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AFIT/DS/ENG/06-01

Abstract

This research uses a Bayesian framework to develop probability idsrfsit target
detection system performance metrics. The metrics include the reopemting
characteristic (ROC) curve and the confidence error generation (CEG) clineeROC
curve is a discrimination metric that quantifies how well a detectioregysieparates
targets and non-targets, and the CEG curve indicates how well the detgctiem
estimates its own confidence. The degree of uncertainty in thesesnista concern that
previous research has not adequately addressed. This research faprdatbility
densities of the metrics and characterizes their uncertainty using enoéidands.
Additional statistics are obtained that verify the accuracy of the dentie bands.
Methods for the generation and characterization of the probability densitibe
metrics are specified and demonstrated, where the initial analysisysry@ta densities
to model target and non-target samples of detection system output. For giyenasad
non-target data, given functional forms of the data densities (such as beiiy f@nss),
and given prior densities of the form parameters, the methods developeprbeide
exact performance metric probability densities. Computational sesafhpare
favorably with existing approaches in cases where they can be appliether cases the

methods developed here produce results that existing approaches can not address.

Xii



UNCERTAINTY ESTIMATION FOR TARGET DETECTION SYSTEM
DISCRIMINATION AND CONFIDENCE PERFORMANCE METRICS

1. Introduction

This chapter introduces target detection systems and metrics that enaetteir
performance, reviews existing research on these metrics, sur@sndnie contributions of

this research, and presents the dissertation organization.

1.1 Target detection systems

Decision systems accept input data and generate decision output(s). Exarigades
artificial intelligence, speech processing systems, medical didagisgstems, and target
detection systems. Typically, decision systems make estimatesisfatesuitability, but
do not declare unequivocally that a particular output or action is proper (see

[Ross and Minardi, 2004]). A target detection system under test (SUT), thaaeci
system of interest in this research, attempts to estimate the pribp#iak given input(s)
contain a target. The inputs are often images, e.g., from syntheticepeatiar (SAR),
although the results of this research extend to other types of inputs. Tankeyissul
explosive devices (IEDs), and vehicles containing explosives are samgpées of

targets.

Estimates of target probability are referred to as scores (see pede 2004]). By
selecting a threshold score value, all scores greater than anceatae may be declared
targets and all scores less than the selected value may be declaredgeia- Thus, the
estimates of probabilities may be transferred from a continuous domairet@ gés/no

binary decision on whether or not the input(s) contains a target. To underbtand t

1-1



usefulness of score values and the related varying thresholds, considsremarios,
labeled A and B.

In scenario A, SUT A attempts to detect a vehicle containing explogizss a
significant distance (two miles) away from a military checkpoint andhell¢his vehicle
as "target". The outcome of a target declaration for this scenatte isaising of barriers
and the temporary isolation of the vehicle at a point one-half mile away from the
checkpoint so that if, indeed, the vehicle contains explosives, it will npastheither the
checkpoint or other nearby vehicles. Once isolated, a more robust stationaitpring
system is used to examine the vehicle. Here, a threshold whichg@sal declaration of
"target” that stops vehicles with explosives but that also stops mangleshithout
explosives may be acceptable. A vehicle without explosives that is inadwy
declared a "target" will not be damaged, but will be delayed moment&oalythis
example, a threshold that often generates false alarms in thafdrde a vehicle without

explosives a "target” is appropriate.

In scenario B, SUT B monitors vehicles that approach a business didtritiis case, it
is impractical to raise barriers. However, a weapon that destheygehicle engine is
available. If a declaration of "target" is made, then the weapon willdesl, otherwise
additional sensors will continue to monitor the vehicle. It is easy tdlsstehe threshold
selected in this scenario may need to be much higher than the thresholshafisde so

that few false alarms are generated, even if the scores provided biJfredse identical.

1.2 Detection system performance metrics

There are two desirable properties of score output from a SUT. The first praper
discrimination. Discrimination refers to the ability of an SUT tosddy target events as
target labels and non-target events as non-target labels. This capdialtges
depending on the selection of threshold. For a selected threshold, the prglbilit

improperly declaring a non-target event as a target label is referiasi"false alarm

1-2



probability”. Similarly, the probability of correctly declaring a targeent as a target
label will be referred to here as "correct detection probability”. The gaemf the
adjective "correct" here is to emphasize the usage of "correct detectibalplity” to
describe the probability of correctly declaring a target to be a targatal#&rnative is for
"correct detection probability” to denote the probability of corredlydling an event
regardless of whether the event is target or non-tatigestalternative is not used here.
Note that "false alarm probability” and "correct detection probabilitgyrbe replaced
by various synonomous descriptiosge the discussion in Section 2.2. The second
property is accuracy or relevance and refers to whether or not the estwhatebability
that are provided by a SUT are accurate. Both properties are importarit/ies S
methods that assist in evaluation of the performance of SUTs with régareth

properties are now introduced.

If the behavior of an SUT over a varying threshold is known, then the discrimimat
property can be described by a plot of correct detection probability versesdialsn
probability. This plot is called a receiver operating characterist@@rcurve. For
example, consider signals sent from a transmitter to a receiver. etee/er attempts to
distinguish "signal” from "noise". The receiver does not know for a seddatee sample
whether or not a signal has been sent but does measure the amplitude of a dexdodulat
signal at that time. The receiver must choose some threshold value (e.g. 0B90.5,
etc.), to declare signadll values greater than the threshold are declared signal and all
values less than the threshold are declared "non-signal”. For a partioshold, there
is a correct detection probability: among all signals sent, correcttit@tgarobability is
the percentage declared as signal. Similarly, for a particulashbid, there is a false
alarm probability: among all non-signals sent, false alarm probabilityeipéncentage
declared as signal. A particular threshold might result in a high codegtection
probability but also a high false alarm probabiigelection of a different threshold might

reduce false alarm probability but also reduce correct detection probabilit
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The ROC curve described here is formed by varying a single threshold of scopare Fi
1.1 shows a score-threshold ROC curve and its generation from target andgein-ta
probability densities of score (hereafter "probability density" isrofienply "density").

It is possible to form ROC curves that use multiple thresholds of score, e.gt igarge
declared between two thresholds, and non-target is declared otheSusa.ROC
curves may be generated by thresholding the likelihood ratio, which is tiweofatrget

to non-target probability density, as described in the next chapter.

The ROC curve is useful because it provides a tool to examine the trade-offrectt
detection probability and false alarm probability. In particular, theCR@Drve assists in

understanding the relative impact of accepting a higher or lower falsa glarbability.

1.3 Discrimination metrics versus confidence metrics

The ROC curve quantifies the discrimination capability of a Std& accuracy (or
relevance) of estimates of target probability (such estimates aeedfto as scores) is of
parallel importance to discrimination. In an ideal SUT, the esésmare without error
that is, every provided score is an accurate indication of the probalfiliigtaining a
target given the score. In actual SUTSs, estimates of probability magitdesignificantly
from actual probability. A system that produces an estimate of probabititghwis very
accurate is one that maintains a high degree of "confidence" in results.tfudsrm
"confidence" is used to describe the relation of an actual SUT to anSdéRin
accuracy (or relevance).” Just as the ROC curve characterizesrdisation, the
performance of a SUT over all scores can be characterized by a plot of thé ity m
obtaining a target given a particular score versus score. This ploiési@tonfidence

error generation (CEG) curve.

Both the ROC curve and CEG curve are useful tools for comparing SUTSs, thereby
determining which SUTs are most appropriate for a particular purposeila8yyboth

the ROC curve and CEG curve may be evaluated for a single SUT to detewhather

1-4
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Figure 1.1 Target and non-target densities and the ROC curve performatmie rae
ROC curve quantifies the tradeoff in performance between probability of
correct detection and probability of false alarm as a decision tolegsh
changed. The ROC curve has correct detection probability y = 0 for false
alarm probability x =0 and it has y = 1 for x = 1. In the left plot the solid
curve is the probability density of target, the dotted curve is the probabilit
density of non-target, and both densities are functions of score. To obtain a
score-threshold ROC curve, a threshold is swept across the domain of pos-
sible scores from a SUT. For example, at a selected threshold score 0.57,
every score greater than 0.57 is regarded as target, and everyesthkdn
0.57 is regarded as non-target. Increasing the threshold leads to a reduced
false alarm probability and also a reduced correct detection protyabili
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or not the SUT is appropriate for a particular purpose. A system that evahra®dT
through the use of performance metrics (such as ROC curves and CEG dsiredsjred

to as a Performance Evaluation System. Note that the term metric ieretieea
description or characterization of performance or efficiefitig meaning is consistent

with recent use of the term metric for software development [Thing, 2082]saalso
consistent with recent use of the term metric specific to detectidarayserformance
evaluation. For example, the objective of a recent workshop sponsored by the Defense
Advanced Research Projects Agency (DARPA), National Institutearidtrds and
Technology (NIST), and the Institute of Electrical and Electronics Ermgs\@EEE), was

to define measures and methodologies for evaluating the performance ofjertelli
systems, and it was entitled "Performance Metrics for Intelliggste&ns Workshop
[Messina and Meystel, 2004]. But, mathematically, the term metaaéesal-valued

function defined on a pair of objects, with specific properties. We applyotimed] usage

of this term the entire ROC curve and CEG curve are single comparable descriptions of
the overall performance capability of a SUT. Note that the terms "ure&s

[Ross and Minardi, 2004] and "quantifier" [Schubetrtl.,, 2005] could also be

appropriate.

1.4 Evaluation of a system under test

Figure 1.2 shows the relation of the SUT, performance evaluation systeiormpance
metrics (such as the ROC curve and CEG curve), test image inputs, anddtat To
appropriately develop the ROC curve and CEG curve and thus charactefize SU
usefulness for a particular purpose, large amounts of test data are des$iezd for this
data the true state (target or non-target) of the output scores is known. elpaeoh
large amounts of test data are typically unavailable or are costly ordomsuming to
obtain. As a result, the ability to quantify the uncertainty in the ROCeand CEG
curve performance for limited sets of data is important. If such uacgytestimates are

available, then the range of possible values of the curves given large ambdata
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Figure 1.2  Evaluation of a system under test (SUT). The SUT receivest artage
and assigns it a score between 0 and 1. A score near one indicates high
probability that the test image contains a target, and a score approaching
zero indicates a low probability that the test image contains a targete Onc
the SUT issues a set of scores, a performance evaluation system cempare
the scores with truth data. The truth data indicates true stateg#ttar
non-target in the test image, but does not refer to the entire teseinfagr-
formance metrics such as the receiver operating characteristiC)(B@ve
and the confidence error generation (CEG) curve are then used to quantify
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understood, and acceptable quantification of SUT performance may be possible wi
limited sets of data. In some cases uncertainty estimates mayleadnformed
decision that more data is needed. In other cases, the decision may b&tihia

suitable for a particular task.

In contrast to current methods for uncertainty estimation, the methods deddiepe
estimate the probability density of a ROC curve based on a Bayesiaaitank that

fully incorporates available information. The Bayesian development jprecates, by
definition, all that is known or assumed about the sample score data, the prgbabilit
density forms for target and non-target scores, and the prior probabilitytigsredi the
parameters in these forms. For a given set of target samples and non-aangéts
assumed sample density models, and prior densities of parametersstbeleone
probability density of the ROC curve. The Bayesian formalism permits thergigme of
this unique ROC curve probability densityescriptive statistics such as the median ROC
curve and ROC curve confidence intervals may then be developed, if desiradhis
probability density. Non-Bayesian methods either do not fully account for what is
known about the data models and prior densities or can only account for this kigewled
in an ad hoc manner. The Bayesian probability density of the ROC curve is a full
account and is extended in this research to uncertainty estimation of the@e. The
results shown here demonstrate improved uncertainty estimation metnabds ROC

curve and initiate uncertainty estimation methods for the CEG curve.

1.5 Existing research on performance metric uncertainty

There are existing methods that estimate ROC curve uncertainty. ldovlegse
methods typically make unacceptable assumptifmrsexample, "binormal” methods
assume that the target and non-target score densities are either nomagl lbe made
normal after transformation and generally assume that the probabiliytaining a

target increases as score increases. "Bootstrap” methods do notunhlessumptions
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but are inaccurate for relatively small sample size. Still othethows, such as
"binomial" methods, may be suitable for estimating the uncertaintyrirecbdetection
probability and false alarm probability at a selected threshold but ar@ppobpriate for

estimates of the ROC curve over all thresholds.

Figure 1.3 shows a comparison of confidence band results obtained by the method
developed here to the most prevalent method in the literature [¢letlz 1998]. The

solid curve in the figure shows the true ROC curve, which is deterrafistause it is
generated by the target and non-target densities from which the scqoeesare drawn.

A 95% confidence band based on an observed set of 30 target and 30 non-target score
samples is shown for the method developed here. The Metz method (which is adlinorm
approach) produces a 95% confidence band that is wider and therefore less iM®rmati
than the band for the method developed here, assuming that the methogddvstoe is
accurate with respect to the assumed density forms and the prior den$p@rameters.
Chapter 3 considers the analytical justification for the method developeddret

Chapters 4 and 5 demonstrate its accuracy. Chapter 2 examines the Mtz 1sued

other ROC curve confidence interval methods in detail. The method develoged her
performs favorably in comparison with the other methods (where suitable czop#s
possible). More importantly, the method developed here shows the vialjiatfiexible
Bayesian framework and enables the development of alternativaptescstatistics

(such as initially considered in [Parkeral, 2005a, 2005b]). The method is directly
applicable to other metrics, such as the CEG curve (the CEG curvéaiteden Section

2.3, see also [Parkest al, 2005c]). This framework permits changes in model

assumptionghe Metz method and most other approaches do not allow such changes.

1.6 Summary of contributions of this research

The research reported here uses a Bayesian framework to chamtterimcertainty of

target detection performance metrics. The result is an improved unugirsjaand
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Figure 1.3 Comparison of method developed here with the method of Metz
[Metz et al, 1998]. Here 30 target and 30 non-target samples are drawn
from beta densities with target mean 0.715, target standard deviation 0.01,
non-target mean 0.715, and non-target standard deviation;l@d&olid
line is the true ROC curve. Note that the Metz ROC curve 95% confidence
band is extremely wide (and uninformative) compared to the 95% confidence
band obtained using the method developed here. The software package
"ROCKIT" is used to generate the confidence intervals for the method of
Metz.
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guantification of ROC curve and CEG curve uncertainty for target deteafiphcations.
The framework develops ROC or CEG curve probability densities, which coetple
describe curve uncertainty for given samples of target and non-target szssas)ed
density forms for these scores, and assumed prior densities of the pasathatespecify
these forms. From the ROC or CEG curve densities, a transition toijpsestatistics,
such as median curves or 90% confidence intervals, is made. The foakisviully
Bayesian and for the given samples, density forms, and prior pazadetsities it

provides exact performance metric probability densities.

The framework is also numerically tractable, and the calculated ROC&G curve
densities yield substantial improvements over existing ROC curve tanugrestimation
methods. These improvements are emphasized qualitatively in thdichidn of
fundamental weaknesses inherent in existing ROC curve uncertaintyagetirmethods
in addition, quantitative comparisons are made which verify that theoapp developed
here compares favorably with previous approaches. Further, the uncersintgteon
process is shown to seamlessly transition to the CEG curve, acrti@tipreviously has
been of limited use due to a lack of appropriate methods for estimatingdtsrtainty,
especially for limited amounts of data. From the framework developed G&®,curve
uncertainty estimates can now be robustly understood and obtained even for |la@msum
of samples. Thus, for the CEG curve, the research presented here fiesraufabust
method for uncertainty estimation where alternatives do not;dristhe ROC curve the
research presented here offers a significantly improved method aftaimtg estimation
for which the alternatives are limited by inability to handle low numbersaaiges

and/or by restrictive model assumptions.

1.7 Organization of this dissertation

Chapter 2 provides background on the uncertainty estimation problem considezed her

provides a review of the literature, and identifies weaknesses in existcgytainty
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estimation methods for ROC and CEG curves. Chapter 3 describes andoddvetb
analytical expressions and numerical approximations for the ROC curve propabili
density. This ROC curve density is then used in Chapter 4 to obtain ang verif
descriptive statistics, such as median ROC curves and 90% confidenwalsteChapter
5 provides quantitative comparisons of the method developed here to previdusiset
of confidence interval estimation. Chapter 6 summarizes accomplishnrmehts a

contributions and identifies areas of interest for future work.
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2. Background

Performance metrics such as the ROC curve quantify the capabilityaojet idetection
system to distinguish between target and non-target inputs. Other perfogmestrics
such as the CEG curve examine the relevance of the detection systensoufpig
research develops improved methods for estimating the uncertairitgs# tmetrics and
many other types of target detection performance metrics. Since acR@Efor one
target detection system under test (SUT) may be compared to a ROC cuavedcond
SUT, the ROC curve and CEG curves are referred to here as mettiesgth the curves

are not scalar values.

As discussed in the introduction, the outputs of a target detection SUT acaltypi
estimates of the probability of target. Such estimates are refeyr@siposterior
probability estimates and are critical in appropriate decision makag (s

[Bishop, 1995]). For example, the speech processing community often restkestes
through the use of cross-entropy (see relation of speech processingjtezhto the
target detection field by [Ross and Minardi, 2004]). A speech processor ltypica
examines a portion of observed input speech and attempts to match this ittfput wi
plausible phonetic sounds. The processor does not declare with absolute wéntiat
portion of observed speech is a particular squnmivever, it estimates the probability of
a sound or group of sounds. Then, when groups of adjacent input speech are examined,
the estimates of probability are used to formulate words, phrases, aetdsesnt Similar
to the speech processor example, a SUT does not declare a target withtg&dai

instead estimates the probability that given input(s) contain a target.

Specific to the focus here on target detection, development and use of the GEG cur
performance metric by the Sensors Directorate of the Air Force Réskaboratory
motivates this research (see [Ross and Minardi, 2004] and [®Viak 2004]) in that

CEG curve uncertainty was not well characterized. Thus, the methodbged here
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are first applied to the ROC curve and are then are used to estirB@edve

uncertainty. However, existing approaches to ROC curve estimationatequate,
particularly when low numbers of inputs are available and when normabtynagtions

are invalid these conditions are both common constraints for target detection systems.
The methods developed here show improved results compared to existinguR@C ¢
uncertainty estimation approaches and are, in fact, optimal (selei$2cd and method
development in Chapter 3). The results of this research also benefit theangke of

fields that use ROC curves (e.g., medical decision making, machine learning).

2.1 Target detection systems and their performance evaluation

Figure 1.2 in Chapter 1 shows the relation between a test input, the SUT rfbenmsnce
evaluation system, and performance metrics. (Note that althougt iani@ge is used as
an example, the process also directly applies to other types of test inpatséach test
image the SUT outputs a score between zero and one. This score providamatessit
the probability that the image contains a target. A score of one estimatebability of
one that the image contains at least one target, and a score of zero estimatieability
of one that the image does not contain a target. The performance evaluatEm sys
knows truth for test casethat is, whether an image actually contains a target or not. The
performance evaluation system has two input types, the scores for margsifnag the
SUT and the truth (target or non-target) associated with each imagrgoriance
metrics such as the ROC curve and the CEG curve are outputs of the performance
evaluation system. The area under the ROC curve (AUC) value and the @&& ¢
summary metric of root square deviation (RSD) value are also consideredy A k
distinction is that the ROC curve and AUC value describe how well asyst@ble to
discriminate between target and non-target without regard to whetinet thie scores
are accurate estimates of the probability of target, whereas the Giw€ &nd RSD value

are metrics that describe such accuracy (or relevance) [Ross ancidM2@04].
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2.2 ROC curves and AUC values

The ROC curve (see [Lusted, 1971] and [Swets, 1988]) is a plot of probabiligroéct
detection versus probability of false alarm based on a varying thre&iradigtection.
Figure 1.1 of Chapter 1 shows such a ptats figure also demonstrates the calculation of
probability of correct detection and probability of false alarm for a singkecsed
threshold. The ROC curve quantifies the trade-off in performance betvoeeatt
detection probabilityy) and false alarm probability:} as a decision threshold) (s
changed (see [Alsing, 2000]). The ROC curve derives its nagcejveroperating
characteristic, from its original application, which focused on radioiegfbns
[Wickens, 2002]. Beginning with its original application in the 1950s, it has losed in
many other applications, such as the target detection performance thatris the focus
of this research, medical decision making (e.g. quantifying the probability cleasie
occurring given a biological markesee [Hanley, 1999]), and machine learning (see

[Macskassy and Provost, 2004]).
Three formal definitions related to the ROC curve are as follows.

(1) Let E be the population set of test images, where the test images either cantain
target (target images) or do not contain a target (non-target images)d Basa
estimate of whether each image E actually has a target, an SUT produces a data
scored, whered € D = [0, 1]. Thus, the SUT mapg to D denoted byf °%' D. Let®
= [0,1]. Foreacl¥ € O, letay be a classifier mappind into a label sef. denoted by
D %% L whereL ={target declaration, non-target declaration}. Thus, the classifier
system isk/ UI'D “ I. For any element € F,d € D, andl € L, choice off specifies

the classifier, and Equation (2.1) specifies the label for the score-thdesletthod:

target declarationd >= 0
l= : (2.1)
non-target declarationt < 0



Thethreshold for detectiors ¢, wheret is a specified. The above is adapted from
Schubert, Oxley, Bauer [Schubettal.,, 2005], who provide a similar classifier definition
but with application to a more general classifier system, rather thasttre-threshold

application of interest here.

(2) Let Exagerbe the subset of all € £ that contain target images. LByget C D be the
subset of altl € D corresponding WittEiager Lets € (-00, 00). Letg(s) be the target
score probability density formed by dlkarge;s Wheres is a scalar random variable. The

correct detection probabilitys

r = @(t) = /toog(s)ds. (2.2)

(3) Let Eon-targetbe the subset of all € E' that contain non-target images. Let
Dion-targetC D be the subset of all € D for Enontarget L€ts € (<00, 00). Let f(s) be
the non-target score probability density formed byl2db.target SPecifyt € (-oo, 00).
For the score-threshold method described by Equation (2.%)-Hét Thefalse alarm
probability is N

y=F) = [ reas 2.9

Typically a threshold for detection (or simply, threshold) is appliedezito score or
likelihood ratio, where the likelihood ratio is the target probabilitysigy divided by the
non-target probability density. The threshold of interest here and desanitieel above
definitions is score-threshold (as described in Equation (2.1)), becausantiaeyp
objective is to use ROC curves and AUC values (and other performancesh&s
qguantify whether a SUT is performing optimally, rather than to use the BR@&s and
AUC values to optimize SUT performance. If the threshold for detectioatiatszero
(i.e., all score values are declared as targets), 100% of targetstactede but this choice
also results in a probability of false alarm equal to one. If the thresloolddtection is

set at one, no false alarms occur, but the probability of correct dmtastzero. An ideal
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ROC curve has a correct detection probability that equals one falsd &larm
probability greater than zero. Thus, an ideal ROC curve has an AUC valuegihals
one, whereas a non-discriminating ROC curve has an AUC value that €gbal$he
AUC value is the integral from 0 to 1 of correct detection probabijigs a function of
false alarm probability:. The ROC curve is the set

{(z,y) € [0,1]x[0, 1]|y = r(z)Vz € [0,1]}. If ris the function that generates the ROC

curve, so thay = r(z), then

AUC’(T):/O r(z)dx. (2.4)

The research here focuses on this score-threshold ROC curve. Howes#graative
method, which is not desirable for comparison of multiple SUTs by an evaluator
(assuming that the evaluator only has access to scores provided by the Bid Tisqt
can be a desirable tool for SUT improvements, uses maximum likelihoodhgia t
Neyman-Pearson Lemmsee [Scharf, 1991]) to develop the ROC curve. A
likelihood-ratio-threshold ROC curve (see [VanTrees, 1968] andd8¢1991)), is
generated by thresholding the ratio of the target and non-target dereitteis
consequently convex (this curve has a negative second derivative abésschlarm
probability). A likelihood-ratio-threshold ROC curve allows multiplesgive (i.e.,
target) decision regions across the range of possible score values, whereas a
score-threshold ROC curve allows only one positive decision region (see
[VanTrees, 1968], [Shanmugan and Breipohl, 1988], [Barkat, 1991], and [Scharf)1991]
Figure 2.1 compares the procedures for generating a score-threshold ROGrudieve
likelihood-based ROC curve. The score-threshold ROC curve always hdd@wa#ue
equal to or less than the likelihood-ratio-threshold ROC curve, assuminthéhat
likelihoods are accurately known when designing the detection system.tiNatehile

the target and non-target densities are of beta density form in the examplia tised

2-5



figure, this property holds for any probability density (e.g. Gaussian, betaymiat

beta, etc.).

To understand the rationale for using score threshold, consider a systentasidiat
declares a score of "0" for all targets and a score of "1" for all non-tardgsitece the
scores provided by a SUT are estimates of the probability that the evaloetgd is a
target, this performance is obviously poor. The corresponding score-thresB@ld R
curve has an AUC of zero, affirming that the system is performing poorlyomtrast, a
likelihood-ratio-threshold-ROC curve estimated ROC has an AUC of omels &
likelihood-ratio-threshold ROC curve may be of significant intefestieveloping a
target detection system, but a score-threshold ROC curve is most reievaatobjective

of evaluating system performance.

Figure 2.1 shows deterministic target and non-target densities, eaclhofepasified
parameters (see Equation (3.1)) and compares a score-threshold approach with
likelihood-ratio-threshold approach. Note that while beta densiteeth@ focus of these
figures, the methods developed here extend to other density forms (see Figurd 3.4 a

related discussion in Section 3.1).
A theorem that provides an analytical form for the ROC curve is as follows.
Theorem 2.1 Score-threshold ROC curve

Let f(s;u) andg(s; v) be densities of given parameterg andv, wheres is a
real-valued random variable between zero and ere|0, 1], f(s; ) is the non-target
score probability density;(s; v) is the target score probability densityis a parameter
vector that specifies the non-target score densitypana parameter vector that
specifies the target score density. lfeindg be integrable ovelp, 1] for eachu andw,

and for eacht € [0, 1] define
R 1
F(t;u) = / f(s;u)ds = x, (2.5)
t
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Figure 2.1 Comparison of score-based and likelihood-based ROC curve generation. |
the score-based threshold approach (top figure), a probability cfatate-
tection is calculated by selecting a threshold for score (e.g., 0.68)inte-
grating over the target density (solid curve) from that threshold to 1i-Sim
larly, a probability of false alarm is calculated by integrating the nogeta
density (dotted curve) over the same domain. The values for probability of
correct detection and probability of false alarm form a point on the ROC
curve, and the ROC curve is formed by varying the threshold from0to 1. In
the likelihood-based approach (bottom figure) the likelihood ratio, whsch i
the ratio of target to non-target densities, is thresholded (e.g., a thasin
general there is more than one correct detection and false alarm region.
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and

G(t;v) :/t g(s;v)ds =y, (2.6)
so that
F\(t; u) =1— F(t;u), (2.7)
and
@(t; u) =1—G(t;u), (2.8)

whereF(t; u) andG(t; v) are cumulative probability distributions.
If the inverse of’ exists for everyu, then the score-threshold ROC curve is (by implicit

and inverse function theoregsee [Olmstead, 1961])
y = r(z;u,0), (2.9)

where

)

r(z;u,v) = G(F Yz u);v). (2.10)

Equivalently,y = r(z; w) andr(z;w) = G o F~(z; w), wherew concatenates andv

(i.e.,w = [ug ug ... v1 vg ...]).
The proof is in Appendix A-1.

Note that ifu andv are fixed, they may be removed in the above formulas (e.qg., for fixed
u, f(s) = f(s;u)); however, retaining. andv is important in later ROC curve density
development where the parameters are not fixed. The parametack (or w)
characterize the target and non-target densities of stterd3ayesian approach does not
require the assumption that such parameters are stochastic (see J2606i and
[MacKay, 2003]), but it is acceptable to handle them as random variat#es (

[Schervish, 1995]). However, it is common practice to simply refer éamdv (or w) as
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parameters (see [Schmitt, 1969] and [Kass and Raftery, 1995]) or "randomeiara”

(see [Robert, 2001]). Here the term "parameters” is used.

The AUC value integrates the area under the formed ROC carvieleal AUC value is
one (see Equation (2.4)). A large AUC value (an AUC value near one) is due to
sufficient separation between the target and non-target densities,trethevhether or
not the score values are appropriate estimates of the probability of a targemadysis
of AUC value applicability in evaluating pattern recognition systemsvsigby Alsing
[Alsing, 2000], and additional analysis specific to AUC value applicihii provided by
Bradley [Bradley, 1997]. Note that the AUC value is a number, but the ROC @sieve
function. Thus, the ROC curve is a performance metric that generates one UL v
but a given AUC value may be generated by many different ROC curves. sif oithe
target density is greater than some score and if most of the non-targdidstess than
this score, then the AUC is close to one. In this situation, the ROC curve does not
indicate whether or not the scores are appropriate estimates of the proliahilitge
observed image is a target, but the CEG curve and the RSD value metridethis
indication. For target detection system evaluation, the score-thresfldcRrve plots
the probability of false alarm and probability of correct detectiomealachieved by
varying a score threshold. However, this ROC curve does not indicatbréshold that
is required to obtain a particular probability of false alarm and proitploif detection.
For some applications, it is of interest to examine only particular regions of@ R
curve for example, in cases where a false alarm probability greater thanaanceatue is

not relevant.

Correct detection probability is used here to refer to the probabiliepoectly declaring
atarget to be a target. False alarm probability is used here to ogtee probability of
incorrectly declaring a non-target to be a target. The terms refeyrieere as correct
detection probability and false alarm probability also have other designafidresuse of

the term correct detection probability here can be replaced byctitatgorobability” or
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"true positive probability”. Similarly, "false alarm probability” mag replaced by "false
positive probability (see [Hilet al, 2003]). In medical research, "specificity" and
"sensitivity" are often used instead of "correct detection probabilitg'dalse alarm
probability”; correct detection probability as used here can be substituted for gigysiti
and false alarm probability can be substituted for one minus specificity. Ehefus
correct detection probability here reinforces its usage in "correctijfadag a target to

be a target.

Many radar applications [Hadlt al., 1991] focus on low false alarm probabilities, e.g.,
probabilities on the order of 1¢* to 10-2 may be appropriate [Raemer, 1997]. In such
applications, estimating the uncertainty of the full ROC curve may sedra tf limited
practical interest. However, the success of these applications depelatextion system
performance. Chapter 1 discussed the practical importance of both loliginthlse
alarm probability in specific examples, and interest in the full raridalse alarm
probabilities is consistent with recent target detection focusedresé¢e.g.,

[Zelnio et al,, 2005]). As an additional example, consider an unmanned aerial vehicle
(UAV), such as the Global Hawk Unmanned Aerial Reconnaissance SystébalG
Hawk flies at an altitude of 65,000 feet, and has two synthetic aperture radar modes: wi
area search mode (1.0 meter resolution) and spot image mode (0.3 meteraeyolut
[Curiel, 2005]. The wide area search mode can cover a wider area iedagimount of
time than the spot mode (40,000 square miles versus 3,000 square miles in 24 hours
[Humphlett, 2004]), but the wide area search mode has lower resolution

[Humphlett, 2004] [Curiel, 2005]. Thus, Global Hawk may declare objects torgetsa

of interest in the wide area search mode with high false alarm protygidimitted, and

it then may use the declarations to subsequently examine the objects nsmly ohspot
mode. Note that even in spot mode, a high false alarm probability may be ablzeiht
the outcome of a target declaration results in a closer examinatiaridwyerflying
air-based or ground-based detection system. Finally, note that evenléorsysstems

with very low false alarm probability requirements, accurate perémoee at higher false
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alarm probabilities may be important for monitoring proper system function
[Hall et al, 1991]. The methods developed in Chapters 3 through 5 are applicable to the

full range of false alarm probability.

