
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-23-2006 

Uncertainty Estimation for Target Detection System Uncertainty Estimation for Target Detection System 

Discrimination and Confidence Performance Metrics Discrimination and Confidence Performance Metrics 

David R. Parker 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Signal Processing Commons 

Recommended Citation Recommended Citation 
Parker, David R., "Uncertainty Estimation for Target Detection System Discrimination and Confidence 
Performance Metrics" (2006). Theses and Dissertations. 3334. 
https://scholar.afit.edu/etd/3334 

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F3334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3334?utm_source=scholar.afit.edu%2Fetd%2F3334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


UNCERTAINTY ESTIMATION FOR TARGET DETECTION SYSTEM

DISCRIMINATION AND CONFIDENCE PERFORMANCE METRICS

DISSERTATION

David R. Parker, Major, USAF

AFIT/DS/ENG/06-01

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or the

United States Government.



AFIT/DS/ENG/06-01

UNCERTAINTY ESTIMATION FOR TARGET DETECTION SYSTEM

DISCRIMINATION AND CONFIDENCE PERFORMANCE METRICS

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

David R. Parker, B.S., M.E.S.

Major, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED





Acknowledgements

The results provided in this dissertation would not have been possible ifit were not for

the dedication of numerous individuals who served many varying, but significant, roles in

my program’s progression.

Lt Col Goda, my pro-tem advisor, was a tremendous source of consistent, sound

guidance and encouragement as I began the program. Lt Col Goda was instrumental in

ensuring that my program got off to an appropriate start prior to the formal transition to

my dissertation advisor and committee chairman, Dr. Gustafson. Dr. Gustafson’s

guidance was absolutely critical to the progression of this research. I have great

admiration for Dr. Gustafson’s character, technical expertise, and professionalism. I

looked forward to our frequent discussions; Dr. Gustafson’s advice and critique provided

the motivation to set short term goals as stepping stones to longer term results; the body

of work presented here that resulted over a period of years is simply the culmination of

many short term goals that could be accomplished and/or investigated in a period of a

day, a few days, or a few weeks. Dr. Gustafson embraces complex topics while still

handling such topics in a manner which ensures that they are not made more complex

than absolutely necessary. I believe this approach was critical to the progression of this

research, and a mindset that I hope to carry with me in the future. The opportunity to

receive guidance from and interact with Dr. Gustafson is likely what I will, in the future,

appreciate most, when I think back to this program.

The leadership of my sponsor organization, AFRL/SNA, expressed a strong willingness

to support the progression of this program from the start. As I neared the completion of

my coursework, I was introduced to Dr. Ross, whose subsequent frequent meetingswith

Dr. Gustafson and myself were critical to the development and refinement of this

worthwhile research topic, as well as to the evaluation of the subsequent research’s

progression. Dr. Ross’s guidance and feedback as research sponsor was significantand

is very much appreciated.

iii



The feedback and support of my entire dissertation committee, including, near the

conclusion of the process, the Dean’s Representative, is extremely appreciated. It was an

honor to have each of your participation and involvement. Committee member

suggestions, from the period of the prospectus formulation through the final dissertation

acceptance, without question significantly improved the quality of the research presented

here. Very simply, the document would not be the product it is today without your

dedication, guidance, and support.

While our exact technical paths in many cases diverged a few years ago, I sincerely

appreciate the support of the students with whom I have had the opportunity to getto

know and study with here at AFIT. In addition to the faculty and fellow students, I am

also deeply grateful for the support of other AFIT professionals who serve manydiverse

but critical roles (such as the AFIT/ENG support staff, and the library, public affairs, and

computer support staffs); their consistent, friendly professionalism towards students such

as myself throughout the entire program is very much appreciated.

I would also like to sincerely thank those who motivated me to enter the program in the

first place, particularly my co-workers and supervisors at earlier assignments, and

previous academic advisors who provided me the necessary encouragement to begin this

worthwhile endeavor.

Foremost, I appreciate the gracious support of my family throughout all phases of this

endeavor; their understanding and encouragement throughout this entire program was

absolutely necessary to succeed in this program.

David R. Parker

iv



Table of Contents

Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1 Target detection systems . . . . . . . . . . . . . . . . . . . 1-1

1.2 Detection system performance metrics . . . . . . . . . . . 1-2

1.3 Discrimination metrics versus confidence metrics . . . . . . 1-5

1.4 Evaluation of a system under test . . . . . . . . . . . . . . 1-6

1.5 Existing research on performance metric uncertainty . . . . 1-8

1.6 Summary of contributions of this research . . . . . . . . . . 1-9

1.7 Organization of this dissertation . . . . . . . . . . . . . . . 1-11

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.1 Target detection systems and their performance evaluation . 2-2

2.2 ROC curves and AUC values . . . . . . . . . . . . . . . . 2-3

2.3 CEG curves and RSD values . . . . . . . . . . . . . . . . . 2-11

2.4 Relation of performance metrics to SUT evaluation . . . . . 2-13

2.5 Bayesian probability densities . . . . . . . . . . . . . . . . 2-18

2.6 Performance metric densities and confidence bounds . . . . 2-21

2.7 Literature review . . . . . . . . . . . . . . . . . . . . . . . 2-23

2.7.1 Metz method . . . . . . . . . . . . . . . . . . . . 2-24

2.7.2 Other existing methods . . . . . . . . . . . . . . 2-27

2.7.3 Summary of existing research . . . . . . . . . . . 2-42

v



Page

3. Probability Density Generation . . . . . . . . . . . . . . . . . . . . . 3-1

3.1 Target and non-target samples, density models, and ROC

curve estimates . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.2 Bayesian posterior densities of parameters and weighted ROC

curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

4. Probability Density Characterization and Verification . . . . . . . . . 4-1

4.1 Development of descriptive statistics . . . . . . . . . . . . 4-1

4.1.1 The AUC value densities and confidence intervals 4-1

4.1.2 Rank characterization of ROC curves by AUC val-

ues . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

4.1.3 Characterization of ROC curve density . . . . . . 4-7

4.1.4 Confidence contours for ROC curve density . . . . 4-10

4.1.5 Relations of confidence intervals to Chebyshev’s

inequality . . . . . . . . . . . . . . . . . . . . . . 4-14

4.1.6 Convergence as number of parameter points in-

creases . . . . . . . . . . . . . . . . . . . . . . . 4-22

4.1.7 Additional confidence bound definitions . . . . . 4-24

4.2 Verification of results . . . . . . . . . . . . . . . . . . . . 4-26

4.2.1 Analysis of ROC curve and AUC value bias . . . 4-26

4.2.2 The ROC curve confidence bounds . . . . . . . . 4-29

4.2.3 ROC curve experimental data results . . . . . . . 4-37

4.2.4 Analysis of CEG curve and RSD value bias . . . . 4-45

4.2.5 The CEG curve confidence bounds . . . . . . . . 4-48

5. Quantitative Comparisons . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.1 Comparison with Metz confidence interval method . . . . . 5-1

5.2 Comparison with Zhou confidence interval method . . . . . 5-5

5.3 Comparison with Hall confidence interval method . . . . . 5-7

vi



Page

5.4 Comparison with Hilgers confidence interval method . . . . 5-13

5.5 Additional considerations . . . . . . . . . . . . . . . . . . 5-15

6. Accomplishments, Contributions, and Future Work . . . . . . . . . . 6-1

6.1 Accomplishments and contributions . . . . . . . . . . . . . 6-4

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . 6-6

Appendix A. Analytical Derivations and Numerical Approximations . . . A-1

A.1 Derivation of ROC curve . . . . . . . . . . . . . . . . . . . A-1

A.2 Derivation of ROC curve density . . . . . . . . . . . . . . A-7

Appendix B. Analytical derivation of Roughness for Cardinal Interpola-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

B.1 Introduction and background on cardinal interpolation . . . B-1

B.2 Analytical roughness expression . . . . . . . . . . . . . . . B-2

Appendix C. ROC Curve and CEG Curve Probability Density and Confi-

dence Interval Software . . . . . . . . . . . . . . . . . . . C-1

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIB-1

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VITA-1

vii



List of Figures
Figure Page

1.1. Target and non-target densities and the ROC curve performance

metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

1.2. Evaluation of a system under test (SUT). . . . . . . . . . . . . . . 1-7

1.3. Comparison of method developed here with the method of Metz. . 1-10

2.1. Comparison of score-based and likelihood-based ROC curve gen-

eration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

2.2. The CEG curve performance metric. . . . . . . . . . . . . . . . . 2-12

2.3. Target and non-target densities, CEG curves, and RSD values. . . 2-14

2.4. Target and non-target densities, CEG curve, and RSD values (alter-

nate densities). . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15

2.5. Uncertainty estimation process. . . . . . . . . . . . . . . . . . . . 2-22

2.6. Relevant ROC curve literature and software. . . . . . . . . . . . . 2-28

2.7. ROC literature comparison I. . . . . . . . . . . . . . . . . . . . . 2-36

2.8. ROC literature comparison II. . . . . . . . . . . . . . . . . . . . . 2-37

2.9. ROC literature comparison III. . . . . . . . . . . . . . . . . . . . 2-38

3.1. Target and non-target samples and underlying densities. . . . . . . 3-3

3.2. The ROC curve estimates for various sample sizes, where beta den-

sity estimates generate the ROC curves. . . . . . . . . . . . . . . . 3-5

3.3. The ROC curve estimates for various sample sizes, where the em-

pirical samples generate the ROC curves. . . . . . . . . . . . . . 3-6

3.4. Target and non-target density examples with a beta mixture model. 3-8

3.5. Relation of true curve, empirical threshold based ROC curve, and

likelihood based true curve. . . . . . . . . . . . . . . . . . . . . . 3-9

3.6. Bayesian posterior densities of parameters. . . . . . . . . . . . . 3-10

viii



Figure Page

3.7. Bayesian posterior density of beta density parameters. . . . . . . . 3-16

3.8. Weighted ROC curves. . . . . . . . . . . . . . . . . . . . . . . . 3-29

3.9. Parameter variation with corresponding densities and ROC curves. 3-31

3.10. Uniformly spaced parameter selection over variance and mean com-

pared with selection over standard deviation and mean. . . . . . . 3-33

3.11. Beta posterior parameter densities that compare a and b versusσ

andµ parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34

4.1. An AUC value histogram. . . . . . . . . . . . . . . . . . . . . . . 4-4

4.2. Rank characterization for ROC curves weighted by AUC values. . 4-5

4.3. A ROC curve density. . . . . . . . . . . . . . . . . . . . . . . . 4-8

4.4. A ROC curve density (additional example). . . . . . . . . . . . . 4-9

4.5. Confidence intervals with false alarm probability as the indepen-

dent variable for two sample sizes. . . . . . . . . . . . . . . . . . 4-11

4.6. Upper and lower bounds on 90% confidence intervals plus ROC

curves and coverage for a selected density pair. . . . . . . . . . . . 4-18

4.7. ROC curve uncertainty example with Chebyshev’s inequality. . . 4-20

4.8. The ROC curve confidence interval bands versus spacing of prior

beta density mean and standard deviation values. . . . . . . . . . 4-23

4.9. Confidence band area versus number of evaluated points. . . . . . 4-25

4.10. The ROC curve uniform threshold confidence bounds. . . . . . . 4-27

4.11. Estimates of ROC curves and AUC values from mean and variance

of target and non-target beta densities. . . . . . . . . . . . . . . . 4-28

4.12. Comparison of AUC values for a fixed non-target score density. . 4-30

4.13. Densities, ROC curves, alphas, and coverage for a selected density

pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32

4.14. Densities, ROC curves, alphas, and coverage for a different target

and non-target density pair. . . . . . . . . . . . . . . . . . . . . . 4-34

4.15. A ROC curve density and density contours. . . . . . . . . . . . . 4-35

4.16. Estimates of ROC curves and AUC value confidence intervals. . . 4-36

ix



Figure Page

4.17. Experimental target and non-target score histograms. . . . . . . . 4-40

4.18. Densities, ROC curves, alphas, and coverage for 30 target and 30

non-target samples generated from the experimental data shown in

Figure 4.17 and a single beta model. . . . . . . . . . . . . . . . . 4-41

4.19. Densities, ROC curves, alphas, and coverage for 30 target and 30

non-target samples generated from the experimental data shown in

Figure 4.17 and a two beta mixture model. . . . . . . . . . . . . 4-42

4.20. Same as Figure 4.18, except that the experimental sample values

are scaled for a maximum range of .1 to .9. . . . . . . . . . . . . . 4-44

4.21. Estimates of CEG curves and RSD values. . . . . . . . . . . . . . 4-46

4.22. The RSD values for a fixed non-target density. . . . . . . . . . . 4-47

4.23. The alpha metric for a CEG curve. . . . . . . . . . . . . . . . . 4-49

4.24. The CEG curve confidence intervals for a single run and coverage

accuracy over many runs. . . . . . . . . . . . . . . . . . . . . . 4-50

5.1. Alpha and confidence interval lengths for Metz method and method

developed here. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

5.2. Comparison of ROC curve and confidence intervals. . . . . . . . 5-4

5.3. Confidence intervals for one run of Zhou method, coverage accu-

racy for many runs and comparisons with the method developed

here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

5.4. Underlying densities for examples used to compare with the Zhou

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

5.5. Coverage accuracy for Zhou confidence bounds. . . . . . . . . . . 5-9

5.6. Percent coverage of comparison bounds for the method developed

here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10

5.7. The ROC curve confidence interval coverage accuracies for the Hall

method and the method developed here for normal target and non-

target densities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11

5.8. The ROC curve confidence interval coverage accuracies for the Hall

method and the method developed here for beta target and non-

target densities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12

x



Figure Page

5.9. Comparison with Hilgers binomial method. . . . . . . . . . . . . 5-14

5.10. Coverage accuracy for Zhou confidence bounds for various num-

bers of target and non-target samples for a beta density model. . . 5-16

5.11. Coverage accuracy for Zhou confidence bounds for a normal den-

sity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17

5.12. Regions that make up selected percentages of the posterior parame-

ter density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21

A.1. Relation of beta density denominator to beta density parameters. . A-4

xi



AFIT/DS/ENG/06-01

Abstract

This research uses a Bayesian framework to develop probability densities for target

detection system performance metrics. The metrics include the receiveroperating

characteristic (ROC) curve and the confidence error generation (CEG) curve. The ROC

curve is a discrimination metric that quantifies how well a detection system separates

targets and non-targets, and the CEG curve indicates how well the detectionsystem

estimates its own confidence. The degree of uncertainty in these metrics is a concern that

previous research has not adequately addressed. This research formulates probability

densities of the metrics and characterizes their uncertainty using confidence bands.

Additional statistics are obtained that verify the accuracy of the confidence bands.

Methods for the generation and characterization of the probability densitiesof the

metrics are specified and demonstrated, where the initial analysis employs beta densities

to model target and non-target samples of detection system output. For given target and

non-target data, given functional forms of the data densities (such as beta density forms),

and given prior densities of the form parameters, the methods developed here provide

exact performance metric probability densities. Computational results compare

favorably with existing approaches in cases where they can be applied; in other cases the

methods developed here produce results that existing approaches can not address.

xii



UNCERTAINTY ESTIMATION FOR TARGET DETECTION SYSTEM

DISCRIMINATION AND CONFIDENCE PERFORMANCE METRICS

1. Introduction

This chapter introduces target detection systems and metrics that characterize their

performance, reviews existing research on these metrics, summarizes the contributions of

this research, and presents the dissertation organization.

1.1 Target detection systems

Decision systems accept input data and generate decision output(s). Examplesarise in

artificial intelligence, speech processing systems, medical diagnostic systems, and target

detection systems. Typically, decision systems make estimates of decision suitability, but

do not declare unequivocally that a particular output or action is proper (see

[Ross and Minardi, 2004]). A target detection system under test (SUT), the decision

system of interest in this research, attempts to estimate the probability that given input(s)

contain a target. The inputs are often images, e.g., from synthetic aperture radar (SAR),

although the results of this research extend to other types of inputs. Tanks, improvised

explosive devices (IEDs), and vehicles containing explosives are some examples of

targets.

Estimates of target probability are referred to as scores (see [Wiseet al., 2004]). By

selecting a threshold score value, all scores greater than a certain value may be declared

targets and all scores less than the selected value may be declared non-targets. Thus, the

estimates of probabilities may be transferred from a continuous domain to a hard yes/no

binary decision on whether or not the input(s) contains a target. To understand the
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usefulness of score values and the related varying thresholds, consider two scenarios,

labeled A and B.

In scenario A, SUT A attempts to detect a vehicle containing explosivesthat is a

significant distance (two miles) away from a military checkpoint and to label this vehicle

as "target". The outcome of a target declaration for this scenario is the raising of barriers

and the temporary isolation of the vehicle at a point one-half mile away from the

checkpoint so that if, indeed, the vehicle contains explosives, it will not impact either the

checkpoint or other nearby vehicles. Once isolated, a more robust stationarymonitoring

system is used to examine the vehicle. Here, a threshold which results in a declaration of

"target" that stops vehicles with explosives but that also stops many vehicles without

explosives may be acceptable. A vehicle without explosives that is inadvertently

declared a "target" will not be damaged, but will be delayed momentarily. For this

example, a threshold that often generates false alarms in that it declares a vehicle without

explosives a "target" is appropriate.

In scenario B, SUT B monitors vehicles that approach a business district.In this case, it

is impractical to raise barriers. However, a weapon that destroys the vehicle engine is

available. If a declaration of "target" is made, then the weapon will beused, otherwise

additional sensors will continue to monitor the vehicle. It is easy to seethat the threshold

selected in this scenario may need to be much higher than the threshold of scenario A so

that few false alarms are generated, even if the scores provided by the SUTs are identical.

1.2 Detection system performance metrics

There are two desirable properties of score output from a SUT. The first property is

discrimination. Discrimination refers to the ability of an SUT to classify target events as

target labels and non-target events as non-target labels. This capability changes

depending on the selection of threshold. For a selected threshold, the probability of

improperly declaring a non-target event as a target label is referred toas "false alarm

1-2



probability". Similarly, the probability of correctly declaring a targetevent as a target

label will be referred to here as "correct detection probability". The purpose of the

adjective "correct" here is to emphasize the usage of "correct detection probability" to

describe the probability of correctly declaring a target to be a target. An alternative is for

"correct detection probability" to denote the probability of correctly labeling an event

regardless of whether the event is target or non-target; this alternative is not used here.

Note that "false alarm probability" and "correct detection probability" may be replaced

by various synonomous descriptions; see the discussion in Section 2.2. The second

property is accuracy or relevance and refers to whether or not the estimatesof probability

that are provided by a SUT are accurate. Both properties are important for SUTs;

methods that assist in evaluation of the performance of SUTs with regardto such

properties are now introduced.

If the behavior of an SUT over a varying threshold is known, then the discrimination

property can be described by a plot of correct detection probability versus false alarm

probability. This plot is called a receiver operating characteristic (ROC) curve. For

example, consider signals sent from a transmitter to a receiver. The receiver attempts to

distinguish "signal" from "noise". The receiver does not know for a selected time sample

whether or not a signal has been sent but does measure the amplitude of a demodulated

signal at that time. The receiver must choose some threshold value (e.g. 0.3, 0.5,0.9,

etc.), to declare signal; all values greater than the threshold are declared signal and all

values less than the threshold are declared "non-signal". For a particular threshold, there

is a correct detection probability: among all signals sent, correct detection probability is

the percentage declared as signal. Similarly, for a particular threshold, there is a false

alarm probability: among all non-signals sent, false alarm probability is the percentage

declared as signal. A particular threshold might result in a high correct detection

probability but also a high false alarm probability; selection of a different threshold might

reduce false alarm probability but also reduce correct detection probability.
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The ROC curve described here is formed by varying a single threshold of score. Figure

1.1 shows a score-threshold ROC curve and its generation from target and non-target

probability densities of score (hereafter "probability density" is often simply "density").

It is possible to form ROC curves that use multiple thresholds of score, e.g., target is

declared between two thresholds, and non-target is declared otherwise.Such ROC

curves may be generated by thresholding the likelihood ratio, which is the ratio of target

to non-target probability density, as described in the next chapter.

The ROC curve is useful because it provides a tool to examine the trade-off in correct

detection probability and false alarm probability. In particular, the ROC curve assists in

understanding the relative impact of accepting a higher or lower false alarm probability.

1.3 Discrimination metrics versus confidence metrics

The ROC curve quantifies the discrimination capability of a SUT; the accuracy (or

relevance) of estimates of target probability (such estimates are referred to as scores) is of

parallel importance to discrimination. In an ideal SUT, the estimates are without error;

that is, every provided score is an accurate indication of the probability of obtaining a

target given the score. In actual SUTs, estimates of probability may deviate significantly

from actual probability. A system that produces an estimate of probability which is very

accurate is one that maintains a high degree of "confidence" in results. Thus, the term

"confidence" is used to describe the relation of an actual SUT to an idealSUT in

accuracy (or relevance).” Just as the ROC curve characterizes discrimination, the

performance of a SUT over all scores can be characterized by a plot of the probability of

obtaining a target given a particular score versus score. This plot is called a confidence

error generation (CEG) curve.

