the independent com-
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bination of the linear stretching (resulting in constant surface deflections removed as a

bias) and piezoelectric actuation of the non-tensioned plate (greatly exaggerated sur-

face deflection due to the weak contribution of the plate’s flexural rigidity). Therefore,

a non-linear solution is required. In Chapter III, this was apparent as linear models

uncoupled the in-plane forces from the out-of-plane displacements.

For a non-linear total Lagrangian finite element formulation, Green Strains are

used. Although normally solved in an isoparametric space, one can write the Green

Stains in a polar form [23, pg. 552]:

εrr =
∂u

∂r
+

1

2

(∂u

∂r

2

+
∂v

∂r

2

+
∂w

∂r

2)
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∂w
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. (4.6)

Typically, the bending terms under the Kirchhoff assumption are introduced,

and the in-plane axial terms are neglected, resulting in the von Kármán strains used

by Nayfeh and Pai and presented in this document as Equations 3.99 and Equa-

tions 3.100. Although the MSC.Nastran documentation for the CQUAD4 and CTRIA3

elements indicates only that membrane and bending are present [11, pp. 1143,1187],

it is assumed the MSC.Nastran strain field is equivalent to the strain field used to

derive the governing differential equations of Chapter III.

In finite elements, the problem is solved by introducing a tangent stiffness ma-

trix, tK. For the forced finite element problem, with the matrix B̃ of shape func-

tions, the tangential forces are tF =
∫

V
B̃S̃dV , where S represents the Second Piola-

Kirchhoff stress matrix. Then, for an incremental displacement tu corresponding to

an incremental load:
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tK =
∂(tF )

∂(tu)
. (4.7)

Taking the derivative, arrive at equations of the form:

∂(tF )

∂(tu)
=

∫

V

BT ∂S̃

∂ε̃

∂ε̃

∂tu
dV +

∫

V

∂B

∂tu
S̃dV (4.8)

=

∫

V

BT EBdV +

∫

V

∂B

∂tu
S̃dV (4.9)

= KL + Kσ. (4.10)

In the above equations, the matrix E is the material properties, and KL is the

linear stiffness matrix, while Kσ represents the non-linear stiffness matrix. For an

updated Lagrangian approach, such as employed by MSC.Nastran [77, ch. 5], the

strains are written in the updated coordinate system, and a Cauchy stress matrix is

substituted, but the point of this discussion is the same.

To implement the non-linear solution in MSC.Nastran, the SOL 106 strategy

was used and called the NLPARM card. The non-linear parameters were set for no less

than 10 load increments with the default stiffness update method (AUTO). Within

each load increment, a modified Newton-Raphson approach, the BFGS method, was

used by MSC.Nastran to resolve a stiffness matrix “resembling” the tangential stiffness

matrix as described above [77, ch. 3.5].

The BFGS method, named for Broyden-Fletcher-Goldfarb-Shannon, is an up-

dated form of the modified Newton-Raphson, or quasi-Newton, approach. The follow-

ing discussion of the stiffness updates is based on the explanation from the MSC.Nastran

Nonlinear Analysis Handbook [77]. Defining the change in displacement as ∆u =

tu
i − tu

i−1
and ∆R = tR

i − tR
i−1

, where the change in load error is related to the

change in forces by
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∂(tF )

∂(tu)
= −∂(tR)

∂(tu)
. (4.11)

Thus, ∆R = [Ki+1]∆u, or ∆u = [Ki+1]
−1∆R, where K−1 is the inverse Hessian

matrix which must be determined. In the BFGS strategy, this inverse is found by the

formula:

[Ki+1]
−1 =[Ki]

−1 +
((1 + {∆R}T [Ki]

−1{∆R}
{∆R}T{∆u}

) {∆u}{∆u}T

{∆u}T{∆R} . . .

+
{∆u}{∆R}T [Ki]

−1 + [Ki]
−1{∆R}{∆u}T

{∆R}T{∆u} (4.12)

A line search parameter, α, is used to alter the step size while preventing the propa-

gation of bad updates. The tolerances checked are based on numerical experiments.

A simplified flow diagram is presented in Figure 4.7.

Figure 4.7: MSC.Nastran Quasi-Newton flow chart.
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Convergence was set to check load, work, and displacement default criteria, with

a tolerance of no less than the default tolerance, which correspond to the “very high”

accuracy designation [11, pg. 1709-1715]. In this manner, the membrane tension is

allowed to stiffen the structure through the LGDISP parameter, which allowed geo-

metric changes to the stiffness matrix. Difficulties in convergence due to singularities

in the stiffness matrix for high membrane-to-bending stiffness structures [77] were

overcome by using the parameter K6ROT set to 1.0E6. It should be noted that in

general, the convergence criteria of load would be used for a stiffening structure (as

presented), but all three tolerances were used and convergence was still achieved.

The edge tension was set using the FORCE card with a radial force along the

boundary as determined by Equation 4.2. Next, a second subcase generates the piezo-

electric load through the equivalent thermal loads set by TEMPERATURE(LOAD)

and TEMPERATURE(INITIAL) cards, and sets the loads according to the actuator

numbering scheme as shown in Figure 4.8. The bulk data file is available in abridged

form in Appendix B.

Figure 4.8: Actuator numbering scheme.

With the non-linear finite element model so constructed, the next step was to

compare experimental data with the model results.
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4.3.4 Experimental versus Finite Element Static Deflections. Experimental

data is compared to the static finite element solution in Figure 4.9. A 300 Volt

load was individually applied to actuator 1, 2, and 3 as shown in the figure. The

experimental surface was obtained from a linear combination of 42 Zernike basis

functions that were averaged over approximately 80 consecutive measurements.

A baseline (0-volt) surface was subtracted from each plot to discount any initial

surface and beam path irregularities. For the finite element solution, displacements in

the vertical (z axis) direction were recorded, and then a surface was determined from

the linear combination of the same 42 Zernike basis elements as fit to the data. The

coefficients were determined using a projection with the error norm as described in

Appendix A. This use of the same subset of basis functions enabled a direct compar-

ison between the experimental and finite element data. This Zernike representation

of the surface displacements is presented in Figure 4.9.

(a) Actuator 1 test data. (b) Actuator 2 test data. (c) Actuator 3 test data.

(d) Actuator 1 finite ele-
ment model.

(e) Actuator 2 finite ele-
ment model.

(f) Actuator 3 finite ele-
ment model.

Figure 4.9: Zernike representation of static deflections.
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4.4 Quasi-static Surface Control

The controller created for this system was created imposing several constraints.

First, the controller was built without any calibration data (that is, without any a

priori knowledge of the WaveScope measurements). For some applications it may

prove easier to control the system by applying demonstrated system identification

techniques, however the objective of the work herein is to demonstrate existing finite

element theory was sufficient for modelling and controlling this class of structure.

Second, hardware and software constraints limited the data rate and number of avail-

able outputs available for control. However, given these constraints, demonstrated

quasi-static surface control were achieved for this class of mirror with the controller

as outlined in the following paragraphs.

To construct a controller for the system, conventional techniques were employed.

The controller consisted of a static gain matrix, a proportional path, a bank of anti-

windup integrators, and a smoothing filter. Rate transition filters were used to match

the control input calculations with the measurement rate. An overview of the con-

troller implementation is shown in Figure 4.10.

4.4.1 Static Gain Matrix. A static gain matrix, K, was formed using static

Zernike representations of surfaces formed by the MSC.Nastran finite element model.

A linear static gain matrix was used for two reasons. One, the influence functions

from the finite element were localized, and thus nearly independent. Second, the

deflection versus voltage curve was nearly linear. The static deflection of the center

node versus a voltage applied in 50-volt increments to the center actuator in the finite

element model is shown in Figure 4.11. On the same figure, the linear relationship

used for the static gain matrix is shown by a solid line.

The static shapes, represented by 42 Zernike coefficients, such as shown in Fig-

ure 4.9, were created in finite element simulation by applying 300 Volts to each of

the actuators, and then normalizing to a one volt application. Each 42-element static

response vector was placed in a matrix Y . Thus the static system was:
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(b) Controller operating at 2.5 Hz (consistent with measurement rate) operating on error signal
consisting of a static gain matrix, anti-windup integrators, and a proportional path. The control
output is filtered to prevent “ringing” the mirror.

Figure 4.10: Block diagram of system as implemented in Simulink software.

[
A

]
42×7

[
X

]
7×7

=
[
Y

]
42×7

, (4.13)

where

[
Y

]
42×7

=

[{
z1

}
42×1

{
z2

}
42×1

· · ·
{

z7

}
42×1

]

42×7

. (4.14)

In the above equations, A was the unknown system and X was an identity 7×7

matrix corresponding to the one-volt application to each of the actuators. The vectors
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Figure 4.11: Finite element model static deflection of center node versus voltage.

z1, z2, . . . , z7 represent the 42 Zernike coefficients for a one volt application to actuator

1, 2, through 7 respectively, as obtained from the Zernike fit to the forced response of

the finite element model for each of the actuator cases. Again, it is emphasized that

the response of the non-linear finite element model was assumed linear with respect

to applied voltage–the non-linear aspect was only used to introduce the stiffening

brought about by edge tension.

Trivially, A = Y . For the control problem where a desired surface z of up to 42

Zernike coefficients is desired, the problem to be solved is:

[
A

]
42×7

{
v
}

7×1
=

{
z
}

42×1
, (4.15)

where v represents the control voltage inputs. Or simply require:

{v} =
[
K

]
{z}, (4.16)

where K is determined using

[
K

]
≡

[([
A

]T [
A

])−1 [
A

]T ]
7×42

. (4.17)
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The solution represents the minimum 2-norm solution to Equation 4.13. For

this system, where discontinuous actuators have non-overlapping surface displacement

functions, the inverse will exist. However, increased actuator densities may require

alternatives to Equation 4.17 in the cases where the surface displacement functions

of the actuators intersect.

The gain matrix K acted on the error signal in the feedback path as shown in

Figure 4.10, where the error signal is defined as:

{z} ≡ {ze} = {zdesired} − {zmeasured}. (4.18)

It is emphasized that the gain matrix K was obtained entirely from finite element

modelling, not experimentally derived data.

4.4.2 Proportional plus Integral Control. Once the appropriate gains were

calculated by multiplication of the gain matrix with the error signal, the resulting

voltages were sent through a proportional path for immediate response, plus stored

with a bank of anti-windup integrators.

The anti-windup integrators had cutoffs set at plus and minus 600 volts corre-

sponding to the saturation limits of the amplifiers (further input protection was in a

saturation block just prior to the amplifiers). The goal of the anti-windup integrators

was to reduce the lag from a build up of error if the desired signal exceeded the phys-

ical capacity of the system (that is, outside of the controllable space) and returned to

within the operational limits. Without the anti-windup feature, built up error would

effectively freeze the system, causing lags that could only be overcome with lengthy

errors in the direction opposite the initial error.

4.4.3 Integration. The controller operated at 2.5 Hz, consistent with the

measurement rate of the WaveScope sensor. The Simulink/dSPACE controller op-

erated at a much higher frequency, and thus had to be stepped down in frequency

93



through rate transition blocks before entering the control and stepped up upon leaving

the controller.

Open-loop testing, where higher frequency measurements could be qualitatively

observed, showed considerable “ringing” of the mirror if 2.5 Hz step inputs were

applied to the actuators. The ringing could not be observed at the slow measurement

speed in the closed-loop testing. However, a first order filter with a 2.5 Hz cutoff

frequency was installed after the rate transition block to the higher system frequency.

This was used to smooth the control input to the amplifiers, and theoretically lessen

the excitation of the mirror dynamics.

Due to processing limitations, only a limited number of the available outputs

(that is, Zernike coefficients) could be used in the control system and recorded. There-

fore, a subset of the available signals were stripped from the measurements in the

Mux/Demux block of Figure 4.10 (b). For the testing presented in this document,

the retained measurements were the Zernike coefficients for tip, tilt, and defocus

(Wavescope Zernike coefficients Z1, Z2, Z3).

4.5 Experimental Testing and Results

A series of quasi-static tracking tests were run to demonstrate the effectiveness

of the in-plane actuated, tensioned deformable mirror under the control of a purely

theoretically developed controller using standard finite element modelling and control

practices.

Measurements were limited to tip, tilt, and defocus Zernike coefficients within

the mirror’s clear aperture due to the constraints listed in the previous section. Choos-

ing these modes provided a suitable demonstration for the mirror’s capabilities, but

it is recognized by the research team that these are some of the less interesting modes

for a deformable mirror. Typically, the tip and tilt modes of a deformable mirror are

controlled by an independent control system acting on the rigid frame of the struc-

ture. Also, the focus error may be a function of the length of the beam path, and may
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be corrected by adjusting the position of the mirror. For that reason, these modes

are often ignored when characterizing the surface of a mirror in an optics system.

However, these modes have the advantage of being intuitively recognizable due to

their low order behavior, and were consequently chosen by the research team for this

demonstration. In the testing that followed, as indicated earlier, an open-loop baseline

signal (or bias) was subtracted from each Zernike coefficient prior to each closed-loop

test (on the order of 1 to 10 microns for the tip, tilt, and defocus Zernike). How-

ever, given the nature of the test setup (where small thermal or other variation of

the platform could slightly affect the beam path), it was not uncommon for a bias of

approximately 0.3 to 0.4 microns to re-appear upon test completion in each of the tip,

tilt, and defocus Zernike modes, and it is assumed that the control results presented

also had to overcome these small biases as well.

The deformable mirror controller was run in two test configurations, indicated

in Table 4.5. In the first configuration, the measurement of the defocus Zernike was

the single output used to create an error signal. A sinusoidal command signal of

1.0 micron in amplitude at a 0.04 Hz frequency was input into the controller. The

amplitude was statically obtainable by the mirror, and the frequency was well below

both the dynamic modes of the mirror and the measurement update rate of 2.5 Hz.

Then, the amplitude was increased to 2.0 microns, exceeding the mechanical limits of

the mirror, to test the effectiveness of the anti-windup integrators.

Table 4.5: Test matrix.

Test Commanded Zernike Signal Zernike
(meters) polynomial

1a Z3, defocus 1.0× 10−6 sin (2π0.04t)
√

3(2r2 − 1)

1b Z3, defocus 2.0× 10−6 sin (2π0.04t)
√

3(2r2 − 1)

2





Z1, tip
Z2, tilt

Z3, defocus









0.6× 10−6 sin (2π0.02t + π
2
)

0
1.0× 10−6 sin (2π0.04t)









2r cos θ
2r sin θ√
3(2r2 − 1)





In Test 2, three outputs of the mirror were tracked simultaneously. The chosen

outputs were tip, tilt, and defocus. The tracking signal shown in Table 4.5 commanded
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the tip Zernike at 0.02 Hz at 0.6 microns in amplitude and the focus Zernike at 0.04

Hz at 1.0 micron, while maintaining the tilt Zernike at 0 deflection.

The average absolute error for each test is presented in Table 4.6. The average

absolute error was the absolute value of the command signal versus the measured coef-

ficient taken pointwise at the sample rate, summed over the measurement period, and

then divided by the total number of points. In Test 1b, the procedure was modified,

such that when the command signal exceeded 1.0 micron (when the command was

outside of the controllable space) the measurement was compared against a reference

of 1.0 micron.

As a point of further clarification, the measurements in this section are of the

Zernike coefficient, and are in meters. To obtain the total surface deflection, the mea-

sured Zernike coefficient must be multiplied by the non-dimensional Zernike polyno-

mials in Table 4.5. The test results are now further discussed.

Table 4.6: Average absolute value of error signal.

Test Zernike coefficient Average error Comments
(meters)

1a Z3, defocus 0.16× 10−6

1b Z3, defocus 0.31× 10−6 Note error for command outside
of controllable space measured
versus 1.0× 10−6

2





Z1, tip
Z2, tilt

Z3, defocus









0.14× 10−6

0.09× 10−6

0.18× 10−6





4.5.1 Single Zernike Measurement Tracking. The test results for the single

measurement tracking are shown in Figure 4.12. The dashed line indicates the com-

mand input, the solid line is the closed-loop mirror response. For the first tracking

test of the defocus Zernike, the signal is tracked with recognizable accuracy. However,

the results show the existence of sharp, oscillatory behavior which may be attributed

to two possible factors: One, system dynamics could be excited and aliased into the
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measurements, or two, the measurement noise (amplified through the system gain)

significantly affected the results. The behavior was present in all subsequent tests.
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Figure 4.12: Experimental test 1 data.

Next, the amplitude of the commanded signal was increased to test the effective-

ness of the anti-windup integrators. Clearly, the anti-windup integrators performed

and did not allow a build of error to prevent signal tracking. However, the non-

symmetric nature of response warrants a comment. The system responded with a

maximum throw of plus one micron, yet a maximum negative deflection of 1.8 mi-

crons. This could be attributed to bias uncertainties in the beam path not removed

prior to the closed-loop test, or attributed to material properties, and remains open

for investigation. Another observation was the apparent lag in the response when de-

flections at the actuation limit were made. For this mirror construction, it is possible

hysteretic effects may be present, attributable not only to the piezoelectric actuators

but also due to the silicone substrate memory effects. System lags will need to be

addressed for higher bandwidth applications.

4.5.2 Multiple Zernike Measurement Tracking. The results of the previous

section demonstrated a single Zernike mode could be tracked, but no mention was

made of the effect on the other optical modes. In the second test shown in Table 4.5,

three Zernike modes were commanded and the tracking results are shown in Fig-
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ure 4.13. Again, the dashed line indicates the command input, the solid line is the

closed-loop mirror response.
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Figure 4.13: Experimental test 2 data, recorded simultaneously.

Similar to the results presented in Section 4.5.1, the closed-loop system was

able to maintain the three commanded signals with recognizable accuracy. Tracking

of the tip and tilt Zernikes was far from error-free, but this difficulty can be partially

attributed to the actuator layout (evidenced by the continuous center actuator). The

far more important conclusion was that tracking tip and tilt did not appear to signif-

icantly detract from the tracking of the defocus Zernike.

Post-experiment analysis was conducted using the linear model derived from

the finite element results (the [A] matrix from Equation 4.15). Application of a pre-

conditioning non-linear hysteresis model to the input voltages, and the addition of

measurement noise to the Zernike outputs, were used in the simulation. The results

were qualitatively similar to the experimental testing. Characterization of both the

hysteresis and measurement is ongoing and will be reported separately. It is noted

that system noise and non-linear effects such as hysteresis will govern the ultimate

performance of the deformable mirror, especially higher frequency (non-quasi-static)

applications.

98



4.6 Conclusions

The modelling and quasi-static closed-loop control of a 0.127 meter diameter,

in-plane piezoelectric actuated deformable mirror was experimentally demonstrated.

Modelling of the mirror was conducted using finite element modelling software. A

static gain matrix was formed from the finite element results, and used as the basis

for a quasi-static control system that employed proportional and integral control.

Optical level, quasi-static control of this class of mirror was demonstrated by tracking

both a single Zernike focus mode input, and by tracking multiple Zernike inputs tip,

tilt, and defocus.

A prescriptive technique for modelling a tensioned deformable mirror with seven

in-plane actuators actuators using available non-linear finite element modelling soft-

ware was given. The method used dynamic data obtained with a laser vibrometer

to characterize the tension in the membrane, and an equivalent edge loading was

prescribed. For future applications, it is assumed this tensile edge loading would be

recorded as part of the manufacturing process, and the dynamic testing would not be

required. The geometric stiffness of the finite element model was updated using the

edge loading and a non-linear solver.

The piezoelectric actuators were statically actuated, and the surface deflection

of the deformable mirror was measured with a Shack-Hartmann wavefront sensor. The

deflections were provided by a summation of 42 Zernike polynomials within the interior

60% of the mirror’s radius, the clear aperture, as provided by the wavefront sensor

software. For the experimental data, deflections were taken from a bias precondition

due to the slight roughness of the mirror’s surface. Deflections from baseline were

on the scale of 1 micron, and agreed both in scale and general shape with the finite

element model results.

A least squares fit of the finite element model deflection was used to form the

central element of a multiple input/multiple output quasi-static control algorithm.

The algorithm used the least squares static gain matrix to operate on an error sig-
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nal of up to three Zernike coefficients at a rate well below the fundamental dynamic

frequency of the mirror. Higher rates and number of data signals could not be sup-

ported with the experimental set up, but are not theoretically limited. Proportional

and integral control were used. To preclude overwhelming the controller for errors

beyond the achievable limits, anti-windup integrators and saturation limits were im-

plemented. Additionally, the feedback signal was filtered on the input side to prevent

exciting mirror dynamic modes (which could not be directly measured).

Both single Zernike tracking and multiple Zernike tracking were experimentally

demonstrated. The Zernike modes chosen for the demonstration were tip, tilt and

defocus. It was recognized these modes are generally not controlled by a deformable

mirror, but the low spatial order of the modes made for a better demonstration given

the mirror’s relatively low number of actuators.

The defocus Zernike coefficient, Z3, was commanded with a 1.0 micron in ampli-

tude, 0.04 Hz in frequency. It was tracked with an average accuracy of 0.16 microns.