2.3 CEG curves and RSD values

The CEG curve describes the accuracy (or relevance) of the targetfrgmt-$core

values, that is, the curve describes whether the target/non-target atwes are
appropriate estimates of the actual probability of observing a target. In sgrir@a ROC
curve describes how well the target and non-target scores are separate

[Wiseet al, 2004]. Recall that a SUT outputs both target and non-target scores, and if
the scores are accurate, then the probability of target given scorks dogiassigned

score that is, if an ideal SUT generates 100 scores of 0.6, then 60 of these scores are
targets and 40 are non-targets. Here, "ideal" refers to an SUT thatgenscores
(estimates of probability of observing a target) which always equattieegarobability of

observing a target given the score.

TheRSD valuas defined as

RSD — \/ /0 (P(T|s) — $)2p(s)ds, (2.11)

where, using Bayes’ rule,

9(s|T)P(T)
(s|T)P(T) + f(s|N)P(N)’

P(Tls) = - (2.12)

ands is a scalar random variable between zero and ere0, 1], P(T|s) the probability
of target event given scorg(s|T’) is the density of score given target evefits| V) is the
probability density of score given non-target eveiit,) is the prior probability density of

the score (without regard to target or non-target)I") is the prior probability of target
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event, andP(N) is the prior probability of non-target even®(V) = 1 — P(7)). The
CEG curves defined as a plot aP(7'|s) versus score. Similar to the relation of AUC to
ROC, whereas RSD is a valuB(T'|s) is a function, and the curve that it forms as score

varies between zero and one is the CEG curve as shown in Figure 2.2.

Note that many distinct target and non-target densities result in ROCsctivaeare close
to an ideal AUC value of 1. For example, choose any target beta densityanda
non-target beta density mean. If the target density standard deviatioficsesuly small
and if the target density mean is greater than the non-target density meahlGhelue
approaches one. For the RSD value, only more specific special cases of target a
non-target densities approach the ideal RSD value of zero. These speegirzdsde:
(a) target density approaches an impulse function (i.e., a Dirac delta funiersity or
distribution) at a score of 1 and the non-target density approaches an irfypudsen at
a score of 0 and (b) target density and non-target densities approachemyndsions at
a score of 0.5, and (c) the ratio of the target density to the non-target densgyal to

the value of score for all scores.

Figure 2.3 illustrates the process that forms a CEG curve. The lower twoquotpare

the RSD value described by Equation (2.11) with an unweighted RSD, which does not
depend on overall density of score. The weighted RSD value used hereialije
preferable (see [Parket al., 2005c]), because scores that occur infrequently do not
increase the RSD value in the weighted method. Figure 2.4 shows sinutay iplit the
target and non-target densities in this figure generate a more ideal CEG ndrad@ver

RSD value.

2.4 Relation of performance metrics to SUT evaluation

The objective here is improved evaluation of SUT performance and in piartion
improving the ability to describe uncertainty in performance. Howewst,donsider the

case where the scores that a SUT outputs for a population set of target and nbn-targe
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Figure 2.2 The CEG curve. The CEG curve describes the relevance of pcodesed
by a SUT. For example, if an ideal SUT produces 100 scores at values near
0.75, 75 of the scores are targets and 25 are non-targets. The RSD value
summarizes the CEG curve metric and is the root-mean-squared ditferenc
of the probability of target given score and score weighted by the density of
score. The ideal CEG curve is the dotted 45 degreedinactual CEG curve
is shown by the solid line. At its tails, the density of score may approach
zero, yet the deviation of P(3) from ideal at these tails may be significant.
Therefore the incorporation of the density of score as a weight is important.
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Figure 2.3 Target and non-target densities, CEG curves, and RSD va#lgeshown in
the equations on the plot, a RSD value can be weighted or unweighted. The
weighted RSD value is affected by the overall densities of score. ofhleft
plot shows a target density (solid line) and non-target density (dashed line).
The top right plot shows the CEG curve as the probability|§)(df a target
versus score. The bottom two plots show the quantities that are integrated t
obtain unweighted or weighted RSD value. In an ideal SUT|$)(dllows
the 45 degree line shown in the top right figure.
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ample, scores between 0.01 and 0.3) also have high overall score density.
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scores are known. In this case, the exact ROC curve and exact CEG curbemay
calculated, as described in Section 2.2. The exact ROC curve presenil st 6f
possible correct detection and false alarm probabilities, and thisdieates the

capability of a SUT to differentiate between target and non-target scdriee
score-threshold ROC curve that is the focus here (rather than a likelihtodheeshold
ROC curve) provides the additional indication, through curve shape, of whethet or
the SUT produces appropriate output. For an ideal SUT, an increase imsakes it
increasingly likely that a target is observed. A score-threshold RO&gewreals this
result however, a likelihood-ratio-threshold ROC curve assumes, but does nottedica
this behavior. A likelihood-ratio-threshold ROC curve is always conaex
score-threshold ROC curve is only convex when an increase in scorasesrthe
probability of observing a target for all scores. The exact CEG curve descritbev

or not the scores provided by a SUT are releytrat is, whether or not the scores that an
SUT generates are representative of the actual probability of target gpeee. Further,
the combined examination of the ROC curve and CEG curve characteabacSUT
provide robust tools for comparing one SUT with another. The related summaty AU
and CEG values also provide useful tools for compatisomwever, the curves themselves
enable particular probability of false alarm regions (in the case of @€ Burve) and

particular score regions (in the case of the CEG curve) to be isolatedralyzed.

A key motivation for this research follows from the fact that in piagtthere is only a
finite, and often small, set of score samples available to a targettidetsystem. There
are methods to estimate the ROC curve and CEG curve from suclhee®ver,
understanding the uncertainty in the estimates may be more important, @alyi¢ot
low numbers of score samples, than estimating the most likely ROC BddOrves
(such maximum-likelihood estimates are inherently inaccurate Yoniambers of

samplessee the discussion in Section 3.1).
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This research focuses on improved methods of estimating uncertaintyGrecROes,
and then extends the development to CEG curves. As discussed in theitiereview
of Section 2.7, current methods of ROC curve uncertainty estimation makeeptable
assumptions or are only appropriate when sample size is very large, and igtugex

methods are not suitable to extend to the CEG curve.

The ROC curve uncertainty estimation methods developed here provides tbsitilcan
be compared with results in the existing literature and that can therntéeded to the
CEG curve uncertainty estimation problem. The techniques developedrkere a
unprecedented in ROC curve uncertainty estimation (see the literatuesv of Section
2.7 and related quantitative ROC curve confidence interval comparisons pfeCBba.
Further, the ROC curve confidence interval framework mdlexgble assumptiongven
when quantitative comparisons with other methods appear somewhat compéedde, t
methods generally have unacceptable weaknesses (see Chapters 2 and H)atote t
only a "best estimate" of the ROC curve is required, there are suitdabteaives to the
method developed here (e.g. maximum likelihood), particularly when the prior
probability densities are diffuse. While the ROC curve and CEG curve @ineaged by
the method developed here, obtaining these curves is not the primary mootivaihe
method developed here focuses on uncertainty estimation, and the pdesamnyption

for such uncertainty estimation here (and in the literature) is confideteeals.
Confidence intervals are important because for the low numbers of samglasstha
typical for target detection applications, any best (e.g., maximumhi&etl) estimate of
the ROC curve may not be close to the actual curve. Thus confidence intneais
practical interest because they provide a description of the range of gogsibés for a

ROC curve if large (approaching infinite) sets of samples were agtiesiied.

The beta probability density, while possessing many desirable quabtiésef methods
developed, is only an example. It is the density that has maximum entropygpati

densities that are non-zero on a fixed interval, subject to specific cotsifsee
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[Gokhale, 1975]) that may be related to mean and variance. Howevenahgieal
expressions developed in Chapter 3 are general and may be appliedriataléedensity

models.

2.5 Bayesian probability densities

The methods developed here use a fully Bayesian framework to develop prigbabili
densities for ROC curves and other target detection performancemeiiBayesian
framework incorporates input samples (such as target and non-target spmyudel
(such as assuming that the samples are modeled with a Gaussiag)dersitel
parameters (such as mean and standard deviation), and prior density assaiipti
example, assuming uniform prior probabilities of means from zero to ndest@andard
deviations from zero to two). Then, the Bayesian framework combines spatsiand
assumptions and produces a posterior probability density of an output of interésassuc
the ROC curve here. Note that the posterior probability density may be apflatere
input samples are available, but that this density is the actual, consplet&n for the
available samples, model, and priors (see [MacKay, 2003] and [Carlin @md,[2000]).
In developing the posterior probability density (which the Bayesian framemaites
possible), the observed data samples are handled as fixed known input bssria
alternative (frequentist-based) approaches, there is an upfront focus omuhesttre
randomness of the data samples (e.g., using probability statements and cenfidenc
intervals), thus making estimates about what samples might have beengutationore
samples were available. These estimates are then applied to make tipl statements
about the result of interest (the ROC curve and CEG curve in the case céskarch).
In contrast, in a Bayesian framework it is the evaluated model paessthat are
handled as unknown parameters (see discussion in Section 2.2 and [B20§t4}],
Neither of the two methods ignores uncertajriigth frequentist-based and Bayesian
methods make attempts to quantify uncertainty. However, a benefit of theiBayes

framework is that it permits the progressive development of a full, cetapposterior
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probability density for the result of interest (e.g., development of the postenbapility
densities for the ROC curve and CEG curve in the case of this research)qtine
development of further descriptions such as confidence intervals, mediaatest etc.
This developed posterior probability density fully describes the unogytaf the result
of interest based on the available observed data samples, and the modeipand pr
knowledge. Gregory [Gregory, 2005] provides a detailed discussion and further
comparison of frequentist-based and Bayesian approaches. A simiteviak was
developed in the early 1990s for neural network applications (see [Mackagal19
1992b] and [Bishop, 1995]however it has not previously been applied to target
detection performance metrics. The densities developed using the foaknaxe
characterized here by descriptive statistics, such as mediaragss, confidence
intervals for ROC curves, and also by statistics that charaetérezaccuracy of the
confidence intervals. Descriptive statistics may be contrastednférential statistics in
that they simplify but do not attempt to extend beyond the immediate data (see
[Huntsberger, 1961] and [Trochim, 2005]). Thus confidence bands are descriptive
statistics used to summarize the developed probability denghe®ands do not extend
the data provided by the densities. The density generation and chardxian@acess is

also applied to CEG curves, and it may be applied to other metrics.

The framework requires density models for target and non-target detectiemsgystput

and prior densities for model parameters. The Bayesian approach incospataitet is
known or assumed about the data and density models. For a given set of targessample
and non-target samples, assumed sample density models, and assumeapttiesde

the Bayesian formalism permits the development of a ROC curve der@iher

descriptive statistics, such as the ROC curve confidence intervalgheraype developed,

if desired, from this probability density. Other methods focus up front cerigive
statistics (e.g., the mean and standard deviation of the target and gehgamples)

such methods force premature simplification of the data either do not account for the

model assumptions and priors densities or can only account for them in an ad hoc
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manner. A Bayesian framework, by marginalizing over all possibleatsog@rovides a
more robust estimate for a single set of data than other estimationdsetiMethods

other than Bayesian may perform well for large numbers of samples, bletsare
competitive for low numbers of samples. A ROC curve estimated by a
maximum-likelihood approach is more accurate as the number of sampleases (see
general discussion by [Robert, 2001, pp. 16]), but can not be relied upon for lonensimb
of samples. Non-Bayesian approaches can have superior performdne8éytesian

framework incorporates inappropriate model selection or prior density select

The Bayesian approach possesses two major strengths. First, it ryadumchfiully
incorporates all possible model parameter values by marginaliz@te., weighted
averaging over all possibilities). The Bayesian approach avostyigéve statistics

until the parameters that are not of direct interest are integrated outasdfully
accounted for. In contrast, a maximume-likelihood approach attempts tthiefthest”
parameters (e.g., leading to a single best ROC curve). The maximum-likeliased
approach must then make additional assumptions (perhaps normal-based) teedescri
uncertainty. Bayesian approaches are more toletlamtfocus is not on finding a true
single answer (see [Morgan, 1968, pp. 109]), but instead on describing the rangye of al
possible answers in the form of a probability density, which is then morlyeas
transitioned to other descriptive uncertainty statistics. Second,diiedtan approach
naturally incorporates the use of prior densitibat is, it permits the incorporation of
subjective probability estimates into its framework, which is patérly critical when

sample size is small (see [Good, 1965, pp. iX]).

Bayes estimators that perform point estimation, rather than the broadetaumniye
estimation that is the focus of this research, are well known. Baygsi&srs can be
fully consistent with traditional means of estimation, such as minimurmragaare error
(MMSE) and maximum a posterior (MAP) estimation (see [Scharf, 1991HbeiR
[Robert, 2001] states that a Bayesian approach is consistent with ¢isteddr
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optimality from a non-Bayesian perspective: minimaxity, admissib#ithd equivariance.
Minimaxity typically consider the worst case scenario, but in contraseguientist-based
approaches, a Bayesian approach prevents unwarranted reliance on sags@stenario
that has little chance of occurring (see [Robert, 2001, pp. 67], [Leonard and Bi3@,

pp. 146], [Schervish, 1995, pp. 167], and [Duwetal., 2001, pp. 28]). Admissibility
focuses on whether or not there exists a better decision rule (see [Ferj@6@npp. 54]
and [Lehmann and Casella, 1998, pp. 323]) than the one selected. Equivariares relat
to whether or not an estimate is invariant under linear transformatg[{£hmann,

1998, pp. 161, 245]). Robert [Robert, 2001] shows that Bayesian estimators are a

specific and preferred class of admissible estimators (see aBerjgsh, 1995]).

For further discussion on the advantages of Bayesian-based approacheser m
traditional methods, see [Good, 1965], [Schmitt, 1969], [Lindley, 1972],
[Antelman, 1997], [Leonard and Hsu, 1999], [Robert, 2001], and [Woodworth, 2004].

2.6 Performance metric densities and confidence bounds

Figure 2.5 extends the relationships indicated in Figure 1.2 from simply igiergithe
performance metrics to formulation of probability densities of performametic curves
and values. Itindicates three types of inputs: target and non-target samptid, m

specification, and sampling protocol.

As will be discussed in detail in Chapter 3, a reasonable model sgaimf, if the
sample scores are between zero and one, is a beta density. The betaisspsitjfied
by two parameters, mean and standard deviation. The model specifidabancudes
prior assumptions for the parametdis example, prior assumptions may be uniform
prior densities for the mean and standard deviation over their alldastins (the
admissible set, defined in Chapter 3, specifies the allowed domaimsjthéx example
model is a truncated Gaussian density with uniform prior mean and varieatber(than

uniform prior mean and standard deviation). The sampling protocol is alstes|éut
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Figure 2.5 Uncertainty estimation process. Data (such as a set of 30aaty80 non-
target scores), Model Specification (such as beta probability denfities
target and non-target and uniform prior densities for their means and stan-
dard deviations), and Sampling Protocol (such as uniform density of points
from the prior densities), are inputs to a Bayesian Process. Outputs are prob
ability densities for receiver operating characteristic (ROC) @mtfidence
error generation (CEG) curves. These densities are characténzaldts
that involve descriptive statistics, including histograms of areer receiver
operating characteristic (AUC) and root square deviation (RSD) v&ioes
the ideal CEG curve, and also median ROC and CEG curves and correspond-
ing curves that bound 90% of the probability density.
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results which are not sensitive to this selection (and that appraaahadytical solution
see Chapter 3) are obtained provided that a fine enough spacing in target andyebn-ta
parameter density is used. Monte Carlo methods may also be employed to generat
points that sample the target and non-target density parameter valuels(s€aapter

3).

The outputs of the Bayesian process (such a process accounts for all inptridata
densities, and integrates out free parameters through marginaligatiamques)
indicated in Figure 2.5 include performance metric densities (for exalRQI€ and
CEG curve densities). The developed densities can be considered adigaiqy
probability densities (see [Carlin and Louis, 2000, pp. 35-36] for a discussioruaflac
probability statements) for the input samples (which are assumed independent a
identically distributed for the research reported here), assumedyerslel, and prior
densities of the model parameters. Although they are actual probabiliyrstats based
on available samples, the developed probability densities are eggeathange for more
samples or different sets of samples. From a Bayesian standpoint, pogtehabilities
are subjective and "quantify degrees of beliefs" (see [Mackay, 2003, pp0P6so the
developed posterior probability densities do not necessarily enconmptsg the model
or priors are incorrect. Alternatively, if the selected model or prioescansidered
estimates, then the posterior probability densities may be considersthtes. Here,
since the focus is on consistency with recent Bayesian literature,rthe'pesterior
probability densities"” rather than "posterior probability density edesias used. Note
that Chapter 3 describes the performance metric density generatibodnerhich is
fully Bayesian in that it accounts for all assumptions and data and inésgoat free
parameters through marginalization. After performance metric dessite produced,
probability density characterization produces descriptive statisirahé ROC curve,
CEG curve, AUC value, and RSD value, as described and verified ipt@h& The four

figures that form the rightmost column of Figure 2.5 show such statistics.
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2.7 Literature review

Next, a literature review on methods for ROC curve estimation isgmecthen a
review on related confidence interval/confidence band methods is providestingx
approaches have unacceptable weaknesses (e.g., they are only effeciivgefeaimple
sizes, are restrictive to particular ROC curve shape, or mdier ohacceptable
assumptions). The inadequacy of methods in the literature are identifieddnénat the
benefits of the full Bayesian framework that are described in Chapterd 8 ean be
better appreciatedhe literature review provided here is not necessary to understand the
method developed in Chapters 3 and 4. Later, Chapter 5 provides quantitative
comparison of methods in the literature to the method that is developed As® the
CEG curve literature is reviewetlowever, existing CEG curve literature does not
provide adequate means of uncertainty estimation. The Metz [Metlk, 1998] method
is examined as a primary example. Then, other methods of ROC curve éstirzuad

ROC curve confidence interval estimation are examined.

2.7.1 Metz method. The Metz method, based on binormal ROC curve theory, is
implemented in a software package called ROCKRDCKIT is perhaps the most widely
accepted ROC curve confidence interval software available today (sgeZg05]).
Binormal ROC curve theory assumes that the target and nontarget variaéese@ to
as diseased or non-diseased in the medical literature) are either royroaal be made
normal after some unknown transformation. Binormal ROC curve developnogrites
that, rather than plotting the ROC curve along correct detection pratyadoid false
alarm probability axes that are both uniform between zero and one, theisgea linear
scaling along normal deviate values, and this scaling is therefore non+uarbitween
zero and one [Dorfman and Alf Jr., 1968, 1969], [Swetz and Pickett, 1982], and
[McNeil and Hanley, 1984]). Once the ROC curve is estimated as gtiaie in
normal deviate space, the ROC curve is then transformed into standarithaixase

uniform between zero and one. Generally the curve, after being transfantoethe
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standard axes, has a convex appearance (although, as detailetiéaterve can have a

“hook” that is especially apparent for small numbers of samples).

Historically, the binormal approach is the most common in the literatureating scale
data [Hanley, 1999]. Rating scale data are broken down into a number of distinct
categories (typically five) in contrast to data described on a continwales. sWith five
categories, five ROC points are plotted on the normal deviate plot describeel abo
Upon conversion back to a scale that is uniform from 0 to 1 for both faézenal
probability and correct detection probability, the line becomes the ROC curoee thit
because of assumptions due to plotting on the normal deviate axis, it is inappedpr
fit a least squares line to find the slope and intercept in the normal depate that best
represents the ROC curve. Instead, a maximum likelihood method is usetmddo
[Dorfman and Alf Jr., 1968, 1969] proposes a widely accepted method thabéssinhe
ROC curve in such a manner. For an alternative maximum likelihood egtimat

development, see [Metz, 1984].

Metz [Metzet al., 1998] develops an algorithm that extends the binormal approach to a
large number of distinct categories, and therefore permits application ofrtbeal

approach to a continuous scale.

Metz [Metzet al., 1998] (and Swets [Swetz and Pickett, 1982]) alleviates the need to
estimate the target and nontarget distributions directly. Metz foundhbdtihormal
approach provides satisfactory ROC fits to data generated in a “very taoaty of

situations”.

Here we consider what “broad variety of situations” means in a medargkxt. In the
medical decision community, it is assumed that by measuring a knowrem@mm a
blood test, for example) which indicates a disease, that the likelihood ofdigeall
cases is monotonically increasing (or decreasing) as marker levebses. For a target

detection system under test, this is clearly not necessarily thewhge the monotonic
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property is desirable for a system under test, one of the primary reasongrftatesj the
entire ROC curve is to determine if it is true, not to assume that it&) tr Therefore, an

assumed binormal ROC curve fit has weaknesses for target detectiom gystieation.

Many applications that rely on binormal theory actually are interestedgpily in the
Area under the ROC curve (AUC) accuracy rather than the curve itsel.bifformal
ROC curve is a good estimate of AUC value, but is recognized as beingsaitiéty
when attempting to estimate an unknown ROC shape. Hajian-Tilaki
[Hajian-Tilaki et al., 1997] concludes that a binormal model is a robust method for
determining AUC. However, they state that other indices, such agptsitive
estimation fraction at a specific false-positive fraction point, mighinore sensitive to

departures from binormality.

The binormal ROC has recognized limitations, particularly for small numdfers
samples. In general for many medical diagnostic scenarios, thalarge amount of
sample data. So, requiring large sample sizes as a precondition may be béafona

the medical community. The originator of binormal ROC maximum-likelihdasbty,
Dorfman [Dorfmaret al,, 1997], states that the binormal ROC is not robust in small
sample sets (Metz was a coauthor of the 1997 paper). Further, a study by Obkichows
[Obuchowski and Lieber, 1998] is unsupportive of the usefulness of a binorn@l RO
curve model (and other alternative ROC curve models) in estimatingatecconfidence

intervals in studies with small sample sizes.

Because of recognized inaccuracies in the binormal ROC when the true unknais RO
assumed to be convex (the transformation from a linear plot in normadteespace

results in a ‘hook’ that can be particularly prevalent for small numbesswiples), Metz
and Dorfman [Dorfmaret al., 1997] [Metz and Pan, 1999]advocate the development of a
correction factor. Thus, it is recognized that even for the general assunspdr which
binormal ROC theory is applicable, there are limitations. The desire tovefithe

hook” has its origin in the assumption that the likelihood of observing a targetases
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monotonically as the target score increases —i.e., the assumption that thereger
model for a ROC is a convex shape. This assumption is not appropriate for R@&3 cu

that evaluate a target detection system utility.

ROCKIT, which will be later used to provide in the course of comparisonis thig

method developed here, takes target and non-target sample inputs (@itheistr

created files or from keyboard input). The user must specify whetherssuple inputs

be handled on a continuous scale or on a ratings scale, and the user must specify whethe
high or low scores values refer to targets. Then, ROCKIT produces an oupilnf

contains estimates for points on the ROC curve (generally false alarm piroesiof

0.05, 0.01, 0.02, ..., 0.10, 0.20, 0.90, 0.95), AUC value, estimates for the binormal
parameters that are used to form the ROC curve, 95% confidence intervéle ROC

curve, uncertainty estimates for the AUC value, and uncertainty atsior the

binormal parameters.

Chapter 5 provides a full comparison of the method developed here with the Metz
approach described above. The weaknesses of the Metz method compared with the

method developed here is even more apparent in the comparison provided bgrGhapt

2.7.2 Other existing methods. Figure 2.6 diagrams methods in the literature which
estimate ROC curves. The oval regions identify fundamental techniatsstimate
ROC curves and compute ROC curve uncertainty, and the unshaded rectangalss regi
identify authors, years, and approaches. The shaded rectangular regiorfg identi
available ROC curve-related software, where the arrows to the a@ftwdicate the
approaches they employ. Practical use of a SUT that is described by alR@C ¢
requires the selection of a threshold. Unless the underlying non-target density is
deterministic, there is uncertainty in which false alarm probabiltyesponds with a
particular threshold. Greenhouse [Greenhouse and Mantel, 1950] forms bounds to

describe this type of uncertainty. Linnet [Linnet, 1987] extends this evaluatiBOC
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Figure 2.6 Relevant ROC curve literature and software. The figure showgesview
of relationships of ROC curve estimation and confidence interval develop-
ment available in the literature. Underlying processes (not naglsspe-
cific to ROC curves) are typically leveraged to estimate the form©@CR
curves. The oval regions identify fundamental ROC curve estimatidn tec
nigues (e.g., binomial, binormal, kernel, empirical). The estimatioh-tec
nigues permit the calculation of confidence intervals. The lines indicate re
lations among methods. The relations are only between the line origination
points and the end points indicated by arrows. Several software packages,
indicated by shaded boxes, apply particular ROC curve estimation precesse
and/or ROC curve uncertainty estimation processes (e.g., ROCKIT, Med-
Calc).
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curves, and Schafer [Schafer, 1994] builds on work by Linnett and Wieand
[Wieandet al., 1989]. A disadvantage of the Greenhouse bounds is that such uncertainty

in false alarm probability is assumed to follow a normal distribution.

Hilgers [Hilgers, 1991] details a method that generates confidence bounds for ROC
curves based on binomial proportions. He applies ordered statistics to obtdidence
intervals given an interval range of interest (e.g., 90%) for each ofaf samples. For
example, if there are five target samples, he estimates the |loalest sample for a
two-sided 90% confidence interval to be between 0.02 and 0.53 of the overailative
distribution function (CDF) for target. He then estimates the secownddbvalued

sample for the same two-sided 90% confidence interval to be between 0.07 and 0.70 of
the overall CDF for target. Finally, he combines the estimates torobtaifidence

intervals for probability of correct detection and probability of falkera. A constraint

on the Hilgers approach is that the confidence intervals are "pointwise" aodlmethe
range for a single point on the ROC curve. Hilgers extends these bounds to a confidence
band by using a progression of rectangles based on the pointwise confidence intervals.
However, Schafer [Schafer, 1994] shows that this procedure leads taraatest bound
larger than 90%. An advantage of the Hilgers approach is that it generates
‘distribution-free’ confidence bounds, unlike many approaches (most of wéathre

some assumptions such as binormal target/non-target densities). Exanmslieleced in
Section 5.4 are consistent with Schafer in that the bounds are wide comyitiréke

approach developed here.

Non-parametric approaches develop ROC curves analytically and deswhe a form
for the underlying distributions. Zou [Zcet al, 1997] provides an example which uses
a Parzen window-like data transformation, referred to as kerneltgestimation
[Silverman, 1986]. Kernel density estimation enables ROC curveticarni®n using a
smoothed histogram. Zou leverages Silverman to describe the kernel destisitgtion

of target or non-target density as
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fo) = = > K, 213

wherek is the kernel densityp is the number of sampleg; is theith sample inR, and

h > 0 is the kernel width. Zou indicates that estimatifign effect, places at eack; in

the sample an enclosed curve with atéa:, where each curve has a shape described by
the functionk and scaled by the width. The curves are then added with the goal of
obtaining a smooth but accurate histogram. With kernel density dstim#he function
chosen fork is somewhat arbitrary, as is the selection of function width. baed

methods for width selection are desirable, but the optimization procegbjexctve. For
example, Hall [Hall and Hyndman, 2003] explores methods for improving bandwidth
selection, and Hall [Hakt al., 2004] considers a method that makes width-dependent
assumptions and generates results based on kernel estimation. Theofddaltshow
potential for significant degradation as false alarm probabilities approach (these
degradations are quantitatively compared with the method developed ehajter 5).
Sorribas [Sorribast al, 2002] introduces a S-distribution that is related to kernel density
estimation methods, and Campbell [Campbell and Ratnaparkhi, 1993] estiR@@
curves based on the Lomax distributioreither approach introduces new methods of

confidence interval development.

In principle, the goal of empirical approaches is to estimate ROC cuntbsutimaking
distribution assumptions. Claeskens [Claeslarad., 2003] is the most recent among
many authors who consider empirical ROC curve estimation. As is tyfiida¢skens
recognizes the need for a smooth ROC curve and he uses kernel smoothmrajiesti
which thus introduces some distribution assumptions. Claeskens pressifnieicoe
regions for ROC curves with definitions similar to those of Hilgers thatlwesthe
regions of uncertainty for both correct detection probability and false ghaotmability at
a given threshold. Claeskens discusses other confidence interval descripttorsehis

to a bootstrap confidence interval estimation method when these confidemgaléee
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calculated. Earlier approaches in the empirical category are coedidgrHsieh
[Hsieh and Turnbull, 1996], and a local smoothing technique is investigat Qiu

[Qiu and Le, 200X]however, neither approach fully develops confidence intervals.

Ma [Ma and Hall, 1993] applies the Working-Hotelling hyperbolic confidence band for
multiple regression surfaces to ROC curvb®y generate pointwise confidence bands by
varying correct detection probability and mapping a band of intervals fee falrm
probability and also simultaneous confidence bands for the entire ROC curve. Some
limitations of this approach are that the confidence bands for the entire R®E cur
assume binormality, and the method uses rating scale data. Howmiegpproach
extends to multiple confidence interval and confidence band definitions, and the
emphasize the need for such definitttexibility. Although Ma claims that the
Working-Hotelling approach extends beyond binormal methods, confidence bands are
obtained using conventional binormal assumptions applied to ratings scaleFdather,

the Working Hotelling approach applies only when the assumptions madet pleemise

of regression lines.

Confidence intervals may be generated using various resampling methexls, ev

different methods develop the ROC curve estimates. Examples are in

[Zhou and Qin, 2005], [Plattt al., 2000], [Jenseet al., 2000], [Mossman, 1995],

[Campbell, 1994], [Garbegt al., 1994], and [Simpsoet al., 1989]. Efron

[Efron and Tibshirani, 1993] details general bootstrap theory that is oftendged in

ROC curve resampling processes (see Mossman [Mossman, 1995] and Jensen
[Jenseret al,, 2000]). The confidence interval results are generally jagged in appearance
(as shown in Figure 5.3 of Chapter 5), and the coverage areas are inadoutatv

numbers of samples, particularly in regions of low correct detection praotyatbénsity.

Lloyd [Lloyd, 2002] implements bootstrap confidence methods by evaluating ROE€ curv
definitions many times in a Monte Carlo approach. He obtains confidencedlst@sing

a maximum likelihood approach to estimate the ROC curves paramstracedl
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non-parametrically. He does not verify the coverage accuracy of the tagotaethod,

and he cautions that bias may be a significant disadvantage for small samples.