Both the ROC curve and CEG curve are useful tools for comparing SUTs, thereby

determining which SUTs are most appropriate for a particular purpose. Similarly, both

the ROC curve and CEG curve may be evaluated for a single SUT to determine whether

1-4
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Figure 1.1 Target and non-target densities and the ROC curve performance metric. The
ROC curve quantifies the tradeoff in performance between probability of
correct detection and probability of false alarm as a decision threshold is
changed. The ROC curve has correct detection probability y = 0 for false
alarm probability x = 0 and it has y = 1 for x = 1. In the left plot the solid
curve is the probability density of target, the dotted curve is the probability
density of non-target, and both densities are functions of score. To obtain a
score-threshold ROC curve, a threshold is swept across the domain of pos-
sible scores from a SUT. For example, at a selected threshold score 0.57,
every score greater than 0.57 is regarded as target, and every score less than
0.57 is regarded as non-target. Increasing the threshold leads to a reduced
false alarm probability and also a reduced correct detection probability.
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or not the SUT is appropriate for a particular purpose. A system that evaluatesan SUT

through the use of performance metrics (such as ROC curves and CEG curves)is referred

to as a Performance Evaluation System. Note that the term metric here refers to a

description or characterization of performance or efficiency; this meaning is consistent

with recent use of the term metric for software development [Thing, 2002] and is also

consistent with recent use of the term metric specific to detection system performance

evaluation. For example, the objective of a recent workshop sponsored by the Defense

Advanced Research Projects Agency (DARPA), National Institute of Standards and

Technology (NIST), and the Institute of Electrical and Electronics Engineers (IEEE), was

to define measures and methodologies for evaluating the performance of intelligent

systems, and it was entitled "Performance Metrics for Intelligent Systems Workshop"

[Messina and Meystel, 2004]. But, mathematically, the term metric isa real-valued

function defined on a pair of objects, with specific properties. We apply the formal usage

of this term; the entire ROC curve and CEG curve are single comparable descriptions of

the overall performance capability of a SUT. Note that the terms "measure"

[Ross and Minardi, 2004] and "quantifier" [Schubertet al., 2005] could also be

appropriate.

1.4 Evaluation of a system under test

Figure 1.2 shows the relation of the SUT, performance evaluation system, performance

metrics (such as the ROC curve and CEG curve), test image inputs, and truth data. To

appropriately develop the ROC curve and CEG curve and thus characterize SUT

usefulness for a particular purpose, large amounts of test data are desired, where for this

data the true state (target or non-target) of the output scores is known. However, such

large amounts of test data are typically unavailable or are costly or time-consuming to

obtain. As a result, the ability to quantify the uncertainty in the ROC curve and CEG

curve performance for limited sets of data is important. If such uncertainty estimates are

available, then the range of possible values of the curves given large amounts of data is

1-6



System 
Under 
Test 

Score 
(0 to1)

Area Under ROC 
Curve (AURC)

System 
Under 
Test 

(SUT)

Score 
(0 to1)

ROC Curve

Test

Image

Performance 
Evaluation 

System

Truth

Data
CEG Curve

System 
Under 
Test 

Score 
(0 to1)

Area Under ROC 
Curve (AURC)

System 
Under 
Test 

(SUT)

Score 
(0 to1)

ROC Curve

Test

Image

Performance 
Evaluation 

System

Truth

Data
CEG Curve

Figure 1.2 Evaluation of a system under test (SUT). The SUT receives a test image
and assigns it a score between 0 and 1. A score near one indicates high
probability that the test image contains a target, and a score approaching
zero indicates a low probability that the test image contains a target. Once
the SUT issues a set of scores, a performance evaluation system compares
the scores with truth data. The truth data indicates true state of target or
non-target in the test image, but does not refer to the entire test image. Per-
formance metrics such as the receiver operating characteristic (ROC) curve
and the confidence error generation (CEG) curve are then used to quantify
SUT performance.
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understood, and acceptable quantification of SUT performance may be possible with

limited sets of data. In some cases uncertainty estimates may lead to an informed

decision that more data is needed. In other cases, the decision may be that aSUT is

suitable for a particular task.

In contrast to current methods for uncertainty estimation, the methods developed here

estimate the probability density of a ROC curve based on a Bayesian framework that

fully incorporates available information. The Bayesian development incorporates, by

definition, all that is known or assumed about the sample score data, the probability

density forms for target and non-target scores, and the prior probability densities of the

parameters in these forms. For a given set of target samples and non-target samples,

assumed sample density models, and prior densities of parameters, there is only one

probability density of the ROC curve. The Bayesian formalism permits the generation of

this unique ROC curve probability density; descriptive statistics such as the median ROC

curve and ROC curve confidence intervals may then be developed, if desired, from this

probability density. Non-Bayesian methods either do not fully account for what is

known about the data models and prior densities or can only account for this knowledge

in an ad hoc manner. The Bayesian probability density of the ROC curve is a full

account and is extended in this research to uncertainty estimation of the CEG curve. The

results shown here demonstrate improved uncertainty estimation methods for the ROC

curve and initiate uncertainty estimation methods for the CEG curve.

1.5 Existing research on performance metric uncertainty

There are existing methods that estimate ROC curve uncertainty. However, these

methods typically make unacceptable assumptions; for example, "binormal" methods

assume that the target and non-target score densities are either normal or may be made

normal after transformation and generally assume that the probability ofobtaining a

target increases as score increases. "Bootstrap" methods do not make such assumptions
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but are inaccurate for relatively small sample size. Still other methods, such as

"binomial" methods, may be suitable for estimating the uncertainty in correct detection

probability and false alarm probability at a selected threshold but are notappropriate for

estimates of the ROC curve over all thresholds.

Figure 1.3 shows a comparison of confidence band results obtained by the method

developed here to the most prevalent method in the literature [Metzet al., 1998]. The

solid curve in the figure shows the true ROC curve, which is deterministic because it is

generated by the target and non-target densities from which the score samples are drawn.

A 95% confidence band based on an observed set of 30 target and 30 non-target score

samples is shown for the method developed here. The Metz method (which is a binormal

approach) produces a 95% confidence band that is wider and therefore less informative

than the band for the method developed here, assuming that the method developed here is

accurate with respect to the assumed density forms and the prior densities of parameters.

Chapter 3 considers the analytical justification for the method developed here, and

Chapters 4 and 5 demonstrate its accuracy. Chapter 2 examines the Metz method and

other ROC curve confidence interval methods in detail. The method developed here

performs favorably in comparison with the other methods (where suitable comparison is

possible). More importantly, the method developed here shows the viability of a flexible

Bayesian framework and enables the development of alternative descriptive statistics

(such as initially considered in [Parkeret al, 2005a, 2005b]). The method is directly

applicable to other metrics, such as the CEG curve (the CEG curve is detailed in Section

2.3; see also [Parkeret al., 2005c]). This framework permits changes in model

assumptions; the Metz method and most other approaches do not allow such changes.

1.6 Summary of contributions of this research

The research reported here uses a Bayesian framework to characterize the uncertainty of

target detection performance metrics. The result is an improved understanding and
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Figure 1.3 Comparison of method developed here with the method of Metz
[Metz et al., 1998]. Here 30 target and 30 non-target samples are drawn
from beta densities with target mean 0.715, target standard deviation 0.01,
non-target mean 0.715, and non-target standard deviation 0.046; the solid
line is the true ROC curve. Note that the Metz ROC curve 95% confidence
band is extremely wide (and uninformative) compared to the 95% confidence
band obtained using the method developed here. The software package
"ROCKIT" is used to generate the confidence intervals for the method of
Metz.
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quantification of ROC curve and CEG curve uncertainty for target detectionapplications.

The framework develops ROC or CEG curve probability densities, which completely

describe curve uncertainty for given samples of target and non-target scores,assumed

density forms for these scores, and assumed prior densities of the parameters that specify

these forms. From the ROC or CEG curve densities, a transition to descriptive statistics,

such as median curves or 90% confidence intervals, is made. The framework is fully

Bayesian and for the given samples, density forms, and prior parameter densities it

provides exact performance metric probability densities.

The framework is also numerically tractable, and the calculated ROC and CEG curve

densities yield substantial improvements over existing ROC curve uncertainty estimation

methods. These improvements are emphasized qualitatively in the identification of

fundamental weaknesses inherent in existing ROC curve uncertainty estimation methods;

in addition, quantitative comparisons are made which verify that the approach developed

here compares favorably with previous approaches. Further, the uncertainty estimation

process is shown to seamlessly transition to the CEG curve, a metric that previously has

been of limited use due to a lack of appropriate methods for estimating itsuncertainty,

especially for limited amounts of data. From the framework developed here,CEG curve

uncertainty estimates can now be robustly understood and obtained even for low numbers

of samples. Thus, for the CEG curve, the research presented here formulates a robust

method for uncertainty estimation where alternatives do not exist; for the ROC curve the

research presented here offers a significantly improved method of uncertainty estimation

for which the alternatives are limited by inability to handle low numbers of samples

and/or by restrictive model assumptions.

1.7 Organization of this dissertation

Chapter 2 provides background on the uncertainty estimation problem considered here,

provides a review of the literature, and identifies weaknesses in existinguncertainty
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estimation methods for ROC and CEG curves. Chapter 3 describes and develops both

analytical expressions and numerical approximations for the ROC curve probability

density. This ROC curve density is then used in Chapter 4 to obtain and verify

descriptive statistics, such as median ROC curves and 90% confidence intervals. Chapter

5 provides quantitative comparisons of the method developed here to previous methods

of confidence interval estimation. Chapter 6 summarizes accomplishments and

contributions and identifies areas of interest for future work.
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2. Background

Performance metrics such as the ROC curve quantify the capability of a target detection

system to distinguish between target and non-target inputs. Other performance metrics

such as the CEG curve examine the relevance of the detection system outputs. This

research develops improved methods for estimating the uncertainty of these metrics and

many other types of target detection performance metrics. Since a ROCcurve for one

target detection system under test (SUT) may be compared to a ROC curve for a second

SUT, the ROC curve and CEG curves are referred to here as metrics, although the curves

are not scalar values.

As discussed in the introduction, the outputs of a target detection SUT are typically

estimates of the probability of target. Such estimates are referredto as posterior

probability estimates and are critical in appropriate decision making (see

[Bishop, 1995]). For example, the speech processing community often makesestimates

through the use of cross-entropy (see relation of speech processing techniques to the

target detection field by [Ross and Minardi, 2004]). A speech processor typically

examines a portion of observed input speech and attempts to match this input with

plausible phonetic sounds. The processor does not declare with absolute certainty that a

portion of observed speech is a particular sound; however, it estimates the probability of

a sound or group of sounds. Then, when groups of adjacent input speech are examined,

the estimates of probability are used to formulate words, phrases, and sentences. Similar

to the speech processor example, a SUT does not declare a target with certainty but

instead estimates the probability that given input(s) contain a target.

Specific to the focus here on target detection, development and use of the CEG curve

performance metric by the Sensors Directorate of the Air Force Research Laboratory

motivates this research (see [Ross and Minardi, 2004] and [Wiseet al., 2004]) in that

CEG curve uncertainty was not well characterized. Thus, the methods developed here
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are first applied to the ROC curve and are then are used to estimate CEG curve

uncertainty. However, existing approaches to ROC curve estimation areinadequate,

particularly when low numbers of inputs are available and when normality assumptions

are invalid; these conditions are both common constraints for target detection systems.

The methods developed here show improved results compared to existing ROC curve

uncertainty estimation approaches and are, in fact, optimal (see Section 2.5 and method

development in Chapter 3). The results of this research also benefit the widerange of

fields that use ROC curves (e.g., medical decision making, machine learning).

2.1 Target detection systems and their performance evaluation

Figure 1.2 in Chapter 1 shows the relation between a test input, the SUT, the performance

evaluation system, and performance metrics. (Note that although a test image is used as

an example, the process also directly applies to other types of test inputs.)For each test

image the SUT outputs a score between zero and one. This score provides an estimate of

the probability that the image contains a target. A score of one estimatesa probability of

one that the image contains at least one target, and a score of zero estimatesa probability

of one that the image does not contain a target. The performance evaluation system

knows truth for test cases; that is, whether an image actually contains a target or not. The

performance evaluation system has two input types, the scores for many images from the

SUT and the truth (target or non-target) associated with each image. Performance

metrics such as the ROC curve and the CEG curve are outputs of the performance

evaluation system. The area under the ROC curve (AUC) value and the CEG curve

summary metric of root square deviation (RSD) value are also considered. A key

distinction is that the ROC curve and AUC value describe how well a system is able to

discriminate between target and non-target without regard to whether ornot the scores

are accurate estimates of the probability of target, whereas the CEG curve and RSD value

are metrics that describe such accuracy (or relevance) [Ross and Minardi, 2004].
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2.2 ROC curves and AUC values

The ROC curve (see [Lusted, 1971] and [Swets, 1988]) is a plot of probability ofcorrect

detection versus probability of false alarm based on a varying thresholdfor detection.

Figure 1.1 of Chapter 1 shows such a plot; this figure also demonstrates the calculation of

probability of correct detection and probability of false alarm for a single selected

threshold. The ROC curve quantifies the trade-off in performance between correct

detection probability (y) and false alarm probability (x) as a decision threshold (t) is

changed (see [Alsing, 2000]). The ROC curve derives its name,receiveroperating

characteristic, from its original application, which focused on radio applications

[Wickens, 2002]. Beginning with its original application in the 1950s, it has beenused in

many other applications, such as the target detection performance metric that is the focus

of this research, medical decision making (e.g. quantifying the probability of a disease

occurring given a biological marker; see [Hanley, 1999]), and machine learning (see

[Macskassy and Provost, 2004]).

Three formal definitions related to the ROC curve are as follows.

(1) LetE be the population set of test images, where the test images either containa

target (target images) or do not contain a target (non-target images). Based on an

estimate of whether each imageε ∈ E actually has a target, an SUT produces a data

scored, whered ∈ D = [0, 1]. Thus, the SUT mapsE toD denoted byE
SUT
→ D. LetΘ

= [0, 1]. For eachθ ∈ Θ, let aθ be a classifier mappingD into a label setL denoted by

D
aθ→ L whereL ={target declaration, non-target declaration}. Thus, the classifier

system isE
SUT
→ D

aθ→ L. For any elementε ∈ E, d ∈ D, andl ∈ L, choice ofθ specifies

the classifier, and Equation (2.1) specifies the label for the score-threshold method:

l =





target declaration:d >= θ

non-target declaration:d < θ



 . (2.1)
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Thethreshold for detectionis t,wheret is a specifiedθ. The above is adapted from

Schubert, Oxley, Bauer [Schubertet al., 2005], who provide a similar classifier definition

but with application to a more general classifier system, rather than thescore-threshold

application of interest here.

(2) LetEtargetbe the subset of allε ∈ E that contain target images. LetDtarget⊂ D be the

subset of alld ∈ D corresponding withEtarget. Let s ∈ (-∞,∞). Let g(s) be the target

score probability density formed by allDtarget, wheres is a scalar random variable. The

correct detection probabilityis

x = Ĝ(t) =

∫
∞

t

g(s)ds. (2.2)

(3) LetEnon-targetbe the subset of allε ∈ E that contain non-target images. Let

Dnon-target⊂ D be the subset of alld ∈ D for Enon-target. Let s ∈ (-∞,∞). Let f(s) be

the non-target score probability density formed by allDnon-target. Specifyt ∈ (-∞,∞).

For the score-threshold method described by Equation (2.1), lett = θ. Thefalse alarm

probability is

y = F̂ (t) =

∫
∞

t

f(s)ds. (2.3)

Typically a threshold for detection (or simply, threshold) is applied either to score or

likelihood ratio, where the likelihood ratio is the target probability density divided by the

non-target probability density. The threshold of interest here and describedin the above

definitions is score-threshold (as described in Equation (2.1)), because the primary

objective is to use ROC curves and AUC values (and other performance metrics) to

quantify whether a SUT is performing optimally, rather than to use the ROCcurves and

AUC values to optimize SUT performance. If the threshold for detection is set at zero

(i.e., all score values are declared as targets), 100% of targets are detected, but this choice

also results in a probability of false alarm equal to one. If the threshold for detection is

set at one, no false alarms occur, but the probability of correct detection is zero. An ideal
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ROC curve has a correct detection probability that equals one for all false alarm

probability greater than zero. Thus, an ideal ROC curve has an AUC value thatequals

one, whereas a non-discriminating ROC curve has an AUC value that equals0.5. The

AUC value is the integral from 0 to 1 of correct detection probabilityy as a function of

false alarm probabilityx. The ROC curve is the set

{(x, y) ∈ [0, 1]x[0, 1]|y = r(x)∀x ∈ [0, 1]}. If r is the function that generates the ROC

curve, so thaty = r(x), then

AUC(r) =

∫ 1

0

r(x)dx. (2.4)

The research here focuses on this score-threshold ROC curve. However, an alternative

method, which is not desirable for comparison of multiple SUTs by an evaluator

(assuming that the evaluator only has access to scores provided by the SUTs),but that

can be a desirable tool for SUT improvements, uses maximum likelihood (via the

Neyman-Pearson Lemma; see [Scharf, 1991]) to develop the ROC curve. A

likelihood-ratio-threshold ROC curve (see [VanTrees, 1968] and [Scharf, 1991]), is

generated by thresholding the ratio of the target and non-target densities, and is

consequently convex (this curve has a negative second derivative at each false alarm

probability). A likelihood-ratio-threshold ROC curve allows multiple positive (i.e.,

target) decision regions across the range of possible score values, whereas a

score-threshold ROC curve allows only one positive decision region (see

[VanTrees, 1968], [Shanmugan and Breipohl, 1988], [Barkat, 1991], and [Scharf, 1991]).

Figure 2.1 compares the procedures for generating a score-threshold ROC curveand a

likelihood-based ROC curve. The score-threshold ROC curve always has an AUC value

equal to or less than the likelihood-ratio-threshold ROC curve, assuming thatthe

likelihoods are accurately known when designing the detection system. Notethat while

the target and non-target densities are of beta density form in the example usedin the
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figure, this property holds for any probability density (e.g. Gaussian, beta, mixture of

beta, etc.).

To understand the rationale for using score threshold, consider a system undertest that

declares a score of "0" for all targets and a score of "1" for all non-targets. Since the

scores provided by a SUT are estimates of the probability that the evaluatedimage is a

target, this performance is obviously poor. The corresponding score-threshold ROC

curve has an AUC of zero, affirming that the system is performing poorly. In contrast, a

likelihood-ratio-threshold-ROC curve estimated ROC has an AUC of one. Thus a

likelihood-ratio-threshold ROC curve may be of significant interestfor developing a

target detection system, but a score-threshold ROC curve is most relevantto the objective

of evaluating system performance.

Figure 2.1 shows deterministic target and non-target densities, each for two specified

parameters (see Equation (3.1)) and compares a score-threshold approach witha

likelihood-ratio-threshold approach. Note that while beta densities are the focus of these

figures, the methods developed here extend to other density forms (see Figure 3.4 and

related discussion in Section 3.1).

A theorem that provides an analytical form for the ROC curve is as follows.

Theorem 2.1 Score-threshold ROC curve

Let f(s; u) andg(s; v) be densities ofs given parametersu andv, wheres is a

real-valued random variable between zero and one,s ∈ [0, 1], f(s; u) is the non-target

score probability density,g(s; v) is the target score probability density,u is a parameter

vector that specifies the non-target score density, andv is a parameter vector that

specifies the target score density. Letf andg be integrable over[0, 1] for eachu andv,

and for eacht ∈ [0, 1] define

F̂ (t;u) =

∫ 1

t

f(s; u)ds = x, (2.5)
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Figure 2.1 Comparison of score-based and likelihood-based ROC curve generation. In
the score-based threshold approach (top figure), a probability of correct de-
tection is calculated by selecting a threshold for score (e.g., 0.53), and inte-
grating over the target density (solid curve) from that threshold to 1. Simi-
larly, a probability of false alarm is calculated by integrating the non-target
density (dotted curve) over the same domain. The values for probability of
correct detection and probability of false alarm form a point on the ROC
curve, and the ROC curve is formed by varying the threshold from 0 to 1. In
the likelihood-based approach (bottom figure) the likelihood ratio, which is
the ratio of target to non-target densities, is thresholded (e.g., at 1), so that in
general there is more than one correct detection and false alarm region.
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and

Ĝ(t; v) =

∫ 1

t

g(s; v)ds = y, (2.6)

so that

F̂ (t; u) = 1− F (t; u), (2.7)

and

Ĝ(t; u) = 1−G(t; u), (2.8)

whereF (t; u) andG(t; v) are cumulative probability distributions.

If the inverse ofF̂ exists for everyu, then the score-threshold ROC curve is (by implicit

and inverse function theorems; see [Olmstead, 1961])

y = r(x;u, v), (2.9)

where

r(x; u, v) = Ĝ(F̂−1(x; u); v). (2.10)

Equivalently,y = r(x;w) andr(x;w) = Ĝ ◦ F̂−1(x;w), wherew concatenatesu andv

(i.e.,w = [u1 u2 ... v1 v2 ...]).

The proof is in Appendix A-1.

Note that ifu andv are fixed, they may be removed in the above formulas (e.g., for fixed

u, f(s) = f(s;u)); however, retainingu andv is important in later ROC curve density

development where the parameters are not fixed. The parametersu andv (orw)

characterize the target and non-target densities of score; the Bayesian approach does not

require the assumption that such parameters are stochastic (see [Gregory, 2005] and

[MacKay, 2003]), but it is acceptable to handle them as random variables (see

[Schervish, 1995]). However, it is common practice to simply refer tou andv (or w) as
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parameters (see [Schmitt, 1969] and [Kass and Raftery, 1995]) or "random parameters"

(see [Robert, 2001]). Here the term "parameters" is used.