When the amplitude of the command was doubled to a level beyond the actuation lim-

its of the test article, the accuracy degraded to 0.31 microns, which was recognizable

as a system lag following full scale deflection.

For the multiple Zernike tracking case, the defocus was again commanded at the

0.04 Hz rate and at an amplitude of 1.0 micron. Furthermore, the tilt mode, Z1, was

commanded with a 0.6 microns at half the rate (0.02 Hz) of the defocus signal, and the

tip mode, Z2, was commanded to zero deflection. The control system tracked the tip,

tilt, and defocus modes with absolute average errors of 0.14, 0.09, and 0.18 microns

respectively. When the error in tracking the defocus Zernike was compared to the

single input, single output tracking case, the error increased by a slight 0.02 microns,

indicating that increasing the dimension of the control system did not significantly

degrade its performance.

The finite element models developed for this work were determined to adequately

model the static structural response of the in-plane actuated mirror. The models
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will be used for the remainder of this work as a structural truth source as further

experimental demonstrations are not practical.

The success of this experimental demonstration highlights the promise of uni-

morph in-plane actuation for the control of deformable mirrors for the first time.

In-plane actuation, with its intrinsic weight saving benefits of being self-contained

without the need for a backing structure, combined with the system implementation

advantages such as no bias requirement, ease of modelling, and demonstrated perfor-

mance capability, make it a leading choice for incorporation into the future generation

of membrane mirrors for space-borne telescope requiring precision shape control.

With a finite element model established as a truth source, we may turn our

attention in the next chapter to focus on simpler analytical solution methods to the

static actuation problem.
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V. Analytical Influence Functions

Chapter objectives:

• Develop analytical linear piecewise solution for in-plane
actuated beam-string and plate-membrane

• Develop low-order approximate solution

5.1 Introduction

In this chapter, we explore the behavior of the tensioned deformable mirror. This

configuration typically exhibits both plate-like and membrane-like behavior. Pro-

posed is a new approximation method for the solution to this class of mirror, where

the normalized plate stiffness to tension ratio is small. The approximation function

is based on the exact analytical solution to this class of problems. The approxima-

tion method allows the problem to be reduced to a simple pressure forced membrane

equation, a geometry which may be more readily analyzed. A case study compar-

ing the results of the approximation method to a high fidelity finite element model

constructed in MSC.Nastran is provided.

5.2 The Search for a Low-Order Model

As previously stated, the choice of a deformable mirror stiffened by membrane

tension and forced by piezoelectric in-plane bimorph or unimorph actuators may be

a desirable configuration for membrane optics. Compared to a conventional mirror

where discrete actuators are attached to a rigid backing structure and operate directly

against the mirror’s non-reflecting face, the in-plane actuated mirror may be lighter

in weight, capable of remote actuation [82, 95], and potentially resolve higher spatial

frequencies for a given number of actuators–all distinct advantages for space-borne
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operations. However, much of the recent research regarding membrane mirrors has

dealt with the modelling of electrostatically actuated mirrors, which are variations on

the conventional scheme [29,43,91,130].

Formulating a low-order, approximate, influence function would have distinct

advantages for uncovering the analytical relationships and in reducing computational

cost when compared to high-order, high-fidelity analytical and finite element model

solutions. Thus a low-order method is sought both to increase the efficiency of model-

based control algorithms, and to allow rapid parametric studies.

5.2.1 Background. Steinhaus and Lipson [133], and later Burke and Hub-

bard [68], recognized the usefulness of in-plane actuation for an optical structure, not-

ing the inherent advantages of moment actuation and the theoretically achievable high

spatial frequency. However, their analysis concentrated on the rigid (non-tensioned)

deformable mirror. Analyzing a similar geometry, Lee et al [76] calculated influence

functions for each actuator as an individual phenomena where each actuated area

was mathematically treated as a separate domain with clamped boundary conditions,

and fitted with an Euler-Bernoulli beam model with a correction factor. Martin et

al [86, 87] modelled non-tensioned mirrors as well, but introduced the significant en-

abling technology of a non-contact electron gun to control the voltage applied to the

piezoelectric actuators.

The in-plane actuated tensioned plate-membrane mirror proposed herein for

space-borne applications has been rigorously modelled by Rogers and Agnes [118].

However, the methods proposed were limited to axisymmetric circular structures,

mathematically complex, and lack some of the characteristics seen in the experimen-

tal and analytical work of Chapter IV. An important feature of the work was the

recognition that the ratio of plate stiffness to membrane stiffness was a primary con-

sideration for achievable shape control.
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5.2.2 Governing Differential Equation. For this chapter, we limit our dis-

cussion to the one-dimensional beam-string and axisymmetric plate-membrane.

The beam-string (a clamped beam simultaneously under an axial load) is an

important analytical tool, and is discussed in part because it helps to clarify proce-

dures used in the study of the plate-membrane. Because of its analytical importance,

it is emphasized here.

However, it is the circular plate-membrane that is our geometry of interest

for in-plane actuated deformable mirror research. Analogous to the beam-string,

the plate-membrane is a plate with a clamped boundary under uniform tension. In

this chapter, the discussion is limited to a plate-membrane of circular axisymmetric

construction, however the requirement will be relaxed for the forcing function as shown

in Section 5.4.1, for cases where d31 6= d32.

The governing equation for the in-plane actuated structure as developed in

Chapter III may be expressed as:

D∇4w −N∇2w = −M∇2H, (5.1)

where the variables are defined in Tables 5.1 and 5.2. Note that an axisymmetric

condition is assumed for the piezoelectric forcing, and the magnitude of the piezoelec-

tric force M is separate from the function H which indicates the region of electrode

coverage. Also note that a thermal analogy could be constructed by replacing d31V

with c(α)Ttp.

The indicator function, H(~x), for a surface electrode of area S is:

H(~x) =





1, ~x ∈ S,

0, else.
(5.2)

The dependent variable in place of ~x for the beam-string is x and the Laplacian

operator is ∇2 = ∂2

∂x2 , while for the plate-membrane the dependent variable is r
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and the Laplacian operator is ∇2 = ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂θ2 (under the assumption of

axisymmetry, the θ dependence is removed, and ∇2 = ∂2

∂r2 + 1
r

∂
∂r

).

Table 5.1: Governing differential equation (Equation 5.1) explanation of terms.

Parameter Beam-String Units Plate-Membrane Units

D EI FL2 Eh3

12(1−ν2)
FL

N P F N FL−1

M −Ed31V bts
2

FL −Ed31V ts
2(1−ν)

F

Table 5.2: Nomenclature for governing differential equation.

Parameter Description Units

E Young’s Modulus FL−2

ν Poisson’s ratio none

I moment of inertia bh3

12
L4

h total height L
b beam width L
ts thickness of substrate L
tp thickness of surface actuat-

ing layer
L

P axial force F
N tension FL−1

c(α) coefficient of thermal expan-
sion

(o)−1

T temperature (change) (o)
d31 piezoelectric constant LV −1

V applied voltage V
R (overall length or radius) L

Equation 5.1 may have the dependent variable scaled by the length of the domain

(length of beam or radius, R, thus define r̃ = r
R
), and dividing by the tension leaves

us with:

ε2∇4w −∇2w = −M

N
∇2H, (5.3)
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where the normalized plate stiffness to tension ratio is ε2 = DN−1R−2.

The indicator function may represent an active piezoelectric actuator covering

a normalized interior region of r̃ ≤ α. This function would have the form:

H(r̃) =





1, r̃ ≤ α,

0, otherwise.
(5.4)

With the addition of the appropriate boundary conditions, the problem may

now be solved. In the next section, the exact solution for this class of problem is

presented.

5.3 Exact Analytic Linear Solutions when Forced by In-plane Actuators

5.3.1 Beam String. Given the deflection of a beam-string w(x) governed by

the equation:

ε2wiv(x)− w′′(x) = 0, 0 ≤ x ≤ 1 (5.5)

with boundary conditions for a piezoelectric region between interior points α and β:

w(0) = w′(0) = w(1) = w′(1) = 0, (5.6)

w(α−) = w(α+), (5.7)

w′(α−) = w′(α+) (5.8)

w(β−) = w(β+) (5.9)

w′(β−) = w′(β+) (5.10)

w′′(α+) = w′′(β−) =
−1

2ε2

M

N
α < β, (5.11)

w′′(α−) = w′′(β+) =
1

2ε2

M

N
α < β, (5.12)

where the prime superscript indicates the derivative with respect to x.
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Pause for a moment to explain the inspiration behind the applied boundary

conditions. Lee [72] derives the conditions where a piezoelectric forcing, introduced

in Equation 5.1, may be transformed into a line load, comprised of line moments (such

as in this case), and line forces. Note that the line moment applied to a structure is

actually a bending couple at the center of which is an inflection point in the curvature

of the structure [52, pg. 374]. Thus, the internal boundary conditions are nothing

more than the opposite curvatures, which in the one-dimensional case are simply sign

changes in the second derivative.

To provide some further insight, one may look at the equation for curvature, in

its simplest form for an Euler-Bernoulli beam as

w′′(x) =
M(x)

EI
. (5.13)

The line moment is an instantaneous change in moment at a point α of magnitude

M , creating a jump discontinuity. To create a set of internal boundary conditions,

impose the condition that half of the strength of the moment is applied in opposite

directions on either side of the internal boundary. This is represented as:

1

2
M = EI lim

x→α−
w′′(x), (5.14)

−1

2
M = EI lim

x→α+
w′′(x). (5.15)

Dividing both equations above by the tension N and recognizing ε2 = EI
N

results in:

1

2

M

N
= ε2 lim

x→α−
w′′(x), (5.16)

−1

2

M

N
= ε2 lim

x→α+
w′′(x). (5.17)
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Finally, to arrive at the boundary conditions in Equations 5.11 and 5.12 divide

through by ε2 to yield:

1

2ε2

M

N
= lim

x→α−
w′′(x), (5.18)

− 1

2ε2

M

N
= lim

x→α+
w′′(x). (5.19)

With the boundary conditions now explained, it is time to turn one’s attention

to solving the problem. Begin by recognizing the exact solution to the differential

equation, Equation 5.5, is:

w(x) = c0x + c1 + c2e
x/ε + c3e

−x/ε. (5.20)

A single linear solution will not exist, as there are 12 boundary conditions and the

order of the equation is four. However, 4 of the conditions occur on internal bound-

aries. Thus, to solve the equation exactly, break the domain into three parts, which

are called the left (L) (x < α), center (C) (α ≤ x ≤ β), and right (R) (x > β). Begin

by solving for the region, w(C) in the interior of the forced region, where α ≤ x ≤ β,

by making the substitution, w(C) ′′(x) = v(x), to yield the homogenous differential

equation for the curvature of the interior of the structure:

ε2v′′(x)− v(x) = 0, α ≤ x ≤ β (5.21)

v(α) = v(β) = −1. (5.22)

This homogenous equation is solved by the combination of sinh functions:

v(x) =
sinh(x−α

ε
)− sinh(x−β

ε
)

sinh(α−β
ε

)
. (5.23)
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If one integrates the solution in Equation 5.23 twice, the general interior solution is

offered:

w(C)(x) = a0 + a1x + ε2v(x). (5.24)

Turning our attention to the area, x < α,the solution to Equation 5.5 in this

region is offered as w(L)(x):

w(L)(x) = b0 + b1x + b2 sinh
x

ε
+ b3 cosh

x

ε
. (5.25)

The boundary conditions for the left edge remain clamped, that is w(L)(0) = w(L) ′(0) =

0.

Similarly, the solution proposed in the region x > β as w(R)(x) is:

w(R)(x) = c0 + c1(1− x) + c2 sinh
1− x

ε
+ c3 cosh

1− x

ε
, (5.26)

again with clamped boundary conditions, w(R)(1) = w(R) ′(1) = 0.

Imposing continuity of displacement and slope between the inner and outer

solutions, and applying the given boundary conditions allows us to solve the system

of 10 equations with 10 unknowns. For completeness, the boundary conditions are:

w(L)(0) = w(L) ′(0) = 0, (5.27)

w(R)(1) = w(R) ′(1) = 0, (5.28)

w(L)(α) = w(C)(α), (5.29)

w(L) ′(α) = w(C) ′(α), (5.30)

w(L) ′′(α) = 1, (5.31)

w(R)(β) = w(C)(β), (5.32)

w(R) ′(β) = w(C) ′(β), (5.33)

w(R) ′′(β) = 1. (5.34)
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The resulting system of equations is therefore:

b0 + b3 =0, (5.35)

b1 +
1

ε
b2 =0, (5.36)

c0 + c3 =0, (5.37)

− c1 − 1

ε
c2 =0, (5.38)

− a0 − a1α + b0 + b1α + b2 sinh
α

ε
+ b3 cosh

α

ε
=− ε2, (5.39)

− a1 + b1 +
b2

ε
cosh

α

ε
+

b3

ε
sinh

α

ε
=εKα, (5.40)

b2 sinh
α

ε
+ b3 cosh

α

ε
=ε2, (5.41)

− a0 − a1β + c0 + c1(1− β) + c2 sinh
1− β

ε
+ c3 cosh

1− β

ε
=− ε2, (5.42)

− a1 − c1 − c2

ε
cosh

1− β

ε
− c3

ε
sinh

1− β

ε
=εKβ, (5.43)

c2 sinh
1− β

ε
+ c3 cosh

1− β

ε
=ε2. (5.44)

where Kα and Kβ are defined as:

Kα ≡ 1

sinh α−β
ε

− 1

tanh α−β
ε

(5.45)

Kβ ≡ −1

sinh α−β
ε

+
1

tanh α−β
ε

. (5.46)

Further note Kα = −Kβ.

To solve algebraically, define the matrix M such that
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M ≡




0 0 1 0 0 1 0 0 0 0

0 0 0 1 1
ε

0 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 −1 −1
ε

0

−1 −α 1 α sα cα 0 0 0 0

0 −1 0 1 1
ε
cα 1

ε
sα 0 0 0 0

0 0 0 0 sα cα 0 0 0 0

−1 −β 0 0 0 0 1 (1− β) sβ cβ

0 −1 0 0 0 0 0 −1 −1
ε
cβ −1

ε
sβ

0 0 0 0 0 0 0 0 sβ cβ




(5.47)

where

cα = cosh
α

ε
sα = sinh

α

ε
, (5.48)

cβ = cosh
1− β

ε
sβ = sinh

1− β

ε
. (5.49)

Next, define x and f as
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x =





a0

a1

b0

b1

b2

b3

c0

c1

c2

c3





f =





0

0

0

0

−ε2

εKα

ε2

−ε2

εKβ

ε2





(5.50)

The system of equation is solved when x = M−1f . It may be observed in

Equation 5.49 that M becomes ill-conditioned as ε decreases. When solving the

system algebraically, the solution is intractable in a purely symbolic form and provides

little insight. However, when working with numerical values, a sample of the solutions

obtained are presented in Figure 5.1.

5.3.2 Plate-membrane. A derivation of the axisymmetric (no angular terms)

plate membrane may be set up in a similar manner. For this problem, assume a plate

membrane of radius 1 with a piezoelectric actuator acting radially over a radius α < 1.

Given:

ε2∇4w(r)−∇2w(r) = 0, 0 ≤ r ≤ 1 (5.51)
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Figure 5.1: Examples of beam-string solution for varying values of ε.

with boundary conditions for a piezoelectric region within a region of radius α:

w′(0) = 0 displacement is thus bounded, (5.52)

Q(0) = 0 shear force, (5.53)

w(1) = w′(1) = 0, clamped edge, (5.54)

∇2w(α+) = 1, w′′(α−) = −1, (5.55)

where the axisymmetric Laplacian operator is the familiar, ∇2 = ∂2

∂r2 + 1
r

∂
∂r

.
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Figure 5.2: Plate (or plate-membrane) forced by piezoelectric-actuator.

Again, the choice of boundary conditions is important. As the piezoelectric

forcing to the plate problem f(r) enters through the Laplacian operator acting on a

indicator function, H(r):

f(r) = M∇2H(r − α) = M
(
δ′(r − α) +

1

r
δ(r − α)

)
. (5.56)

Thus, the forcing looks like a line moment (δ′ term) and a line force (δ term),

as indicated in Figure 5.2. Note that line forces and moments indicated by the green

arrows in the figure are shown acting in the negative direction.

To represent the line moment, once again choose opposite curvatures at the

boundary. However, the line force is another matter. At the internal boundary, the

line force may be thought of as acting a slope condition1. Thus, on the interior of the

piezoelectric actuated region one has both the contribution from the curvature term,

and the corresponding term from the Laplacian of the line force. However, on the

exterior of the region, the contribution of the line force is lost, and the term remaining

is simply the line moment curvature of opposite sign. Also note the condition is

already scaled to a unit curvature on the boundary, as done in Section 5.3.1.

The exact solution to the differential equation, Equation 5.51 is:

w(r) = c0 + c1 log r + c2I0(
r

ε
) + c3K0(

r

ε
), (5.57)

1If the unit dipole for the moment is integrated, it is a unit impulse–the line force. Integrating the
curvature in a similar manner yields slope. Symbolically, represent this as w′′ ∼ δ′. Then integration
yields relationship w′ ∼ δ.
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Figure 5.3: Modified Bessel functions of the first and second kind.

but cannot account for all the boundary conditions. I0 and K0 are modified Bessel

functions.

Again, Take a moment to refresh ourselves with some properties of the modified

Bessel functions by viewing the graphs in Figure 5.3.2

Similar to the beam problem, a composite solution to account for the boundary

conditions is sought. Again form piecewise solutions, one the inner (left) solution,

and one the outer (right) solution. For the inner solution (interior to the piezoelectric

actuated region) where r < α, w(L)(r) is :

2Also note the properties for modified Bessel functions:

I ′i = Ii−1 − i

r
Ii = Ii+1 +

i

r
Ii (5.58)

K ′
i = −Ki−1 − i

r
Ii = −Ki+1 +

i

r
Ii (5.59)

and

lim
x→0

I0(x) =1 lim
x→∞

I0(x) = ∞,

lim
x→0

I1(x) =0 lim
x→∞

I1(x) = ∞,

lim
x→0

K0(x) =∞ lim
x→∞

K0(x) = 0,

lim
x→0

K1(x) =∞ lim
x→∞

K1(x) = 0.
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w(L)(r) = b0 + b1 log
(r

ε

)
+ b2I0

(r

ε

)
+ b3K0

(r

ε

)
. (5.60)

Apply the boundary conditions at the center (“left”) edge of the domain. Given

the unbounded behavior of logarithmic and K0 terms, take special care to account for

the selection of these terms’ coefficients. It is not correct to simply set these terms’

coefficients equal to zero.

The asymptotic expansion for K0(x) as x approaches 0 may be expressed as a

sum of singular and regular components:

lim
x→0

K0(x) ∼ K
(S)
0 + K

(R)
0 , (5.61)

where

K
(S)
0 = (−1)0F̃1

(
; 1;

x2

4

)
log

(x

2

)
(5.62)

K
(R)
0 =

1

2

∞∑

k=0

2ψ(k + 1) + 1

k!2

(x

2

)2k

. (5.63)

where 0F̃1 is the regularized hypergeometric function and ψ is the digamma

function.3

3The regularized hypergeometric function and digamma function are readily found in a reference
manual such as the text edited by Abramowitz and Stegun [2], but many software packages, such as
Matlab and Mathematica have built in functions to calculate these values. For the case presented with
no first argument, the regularized hypergeometric function is termed the confluent hypergeometric
limit function defined as

0F̃1(; a, x) = lim
q→∞ 0F̃1(q; a,

x

q
).

For the values required in this section, the following is provided:

0F̃1

(
; 1; 0

)
= 1.0,

ψ(1.0) ≈ −0.577216, Euler-Mascheroni Constant [148]
ψ(2.0) ≈ 0.422784.
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The leading order asymptotic behavior of the K0 term is

K0(x) ≈
(
− log

(x

2

)
+

1

2
{2ψ(1) + 1}

)
(5.64)

≈
(
− log x + 0.115932

)
(5.65)

Applying the boundary condition of zero slope at the center, we require the

K
(S)
0 (r) term in Equation 5.61 to balance the logarithmic term as r → 0, and thus

choose b1 = b3. Rewriting Equation 5.61 with this substitution:

w(L)(r) = b0 + b1 log
(r

ε

)
+ b2I0

(r

ε

)
+ b1K0

(r

ε

)
. (5.66)

The zero shear boundary condition at the center is our next source of informa-

tion. The shear force, Q(r) for an axisymmetric plate may be written as [94]:

Q(r) =
( ∂

∂r
+

1

r

)
M(r) (5.67)

Also, the moment equation for an axisymmetric plate is given by:

M(r) = −ε2
( ∂2

∂2r
+

ν

r

∂

∂r

)
w(L)(r) (5.68)

where ν is the non-dimensional Poisson’s ratio.