Once target and non-target data are obtained, Tilbury [Tilbtigf., 2000] asks for every
point on the ROC curve, “If this point represents the true Hit Rate ane Pdésm Rate
of the population, what would be the probability of getting the sample actuallyreutéi
He analyzes one point (false alarm probability and correct detection pribpabibne
selected threshold) on the ROC curve, then he considers a combined aprdacin f
selected thresholds. For just four points, he obtains a solution based on an
eight-dimensional hyperboundary, where increasing the number of initial pirite
ROC curve increases the dimensions needed. He suggests estimating RO@zogitye
by selecting a point on the ROC curve and finding the likelihood that given sample
(assuming a threshold) are generated if this point is from the underlyingidens
(consistent with Hilgers-like binomial based approach). Tilbury reguareexpansion of

dimensionality based on the number of samples.

Although Tilbury’'s approach remains tractable if a few selected thrdshak permitted
(through grouping of data), Macskassy [Macskassy and Provost, 2004] delGlatey’s
method not tractable for more than ten points. Tilbury provides updates todnk
[Tilbury 2002, 2003a, 2003b] that emphasize the importance of Bayesian statistic
ROC curve analysis, and he uses Bayes’ rule in considering the descriptites2000
paper. However, his approach remains a binomial-based alternativigytrdi

[Hilgers, 1991] approach. Tilbury [Tilburgt al,, 2000] claims verification of results for
uncertainty of correct detection probability and false alarm probabilitytHese are (at
best) simply verified coverages for single thresholds considered indepenietty
here, he does not report actual accuracies, but provides tables of distdbtséednd he
does not compare results with other research). Tilbury’s method inytipeomits
incorporation of prior densities of false alarm and correct degegirobability, but not

prior target and non-target densities.
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In summary, Tilbury provides an alternate description of the workitgets

[Hilgers, 1991] by leveraging binomial assumptions and forming contour regions for
particular thresholds rather than the rectangular regions of Hilgers. étisath does not
permit the incorporation of different target and non-target density models et tang
non-target prior parameter densities, and he does not demonstrate the practica
development of a ROC curve confidence band jointly across the entire curvea&uch
those that are tested for coverage accuracy in the research teper&y. His method
produces confidence bands for particular thresholds similar to Hilgers butiffeerent
shape. Tilbury attempts analytically to show how such regions couldimbioed, but
he avoids verification (consistent with Macskassy'’s tractabibiyoerns), except for
correct detection probability and false alarm probability uncertainty regibmslividual
threshold points (similar to Hilgers). Further, his approach isdaseproportions that
correspond with the correct detection and false alarm probability modetiondt
correspond directly with "score" and "probability of target given scof@ius, Tilbury’s
ROC curve confidence interval approach does not extend to the CEG curo¢han

performance metrics.

Tosteson [Tosteson and Begg, 1988] develops regression parametennsiectie
shape of the ROC curve for a fixed number of thresholds (such as five threshohas)
regression parameters attempt to describe the relation of covasistess stage of
disease, age, and weight to the estimated ROC curve. Severallreta@sions develop
Bayesian-based approaches to more robustly account for the regressiontpes dsee
[Peng and Hall, 1996], [Hellmickt al,, 1998], and [Zou and O’Malley, 2005]). These
approaches assume a binormal ROC curve form. Smith [Sehah, 1996] provides an
alternative to the binormal-based methods, but Smith’s approach alse make shape
assumptions. O’Malley [O’Mallewt al., 2001] provides an alternative to the grouped
data methods but still makes binormal assumptions. Each of these regressidn bas
approaches have significant limitations compared with the method develomedTier

methods are restricted to an assumed shape of the;@shape is not assumed for the
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SUT-focused ROC curve estimates developed here. Due to the focuspsn sha
parameters, the methods are not generally transferable to other perdermatrics such
as the CEG curve. Further, the efforts do not consider confidence intenebgev
accuracy verification. Zou [Zou and O’Malley, 2005], O’Malley [O’Ny et al., 2001],
and Smith [Smittet al, 1996] avoid ROC curve confidence intervals altogether, and
Hellmich [Hellmichet al, 1998] and Peng [Peng and Hall, 1996] provide confidence
intervals based on the binormal mean and slope parameters but do notesgfage
accuracy. Note that the methods listed above focus on alternativegximum
likelihood estimation for generally binormal based ROC curves ratheruhaertainty in

such estimates.

A number of authors leverage Bayesian approaches in order to combine R@C cur
results for meta-analysis applicatiomseta-analysis focuses on pooling the results of
multiple diagnostic tests (see [Carlin, 1992], [Snetral, 1995], [Zhou, 1996],

[Hellmich et al,, 1999], [Rutter and Gatsonis, 2001], and [Dukic and Gatsonis, 2003]).
Such approaches use Bayesian-based processes to combine the ROC curve8 and AU
value of each individual test into a combined estimate of the underlying tri&d@ve

and AUC value.

Various approaches focus solely on AUC value uncertainty (see [Degioalg 1988],
[Broemeling, 2004], [Youseét al, 2005], [Agarwalet al., 2005], and

[Cortes and Mohri, 2005]). DelLong [DeLorgj al., 1988] leverages U-Statistics to
provide an estimate of whether two AUC values are statisticaffgréint from one
another DeLong includes an evaluation of uncertainty in making such estimatesse¥ou
focuses on AUC value standard deviation (which may exceed one) as gtesaf
uncertainty. Yousef’s approach has limitations, as the AUC values mayehedikand
must be less than one. Yousef does not have a true verification process, only a
comparison with results that are already available through traditionaltbeyapeng

processes. Yousef assumes that ROC curves have convex form. Agadiabees

2-34



develop approaches that focus on uncertainty in the Mann-Whitney stétstic
Mann-Whitney statistic enables computation of the AUC value witkhenelopment of

an entire ROC curve), and both methods are limited to large numbers of santple
comparison, the method developed here focuses on ROC curve uncertainty, atti®ugh
results are also successfully applied to AUC value uncertainty amdetitended to CEG
curve uncertainty. Broemeling proposes a Bayesian based approach toal#C v
estimation, but his method is only applicable for a limited, fixed numbeiostible
thresholds (Broemeling uses five thresholds), rather than the continuamigpsssible
thresholds that the research developed here makes possible. BroemelpgeoAJC

value confidence intervals for two examples but does not verify coverage egcura

Dass [Dass and Jain, 2005] provides an approach to ROC confidence band$laut wit
focus on correlated samples. The Dass approach is restricted ttatmfreamples
(rather than independent samples), is limited to large numbers of samplekemndot

verify coverage accuracy.

Overviews of ROC curve theory are given by Centor [Centor, 1991], Hanley

[Hanley, 1999], and Zweig [Zweig and Campbell, 1993]. Hanley and Zweigigeov
relevant overviews in the ROC curve confidence interval area. Moreatigc®lacskassy
[Macskassyet al,, 2005][Macskassy and Provost, 2004] reviews ROC curve confidence
interval approaches for the machine learning community, and Carsten

[Carsteret al., 2003] evaluates ROC-curve-related software. Bamber [Bamber, 1975],
Lusted [Lusted, 1971], and Swets [Swetz and Pickett, 1982] provide luigtori
background on ROC curve theory. Bamber identifies the underlying purpose and
meaning of AUC value. Lusted summarizes the origins of ROC curve theorjadsde

to signal detectability. Swets and Pickett provide a widely recoghigierence text on
ROC curve theory. Green [Green and Swets, 1988] provides a detailed RQ§ the

review in a reprint/revision of a text originally written in 1966. Lu$@iscusses the
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relation of the medical decision making and radar progression in ROC curve
development [Lusted, 1984].

As mentioned in Section 2.2, in medical research sensitivity is tygicakd in place of
correct detection probability, and one minus specificity replaces fidsa probability.
Similarly, "diseased patients"” often replaces "target data”, hedlthy patients” replaces
"non-target data". The discussion here refers to target, non-target, gitytaftiorrect
detection, and probability of false alarm for consistency even whelité¢hature uses

different (but analogous) terms.

Figures 2.7, 2.8, and 2.9 provide an overview of existing ROC curve confidence interva
approaches. A review of the approaches listed in these figures revealsruitisrin
confidence interval definitions and emphasizes that existing methods lackreésiand
flexibility, the methods typically identified in the research are focusedsubsaet of the
possible confidence bound definitions and do not extend to other definitions. Confidence

bound definitions are summarized as follows.

Confidence definition 1: fixed threshold.This definition selects a particular threshold,
develops an estimate for false alarm probability uncertainty, antesly develops
correct detection probability uncertainty. Approaches in the literatuen @fttempt to
extend this approach. For example, a rectangular region is created babed on
uncertainties in false alarm and correct detection probability. A complgimate of
ROC curve uncertainty is then made by connecting the corners of the boxesdse Fi
5.9). A weakness of this ad hoc approach is that typically the confidenceahband is
wide compared with other approaches, particularly at low sample sizemmples are

considered by Hilgers [Hilgers, 1991].

Confidence definition 2: uncertainty in correct detection probability at given falseralar

probability.  This definition regards false alarm probability as the independent variable,
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Confidence

(1-alpha¥ bounds

Also: Definition 4:

verified [Ross, 2008]

Individual bounds|

Example or
Confidence Definitior] Distribution Assumptiong Verification Comments
1987 Linnet Normal example, !
b ‘ Definition 2: Normal and non-parametric No verificati P relzz:zzziig:of
i o verification
Independ. Var | Uncertainty in Pd at Pf3 (but symmetric) methods Pfa uncertainty
Pfa
Definition 1: Example,
1991 Hilgers - Fixed Threshold Binomial No verification on Large
T full curve, confidence
Order statistics band area

> Full Curve
Pfa
A S
P Definition 4: "
1993 Ma & Hall <l S Binormal, ) Emphasize use
al/ ./ Full Curve Working-Hotelling Binormal example| of multiple
W-H Bands [/, Also: Definition 1, 2. Regression theory No verification, | confidence
i definitions
—
Pfa
A .
1994 Campbell Definition 2: Confidence
- efinition 2: Kolmogorov distribution Example, bounds made
Ind. Var Uncertainty Uncertainty in Pd at Pfg theory No verification | UP of same size
- rectangles

Figure 2.7 ROC literature comparison I. Confidence interval approachdstad by
author. Correct detection probability is Pd and false alarm probalsifya.
The first column lists confidence interval or band definitions. The second
column lists distribution assumptions. The third column indicates whether

confidence interval examples or verified results are provided.

The most

promising verified results are compared with the method developed here in
a later section. The fourth column comments on significant attrilmfteése

corresponding research.
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Confidence

) o o ) Example or
Confidence Definition) Distribution Assumptions v/grification | Comments
Iy [
’ L Normal, Coverages
1994 Schafer A1) Definition 2: . \ g
g lﬂl o Asymptotic theory Binormal large.
Ind.Var Uncertainty i Uncertainty in Pd at Pfa examples, | unreliable for
i verification small samples
A )
Definition 4: Symmetric
1994 Campbell z| Full & None (bootstrap Example, Bands
Bootstrap / ’ ] l.JTve resampling) No verification " .’
Also: Definition 1, 2. Fixed width
L—— displacement
A
_— Beta mixture
1997 Zou ® ‘ Definition 2: Kernel model example
Logit Transform | Uncertainty in Pd at Pfa logit transformation No verification
L
Pfa
A | |
1998 Metz = | | Definition 2: Implemer_lted
- g | o Binormal Example, in '‘Rockit
Continuous Scalp Uncertainty in Pd at Pfa No verification | Software
L
Pfa
Definition 2: Verifies Linnet
2000 Platt o None (bootstrap Beta and and other
Uncertainty in Pd at Pfa resampling) normal
Bootstrap Test | pling verification approaches
L
Pfa

Figure 2.8 ROC literature comparison Il. For explanation, see Figure 2.7.
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Confidence

fi finiti L . Example or
Confidence Definitior| Distribution Assumptions y/arification | Comments
A
2003 Claeskens i .
T Definition 1: Verification only
Empirical w/Cl Fixed Threshold Kernel specific threshold
L
Pfa
2003 Claeskens - Empirical log-likelihood Bootstrap
Empirical w/Cl Definition 4: ratio to estimate curve, No verification | bands based
P Full Curve boostrap method for on Lloyd
confidence band (1998)
2004 Hall o Definition 2: No
. ‘ o Kernel Verification confidence
Kernel | Uncertainty in Pd at Pfa interval
widths
Pfa
2005 Zhou Definition 2: Confidence
2 Adjusted binomial ot ;
Bootstrap a ‘ Uncertainty in Pd atPfd gy thment 10 bootstrap Verification interval
| widths
Pfa

Figure 2.9 ROC literature comparison lll. For explanation, see Figure 2.7.
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and the literature and the method developed here tend to focus on this chbiee. T
uncertainty in correct detection probability is calculated at a giakse alarm probability,
and confidence contours covering the entire ROC curve are developed by rgpeadih
given false alarm probabilities. Linnet [Linnet, 1987] notes that assufalag alarm
probability is known when it is, in fact, uncertain introduces error inectrdetection
probability. Examples are considered by Campbell [Campbell, 1994], Linnet
[Linnet, 1987], Schafer [Schafer, 1994], Zou [Zeual., 1997], Metz [Metzet al.,, 1998],
Platt [Plattet al,, 2000], and Zhou [Zhou and Qin, 2005].

Confidence definition 3: uncertainty in false alarm probability at a given correct
detection probability. This approach is similar to confidence Definition 2, except that
correct detection probability is regarded as the independent variabtebeka target and
non-target densities, the method developed here produces confidence bands by this
definition that are similar to the bands of confidence Definition 2. There are makno

methods in the literature that focus on this method.

Confidence definition 4: full curve confidence bandrhis band represents the
uncertainty of the entire ROC curve. The literature focuses less on thistiefithan on
that of Definition 2. Examples are considered by Ma [Ma and Hall, 1993],dkéaes
[Claeskenst al,, 2003], and Campbell [Campbell, 1994]. Bands by this method
typically have the objective of enclosing the entire true ROC curve avthlected
percentage confidence. If even a small portion of the ROC curve is euktte band,

then the entire band is regarded as being in error.

Confidence definition 5: curve location based on uniform threshol@his confidence
bound describes ROC curves for a threshold chosen uniformly at random. Qurathsb
are not described in the literature but are a natural extension of the adngglreloped

here. Figure 4.10 shows ROC curve confidence bounds based on this definition and
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shows higher densities close to the ROC curve extremes. This result cpappe
because any ROC curve has a correct detection probability of zero at altaise
probability of zero and similarly a correct detection probability of oneabsef alarm

probability of one.

Unlike the references to ROC curves, many CEG curve and RSD valuezagbyes differ
from those developed here. Since the metrics differ, the methods of obtaorifigence
intervals or variance for the metrics also differ. For example, Loshflasmbard, 2003]
details an approach for estimating uncertainty in on-line gauges, O’Connor
[O’Connoret al,, 2001] describes the asymmetry of confidence intervals related to
weather forecasting, and Yaniv [Yaniv and Foster, 1997] analyze the joreaisd
accuracy of judgmental estimation. The performance metrics descrilikd latter can

be transitioned to confidence-error-like performance metrics.

The scores from a SUT are posterior probability estimates as detailecdsbyBi

[Bishop, 1995]. However, for the CEG curve the intent is not to estimatepost
probability but rather to estimate how well an unknown “black box” performs in
providing estimates of posterior probability. Thus, the intent is to provihdidence
intervals for CEG curve and RSD values, which characterize smmsterior probability.
El-Jaroudi [El-Jaroudi, 1990], Lugosi [Lugosi and Pawlak, 1994], Poggio

[Poggioet al,, 2004], and Tomasi [Tomasi, 2004] focus on estimating error in posterior
probability. Existing research is more relevant in formulating aléve approaches for
determining confidence error than in quantifying confidence intervalenae, and/or

the density of confidence error. Also, another confidence-interval-likbadenvolves

cross-entropy (see [Bishop, 1995]), which is a metric often used in speecissing.

Research in the ATR community for performance metrics and confidence rechodés
work by Ceritoglu [Ceritogliet al., 2003], DeVore [DeVore, 2004], Irvine

[Irvine et al, 2002], Li [Li et al, 2001], Mossing [Mossing and Ross, 1998], [Ross et al.,
1997, 1998, 1999, 2002], , [Ross and Mossing, 1999], and Thorsen
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[Thorsen and Oxley, 2004]. These references help identify the relevartneed for
confidence error as a performance metric. Ross [Ross and Minardi, 2004] develops t
rationale for a CEG curve-based performance metric and identifiesbthiy of such a
metric to provide information on the performance of a target recognitioeisysiat the
ROC curve is not able to provide. Ross points out that confidence errors (tdéncl
additional confidence measures of performance) are in themselvesiestiand

emphasizes that the ATR community needs confidence intervals for thesetestima

The underlying methods and techniques and probability density estimationdaettat
are leveraged to form ROC curve confidence intervals and CEG curve confidence
intervals in the chapters that follow must be considered. The methods dedélepe
apply a Bayesian framework to ROC curve and CEG curve performancemeki
similar framework was devised in the early 1990s for neural networks apphsa
[MacKay, 1992a, 1992bthis framework has not heretofore been comprehensively
applied to target detection performance metrics. Bishop [Bishop, 1995] powid
summary of MacKay'’s contributions. A critical aspect of the Bayesgpr@ach is
correct modeling of the prior parameter densities. For the beta density nocediered
here, it is shown that sampling uniformly over the domain of all means andata
deviations yields appropriate results. Chapter 3 describes the anatpic@rgence of
this procedure, which may also be obtained using a Monte Carlo approach. Ak mode
parameters become more complex, other Monte Carlo methods and Bayeki@iques
may be suitable alternatives to sampling uniformly over parameter dema&lyde
[Clyde, 1999] identifies search methods for posterior densktied Clyde

[Clyde and George, 2004] details advancements that make such posterior density
searches practical. Barbieri [Barbieri and Berger, 2004] suggestusatotsterior
density approximation that considers only parameter values which haveipodaarsity
weights that are 50% of the maximum posterior weight. Jordan [Jataly 1999]
details various computational methods for calculating posterior densitiesting

[Hoetinget al,, 1999], Raftery [Raftergt al., 2003], and Madigan
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[Madigan and Raftery, 1994] discuss the application of Occam’s razor, wiiels to

the concept that whereas more complex models are possible, the posterity dens
contribution of a simpler model should generally outweigh a more complex modet (othe
constraints being equal). Occam'’s windovieets the concept that all parameter values
that have less than a selected percentage of the maximum weighting caregadisd

without loss of accuracy [Hoetingt al., 1999].

For the research presented here, the beta density is appropriate lHbcadsasity is
non-zero for score values between zero and one, and a single beta densitynhle a si
unimodal form. However, the use of the beta density is also justified beitasisee
density of maximum entropy which is zero beyond a limited domain subjectdo tw
constraints, which may be related to the density mean and variance. &okhal
[Gokhale, 1975] investigates the usefulness of maximum entropy distributibjecsto
various constraints, and Kagan [Kageatral., 1973] documents the properties of the beta
density relative to maximum entropy. Note also that several red@ft €onfidence
interval papers (see [Platt al., 2000], [Hallet al., 2004], and [Zhou and Qin, 2005]) use

beta densities to generate samples.

2.7.3 Summary of existing researchEach of the ROC curve uncertainty estimation
methods discussed above have weaknesses that the method developed hgre largel
overcomes. Some methods [Zhou and Qin, 2005] only provide acceptable rasults a
sample size becomes large, which is the opposite of what is needed forgie ta
detection applications considered here. Others methods are restnicteanal-based
assumptions and can not be extended to other density forms (see [Ma ant993a]}
binormal based approaches [Metzal, 1998] make unacceptable restrictions on
functional forms. Still other methods (e.g. [Hilgers, 1991]) produce confidencen®gi
that are too large and therefore uninformative. Further, most of the autiesrsfied

here refrain from quantitative verification of resylise few that do are examined in

detail in Chapter 5. The quantitative comparison provided in Chapter 5 of thetet
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developed here with existing methods reinforces the above discussion. Recature

in the ATR community introduces the basis for the CEG curve and RSD value laescri
here, however, methods for their confidence interval (or band) uncertaintyaéish are
not available, although the need for such methods has been identified (see

[Ross and Minardi, 2004]).

Thus, a review of the previous research reveals that a new method fonpanfoe metric
uncertainty estimation is needed. The method developed and verified ine@hagnd 4
introduces dlexible new framework that can be applied to ROC curves and CEG gurves
and it provides uncertainty estimates for these curves (and for their stymmedrics of

AUC value and CEG value).
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3. Probability Density Generation

This chapter develops methods that generate probability densities fordatgetion
performance metrics, such as the ROC curve. The development process has the
following rationale. First, consider that deterministic performamesdrics (e.g., a fully
specified ROC curve with no uncertainty) assume that the target and m@t-gample
densities of score are known. Such exact target and non-target sampleedermitd be
determined from the samples if it were possible to generate an é§etitof target and
non-target samples. From a finite set of samples, it is not possible to detezractly
the target sample density and the non-target sample density. Thusfgpessible
densities for a finite set of samples is examined, with each density definedugs of
one or more parameters (for example, the parameters for a univariatsi@edsnsity
consist of mean and variance). Next, using a Bayesian process, paraatess for the
target and non-target densities are found. Finally, the resulting densitiarget and
non-target samples are used to find probability densities for the perfoemagteics.
The procedure for developing densities is applicable to any parametric devtisl (the
beta density model is the example emphasized here). Once the performarice met
probability density is generated, a variety of standard descriptiviststatmay be
developed, including mean, median, mode, confidence bounds, etc. Chapter 4,
Probability Density Characterization and Verification, considersetidescriptive

statistics.

3.1 Target and non-target samples, density models, and ROC curve estimates

Section 2.2 focused on deterministic ROC curves, where the underggettand
non-target densities are known. This section focuses on the relation pfesaim
assumed underlying target and non-target score probability densities and oouR@C

estimates obtained from these densities. Figure 3.1 shows example targenatadget
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densities, a set of samples generated from the target density, anuha set of samples
generated from the non-target density. Here 30 target score samples ¢s)aangll 30
non-target score samples (circles) are drawn from their respectie#giegeinderlying
densities. For an infinite set of such samples the target and non-targeietesust
known. In this ideal case the associated performance metrics of ROE, AWC value,
CEG curve, and RSD value are deterministic and have no uncertainty. dvhea finite
number of samples are available, the target and non-target densities fdinég i
number of samples are not known but are desired. Any density that is nontsacha
of the sample values has some probability of being the density formed by areirsiit
of samples. However, it is appropriate to consider only density functionals or
models that incorporate additional available information, such as thatylens

continuous and is non-zero only between zero and one.

Beta densities are used to implement the performance metric uncgsdsiimhation
framework developed here. While this density model is reasonable, a ndapmtage of

the framework developed here is that it is applicable to other models. Taeéesity is

of interest because it has zero magnitude outside the interval [0,1], asexb$or the

target and non-target score data. Additionally, the beta densityRPseeld¢t al., 1976]

and [Mendenhalét al,, 1990]) has maximum entropy among all continuous densities that
are non-zero only between zero and one and that meet two additional constraints
[Kaganet al., 1973] which may be related to mean and variance. The beta density with

parametera, b > 0 is

Cops®™ 11 —s5)"10<s<1,
f(s) = (3.1)

0, elsewhere,

wheres is score and the mean and variance of the beta density are relatedidd by

1 =a/(a+b)ando? = (ab)/[(a + b)*(a + b+ 1)], (3.2)
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Figure 3.1 Target and non-target samples and the densities from which ¢heésaam.
A target beta density (solid line) and a non-target beta density (dashed line)
are shownthese densities are typically estimated from samples. Here 30
target score samples (triangles) and 30 non-target score sample=s{care
drawn from their respective densities.
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and the constant, , equalsl/ fol s 11— s)""lds = 1/Betda, b).

A simple method for mapping a set of sample scores to a beta densitynsl thé mean
and variance of the scores, then use them in Equation (3.2) to obtairatigb values.
Once the scores are mapped to beta density form (one density for targe¢samgithe
other density for non-target samples), a ROC curve and corresponding AUK; sa

well as a CEG curve and a corresponding RSD value, are calculated. Notsitigat
sample mean and variance to estimate a beta density, where the sariglee/s
unbiased in that it is the sum of squared deviations from the mean divided hyittiger
of samples minus one, is equivalent to a maximum-likelihood approach as saneple s

increases (see [Hahn and Shapiro, 1967]).

Figure 3.2 compares ROC curve estimates for 10 sets of 30, 300, 1000, and 3000 target
and non-target samples. To obtain such sets for comparison with the@Qe®ve,

first choose an underlying target density and non-target density. Then find the ROC
curve that corresponds with these densities from Equation (2.10). This ROC curve,
computed numerically, is shown as the solid line on each of the four plots. FRemt
densities, randomly and independently draw 30 target samples and 30 norssangéts

to obtain one set of data. Estimate the target and non-target beta denditieslassities
with the mean and unbiased variance of the target and non-target samphas dnd
variance determine the density parameter veet@sdv of Equation (2.10)), and form a
ROC curve from these estimates. Find the 10 sets of ROC curves for theg80dad 30
non-target samples, then repeat for 10 sets of 300, 1000, and 3000 pairs of target and
non-target samples. Note that even for the 3000 sample example, differericedIOC
curve estimates are apparent. Figure 3.3 shows a similar progressiept that here

the ROC curves are formed by evaluating the correct detection priapantl false

alarm probability at every score value using only the sample values arh@Esumed
model. Figures 3.2 and 3.3 indicate that ROC curve estimates for low nuwmifbers

samples may not be close to the true ROC curve. The variance shown iothepl
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Figure 3.2 The ROC curve estimates for various sample sizes, where betty desti-
mates generate the ROC curves. Target and non-target beta densities gen-
erate target and non-target samples, and ROC curve estimates rae f
from beta densities that have the mean and variance of the sampletheFo
top left plot, 10 ROC curves (dashed lines) for 10 sets of 30 tamgt3a
non-target samples are generated by fitting beta densities to the sarmples.
the other plots, similar sets of ROC curves for 300, 1000, and 3000 pairs of
target and non-target samples are generated. The actual ROC curnethat
densities form for an infinite number of samples is shown as the solid line
on each plot. Variance is apparent in the plots, even for 3000 target samples
and 3000 non-target samples.
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The ROC curve estimates for various sample sizes, where thé&cahgam-

ples generate the ROC curves. The four plots are formed using the process
of Figure 3.2, except the ROC curves are formed directly using the sample
values a beta density form is not assumed. The variance in each of the
plots emphasizes the importance of ROC curve uncertainty estimation and

the inadvisability of focusing on one ROC curve estimate.
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these two figures emphasize the importance of ROC curve uncertainty tzhehe
estimated ROC curve. Section 3.2 details a fully Bayesian prooesstimating ROC

curve uncertainty.

Unimodal beta densities and score-threshold ROC curves are the asswgdel and
performance metric for much of the research discussed hevweever, the beta density is
used for illustration. The framework developed in the next sectiorh(peta densities)
may be applied to other density models and to likelihood threshold RO&sui~or
example, multi-modal beta mixture models and related empiricasttiotd and

likelihood-threshold ROC curves are shown in Figures 3.4 and 3.5.

3.2 Bayesian posterior densities of parameters and weighted ROC curves

The two left plots of Figure 3.6 show the collection of pairs of means and standard
deviations for beta densities that are zero at scores of 0 and 1. Values ofrdtanda
deviation outside each “rounded triangle” do not exist for these densitiesed/af
standard deviation inside each "rounded triangle" are the admissibletsste the
admissible set is described as follows. For the case of this beta dermsiti,rthe
admissible se#d consists of (i, o) pairs such that

. _ l-p
if0<p<05, 0< ity _ (3.3)

if 0.5 <p<1, o< tud
Admissible sets may also be defined for other density models, including derilgis
that are not restricted to two parameters. The target and non-targétetesisown in the
right plot of this figure map to unique locations on the standard deviation versus me
graphs shown at the left. Applying Bayes’ rule in a process consistent with tha
developed by [MacKay 1992a, 1992b] for the neural network community, but not

heretofore applied to target detection performance metrics, the deditreslel
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Figure 3.4 Target (solid) and non-target density (dashed) examples with enixéizae
model. In the upper graph two separate sums of 30 beta densities form the
target and non-target densities. Similarly, a sum of two beta densities for
each density in the lower graph. (The target density has 0.82, 0.055 and
0.7, 0.045 for the mean and standard deviation of the two beta densities, and
the ratio of their amplitudes is 0.45. The corresponding five values for the
non-target density are 0.6, 0.084, 0.45, 0.071, and 0.45).
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Figure 3.5

o |
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o |
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Correct detection probability

041 -
0zt | - -
' - true likelihood-threshold ROC curve
; true score-threshold ROC curve
1 empirical score-threshold ROC curve |
] 0z 0.4 0.6 0.3 1

False alarm probability

Relation of the true likelihood-threshold ROC curve (dot-dash time}rue
score-threshold ROC curve (solid line), and the empirical-threshold ROC
curve (dashed line). The true ROC curves assume knowledge of the under-
lying densities (shown in the the bottom plot of Figure 3.4). For the true
likelihood-threshold ROC curve, probability of detection is the integral of
the target density over the region to the left of the first vertical liné the
region to the right of the the second vertical line in Figure 2.1. Similarly,
the probability of false alarm is the integral of the non-target densiy the
same regions.
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Figure 3.6 Bayesian posterior densities of parameters. The two plots lefttlseow

the admissible domains of means and standard deviations for beta densities.
Values of standard deviation outside each “rounded triangle” do not exist for
these densities. The target and non-target densities shown at thenagh

to specific locations on the standard deviation versus mean graphs shown at

the left.
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parameters given a set of samples are obtained. Further, if the targebatarget
samples are independent, a joint posterior weight is obtained for any combioftion
target and non-target densities. The application of Bayes’ rule egjthe specification
of prior parameter densities. The typical prior density has uniform distoitsiof mean

and standard deviation over their admissible domains.

The following discussion outlines an analytical determination of a R@@ecdensity.

As is typical for Bayesian evaluations, the analytical results preduegrals that are not
tractable to further evaluate analytically (see MacKay [MacK&@2h], Bishop

[Bishop, 1995], Clyde [Clyde, 1999][Clyde and George, 2004], Hoeting

[Hoetinget al,, 1999], and Jordan [Jordat al, 1999]). However, numerical evaluation

is possible for the beta density model and for more complex density models (suda as be

mixture models).

Throughout the analytical progression that follows, the subscripts on density (for
example the subscripid onp,q) are used indicate the quantities being evaluated as
random variables (see discussion in Section 2.2 regarding relationddmavariables

and parameters).

Letd = {s,| : =1, ..., I} be a set of known independent non-target score samples, where
s, is theith non-target score sample, anddebe the non-target density parameters. For
example, for a beta density modelmay be the s, ,,) parameters that are the

allowable meansy(,) and standard deviations,() from the admissible set. Let

puja(uld) be the conditional probability density of the non-target score parameters

givend. Then by Bayes'’ rulep,q(u|d) is

pu\d(“’d) = Copd\u<d’u)pu(u)u (3.4)
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where the constartt, depends or, wherepg, (d|u) is the conditional probability
density of the samples given the parametersaltd) is the prior probability density of

the parameters.