The AUC value integrates the area under the formed ROC curve; an ideal AUC value is

one (see Equation (2.4)). A large AUC value (an AUC value near one) is due to

sufficient separation between the target and non-target densities, rather than whether or

not the score values are appropriate estimates of the probability of a target. An analysis

of AUC value applicability in evaluating pattern recognition systems is given by Alsing

[Alsing, 2000], and additional analysis specific to AUC value applicability is provided by

Bradley [Bradley, 1997]. Note that the AUC value is a number, but the ROC curveis a

function. Thus, the ROC curve is a performance metric that generates one AUC value,

but a given AUC value may be generated by many different ROC curves. If most of the

target density is greater than some score and if most of the non-target density is less than

this score, then the AUC is close to one. In this situation, the ROC curve does not

indicate whether or not the scores are appropriate estimates of the probabilitythat the

observed image is a target, but the CEG curve and the RSD value metric provide this

indication. For target detection system evaluation, the score-threshold ROC curve plots

the probability of false alarm and probability of correct detection values achieved by

varying a score threshold. However, this ROC curve does not indicate thethreshold that

is required to obtain a particular probability of false alarm and probability of detection.

For some applications, it is of interest to examine only particular regions of the ROC

curve; for example, in cases where a false alarm probability greater than a certain value is

not relevant.

Correct detection probability is used here to refer to the probability of correctly declaring

a target to be a target. False alarm probability is used here to refer to the probability of

incorrectly declaring a non-target to be a target. The terms referredto here as correct

detection probability and false alarm probability also have other designations.The use of

the term correct detection probability here can be replaced by "detection probability" or
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"true positive probability". Similarly, "false alarm probability" maybe replaced by "false

positive probability (see [Hillet al., 2003]). In medical research, "specificity" and

"sensitivity" are often used instead of "correct detection probability" and "false alarm

probability"; correct detection probability as used here can be substituted for sensitivity,

and false alarm probability can be substituted for one minus specificity. The use of

correct detection probability here reinforces its usage in "correctly" declaring a target to

be a target.

Many radar applications [Hallet al., 1991] focus on low false alarm probabilities, e.g.,

probabilities on the order of 10−14 to 10−2 may be appropriate [Raemer, 1997]. In such

applications, estimating the uncertainty of the full ROC curve may seem tobe of limited

practical interest. However, the success of these applications depend on detection system

performance. Chapter 1 discussed the practical importance of both low andhigh false

alarm probability in specific examples, and interest in the full range of false alarm

probabilities is consistent with recent target detection focused research (e.g.,

[Zelnio et al., 2005]). As an additional example, consider an unmanned aerial vehicle

(UAV), such as the Global Hawk Unmanned Aerial Reconnaissance System. Global

Hawkflies at an altitude of 65,000 feet, and has two synthetic aperture radar modes: wide

area search mode (1.0 meter resolution) and spot image mode (0.3 meter resolution)

[Curiel, 2005]. The wide area search mode can cover a wider area in a fixed amount of

time than the spot mode (40,000 square miles versus 3,000 square miles in 24 hours

[Humphlett, 2004]), but the wide area search mode has lower resolution

[Humphlett, 2004] [Curiel, 2005]. Thus, Global Hawk may declare objects to be targets

of interest in the wide area search mode with high false alarm probability permitted, and

it then may use the declarations to subsequently examine the objects more closely in spot

mode. Note that even in spot mode, a high false alarm probability may be acceptable if

the outcome of a target declaration results in a closer examination bya lowerflying

air-based or ground-based detection system. Finally, note that even for radar systems

with very low false alarm probability requirements, accurate performance at higher false
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alarm probabilities may be important for monitoring proper system function

[Hall et al., 1991]. The methods developed in Chapters 3 through 5 are applicable to the

full range of false alarm probability.

2.3 CEG curves and RSD values

The CEG curve describes the accuracy (or relevance) of the target/non-target score

values, that is, the curve describes whether the target/non-target score values are

appropriate estimates of the actual probability of observing a target. In contrast, the ROC

curve describes how well the target and non-target scores are separated

[Wiseet al., 2004]. Recall that a SUT outputs both target and non-target scores, and if

the scores are accurate, then the probability of target given score equals the assigned

score; that is, if an ideal SUT generates 100 scores of 0.6, then 60 of these scores are

targets and 40 are non-targets. Here, "ideal" refers to an SUT that generates scores

(estimates of probability of observing a target) which always equal the true probability of

observing a target given the score.

TheRSD valueis defined as

RSD =

√∫ 1

0

(P (T |s)− s)2p(s)ds, (2.11)

where, using Bayes’ rule,

P (T |s) =
g(s|T )P (T )

g(s|T )P (T ) + f(s|N)P (N)
, (2.12)

ands is a scalar random variable between zero and one,s ∈ [0, 1], P (T |s) the probability

of target event given score,g(s|T ) is the density of score given target event,f(s|N) is the

probability density of score given non-target event,p(s) is the prior probability density of

the score (without regard to target or non-target),P (T ) is the prior probability of target
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event, andP (N) is the prior probability of non-target event (P (N) = 1− P (T )). The

CEG curveis defined as a plot ofP (T |s) versus score. Similar to the relation of AUC to

ROC, whereas RSD is a value,P (T |s) is a function, and the curve that it forms as score

varies between zero and one is the CEG curve as shown in Figure 2.2.

Note that many distinct target and non-target densities result in ROC curves that are close

to an ideal AUC value of 1. For example, choose any target beta density mean and

non-target beta density mean. If the target density standard deviation is sufficiently small

and if the target density mean is greater than the non-target density mean, theAUC value

approaches one. For the RSD value, only more specific special cases of target and

non-target densities approach the ideal RSD value of zero. These special cases include:

(a) target density approaches an impulse function (i.e., a Dirac delta functiondensity or

distribution) at a score of 1 and the non-target density approaches an impulsefunction at

a score of 0 and (b) target density and non-target densities approach impulse functions at

a score of 0.5, and (c) the ratio of the target density to the non-target density is equal to

the value of score for all scores.

Figure 2.3 illustrates the process that forms a CEG curve. The lower two plots compare

the RSD value described by Equation (2.11) with an unweighted RSD, which does not

depend on overall density of score. The weighted RSD value used here is generally

preferable (see [Parkeret al., 2005c]), because scores that occur infrequently do not

increase the RSD value in the weighted method. Figure 2.4 shows similar plots, but the

target and non-target densities in this figure generate a more ideal CEG curve and a lower

RSD value.

2.4 Relation of performance metrics to SUT evaluation

The objective here is improved evaluation of SUT performance and in particular on

improving the ability to describe uncertainty in performance. However, first consider the

case where the scores that a SUT outputs for a population set of target and non-target
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Figure 2.2 The CEG curve. The CEG curve describes the relevance of scoresproduced
by a SUT. For example, if an ideal SUT produces 100 scores at values near
0.75, 75 of the scores are targets and 25 are non-targets. The RSD value
summarizes the CEG curve metric and is the root-mean-squared difference
of the probability of target given score and score weighted by the density of
score. The ideal CEG curve is the dotted 45 degree line; an actual CEG curve
is shown by the solid line. At its tails, the density of score may approach
zero, yet the deviation of P(T|s) from ideal at these tails may be significant.
Therefore the incorporation of the density of score as a weight is important.
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Figure 2.3 Target and non-target densities, CEG curves, and RSD values.As shown in
the equations on the plot, a RSD value can be weighted or unweighted. The
weighted RSD value is affected by the overall densities of score. The top left
plot shows a target density (solid line) and non-target density (dashed line).
The top right plot shows the CEG curve as the probability P(T|s) of a target
versus score. The bottom two plots show the quantities that are integrated to
obtain unweighted or weighted RSD value. In an ideal SUT, P(T|s) follows
the 45 degree line shown in the top right figure.
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Figure 2.4 As in Figure 2.3, but for different target and non-target densities. Here
the unweighted RSD value and the (weighted) RSD value are approximately
equal because the regions where P(T|s) deviates greatly from score (for ex-
ample, scores between 0.01 and 0.3) also have high overall score density.
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scores are known. In this case, the exact ROC curve and exact CEG curve maybe

calculated, as described in Section 2.2. The exact ROC curve presents the full set of

possible correct detection and false alarm probabilities, and this set indicates the

capability of a SUT to differentiate between target and non-target scores. The

score-threshold ROC curve that is the focus here (rather than a likelihood-ratio-threshold

ROC curve) provides the additional indication, through curve shape, of whether ornot

the SUT produces appropriate output. For an ideal SUT, an increase in scoremakes it

increasingly likely that a target is observed. A score-threshold ROC curve reveals this

result; however, a likelihood-ratio-threshold ROC curve assumes, but does not indicate,

this behavior. A likelihood-ratio-threshold ROC curve is always convex; a

score-threshold ROC curve is only convex when an increase in score increases the

probability of observing a target for all scores. The exact CEG curve describes whether

or not the scores provided by a SUT are relevant; that is, whether or not the scores that an

SUT generates are representative of the actual probability of target given score. Further,

the combined examination of the ROC curve and CEG curve characteristicsof a SUT

provide robust tools for comparing one SUT with another. The related summary AUC

and CEG values also provide useful tools for comparison; however, the curves themselves

enable particular probability of false alarm regions (in the case of the ROC curve) and

particular score regions (in the case of the CEG curve) to be isolated and analyzed.

A key motivation for this research follows from the fact that in practice, there is only a

finite, and often small, set of score samples available to a target detection system. There

are methods to estimate the ROC curve and CEG curve from such sets; however,

understanding the uncertainty in the estimates may be more important, particularly for

low numbers of score samples, than estimating the most likely ROC and CEG curves

(such maximum-likelihood estimates are inherently inaccurate for low numbers of

samples; see the discussion in Section 3.1).
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This research focuses on improved methods of estimating uncertainty in ROC curves,

and then extends the development to CEG curves. As discussed in the literature review

of Section 2.7, current methods of ROC curve uncertainty estimation make unacceptable

assumptions or are only appropriate when sample size is very large, and thus existing

methods are not suitable to extend to the CEG curve.

The ROC curve uncertainty estimation methods developed here provide results that can

be compared with results in the existing literature and that can then be extended to the

CEG curve uncertainty estimation problem. The techniques developed here are

unprecedented in ROC curve uncertainty estimation (see the literaturereview of Section

2.7 and related quantitative ROC curve confidence interval comparisons of Chapter 5).

Further, the ROC curve confidence interval framework makesflexible assumptions; even

when quantitative comparisons with other methods appear somewhat comparable, these

methods generally have unacceptable weaknesses (see Chapters 2 and 5). Note that if

only a "best estimate" of the ROC curve is required, there are suitable alternatives to the

method developed here (e.g. maximum likelihood), particularly when the prior

probability densities are diffuse. While the ROC curve and CEG curve are estimated by

the method developed here, obtaining these curves is not the primary motivation. The

method developed here focuses on uncertainty estimation, and the primarydescription

for such uncertainty estimation here (and in the literature) is confidence intervals.

Confidence intervals are important because for the low numbers of samples that are

typical for target detection applications, any best (e.g., maximum likelihood) estimate of

the ROC curve may not be close to the actual curve. Thus confidence intervalsare of

practical interest because they provide a description of the range of possible values for a

ROC curve if large (approaching infinite) sets of samples were actually tested.

The beta probability density, while possessing many desirable qualities for the methods

developed, is only an example. It is the density that has maximum entropy among all

densities that are non-zero on a fixed interval, subject to specific constraints (see
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[Gokhale, 1975]) that may be related to mean and variance. However, the analytical

expressions developed in Chapter 3 are general and may be applied to alternative density

models.

2.5 Bayesian probability densities

The methods developed here use a fully Bayesian framework to develop probability

densities for ROC curves and other target detection performance metrics. A Bayesian

framework incorporates input samples (such as target and non-target samples), model

(such as assuming that the samples are modeled with a Gaussian density), model

parameters (such as mean and standard deviation), and prior density assumptions (for

example, assuming uniform prior probabilities of means from zero to one and standard

deviations from zero to two). Then, the Bayesian framework combines such inputs and

assumptions and produces a posterior probability density of an output of interest, such as

the ROC curve here. Note that the posterior probability density may be updated if more

input samples are available, but that this density is the actual, completesolution for the

available samples, model, and priors (see [MacKay, 2003] and [Carlin and Louis, 2000]).

In developing the posterior probability density (which the Bayesian frameworkmakes

possible), the observed data samples are handled as fixed known input observations. In

alternative (frequentist-based) approaches, there is an upfront focus on describing the

randomness of the data samples (e.g., using probability statements and confidence

intervals), thus making estimates about what samples might have been produced if more

samples were available. These estimates are then applied to make follow-up statements

about the result of interest (the ROC curve and CEG curve in the case of thisresearch).

In contrast, in a Bayesian framework it is the evaluated model parameters that are

handled as unknown parameters (see discussion in Section 2.2 and [Bolstad,2004]).

Neither of the two methods ignores uncertainty; both frequentist-based and Bayesian

methods make attempts to quantify uncertainty. However, a benefit of the Bayesian

framework is that it permits the progressive development of a full, complete, posterior

2-18



probability density for the result of interest (e.g., development of the posterior probability

densities for the ROC curve and CEG curve in the case of this research) prior to the

development of further descriptions such as confidence intervals, median estimates, etc.

This developed posterior probability density fully describes the uncertainty of the result

of interest based on the available observed data samples, and the model, and prior

knowledge. Gregory [Gregory, 2005] provides a detailed discussion and further

comparison of frequentist-based and Bayesian approaches. A similar framework was

developed in the early 1990s for neural network applications (see [MacKay, 1992a,

1992b] and [Bishop, 1995]); however it has not previously been applied to target

detection performance metrics. The densities developed using the framework are

characterized here by descriptive statistics, such as median estimates, confidence

intervals for ROC curves, and also by statistics that characterize the accuracy of the

confidence intervals. Descriptive statistics may be contrasted withinferential statistics in

that they simplify but do not attempt to extend beyond the immediate data (see

[Huntsberger, 1961] and [Trochim, 2005]). Thus confidence bands are descriptive

statistics used to summarize the developed probability densities; the bands do not extend

the data provided by the densities. The density generation and characterization process is

also applied to CEG curves, and it may be applied to other metrics.

The framework requires density models for target and non-target detection system output

and prior densities for model parameters. The Bayesian approach incorporates all that is

known or assumed about the data and density models. For a given set of target samples

and non-target samples, assumed sample density models, and assumed prior densities,

the Bayesian formalism permits the development of a ROC curve density. Other

descriptive statistics, such as the ROC curve confidence intervals, maythen be developed,

if desired, from this probability density. Other methods focus up front on descriptive

statistics (e.g., the mean and standard deviation of the target and non-target samples);

such methods force premature simplification of the data; and either do not account for the

model assumptions and priors densities or can only account for them in an ad hoc
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manner. A Bayesian framework, by marginalizing over all possible models, provides a

more robust estimate for a single set of data than other estimation methods. Methods

other than Bayesian may perform well for large numbers of samples, but areless

competitive for low numbers of samples. A ROC curve estimated by a

maximum-likelihood approach is more accurate as the number of samples increases (see

general discussion by [Robert, 2001, pp. 16]), but can not be relied upon for low numbers

of samples. Non-Bayesian approaches can have superior performance if the Bayesian

framework incorporates inappropriate model selection or prior density selection.

The Bayesian approach possesses two major strengths. First, it naturally and fully

incorporates all possible model parameter values by marginalization (i.e., weighted

averaging over all possibilities). The Bayesian approach avoids descriptive statistics

until the parameters that are not of direct interest are integrated out and, thus, fully

accounted for. In contrast, a maximum-likelihood approach attempts to findthe “best”

parameters (e.g., leading to a single best ROC curve). The maximum-likelihoodbased

approach must then make additional assumptions (perhaps normal-based) to describe

uncertainty. Bayesian approaches are more tolerant; the focus is not on finding a true

single answer (see [Morgan, 1968, pp. 109]), but instead on describing the range of all

possible answers in the form of a probability density, which is then more easily

transitioned to other descriptive uncertainty statistics. Second, the Bayesian approach

naturally incorporates the use of prior densities; that is, it permits the incorporation of

subjective probability estimates into its framework, which is particularly critical when

sample size is small (see [Good, 1965, pp. ix]).

Bayes estimators that perform point estimation, rather than the broader uncertainty

estimation that is the focus of this research, are well known. Bayes’ estimators can be

fully consistent with traditional means of estimation, such as minimum mean square error

(MMSE) and maximum a posterior (MAP) estimation (see [Scharf, 1991]). Robert

[Robert, 2001] states that a Bayesian approach is consistent with three tests for
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optimality from a non-Bayesian perspective: minimaxity, admissibility, and equivariance.

Minimaxity typically consider the worst case scenario, but in contrast to frequentist-based

approaches, a Bayesian approach prevents unwarranted reliance on a worst case scenario

that has little chance of occurring (see [Robert, 2001, pp. 67], [Leonard and Hsu, 1999,

pp. 146], [Schervish, 1995, pp. 167], and [Dudaet al., 2001, pp. 28]). Admissibility

focuses on whether or not there exists a better decision rule (see [Ferguson,1967, pp. 54]

and [Lehmann and Casella, 1998, pp. 323]) than the one selected. Equivariance relates

to whether or not an estimate is invariant under linear transformation (see [Lehmann,

1998, pp. 161, 245]). Robert [Robert, 2001] shows that Bayesian estimators are a

specific and preferred class of admissible estimators (see also [Schervish, 1995]).

For further discussion on the advantages of Bayesian-based approaches over more

traditional methods, see [Good, 1965], [Schmitt, 1969], [Lindley, 1972],

[Antelman, 1997], [Leonard and Hsu, 1999], [Robert, 2001], and [Woodworth, 2004].

2.6 Performance metric densities and confidence bounds

Figure 2.5 extends the relationships indicated in Figure 1.2 from simply identifying the

performance metrics to formulation of probability densities of performancemetric curves

and values. It indicates three types of inputs: target and non-target samples, model

specification, and sampling protocol.

As will be discussed in detail in Chapter 3, a reasonable model specification, if the

sample scores are between zero and one, is a beta density. The beta densityis specified

by two parameters, mean and standard deviation. The model specification also includes

prior assumptions for the parameters; for example, prior assumptions may be uniform

prior densities for the mean and standard deviation over their alloweddomains (the

admissible set, defined in Chapter 3, specifies the allowed domains). Another example

model is a truncated Gaussian density with uniform prior mean and variance (rather than

uniform prior mean and standard deviation). The sampling protocol is also selected, but
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Figure 2.5 Uncertainty estimation process. Data (such as a set of 30 target and 30 non-
target scores), Model Specification (such as beta probability densitiesfor
target and non-target and uniform prior densities for their means and stan-
dard deviations), and Sampling Protocol (such as uniform density of points
from the prior densities), are inputs to a Bayesian Process. Outputs are prob-
ability densities for receiver operating characteristic (ROC) andconfidence
error generation (CEG) curves. These densities are characterizedby plots
that involve descriptive statistics, including histograms of areaunder receiver
operating characteristic (AUC) and root square deviation (RSD) valuesfrom
the ideal CEG curve, and also median ROC and CEG curves and correspond-
ing curves that bound 90% of the probability density.

2-22



results which are not sensitive to this selection (and that approach an analytical solution;

see Chapter 3) are obtained provided that a fine enough spacing in target and non-target

parameter density is used. Monte Carlo methods may also be employed to generate

points that sample the target and non-target density parameter values (see also Chapter

3).

The outputs of the Bayesian process (such a process accounts for all input data, prior

densities, and integrates out free parameters through marginalizationtechniques)

indicated in Figure 2.5 include performance metric densities (for example, ROC and

CEG curve densities). The developed densities can be considered actual posterior

probability densities (see [Carlin and Louis, 2000, pp. 35-36] for a discussion of actual

probability statements) for the input samples (which are assumed independent and

identically distributed for the research reported here), assumed density model, and prior

densities of the model parameters. Although they are actual probability statements based

on available samples, the developed probability densities are expected to change for more

samples or different sets of samples. From a Bayesian standpoint, posteriorprobabilities

are subjective and "quantify degrees of beliefs" (see [Mackay, 2003, pp. 26,50]), so the

developed posterior probability densities do not necessarily encompass truth if the model

or priors are incorrect. Alternatively, if the selected model or priors are considered

estimates, then the posterior probability densities may be considered estimates. Here,

since the focus is on consistency with recent Bayesian literature, the term "posterior

probability densities" rather than "posterior probability density estimates" is used. Note

that Chapter 3 describes the performance metric density generation method, which is

fully Bayesian in that it accounts for all assumptions and data and integrates out free

parameters through marginalization. After performance metric densities are produced,

probability density characterization produces descriptive statistics for the ROC curve,

CEG curve, AUC value, and RSD value, as described and verified in Chapter 4. The four

figures that form the rightmost column of Figure 2.5 show such statistics.
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2.7 Literature review

Next, a literature review on methods for ROC curve estimation is presented; then a

review on related confidence interval/confidence band methods is provided. Existing

approaches have unacceptable weaknesses (e.g., they are only effective for large sample

sizes, are restrictive to particular ROC curve shape, or make other unacceptable

assumptions). The inadequacy of methods in the literature are identified here so that the

benefits of the full Bayesian framework that are described in Chapters 3 and 4 can be

better appreciated; the literature review provided here is not necessary to understand the

method developed in Chapters 3 and 4. Later, Chapter 5 provides quantitative

comparison of methods in the literature to the method that is developed here. Also, the

CEG curve literature is reviewed; however, existing CEG curve literature does not

provide adequate means of uncertainty estimation. The Metz [Metzet al., 1998] method

is examined as a primary example. Then, other methods of ROC curve estimation and

ROC curve confidence interval estimation are examined.