Immediately recognize that if the shear is to vanish at the center (r = 0), the

regular portion of the slope of the K0 function must be annihilated by the slope of

another regular function. Writing the two term expansions for K0 and I0 (again as

r → 0) the asymptotic behavior of the functions are:
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K0(r) ∼ ψ(1.0) + ψ(2.0)
r2

4
+ O(r4),

I0(r) ∼ 1 +
r2

4
+ O(r4) (5.69)

where O(r4) represents the fourth order error due to truncation of the series. Taking

the first derivative eliminates the first term of each series above. Matching the next

term in the expansions leads us to the conclusion:

b2 = −ψ(2)b1 (5.70)

Our boundary conditions at the center have therefore allowed us to finally write

Equation 5.60 as:

w(L)(r) = b0 + b1[log
(r

ε

)
− ψ(2)I0

(r

ε

)
+ K0

(r

ε

)
], (5.71)

where the digamma function ψ(2) ≈ 0.422784.

For the outer region r > α (exterior to the piezoelectric actuator) the solution

in the following form is proposed:

w(R)(r) = c0 + c1 log r + c2I0

(r

ε

)
+ c3K0

(r

ε

)
, (5.72)

with clamped edge conditions, w(R)(1) = w(R) ′(1) = 0.

Again, imposing continuity of displacement and slope, solve the resulting system

of equations. Thus equipped, write the algebraic system of equations. We have six

equations with six unknowns (b0, b1, c0, c1, c2, c3).

Clamped edge displacement equation:

c0 + c2I0

(1

ε

)
+ c3K0

(1

ε

)
= 0. (5.73)
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Clamped edge slope equation:

c1 + c2
1

ε
I1

(1

ε

)
− c3

1

ε
K1

(1

ε

)
= 0. (5.74)

Continuity of displacement at α:

b0 + b1[log
(α

ε

)
− ψ(2)I0

(α

ε

)
+ K0

(α

ε

)
] + . . .

− c0 − c1 log α− c2I0

(α

ε

)
− c3K0

(α

ε

)
= 0. (5.75)

Continuity of slope at α:

b1[
1

α
− ψ(2)

ε
I1

(α

ε

)
− 1

ε
K1

(α

ε

)
] + . . .

− c1
1

α
− c2

1

ε
I1

(α

ε

)
+ c3

1

ε
K1

(α

ε

)
= 0. (5.76)

Internal boundary condition for inner solution at α:

b1

ε2
[−ψ(2)I0

(α

ε

)
+ K0

(α

ε

)
] = 1. (5.77)

Internal boundary condition for outer solution at α:

c1
−1

α2
+ c2

1

ε2
[I0

(α

ε

)
− ε

α
I1

(α

ε

)
] + . . .

c3
1

ε2
[K0

(α

ε

)
+

ε

α
K1

(α

ε

)
] = −1. (5.78)

By applying the above boundary conditions, the problem may be again be solved

as a system of linear equations. Again the system of equations is ill-conditioned for

very small values of ε. Intuitively this is expected, for a system with insignificant plate

stiffness would simply solve as the pure membrane linear solution, and would like just
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like the input voltage function. Realistically, this also shows that plate thickness

cannot vanish for a solution to exist. Furthermore, non-linear terms not present in

our formulation would become important. These effect of these terms are investigated

in Chapter VII.

An graph for the case ε = 0.02 is displayed in Figure 5.4. In the figure4,

the analytical solution of this section is compared to the approximate solution of

Section 5.4.

0 0.5 1
0

0.5

1

1.5

r (normalized)

w
(r

)
(M N

)

Analytical
Approximate

Figure 5.4: Circular plate-membrane solution of displacement versus radius.

One may observe the solution yields an nearly constant response away from the

location of the actuator edge at α, and a distinct boundary region in the location of

α.

To get an axisymmetric ring solution for an actuator covering the area α ≤ r ≤
β, the sum of a solution with radius β with the negative of a solution with radius α

may be used to approximate the solution for cases where the boundary layers do not

intersect to a appreciable amount. Otherwise, linear supposition does not hold and

4The value of ε = 0.02 is similar to a test configuration from the literature [118]. That is, for
radius R = 0.15m, thickness h = 150 microns, E = 4 × 109 N

m2 , ν = 0.3 and N = 143 N
M when

normalized to unit radius (see Chapter VII for more information on length scales) yields:

ε =

√
D

NR2
=

√
4× 109(152× 10−6)3

12(1− 0.32)
1

(143)(0.15)2
= 0.02
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the solution may be re-derived in a similar fashion with another set of corresponding

internal boundary conditions.

5.4 Approximate Solution Using Modified Pressure Distribution

Two important observations are made in regards to the solutions in the previous

section.

One is the exact solutions to Equation 5.1 give little insight into the nature of

the solution due to the highly complicated coefficients that arise when solving the

requisite system of equations. An approximation method which uses more readily

interpreted functions and solution strategies would be welcomed.

The second observation is that the linear solutions result in a deformed surface

with very nearly step-like function behavior, together with relatively narrow boundary

areas. Recognizing this step function behavior allows us to formulate an approximate

behavior for actuators spaced at distances outside of the boundary region, but will

force us to re-evaluate the optical performance of the tensioned in-plane actuated

structures.

In developing the approximation, the discussion is limited to the domain of in-

terest (for the circular mirror). For the approximation, an alternate method where

the plate-like effects are modelled into the forcing function, reducing Equation 5.1

into a simple membrane acted on by pressure forces. For a sufficiently small value of

normalized plate stiffness to tension ratio, ε ¿ 1, one can replace the fourth-order dif-

ferential operator with the simpler Laplacian operator, and transfer the corresponding

plate effects to the continuous pressure forcing function defined here as:

Ĥ(r̃) ≡ 1

2

{
1− tanh

r̃ − α

ε

}
. (5.79)

Our approximate system is then:

−∇2ŵ =
M

N
∇2Ĥ (5.80)
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The value for ε is again the same value from the non-dimensionalized differential

equation, Equation 5.3. The tanh function is chosen because it has a boundary region

of the same scale as the solutions in Section 5.3.2, and because when used in Ĥ above,

Equation 5.3 approaches the behavior of Equation 5.80 as ε → 0.

5.4.1 Green’s Function. One characteristic of piezoelectric material is that

due to the method of construction, the expansion coefficient for one primary direction

may be many times greater than the coefficient for the direction perpendicular to the

primary direction. For this discussion, limit the non-isotropic behavior to the case

where the expansion coefficients in the in-plane orthogonal (defined as the Cartesian

x and y) directions are not equal. This is commonly annotated as d31 6= d32.

The forcing moment magnitude term for the axisymmetric membrane of Equa-

tion 5.1 may considered a rank one tensor:

Mi =
Ed3iV ts
2(1− ν)

i = 1, 2. (5.81)

with variables as defined in Table 5.2. Choosing a convenient value of V , this term

may be represented in non-dimensionalized form as M̂i such that for M̂1 = M̂2 = N

when isotropic, and M̂2

δ
= M̂1 = N when non-isotropic, and M̂1 > M̂2.

To model this case, the moment forcing function is written in Cartesian coordi-

nates (x and y) as suggested in Chapter III and further expanded upon in Appendix C.

Equation 5.80 may now be written as:

−∇2w =
∂2

∂x2
Ĥ + δ

∂2

∂y2
Ĥ (5.82)

where delta is formally defined as

δ ≡ d32

d31

(5.83)
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Now, writing the operators ∂2

∂x2 and ∂2

∂y2 in polar coordinates (with no angular

dependence in Ĥ all derivatives with respect to θ are eliminated):

∂2

∂x2
= cos2 θ

∂2

∂r2
+

sin2 θ

r

∂

∂r
(5.84)

∂2

∂y2
= sin2 θ

∂2

∂r2
+

cos2 θ

r

∂

∂r
. (5.85)

For the case of a fixed boundary on a circular domain, the Green’s function for

∇2w = −Φ is found in an engineering handbook: [111]

G(r, θ, ξ, η) =
1

4π
ln

r2ξ2 − 2R2rξ cos(θ − η) + R4

R2(r2 − 2rξ cos(θ − η) + ξ2
(5.86)

resulting in the statically deflected surface:

w(r, θ) =

∫ 2π

0

∫ R

0

Φ(ξ, η)G(r, θ, ξ, η)ξdξdη , (5.87)

where ξ and η are arbitrary variables of integration.

5.5 Case Study: Approximate versus Finite Element Model

To demonstrate the method, the proposed approximate modelling technique is

compared to a high-fidelity finite element model of a hypothetical in-plane actuated

deformable mirror. The finite element model was chosen as a truth source over the

solution in the Section 5.3.2 to provide a non-biased third party solution strategy, and

was developed based on the model first presented in Chapter IV. A further advantage

is that the finite element model incorporates non-linear effects.

5.5.1 Mirror Characteristics. The notional mirror utilizes a two-ply lami-

nate of similar physical characteristics, with the only difference being that one layer

is piezoelectrically inert. The other layer is active and has a corresponding coefficient
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of piezoelectric expansion. The mirror is constrained by a rigid, clamped, circular

boundary. Only a portion of the active layer is used, simulating a centered circular

electrode with a radius 0.083 meters, covering the inner 5/9ths of the overall radius.

The normalized plate stiffness to tension ration results in a value of ε = 0.02, and the

remaining material properties and dimensions are presented in Table 5.3. A drawing

(not to scale) of the structure is shown in Figure 5.5.

(a) Top view. (b) Bottom view.

Figure 5.5: Construction showing inert (blue) and active (orange) regions.

Table 5.3: Notional mirror physical properties.

Property Value Units

E 4.0× 109 N/m2

ν 0.3

d31 −2.3× 10−11 m/V

d32 (isotropic) −2.3× 10−11 m/V

d32 (non-isotropic ) −0.3× 10−11 m/V
V 192.4 V

N 1.262× 102 N/m

ts 100× 10−6 m

tp 52× 10−6 m
α 0.083 m
R 0.15 m

M 1.262× 10−3 N

M/N 1.00× 10−5 m

5.5.2 Finite Element Model. For a truth source, a non-linear finite element

model was constructed using MSC.Nastran. The non-linear solution strategy was

chosen for two reasons. The first was that tension added to the boundary of the plate

model would only stiffen the structure if a non-linear solution was used. Second, any

significant non-linear effects would show in the solution.

The piezoelectric actuation was modelled as an equivalent thermal load as pre-

viously detailed in Chapter IV. In summary, the domain of the mirror was meshed
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using 100 radial divisions and 72 angular divisions comprising 7201 nodes, and the

model was built with 7128 CQUAD4 elements and 72 CRIA3 composite plate ele-

ments. The PCOMP card was used to enter the element properties for the inert and

active layers, and displacements were measured from the top surface (not neutral

axis), as would be done with a physical system. An isotropic model with d31 = d32

and a non-isotropic model with d31 = d32

δ
where δ ≈ 0.13 were created, with the d31

coefficient aligned with the x-axis.

5.5.3 Observations. The observations in this section may be broken into two

parts. In the first, the validity of the approximate modelling technique is discussed.

In the second, the actuation method for an optical system itself is discussed in light

of the demonstrated performance. The results are shown in Figure 5.6. Error was

reported in percentage terms using the discrete Euclidean norm (see Appendix A).

Plots a-c represent the isotropic piezoelectric forcing, and plots d-f represent non-

isotropic forcing where the coefficient of expansion in the x-direction is approximately

7 times greater than the y-direction. The thin black line in all plots represents the

radius of the interior active region.

The overall ability of the approximate function to accurately represent the so-

lution to the problem as posed was satisfactory. The model achieved a high level of

agreement in terms of surface error, with modelling of the boundary layer remaining

the area of least agreement, as indicated in Figures 5.6 (c) and (f). The error (calcu-

lated using the discrete Euclidean method of Appendix A) in the isotropic configura-

tion was 4.07 × 10−7 meters and for the non-isotropic configuration was 7.22 × 10−7

meters.

It is worthwhile to note that while most of the error is attributed to the approx-

imation method of Section 5.4 not matching the exact linear solution of Section 5.3.2,

the non-linear terms not modelled in the linear governing equation result in locally

large strains at the boundary of the actuator, and are another source of error when

comparing against the non-linear finite element model. Also, note that the finite el-
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(a) Analytic isotropic ap-
proximation.

(b) Nonlinear isotropic fi-
nite element model.

(c) Absolute error compar-
ison for isotropic models.

(d) Analytic non-isotropic
approximation.

(e) Nonlinear non-isotropic
finite element model.

(f) Absolute error compar-
ison for non-isotropic mod-
els.

Figure 5.6: Comparison of numerical and approximate solutions.
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ement solution is highly dependent on mesh size at the border of the elements. In

the narrow boundary layer, only a fraction of the total elements undergo appreciable

deformation; a non-constant adaptive meshing program should yield an incrementally

more accurate basis for comparison, but regardless, should not appreciably change the

results as shown.

Despite the small error in the boundary layer, another important observation is

made. For use in an optical system, this case study and the supporting solutions to

the general differential equation call attention to the potential difficulty in using this

actuation method for an optical system, as described below.

While this method may be able to predict actuated shapes with a small surface

error for mirrors with widely spaced actuating regions (such as the electrode pattern

in Figure 4.2), the resulting optical reflector would be challenging to use as an optical

surface, due to the fact that the surface pattern would be a series of piston regions.

In fact, for optical systems, one may be more interested in slope control of the surface

to reflect an incident wave, than to tightly control the surface deformation regardless

of its impact on the slope.

5.6 Conclusions

This chapter presented the exact analytical piecewise linear solution to the

beam-string and plate-membrane problem characterized by a structure which is in-

plane actuated, tensioned, and where the normalized stiffness to tension ratio is small.

To obtain an analytical solution to this class of problem, the piezoelectric forcing was

transformed from a forcing function to an internal boundary condition. The alge-

braic system of equations was found to be near-singular as stiffness to tension ratio

vanished, further demonstrating the importance of the thickness term in the solution.

Then, a new approximation method for modelling influence functions was pre-

sented. A single case study was presented where a non-linear finite element model

simulation was compared against the approximation method for an axisymmetric cir-
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cular mirror with an interior actuator radius of 0.083 meters versus an overall radius

of 0.15 meters.

The results were satisfactory. The maximum difference between the two solu-

tions, while small, occurred in a boundary layer at the edge of actuated region, which

was attributed to inherent error in the approximation function, non-linearities, and

the chosen mesh of the finite element model.

A significant finding of this work was that if the proposed deformable mirror,

with discrete, widely-spaced, actuators is used in an optical system, the results show

difficulties remain in creating a surface which achieves not only a shape error tolerance,

but a slope error tolerance as well, due to a solution constructed of primarily pistoning

regions.

In the next chapter, a control methodology is introduced coined the Modal

Transformation Method which allows for the implementation specific Zernike mode

shapes upon a membrane mirror surface. Armed with the knowledge of the effect

discontinuous actuators have on the membrane mirror surface deformation, an actua-

tion grid for the second case study of the next chapter will be used that is finer than

the boundary region due to the tension-to-plate stiffness parameter as seen in this

chapter.
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VI. The Modal Transformation Method

Chapter objectives:

• Highlight incompatibility of Zernike mode with fixed
edge membrane mirror

• Develop matrix-based Modal Transformation Method

• Present finite-element simulations demonstrating
methodology

6.1 Introduction

Active lightweight continuous mirrors, such as deformable membrane mirrors,

provide the capability to form conjugate surfaces effective for removing at-

mospheric distortions of an incoming wavefront. For a circular aperture, the two-

dimensional surface corrections are most often described by a truncated set of the

Zernike polynomial basis functions. Simultaneously, there exists a requirement in

active lightweight membrane mirrors to resist the effects of vibration disturbances

which could build at resonance and adversely distort the membrane surface. The

spatial content of this motion is typically described by a finite set of Bessel-function

based vibration modes below a frequency of interest. To control the vibration modes,

it is advantageous to actuate these same shapes for the purpose of attenuation. Per-

fect surface control would therefore have authority to command both Zernike and

vibration mode shapes.

The Modal Transformation Method presented herein provide a simple algebraic

transformation unique to this class of problem. A significant advantage these tech-

niques is that it addresses the problem of the incompatible edge condition between

the Zernike polynomial basis set and the fixed edge condition of the membrane mirror
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by introducing a definitive term for the usable region of the membrane mirror, which

as introduced in Chapter II is referred to as the clear aperture.

6.2 Background

Active quasi-static shape control of circular apertures to produce Zernike poly-

nomial surfaces has been explored by several researchers. A complete review of the

Zernike polynomials follows, but for now it suffices to say that Zernike polynomials

will always have some displacement at their boundary, while the tensioned membrane

structures envisioned in this application are characterized by a fixed, non-displacing,

boundary.

Wang and Hadaegh [146] presented the problem of surface control for a circular

deformable mirror in terms of the orthogonal basis set, and provide an example where

as a circular membrane mirror is controlled by electrostatic actuators to form the

axisymmetric Zernike shapes. However, the methods are limited to those shapes

where the boundary condition may be imposed, but do provide a methodology for

actuating a surface in modal coordinates.

Forming Zernike shapes on electrostatic membrane mirrors (mirrors that are

forced by electrostatic attraction between electrode pairs on the mirror and a backing

plate) has long relied on iterative techniques, fittings, and calibration curves. Claflin

and Bareket [32] published the basic least squares fitting technique in 1986. Tokovinin,

Thomas and Vdovin [136] presented the experimental results of a 50-mm 79 actuator

electrostatic membrane mirror, where only the interior 35-mm “pupil” was actuated.

The solution methodology of using numerical solutions to Poisson’s equation (the gov-

erning equation for membrane structures) with an unused “transition zone” between

the measured interior area and the fixed membrane boundary show the difficulty of

using membrane mirrors to make Zernike shapes.

Flint and Denoyer showed the feasibility of using in-plane actuators mirrors to

produce Zernike polynomial mode shapes, again on some interior region of a circular
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membrane [45]. Their results showed the promise of the mirror type, but were tem-

pered by difficulties in computing influence functions due to numerical instabilities.

Another observation of Flint and Denoyer’s was that the Zernike mode shapes were

best observed when the interior 80-90 percent of the circular aperture was used for

Zernike formation.

The purpose of this development is to cast the surface control problem to one

in which desired surface shape, expressed in terms of Zernike polynomials, inside

of a region defined as the clear aperture, can be achieved by the use of statically

actuated vibration mode shapes (the Bessel-based functions that satisfy the fixed

edge condition). The terminology “clear aperture” was used in a figure in a 1977

work by Pearson and Hansen [106] to describe an area on a deformable mirror where

data was taken, and thus is similar to our purpose. A notional mirror is displayed

in Figure 6.1 which shows a Zernike tilt surface deflection achieved inside of a clear

aperture region, which highlights the incompatibility between the Zernike surface

within the clear aperture, and the fixed boundary of the membrane mirror.

Figure 6.1: Notional mirror with surface tilt achieved inside “clear aperture.”

To achieve static surface control, an analytical formulation designated the Modal

Transformation Method is developed. A brief outline of the technical development in

the chapter is summarized here:

• Section 6.3 reviews the two commonly-used basis sets to describe a circular

aperture. The Zernike polynomial basis set is favored by the optics community,

while the Bessel-based vibration mode set is applied to physical solutions of the

partial differential equation modelling a tensioned membrane. The fundamental

premise of the modal transformation method is casting the problem of obtaining
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Zernike polynomials using a linear combination of statically-actuated Bessel-

function based vibration modes.

• Section 6.4 develops the transformation matrices for the radial behavior of the

Zernike polynomials and approximated vibration modes in terms of an inter-

mediary radial polynomial basis. The vibration modes must be approximated

due to the infinite series representation of the Bessel functions, thus conver-

gence and associated truncation error for a maximum radial polynomial degree

is investigated.

• Section 6.5 outlines the modal transformation method. The method is inspired

by the projection theorem and an existing analytical relationship between the

Zernike polynomials and the Bessel functions. The transformation matrices of

Section 6.4 are combined, and scaled to allow for increased accuracy inside of an

interior, clear aperture region. Numeric issues with the transformation matrices

are explored.

To show the significance of the methodology, the results are applied to a de-

formable membrane mirror modelled with finite elements in MSC.Nastran that utilizes

piezoelectric in-plane actuation to create changes in surface curvature. Advantages in

ease of numerical computation of actuator gains, combined with theoretical a priori

knowledge of expected error are shown. Specifically, surface error is shown to be a

function of design criterion such as mirror diameter, fineness of actuation grid, and

diameter of the clear aperture region, and order of the Zernike mode achieved.

6.3 Basis Sets for Circular Apertures

Deformable membrane mirrors are employed to form conjugate surfaces to re-

move atmospheric distortions in an incoming wavefront. These conjugate surfaces are

formed on the mirror surface through a combination of influence functions by ener-

gizing a particular actuator grid. For a flat circular aperture, the two-dimensional

surface corrections are most often provided in the form of a scaled, truncated set of
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the Zernike polynomial basis functions. Simultaneously, there exists a requirement in

lightweight membrane mirrors to actively resist the dynamic effect which could build

at resonance and adversely distort the membrane surface, modelled as a finite set of

Bessel-function based vibration modes below a frequency of interest. Any influence

functions formed on by membrane mirror would be comprised of this Bessel-function

based vibration mode set. However, Zernike modes and vibration modes fundamen-

tally differ in that a Zernike mode always has a vertical displacement at the edge,

while the vibration mode does not displace vertically from the mirror frame. Picto-

rial representations for Zernike and vibration modes are provided in Tables 6.1 and

6.2 respectively.