For a beta probability density, Equation (3.4) is

P on)d (s Onld) = C1pau, ) (Al 00) Py 0 By Tn), (3.5)

where the constarit; depends ow.

By sample independence, the probability density of the samples given thangen-t

score parametersy(,, o.,.)(d|i,, o) iS

T =

Si
pd‘(“nﬂ’n)(d‘#n’ On) = 02 H

i=1

pa(mpn) gL _q1_1
(1 . Si)ﬂn[ o 1]
D (i, [ 2a8=tn) 1)) (s, [0 ltin) _q)[-L 1))

Dy [#2 G2 1] g [ Cmnd ) 2 1))

on

,  (3.6)

where the constarit,; depends ow.

Thus,

Py o) d (B> Tn|d)

I e

o ltn(l—an)_l L—l -1
(1— Si)#"[ on it

1

_ 5i

- 03{11 Bl (i gy Do O (3)
i= n n n

T ([ 0t) _yjy, (a0 ia) 3y )

where the constarit; depends ow.
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If the assumption is made that . (1,,0,) is uniform over all allowable values of

[y, O, then

I l"71[}"71((1,-;un)_1]—1 /"n(1_1L71)_1 L_l —1
( |d) C H Si (]. — Si)M"[ on ”l‘n | (3 8)
g = .
p(:u"rmo—n)‘d /’L?’H n 4 L F(MTL[”’ ((1’7M )_IDF(MTL[”’ 1—©n )_IM%_ID >
1= n on Ly,
Dy [ PG 1, [P0 Cobad 1) 1)

on K

where the constarit, depends on.

The points (,,, 0,,) chosen within the admissible set are used to estimate Bayesian
posterior densities. Each Bayesian posterior density may be visuabzbe
three-dimensional function described by Equation (3.8) that is non-zero foraduny
within the admissible set. The uniformly spaced points shown in the platseoieft in

Figure 3.6 select the elementswoéndv that are evaluated numerically

Leth = {q;| j =1, ..., J} be a set of known independent target score samples, where
is thejth target score sample, and tebe the target density parameters. For example,
for a beta density moded,may be the ., 0;) parameters that are the allowable means
(u,) and standard deviatiorig,) from the admissible set. Then applying the analysis
above yields expressions similar to Equations (3.5) to (3.8), where the eppréss
Pu,.oln (11, 0¢| ) is Obtained by replacingwith j, I with J, v with v, and(y,, o,,) with

(u, 04) in Equation (3.8).
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Theorem 3.1 Posterior density evaluation for the parameters given the non-target

samples

Let p,p.(s:|ui) be the non-target score probability density evaluated atttheon-target
score sample given thigh non-target sample parametegr, whereu, specifies a vector.
Let p,jq(ur|d) be the probability density of the non-target sample parameters evahtated
uy, given the non-target sampléswhered = {s,| i =1, ..., I}. Letp,(ux) be the prior
probability density of the non-target sample parameter vector evaluatgd Assume

that the non-target samples are independent and identically distributed. The

where the constarif; depends on.
Proof

By non-target sample independence and identical distribution

where the constarifs depends on.
From Bayes’ rule
Puja(ur|d) = Crpgp(dlug)pu(ur), (3.11)

where the constarif; depends on.

Therefore, combining Equations (3.10) and (3.11) yields (3.9).
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As an example, for a beta density model,specifies a mean and standard deviation. An

expression fop,, (v, |h) is developed similarly.

In Figure 3.6, the oval regions shown in the vicinity of the target and non-targat mnd
standard deviation values provide a confidence contour for the posterior probduaitity
the given set of samples is obtained from densities parameterized ingibated

regions. An example of a graph of Bayesian posterior density is shown in Figuré3.7.
plane that intersects the graph of the density such that a selectethizeye (e.g., 90%)

of the volume of the density is enclosed defines a confidence contour.
Definition - Confidence contour for the non-target parameter density

Let p,q(u|d) be the probability density of the non-target sample parameters given the
non-target samples Letc.c. be the desired confidence coverage (e.g., if the desired
coverage is 90%, then the confidence contour fraction is 0.90)x have elements

(u,,, o) in the domain of the admissible set. For any 0, let IV, consist of the set of

all (p1,,, 0,) Wherep, ».)1a(fn; onld) > 2.

Z=max<{ z>0: //p(ﬂmgnnd(,un, on|d)doydu, > c.c. (3.12)
N,

N, is the the set ofi (within the admissible set) that provides the desired confidence

coveraged.c).

To evaluate numerically, let

Ztest = mjx(p(un,on)ld(/‘m on|d)). (3.13)

Find V5, _, for Zi.;. Then findc.c.test for N3,

Ztest "

If c.c.test < c.c., then let

Ziest = Z2test — €. The values is a selected step size by which the change in the value of
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Figure 3.7 Bayesian posterior density of beta density parameters. The podérsity
formed from 300 meam and standard deviatiom pairs with respect to a
set of 30 target samples from a beta density of score is shown (arspiaita
applies for 30 non-target samples). The maximum likelihood estimate for
the mean and standard deviation is at the peak of the displayed density.
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Ziest 1S Specified. Repeat the process, continuing to redygeuntil c.c.test = c.c.. The

confidence contour for the target parameter density is developed symilarl

By Bayes'’ rule and assumed sample independence, the posterior protiabiligy
selected target mean and standard deviation are the parameteyseitidy the true (or
underlying) beta target density given a set of samples is proportional to thecpadcll
density values for the samples multiplied by the prior probability demsitiie
parameters. This process of evaluating the posterior density is rdgeateset of
non-target samples. Then the results are multiplied to obtain a value poogabto the
probability that a pair of target parameters and a pair of non-target paenaee the
parameters of the underlying target and non-target densities of scores. Th@poste
density in Figure 3.7 illustrates Equation (3.9). Any point within the adiisset is
weighted by

I
WE = Hps\u(si‘uk)pu(uk)a (314)

=1
wherewy, is the weight for the non-target parametegs A similar expression applies for
wy,, Wherew,, is the weight for point,,, and the replacement &fby m indicates target

pointm.

Let the produciv,w,, be the combined posterior weighting of a target and non-target
density pair (evaluated aj;,, v,,,). From Equation (3.14) fow, and the similar

expression forw,,,

K M
WiWy, = de\u(d!uk)pu(uk) H Phjo(AVm) Do (V). (3.15)

k=1 m=1

From Equation (2. 5),Fk (t; ug) ft (s;ux)ds, and from Equation (2.6}, is
G(t; vm) = /7 9(s;vm)ds. Thus, from Equation (2.10) the ROC curve is

~

ko (5 Uk, V) ::(?(}?—1($;uk),an_ (3.16)
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Theorem 3.2 ROC curve density

Letd ={s;...s;} be a set of independent and identically distributed samplEem
distribution f and leth ={¢;...q; }be a set of independent and identically distributed
samplesy; from distributiong, wherei = 1,2,..., 7 andj = 1,2, ..., J. Letp,(u) and
p.(v) be prior densities of the random parameter vectomadv. Letp,,(y|z,d, h) be
the probability density of correct detection probabiljtgiven false alarm probability
andd andh. Then

I

J
Pylz(y|z,d, h) = Cs //py|x(y\x,u,v)H (s:]w)pu(u Hg q;|v)py(v)dudv, (3.17)
7=1

A =1

where the contant’y depends o andh and the limits of integration are over the

admissible se#.
Proof. See Appendix A-2.

Substituting the beta density parameters and admissible set into Equation (3.17)

5 1—pg 5 1—pn
’ 11 (g +2) (i +1)2 ' tim (i +2) (1 +1)2
py\x(y’ajada h) = C(9/ / py|x(y\x,u,v)
0 0 0 0

1 J
H Si, U Hg 455 v po(v)dondp,dody,
=1 7j=1

If(l )2 ln( —pp)?

S e
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J
1 G w) [T o(a5; 0)pu(w)po(v)dondpy,dosdp,
7j=1

=1

un(l pip)?

Hn (l‘n+2)<ﬂn+1) 2—pip,
Pyle |z, u, v)

I J
H (si|u) Hg po(v)do,dp,dodp,
j=1

i=1

M(l pp)?

2— g un(un+2)(un+1)2
Dyl (Y], u, v)

J

H (si]u) Hg qj|v)pu(w)py(v)do,dp, dodp,,

=1 j=1

where

py\x<y|xu u, U) = py|x(y|x7 M,y On, :ut,o-t)

I I

Hf(5i|u) = Hf(si’Mn70n)
J J

Hg(qjlv) = Hg(qﬂut, )

pu(u) = DPu, on (Hns 00)
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pU(U) - thYUt (/“Ltu at)7 (323)

where the contant’y depends o andh.
Lemma 3.1 Discretization of posterior densities

Let d be a set of independent and identically distributed sampletf and leth be a set
of independent and identically distributed samplgsf g, wherei = 1,2, ..., I and
j=1,2,..J. Letp,(u)andp,(v) be prior densities of the parameter vecto@ndv
with elements,,, 0,,) and(y,, o), respectively Letu; andv,, beu andv selected
uniformly over the parameter domains within the admissible set. Finatly, |

A = (B, (k1) = Hge) (O, (k1) = Onge) BNAAG = ( (111) = Hop ) (O, (k41) = Onyi) @N

let Ay = (1 (ms1) = Ham) (Ot mr1) — Oem) @NAAL = (1 (i 41) = Hin) (Ot (mes1) — Ttm),
where the second subscript designates position in the admissible set domain.

Then
I
010/ / H[f(sz’ﬂna O—n)pﬂman(,un, Jn)]dand,un
AJA =
K I
— Cll };I—I»noo ; Hpsmman (8 O-n,k)p,un,on (/vbmk, O'n,k) (324)
and

J
012//1_[ (q51 e, O)Ppy o0 (e 01) | dosdpsg
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M J
= Cl3 ]\/lllinoo Z HpSWuUt <Qj |,ut,m7 O-t,m)putat (/ubtm, Ot,m)7 (325)

m=1j=1

where the constartt;, depends om, the constanf’;; depends o'y and A, the
constant’;, depends om, the constant’;; depends oii';; andA,,, and the the limits

of integration are over the admissible set

Proof

Since each evaluategd,(,, 0., ) is uniformly spaced on the admissible s&toc 1/A,
andM « 1/Ay, then the lemma follows by definition of a double integral and by limit of

a Riemann sum (see [Larsenal., 2002]).
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Theorem 3.3 Numerical approximation of ROC curve density

Letp,.(y|x, d, h) be the density of correct detection probabiljtgiven false alarm
probabilityx andd andh. Letp,,(y|r) = 6(y — r(x;w)), whered is the dirac density or
distribution function, lep, (u) be the prior density of the non-target parameserdp, (v)
be the prior density of the target parameters. {(e},v,,) : k=1,...., K, m =1, ...,

M} be uniformly selected over the admissible set. @indw for the target and non-target
parameter densities. Lgf,(s;|ui) be the density of the independent and identically
distributed non-target samples evaluated atthenon-target sample; given thekth
non-target sample parametess whereu,, has element§y,,, o) over the admissible set
Let p,q(u|d) be the density of the non-target sample parameters given the non-target
samples d. Lep,(uy) be the prior density of the non-target sample parameter vector
ks Onk). LD (q5]vm) e the
density of the independent and identically distributed target sampddisaged at theth

evaluated ati;, and 1etf (|t x, Tnk) = Ds|(u,, o) (S;

target sample; given themth target sample parameters, wherev,,, has elements
(4.1 o1) OVer the admissible setet p,,(v|h) be the density of the target sample
parameters given the target samplesLetp,(v,,) be the prior density of the target

sample parameter vector evaluated,atand let

g(Qj‘Mt,m? Ut,m) = ps\ut,at(qjmt,ma Utm)- Finally, let

K
7(d) = lim. ; H[psmman) (i | Hngor T k)P o (B o T )] (3.26)
and
I
V(d) = / T 5iltts 0, o s 7))t (3.27)
A =1

where the limits of integration are over the admissible4et
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Then

py|x(y|x7 d? h)
K M 1 J
= Cuq lim > 0y — (s ur, vm)) [TU (silun)pu (wn)] T Tl (as 0} (0], (3.28)
M—oo k=1 m=1 1=1 j=1

where the constarit,, depends ok, M, d andh.
Proof

Since from Lemma 3.1/(d) x v(d),

J

) /A / [EQ(W’ )P0 (10, 7)) dred

Mo
= C157(d) Z H Ds| (o) (@

m=1 j=1

,Ut,m)put,ot (Mt,m,at,m)] ) (3.29)

where the constarit,; depends oik’, M, d andh.

I J
// //H Sl‘ﬂna On pun On Nm Un H %’Mta Ot put ot (Hta Ut)]dand,undatdﬂt
A A =1 7j=1

K M I
= Cis Z Z H Ps|( ,un,an)

k=1 m=11=1

0n,k>pun,0n (Mn,ka On,k)]

O-t,m>put70t(ut,m7 Otm)]; (3.30)

J
T psicu,00(a
7j=1

where the constarit;s depends on o', M, d andh.
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Thus,
I

////p” ylo,w,0) T 1 (silttns 00)Pu, o (s 70)]
A

=1

=

::]g

[9(aj1e, 00)Pus 00 (1145 00) dond i, doedps, (3.31)
1

<.
Il

I

= CY172 ZPW ylo, u,v H[psl(umon)(si

k=1 m=1 i=1

O—n,k:)pun,an (ﬂn,k ) Jn,k)]

Jt,m)put,at (ﬂt,ma Otm)]; (3.32)

J
H p5|ﬂt Ut
J=1

where the constarit,; depends oik’, M, d andh.

The theorem follows upon substituting Equation (3.32) it81) and using Equation
(3.17).

To extend the above theorem to the CEG curve, let the CEG curve be defineé as (s

Section 2.3)
9(s|T, vm) P(T)
9(s|T,vm) P(T) + f(s|N, ux) P(N)’

P(T|s,ug vy) = (3.33)
wheres € [0,1]. Let{(ux,vn) : k=1,..., K, m=1,..., M} be uniformly selected over
the admissible set af andv for the target and non-target parameter densities.yLet
denote a selected location on the vertical axis of the CEG curve (seeRdufor a

CEG curve plot). LetP(T'|s, ux, v,,,) be the probability of target event given scaug,and
um, letg(s|T, vy, ) be the density of score given target event apdlet f(s|V, u;) be the
probability density of score given non-target event apdet P(T") be the prior
probability of target event, and Iét( V) be the prior probability of non-target event.
Replace(x; uy, vy,) by P(T'|s, ux,vm). Then the probability density of the probability of
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target given score for any evaluated score value is

pes)(P(Ts),d, h)

K M I J
= Ci5 A}%iinw 3 215@— P(T)s; g, Um)) 11[ (silur)pu(u) H1 9(g51vm)pu (i),
—00 k=1 m= i= j=

(3.34)
where the constarit,; depends oik’, M, d andh.

Note that covering the entire admissible parameter space volume wistttcpt number

of grid points becomes computationally more difficult as the number of dimensions
increases (see [Gelmanal, 2004]). For higher dimensions, Monte Carlo methods (see
[Hammersley and Handscomb, 1964], [Kass and Raftery, 1995]) or related
approximation methods may be used (such as Gibbs sampling or the Metropolis
Algorithm; see [Casella and Berger, 2002], [MacKay, 200@here i.i.d. sampling

assumptions are necessary.

Note that a fundamental assumption for a simple Monte Carlo approach (see

[Hammersley and Handscomb, 1964] and [Kass and Raftery, 1995]) is

K
k=1

where the constarit;s depends ork’,and theK grid points are independently and
identically selected from the admissible set. Equation (3.35) mjphkace Equation
(3.24) for i.i.d. sampling rather than uniform grid selectithus the framework

described here is appropriate for Monte Carlo methods.

Calculatingwy, ., values and they, ,,, (x; uj v,,) function is straightforward and
numerically tractable. However, it is desirable to limit the 92 and M/ by removing

the regions wherey,,,, approach zero (i.e., select only andv,, values such thaty,, is
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greater than a given small value). For computational efficiency, eatiite process is
used. The iterative process is described beection 5.5 gives a full description of the

numerical evaluation process used for the results shown in Chapteds5! a
Procedure 3.1 Iterative Process for calculating weight values

1. SelectK evaluation pointé¢ = 1, 2, ..., K (e.g.,K = 300) that are uniform over the
admissible set of non-target score parametgrsvhere eachy, consists of meap,, ;.

and standard deviatian, .

2. SelectM evaluation pointsn = 1,2, ..., M (e.g.,M = 300) that are uniform over the
admissible set of target score parametgrswhere each,, consists of meap, ,, and
standard deviation, ,,.

1

3. Findwy, = H[ps‘u(si

=1
given set of/ target samples;,i = 1,2, ..., I.

ux,)pu(uy)] for each evaluation point selected in step 1 and for a

J

4. Findw,, = H[ps‘v(sﬂvm)pv(vm)] for each evaluation point selected in step 2 and for
j=1
a given set of/ target samples;, j = 1,2, ..., J.

5. Combine alkw;, andw,, pairs from steps 3 and 4 to find the initial values (e.g., 90,000)

of wrw,,.

6. Find the root mean squared distance to the mean of the parameter valeasH

(/J“n,k:,o-n,k) pair' i'e" [Q”Ln,k - % Zé{:l Mn,k)2+(an7k - % Zé{zl O-nuk)z]l/Q'
7. Repeat step 6 for each,(,, o+,,) pair.

8. Retain a subset of the combinations of thev,, pairs that are closest in distance as
defined by steps 6 and 7 to the mean of non-target and target parameter values,

respectively. Also, retain any additiona) andw,,, pairs without regard to distance
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whosew;w,, value is greater than the lowestw,, value of the subset of pairs that are

closest in distance.

9. Create a new uniform grid of target mean and standard deviation values&ople,
10 x 10) that bound the region formed by the pairs retained in steps 6; dmel 8ew grid

forms new f,, , o,.) pairs (for example 100).

10. Create as in step 9 a new uniform grid of non-target means and standaatibdevi
values (for example, 10 x 10) that bound the region formed by the pairs idermifsteps

7 and 8 the new grid forms newy, ,,, o) pairs (for example, 100).

11. Find the posterior weightings,w,, of the new pairs (e.g., 10,000 posterior
weightings).

12. Retain all (., w,,,) pairs such that 99.9% of the total posterior parameter weightings

are maintained.

13. Repeat steps 9 through 12, except use the region formed by the pairs idemstieul i
12 rather than step 9.

As the number of non-target samples and target samples increases, the probability
density shown in Figure 3.7 is more highly peaked, and the region where thetswejgh

andw,, have significant magnitudes is smaller.
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Theorem 3.4 True versus possible parameter sets

Letd = {s;:i=1,...,1} C [0, 1] be a set of independent and identically distributed
samples; of the density of non-target sampléés; u). Let F;(s) be the distribution of
these samples. Let be the true (underlying) parameter values of the non-target density

f. Letu, be a possible parameter from the admissibleseind let

S | FCHGES | CH B! (3.36)

Then, ad — oo, ¢, increases for alt 7&5.
Proof

By definition of independent and identically distributed samples, thelaitsion of the
samplesF;(s) equals the distribution of the random variabl¢see [Papoulis, 1991, pp.
185]) asl — oo (see [Stark and Woods, 1986, pp. 252]). Thus] as oo, ¢, increases
forall z #5.

A similar result holds true for the target samples. Further, since the RO density
combines the target and non-target posterior densities (see Equation (Ra RPC
curve density also narrows (the ROC curve density evaluated atafgige alarm

probability approaches a dirac distribution) as sample size increases.

Figure 3.8 shows the final step in the generation of the ROC curve density. 8ateel
posterior density calculations for the target and non-target paramie¢erghe mean and
standard deviation for a beta density), an approximation of the ROC curveydisnsi
developed. A selected target density of score, a selected non-targiey déssore, and

a varying threshold forms a ROC curve and has a weight. Many sets ofigetesult

in many ROC curves, each with a weigh{w,,. The figure shows curves that represent

8y — rm(x; uk,vy)] for five selected: andm pairs. The weighted summation of
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Figure 3.8 Weighted ROC curves. Based on the posterior density approximations for the
target and non-target parameters values (i.e., the mean and stdadarttn
for a beta density), an approximation of the ROC curve density is developed.
The combination of a selected target density of score and a selected non-
target density of score forms a ROC curve and has a weight. Many sets of
selections results in many ROC curves, each with a weight,,. Here
only five weighted ROC curves are shawar a large number of weighted
ROC curves many descriptive statistics may be computed, such asmrmedia
estimates for the ROC curve, confidence intervals for the ROC cuediam
estimates for the AUC value, and confidence intervals for the AUC value.
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Oy — 7k.m(x; ug,vim)] for k andm selected from the admissible set is described by
Equation (3.28). Five ROC curves are sho@much larger number of weighted ROC
curves are needed to represent a ROC probability density model (approxid@@00
ROC curves are typically employed). ASandM become large, these weighted curves
approximate the analytical ROC surface density. In particular, if a laugeber of

Sy — rrm(x; uk,vy )] functions for selected andm pairs are each replicated a number
of times proportional tav,w,,, then the set of replicated functions represents the density
of ROC curves (as the preceding theorem indicates). For a large number of weighted
ROC curves, many descriptive statistics may be computed, such asmesdiimates for
the ROC curve, confidence intervals for the ROC curve, median essrf@tthe AUC
value, and confidence intervals for the AUC value as detailed in ChapfEni3.

outcome extends in a straightforward manner to the CEG curve, and Sectionpples a

the method described here to CEG curves.

The above discussion is self-contained in that an analytical ROC cunggtylprocess is
developed. Necessary inputs include non-target and target sampleBedmimsity
models for the target and non-target samples, and prior densities for tmegtara of the
models. The selection of evaluation points for the prior densities enables aicalmer

estimate of the ROC curve density.

The upper left plot of Figure 3.9 shows selected target parameter pointegtaad the
upper right plot shows example non-target parameter points (circles). Thke lefivplot
shows target densities (solid curves) and non-target densities (dasired)dor these
points, and the lower right plot shows the ROC curves formed by combinatiohes# t
curves: out of the 64 possible pairs, the 44 are chosen that have the highest posterior
parameter density. The plots demonstrate that a slight shift in paranaéderisnpacts
density shape and the corresponding ROC curve. As increasing numbers otatget
non-target samples are drawn, the densities that fit the samples well @sirgi&n

posterior density evaluation converge. Since a sequence of random \&dablerges
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Figure 3.9 Parameter variation with corresponding densities and RO@scurvhe

upper left plot shows parameter points that select target densitieshand t

upper right plot shows parameter points that select non-target densities. The
lower left plot shows target (solid curves) and non-target (dashed urve

densities for these points, and the lower right plot shows the corresponding

ROC curves.
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in distribution as the number of samples becomes large (see Definition 5.5.10seflfCa
and Berger, 2002, pp. 235]) assuming that the samples are i.i.d, the range aédehatt
have high likelihoods (i.e., that fit the samples well) narrows as sam@ersireases.

An increase in sample size is observed experimentally to enable &ggms of standard
deviations and means to be disregarded, because the corresponding postetipr densi

regions have low magnitude (see the above theorem).

Note that parameter evaluation points uniformly spaced for one parametee chayc
not be uniformly spaced for other parameter choices. Figure 3.10 plots poifasniyi
spaced over variance and mean rather than standard deviation and ntetrera
converts these points to standard deviation and mean. Comparison gutle Bi6 shows
that these points are now more concentrated at larger standard deszifiguoire 3.11
examines posterior probability density over the beta density parasasdedb rather
than mean and standard deviation. Aandb increase, density width generally
decreases, which initially provides better fit to samples for selauians, until a
maximum posterior parameter weight is reached, beyond which the targetastdrget
densities have variance too small to adequately fit the samples. SéHesting points
uniformly overa andb requires different prior assumptions than selecting points

uniformly over mean and standard deviation.

In this chapter, performance metric probability densities have beeogedeChapter 4
leverages these densities to obtain and verify confidence intervatstlarddescriptive

statistics.
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0.35

Figure 3.10 Uniformly spaced parameter selection over variance and coeapared
with selection over standard deviation and mean. The curves in both plot
enclose allowed beta density parameters. The points that are uniformly
spaced in variance and mean are transferred to standard deviatsus ve
mean in the lower plot. Note that while the curves are of different shape,
the limits of o ando? are both defined by the admissable set of Equation
(3.3) (the difference in shape is simply a result of using a vertical e«
rather tharnr?).
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Figure 3.11

Posterior parameter density

i3

Posterior parameter density

Beta posterior parameter densities that compare a and b veasds:
parameters. The bottom plot is as in Figure 3.7 but for a different set of
target and non-target samples. The top plot shows thataslb increase,
the density width generally decreases, which initially providetebéit to
samples for selected means, until a maximum posterior parameter weight
is reached (here at= 55, b = 15), beyond which the target and non-target
densities have variance too small to adequately fit the samples.
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4. Probability Density Characterization and Verification

The method of Chapter 2 generates densities for detection system perfermeatnc
curves, such as the ROC curve. Various descriptive statistics tlaeaatbrize these
densitiesexamples of such statistics are confidence contours for the ROC curve and
confidence interval limits for the AUC value. Following the development ofisuc
characterization methods, a Monte Carlo approach estimates their@cosmag various
examples. Coverage accuracy and alpha are used to test whether or néirtbe de
confidence interval limits are accurate over a large number of trialsexgmple,

suppose that 30 target samples and 30 non-target samples generate a ROCleerve. T
based on only these 60 samples, a ROC curve probability density and 90% confidence
intervals can be developed. The 90% confidence intervals are intended to ¢heltose
ROC curve 90% of the time. This outcome can be tested by generating 30dangeles
and 30 non-target samples many times, producing confidence intervals foueaehnd
calculating the percentage of runs in which the confidence intervals enaitise Tthe
coverage accuracy and alpha metrics are of particular interest bebayggavide

guantitative means to compare the method developed here with methodsiterttere.

4.1 Development of descriptive statistics

4.1.1 The AUC value densities and confidence intervalEhe following process maps
the weighted ROC curves shown in Figure 3.8 to AUC value uncertainggzalRthat if
the target and non-target density parametgrandv,, are specified as described in
Equation (3.16), then a deterministic ROC curve results. Further, ssexpisdive set of
(k, m) pairs results in a representative set of ROC curves. Chapter 2 desarfizocess
for generating such ROC curves (see Figure 3.8). First, find the ROC curvey v,,)

for each selected:(m) pair, wherek andm identify one of thek” parameters,, and one

of the M parameters,,. Second, replicate each curve a number of times proportional to
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its posterior parameter weighting,w,,, which is defined in Equation (3.15). Finally,

calculate for each ROC curve a corresponding AUC value as
1
AUC (ug, o) = / r(z; ug, v )d, 4.1)
0

wherey andzx are correct detection probability and false alarm probability, respygtiv

of the ROC curvethat is,y = r(x; uy v,,) is the ROC function.

Confidence intervals for the AUC values are developed as follows. Centewpaitse
probability density function at each observed AUC value. Add and normadlirepulse
functions such that the result is a probability density. Denote this demsity, wherez

is the domain of possible AUC values. Begin at an AUC test value of O ancaiseantil
the AUC test value is found such that the integrapgfz) from O to the AUC test value is
0.05. This test value is a lower 90% AUC confidence interval. Similadgin at an
AUC test value of 1 and decrease until the AUC test value is 0.05. Thisakst is an

upper 90% AUC confidence interval. These following equations describe the process

test valuejower 1
/ p.(2)dz = 0.05, / p.(2)dz = 0.05 (4.2)
0 t,

est valueypper

In practice, the impulse function is obviously not practical to evaluateemiaaly.

Instead, compute the lower AUC confidence interval by starting at an AU@dkse of
zero and stopping when 5% of the observed values are obtained, thereby appraximati
the inclusion of 5% of the total impulse functions that are used to foifm). Proceed

similarly for the upper AUC confidence interval.

Note that a two-tail equal area approach is described here. Other eppsozonsidered
by Ross [Ross, 2003] describe alternative confidence interval definitions. aldotehat
a median ROC curve is generated by beginning at an AUC test value of Gasimtgehe

test value until the integral over the AUC value density from O to the tsievis 0.5, and



specifying the ROC curve that corresponds to the test value as the ni@d@murve
ranked by AUC value. Note finally that the AUC value density is not typically
symmetric, making a normal approximation approach in lieu of the above caftigut

undesirable.

Figure 4.1 shows a histogram of AUC values, where each AUC value is weightiesi
ROC curve weight as indicated in Figure 3.8. This histogram estimates thevAlu€
density given a set of target samples and non-target samples, assumsddiothe
densities of score, assumed prior parameter densities, and specifiethggongtiocols.

A method that generates a ROC curve 90% confidence band from AUC valudateissit
described in Section 4.1.2. Another method that generates a ROC curve 90%oafid
band from the weighted ROC curve density without use of AUC values is descnibed i
Section 4.1.3.

4.1.2 Rank characterization of ROC curves by AUC valueshe ROC curve

confidence contours shown in Figure 4.2 are obtained as follows. First, finovike |

and upper 90% confidence intervals for AUC value (as explained in the previousgecti
Next find the ROC curve closest to the lower 90% AUC confidence inteniataése

(see Equation (4.2)), and the ROC curve closest to the upper 90% AUC confidence
interval test value. These two ROC curves form the lower and uppés loha 90%
confidence band. For the median or 50% ROC curve, find the median AUC value, and

then find the ROC curve that has an AUC value closest to this median value.

Figure 4.2 provides no new information beyond that given by the ROC curve dehsity
Figure 3.8, and, in fact, Figure 4.2, unlike Figure 3.8, does not indicate the shdye of t
ROC curve density (Figure 3.8 provides the entire ROC curve density, inasbitigure
3.8 only provides confidence intervals that constitute a summary or partialptestof
this full ROC curve density). However, the ROC curve confidence intearalghe

median ROC curve shown in Figure 4.2 are useful. For example, foeatsdlfalse
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Figure 4.1 An AUC value histogram. This histogram is based on 30 target and 30 non
target samples. After the replication of each representative R¢& ¢as
in Figure 3.8) a number of times proportional to its weight, an AUC value
is calculated for each curve. For this example the underlying densities are
known (but not used in the histogram development), and the true AUC value
is 0.882. The AUC value is a single summary metric used to compare-differ
ent SUTs, and here an extention is made to a density estimate in thefor
a histogram of AUC values.
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Figure 4.2 Rank characterization for ROC curves weighted by AUC valuase e

ROC curve density is developed, there are many possible definitions of ROC
curve confidence bands or ROC curve confidence interval contours. The 90%
ROC curve confidence interval contours shown here are obtained by finding
the ROC curve that has the AUC value closest to the lower 90% AUC value
confidence bound and the ROC curve that has the AUC value closest to the
upper 90% AUC value confidence bound. The median ROC curve is the
ROC curve that has the AUC value closest to the median (50%) AUC value,
and the true ROC curve (the ROC curve for the target and non-target densities
from which the samples are drawn) is also shown.



alarm probability, the 90% confidence bands of correct detection probdbilityo
SUTs can be compared. In particular, if one SUT has a median ROC cureb hdums
greater correct detection probability at the selected false alasbapility than a second
SUT, and if the confidence intervals of both SUTSs at this false alarm protyadilinot
overlap, then the first SUT is more desirable than the second wigastt 90%
confidence. The confidence interval at false alarm probabilities approachongrzene
necessarily becomes narrow, because a ROC curve by definition has detestion
probability of zero at false alarm probability of zero and correct detegirobability of
one at false alarm probability of one. In particular, in Equations (2.2) and @.3) f
correct detection and false alarm probability, respectively,fetoc (or in the case of
se [0,1], lett = 0). Then correct detection probability equals one and false alarm
probability equals one. Let= oo (or in the case ofs [0, 1], lett = 1). Then correct

detection probability equals zero and false alarm probability equals zero.