2.7.1 Metz method. The Metz method, based on binormal ROC curve theory, is

implemented in a software package called ROCKIT; ROCKIT is perhaps the most widely

accepted ROC curve confidence interval software available today (see [Eng, 2005]).

Binormal ROC curve theory assumes that the target and nontarget variables (referred to

as diseased or non-diseased in the medical literature) are either normalor can be made

normal after some unknown transformation. Binormal ROC curve development requires

that, rather than plotting the ROC curve along correct detection probability and false

alarm probability axes that are both uniform between zero and one, the axes use a linear

scaling along normal deviate values, and this scaling is therefore non-uniform between

zero and one [Dorfman and Alf Jr., 1968, 1969], [Swetz and Pickett, 1982], and

[McNeil and Hanley, 1984]). Once the ROC curve is estimated as a straight line in

normal deviate space, the ROC curve is then transformed into standard axesthat are

uniform between zero and one. Generally the curve, after being transformed into the
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standard axes, has a convex appearance (although, as detailed later, the curve can have a

“hook” that is especially apparent for small numbers of samples).

Historically, the binormal approach is the most common in the literature for rating scale

data [Hanley, 1999]. Rating scale data are broken down into a number of distinct

categories (typically five) in contrast to data described on a continuous scale. With five

categories, five ROC points are plotted on the normal deviate plot described above.

Upon conversion back to a scale that is uniform from 0 to 1 for both false alarm

probability and correct detection probability, the line becomes the ROC curve. Note that

because of assumptions due to plotting on the normal deviate axis, it is inappropriate to

fit a least squares line to find the slope and intercept in the normal deviate space that best

represents the ROC curve. Instead, a maximum likelihood method is used. Dorfman

[Dorfman and Alf Jr., 1968, 1969] proposes a widely accepted method that estimates the

ROC curve in such a manner. For an alternative maximum likelihood estimation

development, see [Metz, 1984].

Metz [Metzet al., 1998] develops an algorithm that extends the binormal approach to a

large number of distinct categories, and therefore permits application of the binormal

approach to a continuous scale.

Metz [Metzet al., 1998] (and Swets [Swetz and Pickett, 1982]) alleviates the need to

estimate the target and nontarget distributions directly. Metz found that the binormal

approach provides satisfactory ROC fits to data generated in a “very broadvariety of

situations”.

Here we consider what “broad variety of situations” means in a medicalcontext. In the

medical decision community, it is assumed that by measuring a known marker (from a

blood test, for example) which indicates a disease, that the likelihood of disease in all

cases is monotonically increasing (or decreasing) as marker level increases. For a target

detection system under test, this is clearly not necessarily the case (while the monotonic
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property is desirable for a system under test, one of the primary reasons for estimating the

entire ROC curve is to determine if it is true, not to assume that it is true). Therefore, an

assumed binormal ROC curve fit has weaknesses for target detection system evaluation.

Many applications that rely on binormal theory actually are interested primarily in the

Area under the ROC curve (AUC) accuracy rather than the curve itself. The binormal

ROC curve is a good estimate of AUC value, but is recognized as being of less utility

when attempting to estimate an unknown ROC shape. Hajian-Tilaki

[Hajian-Tilaki et al., 1997] concludes that a binormal model is a robust method for

determining AUC. However, they state that other indices, such as true-positive

estimation fraction at a specific false-positive fraction point, mightbe more sensitive to

departures from binormality.

The binormal ROC has recognized limitations, particularly for small numbersof

samples. In general for many medical diagnostic scenarios, there isa large amount of

sample data. So, requiring large sample sizes as a precondition may be reasonable for

the medical community. The originator of binormal ROC maximum-likelihood theory,

Dorfman [Dorfmanet al., 1997], states that the binormal ROC is not robust in small

sample sets (Metz was a coauthor of the 1997 paper). Further, a study by Obuchowski

[Obuchowski and Lieber, 1998] is unsupportive of the usefulness of a binormal ROC

curve model (and other alternative ROC curve models) in estimating accurate confidence

intervals in studies with small sample sizes.

Because of recognized inaccuracies in the binormal ROC when the true unknown ROC is

assumed to be convex (the transformation from a linear plot in normal deviate space

results in a ‘hook’ that can be particularly prevalent for small numbers ofsamples), Metz

and Dorfman [Dorfmanet al., 1997] [Metz and Pan, 1999]advocate the development of a

correction factor. Thus, it is recognized that even for the general assumptions for which

binormal ROC theory is applicable, there are limitations. The desire to remove “the

hook” has its origin in the assumption that the likelihood of observing a target increases
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monotonically as the target score increases – i.e., the assumption that the appropriate

model for a ROC is a convex shape. This assumption is not appropriate for ROC curves

that evaluate a target detection system utility.

ROCKIT, which will be later used to provide in the course of comparisons with the

method developed here, takes target and non-target sample inputs (either from user

created files or from keyboard input). The user must specify whether suchsample inputs

be handled on a continuous scale or on a ratings scale, and the user must specify whether

high or low scores values refer to targets. Then, ROCKIT produces an output file that

contains estimates for points on the ROC curve (generally false alarm probabilities of

0.05, 0.01, 0.02, ..., 0.10, 0.20, 0.90, 0.95), AUC value, estimates for the binormal

parameters that are used to form the ROC curve, 95% confidence intervals for the ROC

curve, uncertainty estimates for the AUC value, and uncertainty estimates for the

binormal parameters.

Chapter 5 provides a full comparison of the method developed here with the Metz

approach described above. The weaknesses of the Metz method compared with the

method developed here is even more apparent in the comparison provided by Chapter 5.

2.7.2 Other existing methods.Figure 2.6 diagrams methods in the literature which

estimate ROC curves. The oval regions identify fundamental techniquesthat estimate

ROC curves and compute ROC curve uncertainty, and the unshaded rectangular regions

identify authors, years, and approaches. The shaded rectangular regions identify

available ROC curve-related software, where the arrows to the software indicate the

approaches they employ. Practical use of a SUT that is described by a ROC curve

requires the selection of a threshold. Unless the underlying non-target density is

deterministic, there is uncertainty in which false alarm probability corresponds with a

particular threshold. Greenhouse [Greenhouse and Mantel, 1950] forms bounds to

describe this type of uncertainty. Linnet [Linnet, 1987] extends this evaluation to ROC
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Figure 2.6 Relevant ROC curve literature and software. The figure shows an overview
of relationships of ROC curve estimation and confidence interval develop-
ment available in the literature. Underlying processes (not necessarily spe-
cific to ROC curves) are typically leveraged to estimate the form of ROC
curves. The oval regions identify fundamental ROC curve estimation tech-
niques (e.g., binomial, binormal, kernel, empirical). The estimation tech-
niques permit the calculation of confidence intervals. The lines indicate re-
lations among methods. The relations are only between the line origination
points and the end points indicated by arrows. Several software packages,
indicated by shaded boxes, apply particular ROC curve estimation processes
and/or ROC curve uncertainty estimation processes (e.g., ROCKIT, Med-
Calc).
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curves, and Schafer [Schafer, 1994] builds on work by Linnett and Wieand

[Wieandet al., 1989]. A disadvantage of the Greenhouse bounds is that such uncertainty

in false alarm probability is assumed to follow a normal distribution.

Hilgers [Hilgers, 1991] details a method that generates confidence bounds for ROC

curves based on binomial proportions. He applies ordered statistics to obtain confidence

intervals given an interval range of interest (e.g., 90%) for each of a set of samples. For

example, if there are five target samples, he estimates the lowest-valued sample for a

two-sided 90% confidence interval to be between 0.02 and 0.53 of the overall cumulative

distribution function (CDF) for target. He then estimates the second-lowest-valued

sample for the same two-sided 90% confidence interval to be between 0.07 and 0.70 of

the overall CDF for target. Finally, he combines the estimates to obtain confidence

intervals for probability of correct detection and probability of false alarm. A constraint

on the Hilgers approach is that the confidence intervals are "pointwise" and describe the

range for a single point on the ROC curve. Hilgers extends these bounds to a confidence

band by using a progression of rectangles based on the pointwise confidence intervals.

However, Schafer [Schafer, 1994] shows that this procedure leads to an estimated bound

larger than 90%. An advantage of the Hilgers approach is that it generates

‘distribution-free’ confidence bounds, unlike many approaches (most of which require

some assumptions such as binormal target/non-target densities). Examples considered in

Section 5.4 are consistent with Schafer in that the bounds are wide comparedwith the

approach developed here.

Non-parametric approaches develop ROC curves analytically and do not assume a form

for the underlying distributions. Zou [Zouet al., 1997] provides an example which uses

a Parzen window-like data transformation, referred to as kernel density estimation

[Silverman, 1986]. Kernel density estimation enables ROC curve construction using a

smoothed histogram. Zou leverages Silverman to describe the kernel densityestimation

of target or non-target density as
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f̂(x) =
1

mh

m∑

i=1

k(
x−Xi

h
), (2.13)

wherek is the kernel density,m is the number of samples,Xi is theith sample inR, and

h > 0 is the kernel width. Zou indicates that estimatingf , in effect, places at eachXi in

the sample an enclosed curve with area1/m, where each curve has a shape described by

the functionk and scaled by the widthh. The curves are then added with the goal of

obtaining a smooth but accurate histogram. With kernel density estimation, the function

chosen fork is somewhat arbitrary, as is the selection of function width. Improved

methods for width selection are desirable, but the optimization process is subjective. For

example, Hall [Hall and Hyndman, 2003] explores methods for improving bandwidth

selection, and Hall [Hallet al., 2004] considers a method that makes width-dependent

assumptions and generates results based on kernel estimation. The resultsof Hall show

potential for significant degradation as false alarm probabilities approach 0or 1 (these

degradations are quantitatively compared with the method developed here inChapter 5).

Sorribas [Sorribaset al., 2002] introduces a S-distribution that is related to kernel density

estimation methods, and Campbell [Campbell and Ratnaparkhi, 1993] estimates ROC

curves based on the Lomax distribution; neither approach introduces new methods of

confidence interval development.

In principle, the goal of empirical approaches is to estimate ROC curves without making

distribution assumptions. Claeskens [Claeskenset al., 2003] is the most recent among

many authors who consider empirical ROC curve estimation. As is typical, Claeskens

recognizes the need for a smooth ROC curve and he uses kernel smoothing estimation,

which thus introduces some distribution assumptions. Claeskens presents confidence

regions for ROC curves with definitions similar to those of Hilgers that involve the

regions of uncertainty for both correct detection probability and false alarmprobability at

a given threshold. Claeskens discusses other confidence interval descriptions, but reverts

to a bootstrap confidence interval estimation method when these confidence intervals are
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calculated. Earlier approaches in the empirical category are considered by Hsieh

[Hsieh and Turnbull, 1996], and a local smoothing technique is investigated by Qiu

[Qiu and Le, 2001]; however, neither approach fully develops confidence intervals.

Ma [Ma and Hall, 1993] applies the Working-Hotelling hyperbolic confidence band for

multiple regression surfaces to ROC curves; they generate pointwise confidence bands by

varying correct detection probability and mapping a band of intervals for false alarm

probability and also simultaneous confidence bands for the entire ROC curve. Some

limitations of this approach are that the confidence bands for the entire ROC curve

assume binormality, and the method uses rating scale data. However,their approach

extends to multiple confidence interval and confidence band definitions, and they

emphasize the need for such definitionflexibility. Although Ma claims that the

Working-Hotelling approach extends beyond binormal methods, confidence bands are

obtained using conventional binormal assumptions applied to ratings scale data.Further,

the Working Hotelling approach applies only when the assumptions made permit the use

of regression lines.

Confidence intervals may be generated using various resampling methods, even if

different methods develop the ROC curve estimates. Examples are in

[Zhou and Qin, 2005], [Plattet al., 2000], [Jensenet al., 2000], [Mossman, 1995],

[Campbell, 1994], [Garberet al., 1994], and [Simpsonet al., 1989]. Efron

[Efron and Tibshirani, 1993] details general bootstrap theory that is often leveraged in

ROC curve resampling processes (see Mossman [Mossman, 1995] and Jensen

[Jensenet al., 2000]). The confidence interval results are generally jagged in appearance

(as shown in Figure 5.3 of Chapter 5), and the coverage areas are inaccurate for low

numbers of samples, particularly in regions of low correct detection probability density.

Lloyd [Lloyd, 2002] implements bootstrap confidence methods by evaluating ROC curve

definitions many times in a Monte Carlo approach. He obtains confidence intervals using

a maximum likelihood approach to estimate the ROC curves parametrically and
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non-parametrically. He does not verify the coverage accuracy of the bootstrap method,

and he cautions that bias may be a significant disadvantage for small samples.

Once target and non-target data are obtained, Tilbury [Tilburyet al., 2000] asks for every

point on the ROC curve, “If this point represents the true Hit Rate and False Alarm Rate

of the population, what would be the probability of getting the sample actually obtained.”

He analyzes one point (false alarm probability and correct detection probability at one

selected threshold) on the ROC curve, then he considers a combined approach for four

selected thresholds. For just four points, he obtains a solution based on an

eight-dimensional hyperboundary, where increasing the number of initial pointson the

ROC curve increases the dimensions needed. He suggests estimating ROC curvedensity

by selecting a point on the ROC curve and finding the likelihood that given samples

(assuming a threshold) are generated if this point is from the underlying densities

(consistent with Hilgers-like binomial based approach). Tilbury requires an expansion of

dimensionality based on the number of samples.

Although Tilbury’s approach remains tractable if a few selected thresholds are permitted

(through grouping of data), Macskassy [Macskassy and Provost, 2004] declaresTilbury’s

method not tractable for more than ten points. Tilbury provides updates to his work

[Tilbury 2002, 2003a, 2003b] that emphasize the importance of Bayesian statistics in

ROC curve analysis, and he uses Bayes’ rule in considering the descriptionsof the 2000

paper. However, his approach remains a binomial-based alternative to Hilgers’

[Hilgers, 1991] approach. Tilbury [Tilburyet al., 2000] claims verification of results for

uncertainty of correct detection probability and false alarm probability, but these are (at

best) simply verified coverages for single thresholds considered independently(even

here, he does not report actual accuracies, but provides tables of distributeddata, and he

does not compare results with other research). Tilbury’s method in theory permits

incorporation of prior densities of false alarm and correct detection probability, but not

prior target and non-target densities.
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In summary, Tilbury provides an alternate description of the work of Hilgers

[Hilgers, 1991] by leveraging binomial assumptions and forming contour regions for

particular thresholds rather than the rectangular regions of Hilgers. His method does not

permit the incorporation of different target and non-target density models or target and

non-target prior parameter densities, and he does not demonstrate the practical

development of a ROC curve confidence band jointly across the entire curve (suchas

those that are tested for coverage accuracy in the research reported here). His method

produces confidence bands for particular thresholds similar to Hilgers but with different

shape. Tilbury attempts analytically to show how such regions could be combined, but

he avoids verification (consistent with Macskassy’s tractability concerns), except for

correct detection probability and false alarm probability uncertainty regionsat individual

threshold points (similar to Hilgers). Further, his approach is based on proportions that

correspond with the correct detection and false alarm probability models butdo not

correspond directly with "score" and "probability of target given score". Thus, Tilbury’s

ROC curve confidence interval approach does not extend to the CEG curve and other

performance metrics.

Tosteson [Tosteson and Begg, 1988] develops regression parameters to estimate the

shape of the ROC curve for a fixed number of thresholds (such as five thresholds). The

regression parameters attempt to describe the relation of covariatessuch as stage of

disease, age, and weight to the estimated ROC curve. Several related extensions develop

Bayesian-based approaches to more robustly account for the regression parameters (see

[Peng and Hall, 1996], [Hellmichet al., 1998], and [Zou and O’Malley, 2005]). These

approaches assume a binormal ROC curve form. Smith [Smithet al., 1996] provides an

alternative to the binormal-based methods, but Smith’s approach also makes curve shape

assumptions. O’Malley [O’Malleyet al., 2001] provides an alternative to the grouped

data methods but still makes binormal assumptions. Each of these regression based

approaches have significant limitations compared with the method developed here. The

methods are restricted to an assumed shape of the curve; a shape is not assumed for the
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SUT-focused ROC curve estimates developed here. Due to the focus on shape

parameters, the methods are not generally transferable to other performance metrics such

as the CEG curve. Further, the efforts do not consider confidence interval coverage

accuracy verification. Zou [Zou and O’Malley, 2005], O’Malley [O’Malley et al., 2001],

and Smith [Smithet al., 1996] avoid ROC curve confidence intervals altogether, and

Hellmich [Hellmichet al., 1998] and Peng [Peng and Hall, 1996] provide confidence

intervals based on the binormal mean and slope parameters but do not verifycoverage

accuracy. Note that the methods listed above focus on alternatives to maximum

likelihood estimation for generally binormal based ROC curves rather than uncertainty in

such estimates.

A number of authors leverage Bayesian approaches in order to combine ROC curve

results for meta-analysis applications; meta-analysis focuses on pooling the results of

multiple diagnostic tests (see [Carlin, 1992], [Smithet al., 1995], [Zhou, 1996],

[Hellmich et al., 1999], [Rutter and Gatsonis, 2001], and [Dukic and Gatsonis, 2003]).

Such approaches use Bayesian-based processes to combine the ROC curves and AUC

value of each individual test into a combined estimate of the underlying true ROC curve

and AUC value.

Various approaches focus solely on AUC value uncertainty (see [DeLonget al., 1988],

[Broemeling, 2004], [Yousefet al., 2005], [Agarwalet al., 2005], and

[Cortes and Mohri, 2005]). DeLong [DeLonget al., 1988] leverages U-Statistics to

provide an estimate of whether two AUC values are statistically different from one

another; DeLong includes an evaluation of uncertainty in making such estimates. Yousef

focuses on AUC value standard deviation (which may exceed one) as a description of

uncertainty. Yousef’s approach has limitations, as the AUC values may be skewed and

must be less than one. Yousef does not have a true verification process, only a

comparison with results that are already available through traditional bootstrapping

processes. Yousef assumes that ROC curves have convex form. Agarwal and Cortes
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develop approaches that focus on uncertainty in the Mann-Whitney statistic(the

Mann-Whitney statistic enables computation of the AUC value without development of

an entire ROC curve), and both methods are limited to large numbers of samples. In

comparison, the method developed here focuses on ROC curve uncertainty, althoughthe

results are also successfully applied to AUC value uncertainty and then extended to CEG

curve uncertainty. Broemeling proposes a Bayesian based approach to AUC value

estimation, but his method is only applicable for a limited, fixed number ofpossible

thresholds (Broemeling uses five thresholds), rather than the continuous set of possible

thresholds that the research developed here makes possible. Broemeling computes AUC

value confidence intervals for two examples but does not verify coverage accuracy.

Dass [Dass and Jain, 2005] provides an approach to ROC confidence bands but with a

focus on correlated samples. The Dass approach is restricted to correlated samples

(rather than independent samples), is limited to large numbers of samples, anddoes not

verify coverage accuracy.

Overviews of ROC curve theory are given by Centor [Centor, 1991], Hanley

[Hanley, 1999], and Zweig [Zweig and Campbell, 1993]. Hanley and Zweig provide

relevant overviews in the ROC curve confidence interval area. More recently, Macskassy

[Macskassyet al., 2005][Macskassy and Provost, 2004] reviews ROC curve confidence

interval approaches for the machine learning community, and Carsten

[Carstenet al., 2003] evaluates ROC-curve-related software. Bamber [Bamber, 1975],

Lusted [Lusted, 1971], and Swets [Swetz and Pickett, 1982] provide historical

background on ROC curve theory. Bamber identifies the underlying purpose and

meaning of AUC value. Lusted summarizes the origins of ROC curve theory as related

to signal detectability. Swets and Pickett provide a widely recognized reference text on

ROC curve theory. Green [Green and Swets, 1988] provides a detailed ROC theory

review in a reprint/revision of a text originally written in 1966. Lusted discusses the
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relation of the medical decision making and radar progression in ROC curve

development [Lusted, 1984].

As mentioned in Section 2.2, in medical research sensitivity is typically used in place of

correct detection probability, and one minus specificity replaces false alarm probability.

Similarly, "diseased patients" often replaces "target data", and "healthy patients" replaces

"non-target data". The discussion here refers to target, non-target, probability of correct

detection, and probability of false alarm for consistency even when theliterature uses

different (but analogous) terms.

Figures 2.7, 2.8, and 2.9 provide an overview of existing ROC curve confidence interval

approaches. A review of the approaches listed in these figures reveals differences in

confidence interval definitions and emphasizes that existing methods lack robustness and

flexibility, the methods typically identified in the research are focused on asubset of the

possible confidence bound definitions and do not extend to other definitions. Confidence

bound definitions are summarized as follows.

Confidence definition 1: fixed threshold.This definition selects a particular threshold,

develops an estimate for false alarm probability uncertainty, and similarly develops

correct detection probability uncertainty. Approaches in the literature often attempt to

extend this approach. For example, a rectangular region is created based onthe

uncertainties in false alarm and correct detection probability. A complete estimate of

ROC curve uncertainty is then made by connecting the corners of the boxes (see Figure

5.9). A weakness of this ad hoc approach is that typically the confidence interval band is

wide compared with other approaches, particularly at low sample sizes.Examples are

considered by Hilgers [Hilgers, 1991].