Table 6.1: Zernike mode shapes.

n\m* 0 1 2 3 4
piston

0
tilt

1
defocus astigmatism

2
coma

3
spherical

4
* The radial degree, or degree of the radial polynomial, is n. The

azimuthal frequency of the angular dependence is m .
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Table 6.2: Vibration mode shapes with normalized natural frequency. ωmn

n\m 0 1 2 3 4
2.4048 3.8317 5.1356 6.3802 7.5883

1
5.5201 7.0156 8.4172 9.7610 11.0647

2
8.6537 10.1735 11.6198 13.0152 14.3725

3
11.7915 13.3237 14.7960 16.2235 17.6160

4

Inspired by the understanding of the pictorial representation of the two basis

functions, this section begins with a discussion of the mathematical properties and

notation associated with the Zernike polynomial, and a matrix representation of the

Zernike polynomials is derived. The vibration modes are then reviewed for a circular

membrane, and an analogous transformation matrix is created, with the primary

difference being that the matrix was formed from an infinite series representation.

Next, a direct Zernike to vibration mode transformation is created, both in integral

form and then using radial coordinates. Definition of a clear aperture region–an

interior region on a circular aperture where Zernike mode shapes will be formed–is

then proposed and a series of examples follow.

6.3.1 Definition of the Zernike Polynomial. The optics community has used

the modified set of Zernike polynomials, as first defined by Noll [97], to describe aber-

rations in an incoming wavefront. The Zernike polynomials, Zi, are orthogonal over

the interior of the domain of circular aperture of unit radius through the relationship
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∫ 2π

0

∫ 1

0

1

π
ZiZjrdrdθ = δij (6.1)

where δij is the Kronecker delta. The polynomials, Zi, are defined as:

Zevenj = Am
n Rm

n cos mθ,

Zoddj = Am
n Rm

n sin mθ,



 m 6= 0, (6.2)

Zj = Am
n Rm

n , m = 0. (6.3)

with Am
n is the normalization constant and Rm

n is the radial polynomial for azimuthal

frequency m and radial degree n. The radial polynomial, Rm
n is defined as

Rm
n (r) =

(n−m)/2∑
s=0

(−1)s(n− s)!

s!(m− s)!(n−m− s)!
rn−2s (6.4)

where the values of the azimuthal frequency, m, are less than or equal to the radial

degree, n, (m ≤ n) and n − m is even. The radial polynomials are presented in

Table 6.3 [97].

The normalization constants, Am
n , are defined to maintain the orthonormal re-

lationship with respect to the weighted function in Equation 6.1:

Am
n =

√
2(n + 1), m 6= 0, (6.5)

Am
n =

√
(n + 1), m = 0. (6.6)

The normalization constants are the coefficients of the terms in Table 6.4. The Zernike

polynomials may be alternately referred to as Zernike mode shapes, recognizing that

for the purpose of this document the Zernike mode shapes represent desired surface

deflections.
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Table 6.3: Radial polynomials Rm
n .

n\m 0 1 2 3 4 5

0 1
1 r

2 2r2 − 1 r2

3 3r3 − 2r r3

4 6r4 − 6r2 + 1 4r4 − 3r2 r4

5 10r5 − 12r3 + 3r 5r5 − 4r3 r5

6 20r6 − 30r4 +
12r2 − 1

15r6−20r4+6r2 6r6 − 5r4

7 35r7 − 60r5 +
30r3 − 4r

21r7 − 30r5 +
10r3

7r7 − 6r5

8 70r8 − 140r6 +
90r4 − 20r2 + 1

56r8 − 105r6 +
60r4 − 10r2

28r8 − 42r6 +
15r4

9 1269 − 280r7 +
210r5 − 603 + 5r

84r9 − 168r7 +
105r5 − 20r3

36r9 − 56r7 +
21r5

Table 6.4: Zernike polynomials using Noll’s ordering [97] where Rm
n are defined as

in Table 6.3.

n\m 0 1 2 3 4

0 Z1 = R0
0 Piston

1 Z2 = 2R1
1 cos θ

Z3 = 2R1
1 sin θ

Tilt

2 Z4 =
√

3R0
2

Defocus
Z5 =

√
6R2

2 sin 2θ

Z6 =
√

6R2
2 cos 2θ

Astigmatism

3 Z7 =
√

8R1
3 sin θ

Z8 =
√

8R1
3 cos θ

Coma

Z9 =
√

8R3
3 sin 3θ

Z10 =
√

8R3
3 cos 3θ

4 Z11 =
√

5R0
4

Spherical
Z12 =

√
10R2

4 cos 2θ

Z13 =
√

10R2
4 sin 2θ

Z14 =
√

10R4
4 cos 4θ

Z15 =
√

10R4
4 sin 4θ

5 Z16 =
√

12R1
5 cos θ

Z17 =
√

12R1
5 sin θ

Z18 =
√

12R3
5 cos 3θ

Z19 =
√

12R3
5 sin 3θ

6.3.2 Definition of Vibration Modes. While the Zernike mode shapes rep-

resent the commanded desired static shapes we wish the circular aperture to obtain,

the dynamic motion of the circular membrane is governed by vibration mode shapes.

The vibration mode shapes represent the eigenfunctions associated with the natural

modes of the system. The vibration mode shapes of the uniform circular membrane

of radius (0 ≤ r ≤ R), edge tension T , mass density per surface area ρ, and edge

(boundary) condition w(R, θ, t) = 0 may be found by solving the partial differential

equation

T∇2w(r, θ, t)− ρẅ(r, θ, t) = 0 (6.7)
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through separation of variables where the separation constant λ = ω2 such that the

spatial mode equation is

∇2W (r, θ) + β2W (r, θ) = 0, β =
ρω2

T
. (6.8)

Using separation of variables technique to simplify the partial differential equation for

the case of a pinned boundary (W (R, θ) = 0), the static mode shapes are obtained.

The derivation may be found in a structural dynamics textbook, such as the text by

Meirovitch [88]. The mode shapes are

Wm
n (r, θ)C = Bm

n Jm(βmnr) cos mθ, m, n = 1, 2, ... (6.9)

Wm
n (r, θ)S = Bm

n Jm(βmnr) sin mθ, m, n = 1, 2, ... (6.10)

W 0
n(r, θ) = B0

nJ0(β0nr), n = 1, 2, .... (6.11)

where

Bm
n =

√
2√

πρR(Jm+1(βmnR))
, m = 1, 2, ... (6.12)

Bm
n = 1√

πρR(J1(βmnR))
, m = 0. (6.13)

The indices m and n represent the azimuthal frequency and radial frequency

respectively. The radial frequency is actually the nth zero of the associated mth order

Bessel function, and may be thought of as the number of times the Bessel function

crosses the radial axis between the center of the membrane and the boundary1. The

vibration modes of the circular membrane are orthogonal through the relationship

∫ 2π

0

∫ R

0

ρWm
n IW

p
q J

rdrdθ = δIJδmpδnq. (6.14)

1The vibration mode shape always satisfies the boundary condition of zero displacement at the
boundary through the condition Jm(βmnR) = 0.
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6.4 Matrix Representations of Modal Transformation

The purpose of this section is to formulate a matrix representation of the radial

Zernike polynomial and vibration mode basis sets (note the azimuthal, or angular,

behavior is identical for both basis sets). To do that, the radial behavior of each basis

set is cast in terms of an intermediary polynomial basis. Since the Bessel function

component of the vibration modes consists of an infinite series in the intermediary

basis, the resulting modes are therefore an approximation to the vibration modes,

subject to truncation error.

6.4.1 Zernike Transformation Matrix for a given Azimuthal Frequency.

Equation 6.3 terms An
mRn

m may be written in a summation form where the coefficients

are as given in Table 6.3. For a given azimuthal frequency m, the summation will have

the form2. where each row represents the maximum radial degree of the polynomial:

Am
n Rm

n =
N∑

k=0

(a
(m,n)
2k )r2krm,

= (a
(m,n)
0 + a

(m,n)
2 r2 + . . . + a

(m,n)
N rn−m)rm,

=





a
(m,n)
0

a
(m,n)
2

...

a
(m,n)
N





T 



1

r2

...

r2N





rm. (6.15)

2It is emphasized that throughout this chapter in no case will a repeated subscript indicate
summation
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Furthermore, write a series of equations for a given azimuthal frequency m that en-

compass all radial degrees from m to a maximum degree of n such that





Am
mRm

m

Am+2
m Rm+2

m

...

Am+2N
m Rm+2N

m





=




a
(m,m)
0

a
(m,m+2)
0 a

(m,m+2)
2

...
. . .

a
(m,m+2N)
0 a

(m,m+2N)
2 a

(m,m+2N)
2N








1

r2

...

r2N





rm (6.16)

The Zernike transformation matrix Am
N may therefore be defined as the lower

diagonal transformation matrix of size N + 1×N + 1 for an azimuthal frequency m

with a maximum polynomial degree 2N + m from above. Am
N is here defined as:

Am
N ≡




a
(m,m)
0

a
(m,m+2)
0 a

(m,m+2)
2

...
. . .

a
(m,m+2N)
0 a

(m,m+2N)
2 a

(m,m+2N)
2N




.

6.4.2 Vibration Mode Transformation Matrix for a given Azimuthal Frequency.

It is our desire to expand the vibration mode shapes from Section 6.3.2. To accom-

plish this, a vibration mode transformation matrix is created for a given azimuthal

frequency, m.

To obtain our transformation matrix, begin by writing the series representation

of the Bessel functions in terms of bookkeeping coefficients α
(m,n)
2k :
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Jm(βmnr) = (
1

2
βmnr)m

∞∑

k=0

(−1)k(1
2
βmnr)2k

(k + m)!k!
, (6.17)

=
∞∑

k=0

α
(m,n)
2k r2k+m, (6.18)

=
(
α

(m,n)
0 + α

(m,n)
2 r2 + . . .

)
rm, (6.19)

=
[
α

(m,n)
0 α

(m,n)
2 . . .

]




1

r2

...





rm. (6.20)

Next, apply the vibration mode shape normalization coefficients from Equations 6.12

and 6.13 such that b
(m,n)
2k = Bm

n α
(m,n)
2k , to arrive at

Bm
n Jm(βmnr) =

∞∑

k=0

(b
(m,n)
2k )r2krm,

=
[
b
(m,n)
0 b

(m,n)
2 . . .

]




1

r2

...





rm. (6.21)

Next, to write a transformation matrix analogous to Equation 6.17 for a given

azimuthal frequency m, construct a series of equations from Equation 6.21 such that





Bm
1 Jm(βm1r)

Bm
2 Jm(βm2r)

...





=




b
(m,1)
0 b

(m,1)
2 . . .

b
(m,2)
0 b

(m,2)
2 . . .
...

. . .








1

r2

...





rm. (6.22)

Then construct a series of N + 1 equations and truncate the approximations to a

maximum radial polynomial degree of 2N + m. The equations are
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



Bm
1 Jm(βm1r)

Bm
2 Jm(βm2r)

...

Bm
N+1Jm(βm(2N)r)





≈




b
(m,1)
0 b

(m,1)
2 . . . b

(m,1)
2N

b
(m,2)
0 b

(m,2)
2 . . . b

(m,2)
2N

...
. . .

b
(m,N+1)
0 b

(m,N+1)
2 . . . b

(m,N+1)
2N








1

r2

...

r2N





rm. (6.23)

From Equation 6.23, define the N + 1×N + 1 vibration modal transformation

matrix, Bm
N as

Bm
N ≡




b
(m,1)
0 b

(m,1)
2 . . . b

(m,1)
2N

b
(m,2)
0 b

(m,2)
2 . . . b

(m,2)
2N

...
. . .

b
(m,N+1)
0 b

(m,N+1)
2 . . . b

(m,N+1)
2N




. (6.24)

The invertibility of the matrix Bm
N is discussed in Section 6.5.4. Furthermore, the

Bessel terms in Equation 6.23 will only be correctly represented to the precision as

discussed in the next section.

6.4.3 Convergence of the Bessel (Alternating) Series and Associated Trunca-

tion Error. The goal is to be able to transform information of the surface defor-

mation from our Zernike subspace to vibration modal coordinates and vice-versa. To

write the Zernike polynomials in terms of the modal coordinates, a finite expression

of the Bessel functions in the intermediate coordinate system of radius and azimuthal

angle is needed.

By definition the Bessel functions may be written as the series [154]

Jm(βmnr) = (
1

2
βmnr)

m

∞∑

k=0

(−1)k(1
2
βmnr)

2k

(k + m)!k!
. (6.25)

For the symmetric modes, m = 0, and Equation 6.25 may be reduced to
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J0(β0nr) =
∞∑

k=0

(−1)k(1
2
β0nr)

2k

k!2
. (6.26)

For instance, the first zero of J0(βR) = 0 is β01 = 2.4048
R

and the infinite summation

where r̃ ≡ r
R
:

J0(2.4048r̃) = 1− 1.4458r̃2 + 0.52258r̃4 + O(r̃6). (6.27)

Returning to the general case of any non-negative integer m, to accomplish the

desired transformation, the Bessel functions must be approximated by a truncated

series. Note here that in the future sections the Zernike modes will be related to

the Bessel-based vibration modes. Since the two basis sets have exactly the same

azimuthal behavior, it is error in the radial terms that will contribute to overall error

in the relationship.

To this end, the degree of truncation is estimated to ensure accuracy to within

some approximation tolerance, ε.

Begin by defining

Bκ
m(βmnr) ≡

κ−1∑

k=0

(−1)k(1
2
βmnr)

2k+m

(k + m)!k!
(6.28)

where again r̃ ≡ r
R
. From this point, drop the tilde, realizing that r is a normalized

value. Note this is simply the first κ terms of the Bessel series.

Next, choose κ such that

∣∣Jm(βmnr)−Bκ
m(βmnr)

∣∣ < ε. (6.29)

Because the Bessel function is an alternating series the error in truncating the series

is no worse than the first term neglected, that is
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∣∣Jm(βmnr)−Bκ
m(βmnr)

∣∣ ≤ (1
2
βmnr)

2κ+m

(κ + m)!κ!
. (6.30)

Further, because m ≥ 0 recognize

(1
2
βmnr)

2κ+m

(κ + m)!κ!
<

(1
2
βmnr)

2κ+m

(κ!)2
. (6.31)

For large values of κ, Stirling’s formula may be used to simplify large values of the

factorial expression κ!:

κ! ≈ κκe−κ
√

2πκ (6.32)

Applying Stirling’s formula, the magnitude of the error becomes

e2κ(1
2
βmnr)

2κ+m

2πκ2κ+1
< ε. (6.33)

Upon further simplification, our error bound formula is

(1
2
βmnr)m

2πκ

(eβmnr

2κ

)2κ

< ε. (6.34)

This truncation error represents an error bound on the radial portion of the

truncated modes. In future constructs, when approximating Bessel functions, enough

terms should be chosen so that this error is negligible.

6.5 Modal Transformation Method for Circular Apertures

In this section, a method is developed which allows Zernike surfaces to be pro-

jected on an interior region of a circular aperture by a linear combination of Bessel-

based vibration mode shapes. In short, by comprising a desired optical surface in

terms of physically realizable mode shapes, steady-state surface control should be

readily achievable.
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6.5.1 Projection of the Zernike Modes onto the Vibration Modes. The

Zernike polynomials of Section 6.3.1 are related to the Bessel function of the first

kind by the formula presented by Noll [97]:

Rm
n (r) = 2π(−1)(n−m)/2

∫ ∞

0

Jn+1(2πξ)Jm(2πξr)dξ. (6.35)

Therefore, it is expected and reasonable to express Zernike mode shapes in terms of

vibration mode shapes. To do so, an approach based upon the orthogonal properties

of the two basis sets and the projection theorem is detailed in the next section.

6.5.2 Existing Analytical Relationship. To define a Zernike mode in terms

of a vibration mode, look at the case of the axisymmetric modes (m = 0) first. It is

desired that

Zi =
∞∑

n=0

c(i)
n W 0

n . (6.36)

Therefore, one may write (assuming both mode shapes have been normalized to the

same unit radius)

c(i)
n =

∫ 2π

0

∫ 1

0
1√
π
Zi(r)W

0
n(r)rdrdθ

∫ 2π

0

∫ 1

0
(W 0

n(r))2rdrdθ
(6.37)

noting there is no dependence on θ such that the azimuthal integral term is replaced

by the quantity 2π. The term 1√
π

is required because Noll’s scheme as presented

in Equation 6.1 requires a linear weighting, which in our relationships is equally

distributed among the Zernike modes. Further note the vibration modes are already

normalized, thus Equation 6.37 reduces to

c(i)
n = 2π

∫ 1

0

1√
π

Zi(r)W
0
n(r)rdr. (6.38)
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Substituting the results of mode shape Equations 6.11 and 6.13 with unit density

(and R = 1) yields

c(i)
n =

2

J1(β0n)

∫ 1

0

ZiJ0(β0nr)rdr. (6.39)

The approximation of the piston Zernike mode using Equation 6.36 through Equa-

tion 6.39 arbitrarily truncated at 20 terms (statically-actuated axisymmetric vibration

mode shapes) is presented in Figure 6.2.

0 0.5 1
0

0.5

1

1.5

2

r

Z
1(r

)

Modal surface
Zernike

Figure 6.2: Piston Zernike mode representation using projection theorem.

From this section, one may make the following observations. In Figure 6.2,

even with a linear combination of 20 mode shapes, it is observed that nearly 20

per cent error occurs for a normalized radius of 0.9-1.0. Also, the representation is

computationally intensive due to numeric integration. Thus, a simpler solution is

sought where integration is avoided, and a bound on relative error may be forecast.

6.5.3 Zernike to Vibration Mode Matrix Transformation. While Equa-

tion 6.36 allows the Zernike modes to be written in the form of integral equations, one

may alternately apply the results of Sections 6.4.1 and 6.4.2 to write an approximate

modal transformation. Begin by defining a vector of Zernike and vibration modes for

a given frequency for radial degrees up to 2N . For simplicity, define the axisymmetric

case:
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Z0 =





R0
0√

3R0
2

...
√

2N + 1R0
2N





= A0
N





1

r2

...

r2N





, (6.40)

and

W 0 =





W 0
1

W 0
2

...

W 0
N+1





= B0
N





1

r2

...

r2N





. (6.41)

Solve for radial vector,
{

1, r2, . . . , r2N

}T

in Equation 6.41:





1

r2

...

r2N





= (B0
N)−1W 0, (6.42)

and then substitute into Equation 6.40 to yield the expression:

Z0 = A0
N(B0

N)−1W 0. (6.43)

Through a similar manner write the non-axisymmetric equations:

ZSm = Am
N(Bm

N)−1WCm, (6.44)

ZCm = Am
N(Bm

N)−1WSm, (6.45)
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where the modal vectors of length N + 1 are composed of modes of axisymmetric

mode shapes (Z0 ,W0), modes with cosine angular dependence of frequency m (ZCm,

WCm), and modes with sine angular dependence of frequency m (ZSm, WSm).

6.5.4 Near Singularity of the Modal Transformation Matrix. The modal

transformation matrix, Bm
N , is most conveniently applied by defining it as a square

matrix in Section 6.4.2, so that its inverse in Section 6.5.3 is unique. Non-square

issues addressed with the pseudo-inverse are not included herein.

The size of Bm
N is determined by the number of (or highest degree) of vibration

modes the designer will be able to actuate–those modes are essentially dependent

on the fineness of the actuator grid. The value of N should be large enough so

that actuated modes are represented with a small to negligible truncation error as

derived in Equation 6.34. However, the resulting (Bm
N) is ill-conditioned, and is not

readily invertible for large values of N . A method for decomposing the matrix into

a diagonal matrix Ñ and remaining components B̃
m

N was applied to create lower

condition number matrices for inversion.

Begin by defining:

Bm
N ≡ ÑB̃

m

N (6.46)

where the diagonal elements of Ñ are defined as

Ñii = (Bm
N )ii (6.47)

.

The remaining off-diagonal elements of Ñ are zero. Thus constructed, much

of the ill-conditioned nature of Bm
N is shifted to Ñ , for which an analytical inverse

readily exists.

As a simple example, for the case where N = 2 and m = 0, ρ and R are

normalized to 1, and the factor 1√
π

is removed, the matrices are:
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Bm
N =




1.0868 −1.5712 0.5679

−1.6581 12.6310 −24.0552

2.0784 −38.9115 182.1229


 , (6.48)

Ñ =




1.0868 0 0

0 12.6310 0

0 0 182.1229


 , (6.49)

B̃
m

N =




1.0000 −1.4458 0.5226

−0.1313 1.0000 −1.9045

0.0114 −0.2137 1.0000


 . (6.50)

In this example, the original condition number of Bm
N is reduced from 240.9 to 21.3

while the condition number of Ñ is 167.5831, of little impact due to the ease of

inverting Ñ analytically, allowing (Bm
N)−1 = (B̃

m

N)−1(Ñ)−1.