The confidence band method that Figure 4.2 illustrates compares favorably with a
confidence band formed by a pair of error bar contours, where such contours atebase
the standard deviation of the ROC curve density at a given false alarmigiihaSuch
error bars may extend outside the zero to one range of correct detection piglazadulli

do not make appropriate allowances for skewed distributions. Methods iadaetr
literature that go beyond simple error bars (such as [Zhou and Qin, 2005]) sway al
extend beyond allowed regions, e.g., to correct detection probabilitiagegtban one.

Two advantages of the ROC curve confidence bands described in this sectilbatare
they do not require the selection of an independent variable (such as false ala

probability), and the confidence bands generated are true ROC curves.

Once a density of ROC curves is developed, there are many possible definitio@€of R
curve confidence intervals or confidence interval bands (in addition tg mays to
compute these intervals or bands). Methods described in the literatucaltygire

applicable to only one or a small subset of these definitions. In contrast, theaappr



taken here of forming ROC curve densities first and then transitioningsirigéve
statistics can handle a variety of definitions. Ma [Ma and Hall, 1993] empésthe
need for approaches that may be applied to multiple confidence definitions. The next

section details the primary method of confidence interval estimationingkis research.

4.1.3 Characterization of ROC curve densityWith false alarm probability as the
independent variable, the following procedure generates a ROC curve density
characterization. First, find the density of correct detection probahbilia selected false
alarm probability. Second, repeat for all possible false alarm probabiliFinally,
generate a normalized combination of all such densities to form a ROChpliba

density.

The density of correct detection probability at a given false alarm probatsiiound as
discussed in Sectioh2, where each ROC curve is replicated a number of times
proportional to the posterior parameter weightinguv,,,, given by Equation (3.15), and

let N,,... equal the number of replicated ROC curvé&ote that each ROC curve gives
one correct detection probability value at any selected false alarmlipliopaA density

of correct detection probability may be generated by using each of the dbrrect
detection probabilities as observations of some unknown density, whereidlithe
number of replicated ROC curves, and by estimating the density of colegattion
probability based on these observations. The upper plot of Figure 4.3 shows such an
estimate based on a beta density model, and the lower plot shows contours of equal

density. Figure 4.4 shows similar plots for the true ROC curve with a loW#E Aalue.

The ROC curve density developed here specifies false alarm probabilitg as t
independent variable. However, it is also acceptable (although not asteonsvith
common practice) to select correct detection probability as the indepeaxie and to

find the density of false alarm probability at every correct detegirobability.
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Figure 4.3 A ROC curve density. The upper plot estimates the ROC curve density
formed from 30 target scores and 30 non-target scores. Correct detection
probability is normalized so that for each false alarm probability nitegiral
of correct detection probability is one. The resulting correct detection de
sity at each selected false alarm probability is smoothed by a bet&ydens
that has the same mean and variance as the correct detection prazadbiliti
the replicated ROC curves. The lower plot shows equal density contours.
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Figure 4.4 A ROC curve density. This figure is similar to Figure 4.3, excepthira
the set of 30 target scores and 30 non-target scores are selected feoandif
underlying target and non-target densities. These densities are such that the
true ROC curve has a lower AUC value than is the case in Figure 4.3.



4.1.4 Confidence contours for ROC curve density:he ROC curve density developed
in Chapter 2 permits computation of confidence contours. Considerthe dbrrect
detection probabilities at a specified false alarm probability. Ciedensity based on
these N,... values by centering an impulse (or delta function) density at each of the
correct detection probabilities, and normalize the combination of gl Nmpulses so
that they form a probability density. Start at a correct detection protyati zero, and
increase it until 5% of the correct detection density is enclosed. The tdetsction
probability where this result occurs is a 90% lower confidence interviahile8ly, start at
correct detection probability of one and decrease it until 5% of the cored¢ettion
density is enclosed to find a 90% upper confidence interval. Repeat for all laise a
probabilities. The continuum loci of all 90% lower confidence intervals spsa@fi@0%
lower confidence contour, and the loci of all 90% upper confidence intervals sgeifi
90% upper confidence contour. The two contours enclose a 90% confidence band, and
are shown in the upper and lower plots of Figure 4.5. The upper plot uses 10 target
samples and 10 non-target samples as inputs, and the lower plot uses 30 rajdes sa
and 30 non-target samples as inputs (these samples are similar to thoserskayune

4.3).

The contours are expressed as follows. het(y|z, d, h) denote the ROC density. Then
90% confidence interval fay at a particular, or (x;), for a set of target sampleg)(and

non-target samples) are found using

Miower
C([lower (mlower; mi,da h) = / DPy|(x,d,h) (Z/’i% d7 h)dy (43)
0
1
Clupper(mupper; Zi, d7 h) = / py\(m,d,h) (y|xz, d7 h)dy (44)

and solving forCI,,t  (0.05;z;,d, h) andC1,}..(0.05; z; d, h).

upper
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Figure 4.5 Confidence intervals with false alarm probability as the independent va
able for two sample sizes. A 90% lower confidence interval is developed
from the ROC curve density by fixing a false alarm probability, starting at
a correct detection probability of zero, and increasing the correct detection
probability until 5% of the density area is encompassed. Similarly, a 90%
upper confidence interval is developed by fixing a false alarm probability,
starting at a correct detection probability of one, and decreasing thectorr
detection probability until 5% of the total correct detection probabilitynis e
compassed. The median contour (i.e., the locus of points that encompass
50% of correct detection probability) and the true ROC curve (for thettarge
and non-target densities from which the samples are drawn) are alsa.show
In the upper plot 10 samples of target and 10 samples of non-target are used,
and in the lower plot 30 samples of target and 30 samples of non-target are
used.
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Figure 4.5 shows the general effect on confidence interval of an indreaample size.
The confidence interval widths become smaller as the number of samples @scrddee
factors that regulate ROC curve density (and confidence interval) wagéhs

Hf Siu Hg s;;v),wheref is the non-target density,is the target density, are the

non target samples are the target samples, an@ndv are the specified parameters
that definef andg. As the number of target and non-target samples increases, the range

of densities with a high weight value as defined by these function decreases.

The density-based ROC curve confidence interval generation method developed here
constitutes an improvement over other methods described in the liesratithe

intervals here have more useful definitions. Many existing methods atterdpscribe

the uncertainty in probability of correct detectigmat a specific probability of false alarm
x, but do not permit extrapolation to confidence bands because they either fail to
incorporate or incorporate conservatively the underlying uncertaintyeivariabler.

The non-target density yields this uncertainty as a simple outcome ofayesian
approach in the method developed here. Other existing methods incorporate nhcertai
in bothy andz, but restrict threshold to a single value or make assumptions that are only
valid for particular density forms (see [Linnet, 1987], [Campbell, 1994], and

[Plattet al., 2000]). In the method described here, threshold is eliminated as aleariab
which removes the need to restrict threshold to a single value andsetagertainty in

the independent variable

A confidence accuracy measure designated alpha tests ROC curve confidenag inter
accuracy. Alpha describes the percentage of trials where the confitéecal does not
enclose truth. One set of target samples and non-target samples define paesétand
set of target samples and non-target samples define a second trial, etealalpha is
one minus the intended confidence interval coverage. The example in Figuraiss cl
90% confidence intervals, and thus the ideal alpha is 0.1. If the underlying texdje

non-target densities generate the same number of target and non-targeissampl
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infinite set of times, the truth ideally departs from the confidence interval diG#e

time. This confidence region accuracy evaluation process extendstdidence band,
where contours defined by the confidence intervals at every false alarnbpitglziefine

the band. The process here assumes that each false alarm probabilityeuamb
contribution to an overall alpha measure. For example, if the true RO@ &ies/outside

the generated confidence band for 25% of the false alarm probabilitiesciooéan

infinite set of ROC curve estimates, then alpha is 0.25. An alternatm®agph declares
"failure™ if any portion of the ROC curve confidence band lies outside of the condenc
band for any false alarm probability for a particular run. With thismative approach,

if any portion of the true curve deviates from the ROC curve confidence band on 40% of

an infinite set of generated ROC curve confidence bands, then alpha is 0.40.

Confidence interval accuracy does not necessarily increase with inanesssaple size.
Consider two extreme cases. First, evaluate a ROC curve estmtatinfinitely small
confidence interval widths that are ideally 90% confidence intervals. Thed@€
estimate may be close to truth, but the confidence band is always above or belwuet
ROC curve, resulting in an average alpha of 1. Next, consider a ROC cunvetestar
from truth, but which has the largest possible confidence interval widths. Fopéxaah
every false alarm probability, the 90% confidence interval limits aaad1, in which
case alphais 0. In arelated consideration, note that a confidence licgdotdation
approach that produces an alpha of 0.1 (for claimed 90% confidence intervals) is

generally better than an approach that produces an alpha of 0.

Letr....(z) be the true ROC curve (in test cases where the density that gertbrates
target and non-target samples is known)¢lgtr) be the actual coverage accuracy
defined by Equation (4.5), 1€t 1., (m; ) andC1,,,..(m; x) be as defined by
Equations (4.3) and (4.4). Then

ca(m,z) = P{Clipwer(m; ) < Ttrye(r) < ClLypper(m; x)} . (4.5)
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Estimates forP (ryuc () > Cligwer(m; x)) @nd P(ryye () < ClLypper(m; x)) may be

found by generating many sets of identical numbers of samples from the s@@ieatiaa
non-target score densities, to approximate the probabilities noted ini&@y@45). In
particular, let ccy..;..q be the desired confidence interval coverage (in the case of 90%
confidence intervals, cg\i..q = 0.90), and letad, alpha desired, be one minus the

desired confidence interval coverage. Then

alpha(m) =1 — /0 [ca(m, x) — ad]dz. (4.6)

4.1.5 Relations of confidence intervals to Chebyshev’s inequalifjhree separate

relations of Chebyshev’s inequality to confidence intervals follow.

The first relation is established in Theorem 4.1 and shows that the upplaveasrd
bounds of the confidence interval contours developed in Section 4.1.4 are within the

constraints established by Chebyshev’s inequality.
Theorem 4.1 Upper and lower bounds for confidence interval contours

Letp,.(y|z) be as developed in Theorem 3.2. The median (see [DeGroot and Schervish,

2002, pp. 210]) opy.(y|r) is the valuened,, such that

medy |, 1
0

medy|;,

Let pup, , (y[x) andpiow,, (y|z) be symmetric probability densities such that

py\:r(y‘x>vy > medy\m

pupyh; (y’x) - (48)

py|m((2medy\a: - y)’I)\V/y < m6d21|37

and
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plowyu (y’x) =
Pyl ((2medy, — y)|z)Vy > medy,

Also, lety,,, (y|z) =mean ofpu,, (y]2), up,, (ylw)=mean o, (ylx),

Opupy s (y|z) = standard deviation qf,,  (y|x), andoplowy‘z (y|x) = standard deviation of
Plow,, (y|z). Finally letr,(z) denote the upper bound on the (d/pha) upper
confidence interval o, (y|=) and letr;(x) denote the lower bound on the (&ipha)

upper confidence interval @f,,(y|x).

Then
(2) < medys + (0py, . (y2) [~ (4.10)
Ty\T) = me y|:r O-p“pym y:v alpha s .
2
ri(x) > medy|, — (aplowylm (y|z) alpha>' (4.11)
Proof

By Chebyshev’s inequality (see [Hogg and Craig, 1978, pp. 59]) fer0

1

P(r(x) = pp,,, (ylz) = kop,,, (yle)) 21— 5. (4.12)
Thus
1
P(ru(z) 2 koy,,,  (4le) + pp,, (Glr) 21— . (4.13)
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An upper bound on the (&tpha) upper confidence interval specifies that

P(rule) > kop,,, () + ty,, (ylr) > 1 22z

1 alpha _ 2
andthusl — 5z =1—- & 7k—1/azpha7

Herepupy‘z(yu) is symmetric iny, p,, (y|x) = med
Yy

|z

Jl» and by definitions, (z)

denotes the (1alpha) upper confidence interval.

Thusru(m) < medy|x + (Opupylm (y]a:) \/ alp2ha)'

Similarly, by Chebyshev’s inequality (see [Hogg and Craig, 1978, pp. 59]),

1
P<upuPy|m (y|x) - Tl(x) Z ko‘plmuylm (y’x)) Z 1 - E’ (4'14)
1
P<_Tl<x) Z ko_plmuy‘m (y|x) - ll/plmuy‘m (y’x)) Z ]' - ﬁ? (4'15)
and
1
P(Tl(x) S Mplo11;y|m (y’x) - ko_plowy‘m (y|x)) Z ]' - p (4'16)

A lower bound on the (pha) lower confidence interval specifies that

alpha
P(T’1<I) S uplmuy‘m (y|x) - ko-plou/ylm (y’x)) Z 1 - p2 :
Herepupy‘m(yu) is symmetric iny, p,, ‘ (y|z) = med,y,, and
Yyl

by definition,r;(x) denotes the (1alpha) upper confidence interval.

Thuslrl(x) S medy|a: + (O-ploulylm (y’x) \/ alp2ha)
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Figure 4.6 shows a plot with the 90% confidence intervals developed in Sectionddl.4 a
the upper and lower bounds for the upper and lower 90% confidence intervals as

developed in this Section.

The second relation of confidence intervals to Chebyshev’s inequality doesjnoere
the Bayesian progression that is the focus of the research presentelut@regsults in
extremely wide (and unformative) confidence bounds. This relation iblesttad as

follows.

For a given set of target samplésa given set of non-target samplesand a selected
alpha (such asilpha = 0.1), find a target sample standard deviatigrand a non-target
sample standard deviatian,, and find the upper and lower bounds on the target mean as

follows. From Chebyshev’s inequality (see [Hogg and Craig, 1978, pp. 59]),

P(Imean@) - z,| < k5,) > 1 — % — (1 — alpha). (4.17)

Find the two values af; such that

|mean() - x;| < ko,. (4.18)

Similarly, find the upper and lower bounds on the non-target mean by solving for

where

P(Imeant) - z,| < k5,) > 1 — % — (1 — alpha), (4.19)

and find the two values af,, such that
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Figure 4.6  Upper and lower bounds on 90% confidence intervals plus ROC curves and
coverage for a selected density pair. Here beta target and nat-demsities
generate 30 target and 30 non-target samples (the densitieg ka®e805,

o = 0.059 andu = 0.715, 0 = 0.046, respectively. The 90% confidence
intervals for the ROC curve developed using the method describediiosec
4.1.4 are the short dashed curves. The underlying true ROC curve is the
solid curve, the median ROC curve estimate is the dash-dotted cumde, a
the upper and lower bounds of the 90% confidence intervals are the heavy
dashed curves.
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Imeant) - z,,| < ko,. (4.20)

This approach results in ROC curve uncertainty estimates that areneyrevide and
uninformative, even when the target and non-target standard deviationsaiféesp If
uncertainty in the target and non-target standard deviations is incorporateel ptinends
will only become wider and less informative. Figure 4.6 provides an exampRofor
target and 30 non-target samples. Here it is assumed that the standatcbdesi
constant at the standard deviation of the target and non-target samples, ayel arter
non-target beta density model is assumed (both of these selections caraooly the
bands compared with more general cases). In combinations where the mean and
standard deviation pairs are outside of the admissible set (of allowadaasrand
standard deviations for a beta density), the standard deviation is retaineke Imean is
adjusted (brought closer to the sample mean) so that the resulting meaarachar gt
deviation are within the admissible set. This adjustment can only nhakeaticulated

bounds more narrow.

Finally, a third relation of confidence intervals to Chebyshev’s inequsdityes for

Miower ANAM,,0e SUCh that (for 90% confidence bounds)

Miower
CIlower(mlower; x,da h) = / py\(m,d,h) (y‘xa d7 h)dy = 0.05 (421)
0
1
andC'Iypper (Mupper; T, d, h) = / Dy|(z.d.h) Y|z, d, h)dy = 0.05, (4.22)

wherem;,..., IS the correct detection probabiligythat produces a 5% lower confidence
interval at a specified false alarm probabilityfor a set of target samplésand a set of

non-target sampleg andm,,,., is the correct detection probabilitythat produces a 5%
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Figure 4.7 ROC curve uncertainty example with Chebyshev’s inequality. RO cur
estimates are produced from the underlying target and non-target densities
of Figure 4.6. Equations 4.17 through 4.20 are applied to find the 90%
bounds on uncertainty of the target and non-target means. The standard
deviation of the target and non-target samples is used, and target and non-
target densities at the extremes of the uncertainty bounds are combined to
form the curves shown in the top plot. The upper and lower limits of these
curves form confidence boundkese bounds are extremely wide (the upper
ROC curve has an AUC value 1, and the lower ROC curve has an AUC
value~ 0). The four lower plots show two of the four sets of density pairs at
the uncertainty bound extremes. In the bottom right plots, the ROC curves
that correspond with the underlying target and non-target densities ava sho
as solid curves, and the curves that correspond with the dengitiefs are
shown as dotted curves.
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upper confidence interval at a specified false alarm probabilityr a set of target

samplesh and a set of non-target samplés

From Chebyshev’s inequality (see [Hogg and Craig, 1978, pp. 58])

E[mlower (flf, da h)]

P ower 7d7h S ower Z
Mier (73 ) < clouer(0)] 2 =2

, (4.23)

E[mupper(;d, h))

and P[mupper (75 d, h) > Cupper(7)] <
[m pp (z ) Cupp ()] Cupper(ﬂﬁ)

, (4.24)

wherecoye, () ande,,,., () are lower limits to the lower 90% confidence interval and
upper limits to the upper 90% confidence interval. This progression requires the
calcluation, based on one set of target and non-target samples, of thecelxysae of
Miower (L5 d, ) @andmy,.-(z;d, h). Based on one set of target and non-target samples,
the best estimate iB[mower (7; d, h)] = Myower(x; d, h), and

Emupper (75 d, h)] = mupper (25 d, h). If more sets of samples are available, then these
new samples may be incorporated into the framework, and improved confickacais
may be developed. However, . .1 (y|z, d, h) is already the defined (actual) posterior
probability density for the ROC curve that fully incorporates what is knawmfthe
observed target and non-target samples (which are assumed independenhacallide
distributed), assumed model, and assumed priors. Thus, this discusdiicates that the
target and non-target sampléandh are realizations of random variables, and as such
the developed posterior probability densjiyy. ) (y|z, d, h) may be (and should be)
updated if additional sets of representative target and non-target saanelavailable. In
any case, the developed posterior probability densities (and the correspoadfitgnce
intervalsC'Iipwer (Miower; T, d, ) aNAC Lypper (Mupper; x, d, b)) are actual confidence

intervals based on the available samples, assumed model, and agsiored
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The above discussion indicates that the posterior probability densityiissuimmary of
what is known about the ROC curve based on the observed sample data, thedassum
model, and the assumed priors. Carlin writes [Carlin and Louis, 2000, pp. 3@] that
Bayesian approach "enables direct probability statements about the likebhdalling

in [set] C, i.e., 'The probability that lies in [set]C given the observed datais at least
(1-«). Thisis in stark contrast to the usual frequentist ClI, for which the cpoeding
statement would be something like, If we could recompute [Sdgr a large number of
datasets collected in the same way as ours, abowj €1100% of them would contain
the true value ofl.’” This is not a very comforting statement, since we may not be able to
even imagine repeating our experiment a large number of times" (the usé]piise
brackets, has been inserted here for clarity). This discussion byn@aapplicable to

the research presented here if the actual ROC curve is denofed asis the set of all
real values such that;,,., < C' < my.,, if y refers to the observed target and
non-target samples, anddf= 0.1 (for 90% confidence intervals). MacKay [MacKay,
2003, pp. 50] summarizes the value of the posterior probability distribution syrong|
the following statement: "The posterior probability distribution repnéséhe unique and
complete solution to the problem. There is no need to invent "estimatansto we

need to invent criteria for comparing alternative estimators widh egher."

4.1.6 Convergence as number of parameter points increas@géide spacing between

the prior beta density mean and standard deviation points for targetidsersid/or
non-target densities can affect the size of the confidence band. As thisgpac
approaches zero and as the number of points selected therefore approacitgsihe
confidence band area converges to a constant (the convergence of ROC curtyaslens
proven in Chapter:2he confidence intervals are then deterministic from this density). A
simple example of this process is shown in Figure 4.8. Both plots have as inpatatiee
30 target samples and the same 30 non-target samples. The plot at theelgu tdarse

spacing, develops confidence interval contours using the nine highest-weighied poi
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Figure 4.8 The ROC curve confidence interval bands versus spacing of prior beta den-
sity mean and standard deviation values. As spacing decreases and the cor-
responding number of mean and standard deviation values considered there-
fore increases, the confidence band area converges to a limit. An example
of this trend for a 95% confidence interval with false alarm probability as the
independent variable is shown here. Both plots use as inputs the same 30
target samples and the same 30 non-target samples. The plot labeled coarse
spacing develops confidence intervals using the nine highest-weighted points
uniformly spaced on the mean and standard deviation target and non-target
beta density axes such that the ratio of the weight of the lowest to the highest
points is 0.001. The plot labeled fine spacing develops confidence inter-
vals using the 25 highest-weighted points uniformly spaced on the mean and
standard deviation target and non-target beta density axes such thatahe rat
of the weight of the lowest to the highest points is 0.001.
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uniformly spaced in target density mean and standard deviation such thmatithef the
posterior density (or weight) of the lowest to the highest is 0.001. These contduns de
a confidence band. Nine highest-weighted points are similarly found for theangett
density. Note that if only one point for target density and one point for non-targetylensi
is used, the confidence band area is 0 because the ROC curve is determiristiolot

at bottom, labeled fine spacing, develops a similar confidence band.

Figure 4.9 shows confidence band area convergence as the number of evaluated points
increases. For the example in Figure 4.9, target standard deviatiars veean grid

points are selected, where these points are centered around the meamdacist

deviation of the target samples. The number of target parameter density goint
increased from 9 points (3 target means and 3 target standard deviai@aspoints (5
target means and 5 target standard deviations), etc., up to a total of 1089(B8itasyet
means and 33 target standard deviations). Each set of points is usécltatea

confidence bands. The confidence band area converges (the convergence of ROC curv
density is proven in Section 3.the confidence intervals are then deterministic from the
density) as the number of parameter points increases, which indicates thatgamimtg

does not bias the prior parameter densities if the points are selected upifmenthe

target and non-target density parameters (such as mean and standardrgevia

4.1.7 Additional confidence bound definitionsNote that the method developed here
extends to an additional class of confidence bounds that are not described elsewhere.
These confidence bounds describe ROC curves for a threshold selected at raitdom, w
uniform probability of selection over allowable thresholds, where the boued®ianed
such that the integral of the ROC curve density above a specified valueshgiseh
percentage of unit density variance. Such bounds are an extension of the method

developed here.
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Figure 4.9
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Number of uniform target and standard deviatioseh
for constant non-target parameter density.

Confidence band area versus number of evaluated points. Here abeta sc
target density with mean of 0.805 and standard deviation of 0.059 and a beta
non-target score density with mean of 0.715 and standard deviation of 0.046
generate 300 target and 300 non-target samples. The method of Section
4.1.3 estimates the ROC curve confidence band. The non-target posterior
parameter density is evaluated at a single point. The target densitydis m
eled by 3 means and 3 standard deviations (9 points), 5 means and 5 stan-
dard deviations, etc., where the mean and standard deviations of the selected
points for the 3 mean and 3 standard deviation, 5 mean and 5 standard devi-
ation, and 33 mean and 33 standard deviation cases are shown in the upper
two plots. As the number of target parameter points increases, the lower
plot shows that the confidence band area approaches a constant.
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Letp, .(y, x) be the joint density of the ROC curve (rather than the ROC curve density
normalized such that the probability density of correct detection ahdalse alarm
probability is one), as described by Equation (3.17), except here repjacgx) with
Py (y, ). Letc.c. be the desired coverage (e.g., 0.90). Let the ROC suéset ) be

the subset of alt, iy pairs such that

S) = { (@) € 005t 0) 2 sl | (825)

wherezx € [0,1], y € [0,1], andz; € [0,1]. Letz; =1 and find

c.ctest = // Pyo(y, )dxdy. (4.26)

S(z1)

Then letzy,0=21010 — € if c.c.test < c.c.. Re-define the ROC subséf( zy,,.,,) for this
Z1new- REpEeat the process, continuing to reducantil c.c.test = c.c.. The subset of all

x,y pairs that make u@(z;) wherec.c.test = c.c forms theconfidence bound.

Figure 4.10 shows ROC confidence bounds based on this definition and indicates higher
densities close to the ROC extremes. This result is appropriate leegayKOC curve
has a correct detection probability of zero at false alarm probabilityrofaied a correct

detection probability of one at false alarm probability of one.

4.2 \ferification of results

4.2.1 Analysis of ROC curve and AUC value biasThe results that follow quantify the
confidence band accuracy for the method described here (in Section 4.1.3) by angsider
repeated runs over many sets of samples. Before examining this acamasigler that
ROC curves and AUC values formed by fitting beta densities to betatgdgyesierated

score samples generally have low bias, even for low numbers of sanfegxample

(see Figure 4.11), select a target and non-target beta density pair. @€&@target and
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Figure 4.10 The ROC curve uniform threshold confidence bounds. The four plots show
30%, 50%, 70%, and 90% ROC curve bands formed such that the integral
of the ROC curve density above a specified value has the given percentage
of unit density volume, assuming that score threshold is randomly and uni-
formly selected over all allowed threshold values (0 to 1). Notedht

the 2-D area of showing the region bounded by this 3-D density is shown
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Figure 4.11

Probability density
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Estimates of ROC curves and AUC values from mean and variciacget

and non-target beta densities. The top two plots show the underlying beta
target densities (solid curves) and the underlying beta non-target éensiti
(dashed curvesj)he respective mean and standard deviation parameters are
0.599, 0021, and 0479, 0.023. The middle left plot shows the ROC curve

for the underlying beta densities (solid curve) with ROC curve stesisor

300 sets of 30 target and 30 non-target samples drawn from each density,
where the mean of the 300 curves (dash/dotted line) and this mean plus
and minus the standard deviations are plotted (dotted lines). The lower lef
plot similarly shows the true AUC value, mean AUC value, and mean AUC
value plus and minus the standard deviation for 300 sets of 3, 10, 30, 50,
100, 200, and 500 target and non-target samples. The middle right and
lower right plots show similar results for the densities shown in the up-
per right plot, for which the target and non-target densities have respective
mean and standard deviation parameters of 0.393, 0.134, and 0.381, 0.118.
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30 non-target samples from each density. Fit beta densities to thedargpltes and
non-target samples. Form a ROC curve from these target and non-targigy den
estimates. Repeat this process many times for many different sgistafget samples
and 30 non-target samples. The mean of the ROC curves generated approttimates
ROC curve of the underlying densities. Similarly, the mean of the AUC saje@erated

from such a process approximates the AUC value of the underlying densities.

Figure 4.12 illustrates results of a process that characterizes¢heaay of AUC values
this process is of interest for characterizing RSD values. Firstinras a non-target
density. Then, for each target density, find the corresponding AUC value h&fixed
non-target density, the relation of AUC value to the mean and standaratioevdf the
non-target density is shown in Figure 4.12. The method developed her¢ is stil
appropriate in the presence of ROC curve or AUC value bias (an analysiE®fcUrve

and RSD value bias, also included in this section, provides furthersdigm).

4.2.2 The ROC curve confidence bounds he explanation here largely focuses on
confidence intervals at selected false alarm probabilities, but it exterudsfidence
intervals over the entire ROC curve, which form confidence contours, ahé to
confidence band enclosed by the contours. ldeal performance metric confidence
intervals may achieve two objectives. First, the stated covexegéracy of the
confidence intervals should be consistent with the actual coverages aivesrage
accuracy summarizes actual containmémtexample, 90% confidence intervals ideally
contain truth with 90% probability. Second, the confidence interval widths showdd be

small as possible.
The following steps evaluate confidence interval accuracy over atanmgéer of runs.

1. Select a target and a non-target density and find the true score-thresholtlR@C

associated with these densities. The true ROC curve is found by enaltiadi function
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Figure 4.12 Comparison of AUC values for a fixed non-target score density. kere t
non-target score density is fixed at= 0.599 ando = 0.021. The plots
show the effect of varying the target density parameterando) for the
fixed non-target density parameters. The top and bottom plots are the same
except for orientationtwo plots are provided to facilitate comparison with

the RSD value plots of Figure 4.22.
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that generates the ROC curve (by varying the score-threghaildescribed in Equations
(2.5) to (2.10).

2. Generate many sets of target and non-target score samples from thesegjevisire

each set of samples has the same number of target and non-target samples.

3. Generate for each set confidence intervals for the ROC curve at eaclficomipi

spaced false alarm probabilities.

4. Record the fraction of instances, called alpha, where the truthtifiestrue ROC
curve) is outside of the confidence intervdits 90% confidence intervals this fraction is
ideally 0.10.

5. Generate a summary alpha value for the entire confidence band by finding the
percentage of correct detection probabilities where the confidence istdovaot

contain truth for all false alarm probabilities and for all sets.

The Bayesian framework developed here actually produces confidence intbatals
reflect coverage probability for particular runs (for the samples, assumeel naod
assumed priorspther approaches focus on confidence interval accuracy only over a
large number of runs. Note that the steps above are not in themselves coneithned
performance for a particular run, and thus these steps perform a frequgpéist-
verification that evaluates "on average" performance over many ousgis of target and
non-target samples) (see [Carlin and Louis, 2000, pp. 35-36]). Howeiseqfitnterest
to test the performance of the Bayesian approach over a large number cdisuhse (
confidence interval results over one run, although correct, are not possibléyo ver

numerically, except over many runs).