Confidence definition 2: uncertainty in correct detection probability at given false alarm

probability. This definition regards false alarm probability as the independent variable,

2-36



Distribution AssumptionsConfidence Definition

Pfa

P
d Definition 2:

Uncertainty in Pd at Pfa

Normal and non-parametric 
(but symmetric) methods

First ROC 
recognition of 
Pfa uncertainty

Normal example, 

No verification

1987 Linnet

Independ. Var

Pfa

P
d

Definition 1:

Fixed Threshold

Also: Definition 4:

Full Curve 

Binomial

Order statistics

Large 
confidence 
band area

Example,                
No verification on 

full curve,

Individual bounds 
verified [Ross, 2003]

1991 Hilgers

(1-alpha)2 bounds

Pfa

P
d

Definition 4:

Full Curve

Also: Definition 1, 2.

Binormal, 

Working-Hotelling
Regression theory

Binormal example, 
No verification, 

1993 Ma & Hall

W-H Bands

1994 Campbell

Ind. Var Uncertainty

Pfa

P
d

Confidence 
bounds made 

up of same size 
rectangles

Kolmogorov distribution 
theory

Example,

No verification

Definition 2:

Uncertainty in Pd at Pfa

Emphasize use 
of multiple 
confidence 
definitions

Confidence 
Example or 
Verification CommentsDistribution AssumptionsConfidence Definition

Pfa

P
d Definition 2:

Uncertainty in Pd at Pfa

Normal and non-parametric 
(but symmetric) methods

First ROC 
recognition of 
Pfa uncertainty

Normal example, 

No verification

1987 Linnet

Independ. Var

Pfa

P
d

Definition 1:

Fixed Threshold

Also: Definition 4:

Full Curve 

Binomial

Order statistics

Large 
confidence 
band area

Example,                
No verification on 

full curve,

Individual bounds 
verified [Ross, 2003]

1991 Hilgers

(1-alpha)2 bounds

Pfa

P
d

Definition 4:

Full Curve

Also: Definition 1, 2.

Binormal, 

Working-Hotelling
Regression theory

Binormal example, 
No verification, 

1993 Ma & Hall

W-H Bands

1994 Campbell

Ind. Var Uncertainty

Pfa

P
d

Confidence 
bounds made 

up of same size 
rectangles

Kolmogorov distribution 
theory

Example,

No verification

Definition 2:

Uncertainty in Pd at Pfa

Emphasize use 
of multiple 
confidence 
definitions

Confidence 
Example or 
Verification Comments

Figure 2.7 ROC literature comparison I. Confidence interval approaches are listed by
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promising verified results are compared with the method developed here in
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Figure 2.9 ROC literature comparison III. For explanation, see Figure 2.7.
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and the literature and the method developed here tend to focus on this choice. Thus

uncertainty in correct detection probability is calculated at a givenfalse alarm probability,

and confidence contours covering the entire ROC curve are developed by repeating for all

given false alarm probabilities. Linnet [Linnet, 1987] notes that assumingfalse alarm

probability is known when it is, in fact, uncertain introduces error in correct detection

probability. Examples are considered by Campbell [Campbell, 1994], Linnet

[Linnet, 1987], Schafer [Schafer, 1994], Zou [Zouet al., 1997], Metz [Metzet al., 1998],

Platt [Plattet al., 2000], and Zhou [Zhou and Qin, 2005].

Confidence definition 3: uncertainty in false alarm probability at a given correct

detection probability. This approach is similar to confidence Definition 2, except that

correct detection probability is regarded as the independent variable. For beta target and

non-target densities, the method developed here produces confidence bands by this

definition that are similar to the bands of confidence Definition 2. There are no known

methods in the literature that focus on this method.

Confidence definition 4: full curve confidence band.This band represents the

uncertainty of the entire ROC curve. The literature focuses less on this definition than on

that of Definition 2. Examples are considered by Ma [Ma and Hall, 1993], Claeskens

[Claeskenset al., 2003], and Campbell [Campbell, 1994]. Bands by this method

typically have the objective of enclosing the entire true ROC curve witha selected

percentage confidence. If even a small portion of the ROC curve is outside of the band,

then the entire band is regarded as being in error.

Confidence definition 5: curve location based on uniform threshold.This confidence

bound describes ROC curves for a threshold chosen uniformly at random. Such bounds

are not described in the literature but are a natural extension of the method developed

here. Figure 4.10 shows ROC curve confidence bounds based on this definition and
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shows higher densities close to the ROC curve extremes. This result is appropriate

because any ROC curve has a correct detection probability of zero at a falsealarm

probability of zero and similarly a correct detection probability of one at false alarm

probability of one.

Unlike the references to ROC curves, many CEG curve and RSD value approaches differ

from those developed here. Since the metrics differ, the methods of obtaining confidence

intervals or variance for the metrics also differ. For example, Lombard [Lombard, 2003]

details an approach for estimating uncertainty in on-line gauges, O’Connor

[O’Connoret al., 2001] describes the asymmetry of confidence intervals related to

weather forecasting, and Yaniv [Yaniv and Foster, 1997] analyze the precision and

accuracy of judgmental estimation. The performance metrics described in the latter can

be transitioned to confidence-error-like performance metrics.

The scores from a SUT are posterior probability estimates as detailed by Bishop

[Bishop, 1995]. However, for the CEG curve the intent is not to estimate posterior

probability but rather to estimate how well an unknown “black box” performs in

providing estimates of posterior probability. Thus, the intent is to provide confidence

intervals for CEG curve and RSD values, which characterize scoreposterior probability.

El-Jaroudi [El-Jaroudi, 1990], Lugosi [Lugosi and Pawlak, 1994], Poggio

[Poggioet al., 2004], and Tomasi [Tomasi, 2004] focus on estimating error in posterior

probability. Existing research is more relevant in formulating alternative approaches for

determining confidence error than in quantifying confidence intervals, variance, and/or

the density of confidence error. Also, another confidence-interval-like method involves

cross-entropy (see [Bishop, 1995]), which is a metric often used in speech processing.

Research in the ATR community for performance metrics and confidence error includes

work by Ceritoglu [Ceritogluet al., 2003], DeVore [DeVore, 2004], Irvine

[Irvine et al., 2002], Li [Li et al., 2001], Mossing [Mossing and Ross, 1998], [Ross et al.,

1997, 1998, 1999, 2002], , [Ross and Mossing, 1999], and Thorsen
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[Thorsen and Oxley, 2004]. These references help identify the relevance and need for

confidence error as a performance metric. Ross [Ross and Minardi, 2004] develops the

rationale for a CEG curve-based performance metric and identifies theability of such a

metric to provide information on the performance of a target recognition system that the

ROC curve is not able to provide. Ross points out that confidence errors (to include

additional confidence measures of performance) are in themselves estimates and

emphasizes that the ATR community needs confidence intervals for these estimates.

The underlying methods and techniques and probability density estimation methods that

are leveraged to form ROC curve confidence intervals and CEG curve confidence

intervals in the chapters that follow must be considered. The methods developed here

apply a Bayesian framework to ROC curve and CEG curve performance metrics. A

similar framework was devised in the early 1990s for neural networks applications

[MacKay, 1992a, 1992b]; this framework has not heretofore been comprehensively

applied to target detection performance metrics. Bishop [Bishop, 1995] provides a

summary of MacKay’s contributions. A critical aspect of the Bayesian approach is

correct modeling of the prior parameter densities. For the beta density model considered

here, it is shown that sampling uniformly over the domain of all means and standard

deviations yields appropriate results. Chapter 3 describes the analytical convergence of

this procedure, which may also be obtained using a Monte Carlo approach. As model

parameters become more complex, other Monte Carlo methods and Bayesian techniques

may be suitable alternatives to sampling uniformly over parameter domains. Clyde

[Clyde, 1999] identifies search methods for posterior densities; and Clyde

[Clyde and George, 2004] details advancements that make such posterior density

searches practical. Barbieri [Barbieri and Berger, 2004] suggests a robust posterior

density approximation that considers only parameter values which have posterior density

weights that are 50% of the maximum posterior weight. Jordan [Jordanet al., 1999]

details various computational methods for calculating posterior densities. Hoeting

[Hoetinget al., 1999], Raftery [Rafteryet al., 2003], and Madigan
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[Madigan and Raftery, 1994] discuss the application of Occam’s razor, whichrefers to

the concept that whereas more complex models are possible, the posterior density

contribution of a simpler model should generally outweigh a more complex model (other

constraints being equal). Occam’s window reflects the concept that all parameter values

that have less than a selected percentage of the maximum weighting can be disregarded

without loss of accuracy [Hoetinget al., 1999].

For the research presented here, the beta density is appropriate becausethis density is

non-zero for score values between zero and one, and a single beta density has a simple

unimodal form. However, the use of the beta density is also justified becauseit is the

density of maximum entropy which is zero beyond a limited domain subject to two

constraints, which may be related to the density mean and variance. Gokhale

[Gokhale, 1975] investigates the usefulness of maximum entropy distributions subject to

various constraints, and Kagan [Kaganet al., 1973] documents the properties of the beta

density relative to maximum entropy. Note also that several recent ROC confidence

interval papers (see [Plattet al., 2000], [Hallet al., 2004], and [Zhou and Qin, 2005]) use

beta densities to generate samples.

2.7.3 Summary of existing research.Each of the ROC curve uncertainty estimation

methods discussed above have weaknesses that the method developed here largely

overcomes. Some methods [Zhou and Qin, 2005] only provide acceptable results as

sample size becomes large, which is the opposite of what is needed for the target

detection applications considered here. Others methods are restrictedto normal-based

assumptions and can not be extended to other density forms (see [Ma and Hall, 1993]);

binormal based approaches [Metzet al., 1998] make unacceptable restrictions on

functional forms. Still other methods (e.g. [Hilgers, 1991]) produce confidence regions

that are too large and therefore uninformative. Further, most of the authors identified

here refrain from quantitative verification of results; the few that do are examined in

detail in Chapter 5. The quantitative comparison provided in Chapter 5 of the method
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developed here with existing methods reinforces the above discussion. Recentliterature

in the ATR community introduces the basis for the CEG curve and RSD value described

here, however, methods for their confidence interval (or band) uncertainty estimation are

not available, although the need for such methods has been identified (see

[Ross and Minardi, 2004]).

Thus, a review of the previous research reveals that a new method for performance metric

uncertainty estimation is needed. The method developed and verified in Chapters 3 and 4

introduces aflexible new framework that can be applied to ROC curves and CEG curves,

and it provides uncertainty estimates for these curves (and for their summary metrics of

AUC value and CEG value).
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3. Probability Density Generation

This chapter develops methods that generate probability densities for targetdetection

performance metrics, such as the ROC curve. The development process has the

following rationale. First, consider that deterministic performancemetrics (e.g., a fully

specified ROC curve with no uncertainty) assume that the target and non-target sample

densities of score are known. Such exact target and non-target sample densities could be

determined from the samples if it were possible to generate an infinite set of target and

non-target samples. From a finite set of samples, it is not possible to determine exactly

the target sample density and the non-target sample density. Thus, a setof possible

densities for a finite set of samples is examined, with each density defined byvalues of

one or more parameters (for example, the parameters for a univariate Gaussian density

consist of mean and variance). Next, using a Bayesian process, parameter values for the

target and non-target densities are found. Finally, the resulting densities of target and

non-target samples are used to find probability densities for the performance metrics.

The procedure for developing densities is applicable to any parametric densitymodel (the

beta density model is the example emphasized here). Once the performance metric

probability density is generated, a variety of standard descriptive statistics may be

developed, including mean, median, mode, confidence bounds, etc. Chapter 4,

Probability Density Characterization and Verification, considers these descriptive

statistics.

3.1 Target and non-target samples, density models, and ROC curve estimates

Section 2.2 focused on deterministic ROC curves, where the underlying target and

non-target densities are known. This section focuses on the relation of samples to

assumed underlying target and non-target score probability densities and on ROCcurve

estimates obtained from these densities. Figure 3.1 shows example target andnon-target
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densities, a set of samples generated from the target density, and a second set of samples

generated from the non-target density. Here 30 target score samples (triangles) and 30

non-target score samples (circles) are drawn from their respective specified underlying

densities. For an infinite set of such samples the target and non-target densities are

known. In this ideal case the associated performance metrics of ROC curve, AUC value,

CEG curve, and RSD value are deterministic and have no uncertainty. Whenonly a finite

number of samples are available, the target and non-target densities for an infinite

number of samples are not known but are desired. Any density that is non-zero at each

of the sample values has some probability of being the density formed by an infinite set

of samples. However, it is appropriate to consider only density functional forms or

models that incorporate additional available information, such as that density is

continuous and is non-zero only between zero and one.

Beta densities are used to implement the performance metric uncertainty estimation

framework developed here. While this density model is reasonable, a major advantage of

the framework developed here is that it is applicable to other models. The beta density is

of interest because it has zero magnitude outside the interval [0,1], as assumed for the

target and non-target score data. Additionally, the beta density (see [Patelet al., 1976]

and [Mendenhallet al., 1990]) has maximum entropy among all continuous densities that

are non-zero only between zero and one and that meet two additional constraints

[Kaganet al., 1973] which may be related to mean and variance. The beta density with

parametersa, b > 0 is

f(s) =





Ca,bs
a−1(1− s)b−1, 0 ≤ s ≤ 1,

0, elsewhere,
(3.1)

wheres is score and the mean and variance of the beta density are related toa andb by

µ = a/(a+ b) andσ2 = (ab)/[(a+ b)2(a+ b+ 1)], (3.2)
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Figure 3.1 Target and non-target samples and the densities from which they are drawn.
A target beta density (solid line) and a non-target beta density (dashed line)
are shown; these densities are typically estimated from samples. Here 30
target score samples (triangles) and 30 non-target score samples (circles) are
drawn from their respective densities.
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and the constantCa,b equals1/
∫ 1
0
sa−1(1− s)b−1ds ≡ 1/Beta(a, b).

A simple method for mapping a set of sample scores to a beta density is to find the mean

and variance of the scores, then use them in Equation (3.2) to obtain thea andb values.

Once the scores are mapped to beta density form (one density for target samples and the

other density for non-target samples), a ROC curve and corresponding AUC value, as

well as a CEG curve and a corresponding RSD value, are calculated. Note thatusing

sample mean and variance to estimate a beta density, where the sample variance is

unbiased in that it is the sum of squared deviations from the mean divided by thenumber

of samples minus one, is equivalent to a maximum-likelihood approach as sample size

increases (see [Hahn and Shapiro, 1967]).

Figure 3.2 compares ROC curve estimates for 10 sets of 30, 300, 1000, and 3000 target

and non-target samples. To obtain such sets for comparison with the true ROC curve,

first choose an underlying target density and non-target density. Then find the ROC

curve that corresponds with these densities from Equation (2.10). This ROC curve,

computed numerically, is shown as the solid line on each of the four plots. From the

densities, randomly and independently draw 30 target samples and 30 non-targetsamples

to obtain one set of data. Estimate the target and non-target beta densities asthe densities

with the mean and unbiased variance of the target and non-target samples (mean and

variance determine the density parameter vectorsu andv of Equation (2.10)), and form a

ROC curve from these estimates. Find the 10 sets of ROC curves for the 30 target and 30

non-target samples, then repeat for 10 sets of 300, 1000, and 3000 pairs of target and

non-target samples. Note that even for the 3000 sample example, differences in the ROC

curve estimates are apparent. Figure 3.3 shows a similar progression, except that here

the ROC curves are formed by evaluating the correct detection probability and false

alarm probability at every score value using only the sample values and notan assumed

model. Figures 3.2 and 3.3 indicate that ROC curve estimates for low numbersof

samples may not be close to the true ROC curve. The variance shown in the plots in
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Figure 3.2 The ROC curve estimates for various sample sizes, where beta density esti-
mates generate the ROC curves. Target and non-target beta densities gen-
erate target and non-target samples, and ROC curve estimates are formed
from beta densities that have the mean and variance of the samples. For the
top left plot, 10 ROC curves (dashed lines) for 10 sets of 30 target and 30
non-target samples are generated by fitting beta densities to the samples.In
the other plots, similar sets of ROC curves for 300, 1000, and 3000 pairs of
target and non-target samples are generated. The actual ROC curve thatthe
densities form for an infinite number of samples is shown as the solid line
on each plot. Variance is apparent in the plots, even for 3000 target samples
and 3000 non-target samples.
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Figure 3.3 The ROC curve estimates for various sample sizes, where the empirical sam-
ples generate the ROC curves. The four plots are formed using the process
of Figure 3.2, except the ROC curves are formed directly using the sample
values; a beta density form is not assumed. The variance in each of the
plots emphasizes the importance of ROC curve uncertainty estimation and
the inadvisability of focusing on one ROC curve estimate.
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these two figures emphasize the importance of ROC curve uncertainty rather than the

estimated ROC curve. Section 3.2 details a fully Bayesian process for estimating ROC

curve uncertainty.

Unimodal beta densities and score-threshold ROC curves are the assumed model and

performance metric for much of the research discussed here; however, the beta density is

used for illustration. The framework developed in the next section (with beta densities)

may be applied to other density models and to likelihood threshold ROC curves. For

example, multi-modal beta mixture models and related empirical-threshold and

likelihood-threshold ROC curves are shown in Figures 3.4 and 3.5.

3.2 Bayesian posterior densities of parameters and weighted ROC curves

The two left plots of Figure 3.6 show the collection of pairs of means and standard

deviations for beta densities that are zero at scores of 0 and 1. Values of standard

deviation outside each “rounded triangle” do not exist for these densities. Values of

standard deviation inside each "rounded triangle" are the admissible set, where the

admissible set is described as follows. For the case of this beta density model, the

admissible setA consists of (µ, σ) pairs such that





if 0 ≤ µ ≤ 0.5, σ ≤ 1−µ
µ(µ+2)(µ+1)2

if 0.5 ≤ µ ≤ 1, σ ≤ µ(1−µ)2

2−µ



 . (3.3)

Admissible sets may also be defined for other density models, including densitymodels

that are not restricted to two parameters. The target and non-target densities shown in the

right plot of this figure map to unique locations on the standard deviation versus mean

graphs shown at the left. Applying Bayes’ rule in a process consistent with that

developed by [MacKay 1992a, 1992b] for the neural network community, but not

heretofore applied to target detection performance metrics, the densitiesof model
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Figure 3.4 Target (solid) and non-target density (dashed) examples with a betamixture
model. In the upper graph two separate sums of 30 beta densities form the
target and non-target densities. Similarly, a sum of two beta densities form
each density in the lower graph. (The target density has 0.82, 0.055 and
0.7, 0.045 for the mean and standard deviation of the two beta densities, and
the ratio of their amplitudes is 0.45. The corresponding five values for the
non-target density are 0.6, 0.084, 0.45, 0.071, and 0.45).
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Figure 3.5 Relation of the true likelihood-threshold ROC curve (dot-dash line), the true
score-threshold ROC curve (solid line), and the empirical-threshold ROC
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the probability of false alarm is the integral of the non-target density over the
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parameters given a set of samples are obtained. Further, if the target andnon-target

samples are independent, a joint posterior weight is obtained for any combinationof

target and non-target densities. The application of Bayes’ rule requires the specification

of prior parameter densities. The typical prior density has uniform distributions of mean

and standard deviation over their admissible domains.

The following discussion outlines an analytical determination of a ROC curve density.

As is typical for Bayesian evaluations, the analytical results produce integrals that are not

tractable to further evaluate analytically (see MacKay [MacKay, 1992a], Bishop

[Bishop, 1995], Clyde [Clyde, 1999][Clyde and George, 2004], Hoeting

[Hoetinget al., 1999], and Jordan [Jordanet al., 1999]). However, numerical evaluation

is possible for the beta density model and for more complex density models (such as beta

mixture models).

Throughout the analytical progression that follows, the subscripts on density (for

example the subscriptu|d onpu|d) are used indicate the quantities being evaluated as

random variables (see discussion in Section 2.2 regarding relation of random variables

and parameters).

Let d ≡ {s
i
| i = 1, ..., I} be a set of known independent non-target score samples, where

s
i
is theith non-target score sample, and letu be the non-target density parameters. For

example, for a beta density model,u may be the(µn, σn) parameters that are the

allowable means (µn) and standard deviations (σn) from the admissible set. Let

pu|d(u|d) be the conditional probability density of the non-target score parametersu

givend. Then by Bayes’ rule,pu|d(u|d) is

pu|d(u|d) = Copd|u(d|u)pu(u), (3.4)
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where the constantCo depends ond, wherepd|u(d|u) is the conditional probability

density of the samples given the parameters andpu(u) is the prior probability density of

the parameters.

For a beta probability density, Equation (3.4) is

p(µn,σn)|d(µn, σn|d) = C1pd|(µn,σn)(d|µn, σn)pµn,σn(µn, σn), (3.5)

where the constantC1 depends ond.

By sample independence, the probability density of the samples given the non-target

score parameters,pd|(µn,σn)(d|µn, σn) is

pd|(µn,σn)(d|µn, σn) = C2

I∏

i=1

s
µn [

µn (1−µn )
σn

−1]−1

i (1− si)
µ
n
[
µn (1−µn )

σn
−1][ 1

µn
−1]−1

Γ(µ
n
[
µn (1−µn )

σn
−1])Γ(µ

n
[
µn (1−µn )

σn
−1][ 1

µn
−1])

Γ(µ
n
[
µn (1−µn )

σn
−1]+µ

n
[
µn (1−µn )

σn
−1][ 1

µn
−1])

, (3.6)

where the constantC2 depends ond.