6.5.5 Defining a Clear Aperture Control Region. To this point, every effort

made has focused on projecting a Zernike space onto a Bessel-based vibration mode

space. A valiant effort, yet one that will prove frustrating due to the incompatibility

of the boundary conditions for these competing basis sets. To avoid this inherent

difficulty, it is proposed to formally define the clear aperture region as a subspace of

the Bessel-based vibration mode space. Simply stated, the clear aperture region will

be a circular region with some radius a < R, as was first introduced in Figure 6.1.

Defining the scaled variable r̂ = r/a for the Zernike polynomials in this subspace,

and noting that on the clear aperture boundary r̂ = 1, one may relate the polynomial

vector,
{

1, r̂2, . . . , r̂2N

}
to the radial vector

{
1, r2, . . . , r2N

}
with the diagonal matrix

Sm
N . The matrix Sm

N is
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Sm
N =

1

am




1

1
a2

. . .

1
a2N




(6.51)

such that





1

r̂2

. . .

r̂2N





r̂m =
[
S
]





1

r2

. . .

r2N





rm. (6.52)

Again, as in previous sections, the transformation matrix is for an azimuthal frequency

m with a maximum polynomial degree 2N +m. For Zernike shape control of the clear

aperture region, the governing equations, Equations 6.43 - 6.45 scale to become

Z0 = A0
NS0

N(B0
N)−1W 0, (6.53)

ZSm = Am
NSm

N(Bm
N)−1WCm, (6.54)

ZCm = Am
NSm

N(Bm
N)−1WSm. (6.55)

6.5.6 Application of Modal Transformation Method. With the underlying

theory thus provided, a series of specific application of the modal transformation

method for circular apertures is presented to show the applicable design criterion for

deformable mirrors. Later, in Section 6.6, the method is applied in a series of finite

element case studies.

To begin this discussion, the method is compared to the projection theorem

used in Section 6.5.1. In Figure 6.3, the radial behavior of a surface composed of

the first 20 axisymmetric statically-actuated vibration mode shapes is constructed
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to approximate the axisymmetric Defocus Zernike mode, Z4 =
√

3(2r2 − 1) over

the entire surface (effectively, the clear aperture as previously presented is set to its

maximum value of one). In Figure 6.3(a), the representation is constructed using

coefficients from the projection theorem, and in Figure 6.3(b), the coefficients were

generated using the modal transformation method for N = 20. The error between the

desired Zernike surface and the vibration modal representation was calculated using

the discretized weighted Euclidean norm (see Appendix A).
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(a) Projection theorem.
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(b) Modal transformation (N=20).

Figure 6.3: Modal representations of the axisymmetric Defocus Zernike.

With the clear aperture thus set to one, the projection theorem results in the

smaller error between the desired surface and its modal representation (Error =

0.1753 versus Error = 0.3585), and is the best achievable performance for the linear

system. However, the shape of the modal surface in Figure 6.3(a) has evidence of

distortion throughout its surface, while Figure 6.3(b) shows significant distortion only

at the outer edge to meet the boundary condition.

Next, in Figure 6.4, the clear aperture is adjusted to values less than one,

and the Defocus Zernike mode is constructed as before in Figure 6.3 using the first

20 axisymmetric vibration modes using the modal transformation for N = 20. In

Figures 6.4(a)-(c), the radial behavior is plotted for clear apertures of 0.7, 0.8 and

0.9. It is quite apparent that for clear aperture of 0.7, the deviation between the

desired Zernike shape and the modal surface is indistinguishable at the scale shown.
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(c) Clear aperture = 0.9.

Figure 6.4: Impact of Clear Aperture on representation of the Defocus Zernike.

With the clear aperture fixed at 0.7, another series of plots was constructed for

Figure 6.5, again using the modal transformation method for N = 20. This series of

plots show not only the intuitive improvement in accuracy by increasing the number

of modes to actuate the surface, but also show the improvement is from the interior

of the clear aperture to a maximum difference at the boundary of the clear aperture.
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Figure 6.5: Impact on representation of Defocus Zernike by varying N.

Figure 6.5.6 captures the information from both Figures 6.4 and 6.5 on a single

graphic. The log of the surface error is shown to decrease with increasing the number

of actuated modes and decreased clear aperture. For example, to get the level of error

equal to 0.01, either set N = 1 and clear aperture to 0.09, or set N = 20 and clear

aperture to 0.75.

For the structural engineer, these results may be transformed into design crite-

rion for construction of a deformable mirror. Beginning with a desired optical surface

error budget and a desired radius of the aperture region, the engineer may choose to
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Figure 6.6: Surface error of Defocus Zernike versus clear aperture with varying N.

actuate a greater number of vibration modes or reduce the clear aperture to achieve

the desired performance. For the hardware implementation, actuating the number

of modes (within the error budget) will be limited by the fineness of the available

surface actuators and to a lesser extent the on-board computing capabilities and

actuator energy requirements. With a fixed reflective area pre-defined, decreasing

the clear aperture will effectively increase the radius of the overall structure, with

whatever associated weight penalties that entails. However, it is aptly demonstrated

that setting a clear aperture region to an arbitrary value, such as eighty percent, is

neglecting the design optimization that could be performed by the engineer.

To demonstrate the effectiveness of the Modal Transformation Method, two case

studies are presented.

6.6 Case Studies: Application of Modal Transformation Method

One of the primary goals of this research was to develop a control methodology

for the in-plane actuated structure. To show ability of the Modal Transformation

Method to perform this function, two case studies in static control are offered. In the

first case study, a 61-actuator model based a the geometry of a deformable mirror

under development at AFIT is constructed in MSC.Nastran. The Modal Transforma-
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tion Method is used to form a Zernike mode surface, and the results are compared to

a single iteration of a competing methodology using the projection of the desired sur-

face deflection. In the second example, a hypothetical deformable mirror with a finely

actuated electrode pattern is used to demonstrate the ability of the Modal Transfor-

mation Method, when used in an iterative scheme, to form low-order axisymmetric

and non-symmetric modes.

6.6.1 61-actuator Finite Element Model. A finite element model of the

AFIT deformable mirror testbed was created in MSC.Nastran, based on the models

of Chapter IV and shown in Figure 4.5. Briefly summarized, the model used the

same dimensions of the experimental hardware, except instead of seven actuating

regions, the surface was divided into 61 regions. The 3601 node model was comprised

of 3384 CQUAD4 elements and 72 CRIA3 composite plate elements. The substrate

and actuating layers were modelled, while the gold reflective layer and copper-nickel

electrode layers were considered negligible. Piezoelectric forcing was introduced using

the linear piezoelectric-thermal analogy [35] at the locations in Table 6.5. For the

purposes of this example, the directionality of the piezoelectric dielectric constants

was removed. Material properties are presented in Table 6.6. An example electrode

pattern from a mirror under construction at AFIT is presented in Figure 6.7.

Figure 6.7: Example electrode pattern.
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Table 6.5: Actuator locations for 61-actuator, 0.0624-m radius model.

inner radius (m) outer radius (m) azimuthal divisions degrees per division

N/A 0.0071 1 360
0.0071 0.0212 6 60
0.0212 0.0353 12 30
0.0353 0.0494 18 20
0.0494 0.0622 24 15

Table 6.6: Material properties.

Parameter Silicone PVDF Units

Young’s modulus 1.013 4000 106N/m2

Poisson’s ratio 0.497 0.3

d31 N/A 23 10−12 m/m
V/m

or C/m2

N/m2

thickness .0015 52.0E−6 m

A uniform edge tension was applied using an enforced displacement boundary

condition in the radial direction. Then, using a non-linear static solution, the stiffness

of the model was updated, and an equivalent thermal load was introduced to simulate

voltage application at the various actuator locations.

The out-of-plane surface displacements were extracted for analysis. Zernike

coefficients were calculated for the area inside of the clear aperture, which could then

be used to formulate conclusions about the behavior of various control methodologies.

6.6.2 Static Control Methodology for Membrane Mirrors. To provide a

competing methodology for computing actuation voltages for static surface control

of the Zernike polynomials and calculate the vibration mode shapes in this region,

the deformable mirror was modelled as a fixed boundary membrane structure. The

forcing functions were modelled consistent with existing smart structure theory, where

the piezoelectric loads are simply line moments acting along the actuator boundary.

With plate and non-linear in-plane tension effects neglected, the governing equation
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(as developed in Chapter III, Equations 3.149 and 3.150) for the deformable mirror

with J actuators is:

N0∇2w(r, θ) = Mi∇2

J∑
i=1

Fi(r, θ), (6.56)

where

Mi =
1

2

E

1− ν

d31

hp

Vi. (6.57)

In the above equation, N0 is membrane tension, E is the piezoelectric modulus,

νp is the Poisson’s constant, d31 is the piezoelectric constant, hp is the thickness of

the piezoelectric layer, and Vi is the voltage across the electrodes.

This particular model was chosen because it represents the “bed-of-nails” solu-

tion to the problem–for the simplified model any voltage input should be represented

by a corresponding deflection of the mirror’s surface. If this model was completely

accurate, it would show a simple projection would give us the required performance.

However, one might suspect (and will demonstrated) this is not the case, as plate and

non-linear terms will affect the response. Using the Modal Transformation Method,

the impact of these neglected terms are lessened, and one finds this very simple mod-

elling technique will yield extremely satisfactory results.

For the example, Fi is the area of electrode as shown in Figure 6.8. The ith

region may be defined through heaviside functions with radial boundaries ξU
i and ξL

i

and azimuthal boundaries φU
i and φL

i :

Fi(r, θ) = {H(r − ξL
i )−H(r − ξU

i )} · {H(θ − φL
i )−H(θ − φU

i )}. (6.58)

Again, it is quite obvious that solutions to the differential equation are simply

a series of scaled step functions corresponding to the applied voltage on the actuated
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Figure 6.8: ith actuator boundaries from Equation 6.58.

electrode. Later, the orthogonal nature of the solution will be used advantageously.

For a unit voltage, these shapes are defined here as Ψi modes. To obtain a desired

shape on the membrane surface, it is simply a matter of using the projection theorem

to find the individual actuator gains.

For the direct projection method of control, the desired Zernike is constructed

directly from the Ψ mode shapes. In the proposed modal transformation method, the

Ψ mode shapes are actuated to replicate the membrane vibration mode shapes, and

then the transformation constructs the desired Zernike surface on the clear aperture

region using linear combinations of the approximated vibration mode shapes. Again,

it is emphasized that the modal transformation method always satisfies the fixed

edge boundary conditions, and further limits steep transitions if the Zernike modes

are implemented on the interior clear aperture region.

6.6.3 Static Control Simulation and Results. In the simulation example,

voltages were applied to the MSC.Nastran non-linear finite element model. The de-

sired shape was a simultaneous surface deflection corresponding to the axisymmetric

Zernike defocus mode and the non-axisymmetric tilt mode associated with cos(θ).

The clear aperture region was set to 0.78, inside the boundary of the last ring of

actuators. A logic flow chart depicts these operations in Figure 6.9. In the direct

projection method, the Zernike shapes are constructed in the clear aperture from a

linear combination of the actuator (Ψ) modes. In this application of the modal trans-

formation method, the vibration mode shapes are approximated using the projection
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theorem to form linear combinations of actuator modes, and then those shapes are

used in the modal transformation method algorithm using Equations 6.43 to 6.45.

In the figure, indices i correspond to actuator mode, j to vibration mode, and k to

desired Zernike surface. In this modal transformation method, the value of N was set

to 20, and the number of actuated vibration modes at a given azimuthal frequency

was limited to five. This limit corresponded to the number of actuation “rings”, and

thus the maximum number of zero crossings that was theoretically obtainable. The

value of N ensured the truncation error of Equation 6.34 would be negligible.

Figure 6.9: Pseudocode for computing the voltages in Figure 6.10(a) and (d).

The voltage inputs (V (x, y))3, finite element model simulation results (w(x, y)),

and absolute error difference(E(x, y)) of the desired surface versus the simulated sur-

face are provided for both the direct projection and modal transformation method for

obtaining simultaneous defocus and tilt Zernike mode shapes across the clear aperture

region in Figure 6.10. The clear aperture region is indicated by a black line at 0.78

of the surface radius.

3The Cartesian coordinates are used for the plotted surfaces. For translation to cylindrical coor-
dinates (r, θ), x = r cos(θ) and y = r sin(θ).
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(a) Voltage distribution
(in volts) on piezoelectric
actuating grid for direct
projection method.

(b) FEM surface deflec-
tion for direct projection
method.

(c) Absolute error for di-
rect projection method.

(d) Voltage distribution
(in volts) for proposed
modal transformation
method.

(e) FEM surface deflec-
tion for proposed modal
transformation method.

(f) Absolute error for
proposed modal transfor-
mation method.

Figure 6.10: Direct projection (top) versus Modal Transformation Method (bot-
tom).
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When calculating the voltage inputs for the 61 actuation regions in Figure 6.10(a)

and (d), there was a slight scaling error between the competing methods, so the volt-

age was adjusted by a constant to achieve similar deflections. All other responses were

linear for the micron level surface displacements in this simulation corresponding to

input voltages between -600 to 600 Volts (the practical limit for PVDF material).

The surface deflection and error plots are compared in the remaining plots of

Figure 6.10. To calculate surface error the desired defocus and tilt coefficients were

subtracted from the generated surface inside of the clear aperture region. The piston

mode was also neglected as it is of no consequence in optical systems as it is generally

not measurable nor does it affect the mirror’s optical performance.

While the absolute error plots in Figure 6.10 give some idea of the performance

achievable using the modal transformation method, a break down of the surface terms

by Zernike coefficients for axisymmetric Defocus mode (radial degree n = 2) and non-

axisymmetric Tilt mode (radial degree n = 1) is presented in Figure 6.11(a) and

(b). In both graphs, the desired (and achieved) Zernike coefficient was normalized

for approximately 1× 10−6 to one. The next three Zernike coefficients for next three

higher radial order at the same azimuthal frequency were then normalized and plotted.

The coefficients (and thus contribution to the error) for the sin terms and the higher

azimuthal frequency terms (such as cos 2θ, cos 3θ, etc) were not significant and thus

are not presented. Values of coefficients for other modes represent undesired surface

deflection.

When comparing the modal transformation method with the direct projection

method in Figure 6.11(a) and (b), the advantage of the modal transformation method

is evident. The error, which shows as non-zero coefficients in the first and second

higher order modes of both the symmetric and non-symmetric modes is lower for the

modal transformation method. Only for the third highest radial order mode does the

direct projection method enjoy a slight advantage, although the relative error at that

high radial frequency in either case is low.
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Figure 6.11: Comparison of normalized Zernike mode coefficients.

The overall effect is that the modal transformation method may be used to

generate Zernike data inside the defined clear aperture region with less error than

a competing strategy. The other significant conclusion is that to apply the modal

transformation method, actuated regions must occur outside of the clear aperture

region, thus increasing the complexity of the system. In this example, 39 per cent

more actuators were required when using the modal transformation method, which

would require an attendant amount of power and system integration. However, it is

the opinion of the researchers that the performance gain, and the resulting decrease

in the overall diameter of a mirror structure, would far outweigh the increase in

complexity. A systems level trade study is foreseen as a potential future effort.

6.6.4 Finely Actuated Finite Element Model. A second finite element model

was built to showcase the absolute advantages of the Modal Transformation Method

when used in conjunction with a hypothetically achievable in-plane actuated de-

formable membrane mirror. For this model, the previous example was modified.

The silicone layer was replaced by an inert substrate of equal thickness and material

properties to the PVDF layer, resulting in a very thin (104 micron total thickness)

mirror. The electrodes were replaced by a voltage distribution field at each finite
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element grid point, and the number of grid points was increased to 9001. This would

be representative of a finely actuated grid such as conceived to be manufactured with

MEMS techniques or remotely actuated by electron gun.

A simple iterative technique was used to control the structure, where the desired

Zernike mode error signal was summed and sent to the Modal Transformation Method

to correct voltage fields as summation of the appropriate Bessel-based mode shapes.

A schematic of the control diagram is presented in Figure 6.12.

Figure 6.12: Feedback algorithm.

For the simulations, the first four axisymmetric modes beginning with defocus

and the first four non-symmetric modes with an azimuthal behavior of m = 1 (cos θ)

beginning with tilt were commanded. The results of this second series of simulations

is presented in Figure 6.13.
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(b) m = 0, n = 4.
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(h) m = 1, n = 7.

Figure 6.13: Closed-loop simulation results.
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From the data presented, it is clear that a low order Zernike surface was achieved

with negligible error inside of a clear aperture region of an in-plane actuated mirror by

using the Modal Transformation Method in conjunction with a finely spaced control

grid.

6.7 Conclusions

In this chapter, the static shape control of a membrane mirror has been explored.

Development of a methodology which prescribes the desired surface displacement of

an interior, “clear aperture” region in terms of physically achievable mode shapes has

been developed. In the development, surface error can be seen to be a function of

the clear aperture radius relative to the mirror radius, and also as a function of the

number and accuracy of achievable mode shapes, themselves a function of the fineness

of the actuating grid.

In the examples presented, a non-linear finite element models simulation of

deformable circular mirror with 61-piezoelectric unimorph actuators showed the ad-

vantages of the proposed modal transformation method to determine actuator gains

to create a desired surface when compared to a direct projection method based solely

on solving the governing membrane equation. A second simulation that given a con-

tinuous, finely meshed actuation grid of unimorph actuators, low-order Zernike modes

may be formed within the clear aperture with virtually no error using the methods

proposed.

Greater complexity in the system due to the increase in number of actuators

and the subsequent increased power requirement appears to be the main tradeoff for

the increased accuracy in quasi-static surface deflection performance when applying

this control methodology. To better understand the overall system requirements, the

scaling issue is discussed in the next chapter.
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VII. Scaling Analysis for Membrane Optics

Chapter objectives:

• Differentiate between scalable architecture and scaling

• Develop a non-dimensional model for analysis

• Investigate effects brought about by a change in scale

7.1 Introduction

Space telescopes in current use are limited by payload limits in weight and most

importantly diameter, the latter on the order of a couple of meters for a contin-

uous surface reflector. To overcome this restriction, some space telescopes, such as

the James Webb Space Telescope, are pushing the bounds of scalable architectures,

where several smaller mirrors are used collectively to create one large aperture. As

an alternative to using a scalable architecture, membrane optics research seeks an

aperture which may be stowed compactly, and unfurled on orbit.

For the purpose of this chapter, large-scale generally refers a space-based mem-

brane optic with a radius on the order of 10 meters. Small-scale refers to a scaled-

down laboratory test article on the order of 10 centimeters in radius. In general, one

may think of holding all parameters (including the thickness of the membrane optic)

constant except for the radius when referring to these models.

Our discussion begins with an introduction to the problem of scale, where the

method of a scalable architecture is contrasted with the problem of scaling a single

structure from small-scale to large-scale. In Section 7.2, the governing differential

equation for in-plane actuated mirrors is presented, and then transformed to a non-

dimensional form. Different forms of the equation are analyzed in Section 7.3, includ-
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ing the linear plate, the plate-membrane, and the full non-linear model. Section 7.4

presents a series of case studies conducted using an MSC.Nastran finite element model.

To highlight the effects of scale, to illustrate plate versus membrane effects, and to

show the impact of unimorph actuation. Finally, Section 7.5 wraps up the discussion

with some conclusions and recommendations for researchers in the field.

7.1.1 Scaling. For most engineering problems of scale, developing a scalable

architecture solution is a good first approach. A scalable architechture is defined here

as one where additional performance is gained through the addition of like elements.

For an excellent discussion of scalable architechtures as it applies to the solar sail

problem (which is similar in many respects to the membrane optic problem, albeit with

far less stringent shape control requirements), the reader is referred to the presentation

by Greshik [56]. Figure 7.1 shows two examples of scalable architechtures.

(a) WW1 era Fokker Dr.1 triplane photo courtesy
of the National Museum of the US Air Force.

(b) James Webb Space Telescope il-
lustration courtesy of NASA.

Figure 7.1: Scalable architecture examples.

In WW1, the air war pushed aircraft development at a breakneck pace. A

key to maneuverability was the ability of the aircraft wing to generate lift. The

biplane, and later the development of the Sopwith triplane which was in turn had

its design borrowed by the German industry to create the famous Fokker Dr.1, was
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the scalable architecture solution, as design teams added fabric covered wings to

create lift. However, the increased lift came at the expense of drag plus engineering,

operational, and manufacturing complexity. As a result no quad-wing planes were

fielded. The post war period would introduce the monocoque structure, where a

metal stressed wing absorbed the in-flight loads, and revolutionized aircraft design

leading to increased speeds and maneuverability.