The lower left plot of Figure 4.13 shows that the observed alpha for a pantiaut can
range from 0 to 1. The summary alpha value over all runs for the example shown in

Figure 4.13 is 0.09, which approximates the ideal alpha of 0.10.
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Figure 4.13 Densities, ROC curves, alphas, and coverage for a seleasty ghair.
Here the beta densities of the upper left plot generate 30 target and 30 non-
target samples (the densities have- 0.805,0 = 0.059, andy = 0.715,
o = 0.046, respectively. The confidence intervals for the ROC curve are
shown at the lower left. The upper right plot shows the observed alphas
for 200 sets of 30 target and 30 non-target samples, where the mean over
many runs should approach 0;XfBe observed mean alpha is 0.092. The
lower right plot investigates possible bjagsults show the process to be
unbiased, where vertical lines are 90% confidence; bhese bars narrow
as the number of sets increases.
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Note that if the summary alpha value described above results in an iggal #he
confidence intervals of correct detection probability at a particular &désen probability
are not necessarily ideal. Thus, itis of interest to evaluate thadragat sets or runs
where the separate confidence intervals at particular false alarm probsalaficlose
truth. The lower right plot of Figure 4.13 provides an example, where the straight
horizontal line indicates ideal 90% coverage and the vertical error bacside
uncertainty due to the finite number of test runs (as the number of test runs iscibase
length of each vertical error bar decreases). The coverage of eachassuimed to be
from a binomial densitythe figure shows 90% vertical error bars based on this
assumption. The process described above for developing confidence intepgtimal
for the assumed models, the assumed priors, and the given input sarfiplesany
deviation in the coverage accuracy of confidence intervals is due to inappliveldlel
density forms or inapplicable prior densities of model parameters. Figureblites

an example for different underlying target and non-target densities.

A similar process is used to develop coverage estimates for AUC vahfelence
intervals, CEG curve confidence intervals, and RSD value confidence ilste vigure
4.15 shows the ROC curve density and density contours that corresponds with the
confidence intervals of Figure 4.14. Coverage estimates for an AUC valugbkxane
shown in Figure 4.16. The upper plot shows the true ROC curve (solid line) and 90%
confidence intervals (dashed line) for a single run of an assumed density nduel.
lower plot shows the AUC value estimate (solid curve) and AUC value 80gtidence
intervals (dotted curves) for many separate runs. The calculatedapleis 0.0993,

which approximates the ideal AUC value for 90% confidence intervals.

Attempts to describe coverage accuracy often result in an apparedioga For
example, assume that 30 target samples and 30 non-target sampleslabéeavahen
form ROC curve confidence intervals as detailed in Section 3.4. Whileitlgkesset of

samples forms confidence intervals, coverage accuracy estimatioreemqany sets of
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Figure 4.14 Densities, ROC curves, alphas, and coverage for a differgeit a&ad non-
target density pair (these beta densities have 0.65, ¢ = 0.062, and
w = 0.745, 0 = 0.043, respectively). This figure repeats the analysis of
Figure 4.13 for a different target and non-target density pair.
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Figure 4.15 A ROC curve density and density contours. The ROC curve density and
density contours that correspond with the confidence intervals of Figure
4.14 are shown.
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Figure 4.16 Estimates of ROC curves and AUC value confidence intervaks.ugper
plot shows the true ROC curve (solid line), the median ROC curve (dash-
dotted line), and 90% confidence interval contours (dashed lines) for a sin-
gle run of the density model of the top left plot of Figure 4.13. The lower
plot shows the AUC value estimates (solid curve) and AUC value 90% con-
fidence intervals (dotted curves) for many separate runs sorted bytlowes
to highest estimated AUC value. The straight horizontal line indsctite
true AUC value for an infinite number of samples. The calculated alpha
value is 0.0993, which approximates the ideal AUC value of 0.10.
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target and non-target samples. However, if these sets of samplesieble, they may
be concatenated so that the number of target samples and non-target samplgs is
greater than 30. Thus, if enough information is known to test confidence interval
accuracy, then enough information is known to make the confidence intervals
unnecessary. This discussion identifies a need for representatidates For such test
data either the underlying target and non-target score sample densities are @nawn,
very large number of target and non-target score samples are known {¢nésléhe case

for the experimental results of the following section).

4.2.3 ROC curve experimental data resultsChapter 3 develops a Bayesian
framework that generates performance metric densities. Fronranmefvork, various
descriptive statistics are derived. The framework and desaiptatistics have in large
part been demonstrated with a beta density mduaiever, they apply to other density
models, such as beta mixture models or Gaussian models. An example of ths@xte
is described here using experimental data from an actual SUT ratheldteagenerated
from assumed underlying target and non-target densities. The Air ForcarRese
Laboratory (AFRL) made this data available by applying a mean-square/{izeéra
likelihood ratio test (MS /GLRT) algorithm to Moving and Stationdiarget Acquisition
and Recognition (MSTAR) public data (see [Bryant, 2002]).

Figure 4.17 shows the experimental target and non-target data, after natroalip zero
to one. The following procedure selects a full set of target and non-tsaggbles,
starting with 588 target scores. The AFRL data has nine sets. Setsnf 2 pertain to
SAR images that all contain a BMP2 vehicle. Set 1 is the collectior®6fithages of a
selected BMP2 vehicle. Set 2 is the collection of 196 images of a secorirPB#&hicle.
Set 3 is the collection of 196 images of a third BMP2 vehicle. For each @38be
images in these three sets, an MS/GLRT algorithm has been applied by Brydotain
three values [Bryant, 2002]. The first value describes the match of the imaggNIP2,

the second value describes the match of the same image to a BTR0ddnpersonnel
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carrier), and the third value describes the match of the same image 7@ &ank).

Here, only the first value is of interest (because the BMP2 is assumedéod target),
and thus 196 x 3 (588) target scores are obtained. Similarly, 784 non-taoges sce
obtained as follows. Sets 4, 5, 6, and 7 each consist of 196 images thah@s¢dected
BTR70, T-72 (tank 1), T-72 (tank 2), and T-72 (tank 3), respectively.infsets 1, 2, and
3, the MS/GLRT algorithm has been applied to each set to obtain threes\{@heematch
of the image to BMP-2, BTR70, and the T-72). Since the target is the BMP-2, loaly t
first value among the three is retained. Thus there are now 196 x 4 (784)daoges.

In addition to the sets of 3-dimensional data values, AFRL provided t@dassists in
the above process. Note that there are many options for obtaining exanggtestad
non-target samples in addition to the method described above. An aleroption
takes the three (BMP-2, BTR-70, and T-72) values for each image arnisréta highest
among the three real number values. In such an alternative, an SUsveslsuccess as
long as it correctly identifies that an image contained a weapon sysgterS8UT would

not necessarily need to identify the specific system.

Sets 8 and 9 are not weapon systems (for example, set 9 contains only bul)dozer
Initial normalization ensures that all values within the nine setfatd range from zero to
one. Since many of these values are not used when BMP2 is the assigretdthe 588
target scores and 784 non-target scores have a narrower range than zero tb@ne. T
lowest value among the 588 target scores and 784 target scores is appriyxiraaand
the highest value is 1. Note that if a score of exactly zero or exactlysested in a
beta density based model, the posterior density equals zero. Therefac]ional
linear transformation is applied to the data such that all values wiitleimine sets of data

have an upper limit of 0.95 and a lower limit of 0.05.

Here two comparison processes estimate the ROC curve densities anatg&@C
curve confidence intervals. The first process applies a single beta density riibde

second process applies a two-beta mixture density model. Note that in the tavo-be
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density model, the number of target and non-target grid points required is darge
exhaustive iterative search over uniform means and uniform standéedides is not
used. Instead, grid points are selected in a uniform, random manner oviiovadide
means, standard deviations, and ratios, such that an example two-betg iddndit

defined by two means, two standard deviations, and one ratio. The ratio gteows

relative weighting of the two beta densities that comprise the two-betatylemzdel.

Figures 4.18 and 4.19 show the results. Note that since the underlying densities are
known, the experimental data coverage accuracies and alphas are notetxpbetas

ideal as in the examples of previous sections. Figure 4.18 assumes a single bdta mode
for the data. Many sets of 30 target samples and 30 non-target samptiawansfrom

the 588 target scores and 784 non-target scores, and the assumed trutlOS€theriRe

formed by all 1372 scores.

The figure shows confidence intervals developed for one run of 30 target and 30
non-target samples (drawn from the 588 target scores and 784 non-target andres)
coverage accuracy based on 105 such sets. Note that the ideal mean @lpharns the
observed alpha is 0.2359. Figure 4.19 applies a two-beta mixture model to the same
process. The two beta mixture model has 5 parameters (two meansatwiousi
deviations, and a ratio of the two beta densities). The mean alpha for tiglal
two-beta density mixture model is 0.10380.10, which improves the single beta model

results.

The lower left plots of both Figure 4.18 and 4.19 show confidence intervals dedebype
the single beta models and the two-beta mixture models for the same set of &arad
30 non-target samples. The upper left plots of the figures use the same sgebtatal
non-target samples, and the plots show the target and non-target densite@srbspond
to the ROC curve with the highest posterior density or weight (see Figure Bv@&n
though the target and non-target densities of the highest posterior dengktg fingle

beta density model do not appear to be of the same form as Figure 4.17, the ROC curve
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Figure 4.17 Experimental target and non-target score histograms. Based ontatubse

data from AFRL/SN [Bryant, 2002], the confidence interval development
process (see Figures 4.5 and 4.13) is applied to the experimental data shown
above. A single beta density model is applied to this data in Figure 4.18,
and a two-beta mixture density model is applied in Figure 4.19. Note that
a beta density model requires scaling of the data (since the data here must
range from O to 1).
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Figure 4.18 Densities, ROC curves, alphas, and coverage for 30 target ana-20get
samples generated from the experimental data shown in Figure 4.17 and a
single beta model. The data of Figure 4.17 is scaled for a maximum range
of 0.05 to 0.95 rather than 0 to 1 (see text).
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Figure 4.19 Densities, ROC curves, alphas, and coverage for 30 target ana-20get
samples generated from the experimental data shown in Figure 4.17 and a
two beta mixture model.
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confidence intervals appear reasonable. This difference emphasizes thedienefi
Bayesian approach. Further, the two-beta mixture model appears to havebetiege
accuracy over all false alarm probabilities, showing that more cexnplodels may be of
benefit when the density form is not knoysuch as in this experimental data (for
example, note the small but significant number of target samples betweem5/a

and the small but significant number of non-target samples between 0.4 and 0.6).

Note that the comparison "truth” is actually an estimate of truth assists of only 588
target scores and 784 non-target scores. These numbers seem large enough to
approximate truth, but there is uncertainty (see Figures 3.2 and 3.3, and relate
discussion). This result also emphasizes the importance of incorporatindekiymaof
the actual underlying model, if known. MacKay [MacKay, 2003] discusses thiedela
concept of importance sampling, which provides the option of using a simpler model

even when it is known that a more complex model is truth.

Additional implementation choices exist. An option is to change therggaf the data.

If the data were scaled from 0.1 to 0.9 rather than 0.05 to 0.95, the scalingnpagt
coverage accuracy. An example for the single beta density case for 0.1 t@ng &
shown in Figure 4.20. For this example, the change in scaling has minimal imp#w on

results.

The results presented here show the ability of the framework to evalyageemental
data. This results presented here do not imply that the two-beta dengttyrenmodel
will always have results that improve a single beta model. The singiedagtsity
framework (and two-beta density mixture model extension) have been introduttesd i
research as examples to test the framework developed in Chapter &@le®approaches
regarding the appropriate incorporation of more complex models are pedsarititure

work.
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Figure 4.20 Same as Figure 4.18, except that the experimental sample valses ade
for a maximum range of 0.1 to 0.9.
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4.2.4 Analysis of CEG curve and RSD value biasthe results that follow in Section
4.2.5 quantify CEG curve confidence band accuracy by repeated runs over maofy sets
samples. Before examining this accuracy, consider that RSD valuesddyrfitting

beta densities to beta density generated data can have a higher biat)tbaalaes,
particularly for low numbers of samples. For example (see Figure 4.213t sefarget

and non-target beta density pair. Generate 30 target and 30 non-target sampleadinom
density. Fit beta densities to the 30 target and 30 non-target samplegdiyimgesample
and density mean and variance. Form a CEG curve and RSD value frontwieelseta
density estimates. Repeat this process many times for manyediffeets of 30 target
samples and 30 non-target samples. The mean RSD value generated from &8s proc
may be consistent with the RSD value of the underlying densities. Note thaEGe C

curve estimates exhibit a slight bias, but the standard deviation is wide.

In Figure 4.22 a non-target density is assumed, then the RSD value is found fpr man
target beta densities. If truth is at the minimum of the "bowl" shown, thervérification
process that was used for AUC values is not appropriate for RSD values (eoFigare
4.22 with Figure 4.12). However, RSD values developed here are appropriae:agiv
assumed model of beta densities for target and non-target and giveratadgsbn-target
samples, 90% correct confidence intervals for RSD values can be gehetétese

confidence intervals are correct, although they may not enclose the trutbtoo®runs.

The verification issue noted here may be illustrated as follows. Suppo8esfiiifents
take a test of 100 questions. Itis known (as a prior) that 999 of the students &8tswer
guestions correctly and one student answers 95 questions correctly. Antevaua
aware of this information and obtains 10 test questions from a randonelgtedIstudent.
Unknown to the evaluator, the selected student is the student who argdwguestions
correctly. The evaluator is to provide 90% confidence intervals for the number of
guestions that the student answers correctly. Based on the priors, thatevapecifies

the upper and lower 90% confidence intervals at 80 questions correct. Thisgisces
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Figure 4.21
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Estimates of CEG curves and RSD values. The top two plots show un-
derlying target densities (solid curves) and underlying non-target densities
(dashed curves). The middle left plot shows the CEG curves for the un-
derlying beta densities (solid curve) with CEG curve statistics fors226
of 30 target and 30 non-target samples drawn from each density shown in
the top left plot, where the mean of the 300 curves (dash/dotted line) and
this mean plus and minus the standard deviations are plotted (dotted lines).
The lower left plot similarly shows the true RSD value, mean RSIheja
and mean RSD value plus and minus the standard deviation for 300 sets of
3, 10, 30, 50, 100, 200, and 500 target and non-target samples. The middle
right and lower right plots show similar plots for the densities in the upper
right plot.
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Figure 4.22 The RSD values for a fixed non-target density. Here the non-targétyde
is constant and the target density varies over the full range of possitae b
parameters. Note the bowl appearance, where RSD approaches a mini-
mum at mean of 0.6 and standard deviation of 0.1. If the true density
has the minimum RSD value, then the RSD confidence intervals developed
for small set of samples do not enclose truth because uniform priors over
mean and standard deviation are assumed. The confidence intervals are
reasonable even though they are not necessarily appropriate in the standard
coverage accuracy test used for the CEG curve, ROC curve, and AUC value
confidence intervals. The two plots are the same except for orientation.
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repeated many times. No matter how many sets of 10 questions are pravidedeach
set is considered individually, the confidence intervals will never eadlus truth of "95

guestions correct".

4.2.5 The CEG curve confidence boundgrigure 4.23 is similar to Figure 4.13,
except that the performance metric examined is the CEG curve rathe hth&oOIC
curve. Using the accuracy description of alpha, as with the ROC curv@,cE/e
confidence interval development is shown to be accurate for the assumed model and
priors. Note that this figure is representative of CEG curve resiitslar plots with
sample sizes of 10, 30, 100, and 200 have been tested with similar resultsi{faad
additional underlying density for which the CEG curve is near the 45 degree life. T
results are significant because whereas the ROC curve confidence ipteceds
described here is an improvement over existing techniques, the CEGaanfidence
interval specification process is without precedent. The resutisiaimonstrate the
general extensibility of the entire Bayesian framework to performareteica other than
the ROC curve. Figure 4.24 shows an additional example using differeatlyimd

target and non-target densities.

The verification processes that are applied here in Chapter 4 will be asadist in

comparisons with the literature in Chapter 5.
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Figure 4.23 The alpha metric for a CEG curve. Here the underlying densitizen at
the upper left generate 30 target and 30 non-target samples (the beta densi-
ties haveu = 0.599,0 = 0.021, andu = 0.479, o = 0.023, respectively.
Confidence intervals for the corresponding CEG curve are shown in the
lower left with the median CEG curve and the true CEG curve. The upper
right plot shows the observed alphas for 264 sets of 30 target and 30 non-
target samples, where the mean over many runs should approacih@.10
observed mean alpha is 0.1035. The lower right plot investigates possible
bias results show the process to be unbiased, where vertical lines are 90%
confidence batghese bars narrow as the number of sets increases.
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Figure 4.24 The CEG curve confidence intervals for a single run and covecageacy
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are the same as in the right plots of Figures 4.11 and 4.21). The right plot
shows the percent coverage of confidence intervals produced for 247 runs,
where each run repeats the process used to generate the left plot.
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5. Quantitative Comparisons

In this chapter quantitative comparisons are made with methods desarityed i
literature review of Chapter 2. First, the Metz method, which was discusstensively
in the first part of the literature review section of Chapter 2, is now resieand
compared qualitatively and quantitatively with the method developed Héren other
methods are also reviewed and compared. Here, coverage accuracplanbal
described in Chapter 4) are used to quantify the accuracy of the confidesalsif
the method developed here with other available methods in the literattnese Tnetrics
provide tools for comparing the accuracy of the developed confidence ilstarmang

various ROC uncertainty estimation methods.

5.1 Comparison with Metz confidence interval method

Figure 5.1 compares the Metz method [Metal., 1998] with the method developed
here. This evaluation uses the software package ROCKIT to execute theridtiod.
Beta densities generate 30 target and 30 non-target samples. Many runslrispeat
sample generation process, where each run selects a new set of 30 target and 30
non-target samples. Application of the confidence interval calculation mekeloped
here (see Section 4.1.4) generates unique ROC curve confidence intervalsfoue.
Confidence band coverage area evaluation and alpha (coverage accuahcyfj@n
reveal clear advantages of the method developed here over the Metz metradarty
runs of 30 target and 30 non-target samples, the coverage accuracy majubésevand
averaged over all false alarm probabilities. For 120 such runs, tHeocheeveloped
here is 51% closer to the ideal alpha of 0.05 (for 95% confidence intervalshm/eange
of the ROC curve. Recall that larger confidence band coverage area withoovedpr
coverage accuracy implies less useful results. Again analyzing the peatee runs of

30 target and 30 non-target samples, the Metz method has 16% larger conbidadce
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Figure 5.1 Alpha and confidence interval lengths for the Metz [Mét., 1998]

method and the method developed here. Both methods develop 95% con-
fidence intervals. Beta densities with target mean of 0.805, target sthnda
deviation of 0.059, non-target mean of 0.715, and non-target standard devi-
ation of 0.805 generate 30 target samples and 30 non-target samples many
times. Note that the Metz method appears to be slightly closer to the ideal
alpha than the method developed here between false alarm probabilitg value
of 0 and 0.02 and 0.11 and 0.13, which is not necessarily advantageous be-
cause the method developed here has greater coverage (approximately 97%)
combined with significantly shorter interval lengths (21% shorter at a fals
alarm probability of 0.01, for example) at these values. A similar argiime
applies for false alarm probability values between 0.25 and 0.4, as the confi-
dence interval lengths of the two methods are nearly identical, and the Metz
method has wider coverage. For the smallest possible confidence interval
widths that maintain at least (1-alpha) coverage, the method developed her
outperforms the Metz method for every false alarm probability.
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area than the approach developed here, and Metz has larger coveragdutrémge of
critical false alarm probability values between 0 and 0.2. For the ssigdbssible

confidence interval widths with at least (1-alpha) coverage, the methotbgedehere
outperforms Metz at every false alarm probability. Note that in contoathe Metz

method, the method developed here requires no assumptions about the shape of the ROC
curve, which is important because for target detection system evalutagarot

appropriate to presuppose the shape. Comparing the top and bottom plots of Figure 5.1,
note that there is a false alarm probability (near 0.2), where the Metz mi#soa higher
alpha than the method developed here, but also has a larger confidence inteytial le

than the method developed here. These results are reasonable because eonfidenc
interval length does not indicate whether or not the length is over the appropmate of

correct detection probabilities.

The Metz method does not allow for ready incorporation of prior assumptiaesine

the ROC curve uncertainty estimates. The choice of a generally cor@€&xdarve (if

only unintentionally) becomes a choice of a prior. Some adjustment or weighting of the
covariance terms of the binormal approach could change the standard erroetaut M
does not discuss such adjustment. The method developed here permits the ready
incorporation of target and non-target parameter priors, and it mayslig estended to

any density form.

Figure 5.2 shows the ROC curve and example associated confidence bands for the
example of Figure 5.1. Figure 1.3 has already revealed that the confidengalsfer
the Metz approach can result in a significantly larger confidence bandame#he

confidence band area for the method developed here.

Comparison with the Metz method makes clear significant weaknestes ability of
the Metz method to adapt to curve forms that are not concave. This campahows
that the Metz method is inferior in confidence interval coverage accanadyonfidence

band area compared with the method developed here. However, even disrggaese
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Figure 5.2 Comparison of ROC curve and confidence intervals. Here 30 target and 30
non-target samples are drawn from beta densities for which the solid surve i
the true ROC curve for an infinite set of samples (the target mean is @h&15,
target standard deviation is 0.01, the non-target mean is 0.715, and the non-
target standard deviation is 0.046). The 90% confidence interval contours
for the method developed here and the Metz method are shown. Figure 5.1
reports the coverage accuracy and confidence interval widths for many runs,
and the plot shown here gives one example of such a run.
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disadvantages, the Metz approach does not apply to the confidence error ganerati
(CEG) curve or other performance metrics where the assumed form of fioerpance

metric curve is not a straight line in normal deviate space.

5.2 Comparison with Zhou confidence interval method

The literature considers various ROC-curve bootstrap approaches)etbqds that
generate confidence bounds using subsets of the available target and non-targed.sampl
This section examines the most recent approach, Zhou [Zhou and Qin, 2005], who
obtains results that improve upon the bootstrap results of Platt fRlalf 2000]. A

general advantage for bootstrap methods is that they make no assumptions abmut the f
of the densities (such as assuming a beta density). Both Platt and Zhouetsomable
coverage accuracies for 95% confidence intervals of correct detection pitybatifhise

alarm probabilities of 0.1 and Q.Zhou claims smaller confidence interval widths.

Zhou develops two new bootstrap-based approathespproach that Zhou regards as
optimal is used here for comparison. In discussing Platt’s work, Zhougoirit
disadvantages of bootstrap methods, such as the high number of target and non-target
samples necessary for accurate results. Zhou claims that a binomedtcan factor
improves bootstrap-based results, particularly at low numbers gflsamHe considers
multiple examples with 20 target samples and 20 non-target samplesasgtelatt’s

research focuses on 100 target samples and 100 non-target samples.

Zhou's paper only considers results at false alarm probabilities airid1.2. Figure

5.3, which corresponds with Zhou's example 2 and 3, uses Zhou’s method but develops
confidence intervals for other false alarm probabilities. At false alaohahilities of

0.1 and 0.2, coverage accuracies similar to Zhou’s results are obtagethe top right

plot of Figure 5.3). The confidence interval widths are also consistent with Zhou’s
findings. As Zhou and Platt both focus only on false alarm probabilities of 0.1 and 0.2,

key concern is whether or not confidence intervals are accurate over dteeal@m
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Figure 5.3 Confidence intervals for one run of the Zhou [Zhou and Qin, 2005] method,

coverage accuracy for many runs, and comparisons with the method devel
oped here. Zhou examines false alarm probabilities of 0.1 and 0.2, and his
work is extended here to the full range of false alarm probabilities. The
top left plot shows a representative ROC curve with confidence intefifals

the Zhou approach with 20 target and 20 non-target samples. The top right
plot shows the percent coverage of the Zhou method for 1700 runs with 90%
coverage vertical confidence bars. The lower two plots compare 116 runs
for the method developed here. Note that in contrast to Zhou, the method
developed here produces smooth confidence bands and ROC curves, and the
coverage is consistent over the full range of false alarm probabilities.



probabilities. Examining the top right plot of Figure 5.3, the ROC curve for aiyens

pair that Zhou selects deviates considerably from the ideal 95% coverageeedvfalse

alarm probability of 0.3 and 0.88. Recall that bootstrap methods rely onlyeon t

observed samples (rather than estimates of densities). If the underlyisigydéat

generates the samples is relatively small at a particular s¢@reptresponding correct
detection probabilities at that score are difficult to estimate with adb@qu method.

Figures 5.4, 5.5, and 5.6 show the underlying densities that Zhou uses as examples,
results of the Zhou method, and a comparison with the method developed here. |
contrast to Zhou and other bootstrap methods, the method developed here has appropria

coverage accuracy over the entire range of the ROC curve.

5.3 Comparison with Hall confidence interval method

Hall [Hall et al,, 2004] uses a kernel-based approach to form confidence intervals. They
use an updated bandwidth calculation approach that extends previous keetkl-bas
approaches. The method they develop requires use of 10 different smoothingetesa
to set different bandwidths. They report coverage accuracy results séenges are
generated repeatedly from assumed underlying densities and report f@su@e target
samples and 100 non-target samples. These results appear to be geneauedieacc
except at the extremes of false alarm probability, where the coseraguracy often
declines. This result is of concern, as very low false alarm probasitre often of
particular interesthowever, adequate coverage accuracy over the full range of false
alarm probabilities is important as indicated, for example, in the SWRASUT B
example of Chapter 1. (Of course, if it is known a priori that the only falseralar
probability of interest is a false alarm probability of 0.5, then the Hallhoétperforms
well for the examples reported by Hall.) Figures 5.7 and 5.8 show a compafitos o
method developed here and two of the Hall examples. The weaknesses tHatlthe

method can have at the extremes of false alarm probabilities is appatbatFigures.
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combined because Zhou uses the same underlying densities for two exam-
ples (they examine false alarm probabilities of 0.1 and 0.2).
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Figure 5.5 Coverage accuracy for Zhou [Zhou and Qin, 2005] confidence bounds. The
plots show the percent coverage of confidence bounds for each of the four
density pairs of Figure 5.4. Note that Zhou only examines false alarm prob-
abilities of 0.1 and/or 0.2, so examples 2 and 3 have identical underlying
densities. These plots are similar to the top right plot of Figure 5.3, except
that three additional examples are shown, where 1700 sets of 20 target sam-
ples and 20 non-target samples are the inputs.



100}

NSNS AR
%or iy GGl

80

80+
70 70
60| 60}
50| 501
400 40

30} 30l

% of runs where ci bounds truth

% of runs where ci bounds truth

Example 4
o Example 1 20 P
10+ 10+
0 6 0-‘1 0.‘2 0.‘3 0.‘4 0.‘5 0.‘6 0.7 9.‘@ 0.‘9 ‘1 0 6 0.‘1 0.‘2 0.‘3 0.‘4 0.‘5 0.‘6 0.‘7 0_.‘8_ 0.‘9 ‘1
False alarm probability False alarm probability

80

70+
60
50
40+
a0l Example 5

20+

©r Example 2/3

10+

% of runs where ci bounds truth
% of runs where ci bounds truth

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

False alarm probability False alarm probability
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probabilities of 0.1 and/or 0.2. These plots are similar to Figure 5.3, except
that three additional examples are shown.
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Figure 5.7 uses normal target and non-target densities, and Figure 5.8 shaas dpett
and non-target densities. For the method developed here, the normal tafget a
non-target densities first generate samples, then these samplesisi@ined so that the
greatest value among the target and non-target samples is 0.95 and theviduest
among the target and non-target samples is 0.05. In addition to comparing fgvorabl
with the Hall approach, the example of Figure 5.7 indicates that the methetbged

here isflexible to changes in assumed densities.

5.4 Comparison with Hilgers confidence interval method

Figure 5.9 shows confidence intervals based on the Hilgers [Hilgers, 1991] binomial
method. The Hilgers method is similar to the current AFRL ROC curve cendie
interval estimation approach. The coverages (95% is the objective abthe case)

tend to be too conservative, and the resulting confidence intervals are to(se@e
discussion in [Schafer, 1994]). The method developed here provides a smoathatest
of the ROC curve (dash/dotted line) than the Hilgers method, and more sigtlifida

produces much narrower confidence intervals, particularly for low numbeenaples.

The Hilgers approach uses a binomial-based ordered statistics approaafdaribfio

error bars in correct detection probability and false alarm probabildysatiected

threshold. The resulting rectangular region then combines two error bars kising t
following procedure. First, it finds a best-case upper confidence band point for this
threshold as the minimum false alarm probability and maximum correctta@tec
probability within the rectangular region. Second, it finds a worst-caserloanfidence
band point for this threshold as the maximum false alarm probability and minimum
correct detection probability within the region. Finally, it repeats fotrakesholds and
combines results to obtain a lower confidence interval contour and an upper oogefide
interval contour. This process generates a 95% ROC curve confidence band. Although

bands obtained by this process enclose at least 95% of the true ROC curve, therbands a
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Figure 5.7 The ROC curve confidence interval coverage accuracies for the Hall
[Hall et al,, 2004] method and the method developed here for normal target
and non-target densities. Normal target and non-target densities generate
100 target samples and 100 non-target samples. This process is repeated
many times to determine coverage accuracy. The target density hegm m
of one, the non-target density has mean of zero, and both densities have unit
variance. The plot at left shows Hall's coverage accuracy atteeldalse
alarm probability for 1000 sets of samples. The plot at right shows a similar
graph for the method developed here, with 90% vertical confidence bars for
208 sets of samples (90% vertical bars show uncertainty due to the lower
number of runs). Hall's coverage accuracy is generally accurate, easept
false alarm probability approaches zero or one. This inaccuracy is a weak-
ness in the Hall approach, because often the most significant false alarm
probabilities are near zero.
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Figure 5.8 The ROC curve confidence interval coverage accuracies for the Hall
[Hall et al,, 2004] method and the method developed here for beta target and
non-target densities. Beta target and non-target densities generasedeio t
samples and 100 non-target samples. This process is repeated many times
to determine coverage accuracy. For the target density the beta paramet
area = 2 andb = 4, and for the non-target density they are- 2 andb = 3.
These figures otherwise use the same process as Figure 5.7. The left plot
shows Hall's results and the right plot shows results of the method developed
here.
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Figure 5.9 Comparison with the Hilgers [Hilgers, 1991] binomial method. The method
uses techniques similar to the current AFRL approach for generating ROC
curve confidence interval estimates. The top plot shows the 95% confidence
intervals for the Hilgers method. These intervals cover the staiefidence
interval region, but the confidence intervals are too wide [Schafer, 1994].
The bottom plot shows (also for 95% confidence intervals) that the approach
developed here provides a smoother estimate of the ROC curve (dash/dotted
line), and, more significantly, it produces much narrower confidence inter-
vals.
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conservative in that they are typically larger than necessary. Natestich a band is less
informative than a band with smaller confidence band area provided thebaots have

at least the stated coverage (95% in this case). The top plot of Figusa®% Hilgers’

results for 30 target samples and 30 non-target samples obtained using d/&tdtatical
software (commercially available software that implements Hs#gapproach in a 2005
update). The bottom plot shows a much narrower confidence band for the same samples
obtained using the method developed here. In addition to the larger barid thielt

Hilgers approach also has a general disadvantage in that the rectangwar regi

connection that forms the confidence band is generated by an ad-hoc method.

The results demonstrate the robustness of the method developed here whemalhe ove
model density form assumptions are correct. The method developed here isexpect
improve ROC confidence interval results compared with other approathsssit cases.
The method developed here provideexible and robust framework by which target and

non-target samples, model assumptions, and prior densities can be inaaporat

5.5 Additional considerations

In determining which ROC confidence interval approach(es) are ppate, sample size
and knowledge of the density model form are important factors to consider. T

following provides a few scenarios.