Thus,

p(µn,σn)|d(µn, σn|d)

= C3{
I∏

i=1

s
µn [

µn (1−µn )
σn

−1]−1

i (1− si)
µ
n
[
µn (1−µn )

σn
−1][ 1

µn
−1]−1

Γ(µ
n
[
µn (1−µn )

σn
−1])Γ(µ

n
[
µn (1−µn )

σn
−1][ 1

µn
−1])

Γ(µ
n
[
µn (1−µn )

σn
−1]+µ

n
[
µn (1−µn )

σn
−1][ 1

µn
−1])

}pµn,σn(µn, σn), (3.7)

where the constantC3 depends ond.
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If the assumption is made thatpµn,σn(µn, σn) is uniform over all allowable values of

µn, σn, then

p(µn,σn)|d(µn, σn|d) = C4

I∏

i=1

s
µn [

µn (1−µn )
σn

−1]−1

i (1− si)
µ
n
[
µn (1−µn )

σn
−1][ 1

µn
−1]−1

Γ(µ
n
[
µn (1−µn )

σn
−1])Γ(µ

n
[
µn (1−µn )

σn
−1][ 1

µn
−1])

Γ(µ
n
[
µn (1−µn )

σn
−1]+µ

n
[
µn (1−µn )

σn
−1][ 1

µn
−1])

, (3.8)

where the constantC4 depends ond.

The points (µn, σn) chosen within the admissible set are used to estimate Bayesian

posterior densities. Each Bayesian posterior density may be visualizedas the

three-dimensional function described by Equation (3.8) that is non-zero for anyvalue

within the admissible set. The uniformly spaced points shown in the plots onthe left in

Figure 3.6 select the elements ofu andv that are evaluated numerically.

Let h ≡ {qj| j = 1, ..., J} be a set of known independent target score samples, whereqj

is thejth target score sample, and letv be the target density parameters. For example,

for a beta density model,v may be the(µt, σt) parameters that are the allowable means

(µt) and standard deviations(µt) from the admissible set. Then applying the analysis

above yields expressions similar to Equations (3.5) to (3.8), where the expression for

pµt,σt|h(µt, σt|h) is obtained by replacingi with j, I with J , u with v, and(µn, σn) with

(µt, σt) in Equation (3.8).
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Theorem 3.1 Posterior density evaluation for the parameters given the non-target

samples

Let ps|u(si|uk) be the non-target score probability density evaluated at theith non-target

score sample given thekth non-target sample parameteruk, whereuk specifies a vector.

Let pu|d(uk|d) be the probability density of the non-target sample parameters evaluatedat

uk given the non-target samplesd, whered ≡ {s
i
| i = 1, ..., I}. Let pu(uk) be the prior

probability density of the non-target sample parameter vector evaluated atuk. Assume

that the non-target samples are independent and identically distributed. Then

pu|d(uk|d) = C5

I∏

i=1

ps|u(si|uk)pu(uk), (3.9)

where the constantC5 depends ond.

Proof

By non-target sample independence and identical distribution

pd|u(d|uk) = C6

I∏

i=1

ps|u(si|uk), (3.10)

where the constantC6 depends ond.

From Bayes’ rule

pu|d(uk|d) = C7pd|u(d|uk)pu(uk), (3.11)

where the constantC7 depends ond.

Therefore, combining Equations (3.10) and (3.11) yields (3.9).
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As an example, for a beta density model,uk specifies a mean and standard deviation. An

expression forpv|h(vm|h) is developed similarly.

In Figure 3.6, the oval regions shown in the vicinity of the target and non-target mean and

standard deviation values provide a confidence contour for the posterior probabilitythat

the given set of samples is obtained from densities parameterized by theindicated

regions. An example of a graph of Bayesian posterior density is shown in Figure 3.7.A

plane that intersects the graph of the density such that a selected percentage (e.g., 90%)

of the volume of the density is enclosed defines a confidence contour.

Definition - Confidence contour for the non-target parameter density

Let pu|d(u|d) be the probability density of the non-target sample parameters given the

non-target samplesd. Let c.c. be the desired confidence coverage (e.g., if the desired

coverage is 90%, then the confidence contour fraction is 0.90). Letu have elements

(µn, σn) in the domain of the admissible set. For anyz ≥ 0, letNz consist of the set of

all (µn, σn) wherep(µn,σn)|d(µn, σn|d) ≥ z.

ẑ = max



z ≥ 0 :

∫∫

Nz

p(µn,σn)|d(µn, σn|d)dσndµn ≥ c.c.



 (3.12)

Nz is the the set ofu (within the admissible set) that provides the desired confidence

coverage (c.c).

To evaluate numerically, let

ẑtest = maxA
(p(µn,σn)|d(µn, σn|d)). (3.13)

FindNẑtest for ẑtest. Then findc.c.test forNẑtest. If c.c.test < c.c., then let

ẑtest = ẑtest − ε. The valueε is a selected step size by which the change in the value of
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Figure 3.7 Bayesian posterior density of beta density parameters. The posterior density
formed from 300 meanµ and standard deviationσ pairs with respect to a
set of 30 target samples from a beta density of score is shown (a similar plot
applies for 30 non-target samples). The maximum likelihood estimate for
the mean and standard deviation is at the peak of the displayed density.
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ẑtest is specified. Repeat the process, continuing to reduceẑtest until c.c.test = c.c.. The

confidence contour for the target parameter density is developed similarly.

By Bayes’ rule and assumed sample independence, the posterior probabilitythat a

selected target mean and standard deviation are the parameters that specify the true (or

underlying) beta target density given a set of samples is proportional to the product of all

density values for the samples multiplied by the prior probability densityof the

parameters. This process of evaluating the posterior density is repeated for a set of

non-target samples. Then the results are multiplied to obtain a value proportional to the

probability that a pair of target parameters and a pair of non-target parameters are the

parameters of the underlying target and non-target densities of scores. The posterior

density in Figure 3.7 illustrates Equation (3.9). Any point within the admissible set is

weighted by

wk =
I∏

i=1

ps|u(si|uk)pu(uk), (3.14)

wherewk is the weight for the non-target parametersuk. A similar expression applies for

wm, wherewm is the weight for pointvm and the replacement ofk bym indicates target

pointm.

Let the productwkwm be the combined posterior weighting of a target and non-target

density pair (evaluated atuk, vm). From Equation (3.14) forwk and the similar

expression forwm,

wkwm =
K∏

k=1

pd|u(d|uk)pu(uk)
M∏

m=1

ph|v(h|vm)pv(vm). (3.15)

From Equation (2.5),̂Fk(t; uk) =
∫∞
t
f(s; uk)ds, and from Equation (2.6),vm is

Ĝ(t; vm) =
∫∞
t
g(s; vm)ds. Thus, from Equation (2.10) the ROC curve is

rk,m(x;uk,vm) = Ĝ(F̂−1(x; uk), vm). (3.16)
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Theorem 3.2 ROC curve density

Let d ={s1...sI} be a set of independent and identically distributed samplessi from

distributionf and leth ={q1...qJ}be a set of independent and identically distributed

samplesqj from distributiong, wherei = 1, 2, ..., I andj = 1, 2, ..., J . Let pu(u) and

pv(v) be prior densities of the random parameter vectorsu andv. Let py|x(y|x, d, h) be

the probability density of correct detection probabilityy given false alarm probabilityx

andd andh. Then

py|x(y|x, d, h) = C8

∫∫

A

py|x(y|x, u, v)
I∏

i=1

f(si|u)pu(u)
J∏

j=1

g(qj|v)pv(v)dudv, (3.17)

where the contantC8 depends ond andh and the limits of integration are over the

admissible setA.

Proof. See Appendix A-2.

Substituting the beta density parameters and admissible set into Equation (3.17):

py|x(y|x, d, h) = C9

∫ .5

0

∫ 1−µt
µt(µt+2)(µt+1)

2

0

∫ .5

0

∫ 1−µn
µn(µn+2)(µn+1)

2

0

py|x(y|x, u, v)

·
I∏

i=1

f(si;u)
J∏

j=1

g(qj; v)pu(u)pv(v)dσndµndσtdµt

+

∫ 1

.5

∫ µt(1−µt)
2

2−µt

0

∫ 1

.5

∫ µn(1−µn)
2

2−µn

0

py|x(y|x, u, v)
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·
I∏

i=1

f(si;u)
J∏

j=1

g(qj; v)pu(u)pv(v)dσndµndσtdµt

+

∫ .5

0

∫ 1−µn
µn(µn+2)(µn+1)

2

0

∫ 1

.5

∫ µn(1−µn)
2

2−µn

0

py|x(y|x, u, v)

·
I∏

i=1

f(si|u)
J∏

j=1

g(qj|v)pu(u)pv(v)dσndµndσtdµt

+

∫ 1

.5

∫ µt(1−µt)
2

2−µt

0

∫ .5

0

∫ 1−µn
µn(µn+2)(µn+1)

2

0

py|x(y|x, u, v)

·
I∏

i=1

f(si|u)
J∏

j=1

g(qj|v)pu(u)pv(v)dσndµndσtdµt, (3.18)

where

py|x(y|x, u, v) = py|x(y|x, µn, σn, µt,σt) (3.19)

I∏

i=1

f(si|u) =
I∏

i=1

f(si|µn, σn) (3.20)

J∏

j=1

g(qj|v) =
J∏

j=1

g(qj|µt, σt) (3.21)

pu(u) = pµn,σn(µn, σn) (3.22)
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pv(v) = pµt,σt(µt, σt), (3.23)

where the contantC9 depends ond andh.

Lemma 3.1 Discretization of posterior densities

Let d be a set of independent and identically distributed samplessi of f and leth be a set

of independent and identically distributed samplesqj of g, wherei = 1, 2, ..., I and

j = 1, 2, ..., J . Let pu(u) andpv(v) be prior densities of the parameter vectorsu andv

with elements(µn, σn) and(µt, σt), respectively. Let uk andvm beu andv selected

uniformly over the parameter domains within the admissible set. Finally, let

Ak = (µn,(k+1) − µn,k)(σn,(k+1) − σn,k) and∆n = (µn,(k+1) − µn,k)(σn,(k+1) − σn,k) and

letAm = (µt,(m+1)− µt,m)(σt,(m+1)− σt,m) and∆t = (µt,(m+1)− µt,m)(σt,(m+1)− σt,m),

where the second subscript designates position in the admissible set domain.

Then

C10

∫

A

∫

A

I∏

i=1

[f(si|µn, σn)pµn,σn(µn, σn)]dσndµn

= C11 lim
K→∞

K∑

k=1

I∏

i=1

ps|µn,σn(si |µn,k, σn,k)pµn,σn(µn,k, σn,k) (3.24)

and

C12

∫

A

∫

A

J∏

j=1

[g(qj|µt, σt)pµt,σt(µt, σt)]dσtdµt
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= C13 lim
M→∞

M∑

m=1

J∏

j=1

ps|µt,σt(qj|µt,m, σt,m)pµt,σt(µt,m, σt,m), (3.25)

where the constantC10 depends ond, the constantC11 depends onC10 andAk, the

constantC12 depends onh, the constantC13 depends onC12 andAm, and the the limits

of integration are over the admissible setA.

Proof

Since each evaluated (µn,k, σn,k) is uniformly spaced on the admissible set,K ∝ 1/∆n

andM ∝ 1/∆t, then the lemma follows by definition of a double integral and by limit of

a Riemann sum (see [Larsonet al., 2002]).
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Theorem 3.3 Numerical approximation of ROC curve density

Let py|x(y|x, d, h) be the density of correct detection probabilityy given false alarm

probabilityx andd andh. Let py|x(y|x) = δ(y− r(x;w)), whereδ is the dirac density or

distribution function, letpu(u) be the prior density of the non-target parameters,andpv(v)

be the prior density of the target parameters. Let{(uk, vm) : k = 1, ..., K, m = 1, ...,

M} be uniformly selected over the admissible set ofu andv for the target and non-target

parameter densities. Letps|u(si|uk) be the density of the independent and identically

distributed non-target samples evaluated at theith non-target samplesi given thekth

non-target sample parametersuk, whereuk has elements(µk, σk) over the admissible set.

Let pu|d(u|d) be the density of the non-target sample parameters given the non-target

samples d. Letpu(uk) be the prior density of the non-target sample parameter vector

evaluated atuk, and letf(si|µn,k, σn,k) = ps|(µ
n,σn )(si |µn,k, σn,k). Let ps|v(qj|vm) be the

density of the independent and identically distributed target samples evaluated at thejth

target sampleqj given themth target sample parametersvm, wherevm has elements

(µt,k, σt,k) over the admissible set. Let pv|h(v|h) be the density of the target sample

parameters given the target samplesh. Let pv(vm) be the prior density of the target

sample parameter vector evaluated atvm, and let

g(qj|µt,m, σt,m) = ps|µt,σt(qj|µt,m, σt,m). Finally, let

γ(d) = lim
K→∞

K∑

k=1

I∏

i=1

[ps|(µn,σn)(si|µn,k, σn,k)pµn,σn(µn,k, σn,k)] (3.26)

and

γ′(d) =

∫∫

A

I∏

i=1

[f(si|µn, σn)pµn,σn(µn, σn)]du, (3.27)

where the limits of integration are over the admissible setA.
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Then

py|x(y|x, d, h)

= C14 lim
K→∞
M→∞

K∑

k=1

M∑

m=1

δ(y− r(x; uk, vm))
I∏

i=1

[f(si|uk)pu(uk)]
J∏

j=1

[g(qj|vm)pv(vk)], (3.28)

where the constantC14 depends onK,M, d andh.

Proof

Since from Lemma 3.1,γ′(d) ∝ γ(d),

γ′(d)

∫∫

A

[
J∏

j=1

g(qj|µt, σt)pµt,σt(µt, σt)]dσtdµt

= C15γ(d)
M∑

m=1

J∏

j=1

[ps|(µt,σt)(qi|µt,m,σt,m)pµt,σt(µt,m,σt,m)], (3.29)

where the constantC15 depends onK,M, d andh.

∫∫

A

∫∫

A

I∏

i=1

[f(si|µn, σn)pµn,σn(µn, σn)]
J∏

j=1

[g(qj|µt, σt)pµt,σt(µt, σt)]dσndµndσtdµt

= C16

K∑

k=1

M∑

m=1

I∏

i=1

[ps|(µn,σn)(si |µn,k, σn,k)pµn,σn(µn,k, σn,k)]

·
J∏

j=1

[ps|(µt,σt)(qi |µt,m, σt,m)pµt,σt(µt,m, σt,m)], (3.30)

where the constantC16 depends on onK,M, d andh.
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Thus, ∫∫

A

∫∫

A

py|x(y|x, u, v)
I∏

i=1

[f(si|µn, σn)pµn,σn(µn, σn)]

·
J∏

j=1

[g(qj|µt, σt)pµt,σt(µt, σt)]dσndµndσtdµt (3.31)

= C17

K∑

k=1

M∑

m=1

py|x(y|x, u, v)
I∏

i=1

[ps|(µn,σn)(si|µn,k, σn,k)pµn,σn(µn,k, σn,k)]

·
J∏

j=1

[ps|µt,σt(qi |µt,m, σt,m)pµt,σt(µt,m, σt,m)], (3.32)

where the constantC17 depends onK,M, d andh.

The theorem follows upon substituting Equation (3.32) into (3.31) and using Equation

(3.17).

To extend the above theorem to the CEG curve, let the CEG curve be defined as (see

Section 2.3)

P (T |s, uk,vm) =
g(s|T, vm)P (T )

g(s|T, vm)P (T ) + f(s|N, uk)P (N)
, (3.33)

wheres ∈ [0, 1]. Let {(uk, vm) : k = 1, ..., K, m = 1, ..., M} be uniformly selected over

the admissible set ofu andv for the target and non-target parameter densities. Letỹ

denote a selected location on the vertical axis of the CEG curve (see Figure 2.2 for a

CEG curve plot). LetP (T |s, uk,vm) be the probability of target event given score,uk and

vm, let g(s|T, vm) be the density of score given target event andvm, let f(s|N, uk) be the

probability density of score given non-target event anduk, letP (T ) be the prior

probability of target event, and letP (N) be the prior probability of non-target event.

Replacer(x; uk, vm) byP (T |s, uk,vm). Then the probability density of the probability of
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target given score for any evaluated score value is

pP (T |s)(P (T |s), d, h)

= C15 lim
K→∞
M→∞

K∑

k=1

M∑

m=1

δ(ỹ − P (T |s; uk, vm))
I∏

i=1

[f(si|uk)pu(uk)]
J∏

j=1

[g(qj|vm)pv(vk)],

(3.34)

where the constantC15 depends onK,M, d andh.

Note that covering the entire admissible parameter space volume with a practical number

of grid points becomes computationally more difficult as the number of dimensions

increases (see [Gelmanet al., 2004]). For higher dimensions, Monte Carlo methods (see

[Hammersley and Handscomb, 1964], [Kass and Raftery, 1995]) or related

approximation methods may be used (such as Gibbs sampling or the Metropolis

Algorithm; see [Casella and Berger, 2002], [MacKay, 2003]); where i.i.d. sampling

assumptions are necessary.

Note that a fundamental assumption for a simple Monte Carlo approach (see

[Hammersley and Handscomb, 1964] and [Kass and Raftery, 1995]) is

∫
ps(s|u)pu(u)du = C16 lim

k→∞

K∑

k=1

ps(s|uk)pu(uk), (3.35)

where the constantC16 depends onK,and theK grid points are independently and

identically selected from the admissible set. Equation (3.35) may replace Equation

(3.24) for i.i.d. sampling rather than uniform grid selection; thus the framework

described here is appropriate for Monte Carlo methods.

Calculatingwk,m values and therk,m(x; uk,vm) function is straightforward and

numerically tractable. However, it is desirable to limit the sizeof K andM by removing

the regions wherewkm approach zero (i.e., select onlyuk andvm values such thatwkm is
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greater than a given small value). For computational efficiency, an iterative process is

used. The iterative process is described below; Section 5.5 gives a full description of the

numerical evaluation process used for the results shown in Chapters 4 and 5.

Procedure 3.1 Iterative Process for calculating weight values

1. SelectK evaluation pointsk = 1, 2, ..., K (e.g.,K = 300) that are uniform over the

admissible set of non-target score parametersuk, where eachuk consists of meanµn,k

and standard deviationσn,k.

2. SelectM evaluation pointsm = 1, 2, ..., M (e.g.,M = 300) that are uniform over the

admissible set of target score parametersvm, where eachvm consists of meanµt,m and

standard deviationσt,m.

3. Findwk =
I∏

i=1

[ps|u(si |uk)pu(uk)] for each evaluation point selected in step 1 and for a

given set ofI target samplessi, i = 1, 2, ..., I.

4. Findwm =
J∏

j=1

[ps|v(sj|vm)pv(vm)] for each evaluation point selected in step 2 and for

a given set ofJ target samplessj, j = 1, 2, ..., J.

5. Combine allwk andwm pairs from steps 3 and 4 to find the initial values (e.g., 90,000)

of wkwm.

6. Find the root mean squared distance to the mean of the parameter values for each

(µn,k,σn,k) pair, i.e., [(µn,k −
1
K

∑K
k=1 µn,k)

2+(σn,k − 1
K

∑K
k=1 σn,k)

2]1/2.

7. Repeat step 6 for each (µt,m,σt,m) pair.

8. Retain a subset of the combinations of thewkwm pairs that are closest in distance as

defined by steps 6 and 7 to the mean of non-target and target parameter values,

respectively. Also, retain any additionalwk andwm pairs without regard to distance
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whosewkwm value is greater than the lowestwkwm value of the subset of pairs that are

closest in distance.

9. Create a new uniform grid of target mean and standard deviation values (for example,

10 x 10) that bound the region formed by the pairs retained in steps 6 and 8; the new grid

forms new (µn,k,σn,k) pairs (for example 100).

10. Create as in step 9 a new uniform grid of non-target means and standard deviation

values (for example, 10 x 10) that bound the region formed by the pairs identifiedin steps

7 and 8; the new grid forms new (µt,m,σt,m) pairs (for example, 100).

11. Find the posterior weightingswkwm of the new pairs (e.g., 10,000 posterior

weightings).

12. Retain all (wk, wm) pairs such that 99.9% of the total posterior parameter weightings

are maintained.

13. Repeat steps 9 through 12, except use the region formed by the pairs identified in step

12 rather than step 9.

As the number of non-target samples and target samples increases, the probability

density shown in Figure 3.7 is more highly peaked, and the region where the weightswk

andwm have significant magnitudes is smaller.
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Theorem 3.4 True versus possible parameter sets

Let d = {si : i = 1, ..., I} ⊂ [0, 1] be a set of independent and identically distributed

samplessi of the density of non-target samplesf(s; u). LetFI(s) be the distribution of

these samples. Letub̃ be the true (underlying) parameter values of the non-target density

f . Letuz be a possible parameter from the admissible setA, and let

cz =
I∏

i=1

f (s
i
; ub̃)−

I∏

i=1

f (s
i
; uz). (3.36)

Then, asI →∞, cz increases for allz �=b̃.

Proof

By definition of independent and identically distributed samples, the distribution of the

samplesFI(s) equals the distribution of the random variableS (see [Papoulis, 1991, pp.

185]) asI →∞ (see [Stark and Woods, 1986, pp. 252]). Thus, asI →∞, cz increases

for all z �=b̃.

A similar result holds true for the target samples. Further, since the ROCcurve density

combines the target and non-target posterior densities (see Equation (3.17)),the ROC

curve density also narrows (the ROC curve density evaluated at a given false alarm

probability approaches a dirac distribution) as sample size increases.