Today, the scalable architecture approach is evident in the James Webb Space

Telescope. The James Webb Space Telescope (JWST) [13] uses a primary mirror

comprised of 18 individual mirror elements, to give it a surface area of 25 square

meters, or nearly an order of magnitude increase over the Hubble telescope. As

with the triplane of WW1, increased system complexity is evident in the control

algorithms needed to govern the pointing of the 132 degree-of-freedom actuators that

manipulate the JWST mirror system. Also, the mirrors can only be made so thin

and lightweight, so even larger structures made using a similar approach will be more

costly and complex. For a truly revolutionary increases in space telescope aperture

size, another method of manufacture is required.

To increase the aperture size with a single monolithic structure that is lightweight,

and one that also may be rolled compactly and unfurled once in orbit is the domain

of membrane optics. Appreciating the order of magnitude of the scales of the problem

confronting the engineer is extremely difficult to comprehend.

Membrane optics seeks to develop thin film mirrors on the order of 100 microns

in thickness and up to 20 meters in diameter. The thickness is about the same as a

human hair! If you were to build a skyscraper with a footing the size of the Sears Tower

(about 68 meters) with the same aspect ratio, it would reach over 1300 kilometers

into the sky, and have over 1,000,000 floors! Further complicating matters, one would

like the surface of the membrane optic to conform to shape tolerances of optical

(sub-micron) quality, perhaps even down to 10s of nanometers. Again, a familiar

analogy is to imagine driving your car around the world on a stretch of highway so
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smooth you never hit a pothole deeper than a couple of centimeters! Thus, membrane

optics represent a problem of scale not easily imagined, much less one that must be

understood and eventually exploited.

7.1.2 The Bekey Concept. One of the early proponents of the membrane

space telescope was Ivan Bekey. In his work, A 25 M. Diameter Space Telescope

Weighing Less Than 150 Kg [24], he proposes a membrane mirror construction that

will form the basis of our discussion.

In the Bekey concept, a large membrane primary mirror focus light on an array

station kept several hundred meters distant from the primary mirror. In his concept

the word membrane is a misnomer for the primary–the mirror is actually envisioned

as a very thin plate with no peripheral frame structure. Ideally, if not subject to

gravitational or solar forces (in the Bekey concept, this is accomplished by orbiting at a

Lagrange point and protected by a solar sail), a plate would not need external support.

However, for the earth-facing space surveillance mission, it is necessary to explore the

effects of membrane (pellicle) tension, realizing that it creates an attendant weight

penalty in proportion to the required frame stiffness and circumference. Fine surface

shape control of the mirror is proposed to be achieved through remote actuation of a

piezoelectric film by a scanning electron beam, which in theory can project a voltage

film as fine as the beam width. Electron gun actuation of piezoelectric actuators is a

fledgling technology under exploration [57,58,82,95].

It may be difficult to comprehend the relative sizes in the construction. Fig-

ure 7.2(a) depicts the primary mirror in relation to the focal plane array. In the

figure, a 10-meter radius primary mirror is focused on an array 400 meters away. The

f/#, or ratio of focal length to mirror diameter, is 20, typical of a space telescope.

As a general rule, a space telescope’s performance will improve with higher f/# and

increased aperture size (mirror diameter).

An equation for the paraboloid surface w(r) in terms of focal length f , radius

R, in terms of radial variable r is:
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Figure 7.2: Space telescope with membrane primary mirror.

w(r) =
1

4f
(r2 −R2). (7.1)

Applying Equation 7.1 with a mirror radius of 10 meters, and a focal length of 400

meters, the maximum deflection at the center of the paraboloid would be 0.0625

meters. The relative deflection is depicted in Figure 7.2(b).

7.1.3 Previous Work. In recent years, various researchers have created sub-

scale models for membrane optics. Flint et al [44,46,47] have created a doubly curved

membrane shell that may be rolled flat and then released to form a parabolic shape.

Mirrors have been constructed up to meter-class diameters, and the shell has been

tested for near optical quality. At present, there are no active corrective elements in

the mirror itself to correct for surface distortions, although boundary control is under

investigation.

Sumali et al [134] demonstrated a pinned, flat, 80 mm square PolyVinylidine Di-

Fluoride bimorph with a single actuating electrode. The bimorph was approximately

100 microns thick, and is precisely the type of construction that is envisioned in this

study. Deflections on the order of several hundred microns were achieved, and were

consistent with linear analysis.
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Murphy, Macy and Gaspar [93] have reported on the development of solar sails

for NASA. Their work is unique in that they have tested large membrane structures

in as close to a space environment as possible. The difficulties encountered in the

testing highlight the need for very accurate scaled models from which conclusions

may be drawn, as full-scale testing in a 1-g environment can be extremely difficult,

or impossible.

Chodimella, Moore, Otto [30] presented the initial design consideration studies

for a large-scale electrostatic mirror. An electrostatic mirror uses a series of electrodes

attached to a backing structure to pull the membrane into a desired shape. The mirror

is far easier to construct than an in-plane actuated mirror, and has the additional

advantage of manufacture with current technologies. The main disadvantages are

weight due to the stiff backing structure. Optical level performance of this class of

structure has not yet been demonstrated on a large-scale.

7.1.4 AFIT Deformable Mirror Testbed. Ultimately, the goal of the research

presented herein is to allow us to draw conclusions from scale models. An example

of one of the small-scale models is the AFIT deformable mirror testbed. Recall the

dimensions of the the AFIT deformable mirror testbed as 0.127 meter (2.5 in) radius

with the thickness of the piezoelectric material as 52 microns. Experimental quasi-

static control of the mirror was reported in Chapter IV.

7.2 Governing Models and Equation

In this section, the governing differential equation for a thin, in-plane actuated

structure such as a membrane primary mirror, is presented. The following discussion

is based purely on the structural response of the mirror to the deterministic forcing,

that is, no disturbances such as heating, solar pressure, nor body forces such as

induced by gravity, are included. Furthermore, piezoelectric forces are modelled as

equivalent thermal strains.
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The governing differential equation for the out-of-plane displacement terms,

w(r), of an axisymmetric, isotropic plate-membrane with pellicle tension NO under-

going in-plane piezoelectric forcing of radius R as developed in Chapter III:

D∇4w(r)−NO∇2w(r) + NP∇2w(r) . . .

−N1

(∂w(r)

∂r

)2 ∂2

∂r2
w(r) . . .

−N2

(∂w(r)

∂r

)2 1

r

∂

∂r2
w(r) = −∇2MP . (7.2)

The other terms are defined as follows:

D =
E(hp + hs)

3

12(1− ν2)
, (7.3)

NO = (hp + hs)PO, (7.4)

NP =
Ed31V (r)

1− ν
, (7.5)

MP = −1

2
hs

Ed31V (r)

1− ν
, (7.6)

N1 =
1

2

E(hp + hs)

1− ν2
, (7.7)

N2 = νN1. (7.8)

In the above equations, E is the Young’s modulus, hp is the thickness of the

piezoelectric layer, hs is the thickness of the substrate (inert) layer, and P0 is the

pressure force on the circumference that provides the pellicle tension. The piezoelec-

tric coupling matrix coefficient is d31 and V (r) represents the voltage applied to the

piezoelectric layer. The in-plane strain terms effects on the surface displacement are

neglected. Table 7.1 provides a summary of the terms and units. The terms are

expressed in terms of fundamental units of length (L) and the derived units pressure

(P ) and voltage (V ).
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Table 7.1: Plate-membrane variables and parameters.

variable description units

r radial coordinate (inde-
pendent)

L

w out-of-plane displace-
ment (dependent)

L

PO tensile pressure P
E Young’s modulus P
hs substrate thickness L
hp piezo thickness L
ν Poisson’s ratio −
d31 piezoelectric coefficient LV −1

V (r) voltage distribution V
R radius L

Also note Equation 7.2 corresponds to units of pressure, and that the axisym-

metric Laplacian operator, ∇2 ≡ ∂2

∂r2 + 1
r

∂
∂r

. This problem assumes unimorph actua-

tion. For symmetric bimorph applications, the MP term is doubled (hs is replaced by

hs + hp = 2hs) and the NP term vanishes due to integration through the thickness as

seen in the development of the terms in Chapter III.

7.2.1 Choice of Non-Dimensional Variables. To perform a similarity scaling

analysis, the physical problem must be restated in terms of non-dimensional units that

are independent of units chosen. One way to do this is to write the Π parameters for

the problem, and then choose the scales as they apply to the problem at hand.

To simplify our analysis, choose hp + hs = h, and write the Π dimensionless

parameters [22, pp. 39-45]. Although somewhat unconventional, it has been chosen

to use derived units in the problem. Normally this would not be recommended, but

it allows for easy book-keeping in this particular case.

Π =
( h

R

)a(P0

E

)b(d31V

h

)c(
ν
)d

. (7.9)
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From Equation 7.9, appropriate scales for the two length scales, li (i = a,b), and

pressure, pc may be chosen as

li =
( h

R

)a(P0

E

)b(d31V

h

)c(
ν
)d(

h
)1

, i = a,b (7.10)

and

pc =
( h

R

)a(P0

E

)b(d31V

h

)c(
ν
)d(

E
)1

. (7.11)

Next, apply the scaled variables to Equation 7.2 by defining the non-dimensional

variables w̃ = wla and r̃ = rlb where la and lb are derived from Equation 7.10, and

divide by the pressure scale pc to yield

1

pc

{
D

la
l4b
∇4w̃(r̃)−NO

la
l2b
∇2w̃(r̃) + NP

la
l2b
∇2w̃(r̃) . . .

−N1
l3a
l4b

(∂w̃(r̃)

∂r̃

)2 ∂2

∂r̃2
w̃(r̃) . . .

−N2
l3a
l4b

(∂w̃(r̃)

∂r̃

)2 1

r̃

∂

∂r̃
w̃(r̃) =

1

l2b
∇2MP

}
. (7.12)

In a similar manner, we note the scaled solution to a parabolic mirror of focal

length f would therefore be written as:

w̃(r̃) =
R2

4fla

( r̃2l2b
R2

− 1
)

(7.13)

7.2.2 Choice of Scales. To choose the appropriate scales for this problem,

we choose based first upon our intuition. For the scale on the displacement w, we

choose the thickness of the material la = h as the scale. For the radial term, we

would like the problem to be invariant with radius, so we set lb = R. Thus, the radius
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is normalized, and deflections are terms of multiples of the thickness of the mirror.

Other scales could of course be chosen, as we will see.

To better recognize the equation, we take one moment to rewrite it in simpler

terminology. Dropping the tildes, the independent variable, and letting , r and , rr

indicate the first and second derivatives with respect to r, Equation 7.12 becomes

1

pc

{
D

la
l4b
∇4w +

(
NP −NO

) la
l2b
∇2w . . .

−N1
l3a
l4b

(
w,r

)2
wrr −N2

l3a
l4b

(
w,r

)2 1

r
w,r =

1

l2b
∇2MP

}
. (7.14)

Now, applying the scales la = h ≡ hp + hs, lb = R, and choosing pc = h2

R2 E to

cancel as many terms as possible in the non-dimensional aspect, we are left with:

R2

Eh2

{
D

h

R4
∇4w +

(
NP −NO

) h

R2
∇2w . . .

−N1
h3

R4

(
w,r

)2
w,rr −N2

h3

R4

(
w,r

)2 1

r
wr =

1

R2
∇2MP

}
. (7.15)

With collection of terms, we write the dimensionless equation as

D∗∇4w +
(
N∗

P −N∗
O

)∇2w . . .

−N∗
1

(
w,r

)2
w,rr −N∗

2

(
w,r

)2 1

r
w,r = −∇2M∗

P . (7.16)

172



D∗ =
1

12(1− ν2)

h2

R2
, (7.17)

N∗
O =

P0

E
, (7.18)

N∗
P =

d31V (r)

h(1− ν)
, (7.19)

M∗
P = −1

2

hs

h
NP , (7.20)

N∗
1 =

1

2(1− ν)

h2

R2
, (7.21)

N∗
2 = νN∗

1 . (7.22)

7.3 Different Subcases

With the appropriate length scales assigned, the problem may now be more

readily examined by analysis of Equation 7.16.

7.3.1 Linear plate.

D∗∇4w = −∇2M∗
P (7.23)

The linear plate model is the simplest model. In this model, no tension is

assumed, such as would be the case with a free edge condition. This is the concept

Bekey proposed, in that he imagined a membrane supported only at its center point.

The mirror would not be quickly steerable (as Bekey acknowledges) as the inertia term

(I = .25πρhR4, where ρ is density, h is thickness, and R is radius) is large. Alternately,

the mirror could be suspended on roller supports at the boundary (perhaps floating

in magnetic suspension) to translate and rotate the mirror.

All non-linear terms are neglected if the slopes of the mirror surface are con-

sidered small. This may not be a good assumption for the large parabolic dishes,

as explored in a later section. If the mirror is also to be used for high spatial fre-
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quency shaping of the received image (such as correcting for Zernike aberrations) the

assumption would not hold.

While considering the material properties fixed, the effect of altering the di-

ameter or thickness of the mirror can be determined. This might be representative

of testing a small-scale structure to see what achievable surface deflection could be

obtained with the full-scale structure. To do this, analyze D∗ as compared to M∗ to

find the strength of the forcing as the radius changes. Thus it may be seen:

M∗
P

D∗ ∝
R2

h2
(7.24)

Note here that as the radius increases, or as the thickness decreases, the response

of the membrane mirror to an applied voltage will be greater, or conversely, less voltage

will be required for a similar response. This is an encouraging result, as we find that

although current piezoelectric material (such as PVDF), have a very small dielectric

coefficient (of expansion) d31. Linear theory suggests large-scale mirrors may not

require great loads create the deformations required, an idea explored in the following

sections.

7.3.2 Plate-membrane with Bimorph Actuation.

D∗∇4w −N∗
O∇2w = −∇2M∗

P (7.25)

In this section, the effect of adding a pre-existing tension field to the mirror

is discussed. This is the classical membrane tension that gives rise to drumhead

dynamics associated with membrane problems.

To analyze this class of problems, the importance of the N∗
O must be compared

to D∗. If D∗ is the much larger term, the effect of N∗
O will be simply to attenuate the

response of the aforementioned beam problem. If D∗ is the much smaller term, it will

provide a set of conditions smoothing the membrane response. Figure 7.3 shows the
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effect of membrane tension, and the demarcation between which is the dominant term.

As can be seen, what intuitively might seem to be low tension forces can significantly

dominate the solutions. To give a rough idea, imagine suspending a 0.1 meter radius

membrane mirror by five tensioned cables providing the catenary support. Each cable

would then require a force of on 0.01 newtons before tension would play a central role

in the solution (e.g. .08*circumference/number of points, 0.08(2π0.1m)/4 ≈ 0.01N).
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Figure 7.3: Tensile load versus radius.

Either way, an asymptotic method may be applied. If D∗ À N∗
O, then divide

by D∗ to yield

∇4w − δ2∇2w = −∇2M̂∗
P (7.26)

where δ2 ≡ N∗
O(D∗)−1 and M̂∗

P ≡ M∗
P (D∗)−1. Letting w = w0 + δ2w1 + . . . , one

can solve the following series of equations by applying the appropriate boundary

conditions:
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∇4w0 = −∇2M̂∗
P (7.27)

∇4w1 = −∇2w0 (7.28)

...

Applying a similar solution methodology for the cases where N∗
O À D∗, and define

ε2 ≡ D∗(N∗
O)−1 and M̂∗

P ≡ M∗
P (N∗

O)−1 , thus

ε2∇4w −∇2w = −∇2M̂∗
P (7.29)

and w = w0 + ε2w1 + . . . .

∇2w0 = −∇2M̂∗
P (7.30)

∇2w1 = −∇4w0 (7.31)

...

It is here an important discovery is made. If a voltage pattern is chosen with a spatial

frequency of f( r
ε
), this asymptotic method will not hold true, as all of the terms in

the solution will be of the same order.

For exact solutions to the typical case where the voltage function is simply

an indicator (or heaviside) function for axisymmetric rings, the reader is referred to

Chapter V.

7.3.3 Plate-membrane with Unimorph Actuation.

D∗∇4w − (N∗
O −N∗

P )∇2w = −∇2M∗
P (7.32)
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The next system of interest is the plate-membrane with unimorph, or single-

sided, actuation. This construction is a likely candidate for its simplistic nature in

construction–only one side of the membrane must be activated.

In the differential equation, the N∗
P term makes an appearance, adding a level of

complexity to this problem not faced with the bimorph construction. This complexity

must be carefully treated. For, as −N∗
P → N∗

O, the tension term vanishes in that area,

and the forcing must balance with the D∗ term (the plate stiffness). One also has to

be aware that the voltage term that contributes to the N∗
P function may vary along

the surface, so the dominance of terms in the equation may also vary.

Depending on the sign convention chosen, to initiate a parabolic shape the

voltage function may be either positive or negative. For instance, in the finite element

models created to date, a positive direction is defined as one from the bottom surface

of the reflector, to the top, and the dielectric constants are negative. However, in

actual practice, it is likely the ground electrode will be embedded along the neutral

axis of the structure, resulting in a change of signs.

This is important because the rear surface may have to be expanded under

voltage to draw the mirror into a parabolic shape. Analytic solutions to this form of

the equation constitute an area of further research.

7.3.4 Non-linear Plate-membrane.

D∗∇4w +
(
N∗

P −N∗
O

)∇2w . . .

−N∗
1

(
w,r

)2
w,rr −N∗

2

(
w,r

)2 1

r
w,r = −∇2M∗

P . (7.33)

The non-linear effects coefficients N∗
1 and N∗

2 scale to the same order as the

plate stiffness term D∗. The non-linear term is especially significant as one recalls w

is scaled against the plate thickness. That is, for deflections of several centimeters, the

non-linear terms will have the greatest magnitudes, the derivative of the surface will

be significant. Additionally, if the dish is deeply curved, or if the surface is actively
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controlled to create high spatial frequency wavefront corrections (such as higher order

Zernike mode shapes), these terms must be included in the analysis.

7.4 Finite Element Examples

A series of finite element examples are presented to demonstrate some of the

characteristics of membrane mirrors as determined from the preceding section.

The finite element model used in these examples was previously presented in

Chapter IV where the model was evaluated against the AFIT deformable mirror

testbed. The model was built using MSC.Nastran. For this application, the con-

struction of the finite element model is briefly summarized, with changes from the

preceding models called out.

In this configuration, the model was constructed of 9000 QUAD4 and TRIA3

composite plate elements. In this axisymmetric configuration, all azimuthal degrees of

freedom were constrained. Linear and non-linear solvers were used as called for in the

discussion. The model parameters that remained constant throughout the analysis are

given in Table 7.2. The material properties are for a homogeneous mirror comprised

entirely of PVDF, that is, the electrodes and optical coatings are neglected in this

simplified model. The piezoelectric coefficients were implemented similar to their

introduction in Section 7.2 using the piezoelectric-thermal analogy (see Chapter III).

The boundary condition for the edge condition was either a roller or fully clamped

support. In some of the roller cases, a radial force was applied at each of the nodes

along the edge to create membrane, or pellicle, tension.

Two actuation patterns (forcing functions) are used in this section. The first

forcing function is a smoother application of voltage, the drumhead forcing function,

which corresponds to a statically actuated fundamental vibration mode shape for a

pure membrane. The applied voltage for this method is:

V (r) = 300J0(2.405
r

R
) (7.34)
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Table 7.2: Finite element model constants.

variable description value

E Young’s mod-
ulus

4× 109Nm2

h thickness 104× 10−6m
ν Poisson’s ra-

tio
0.3

d31 piezoelectric
coefficient

−2.3 ×
10−11mV −1

where J0 represents a Bessel function of the first kind.

The second forcing function, single electrode forcing, is similar to the center

electrode on the AFIT deformable mirror testbed. Piezoelectric forcing is applied by

a voltage acting on a center electrode region with a radius of 0.2× of the mirror’s

radius, R. Thus, the voltage acts like a heaviside function, that is

V (r) =





300, r ≤ 0.2R,

0, r > 0.2R.
(7.35)

The voltage patterns are shown in Figure 7.4.

(a) Drumhead forcing actuation volt-
age.

(b) Single electrode actuation volt-
age.

Figure 7.4: Actuation voltage functions.
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7.4.1 Linear versus Non-linear. The main impetus for this work was the

issue of extrapolating the results from a small-scale test mirror to the larger mirror

sizes in the space telescope application. In particular, previously reported in Chap-

ter IV and by researchers at Sandia [134] showed that small-scale models behaved

in accordance with linear models. These small-scale models were of the same thick-

ness/construction as proposed for the vast sheets to be used in the space telescopes.

Whether applying linear theory such as the researchers at Sandia or using linear

finite element models, the trends will be the same. In Figure 7.5, the effect of varying

a single parameter, the radius, is seen while holding all other dimensions and material

properties constant. Figure 7.5 shows the out-of-plane displacement of the center node

undergoing unimorph actuation by the single electrode voltage function for a plate

with clamped boundaries (note that for the linear solver, introducing pellicle tension

will have no impact on out-of-plane displacement).

From Equation 7.23, it may be observed that D∗ will change inversely propor-

tional to R2, and thus expect linear solutions to vary accordingly. This is precisely

the observed effect, as Figure 7.5 presents the results of many linear simulations for

radius varying between 0.1 meters and 10 meters. Indeed, the displacement increases

in proportion to the radius squared (a line depicting a constant times R2 is provided

for reference).