Large numbers of samples are available and there is no prior knowledge of target and
non-target density formBootstrap methods may be acceptable. For example, the
bootstrap method of Zhou [Zhou and Qin, 2005] may be acceptable, if a large number
(more than 100) of target and non-target scores are available, and if thefdine target
and non-target scores are not known, but are thought to be non-normal and non-beta.
Figure 5.10 is similar to the Zhou method (Example 2/3) of Figure 5.5, except that rat
than 20 target and 20 non-target samples, various numbers of samples arelsbtavn.

that while the coverage accuracy improves for increased number ofsgraghrge
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Figure 5.10 Coverage accuracy for Zhou confidence bounds for various numbers of tar-

get and non-target samples for a beta density model. The plots shown are
the same as the bottom left plot of Figure 5.5, except that instead of 20
target and 20 non-target samples, the number of samples is increased to 40
target and 40 non-target samples, 80 target and 80 non-target samples, etc.
Note that while the coverage accuracy does improve for increased number
of samples, a large number of samples can be required for to achieve good
coverage accuracy.
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number of samples may be required to achieve good coverage accuracyagesove
accuracy depends on the target and non-target density being evaluated. Aomaddit

example is shown in Figure 5.11 where the Zhou method forms confidence intervals
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Figure 5.11 Coverage accuracy for Zhou confidence bounds for a normal density model.
The plots shown use samples generated from the same underlying densities
as Figure 5.7. Here runs of 50 target and 50 non-target samples and 100 tar-
get samples and 100 non-target samples are evaluated. The Zhou bootstrap
method is used to obtain the displayed confidence intervals.

based on the samples generated from underlying normal densities (the sanignoder
densities previously used in Figure 5.7). For this example, the Zhou confidence bounds
begin to provide appropriate coverage over most false alarm probabilitissfewhat

lower numbers of samples. Thus, a paradox is introduced: the Zhou approach can
provide appropriate coverage for "enough” samples, but in order to known how many

samples are "enough" some knowledge of the underlying densities is needed.

Low numbers of samples are available, there is no prior knowledge of target and
non-target density form, and highly conservative confidence bands are accethrke.

the Hilgers [Hilgers, 1991] method is an appropriate choice.

Low numbers of samples are available, target and non-target densities are known to be

normal or normal by some transformation, and the probability of target given score is
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known to monotonically increase for increased scof@e binormal approach, which

attempts such assumptions (see Section 2.7.1), may be appropriate in this case.

The objective of the comparison detailed in the previous section istodstrate the
viability of the framework developed here, not to prove that a seleotdel that uses
this framework outperforms other approaches in every case (partycudaen the
selected model is not correct). Also, a key objective of the researehisr develop a

performance metric uncertainty estimation approach that extends @BGecurve.

The amount of time to execute a run (i.e. to move from a set of target and ryat-ta
samples to obtaining a confidence band) must also be considered. For the method

developed here, two primary factors contribute to run time.

First, consider the computation of target and non-target posterior paadesisities,
which are developed prior to any ROC curve formulation. The time to apmatei
posterior parameter densities depends on the number of target and non-targetg@aram
points selected. Consider the parameter point selection process. For thersiia de
model, the process implemented here starts with 300 target points unifeetelyted

over mean and standard deviation and 300 non-target points also uniforndtededeer
mean and standard deviation. Then the combined posterior weightings are dotinel f
sample values (see Equation (3.14)). The 16 grid point combinations thabaestdo

the mean and standard deviation of the samples are kept (4 target paihdsnan-target
points), along with any combinations that are greater in combined pastezighting to
any of these combinations. Then a 10 x 10 grid (100 points) for target means and
standard deviations and a 10 x 10 grid (100 points) for non-target means anddtandar
deviations is formed over this region, with much smaller grid point spacirgpirAthe
combined posterior parameter weightings are found for each of the 10,000 grid point
combinations, and only those points that contribute to 99.9% of the total posterior
parameter weighting among these combinations are retained. The retastedqro

parameter weightings then comprise an even smaller region than the pregratism.
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A second 10 x 10 grid (100 points) for target means and standard deviations amd a 10
10 grid (100 points) for non-target means and standard deviations is then found. Again,
the grid points that contribute to 99.9% of the total posterior parameter wegggunong

the 10,000 combinations of grid points are retained. The above operations for an
example set of 20 target and 20 non-target samples takes approximatelyprf@sasing

the Matlab code developed here.

The second factor is ROC curve computation time. Each of the retairgest tnd
non-target grid point combinations form ROC curves, and these ROC curvédenus
computed (see Figure 3.8). Computation of each ROC curve takes approximately 0.75
secondsthe total run time for this section depends on the number of grid point
combinations that make up the 99.9% of the final set of grid points (which can range
from approximately 200 to 10000). Total run time for 20 target samples and 20
non-target samples generated from the densities of Zhou example 2/3 (see Fiyjtoe 5.4
a single example run is 244 seconds (assuming the beta density model plesgdsed
here). Total run time for 50 target samples and 50 non-target samplessfsathe type

of run is 251 seconds. In comparison, a method that implements Zhou'’s process
(adjusted bootstrap with 250 bootstrap replications) in Matlab takess&6dnds for the
same 20 target and 20 non-target samples and 33.5 seconds for the same 50 target
samples and 50 non-target samples. Samples generated from other dersitapaéake
significantly longer per run for the method developed here. A similar procgas) for
Zhou's example 2/3 for the CEG curve, takes 170 seconds for 20 target and 20gen-ta
samples and 154 seconds for 50 target and non-target samples. An increagetiard
non-target samples can result in fewer grid point combinations in the final 98®fGn
time may decrease with increase in samples. Also, the computatiopasfiaular CEG
curve (required for each grid point retained in the final set) is fastartti®computation

of a ROC curve, so the process is faster for CEG curve confidence intdraalROC

curve confidence intervals. An increase in number of target samples teadsdre

highly peaked posterior probability density weighting, so the number of grid points use
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may need adjustment as sample size changes. Figure 5.12 shows coverggegxam

note that results converge as grid point spacing increases.

More complex density models (such as beta mixture models) can require sighjifican
more grid points to cover the entire relevant parameter space (notdatsbe regions of
high density weighting may be disjoint). Also, as the number of grid points becomes
large, computation time increases proportional to the number of grid pointsestjaar

small increase in number of grid points results in a large increasenitime.

Most of the computational challenges in terms of run time are apparent vieempas
are made to verify results by determining coverage accuracy (e.g., the cmefidand
development process is repeated many times, such as 100 or more3gtarget and 30

non-target samples generated from the same underlying target and non-targetsjens

Appendix C includes code to generate ROC curve and CEG curve confidence sterval
The appendix provides code for the beta density model, along with code for tHeetao-
mixture model. For the two-beta mixture models there are significanthe iparameters
(five versus two for the single beta model), and the above grid pointiganatocedure is
not applied. Instead, the process selects two-beta grid points at random, ariatealc
the combined posterior weighting for such grid points. The user speci@esihnber of
random grid points for the two-beta mixture madetypical number is 10000. The
number of random grid points may be increased until convergence is observed. The
number of points necessary for convergence depends on the specific sample values.
Matlab matrix size limitations constrain the number of grid points to aB60Q00
(depending on the specific sample values). Methods available to improveneiare

noted in the Future Work discussion.

Here the uncertainty estimation methods developed in Chapters 3 ane 4ovepared
with the current literature. The next chapter provides a summary of thesedtihe

research and also identifies areas of interest for future work.
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Figure 5.12 Regions that make up selected percentages of the posterior padeEmete
sity. The four plots show the regions that encompass 10%, 30%, 50%,
and 90% of posterior parameter weighting for an example where a set of
samples is generated from a target beta density.
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6. Accomplishments, Contributions, and Future Work

Section 6.1 reviews the accomplishments and contributions of this réseant Section

6.2 describes areas of interest for future work.

Prior to listing the specific accomplishments of this research (in the rekibg), the

results of the research presented here are placed in a proper perspective

The primary contributions of this work are the framework described most fully i
Chapter 3. Theorem 3.2, "ROC curve density", develops an analytical appaach f
forming the posterior probability density of the ROC curve. This theorem eaai
exact description of the ROC curve probability density for given targetem-target
samples, density model assumptions, and prior densities of model paraniétemsem
3.3, "Numerical approximation of ROC curve density", extends this analytic
description to a form that is computationally practical. Also impdrtsa primary
accomplishment is the extension of the probability density developme@isapter 3 to

confidence intervals (as described in Section 4.1.3).

The potential usefulness of the framework is further emphasized througifieate®n
and evaluation process that includes comparisons with other methods. tit¢hile
comparisons are interesting, it is improper to place undue emphasis onutis oéshe
verification and evaluation process (Chapters 4 and 5) as primary agitnib of this
research, even though these results show promise. The theorems anddestirgotions
of Chapters 3 and 4 enable "actual probability density statements” [ske, 2800, pp.
35-36] for a single set (or run) of target and non-target score samples, forrgveels,

and for given prior assumptions.

Thus, there is no need to evaluate results based on the method develapeddrenany
runs, although such runs can indicate efficacy. The exactness over onethen of

Bayesian approach is arguably more importanty than what occurs "on avevage
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many runs. Alternative methods of obtaining confidence intervals can bessée¢an
average) over many runs, but make no claim regarding the results obatmyupar run.
The approach introduced here enables an actual probability statement to éé&omad
only one run, but it is not possible to verify or evaluate correctness excephmany
runs. Obviously, it would be desirable to have a process that provides an actual
probability statement for one run and that also behaves appropriately ovemramsn
(which the method developed here clearly does). In considering which appsoiaest,
note that there will often be only one set of samples, so making the most appropria
statement possible based on only one run is arguably more important than wina oc

over many runs.

The density model example assumed in this research is beta-based (predgminant
focused on a unimodal beta density model). This model is merely as ampkxam
application of Theorems 3.2 and 3.3. Because the scores that are inputs @séasch

are continuous between zero and one, the beta density seems appropriate (see
[Kaganet al,, 1973]} however, this research has not and does not intend to show that the
beta density is effective and/or appropriate when the model density is not known. In
particular, it is not the objective of this research to show that the betétylaivgays

provides a good estimate for all sets of data samples when model form is nat;khew

beta density model is simply an example. Thus, a caution on the results weCbas

that the comparisons with existing research do not enable true "appigephes"
comparisonsthe comparisons made in Chapter 5, while appropriate in demonstrating the
Bayesian framework, do not show that the method developed here is ndgessari
improvement over existing approaches. In simply demonstrating theirarkgethe

method developed here generally uses samples from beta densities wherathet@e

are assumed to be unknown. (The method developed here then uses the samples to
develop probability densities for the unknown parameters.) Also, the compaasen
generally made with methods that make differing model assumptions. Note that

currently available methods in the literature do not enable the smenfta beta density
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model. As discussed below and in future work, it would be of interest for future
developments to incorporate the results of Chapters 3 and fléxible software that

enables user selection of densities or model assumptions.

Unless one is guaranteed that a particular model assumption or prior istcarrec
reasonable question concerns the usefulness of the results of the frameveldpddv
here. Consider the available alternatives. Bootstrap based appscaaie
assumptions, but as is shown in Figure 5.10, unless large numbers of samples are
available, avoiding such assumptions can yield poor results (certaialgé numbers of
samples are available, then bootstrapping based approaches are vergfimierest).
Existing research, with the exception of bootstrap-based approaches, md&ke m
assumptiongthe framework presented here also makes model assumptions. The
difference between the method developed here and other approaches is titlagthe
approaches develop frameworks that involve restrictive model assumpiibies.
framework developed here enabfesxible model assumptions. In this regard (as future
work) the framework developed here could be extended so that, for exampleethe us

might specify "bi-modal density mixture model", "tri-modal beta densityture

model", etc.

Another question is that if it is not known whether or not a set of samples is mibaelé

by a beta density model, how could the research presented here possibiyntesexti?

Two considerations are as follows. First, as future work, an exatioin of the fit of a

beta density model to experimental data with fixed end points is of integestond, an
extension that also may be of interest for future work is the incorpmraii models of
varying complexity, which is possible through regularization (see [Bish®9®5]) and the

use of the Occam factor (see [Gregory, 2005]). Such approaches do notdedtat

density model or a bi-modal density model, etc., instead they incogoratiels of

different complexitiesless complex models, such as single beta densities, receive higher

overall weighting, more complex models receive less overall weighémgn(though
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there may be specific instances where such weightings fit the data betterusé of
roughness is an alternative approach that incorporates models of veoiopgexity (see

discussion in Future Work, and related results presented in Appendix B).

6.1 Accomplishments and contributions

This research applies a new framework for ROC curve uncertainty egimthat is fully
Bayesian, that is numerically tractable, and that leads to sulztamprovements over
existing methods. Quantitative comparisons are madeever, qualitative
improvements are the most important outcome of the research presergedise
discussed in Chapters 2 and 5, most existing methods make restassimptions that
inhibit the application of dlexible model framework as presented hehe bootstrap
approaches do not require such assumptions but are of limited applicabilgsnédr

numbers of samples.

A significant aspect of this research is that the uncertainty esbtmptocess developed
here transitions to CEG curves. The CEG curve is a critical metric FRIAINn
determining the usefulness of target detection systems. With a typiralted amount
of data and with no appropriate methods for CEG curve uncertainty estimatéti,
has previously been able to make only limited use of this metric. We&hmethods
developed here, the CEG curve can be applied and its uncertainty catinb&ted even

for low numbers of samples.

The research reported here demonstrates the application of ROC curveiumntgert
estimation methods from the medical community to target detection. dipats/ides
more comprehensive qualitative and quantitative comparisons of alteriR@C curve

and AUC value uncertainty estimation approaches than any availaltie idrature.

ROC curve density and confidence interval generatioithis research applies a

Bayesian framework to develop new methods for ROC curve density generdtiom w
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are also applicable to other target detection performance metrlus framework is
provided within Chapter 3 (which includes four theorems, a lemma and achrae
more specifically, Theorems 3.2 provides an analytical approach for fortimeng
probability density of the ROC curve, and Theorem 3.3 extends this analytical
description into a form that is practical to evaluate analytically. Nadt while ROC
curve definitions are examined in the previous literature (see [L§02] and

[Zhou and Qin, 2005]), the probability density results obtained here are uciergesl.

Computations of confidence bands or confidence intervals (as describedion3ett3)
can be made from the performance metric densities in a straightforwarcemanims
capability contrasts with previous methods in the literature, which giyara
applicable only to specific band or interval definitions and which can notdiyea
extended. Application of the Bayesian framework allows the user of htSWetter
understand conclusions from performance metrics, especially if they sed ba limited

data.

This research presents the results of simulations and real-data egptyitimat
demonstrate the significance of the new uncertainty estimation methods. Ctonalta
techniques that implement the methods are demonstrated, and they are shaiah to yi
accurate results that are otherwise not analytically tractabignifiiantly, the methods
developed here enable the calculation of actual performance metric driptddmsities
for given target and non-target score samples, given density formsefectires, and

given prior densities for the parameters in these forms.

Representative ROC curve generationThis research develops methods that generate
representative ROC curves (samples from a ROC curve density) fn@n gets of target
and non-target samples. Numerical implementation of the method for diegetze

ROC (and CEG) curve densities results in the generation of represeriRIC (and

CEG) curves. Macskassy [Macskassy and Provost, 2004] [Macs&aaty2005] most



recently emphasizes the critical need for such representative R@€&scamd the lack of
such ROC curves in the literature. From such representative RQE€xc(or
representative CEG curves), many descriptive statistics, suctean and median ROC
curves and AUC values and confidence bands and intervals for them, are dbtahe
results are shown to be robust when the overall model density form asenmate

correct.

CEG curve density, representative CEG curve generation, and confideapeaint
generation. The methods developed here can be applied to CEG curves. The lack of a
proven means for obtaining confidence intervals for the CEG curve was arprima
motivation for AFRL sponsorship of this research. The research reportedjbes

beyond simply adapting an existing ROC curve confidence interval estinragtmod

and applying it to the ROC curve. Instead, it applies a Bayesian frarkdevareate,
demonstrate, and validate new methods that can be applied beyond the uncertainty

estimation problem originally addressed.

Target and non-target densigiexibility.  Although the examples considered here use
beta densities, the methods developed here can be directly applied to othr iens.
In contrast, the binormal ROC curve in predominant use implies a nearlgx®®C
curve form and restricts curve estimation to this form. The methodsaleselhere are
particularly important for cases where sample size is small, gpicat in target
detection problems. Thus, this research is expected to alter the wdliehatget

detection evaluation community approaches ROC and CEG curve uncertaintgtesti

6.2 Future work

The success of this research should motivate further investigationeredareas:
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1. Improve the efficiency of target and non-target density posterior pasmet
computation. As the number of parameter evaluation points increases (see Figure 4.9),
the ROC curve density converges (see Theorem 3.3) provided that theers|adicing of

the points does not change (for example, the spacing is kept uniform over mean and
standard deviation). More computationally efficient methods to obtairceifti

numbers of evaluation points should be investigated. This optimization vassidt in

the transfer of the Bayesian framework to more complex density modetdan

[Jordanet al,, 1999] focuses on a variational approach and references alternativessuch a
the pruning algorithm, bounding conditioning, search-based methods, and Idcalize
partial evaluation. Bos [Bos, 2002] describes alternatives such as &ibigding and
importance sampling. Madigan [Madigan and Raftery, 1994], Raftery

[Rafteryet al, 2003], and Hoeting [Hoetingt al., 1999] reference Bayesian model
averaging and Occam’s window for reducing the computational complexity tépas

parameter density evaluation.

2. Develop integrated confidence band computation approachssioted in Section

2.7, while the framework used and the methods developed here apply to mangftypes
ROC curve uncertainty estimation, there are other approaches that megdptadble in
particular cases. For example, the binomial approach provides bands that essompa
greater than or equal to 95% coverage for 95% confidence bands. Confidence bands
based on the binomial approach are overly conservative but may be apphedigper
bound to ROC curve confidence bands for the method developed here. Thus, relevant
aspects of each of the approaches may be combined to achieve joint-met@oclUR®@

confidence bands.

3. Test the methods developed here with other density moH&kmple alternative
density models include hybrid models that combine Gaussian densities, heitede or
both. In such a combination approach, density models that have higher com@eaity,

if they fit the data well, may be regarded as less likely to reprebertrtie model (see



[MacKay, 1992b]). Here complexity could refer to the number of parametehzin
model, e.g., a single-beta density has two parameters (mean and standardrjevia a
two-beta mixture density has five parameters (two means and standaatates/plus an
amplitude ratio). Regularization techniques can combine models of varyingersraf
parameters (see Bishop [Bishop, 1995]). To avoid the possible over-tifiects of
more complex densities, target and non-target score density function roughiR€&3€ or
or CEG curve roughness could be used to quantify complexity. Appendix B addresses
related issues by first examining interpolation methods that have desasibphpolation
properties based on roughngisshen describes an analytical approach for roughness
computation, where the roughness of a function is defined as its integrateddsquare
second derivative. Approaches that incorporate roughness recognize, folextaia
density function with large roughness that describes the data well may hiekssble

than a density function that describes the data less well but that hasuginess.

4. Apply the methods developed here to additional performance metnse the ROC
curve density is developed, the research presented here showsaiisétdn to the CEG
curve density is straightforward. This transition could be made to othevrpeaihce
metrics, including the Dice similarity coefficient (see Zou [Zal. 2004]), mutual
information (see Zou [Zoet al., 2004]), partial AUC (see [Dodd and Pepe, 2003]), and
the Youden index (see Faraggi [Faraggi, 2003]).



Appendix A. Analytical Derivations and Numerical Approximations
A.1 Derivation of ROC curve

Theorem Score-threshold ROC curve
Let f(s;u) andg(s; v) be densities of givenu andv, wheres is a scalar and andv are
vectors, assume thgts; u) andg(s; v) are integrabl& «, v and let

= [ f(s;u)ds andG t;v) = [ g(s;v)ds. Alsoletw = [u; us ... v; v ...] and
F(t; u) =1— F(t;u) andG(t;u) = 1 — F(t;u) whereF (t;u) andG(t; v) are
cumulative probability distributions. Let= F(t;u) andy = G(t;v). Assume there is
a unique correspondence ofo ﬁ(s; u) such that) < ﬁ(s; u) <1 andF ! is invertible
(by the Implicit and Inverse function theorensee [Olmstead, 1961]). Then
y = r(z;w), wherer = GF 1.

Proof

If F(s;u)= f_goo f(5;u)ds is a cumulative distribution function (CDF), then [Stark and
Woods, 1986, pp. 42]

P,(s1 < X < s9) = F(so;u) — F(sy;u) > 0fors; < ss. (A1)
If f(s;w) is a probability density function (PDF), then [Stark and Woods, 1986, pp. 44]
[ fsds = Pufs <5 < ). (A.2)
By Equations (A.1) and (A.2),

/ F(5:u)ds = F(sy;u) — F(sy;u) (A.3)



Also [Stark and Woods, 1986, pp. 41],

F(—oo;u) =0, F(oo;u) = 1.

By Equations (A.3) and (A.4),
[ flssuds = Flociu) = Fsin) = 1= Fsisu).
Since it has been defined that= [ f(s;u)ds = ﬁ(t;u), by Equation (A.5)
- /Oo F(siu)ds = 1 — F(t:u) = P(t:u).
t
Using an identical argument,

Yy = /toog(s;v)ds =1-G(t;v) = é(t; v).

Further, sincé(s;u) = 1 — 13(5; u), and sincel(sy; u) < F(sq;u) for sy < so,

~

F(s1;u) > ﬁ(SQ;u).

SinceF is continuous from the right [Stark and Woods, 1986, pp. 44], i.e.,

~

F(s;u) = lim._0 F(s+ €u),e > 0, and sinceF'(s;u) = 1 — F(s;u),
F(—oo;u) = 0; F(oo;u) =1,

F is continuous from the left, i.e£ (s; u) = lim._o F(s — € u), € > 0.

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)



SinceF ! is invertible and unique for eaah then for anyr, 0 < x <1,

x = [ f(s;u)ds for some unique threshold= FYa;u), Go F Y (zw) = Gt u),

z = F(t;u), and it follows thaty = r(z; w), wherer = G o F~!(z; w).

Comments

If f(s;u)andg(s;v) are modeled by beta probability densities, thesmdv are

two-element vectors, and

Flssu) =

g(s;v) =

Sﬂl—l (1 _ S)ﬂz—l

8’171—1 1 — 8)572—1

I'(@1)I(u2) ’
F(ﬂl +ﬂz)

(@)l (v2) ’
F(@l —Mjg)

whereu andv are related ta andv by

and where

~

Thus,z = F(t;u) = |,

Uy

Uz

(%1

V2

['(a) = / e 't dt,a > 0.
0

t

-

1 851—1(1 . 8)@-1

u1[7U1(1u; ) —1]
al[uil )

U1<]. — Ul)

> f(s;u)ds may be expressed

AN

T (i1 +1i2)

0<s<1

0<s<1,

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)



u DB
L@H02) paf

Figure A1 Her F((al)m?) is shown as a function af, andi,.

u1+u2)

wheret is a selected threshold and ¢ < 1. Figure A.1 shows the relation @f, u,, to

I'(ug)(u2)
T (i1 +u2) *

Evaluation using Weierstrass’ product [Korn and Korn, 2000, pp. 822], shows that

FF(ZBE%) may be factored into the infinite sum

1 g z, _,
o] = ze© g[(l + E)e /¥, (A.18)

where C~ 0.5772157 is the Euler-Mascheroni constant and

D(a)(b)  a+byy (k+a+b)(k)

- - A.19
Patb) ab L Eta)k+b) (A.19)
Note (see [Patedt al,, 1976]) that
t Sﬂl—l<1 . S)ﬂz—l Bt(ﬁh a2) L
/0 et 90~ Taorgy (i) (A.20)

F(ﬂl +ﬂg) F(ﬂl +ﬂg)
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where
t
By (ty, ) = / s17H(1 — )21 (A.21)
0

and/; is the incomplete beta function ratio. Also note that

1 ﬂl—]_(]- _ )52—1 t ﬂl—]_(]- _ )52—1

S S S S
/t MG =1 /O NGO R (A-22)

T (a1 +a2) T (a1 +a2)

so that
1 ﬁl—l(l _ )ﬁg—l
s s -
/ RGN ds =1 — I,(uy,uz). (A.23)
¢ T (1 +u2)

For the incomplete beta function ratio [Pagelal., 1976, pp. 246]

[t(ﬂlﬂz) = 1 - [1_15(62761), (A24)

so that

/1 C k) Sy N (1 — Ihy(Uo. ) (A.25)

P(u)I (ug)
I'(u1+us2)

Therefore

L@ (u2)
F(ﬁl +172)

1 _u1—1 1 — us—1
/ ) L (). (A.26)
t

From above, and noting that Equations (A.12)-(A.14) may be manipulated tofeolve

i __w _ U1z _ _0
uy, ug,v1, @Ndvy USINQuy = 8=, Uy = Grm T U1 = mas and
_ VU102
V2 = Gt (o +)2
- ~ Uy Uy s
T = Il—t(u2,u1) = F(t )a (A27)

T+ U (U e+ 1) (U + ur)?
and similarly

U ~ U1 V109
. T ) R A28
Yy 1 t(U2,U1> ( D1 + (Ul N 1)(1}1 n U2)2> ( )
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Therefore, for a beta density model and for given values arfidv,
y=r(z;w) = Go F N (;w) = I,_p1 (0 ([@201) @ndF(tu) = I_y(U ). (A.29)

Thus, whereas there are various ways to deserilseich as an infinite series of products,
gamma functions, and the incomplete beta function ratio), such expressgons ar
impractical to further evaluate analytically. Even if they weraqgpical to evaluate, the

analytical expressions would be for the ROC curve, not for the ROC curve density.
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A.2 Derivation of ROC curve density
Theorem 3.2 ROC curve density

Letd = {s;:i =1, ..., 1} be a set of independent and identically distributed samgples
from distributionf. Leth ={¢; : j = 1,..., J} be a set of independent and identically
distributed sampleg; from distributiong, and letp,(u) andp,(v) be prior densities of
the random parameter vectarando. Let A be the admissible set afandv

parameters. Then

bl d. 1) = Co [ [ metole, o) [T Fsis) T stass pu(wipa(e)duds, (430

a J

where the constart, depends o andh.
Proof

Let w be the concatenation efandv (i.e.,w = [uy usy ... v; v5 ...]), and let D be the

concatenation of andh.

By marginalization

Pylz(ylz, D) = /gpyx(m:c, w)pwp(w|D)dw, (A.31)

and by Bayes'’ rule,

Puip(w]D) = Cippju(D]w)py(w), (A.32)

where the constar@l depends oD.



Thus, by independence
J

I
pow(Dlw) = Co [ | £(siu) [ [ 9(gi0), (A.33)
i=1

i=1

where the constarﬁg depends o andh.

and

Puw(w) = pu(u)py(v). (A.34)

Combining Equations (A.32), (A.33), and (A.34) shows that Equation (A.31) is

equivalent to

el D) = Co [ [ pyatvle o) T #Gsi ) [T olassohpulpo)du do, - (A35)

A J

where the constar@ND depends o andh.

Note thatA is used here rather thahbecause notation earlier in this document (see
Equation (3.3)) refers to the admissible set for the beta density modelaasd this proof

is not restricted to the beta density model.
Comments

For a beta density,

J

pyx(y’aja D) = 50 floo floo floo floo pyx(y’xa al,a% ’771,’772) H f(si; a1,62) HQ(Qj; ’171,’172>

. U1 U1 Uus U1 U102 2 AT A7 A7y
Pt T e P (i i i) ua diadvy o,

andp,, (y|z, uy, U, 01,02) = 0(y — r(z; w)),



where

P (@3 0,01, T ) = G o FH (3 00,001, U, Th) = Iy_poa (B, 01), F(t570) = [y y(Wa,71)
(A.36)
andwu andv are related ta andv by Equations (A.12)-(A.14). Also,
_ S§171 1—81‘ ug—1
[T £(sifiin i) = [] i —

i T(uytug)

[To(@lm2) =] (i e e
JIPL, 72 T ()
j

j T'(v14+v2)

One example choice of parameter density priorhds; u.) equal to a constant over all
values ofu; andu, for which the beta density is defined, wheteis mean and, is

standard deviation. With an identical choice of priorsggfv, v2), the following bounds

apply:

pu(ULUz) =1,0 <wu; <0.5, andUQ < m

pu(rus) =1,0.5 < uy < 1, andu, < 0=l

—u1

pu<U17U2) = 0, 0<uy < 05, andu2 > m

up(1—uq)?
2—uq

pu(ur,ug) = 0,0.5 <wuy <1, anduy >

p@<U1’U2) = ].,0 <y < 057 andl}g < MW

2

po(v1v2) = 1,0.5 < vy <1, andvy < vi(l=v1)®

2—v1

—v1

p@<U1’U2) =0,0 <wv; <0.5, andl}g > m

vy (1—vy)?
2—v1

po(v1,v2) = 0,0.5 < vy <1, andvy >

Even for the case of uniform prior density over admissible mean and sthdee@iations

and with single beta densities (simple in comparison with beta naxnodels), there are
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no less than six incomplete gamma functions inside the integral. Without cangidee
definition forp,,(y|z, D), since the gamma function is itself analytically described by an
integral, an analytical solution, even for a single beta density, is nabfegsultiple
analytic terms inside the four part integral would consist of

['(a) = [;° e 't*'dt,a > 0). However, using Monte Carlo methods, a convergent
numerical result may be obtained. Further, rather than the restrictivéosolnat an
analytical development would produce (restricted to single beta modes)umerical
development may be extended to beta mixture models or other families of density
models. Thus, based on the analytic framework it is clear that a numeviialation is
needed. The evaluation points of Figure 3.6, shown within the allowed sthndar
deviation versus mean plots, are sampling points used to estimatdltBayesian
posterior, which may be visualized as a three-dimensional density. Theegiaihs of

the two left plots of this figure, shown in the vicinity of the target and nogetamean

and standard deviation, indicate confidence interval bounds for the posterior pitgbabil
Similarly, the darkened regions of Figure 5.12 indicate 10%, 30%, 50%, and 90%

confidence interval bounds for the posterior probability.
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Appendix B. Analytical derivation of Roughness for Cardinal

Interpolation
B.1 Introduction and background on cardinal interpolation

Gustafson, Parker, and Martin [Gustafsgral, 2006] apply Bayesian methods to find
the probability density of certain interpolating functions, where thisitehas desirable
extrapolation properties that define cardinal interpolation. In this appecatidinal
interpolation and roughness are introduced and then an analytical extem§&ostafson,
Parker, and Martin [Gustafsat al,, 2006] is provided. As described in future work
(Section 6.2), incorporating roughness into a target or non-target density ocaodel
provide a means to characterize and control models of various complexity for

performance metric uncertainty.