Figure 3.8 shows the final step in the generation of the ROC curve density. Basedon the

posterior density calculations for the target and non-target parameters (i.e., the mean and

standard deviation for a beta density), an approximation of the ROC curve density is

developed. A selected target density of score, a selected non-target density of score, and

a varying threshold forms a ROC curve and has a weight. Many sets of selections result

in many ROC curves, each with a weightwkwm. The figure shows curves that represent

δ[y − rk,m(x; uk,vm)] for five selectedk andm pairs. The weighted summation of
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Figure 3.8 Weighted ROC curves. Based on the posterior density approximations for the
target and non-target parameters values (i.e., the mean and standarddeviation
for a beta density), an approximation of the ROC curve density is developed.
The combination of a selected target density of score and a selected non-
target density of score forms a ROC curve and has a weight. Many sets of
selections results in many ROC curves, each with a weightwkwm. Here
only five weighted ROC curves are shown; for a large number of weighted
ROC curves many descriptive statistics may be computed, such as median
estimates for the ROC curve, confidence intervals for the ROC curve, median
estimates for the AUC value, and confidence intervals for the AUC value.
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δ[y − rk,m(x; uk,vm)] for k andm selected from the admissible set is described by

Equation (3.28). Five ROC curves are shown; a much larger number of weighted ROC

curves are needed to represent a ROC probability density model (approximately 10,000

ROC curves are typically employed). AsK andM become large, these weighted curves

approximate the analytical ROC surface density. In particular, if a largenumber of

δ[y − rk,m(x; uk,vm)] functions for selectedk andm pairs are each replicated a number

of times proportional towkwm, then the set of replicated functions represents the density

of ROC curves (as the preceding theorem indicates). For a large number of weighted

ROC curves, many descriptive statistics may be computed, such as median estimates for

the ROC curve, confidence intervals for the ROC curve, median estimates for the AUC

value, and confidence intervals for the AUC value as detailed in Chapter 3.This

outcome extends in a straightforward manner to the CEG curve, and Section 4.2.5 applies

the method described here to CEG curves.

The above discussion is self-contained in that an analytical ROC curve density process is

developed. Necessary inputs include non-target and target samples, specified density

models for the target and non-target samples, and prior densities for the parameters of the

models. The selection of evaluation points for the prior densities enables a numerical

estimate of the ROC curve density.

The upper left plot of Figure 3.9 shows selected target parameter points (circles) and the

upper right plot shows example non-target parameter points (circles). The lower left plot

shows target densities (solid curves) and non-target densities (dashed curves) for these

points, and the lower right plot shows the ROC curves formed by combinations of these

curves: out of the 64 possible pairs, the 44 are chosen that have the highest posterior

parameter density. The plots demonstrate that a slight shift in parameter value impacts

density shape and the corresponding ROC curve. As increasing numbers of targetand

non-target samples are drawn, the densities that fit the samples well using Bayesian

posterior density evaluation converge. Since a sequence of random variables converges
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Figure 3.9 Parameter variation with corresponding densities and ROC curves. The
upper left plot shows parameter points that select target densities, and the
upper right plot shows parameter points that select non-target densities. The
lower left plot shows target (solid curves) and non-target (dashed curves)
densities for these points, and the lower right plot shows the corresponding
ROC curves.
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in distribution as the number of samples becomes large (see Definition 5.5.10 of [Casella

and Berger, 2002, pp. 235]) assuming that the samples are i.i.d, the range of densities that

have high likelihoods (i.e., that fit the samples well) narrows as sample size increases.

An increase in sample size is observed experimentally to enable large regions of standard

deviations and means to be disregarded, because the corresponding posterior density

regions have low magnitude (see the above theorem).

Note that parameter evaluation points uniformly spaced for one parameter choice may

not be uniformly spaced for other parameter choices. Figure 3.10 plots points uniformly

spaced over variance and mean rather than standard deviation and mean, and then

converts these points to standard deviation and mean. Comparison with Figure 3.6 shows

that these points are now more concentrated at larger standard deviations. Figure 3.11

examines posterior probability density over the beta density parametersa andb rather

than mean and standard deviation. Asa andb increase, density width generally

decreases, which initially provides better fit to samples for selected means, until a

maximum posterior parameter weight is reached, beyond which the target and non-target

densities have variance too small to adequately fit the samples. Thus,selecting points

uniformly overa andb requires different prior assumptions than selecting points

uniformly over mean and standard deviation.

In this chapter, performance metric probability densities have been developed; Chapter 4

leverages these densities to obtain and verify confidence intervals andother descriptive

statistics.
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Figure 3.10 Uniformly spaced parameter selection over variance and mean compared
with selection over standard deviation and mean. The curves in both plots
enclose allowed beta density parameters. The points that are uniformly
spaced in variance and mean are transferred to standard deviation versus
mean in the lower plot. Note that while the curves are of different shape,
the limits ofσ andσ2 are both defined by the admissable set of Equation
(3.3) (the difference in shape is simply a result of using a vertical axis ofσ
rather thanσ2).
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Figure 3.11 Beta posterior parameter densities that compare a and b versusσ andµ
parameters. The bottom plot is as in Figure 3.7 but for a different set of
target and non-target samples. The top plot shows that asa andb increase,
the density width generally decreases, which initially provides better fit to
samples for selected means, until a maximum posterior parameter weight
is reached (here ata = 55, b = 15), beyond which the target and non-target
densities have variance too small to adequately fit the samples.
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4. Probability Density Characterization and Verification

The method of Chapter 2 generates densities for detection system performance metric

curves, such as the ROC curve. Various descriptive statistics then characterize these

densities; examples of such statistics are confidence contours for the ROC curve and

confidence interval limits for the AUC value. Following the development of such

characterization methods, a Monte Carlo approach estimates their accuracy using various

examples. Coverage accuracy and alpha are used to test whether or not the defined

confidence interval limits are accurate over a large number of trials. Forexample,

suppose that 30 target samples and 30 non-target samples generate a ROC curve. Then,

based on only these 60 samples, a ROC curve probability density and 90% confidence

intervals can be developed. The 90% confidence intervals are intended to enclosethe true

ROC curve 90% of the time. This outcome can be tested by generating 30 target samples

and 30 non-target samples many times, producing confidence intervals for each run, and

calculating the percentage of runs in which the confidence intervals enclose truth. The

coverage accuracy and alpha metrics are of particular interest because they provide

quantitative means to compare the method developed here with methods in the literature.

4.1 Development of descriptive statistics

4.1.1 The AUC value densities and confidence intervals.The following process maps

the weighted ROC curves shown in Figure 3.8 to AUC value uncertainty. Recall that if

the target and non-target density parametersuk andvm are specified as described in

Equation (3.16), then a deterministic ROC curve results. Further, a representative set of

(k, m) pairs results in a representative set of ROC curves. Chapter 2 describes a process

for generating such ROC curves (see Figure 3.8). First, find the ROC curver(x; uk,vm)

for each selected (k,m) pair, wherek andm identify one of theK parametersuk and one

of theM parametersvm. Second, replicate each curve a number of times proportional to
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its posterior parameter weightingwkwm, which is defined in Equation (3.15). Finally,

calculate for each ROC curve a corresponding AUC value as

AUC(uk,vm) =

∫ 1

0

r(x; uk,vm)dx, (4.1)

wherey andx are correct detection probability and false alarm probability, respectively,

of the ROC curve; that is,y = r(x;uk,vm) is the ROC function.

Confidence intervals for the AUC values are developed as follows. Center animpulse

probability density function at each observed AUC value. Add and normalize all impulse

functions such that the result is a probability density. Denote this densitypz(z), wherez

is the domain of possible AUC values. Begin at an AUC test value of 0 and increase until

the AUC test value is found such that the integral ofpz(z) from 0 to the AUC test value is

0.05. This test value is a lower 90% AUC confidence interval. Similarly,begin at an

AUC test value of 1 and decrease until the AUC test value is 0.05. This test value is an

upper 90% AUC confidence interval. These following equations describe the process:

∫ test valuelower

0

pz(z)dz = 0.05,

∫ 1

test valueupper

pz(z)dz = 0.05 (4.2)

In practice, the impulse function is obviously not practical to evaluate numerically.

Instead, compute the lower AUC confidence interval by starting at an AUC test value of

zero and stopping when 5% of the observed values are obtained, thereby approximating

the inclusion of 5% of the total impulse functions that are used to formpz(z). Proceed

similarly for the upper AUC confidence interval.

Note that a two-tail equal area approach is described here. Other approaches considered

by Ross [Ross, 2003] describe alternative confidence interval definitions. Notealso that

a median ROC curve is generated by beginning at an AUC test value of 0, increasing the

test value until the integral over the AUC value density from 0 to the test value is 0.5, and

4-2



specifying the ROC curve that corresponds to the test value as the medianROC curve

ranked by AUC value. Note finally that the AUC value density is not typically

symmetric, making a normal approximation approach in lieu of the above computation

undesirable.

Figure 4.1 shows a histogram of AUC values, where each AUC value is weightedby its

ROC curve weight as indicated in Figure 3.8. This histogram estimates the AUCvalue

density given a set of target samples and non-target samples, assumed forms for the

densities of score, assumed prior parameter densities, and specified sampling protocols.

A method that generates a ROC curve 90% confidence band from AUC value densities is

described in Section 4.1.2. Another method that generates a ROC curve 90% confidence

band from the weighted ROC curve density without use of AUC values is described in

Section 4.1.3.

4.1.2 Rank characterization of ROC curves by AUC values.The ROC curve

confidence contours shown in Figure 4.2 are obtained as follows. First, find the lower

and upper 90% confidence intervals for AUC value (as explained in the previous section).

Next find the ROC curve closest to the lower 90% AUC confidence interval test value

(see Equation (4.2)), and the ROC curve closest to the upper 90% AUC confidence

interval test value. These two ROC curves form the lower and upper limits of a 90%

confidence band. For the median or 50% ROC curve, find the median AUC value, and

then find the ROC curve that has an AUC value closest to this median value.

Figure 4.2 provides no new information beyond that given by the ROC curve densityof

Figure 3.8, and, in fact, Figure 4.2, unlike Figure 3.8, does not indicate the shape of the

ROC curve density (Figure 3.8 provides the entire ROC curve density, in contrast Figure

3.8 only provides confidence intervals that constitute a summary or partial description of

this full ROC curve density). However, the ROC curve confidence intervalsand the

median ROC curve shown in Figure 4.2 are useful. For example, for a selected false
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Figure 4.1 An AUC value histogram. This histogram is based on 30 target and 30 non-
target samples. After the replication of each representative ROC curve (as
in Figure 3.8) a number of times proportional to its weight, an AUC value
is calculated for each curve. For this example the underlying densities are
known (but not used in the histogram development), and the true AUC value
is 0.882. The AUC value is a single summary metric used to compare differ-
ent SUTs, and here an extention is made to a density estimate in the form of
a histogram of AUC values.
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Figure 4.2 Rank characterization for ROC curves weighted by AUC values. Once the
ROC curve density is developed, there are many possible definitions of ROC
curve confidence bands or ROC curve confidence interval contours. The 90%
ROC curve confidence interval contours shown here are obtained by finding
the ROC curve that has the AUC value closest to the lower 90% AUC value
confidence bound and the ROC curve that has the AUC value closest to the
upper 90% AUC value confidence bound. The median ROC curve is the
ROC curve that has the AUC value closest to the median (50%) AUC value,
and the true ROC curve (the ROC curve for the target and non-target densities
from which the samples are drawn) is also shown.
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alarm probability, the 90% confidence bands of correct detection probabilityfor two

SUTs can be compared. In particular, if one SUT has a median ROC curve which has

greater correct detection probability at the selected false alarm probability than a second

SUT, and if the confidence intervals of both SUTs at this false alarm probability do not

overlap, then the first SUT is more desirable than the second with at least 90%

confidence. The confidence interval at false alarm probabilities approaching zero or one

necessarily becomes narrow, because a ROC curve by definition has correctdetection

probability of zero at false alarm probability of zero and correct detection probability of

one at false alarm probability of one. In particular, in Equations (2.2) and (2.3) for

correct detection and false alarm probability, respectively, lett = -∞ (or in the case of

s∈ [0, 1], let t = 0). Then correct detection probability equals one and false alarm

probability equals one. Lett =∞ (or in the case of s∈ [0, 1], let t = 1). Then correct

detection probability equals zero and false alarm probability equals zero.

The confidence band method that Figure 4.2 illustrates compares favorably with a

confidence band formed by a pair of error bar contours, where such contours are based on

the standard deviation of the ROC curve density at a given false alarm probability. Such

error bars may extend outside the zero to one range of correct detection probability and

do not make appropriate allowances for skewed distributions. Methods in the recent

literature that go beyond simple error bars (such as [Zhou and Qin, 2005]) may also

extend beyond allowed regions, e.g., to correct detection probabilities greater than one.

Two advantages of the ROC curve confidence bands described in this section arethat

they do not require the selection of an independent variable (such as false alarm

probability), and the confidence bands generated are true ROC curves.

Once a density of ROC curves is developed, there are many possible definitions of ROC

curve confidence intervals or confidence interval bands (in addition to many ways to

compute these intervals or bands). Methods described in the literature typically are

applicable to only one or a small subset of these definitions. In contrast, the approach
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taken here of forming ROC curve densities first and then transitioning to descriptive

statistics can handle a variety of definitions. Ma [Ma and Hall, 1993] emphasizes the

need for approaches that may be applied to multiple confidence definitions. The next

section details the primary method of confidence interval estimation usedin this research.

4.1.3 Characterization of ROC curve density.With false alarm probability as the

independent variable, the following procedure generates a ROC curve density

characterization. First, find the density of correct detection probability at a selected false

alarm probability. Second, repeat for all possible false alarm probabilities. Finally,

generate a normalized combination of all such densities to form a ROC probability

density.

The density of correct detection probability at a given false alarm probability is found as

discussed in Section3.2, where each ROC curve is replicated a number of times

proportional to the posterior parameter weightingwkwm, given by Equation (3.15), and

let Nwroc equal the number of replicated ROC curves. Note that each ROC curve gives

one correct detection probability value at any selected false alarm probability. A density

of correct detection probability may be generated by using each of the Nwroc correct

detection probabilities as observations of some unknown density, where Nwroc is the

number of replicated ROC curves, and by estimating the density of correctdetection

probability based on these observations. The upper plot of Figure 4.3 shows such an

estimate based on a beta density model, and the lower plot shows contours of equal

density. Figure 4.4 shows similar plots for the true ROC curve with a lower AUC value.

The ROC curve density developed here specifies false alarm probability as the

independent variable. However, it is also acceptable (although not as consistent with

common practice) to select correct detection probability as the independent axis and to

find the density of false alarm probability at every correct detectionprobability.
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Figure 4.3 A ROC curve density. The upper plot estimates the ROC curve density
formed from 30 target scores and 30 non-target scores. Correct detection
probability is normalized so that for each false alarm probability the integral
of correct detection probability is one. The resulting correct detection den-
sity at each selected false alarm probability is smoothed by a beta density
that has the same mean and variance as the correct detection probabilities of
the replicated ROC curves. The lower plot shows equal density contours.
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Figure 4.4 A ROC curve density. This figure is similar to Figure 4.3, except that here
the set of 30 target scores and 30 non-target scores are selected from different
underlying target and non-target densities. These densities are such that the
true ROC curve has a lower AUC value than is the case in Figure 4.3.
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4.1.4 Confidence contours for ROC curve density.The ROC curve density developed

in Chapter 2 permits computation of confidence contours. Consider the Nwroc correct

detection probabilities at a specified false alarm probability. Createa density based on

these Nwroc values by centering an impulse (or delta function) density at each of the

correct detection probabilities, and normalize the combination of all Nwroc impulses so

that they form a probability density. Start at a correct detection probability of zero, and

increase it until 5% of the correct detection density is enclosed. The correct detection

probability where this result occurs is a 90% lower confidence interval. Similarly, start at

correct detection probability of one and decrease it until 5% of the correct detection

density is enclosed to find a 90% upper confidence interval. Repeat for all false alarm

probabilities. The continuum loci of all 90% lower confidence intervals specifies a 90%

lower confidence contour, and the loci of all 90% upper confidence intervals specifies a

90% upper confidence contour. The two contours enclose a 90% confidence band, and

are shown in the upper and lower plots of Figure 4.5. The upper plot uses 10 target

samples and 10 non-target samples as inputs, and the lower plot uses 30 target samples

and 30 non-target samples as inputs (these samples are similar to those shownin Figure

4.3).

The contours are expressed as follows. Letpy|x(y|x, d, h) denote the ROC density. Then

90% confidence interval fory at a particularx, or (xi), for a set of target samples (d) and

non-target samples (h) are found using

CIlower(mlower; xi,d, h) =

∫ mlower

0

py|(x,d,h)(y|xi, d, h)dy (4.3)

CIupper(mupper; xi, d, h) =

∫ 1

mupper

py|(x,d,h)(y|xi, d, h)dy (4.4)

and solving forCI−1lower(0.05; xi, d, h) andCI−1upper(0.05;xi,d, h).
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Figure 4.5 Confidence intervals with false alarm probability as the independent vari-
able for two sample sizes. A 90% lower confidence interval is developed
from the ROC curve density by fixing a false alarm probability, starting at
a correct detection probability of zero, and increasing the correct detection
probability until 5% of the density area is encompassed. Similarly, a 90%
upper confidence interval is developed by fixing a false alarm probability,
starting at a correct detection probability of one, and decreasing the correct
detection probability until 5% of the total correct detection probability is en-
compassed. The median contour (i.e., the locus of points that encompass
50% of correct detection probability) and the true ROC curve (for the target
and non-target densities from which the samples are drawn) are also shown.
In the upper plot 10 samples of target and 10 samples of non-target are used,
and in the lower plot 30 samples of target and 30 samples of non-target are
used.
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Figure 4.5 shows the general effect on confidence interval of an increasein sample size.

The confidence interval widths become smaller as the number of samples increases. The

factors that regulate ROC curve density (and confidence interval) widthsare
∏

i

f(si;u)
∏

j

g(sj ; v),wheref is the non-target density,g is the target density,si are the

non-target samples,sj are the target samples, andu andv are the specified parameters

that definef andg. As the number of target and non-target samples increases, the range

of densities with a high weight value as defined by these function decreases.

The density-based ROC curve confidence interval generation method developed here

constitutes an improvement over other methods described in the literature, as the

intervals here have more useful definitions. Many existing methods attemptto describe

the uncertainty in probability of correct detectiony at a specific probability of false alarm

x, but do not permit extrapolation to confidence bands because they either fail to

incorporate or incorporate conservatively the underlying uncertainty in the variablex.

The non-target density yields this uncertainty as a simple outcome of the Bayesian

approach in the method developed here. Other existing methods incorporate uncertainty

in bothy andx, but restrict threshold to a single value or make assumptions that are only

valid for particular density forms (see [Linnet, 1987], [Campbell, 1994], and

[Platt et al., 2000]). In the method described here, threshold is eliminated as a variable,

which removes the need to restrict threshold to a single value and retains uncertainty in

the independent variablex.

A confidence accuracy measure designated alpha tests ROC curve confidence interval

accuracy. Alpha describes the percentage of trials where the confidenceinterval does not

enclose truth. One set of target samples and non-target samples define one trial, a second

set of target samples and non-target samples define a second trial, etc. An ideal alpha is

one minus the intended confidence interval coverage. The example in Figure 4.5 claims

90% confidence intervals, and thus the ideal alpha is 0.1. If the underlying target and

non-target densities generate the same number of target and non-target samples an
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infinite set of times, the truth ideally departs from the confidence interval 10%of the

time. This confidence region accuracy evaluation process extends to a confidence band,

where contours defined by the confidence intervals at every false alarm probability define

the band. The process here assumes that each false alarm probability has an equal

contribution to an overall alpha measure. For example, if the true ROC curve lies outside

the generated confidence band for 25% of the false alarm probabilities for each of an

infinite set of ROC curve estimates, then alpha is 0.25. An alternative approach declares

"failure" if any portion of the ROC curve confidence band lies outside of the confidence

band for any false alarm probability for a particular run. With this alternative approach,

if any portion of the true curve deviates from the ROC curve confidence band on 40% of

an infinite set of generated ROC curve confidence bands, then alpha is 0.40.

Confidence interval accuracy does not necessarily increase with increasein sample size.

Consider two extreme cases. First, evaluate a ROC curve estimate with infinitely small

confidence interval widths that are ideally 90% confidence intervals. The ROCcurve

estimate may be close to truth, but the confidence band is always above or below the true

ROC curve, resulting in an average alpha of 1. Next, consider a ROC curve estimate far

from truth, but which has the largest possible confidence interval widths. For example, at

every false alarm probability, the 90% confidence interval limits are 0and 1, in which

case alpha is 0. In a related consideration, note that a confidence interval calculation

approach that produces an alpha of 0.1 (for claimed 90% confidence intervals) is

generally better than an approach that produces an alpha of 0.