From this graph, one might be tempted to make the observation based on linear

theory alone, that is, given its success at predicting small-scale model deflection, it

may be predicted that large deflections of membranes should be possible using current

constructions. As will soon be shown, this observation will prove false.

To show the fallacy of the preceding observation, another series of simulations

is conducted, this time comparing linear to non-linear results for different radii. For

these examples, the drumhead forcing actuation voltage from Figure 7.4(a) is used (its

smoother nature has been qualitatively observed to make the numerical simulations

quicker to converge, and is sufficient for the arguments herein). The mirror actuation

180



0.1 1 10
10

−4

10
−2

10
0

10
2

Radius (meters)

w
(0

) 
(m

et
er

s)
FEM

w(0) = 0.164 R2

Figure 7.5: Center displacement for linear plate.

is the bimorph configuration (eliminating any N∗
P terms), and is held in a roller

boundary without any applied pellicle tension (no N0 terms). Two cases are presented,

each showing a linear and non-linear solutions. In the first case, a radius of 0.01-m (1

centimeter) to represent a small-scale test article is used, and in the second, a 10-m

radius is used representing a space telescope. The results are presented in Figure 7.6.

For the 0.01-m case in Figures 7.6(a) and (b), one may observe that the linear

and non-linear case present nearly indistinguishable results (in fact, the height of the

center displacement is reported as 3.2647E-5 m for the linear case, and 3.19998E-5

m for the non-linear case, to indicate the graphs are different). However, changing

nothing but the radius to obtain the results in Figures 7.6(c) and (d) tells a completely

different story. In Figures 7.6(c), the scale of the deflection indeed increases by a factor

of (103)2, evident by the scale on the graph, while the shape of the plot is identical

to the 0.01-m linear case. In contrast, the non-linear solution is severely attenuated,

and the solution shape does not resemble any other of the three in the figure.

Next, one may return to the issue of scale for an explanation. The terms N∗
1 and

N∗
2 in Equations 7.21 and 7.22 scale in the same proportion as the plate stiffness with

regard to height and radius. Thus, as the plate forces become dominant (increasing

ε) the non-linear term also becomes important. Recall that the out-of-plane displace-
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(a) 1-cm radius linear. (b) 1-cm radius nonlinear.

(c) 10-m radius linear. (d) 10-m radius nonlinear.

Figure 7.6: Effect of changing radius with different solution strategies.
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ment w(r) was scaled by the length scale la = h. Thus displacements greater than the

thickness of the substrate h = 104 microns (see Table 7.2 will be large displacements

(and so will the corresponding slope terms) in Equation 7.16, further “activating” the

non-linear terms.

It must therefore be concluded that small-scale modelling may not accurately

capture the non-linear effects prevalent in large-scale space telescopes if the thickness

of the small-scale and large-scale configurations is the same.

7.4.2 Plate-to-membrane Stiffness Effects. In section 7.3.2, pre-existing

pellicle tension was introduced to the differential equation as N∗
0 . In this section, the

qualitative effect of the ε parameter is presented. Recall ε is defined as:

ε ≡ D∗

N∗
0

. (7.36)

It is important to remember the terms above are from the scaled problem. Since

the original plate stiffness term is extremely small, just about any conceivable value

of tension would be large, and one might incorrectly assume that the plate stiffness

terms are inconsequential. However, for the small-scale model, one may realize that

the plate stiffness is effectively amplified by a factor of R−2. That is, small-scale

mirrors in tension will see the effects of plate stiffness much sooner than a large space

telescope for a similar tension value.

For the purpose of this comparison, a bimorph mirror of radius 1 meter is

assumed. Again, the structure is supported by a roller support, with a pellicle tension

force added at the boundary. The forcing was introduced with the single electrode

forcing as shown in Figure 7.4(b).

Three cases were run where ε was changed to values of 1, 0.02, 0.004 (500, 50−1, 50−2),

and are presented in Figure 7.7. A pure membrane linear solution (one with no plate

or non-linear terms) to the problem would indicate maximum deflections of -0.8293,

-3.3173E-004, -1.3269E-007 meters, for the cases respectively. However, note that

183



the plate stiffness and non-linear terms serve to attenuate the pure membrane linear

solution to the results in Figure 7.7.

Again observe the effects of non-linear terms. In Figure 7.7(c), the deflection

achieved is on the order of 1000× less than the thickness h of the mirror, and cor-

respondingly the deflection achieved is near that predicted by the pure membrane

linear solution. In Figure 7.7(b), the deflection is on the same order as the mirror

thickness, or alternately one may note that the deflection is attenuated by nearly half

of what the linear membrane theory suggests. Further reductions in tension do much

less to increase deflection, as the problem is now a large deflection problem, as shown

in Figure 7.7(a).

Finally, the most notable characteristic of the ε term is its influence on the

shape of the response. For small ε, as seen in Figure 7.7(c), the deflection is nearly

a scaled (though attenuated) version of the input. This “bed of nails” characteris-

tic allows for simplistic surface control algorithms. Again it is emphasized that it

would require a much weaker N0 term to overcome the plate stiffness as the radius

is increased. Effectively, one can conclude: the introduction of pellicle tension which

might be insignificant for small-scale structures can dominate the surface response on

large space telescopes. In fact, if one does not want pellicle tension to dominate the

response, care must be taken with with the chosen boundary. This may be one reason

Bekey suggests a free edge condition.

Another interesting observation is made. If the impact of non-linear terms is

sought to be modelled and verified, it is at the edges of discrete actuators where the

slope is greatest that their impact will be the most prevalent. Therefore, to analyze the

effects of non-linear terms as observed in Section 7.4.1 which will dominate responses

of large-scale structures, we should study the behavior of small-scale models with

distinct boundary layers.

7.4.3 The Impact of Unimorph Actuation. Although not the direct result

of scaling from small to large structures, a secondary impact of lowering the pellicle
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(a) ε = 1.00.

(b) ε = 0.02.

(c) ε = 0.0004.

Figure 7.7: Non-linear solutions for varying ε.
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tension as suggested by results of Section 7.4.2 is that the difference between unimorph

and bimorph actuation becomes apparent.

Unimorph actuation is generally regarded as a simpler construct to control,

especially when one considers remote actuation (electron gun) technologies which are

as yet unproven. In this section the impact of unimorph construction is seen to have

far-reaching implications.

The N∗
P term in Equation 7.16 is only present in the unimorph case, and has the

ability to dramatically affect the response. To demonstrate its effect, two simulations

were conducted. The two cases use unimorph actuation with the drumhead forcing

function (Figure 7.4(a)) and the non-linear solution strategy. The mirror has a 1-

m radius, and an existing pellicle tension NO = 39.426Nm−1. When the voltage is

applied, it has at its peak value in the center also of NP (0) = −39.426Nm−1. The

voltage is applied first as a positive value, and then the same field is applied, but as

a negative value1. The results are shown in Figure 7.8.

(a) Positive voltage response. (b) Negative voltage response.

Figure 7.8: Asymmetric response characteristic of unimorph actuation.

1This effect was not apparent in Chapter IV due to several factors. The edge tension value was in
excess of NO = 170 Nm−1 around the entire perimeter as reported in Section 4.3.2, the non-uniform
silicone/piezoelectric construction of the mirror partially negated the effect of the NP term, and the
piezoelectric material was directional (and thus weaker in the non-primary direction than the case
presented here )
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Figure 7.8 shows the absolute value of the displacement is greater when the

negative voltage was applied compared to the positive voltage case. First note that

the scaling applied to the problem impacts both terms similarly, as seen in Equa-

tions 7.18 and 7.19, so changes in height and radius will have the same impact on

each term. What is observed is (N∗
P −N∗

0 )∇2w in Equation 7.16 acts constructively,

and effectively stiffens the response. In the second (the negative voltage) case, the

two terms have the same sign, and cancel each other at the center, and otherwise

weaken the membrane tension.

Further evidence of the stiffening effects are seen in Figure 7.9. To create this

plot, non-linear finite element simulations were run with the single electrode forcing

function (positive voltage only), and the pre-existing pellicle tension N0 and radius

were varied while the other parameters in Table 7.2 were held constant. The center

displacement was plotted. Observe the following. At large values of N∗
0 , the tension

dominates the response and limits the magnitude of the response such as would be

expected in a pure linear membrane solution. The linear response follows the expected

curve w(0) = Mp/N0, which for this example Mp = 0.001 and is represented by the

dashed line.

Thus, at large N∗
0 , the center deflection varies as 1

N∗
0
. However, at low values

of N∗
0 , the N∗

P becomes the dominant term in the Equation 7.16 until the radius is

decreased below a reasonable range (at this point there is little interest in extending

results to scale models below the 0.1 meter range). For unimorph construction it was

found that the effect of piezoelectric in-plane tension in unimorph construction has

the potential to dominate the structural response.

The next most obvious question is, “what happens when the sign of the voltage

is changed, and instead of adding to the existing tension, the tensile field within the

area of the piezoelectric material is potentially changed to compression?” This is an

area of further research. Convergence issues with the finite element model prevent

us from displaying results. However, it appears the model is “buckling”, and this
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Figure 7.9: Center displacement with varying tension.

may prove useful in achieving large deformations with a unimorph structure with low

voltage levels and within the realms of current piezoelectric materials.

7.5 Conclusions

This chapter examined the scaling issues associated with the in-plane actuated

deformable mirror for space telescope applications. To gain a better understanding of

the problem at hand, the governing differential equation for the axisymmetric system

less the in-plane strain terms was provided and transformed into a non-dimensional

form for analysis. To demonstrate some of the pertinent points, a finite element model

created in MSC.Nastran was examined.

Much of the research to date has concentrated on examining small-scale models

of membrane optics, where the through-the-thickness construction was assumed to be

of the same type as would be used in a large-scale space telescope, which would result

in tremendous weight savings. However, for the proposed applications, the radius, or

length dimensions, are scaled by orders of magnitude. From the examination of the

scaled non-dimensional equation and demonstrated through the finite element simu-

lations, it was demonstrated that although linear modelling may correctly explain the

behavior of small-scale models, only non-linear models will account for the important
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terms when the full scale structure is examined. Furthermore, the achievable surface

deformations for a large-scale telescope will be far less than suggested by linear the-

ory, but may still be sufficient to create very shallow, large focal length, high f/#,

parabolic membrane mirrors.

By scaling the differential equation, it was shown that the introduction of pel-

licle (the traditional pre-existing membrane) tension, may dominate the response of

the surface deflections for a large-scale space telescope. Early proposals for space

telescopes suggested not using any pre-existing pellicle tension–the results herein sug-

gest that if it is introduced, even if it seems to be an intuitively negligible amount,

it must also be carefully modelled and examined because of its significant impact on

the solution.

By comparing the strength of terms in the governing differential equation, an

unexplored consequence and potential benefit of unimorph versus traditional bimorph

in-plane actuation strategies was found. The unimorph construction introduces a

tension field in proportion to the strength of the piezoelectric forcing function that acts

on the structure in the same manner as the pre-existing pellicle tension field (except it

may be varied in strength as the voltage field varies). In one direction, it was shown

that the piezoelectric tension serves to stiffen the structure and attenuate surface

deflections. However, it remains an area of future research for the large-scale mirror to

explore the region where piezoelectric tension places localized areas of the membrane

in compression, and perhaps the surface may be “buckled” into large deflections with

low voltage requirements within the capabilities of current piezoelectric materials and

technology.

This chapter on scaling completes our investigation into membrane optics re-

search. As seen throughout this chapter, the word membrane is something of a mis-

nomer, as it implies that all through-the-thickness properties are negligible. This may

be true in the case of an electrostatic membrane, where pressure forces are applied

directly to the mirror’s surface, but is certainly not the case for an in-plane actuated
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piezoelectric unimorph of bimorph mirror as investigated herein. In the next chap-

ter, a summary of conclusions and a series of recommendations for future work are

presented.
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VIII. Conclusions and Recommendations

Membrane optics has proved to be a complex, multi-dimensioned field where

significant advancement in the state-of-the-art is required before the goal of a

large aperture space telescope may be realized. The significant findings presented in

this document, and recommendations for future work, are provided below.

8.1 Research Conclusions

Experimental testing of a prototype, small-scale, in-plane piezoelectric actu-

ated tensioned plate membrane structure, the construction of which represents the

envisioned membrane optics for space telescopes, revealed that wavelength level sur-

face control was possible. It was experimentally demonstrated that low-order Zernike

modes can be controlled individually for quasi-static control inputs of 0.02 Hz. The

control frequency was well below the fundamental mode of the small-scale structure,

but is operationally representative of the low-order dynamic modes of a large struc-

ture. To construct a control system, MSC.Nastran can be used as a basis for a priori

control design versus using experimentally-derived calibration curves.

Next, an exact analytical piecewise linear solution to both the beam-string and

plate-membrane problem representative of an in-plane actuated structure character-

ized by a small (but non-vanishing) normalized plate stiffness-to-tension ratio was

developed. Additionally, an approximate solution was also presented. The significant

behavior observed was a local piston displacement of an actuated region, with an

internal layer the width of which was governed by the plate stiffness-to-tension ratio.

It was shown that for very low plate stiffness-to-tension ratios, the surface displace-

ment, or influence function, was step-like. It was further determined that for widely

discontinuous actuator spacings, such as which currently exist on the experimen-

tal prototype, linear superposition of solutions may be used due to non-intersecting

boundary layers.

With both experimental and analytical results in hand, the next phase of the

research addressed the perspectives of both the optical and structural engineer. For
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membrane mirrors, a clear aperture region must be defined in which Zernike surfaces

are formed to overcome the problem of incompatible boundary conditions that ex-

ist with a membrane mirror. A control strategy, coined the Modal Transformation

Method, was developed which provides an algebraic formulation of the Zernike sur-

faces in terms of statically-actuated physical mode shapes with a known error budget.

It was shown through numerical simulation that the in-plane actuated mirror when

controlled by the Modal Transformation Method was capable of achieving low-order

Zernike surfaces with high precision.

Finally, an investigation into the problem of scale resulted in three major find-

ings. First, from the examination of the scaled non-dimensional equation and demon-

strated through the finite element simulations, it was shown linear modelling may

correctly explain the behavior of small-scale models, but only non-linear models will

account for the important terms when the full scale structure is examined. Second, the

introduction of pellicle (the traditional pre-existing membrane) tension may dominate

the response of the surface deflections for a large-scale space telescope, and must be

carefully considered in the overall telescope design trade space. Last, a consequence

of unimorph versus traditional bimorph in-plane actuation strategies was established.

Unimorph, or one-sided, actuation of an in-plane actuated structure introduces stiff-

ening (or weakening) term that will impact the mirror’s structural response when it

is on the same order as an existing membrane pellicle tension field.

With the significant discoveries of this work thus identified, the focus is now on

recommendations for future work given the content of this dissertation.

8.2 Recommendations for Additional Research

An esteemed professor once said, “additional understanding of the problem is

always accompanied [by] additional questions [33].” For this investigation of mem-

brane optics, it is the progress in its understanding that brings to light the potential

for future research.
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8.2.1 Research Continuation. Based on the conclusions of this document

together with the understanding now developed, several issues require further inves-

tigation.

Membrane dynamics represent the next logical step in understanding the per-

formance capabilities of the in-plane actuated deformable mirror. At the heart of the

problem is acquiring a better understanding of the piezoelectric dynamic response

without the assumed quasi-static conditions. Presumably, hysteretic and non-linear

coupling of electromagnetic and elastic behavior will exist in the actuator, and its

impact is not fully understood for the optical scale problem. Less daunting is the

challenge of controlling the structural response to dynamic excitation. Additionally

the effects on wrinkling and other non-linear structural behavior require further ex-

ploration.

For the researcher investigating membrane optics, continued reliance on small-

scale test articles will be the norm, not the exception. From the scaling results

presented, future efforts should be made to try to magnify the non-linearities that

already exist, rather than accepting a linear model that generally seems to model the

observed behavior. As it is unlikely without further research in high-force piezoelectric

material that large deflections in small scale models will occur. Researchers should

instead seek to create sharp discontinuities in the applied voltage by using discrete

actuators. In the boundary layer created at the edge of actuators, the effect of the

non-linear terms would be amplified against which models could be verified which in

turn could be used to later simulate large-scale structures.

Another construct which could be investigated in small scale structures is the

piezoelectric effect unique to unimorph actuation. With voltage applied in one direc-

tion, it was shown that with unimorph actuation the piezoelectric tension serves to

stiffen the structure and attenuate surface deflections, while in the other direction the

structure is weakened. It is the weakened, or compressive state, that may hold the

key to achieving large deflections of an in-plane actuated mirror’s surface. Through
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further research it may be found that the unimorph construction technique, in addi-

tion to being a simpler construction than the bimorph, may also be preferred from

a performance standpoint, whereas in the literature the bimorph construction is nor-

mally recognized as the preferred actuation method due to its ease of mathematical

modelling.

8.2.2 System Level Investigations. Further areas of study will be required

for membrane optics to be successfully realized. Some of these areas are highlighted

below.

Developments are needed in the field of remote actuation of a piezoelectric

surface. The proposed electron gun actuation method has not been realized, and

merits renewed investigation given the potential of the in-plane actuated structure to

revolutionize the deformable mirror industry. Alternate methods for remote actuation

should be investigated, such as using lasers with MEMs photovoltaic converters or

silicon layered meshes, to produce the grid of fine electrodes.

The deployment of a membrane structure is also a problem for the structural

engineer. Folding the mirror compactly and unfurling it in a zero-g environment has

never been demonstrated, but is a steadfast requirement. Shaping the mirror from

flat to a curved parabolic structure should be possible based on the results herein, but

the attendant effects on changing from a 2-D (flat) structure to 3-D (doubly curved,

or spherical) structure have not been formally explored as they have for a pressurized

lenticular solution.

Additional challenges are associated with large focal length, low-weight optical

systems, which will require station-keeping on scales more stringent then even laser

communication or laser weapon systems. The space environmental effects on a mem-

brane mirror in low-earth orbit have also not been determined–especially the response

to solar drag and thermal disturbances.
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Appendix A. Error analysis and Least Squares Approximations

An understanding of the underlying norms in the linear space is essential when

conducting error analysis and finding least squares solutions. It may be helpful to

review these principles for situations encountered in this research.

The least squares approximation seeks to minimize the error between two func-

tions. To approximate an arbitrary square integrable function f , write another func-

tion g that is a linear combination of basis functions spanning a subspace of dimension

n of the domain of f :

g ≡ c1Φ1 + c2Φ2 + . . . + cnΦn =
n∑

j=1

cjΦj. (A.1)

Generically in one dimension the square of the 2-norm is minimized, where the

weighted 2-norm is defined by

‖f − g‖2 =
( ∫ b

a

w[f −
n∑

j=1

cjΦj]
2dx

) 1
2
. (A.2)

The coefficients cj may be shown to be minimized using the projection theorem,

cj =
n∑

j=1

(f, Φj)

(Φj, Φj)
(A.3)

If the domain is discretized by sampling at N points (N > n) with equal spacing ∆x,

the following system may be written:

f − g = f −
[
Φ1 Φ2 . . . Φn

]
c = f − [A]c. (A.4)

where the vectors are given by the notation v = {v1, v2, . . . , vN}T .

The discretized, non-square, system is approximated when the square of the

2-norm of the error is minimized, where the weighted 2-norm is given by
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‖f − g‖2 =
( N∑

i=1

wi[fi − gi]
2
) 1

2
(A.5)

using the pseudo-inverse, and the coefficient vector c is given by

c =
[A]T [W ]

([A]T [W ][A])−1
f (A.6)

where the weighting matrix is the diagonal matrix defined as

[W ] ≡




w1 0

0 w2

. . .

wN




(A.7)

However, although in both the functional and discrete case the appropriate 2-norm

of the error is minimized, the residual error is not necessarily the same, that is:

‖f − g‖2 6= ‖f − g‖2 (A.8)

To alleviate this condition, redefine the vector norm to the N-dimensional space

with “a scaling that provides for a continuous passage from a vector to a function

norm” [69]. This weighted discretized Euclidean norm depends the step size ∆x and

is given by

‖f − g‖∆ =
(
∆x

N∑
i=1

wi[fi − gi]
2
) 1

2
. (A.9)

It is therefore straightforward to see that the limit of the discretized Euclidean norm

approaches the functional 2-norm as the ∆x approaches zero. That is,

lim
∆x→0

‖f − g‖∆ =
( ∫ b

a

w[f − g]2dx
) 1

2
= ‖f − g‖2. (A.10)
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The results may readily be expanded to cylindrical coordinates with spacings ∆r

and ∆θ in the radial and azimuthal directions, respectively. In cylindrical coordinates,

the discrete Euclidean norm is

‖f − g‖∆ =
(
∆r∆θ

N∑
i=1

ri[fi(ri, θi)− gi(ri, θi)]
2
) 1

2
. (A.11)

Assuming a circular domain with unit radius, this limit of the vector norm as the step

size decreases is

lim
∆r,∆θ→0

‖f − g‖∆ =
( ∫ 2π

0

∫ 1

0

[f − g]2rdrdθ
) 1

2
= ‖f − g‖2. (A.12)

This result will give us a stable error term to use for comparisons with differing grid

sizes for instance. Compare this norm to the familiar Root Mean Square error, which

does not account for the weighting factor, and does not readily account differing grid

spaces on orthogonal axes within the vectors themselves:

ERMS ≡ 1

N

( N∑
i=1

[fi − gi]
2
) 1

2
. (A.13)
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Appendix B. Finite Element Model Input Deck

A sample of the MSC.Nastran input deck, or .bdf file, is included here for

reference.