Development of the cardinal interpolation density provided an early pkafor the
development of densities for ROC and CEG curves that is the key advancestepere.
Calculation of the cardinal interpolation density is facilitated hyaaalytical derivation

of roughness of a sum of Gaussian functions, where roughness is defined as integrated
squared second derivative of the sum of the functions. The use of roughnessthere
degree of smoothness in Bishop (see [Bishop, 1995, pp. 173]). See [Bishop, 1995] and

[MacKay 1992a, 1992b] for the related discussion of regularization.

The following summarizes the cardinal interpolation concept and its use ahtdgtical
derivation of roughness. Gustafson, Parker, and Martin [Gust&fisal) 2006] provide

a full description.

The cardinal interpolation density combines a linear model with a Gausadial basis
function model. When estimating points that are far from observed data pamts

appropriate model is assumed to be a least squaresiimen estimating points that are



close to observed data points, an appropriate model is assumed to be an itge(pola
this case a Gaussian radial basis function interpolator). Let datespidimt

(x1,11), (T2, y2), .., (Tn,yn) With 21 < 29 < ... < x,, be samples from a Gaussian
probability density iny relative to a line (see [Bishop, 1995]). By marginalization, the
probability densityp(y|x, D) of y givenz and D for a linear model is

[ p(ylz, a,b)p(a, b|D)da db, wherea is the intercept andlis the slope of the line. By
Bayes' rulep(a, b| D) is proportional tap(D|a, b)p(a)p(b) for independent andb,
wherep(D|a, b) is the product op(y|x, D)evaluated at each of the data points and is thus
proportional to the deviation weightrp[— > (y; — a — bx;)?/(20%)]. The resultis a
density for the linear model (see [Bishop, 1995]) that has a mean which isabe |

squares line at D.

The cardinal interpolation density uses the above linear model wittua<za radial
basis interpolating model. The combined model is

y(z;a,b,c) = a+bx+ Y. Ajexp|—(x — x;)%/(2¢%)], where each basis function has its
mean at a point value, has varianc&, and has amplitudd; such that; = y(z;; a, b, ¢)
so that the points are interpolated. Regularization (see [Bishop, 1995]) weldhting
that depends on roughness;, b, ¢). The cardinal interpolation density is developed by
requiring that the roughness weightp(—Kr(a, b, ¢) equal the above deviation weight,

whereK is such that both types of weights have the same minimum.

B.2 Analytical roughness expression

The following expression for roughness has been verified for many sum of Gaussia
functions using numerical integration. The use of this expression can gredtige the

number of required computations as compared with numerical integration.



Theorem

Leta,b € Randec > 0andzy zy...,z, € R, A Ao ..., A, € R, and
n o 5
y(x;a,b,c) = a+bx+ZAie_< 2t (B.1)
=1

for z € R.

Then roughness;(a, b, ¢) is

r(a,b,c) :/_Z

where

Proof

Note that

and

(" (x;a,b, ¢))*de = ~—

—2;)?

ZZAA&{ +3y+7 } (B.2)

i=1 j=1
2
= =L - ) (B.3)
A g popa=ep) A; gz
= 1/2] ]—g(x—xl)Qe 1/2(¢ ]

A (T A /2

0x?

A4

b

_AiA

b

ct

(m—m-)2 (93*1')2
e Y et

—1/a(lm?) o 1/2(

B-3

(z — xj)2

(.’L‘T2

)(35 - xi)2



AiAj g joamen?y g pcam)’
B 08]6 1/2(55) ,—1/2( )(x_xiy(x_xj)?, (B.4)

Then roughness for n points is

n n
AA (zm <zz>
r(a,b,c) / Z Aidj aja(emp) et
- 1 j=1

=

AiAj _qppama®y g jgclemei)?
2y 1 D (2
C

AjA; g ema)®y g e’ 9
A 2 12 (g
C

Al ety

)?)dz. (B.5)

8

Note that terms that may be separately integrated, and that threelfeners appear in
Equation (B.5).

First general form

The first general form gl [ 12D 2 g and
H_4J /oo 6_1/2(%)6_1/2(%&%&; = H_;] /00 6l:1:2—l—w:z:—&-kdx7 (B.6)
A ) A )

wherel = 53(2),w = 73(2s — 2t), andk = 55 (s* + t2).
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Substitutep = 1/¢?, ¢ = —w/2l = £, andv = k + pg?, into Equation (B.6):

/ R S R S / et wntk gy _ / T o0 gy (B.7)
—o0 —0o0

—00

_(z=9)?

Note applying the definition of a Gaussian probability dens&% ffooo e 2 dx =1,

yields the following progression:

er/ e—p(m—Q)zdl’ — 6”\/7_'('0- (88)
Thus
B [" cmetrnmegfy, - B o (B.9)
C oo ¢

wherev = k + pg® andk = 53(s* + 1°), p = 1/¢*, andq = =

Second general form

HJ [ _jge=9%) {9 =02
— _Ooe V252 ) V2AT2) (1 — 4)2da (B.10)
Similar to Equation (B.6), let
o0 r—s 2 x—t 2 o0
/ e~/ 120 N —t)%de = / el twrtk (g 1)2dg, (B.11)
—00 —00

Then, similar to Equation (B.7),>_ e/ +u+k(y — 1)2dz = e" [* e P(=0% (1 — t)2du.
Note thate™ [ e P90 (g — §)2dx =

t2er [°2 e P07 dy — 2te? [ pe PO dy 4 e [°0 g2 P9 dy,

Similar to Equation (B.8);%¢” [~ e P9’ dp = 2e"\/Tc.

Substitutez = x — ¢q. Thenx = z + ¢, and

e ze PE=0dy = [ (24 q)e P dy = s ze P&’ dz + g s e P (.

o0
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Note tha'[ffooo ze P dz = 0.

(Recall thatp = 1/c%)

Then—2te" [* ze PE0 gy = —2te? (0 4 qx/%%) = —2teq/Tc.

Similar to above, let = = — ¢, and [*°_22e P~ dy = [* (2 + q)2e P dz.
Then

[ =+ Qe P dz = [ (224 2¢z + e P dz =

o0

I 2277’z + I 2qze P’ dz + I g2e P2’z

Note that[*°_2gze ?*)*dz = 0, and similar to Equation (B.8),

[ e P = e
I, 2P’y = (g)QW =2 /T

Thus
(z—s5)2 (z—1)2
HY [ o V2AEG2) V2ET) (p— )2 = 26?\/Te— 2t gy/Te+ € S /T + €02\ /Tc.

—0o0

Note that factoring:
t2ev\/mc — 2te’q/me + e“%ﬁ + evq?\/mc = eV \/Te[t? — 2tq + % + ¢

Thus,

HJ o0 Tr—s 2 xr—t 2 2
— / 6_1/2(%)6_1/2(%)<JJ —t)?dx = e’ /mc[t? — 2tq + © 4 7). (B.12)

A ) 2

Third General Form

A similar progression yields

B-6



H—;] /OO 6_1/2((3«,:—;)2)6_1/2(&:;)2)(37 . I)2<x _ t)2dx —
C

—00

ce’/m{q* + A(3¢%) + 3%4 + (=25 — 2t)(¢* + 3ch2)]
+[(s* +t* + 4st)(¢* + (%2))].
+[(q)(—2st* — 25°t)] + [s*7]}. (B.13)

Applying Equations (B.9), (B.12), and (B.13) to roughness formula:

2 2 2
= c c c

4 3¢2 3 —2s¢® —3qs —2tqg® —3qt s*¢*2 s* 2> t?

+Q_4+%+_+ 4q 2q 4q 2q+ 4q+—2+—f1]+—2

c c 4 c c & & & 2c c 2c

4stq®>  2st  —2st’q —2s’tq  s*t?
e

[}L2, (B.14)

Note that the following terms

4 3 3 2 2 2 92 2 2 2 2,2
—2s —2t S t 4st —2st —2s°t st

q—4+ 4q+ 4q+4q+z+ 4q+ 4q+ 4q+4,

c c c c c c c c c

(B.15)

factor as follows.

B-7



The second and third terms of Equation (B.15) are

—25¢3
4

—2tq®  —2¢°(s+1t)

—4(s+t)¢® —4q*

C

4

ct

ct

- I
2c4 ct

and thus the first second and third terms of Equation (B.15) are

—25¢3
4

—2tq® =3¢

C

4

Note that the seventh and eighth terms of Equation (B.15) are

—2st(s+t)q —4dst(s+t)q —4stq®

A

2c4

b

A

and thus the sixth, seventh and eighth terms in Equation (B.15) are:

Note that Equation (B.15) is equal to

4stq®  —4dstg?
S )
c c
3¢t 822 2@ S
4 _Z
c” terms A —+ A + A + A

Note that the second and third terms in Equation (B.20) simplify to:

s’ P (P +1?) @l(s+1)?—2st]  4¢P[(s+1t)? — 2st]
Vot A A N A N 4c4
and that

A [(s +1)> —2st]  4g*(s+1)*  4q*(—2st)
4ct N 4ct 4ct

Note that

A(s +1)* | 4g°(=2st)  4q"  4g*(-2st)
4ch 4ct ot 4ch

?

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)



Therefore, Equation (B.20) simplifies to:

—3q% At 2(_ 242
3q +4i+4q( 2815)_{_815

4 —

c* terms = 7 T 1 - (B.24)
From above equation:

4 -9 2 t 2t2
¢! terms :q—4 + q4 i 8—4 (B.25)
C C C
Substitutey = st.
4 — 942 2 2 .0\2
Aterms=L + 210 T _ (@ —v)® (B.26)

ct ct ct ct
Next, examine the 11 terms with denominator-df
—t2 2tq —2¢° —s* 2sq 3¢> —3qs —3qt s> t2 2st

2 _
terms =—-+—-+ +—+-—+— (B.27
¢ c? c? c? c? 2 2 c? c? 2c2  2c¢2 2 ( )

Note that the seventh and eighth terms in Equation (B.27) simplify to

—3qs N —3qt  —3q(s+1t) —6q(s+1) —6¢°

— = B.28
c? c? c? 2c2 c? ( )
Combining the third, sixth, seventh, and eighth terms in Equation (B.27):
—-2¢°> 3¢® —6¢° —5q?
2 +?+ 2 2 (B.29)
Now, Equation (B.27) is simplified as
—t2 2tq —5¢> —s®> 2sq s? 12 2st
% terms =—— + — —_— = =+ = B.30
¢ 02+02+ c? +02+02+262+262+62 ( )
Note that the second and fifth terms in Equation (B.30) are:
2t 2 2 t) 4 t)  4q¢*
2g 25 _2q(s +t) _dq(s+t) 4 (B.31)

c2 c2 c2 2c2 2’



and thus Equation (B.30) simplifies to:

2

, . P —s 2 £2
c” terms = ) + —

2st
c? + c? + 2c2 + 22 + 2 (B.32)

C

Combining the first, third, fourth, and fifth terms of Equation (B.32)

—t?2  —s? 52 12 —t? =2
—_— =t =t —==—+ = B.33
c? + c? + 2¢2 + 2¢2  2c? + 2c2 ( )
Now, Equation (B.32) simplifies to:
—t?2—s%>  ¢® 2st
2 —
¢” terms = 52 2 + = (B.34)

Replace(s%t) for ¢ in the above equation, and use a common denominator to obtain

—2t* — 28 (s+t)* 8st
2 _ _ i
¢ terms= 1 12 + 12 (B.35)

Therefore,

—2t% — 2% — (s? + 2st +1%) +8st  —21% — 25> — 5% — 25t — 1? + 8st
c2 terms= =

4c? 4c? ’
(B.36)
—2t? — 252 — s2 — 2st —t?> + 8st  —3t% — 35> 4 6st
= B.37
4c? 4c? ’ (B8.37)
and
—3(t? + s — 2st)  —3((s+1)? — 4st)
2 terms= =
¢ 4c2 42
-3¢2 120  =3¢> 3v  3(v—¢?
= —_ =7 B.38
c? 4c2? c? c? c? ( )
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Combining the*, ¢2, and constant terms, and inserting into the roughness formula:

c? A

n_n 2 2 v — a?)? 1/2
r(a,b,c):{gZZAiAje“Zf {z+(3)(v ) , =0 }} (B.39)

i=1 j=1

Substitutey = “;2‘12 )

Note that

v—¢> v ¢ st (s+t)?  Ast—(s+1)>  dst— (s + 2st +1?)

7= 2 2 2 & 4z 4c2 4c2 ’
(B.40)
and
dst — 52 — 2st — 12 —(s2 —2st +1%) —(s—1)?
= = = B.41
" 4¢2 42 4¢2 ( )
Thus,

_ ", 2 _ ﬁ ~ 3 2
r(a,b,c) = /(y (z;a,b,c))*dr = ?ZZAiAjeV{Z +3v+7 }, (B.42)

i=1 j=1

where
2

y = —_(IZ; ) (B.43)
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Appendix C. ROC Curve and CEG Curve Probability Density and

Confidence Interval Software

Appendix C-1 details code [Parker, 2005] that computes median estiofdR€3C curves
and AUC values, with confidence intervals, for any set of target andarget input
score samples, assuming beta target and non-target densities. Appeddixdentical
in purpose, except that it assumes two-beta mixture target and non-targéedens
These appendices contain instructions for additional code that assumesnarget a
non-target densities with fixed, user-specified parameters. Thisaddicode generates
many sets of representative target and non-target samples from the fn®tiede and it
provides corresponding ROC curve coverage accuracies. Appendix C-34nd C-
describe code identical in purpose to C-1 and C-2, but for CEG curves and R&3 val
The end of Section 5 compares the beta and two-beta density appraaehgsncipal
approach applied in the research reported here is the single beta modelod&ferc
each of the Matlab files that comprise the user interface is alsoq@dviere. The

remaining Matlab files are functions that are called upon execution afdeinterface.



Appendix C-1
ROC curve /AUC value Estimation and Confidence Interval
Matlab Instructions
Beta Density Target and Non-target Model

A. Provide a set of target samples, non-target samples, and confidence bound value. Then compute
the confidence intervals based on these samples.

1. Place the following files into a common directory.
(For example: c:\matlab_sv12\work\)

beta_mean_w_a b r.m
conditioned_calc_2_r.m
find_max_variance_r.m
get_aurc_val_r.m

get_density vals_r.m
get_grid_points_closest_r.m
get_grid_points_n_closest_r.m
get_grid_points_r.m
get_pd_pfa_matrix_10_r.m
get_pd_pfa_pairs_pdfs2_r.m
high_low_grid_weight_r.m
mean_variance_to_pdf_2_r.m
pd_pfa_from_mean_std_r.m
pfa_pd_to_hundredths_r.m
script_for_samples_r.m
uni_pdf_for_samples_r

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu, if
the directory is not already in the path.

3. Execute the following in Matlab. An example is contained in “script_for_samples_r.m’.

Enter (or load) a vector of target scores into the variable ‘new_target scores’.
Enter (or load) a vector of nontarget scores into the variable ‘new_nontarget_scores’.

Execute the following matlab code to produce ROC curve and AUC value estimates with confidence intervals:
uni_pdf _for_samples_r(new_target_scores,new_nontarget_scores,.95);
Replace .95 by alternate confidence interval coverage if desired (e.g. .90, .80).

To obtain the upper and lower confidence interval limit values for false alarm probabilities 0, .01, ..., .99,
1, (rather than an on-screen plot), execute the following:

[ci_median, ci_upper, ci_lower, auc_median, auc_upper, auc_lower] = ...
uni_pdf_for_samples_r(new_target_scores,new_nontarget_scores,bound_value);
ci_median - ROC curve estimate

ci_upper - Upper ROC curve confidence interval contour
ci_lower - Lower ROC curve confidence interval contour
auc_median -  AUC value estimate

auc_upper - Upper AUC value confidence interval estimate

auc_lower - Lower AUC value confidence interval estimate



B. Generate many sets of samples for selected underlying target and nontarget densities, and then

obtain confidence intervals and estimates for the ROC / AUC for each set of samples and compute
confidence interval accuracy (e.g. alpha) among all sets. This process assumes a single beta model
for target and non-target.

1.

Place the following files into a common directory.
For example: c:\matlab_sv12\work\roc\

beta_mean_ w_a b r.m
conditioned_calc_2_r.m
find_max_variance_r.m
generic_rnd.m
get_aurc_val_r.m

get_density vals_r.m
get_grid_points_closest_r.m
get_grid_points_n_closest_r.m
get_grid_points_r.m
get_pd_pfa_matrix_10_r.m
get_pd_pfa_pairs_pdfs2_r.m
high_low_grid_weight_r.m
mean_variance_to_pdf_2_r.m
pd_pfa_from_mean_std_r.m
pfa_pd_to_hundredths_r.m
run_choose_sample.m
run_Uu_aurc_95 r.m
sample_gen_uni_test r.m
sample_gen_user_input_r.m
script ROC_AUC _ClIs_with_coverage _accuracy.m
uni_pdf _aurc_ 95 r.m

Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu.
Open the File ‘script ROC_AUC_Cls_with_coverage accuracy.m’.

Lines 7-18. Specify number of target samples, number of non-target samples, specify a beta
density by mean and variance of assumed target beta density, mean and variance of assumed non-
target beta density number of runs, or provide any density form as input (Lines 23-24 provide an
example).

Evaluate Lines 1 through 88. [Note in Matlab this can be achieved by highlighting these line.
Then right click to obtain a menu. Then choose ‘Evaluate Selection’.] After each run, the full set
of results are saved in Line 88.

ROC curve for a single run with confidence intervals:
a. Form a plot of estimated ROC with confidence intervals [with true ROC] by Evaluating Lines
92-105. Note that run_number on line 92 may be adjusted to any run among the set specified

in step 3 above.

Obtain coverage for the full set of runs by Evaluating Lines 111-176. The mean alpha for AUC
over many runs is displayed at the top of the plot.
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Enter the beta density parameters

nontarget density
%
%
%

% optional
%
%

o
o
o
°
o
°

o

[
)

9 number of target samples

5 target density
7
8

6 nontarget density

4 clear all

- N ™M

13 mean target gen 1

14 variance_ target gen 1

15 mean nontarget gen 1 =

16 variance nontarget gen 1 =

18 bound val
20 number of runs

11
12
17
19
21
22
23
24
25
26
27
28
2

3

3

’

’

’

’

zeros (length run number,1001)

zeros (length run number,101)

zeros (length run number,101)

’

35 plot 1 uni ci median vector

37 plot 1 uni ci lower vector = zeros(length run number,101)

38 pfa 1 vector true curve vector

36 plot 1 uni ci upper vector

34 length run number = 1
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Appendix C-2
ROC curve /AUC value Estimation and Confidence Interval
Matlab Instructions
Two-Beta Mixture Target and Non-Target Density Model

A. Provide a set of target samples, non-target samples, and confidence bound value. Then compute
the confidence intervals based on these samples (assumes a two-beta mixture model).

1. Place the following files into a common directory.
(For example: c:\matlab_sv12\work\)

beta_mean_w_ab_2br.m
combine_beta_pdf_2br.m

conditioned calc_2 2br.m
find_max_variance_2br.m
get_aurc_val_2br.m
get_pd_pfa_matrix_10 2br.m
get_pd_pfa_pairs_pdfs2_2br.m
mixture_pdf 2br.m
pfa_pd_to_hundredths_2br.m
rand_two_beta_density 2br.m
roc_from_density 2br.m
sample_gen_bimodal_2br.m
two_beta_script_for_given_samples_2br.m
two_beta_roc_truth_not_known_2br.m

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu, if
the directory is not already in the path.

3. Execute the following in Matlab. An example is contained in
‘two_beta_script_for_given_samples_2br.m’.
Enter (or load) a vector of target scores into the variable ‘new_target _scores’.
Enter (or load) a vector of nontarget scores into the variable ‘new_nontarget_scores’.

Execute the following matlab code to produce ROC curve and AUC value estimates with confidence intervals:
two_beta_roc_truth_not_known(new_target scores,new_nontarget_scores,10000,.95);

Replace 10000 by the desired number of random draws (lower numbers of draws decrease
computational time). An approach is to begin with a low number of draws and gradually increase
until convergence of confidence interval solution is observed.

Replace .95 by alternate confidence interval coverage if desired (e.g. .90, .80).

To obtain the upper and lower confidence interval limit values for false alarm probabilities 0, .01, ..., .99,
1, (rather than an on-screen plot), execute the following:

[ci_median, ci_upper, ci_lower, auc_median, auc_upper, auc_lower] = ...
two_beta_roc_truth_not_known(new_target_scores,new_nontarget scores,10000,.95);

ci_median - ROC curve estimate

ci_upper - Upper ROC curve confidence interval contour
ci_lower - Lower ROC curve confidence interval contour
auc_median -  AUC value estimate

auc_upper - Upper AUC value confidence interval estimate

auc_lower - Lower AUC value confidence interval estimate



B. Generate many sets of samples for selected underlying target and nontarget densities, and then
obtain confidence intervals and estimates for the ROC curve / AUC value for each set of samples and
compute confidence interval accuracy (e.g. alpha) among all sets. This process assumes a two-beta
mixture model for target and non-target.

1.

Place the following files into a common directory.
For example: c:\matlab_sv12\work\roc\

beta_mean_w_ab_2br.m
combine_beta_pdf 2br.m
conditioned_calc_2_2br.m
find_max_variance_2br.m
get_aurc_val_2br.m
get_pd_pfa_matrix_10_2br.m
get_pd_pfa_pairs_pdfs2_2br.m
mixture_pdf 2br.m
pfa_pd_to_hundredths_2br.m
rand_two_beta_density 2br.m
roc_from_density 2br.m
sample_gen_bimodal_2br.m
two_beta_script_for_many_runs_2br.m
twobeta_run_nonempirical_2br.m
two_beta_unipdf_aurc_1000_2br.m

Add the common directory to the Matlab path by using “File / Set Path’ option in Matlab menu.
Open the File “‘two_beta_script_for_many_runs_2br.m’.

Lines 4-22. Specify number of target samples, number of non-target samples, specify the five
parameters for the target density for a two-beta mixture model (two means, two standard
deviations, and a ratio), the five parameters for the non-target density, the number of
random_draws desired (e.g. 2000), confidence interval desired (ci_range; example is .90 for 90%
confidence intervals), and the number of test runs (number_of runs; example is 100 if 100 test
runs are desired). An example is provided; change these values as desired.

Evaluate Lines 1 through 77. [Note in Matlab this can be achieved by highlighting these lines.
Then right click to obtain a menu. Then choose ‘Evaluate Selection’.] After each run, the full set
of results are saved in Line 88.

ROC curve for a single run with confidence intervals:
a. Form a plot of estimated ROC with confidence intervals [with true ROC] by Evaluating Lines
78-93. Note that run_number on line 79 may be adjusted to any run among the set specified

in step 3 above.

b.  Obtain coverage for the full set of runs by Evaluating Lines 100-179. The mean alpha for
AUC over many runs is displayed at the top of the plot.
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Appendix C-3
CEG/RSD Estimation and Confidence Interval Matlab Instructions
Beta Density Target and Non-target Model

A. Provide a set of target samples and non-target samples. Then estimate the CEG curve and RSD
and associated confidence intervals based on these samples, (assuming a single beta density model).

1. Place the following files into a common directory.
(c:\matlab_sv12\work\ceg\)

beta_mean_c.m
beta_mean_ w a b c.m
conditioned _calc_2 c.m
conf_error_new_w_return_c.m
conf_error_new_weighted_c.m
find_max_variance_c.m
get_density vals_c.m
get_grid_points_c.m
get_grid_points_closest_c.m
get_grid_points_n_closest_c.m
get_pd_pfa_matrix_10 _c.m
get_pd_pfa_pairs_pdfs2_c.m
high_low_grid weight_c.m
mean_variance_to_pdf 2 c.m
script_for_samples_c.m
uni_ce_pdf samples_c.m

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu, if
the directory is not already in the path.

3. Execute the following in Matlab. An example is contained in ‘script_for_samples_c.m’.

Enter (or load) a vector of target scores into the variable ‘new_target scores’.
Enter (or load) a vector of nontarget scores into the variable ‘new_nontarget_scores’.

Execute the following matlab code to produce ROC curve and AUC value estimates with confidence intervals:
uni_ce_pdf samples_c(new_target_scores,new_nontarget_scores,.95,.5);
Replace .95 by alternate confidence interval coverage if desired (e.g. .90, .80).
Replace .5 by prior probability of target.

To obtain the upper and lower confidence interval limit values for false alarm probabilities 0, .01, ..., .99,

1, (rather than an on-screen plot), execute the following:

[ci_median, ci_upper, ci_lower, rsd_median, rsd_upper, rsd_lower] = ...
uni_pdf_for_samples_c(new_target_scores,new_nontarget_scores,bound_value,prior_target);

ci_median - ROC curve estimate
ci_upper - Upper ROC curve confidence interval contour
ci_lower - Lower ROC curve confidence interval contour
rsd_median - AUC value estimate
rsd_upper - Upper AUC value confidence interval estimate

rsd_lower - Lower AUC value confidence interval estimate



B. Generate many sets of samples for selected underlying target and nontarget densities, and then
obtain confidence intervals and estimates for the CEG curve / RSD value for each set of samples and
compute confidence interval accuracy (e.g. alpha) among all sets. This process assumes a single beta
model for target and non-target.

1.

Place the following files into a common directory.
For example: c:\matlab_sv12\work\roc\

beta_mean_c.m
beta_mean_ w a b c.m
conditioned_calc_2_c.m
conf_error_new_w_return_c.m
conf_error_new_weighted_c.m
find_max_variance_c.m
get_density vals_c.m
get_grid_points_c.m
get_grid_points_closest_c.m
get_grid_points_n_closest_c.m
get_pd_pfa_matrix_10_c.m
get_pd_pfa_pairs_pdfs2_c.m
high_low_grid_weight_c.m
mean_variance_to_pdf_2_c.m
script CEG_RSD_Cls_with_coverage_accuracy.m
run_choose_sample_ceg_c.m
run_ceg_check_c.m
sample_gen_choose_density_c.m
sample_gen_uni_t_extend_c.m

Add the common directory to the Matlab path by using “File / Set Path’ option in Matlab menu.
Open the File ‘script CEG_RSD_Cls_with_coverage_accuracy.m’.

Lines 8-21. Specify number of target samples, number of non-target samples, specify a beta
density by mean and variance of assumed target beta density, mean and variance of assumed non-
target beta density, number of runs (how many test runs are desired), and prior probability of
target. Alternatively, specify the assumed target density and non-target density by the magnitude
of the density at each of 1001 evaluation points (lines 24-27 provide an example).

Evaluate Lines 1 through 83. [Note in Matlab this can be achieved by highlighting these line.
Then right click to obtain a menu. Then choose ‘Evaluate Selection’.] After each run, the full set
of results can be saved per Line 81.

ROC curve for a single run with confidence intervals:
a. Form a plot of estimated ROC with confidence intervals [with true ROC] by Evaluating Lines
85-98. Note that run_number on line 92 may be adjusted to any run among the set specified

in step 3 above.

Obtain coverage for the full set of runs by Evaluating Lines 104-182. The mean alpha for RSD
over many runs is displayed at the top of the plot.
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Appendix C-4

CEG/RSD Estimation and Confidence Interval Matlab Instructions

Two-Beta Mixture Target and Non-Target Density Model

A. Provide a set of target samples, non-target samples, and confidence bound value. Then compute
the CEG curve and AUC value median estimates and confidence intervals based on these samples
(assumes a two-beta mixture model).

1.

Place the following files into a common directory.
(For example: c:\matlab_sv12\work\)

beta_mean_w_a b 2bc.m
combine_beta_pdf 2bc.m
conditioned_calc_2_2bc.m
conf_error_new_w_return_2bc.m
conf_error_new_weighted_2bc.m
find_max_variance_2bc.m
mixture_pdf _2bc.m
rand_two_beta_density 2bc.m
sample_gen_bimodal_2bc.m
score_pts_to_hundredths_2bc.m
two_beta_script_for_given_samples_2bc.m
twobeta_ceg_truth_not_known_2bc.m

Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu, if
the directory is not already in the path.

Execute the following in Matlab. An example is contained in
‘two_beta_script_for_given_samples_2bc.m’

Enter (or load) a vector of target scores into the variable ‘new_target scores’.
Enter (or load) a vector of nontarget scores into the variable ‘new_nontarget_scores’.

Execute the following matlab code to produce ROC curve and AUC value estimates with confidence intervals:

two_beta_ceg_truth_not_known(new_target_scores,new_nontarget_scores,10000,.95);

Replace 10000 by the desired number of random draws (lower numbers of draws decrease
computational time). An approach is to begin with a low number of draws and gradually increase
until convergence of confidence interval solution is observed.

Replace .95 by alternate confidence interval coverage if desired (e.g. .90, .80).

To obtain the upper and lower confidence interval limit values for scores 0, .01, ..., .99, 1, (rather than an
on-screen plot), execute the following:

[ci_median, ci_upper, ci_lower, rsd_median, rsd_upper, rsd_lower] = ...
two_beta_ceg_truth_not_known(new_target_scores,new_nontarget_scores,10000,.95);

ci_median — ROC curve estimate
ci_upper - Upper ROC curve confidence interval contour
ci_lower - Lower ROC curve confidence interval contour
rsd_median - AUC value estimate
rsd_upper - Upper AUC value confidence interval estimate

rsd_lower - Lower AUC value confidence interval estimate



B. Generate many sets of samples for selected underlying target and nontarget densities, and then
obtain confidence intervals and estimates for the CEG curve / RSD value for each set of samples and
compute confidence interval accuracy (e.g. alpha) among all sets. This process assumes a single beta
model for target and non-target.

1.

Place the following files into a common directory.
For example: c:\matlab_sv12\work\roc\

beta_mean_w_a b _2bc.m
combine_beta_pdf 2bc.m
conditioned_calc_2_2bc.m
conf_error_new_w_return_2bc.m
conf_error_new_weighted _2bc.m
find_max_variance_2bc.m
mixture_pdf _2bc.m
rand_two_beta_density 2bc.m
sample_gen_bimodal_2bc.m
score_pts_to_hundredths_2bc.m
two_beta_script_for_many_runs_2bc.m
twobeta_run_nonempirical_2bc.m
twobeta_unipdf _rsd_1000_2bc.m

Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu.
Open the File “‘two_beta_script_for_many_runs_2bc.m’.

Lines 4-23. Specify number of target samples, number of non-target samples, specify a target beta
density by the five parameters of an assumed beta density, specify non-target density by the five
parameters of an assumed beta density, number of runs (how many test runs are desired), and prior
probability of target. Also specify the number of random draws; this is a computational constraint,
the number of draws selects how many grid points to evaluate for the target and non-target
densities. An option is to begin at a number that executes quickly (e.g. 2000), then increase until
observing convergence of computed confidence intervals.

Evaluate Lines 1 through 71. [Note in Matlab this can be achieved by highlighting these line.
Then right click to obtain a menu. Then choose ‘Evaluate Selection’.] After each run, the full set
of results can be saved per Line 69.

ROC curve for a single run with confidence intervals:
a. Form a plot of estimated ROC with confidence intervals [with true ROC] by Evaluating Lines
73-85. Note that run_number on line 92 may be adjusted to any run among the set specified

in step 3 above.

Obtain coverage for the full set of runs by Evaluating Lines 94-173. The mean alpha for RSD
over many runs is displayed at the top of the plot.
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