This is the case for the AFIT deformable mirror in Chapter IV with properties

defined in Tables 4.2 and 4.3. In this example, the equivalent of 600 Volts is applied

to the center actuator. The edge tension is set according to Equation 4.2. The grid,

element, and temperature entries are not shown in their entirety.

ID MAJ SHEPHERD MEMBRANE NON-LINEAR STATIC ANALYSIS (CYLINDRICAL COORDINATES)

SOL 106 $NLSTATIC

TIME 100

CEND

LINE = 999

TITLE = CIRCULAR MEMBRANE

SUBTITLE = VARY TENSION

SPC = 10

DISPLACEMENT = ALL

STRESS = ALL

SUBCASE 1

NLPARM = 201

LOAD = 1000

SUBCASE 2

LOAD = 1000

NLPARM = 202

TEMPERATURE(LOAD) = 1003

TEMPERATURE(INITIAL) = 1004

BEGIN BULK

$ 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 .

$CORD2C CID RID A1 A2 A3 B1 B2 B3

$ C1 C2 C3

CORD2C 1 0. 0. 0. 0. 0. 1.

1. 0. 1.

$GRDSET CP CD PS

$GRDSET 1 1 2

GRID, 1 , 1, 0.00000, 0.0000, 0.0,1

GRID,9001 , 1, 0.06350, 355.0000, 0.0,1

FORCE , 1000 , 8930 , 1 , 0.9915, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8931 , 1 , 0.9643, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8932 , 1 , 0.9477, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8933 , 1 , 0.9420, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8934 , 1 , 0.9477, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8935 , 1 , 0.9643, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8936 , 1 , 0.9915, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8937 , 1 , 1.0284, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8938 , 1 , 1.0740, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8939 , 1 , 1.1267, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8940 , 1 , 1.1850, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8941 , 1 , 1.2472, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8942 , 1 , 1.3113, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8943 , 1 , 1.3754, 1.0 , 0.0 , 0.0
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FORCE , 1000 , 8944 , 1 , 1.4376, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8945 , 1 , 1.4960, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8946 , 1 , 1.5487, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8947 , 1 , 1.5942, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8948 , 1 , 1.6311, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8949 , 1 , 1.6583, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8950 , 1 , 1.6750, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8951 , 1 , 1.6806, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8952 , 1 , 1.6750, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8953 , 1 , 1.6583, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8954 , 1 , 1.6311, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8955 , 1 , 1.5942, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8956 , 1 , 1.5487, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8957 , 1 , 1.4960, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8958 , 1 , 1.4376, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8959 , 1 , 1.3754, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8960 , 1 , 1.3113, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8961 , 1 , 1.2472, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8962 , 1 , 1.1850, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8963 , 1 , 1.1267, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8964 , 1 , 1.0740, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8965 , 1 , 1.0284, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8966 , 1 , 0.9915, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8967 , 1 , 0.9643, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8968 , 1 , 0.9477, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8969 , 1 , 0.9420, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8970 , 1 , 0.9477, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8971 , 1 , 0.9643, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8972 , 1 , 0.9915, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8973 , 1 , 1.0284, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8974 , 1 , 1.0740, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8975 , 1 , 1.1267, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8976 , 1 , 1.1850, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8977 , 1 , 1.2472, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8978 , 1 , 1.3113, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8979 , 1 , 1.3754, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8980 , 1 , 1.4376, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8981 , 1 , 1.4960, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8982 , 1 , 1.5487, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8983 , 1 , 1.5942, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8984 , 1 , 1.6311, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8985 , 1 , 1.6583, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8986 , 1 , 1.6750, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8987 , 1 , 1.6806, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8988 , 1 , 1.6750, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8989 , 1 , 1.6583, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8990 , 1 , 1.6311, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8991 , 1 , 1.5942, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8992 , 1 , 1.5487, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8993 , 1 , 1.4960, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8994 , 1 , 1.4376, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8995 , 1 , 1.3754, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8996 , 1 , 1.3113, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8997 , 1 , 1.2472, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8998 , 1 , 1.1850, 1.0 , 0.0 , 0.0

FORCE , 1000 , 8999 , 1 , 1.1267, 1.0 , 0.0 , 0.0

FORCE , 1000 , 9000 , 1 , 1.0740, 1.0 , 0.0 , 0.0

FORCE , 1000 , 9001 , 1 , 1.0284, 1.0 , 0.0 , 0.0

$ 1 .. 2 .. 3 .. 4 ..

$TEMP .. SID .. G1 .. T1 ..
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TEMP 1003 1 11.54E6

TEMP 1003 1801 11.54E6

TEMP 1003 1802 0.00E6

TEMP 1003 9001 0.00E6

TEMPD 1003 0.0

TEMPD 1004 0.0

CTRIA3 1 400 1 2 3 0

CTRIA3 72 400 1 73 2 0

CQUAD4 73 400 2 74 75 3 0

CQUAD4 9000 401 8929 9001 8930 8858 0

PARAM COUPMASS-1

PARAM LGDISP 1

PARAM K6ROT 1.0E6

$EIGRL SID V1 V2 ND

EIGRL 200 20

$NLPARM ID NINC DT KMETHOD KSTEP MAXITER CONV

NLPARM 201 20 0.0 AUTO 9999 PWU

NLPARM 202 50 0.0 AUTO 9999 PWU

1E-3

$ 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 .

$PCOMP PID Z0 NSM SB FT TREF GE LAM

PCOMP 400 -.001552 0.0 0.2

$ MATID T

100 0.000052

$ MATID T

101 0.000500

$ MATID T

101 0.000500

$ MATID T

101 0.000500

PCOMP 401 -.001552 0.0 0.2

$ MATID T

99 0.000052

$ MATID T

101 0.000500

$ MATID T

101 0.000500

$ MATID T

101 0.000500

$MAT1 MID E G NU RHO A TREF

MAT1 99 4.00E9 0.300 1.78E3 0.0 0.0

$MAT2 MID G11 G12 G13 G22 G23 G33 RHO

$ A1 A2 A3 TREF GE

MAT2 100 4.40E9 1.32E9 0.00E9 4.40E9 0.00E9 1.54E9 1.78E3

-0.3E-11-2.3E-11 0.0E-11 0.0

MAT1 101 1.013E6 0.497 1020.0 0.0 0.0

ENDDATA
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Appendix C. Piezoelectric Moment Calculations

The purpose of this appendix is to provide an example calculation of the moment

strength, and show the equivalent representation of the moment forcing terms in the

polar-cylindrical and Cartesian coordinate systems. The methods may be applied to

the examples throughout the document.

C.1 Strength of Piezoelectric Moment

Begin by referencing Figure 3.3 and Equation 3.104. It is noted in this example,

the actuation layer is represented by the thickness hp and the inert substrate layer is

represented by the thickness hs. The actuating layer is below the inert layer as shown

in the figure. Equation 3.104 is repeated below as:

MP
1 =

Ep

1− νp

∫

Z

(
cos2 θd31 + sin2 θd32

)V3

hp

zdz (C.1)

Integrating for the limits shown in Figure 3.3 depend on the location of the neutral

axis. For this example, assume the neutral axis is for materials of the same Young’s

modulus and Poisson’s ratio (otherwise these procedures could be amended using the

techniques in Section 3.4.4). Equation 3.104 is re-written with the limits of integration

written explicitly:

MP
1 =

Ep

1− νp

∫ −(hs−hp)

2

−(hs+hp)

2

(
cos2 θd31 + sin2 θd32

)V3

hp

zdz +

∫ (hs+hp)

2

−(hs−hp)

2

0zdz. (C.2)

The second integral term has no value and indicates the integration through the inert

substrate layer. It will be subsequently dropped. To further simplify the expression,

assume the isotropic piezoelectric condition where d31 = d32, and note that none of the

material properties are assumed to vary in the z-direction. Thus rewrite Equation C.2

as
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MP
1 =

Ep

1− νp

d31
V3

hp

∫ −(hs−hp)

2

−(hs+hp)

2

zdz. (C.3)

Now perform the integration

MP
1 =

Ep

1− νp

d31
V3

hp

z2

2

∣∣∣
−(hs−hp)

2

−(hs+hp)

2

. (C.4)

Substitute for z in the above equation and simplify with the following steps.

MP
1 =

Ep

1− νp

d31
V3

hp

(( (hs−hp)

2
)2

2
− ( (hs+hp)

2
)2

2

)
, (C.5)

=
Ep

1− νp

d31
V3

hp

((
(h2

s−2hshp+h2
p)

4
)

2
− (

h2
s+2hshp+h2

p)

4
)

2

)
, (C.6)

=
Ep

1− νp

d31
V3

hp

((−4hshp

4
)

2

)
, (C.7)

= −1

2

Ep

1− νp

d31V3hs. (C.8)

As an example, values could be substituted into this equation. Using the values from

Table 5.3,

MP
1 = −1

2

4.0× 106

1− 0.3
(−2.3× 10−11)(192.4)100× 10−6H(r, θ) (C.9)

= 1.26× 10−3H(r, θ) (C.10)

where H(r, θ) represents the indicator function as in Equation 5.2. The final units for

MP
1 are Newtons (N), as previously indicated in Table 5.1.
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C.2 Transformation to Cartesian Coordinates

It may be desired, as it is in Chapter V, to relate the moment forcing function in

polar-cylindrical coordinates to the Cartesian coordinate system. This could be done

from first principles, as in the text by Nayfeh and Pai [94]. In this section, another

method is shown from the results of Chapter III.

That is, from Equation 3.146, it is desired to have an equivalent form of the

moment forcing in the Cartesian coordinate system. Specifically, one might question

if the following equation is valid:

−{ ∂2

∂r2
+

2

r

∂

∂r

}
MP

1 −
{ 1

r2

∂2

∂θ2
− 1

r

∂

∂r

}
MP

2 · · ·

− {2

r

∂2

∂r∂θ
+

2

r2

∂

∂θ

}
MP

6 = − ∂2

∂x2
MP

x −
∂2

∂y2
MP

y (C.11)

where

MP
x =

Ep

1− νp

∫

Z

d31
V3

hp

zdz (C.12)

MP
y =

Ep

1− νp

∫

Z

d32
V3

hp

zdz. (C.13)

For the isotropic case where d31 = d32 this is easily verified, as MP
1 = MP

2 ,

MP
6 = 0, and MP

x = MP
y . Equation C.11 therefore becomes

−{ ∂2

∂r2
+

2

r

∂

∂r

}
MP

1 −
{ 1

r2

∂2

∂θ2
− 1

r

∂

∂r

}
MP

1 = − ∂2

∂x2
MP

x −
∂2

∂y2
MP

x , (C.14)

−{ ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

}
MP

1 = − ∂2

∂x2
MP

x −
∂2

∂y2
MP

x , (C.15)

−∇2MP
1 = −∇2MP

x . (C.16)
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In Equation C.16, the Laplacian operator is substituted appropriately. Recognizing

that for the isotropic case MP
1 = MP

x , it is therefore shown the polar cylindrical and

Cartesian formulations are equivalent.

For the non-isotropic case where d31 6= d32, a straightforward explanation is

more tedious. To show formally, the derivatives of Equation C.11 must be expanded

using the chain rule since MP
1 , MP

2 ,MP
6 are functions of r and θ (it is noted the V3

component is a function V3(r, θ, z) in Equation 3.104 through 3.106). For example

∂

∂θ
MP

1 =
∂

∂θ

( Ep

1− νp

∫

Z

(
cos2 θd31 + sin2 θd32

)V3

hp

zdz
)

(C.17)

=
Ep

1− νp

1

hp

∫

Z

zdz
∂

∂θ

((
cos2 θd31 + sin2 θd32

)
V3

)
(C.18)

=
Ep

1− νp

1

hp

∫

Z

zdz
( ∂

∂θ

(
cos2 θd31 + sin2 θd32

)V3

hp

+ . . .

(
cos2 θd31 + sin2 θd32

) ∂

∂θ
V3

)
. (C.19)

After performing all the derivative operations on the terms on the left hand side of

Equation C.11, one will be left with

− { ∂2

∂r2
+

2

r

∂

∂r

}
MP

1 −
{ 1

r2

∂2

∂θ2
− 1

r

∂

∂r

}
MP

2 · · ·

− {2

r

∂2

∂r∂θ
+

2

r2

∂

∂θ

}
MP

6 = . . .

− Ep

1− νp

d31

hp

∫

Z

zdz
(
cos2 θ

∂2

∂r2
− 2 sin θ cos θ

r

∂2

∂r∂θ
. . .

+
2 sin θ cos θ

r2

∂

∂θ
+

sin2 θ

r

∂

∂r
+

sin2 θ

r2

∂2

∂θ2

)
V3 . . .

− Ep

1− νp

d32

hp

∫

Z

zdz
(
sin2 θ

∂2

∂r2
+

2 sin θ cos θ

r

∂2

∂r∂θ
. . .

− 2 sin θ cos θ

r2

∂

∂θ
+

cos2 θ

r

∂

∂r
+

cos2 θ

r2

∂2

∂θ2

)
V3. (C.20)
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Note that the terms in the parentheses on the right hand side of Equation C.20

indicate linear operators acting on V3. Recognizing these linear operators are exactly

the linear operators for ∂2

∂x2 and ∂2

∂y2 [121, pp. 111-112] expressed in polar-cylindrical

coordinates, Equation C.20 simplifies to

− { ∂2

∂r2
+

2

r

∂

∂r

}
MP

1 −
{ 1

r2

∂2

∂θ2
− 1

r

∂

∂r

}
MP

2 · · ·

− {2

r

∂2

∂r∂θ
+

2

r2

∂

∂θ

}
MP

6 =

− Ep

1− νp

d31

hp

∫

Z

zdz
∂2

∂x2
V3 − Ep

1− νp

d32

hp

∫

Z

zdz
∂2

∂y2
V3 (C.21)

As the constant values with respect to x and y may be brought inside the deriva-

tive operations, Equation C.21 may simply be re-written as Equation C.11, thus

demonstrating the equivalence of the expressions in the polar-cylindrical and Carte-

sian coordinate systems.
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Appendix D. Wavescope Information

The purpose of this appendix is to document two issues when using the Wavescope

wavefront sensor to obtain data. The Wavescope uses Shack-Hartmann sensing to col-

lect data on an aberrated wavefront, as is any introductory optics text book such as

the text by Goodman [54]. Using the 42 coefficients (ci) provided by the Wavefront

sensor, the aberrated wavefront is given by the equation:

w(r, θ) =
42∑
i=1

ciZi. (D.1)

The Zernike polynomials in this summation are the “Wavescope Zernikes” iden-

tified by index in Table D.1.

The first issue is that the normalization coefficient is included in the Wavescope

Zernike coefficients and must not be reapplied.

The second issue is in how the angle is measured for applying the Wavescope

Zernike data. Given the Zernike coefficients, the appropriate angle is measured clock-

wise from the 12 o’clock position. Figure D.1 graphically depicts this angle as the

traditional Zernike angle, θZ . The reader may be more comfortable with the right

hand coordinate system with measurement of angle here termed the mathematical

angle, θM . Finally note, this angle may not be consistent depending on software

version.

The following equation converts mathematical angle traditional Zernike angle

and vice versa.

θZ = −θM + 90 (D.2)

θM = −θZ − 90 (D.3)
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Figure D.1: Angle for Zernike polynomial: (a) Traditional, (b) Mathematical.

Table D.1: Wavescope polynomials compared to other numbering schemes.
Wave-
scope
Index

Noll’s
Index

Tradi-
tional
Index

m n m+n Normal-
ization

Polynomial

0 1 1 0 0 0 0 1 (Piston)
1 2 3 1 1 2 2 rcos(θ) (XTilt)
2 3 2 1 1 2 2 rsin(θ) (Y Tilt)

3 4 5 0 2 2
√

3 2r2 − 1 (Focus)

4 6 6 2 2 4
√

6 r2cos(2θ) (0Astigmatism)

5 5 4 2 2 4
√

6 r2sin(2θ) (45Astigmatism)

6 8 9 1 3 4
√

8 (3r2 − 2)rcos(θ) (XComa)

7 7 8 1 3 4
√

8 (3r2 − 2)rsin(θ) (Y Coma)

8 11 13 0 4 4
√

5 6r4 − 6r2 + 1 (Spherical)

9 10 10 3 3 6
√

8 r3cos(3θ)

10 9 7 3 3 6
√

8 r3sin(3θ)

11 12 14 2 4 6
√

10 (4r2 − 3)r2cos(2θ)

12 13 12 2 4 6
√

10 (4r2 − 3)r2sin(2θ)

13 16 19 1 5 6
√

12 (10r4 − 12r2 + 3)rcos(θ)

14 17 18 1 5 6
√

12 (10r4 − 12r2 + 3)rsin(θ)

15 22 25 0 6 6
√

7 20r6 − 30r4 + 12r2 − 1

16 14 15 4 4 8
√

10 r4cos(4θ)

17 15 11 4 4 8
√

10 r4sin(4θ)

18 18 20 3 5 8
√

12 (5r2 − 4)r3cos(3θ)

19 19 17 3 5 8
√

12 (5r2 − 4)r3sin(3θ)

20 24 26 2 6 8
√

14 (15r4 − 20r2 + 6)r2cos(2θ)

21 23 24 2 6 8
√

14 (15r4 − 20r2 + 6)r2sin(2θ)

22 30 33 1 7 8 4 (35r6 − 60r4 + 30r2 − 4)rcos(θ)

23 29 32 1 7 8 4 (35r6 − 60r4 + 30r2 − 4)rsin(θ)

24 37 41 0 8 8 3 70r8 − 140r6 + 90r4 − 20r2 + 1

25 20 21 5 5 10
√

12 r5cos(5θ)

26 21 16 5 5 10
√

12 r5sin(5θ)

27 26 27 4 6 10
√

14 (6r2 − 5)r4cos(4θ)

28 25 23 4 6 10
√

14 (6r2 − 5)r4sin(4θ)

29 32 34 3 7 10 4 (21r4 − 30r2 + 10)r3cos(3θ)

30 31 31 3 7 10 4 (21r4 − 30r2 + 10)r3sin(3θ)

31 38 42 2 8 10
√

18 (56r6 − 105r4 + 60r2 − 10)r2cos(2θ)

32 39 40 2 8 10
√

18 (56r6 − 105r4 + 60r2 − 10)r2sin(2θ)

33 46 51 1 9 10
√

20 (126r8 − 280r6 + 210r4 − 60r2 + 5)rcos(θ)

34 47 50 1 9 10
√

20 (126r8 − 280r6 + 210r4 − 60r2 + 5)rsin(θ)

35 56 61 0 10 10
√

11 252r10 − 630r8 + 560r6 − 210r4 + 30r2 − 1

36 28 28 6 6 12
√

14 r6cos(6θ)

37 27 22 6 6 12
√

14 r6sin(6θ)

38 34 35 5 7 12 4 (7r2 − 6)r5cos(5θ)

39 33 30 5 7 12 4 (7r2 − 6)r5sin(5θ)

40 79 85 0 12 12
√

13 924r12 − 2772r10 + 3150r8 − 1680r6 + 420r4 − 42r2 + 1

41 36 36 7 7 14 4 r7cos(7θ)

42 35 29 7 7 14 4 r7sin(7θ)
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This research focused on lightweight, in-plane actuated, deformable mirrors, with the ultimate goal of developing a 20-
meter light gathering aperture for space telescopes. The 0.127 meter diameter deformable mirror small scale testbed was
modelled in finite elements using MSC.Nastran software and then used as a basis for a quasi-static controller. Experi-
mental tracking of Zernike tip, tilt, and defocus modes was accomplished. The analytical solutions to plate-membrane
and beam-string ordinary differential equations were developed. A simplified approach to modelling the axisymmetric
cases was also presented. A novel static control strategy, the Modal Transformation Method, was developed to form
Zernike surfaces within an interior, or clear aperture, region using a number of statically-actuated Bessel-based vibration
modes. The scaling problem for membrane optics is addressed. Significantly, it is shown linear modelling may correctly
explain the behavior of small-scale models, but only non-linear models will account for the important terms which govern
the full-scale large aperture membrane telescopes.

deformable mirror, piezoelectric, membrane optics, adaptive optics, Zernike polynomial, plate-membrane, space telescope

U U U UU 238

Dr. Richard G. Cobb

(937) 255–3636, ext 4559


	Lightweight In-Plane Actuated Deformable Mirrors for Space Telescopes
	Recommended Citation

	tmp.1592327735.pdf.06XmD