Let rtrue(x) be the true ROC curve (in test cases where the density that generatesthe

target and non-target samples is known), letca(x) be the actual coverage accuracy

defined by Equation (4.5), letCIlower(m; x) andCIupper(m; x) be as defined by

Equations (4.3) and (4.4). Then

ca(m, x) = P {CIlower(m;x) < rtrue(x) < CIupper(m; x)} . (4.5)
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Estimates forP (rtrue(x) > CIlower(m;x)) andP (rtrue(x) < CIupper(m; x))may be

found by generating many sets of identical numbers of samples from the same target and

non-target score densities, to approximate the probabilities noted in Equation (4.5). In

particular, let ccvdesired be the desired confidence interval coverage (in the case of 90%

confidence intervals, ccvdesired = 0.90), and letad, alpha desired, be one minus the

desired confidence interval coverage. Then

alpha(m) = 1−

∫ 1

0

[ca(m, x)− ad]dx. (4.6)

4.1.5 Relations of confidence intervals to Chebyshev’s inequality.Three separate

relations of Chebyshev’s inequality to confidence intervals follow.

The first relation is established in Theorem 4.1 and shows that the upper andlower

bounds of the confidence interval contours developed in Section 4.1.4 are within the

constraints established by Chebyshev’s inequality.

Theorem 4.1 Upper and lower bounds for confidence interval contours

Let py|x(y|x) be as developed in Theorem 3.2. The median (see [DeGroot and Schervish,

2002, pp. 210]) ofpy|x(y|x) is the valuemedy|x such that

∫ medy|x

0

py|x(η|x)dη =

∫ 1

medy|xi

py|x(η|x)dη = 0.5. (4.7)

Let pupy|x(y|x) andplowy|x(y|x) be symmetric probability densities such that

pupy|x(y|x) =





py|x(y|x)∀y ≥ medy|x

py|x((2medy|x − y)|x)∀y < medy|x



 (4.8)

and
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plowy|x(y|x) =





py|x(y|x)∀y ≤ medy|x

py|x((2medy|x − y)|x)∀y > medy|x



 . (4.9)

Also, letµpupy|x (y|x) =mean ofpupy|x(y|x), µplowy|x (y|x) =mean ofplowy|x(y|x),

σpupy|x (y|x) = standard deviation ofpupy|x(y|x), andσplowy|x (y|x) = standard deviation of

plowy|x(y|x). Finally let ru(x) denote the upper bound on the (1 -alpha) upper

confidence interval ofpy|x(y|x) and letrl(x) denote the lower bound on the (1 -alpha)

upper confidence interval ofpy|x(y|x).

Then

ru(x) ≤ medy|x + (σpupy|x (y|x)

√
2

alpha
), (4.10)

rl(x) ≥ medy|x − (σplowy|x (y|x)

√
2

alpha
). (4.11)

Proof

By Chebyshev’s inequality (see [Hogg and Craig, 1978, pp. 59]), fork > 0

P (ru(x)− µpupy|x
(y|x) ≥ kσpupy|x (y|x)) ≥ 1−

1

k2
. (4.12)

Thus

P (ru(x) ≥ kσpupy|x (y|x) + µpupy|x
(y|x)) ≥ 1−

1

k2
. (4.13)
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An upper bound on the (1-alpha) upper confidence interval specifies that

P (ru(x) ≥ kσpupy|x (y|x) + µpupy|x
(y|x)) ≥ 1− alpha

2

and thus1− 1
k2
= 1− alpha

2
, k =

√
2

alpha
,

Herepupy|x(y|x) is symmetric iny, µpupy|x (y|x) = medy|x, and by definition,ru(x)

denotes the (1 -alpha) upper confidence interval.

Thusru(x) ≤ medy|x + (σpupy|x (y|x)
√

2
alpha

).

Similarly, by Chebyshev’s inequality (see [Hogg and Craig, 1978, pp. 59]),

P (µpupy|x
(y|x)− rl(x) ≥ kσplowy|x (y|x)) ≥ 1−

1

k2
, (4.14)

P (−rl(x) ≥ kσplowy|x (y|x)− µplowy|x
(y|x)) ≥ 1−

1

k2
, (4.15)

and

P (rl(x) ≤ µplowy|x
(y|x)− kσplowy|x (y|x)) ≥ 1−

1

k2
. (4.16)

A lower bound on the (1-alpha) lower confidence interval specifies that

P (rl(x) ≤ µplowy|x
(y|x)− kσplowy|x (y|x)) ≥ 1−

alpha
2
.

Herepupy|x(y|x) is symmetric iny, µplowy|x (y|x) = medy|x, and

by definition,rl(x) denotes the (1 -alpha) upper confidence interval.

Thus,rl(x) ≤ medy|x + (σplowy|x (y|x)
√

2
alpha

).
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Figure 4.6 shows a plot with the 90% confidence intervals developed in Section 4.1.4 and

the upper and lower bounds for the upper and lower 90% confidence intervals as

developed in this Section.

The second relation of confidence intervals to Chebyshev’s inequality does not require

the Bayesian progression that is the focus of the research presented here,but it results in

extremely wide (and unformative) confidence bounds. This relation is established as

follows.

For a given set of target samplesd, a given set of non-target samplesh, and a selected

alpha (such asalpha = 0.1), find a target sample standard deviationσ̂t and a non-target

sample standard deviation̂σn, and find the upper and lower bounds on the target mean as

follows. From Chebyshev’s inequality (see [Hogg and Craig, 1978, pp. 59]),

P (|mean(d) - xt| < kσ̂t) ≥ 1−
1

k2
= (1− alpha). (4.17)

Find the two values ofxt such that

|mean(d) - xt| < kσ̂t. (4.18)

Similarly, find the upper and lower bounds on the non-target mean by solving forxn,

where

P (|mean(h) - xn| < kσ̂n) ≥ 1−
1

k2
= (1− alpha), (4.19)

and find the two values ofxn such that
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Figure 4.6 Upper and lower bounds on 90% confidence intervals plus ROC curves and
coverage for a selected density pair. Here beta target and non-target densities
generate 30 target and 30 non-target samples (the densities haveµ = 0.805,
σ = 0.059 andµ = 0.715, σ = 0.046, respectively). The 90% confidence
intervals for the ROC curve developed using the method described in Section
4.1.4 are the short dashed curves. The underlying true ROC curve is the
solid curve, the median ROC curve estimate is the dash-dotted curve, and
the upper and lower bounds of the 90% confidence intervals are the heavy
dashed curves.
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|mean(h) - xn| < kσ̂n. (4.20)

This approach results in ROC curve uncertainty estimates that are extremely wide and

uninformative, even when the target and non-target standard deviations are specified. If

uncertainty in the target and non-target standard deviations is incorporated, these bounds

will only become wider and less informative. Figure 4.6 provides an example for30

target and 30 non-target samples. Here it is assumed that the standard deviation is

constant at the standard deviation of the target and non-target samples, and a target and

non-target beta density model is assumed (both of these selections can onlynarrow the

bands compared with more general cases). In combinations where the mean and

standard deviation pairs are outside of the admissible set (of allowable means and

standard deviations for a beta density), the standard deviation is retained, but the mean is

adjusted (brought closer to the sample mean) so that the resulting mean and standard

deviation are within the admissible set. This adjustment can only make the calculated

bounds more narrow.

Finally, a third relation of confidence intervals to Chebyshev’s inequalitysolves for

mlower andmupper such that (for 90% confidence bounds)

CIlower(mlower;x,d, h) =

∫ mlower

0

py|(x,d,h)(y|x, d, h)dy = 0.05 (4.21)

andCIupper(mupper; x, d, h) =

∫ 1

mupper

py|(x,d,h)(y|x, d, h)dy = 0.05, (4.22)

wheremlower is the correct detection probabilityy that produces a 5% lower confidence

interval at a specified false alarm probabilityx, for a set of target samplesh and a set of

non-target samplesd, andmupper is the correct detection probabilityy that produces a 5%
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Figure 4.7 ROC curve uncertainty example with Chebyshev’s inequality. ROC curve
estimates are produced from the underlying target and non-target densities
of Figure 4.6. Equations 4.17 through 4.20 are applied to find the 90%
bounds on uncertainty of the target and non-target means. The standard
deviation of the target and non-target samples is used, and target and non-
target densities at the extremes of the uncertainty bounds are combined to
form the curves shown in the top plot. The upper and lower limits of these
curves form confidence bounds; these bounds are extremely wide (the upper
ROC curve has an AUC value≈ 1, and the lower ROC curve has an AUC
value≈ 0). The four lower plots show two of the four sets of density pairs at
the uncertainty bound extremes. In the bottom right plots, the ROC curves
that correspond with the underlying target and non-target densities are shown
as solid curves, and the curves that correspond with the densities at left are
shown as dotted curves.
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upper confidence interval at a specified false alarm probabilityx, for a set of target

samplesh and a set of non-target samplesd.

From Chebyshev’s inequality (see [Hogg and Craig, 1978, pp. 58])

P [mlower(x; d, h) ≤ clower(x)] ≥
E[mlower(x; d, h)]

clower(x)
, (4.23)

andP [mupper(x; d, h) ≥ cupper(x)] ≤
E[mupper(x; d, h)]

cupper(x)
, (4.24)

whereclower(x) andcupper(x) are lower limits to the lower 90% confidence interval and

upper limits to the upper 90% confidence interval. This progression requires the

calcluation, based on one set of target and non-target samples, of the expected value of

mlower(x; d, h) andmupper(x; d, h). Based on one set of target and non-target samples,

the best estimate isE[mlower(x; d, h)] = mlower(x; d, h), and

E[mupper(x; d, h)] = mupper(x; d, h). If more sets of samples are available, then these

new samples may be incorporated into the framework, and improved confidence intervals

may be developed. However,py|(x,d,h)(y|x, d, h) is already the defined (actual) posterior

probability density for the ROC curve that fully incorporates what is known from the

observed target and non-target samples (which are assumed independent and identically

distributed), assumed model, and assumed priors. Thus, this discussion indicates that the

target and non-target samplesd andh are realizations of random variables, and as such

the developed posterior probability density,py|(x,d,h)(y|x, d, h)may be (and should be)

updated if additional sets of representative target and non-target samples are available. In

any case, the developed posterior probability densities (and the correspondingconfidence

intervalsCIlower(mlower; x, d, h) andCIupper(mupper; x, d, h)) are actual confidence

intervals based on the available samples, assumed model, and assumedpriors.
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The above discussion indicates that the posterior probability density is a full summary of

what is known about the ROC curve based on the observed sample data, the assumed

model, and the assumed priors. Carlin writes [Carlin and Louis, 2000, pp. 36] thata

Bayesian approach "enables direct probability statements about the likelihoodof θ falling

in [set] C, i.e., ’The probability thatθ lies in [set]C given the observed datay is at least

(1-α).’ This is in stark contrast to the usual frequentist CI, for which the corresponding

statement would be something like, If we could recompute [set]C for a large number of

datasets collected in the same way as ours, about (1-α) x 100% of them would contain

the true value ofθ.’ This is not a very comforting statement, since we may not be able to

even imagine repeating our experiment a large number of times" (the use of [set], in

brackets, has been inserted here for clarity). This discussion by Carlin is applicable to

the research presented here if the actual ROC curve is denoted asθ, if C is the set of all

real values such thatmlower ≤ C ≤ mupper, if y refers to the observed target and

non-target samples, and ifα = 0.1 (for 90% confidence intervals). MacKay [MacKay,

2003, pp. 50] summarizes the value of the posterior probability distribution strongly in

the following statement: "The posterior probability distribution represents the unique and

complete solution to the problem. There is no need to invent ’estimators’; nor do we

need to invent criteria for comparing alternative estimators with each other."

4.1.6 Convergence as number of parameter points increases.Wide spacing between

the prior beta density mean and standard deviation points for target densities and/or

non-target densities can affect the size of the confidence band. As this spacing

approaches zero and as the number of points selected therefore approaches infinity, the

confidence band area converges to a constant (the convergence of ROC curve density is

proven in Chapter 3; the confidence intervals are then deterministic from this density). A

simple example of this process is shown in Figure 4.8. Both plots have as inputs thesame

30 target samples and the same 30 non-target samples. The plot at the top, labeled coarse

spacing, develops confidence interval contours using the nine highest-weighted points
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Figure 4.8 The ROC curve confidence interval bands versus spacing of prior beta den-
sity mean and standard deviation values. As spacing decreases and the cor-
responding number of mean and standard deviation values considered there-
fore increases, the confidence band area converges to a limit. An example
of this trend for a 95% confidence interval with false alarm probability as the
independent variable is shown here. Both plots use as inputs the same 30
target samples and the same 30 non-target samples. The plot labeled coarse
spacing develops confidence intervals using the nine highest-weighted points
uniformly spaced on the mean and standard deviation target and non-target
beta density axes such that the ratio of the weight of the lowest to the highest
points is 0.001. The plot labeled fine spacing develops confidence inter-
vals using the 25 highest-weighted points uniformly spaced on the mean and
standard deviation target and non-target beta density axes such that the ratio
of the weight of the lowest to the highest points is 0.001.
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uniformly spaced in target density mean and standard deviation such that theratio of the

posterior density (or weight) of the lowest to the highest is 0.001. These contours define

a confidence band. Nine highest-weighted points are similarly found for the non-target

density. Note that if only one point for target density and one point for non-target density

is used, the confidence band area is 0 because the ROC curve is deterministic. The plot

at bottom, labeled fine spacing, develops a similar confidence band.

Figure 4.9 shows confidence band area convergence as the number of evaluated points

increases. For the example in Figure 4.9, target standard deviation versus mean grid

points are selected, where these points are centered around the mean and standard

deviation of the target samples. The number of target parameter density points is

increased from 9 points (3 target means and 3 target standard deviations) to 25 points (5

target means and 5 target standard deviations), etc., up to a total of 1089 points(33 target

means and 33 target standard deviations). Each set of points is used to calculate

confidence bands. The confidence band area converges (the convergence of ROC curve

density is proven in Section 3.2; the confidence intervals are then deterministic from the

density) as the number of parameter points increases, which indicates that pointspacing

does not bias the prior parameter densities if the points are selected uniformly over the

target and non-target density parameters (such as mean and standard deviation).

4.1.7 Additional confidence bound definitions.Note that the method developed here

extends to an additional class of confidence bounds that are not described elsewhere.

These confidence bounds describe ROC curves for a threshold selected at random, with

uniform probability of selection over allowable thresholds, where the bounds are formed

such that the integral of the ROC curve density above a specified value has the given

percentage of unit density variance. Such bounds are an extension of the method

developed here.
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Figure 4.9 Confidence band area versus number of evaluated points. Here a beta score
target density with mean of 0.805 and standard deviation of 0.059 and a beta
non-target score density with mean of 0.715 and standard deviation of 0.046
generate 300 target and 300 non-target samples. The method of Section
4.1.3 estimates the ROC curve confidence band. The non-target posterior
parameter density is evaluated at a single point. The target density is mod-
eled by 3 means and 3 standard deviations (9 points), 5 means and 5 stan-
dard deviations, etc., where the mean and standard deviations of the selected
points for the 3 mean and 3 standard deviation, 5 mean and 5 standard devi-
ation, and 33 mean and 33 standard deviation cases are shown in the upper
two plots. As the number of target parameter points increases, the lower
plot shows that the confidence band area approaches a constant.
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Let py,x(y, x) be the joint density of the ROC curve (rather than the ROC curve density

normalized such that the probability density of correct detection at given false alarm

probability is one), as described by Equation (3.17), except here replacepy|x(y|x) with

py,x(y, x). Let c.c. be the desired coverage (e.g., 0.90). Let the ROC subset (S(z1)) be

the subset of allx, y pairs such that

S(z1) =

{
(x, y) ∈ [0, 1]2 : py,x(y, x) ≥ z1max

x,y
[py,x(y, x)]

}
(4.25)

wherex ∈ [0, 1], y ∈ [0, 1], andz1 ∈ [0, 1]. Let z1 = 1 and find

c.c.test =

∫∫

S(z1)

py,x(y, x)dxdy. (4.26)

Then letz1new=z1old − ε if c.c.test < c.c.. Re-define the ROC subsetS(z1new) for this

z1new. Repeat the process, continuing to reducez1 until c.c.test = c.c.. The subset of all

x, y pairs that make upS(z1) wherec.c.test = c.c forms theconfidence bound.

Figure 4.10 shows ROC confidence bounds based on this definition and indicates higher

densities close to the ROC extremes. This result is appropriate because any ROC curve

has a correct detection probability of zero at false alarm probability of zero and a correct

detection probability of one at false alarm probability of one.

4.2 Verification of results

4.2.1 Analysis of ROC curve and AUC value bias.The results that follow quantify the

confidence band accuracy for the method described here (in Section 4.1.3) by considering

repeated runs over many sets of samples. Before examining this accuracy,consider that

ROC curves and AUC values formed by fitting beta densities to beta density generated

score samples generally have low bias, even for low numbers of samples.For example

(see Figure 4.11), select a target and non-target beta density pair. Generate 30 target and
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Figure 4.10 The ROC curve uniform threshold confidence bounds. The four plots show
30%, 50%, 70%, and 90% ROC curve bands formed such that the integral
of the ROC curve density above a specified value has the given percentage
of unit density volume, assuming that score threshold is randomly and uni-
formly selected over all allowed threshold values (0 to 1). Note thatonly
the 2-D area of showing the region bounded by this 3-D density is shown
in the above plot.
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Figure 4.11 Estimates of ROC curves and AUC values from mean and variance of target
and non-target beta densities. The top two plots show the underlying beta
target densities (solid curves) and the underlying beta non-target densities
(dashed curves); the respective mean and standard deviation parameters are
0.599, 0.021, and 0.479, 0.023. The middle left plot shows the ROC curve
for the underlying beta densities (solid curve) with ROC curve statistics for
300 sets of 30 target and 30 non-target samples drawn from each density,
where the mean of the 300 curves (dash/dotted line) and this mean plus
and minus the standard deviations are plotted (dotted lines). The lower left
plot similarly shows the true AUC value, mean AUC value, and mean AUC
value plus and minus the standard deviation for 300 sets of 3, 10, 30, 50,
100, 200, and 500 target and non-target samples. The middle right and
lower right plots show similar results for the densities shown in the up-
per right plot, for which the target and non-target densities have respective
mean and standard deviation parameters of 0.393, 0.134, and 0.381, 0.118.
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30 non-target samples from each density. Fit beta densities to the targetsamples and

non-target samples. Form a ROC curve from these target and non-target density

estimates. Repeat this process many times for many different sets of30 target samples

and 30 non-target samples. The mean of the ROC curves generated approximatesthe

ROC curve of the underlying densities. Similarly, the mean of the AUC values generated

from such a process approximates the AUC value of the underlying densities.

Figure 4.12 illustrates results of a process that characterizes the accuracy of AUC values;

this process is of interest for characterizing RSD values. First, assume a non-target

density. Then, for each target density, find the corresponding AUC value. For the fixed

non-target density, the relation of AUC value to the mean and standard deviation of the

non-target density is shown in Figure 4.12. The method developed here is still

appropriate in the presence of ROC curve or AUC value bias (an analysis of CEG curve

and RSD value bias, also included in this section, provides further discussion).

4.2.2 The ROC curve confidence bounds.The explanation here largely focuses on

confidence intervals at selected false alarm probabilities, but it extendsto confidence

intervals over the entire ROC curve, which form confidence contours, and tothe

confidence band enclosed by the contours. Ideal performance metric confidence

intervals may achieve two objectives. First, the stated coverageaccuracy of the

confidence intervals should be consistent with the actual coverage, where coverage

accuracy summarizes actual containment; for example, 90% confidence intervals ideally

contain truth with 90% probability. Second, the confidence interval widths should beas

small as possible.

The following steps evaluate confidence interval accuracy over a largenumber of runs.

1. Select a target and a non-target density and find the true score-threshold ROCcurve

associated with these densities. The true ROC curve is found by evaluating the function
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Figure 4.12 Comparison of AUC values for a fixed non-target score density. Here the
non-target score density is fixed atµ = 0.599 andσ = 0.021. The plots
show the effect of varying the target density parameters (µ andσ) for the
fixed non-target density parameters. The top and bottom plots are the same
except for orientation; two plots are provided to facilitate comparison with
the RSD value plots of Figure 4.22.
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that generates the ROC curve (by varying the score-thresholdt) as described in Equations

(2.5) to (2.10).

2. Generate many sets of target and non-target score samples from these densities, where

each set of samples has the same number of target and non-target samples.

3. Generate for each set confidence intervals for the ROC curve at each of uniformly

spaced false alarm probabilities.

4. Record the fraction of instances, called alpha, where the truth (i.e.,the true ROC

curve) is outside of the confidence intervals; for 90% confidence intervals this fraction is

ideally 0.10.

5. Generate a summary alpha value for the entire confidence band by finding the

percentage of correct detection probabilities where the confidence intervals do not

contain truth for all false alarm probabilities and for all sets.

The Bayesian framework developed here actually produces confidence intervalsthat

reflect coverage probability for particular runs (for the samples, assumed model, and

assumed priors); other approaches focus on confidence interval accuracy only over a

large number of runs. Note that the steps above are not in themselves concernedwith

performance for a particular run, and thus these steps perform a frequentist-type

verification that evaluates "on average" performance over many runs (or sets of target and

non-target samples) (see [Carlin and Louis, 2000, pp. 35-36]). However, itis of interest

to test the performance of the Bayesian approach over a large number of runs (as the

confidence interval results over one run, although correct, are not possible to verify

numerically, except over many runs).

The lower left plot of Figure 4.13 shows that the observed alpha for a particular run can

range from 0 to 1. The summary alpha value over all runs for the example shown in

Figure 4.13 is 0.09, which approximates the ideal alpha of 0.10.
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Figure 4.13 Densities, ROC curves, alphas, and coverage for a selected density pair.
Here the beta densities of the upper left plot generate 30 target and 30 non-
target samples (the densities haveµ = 0.805,σ = 0.059, andµ = 0.715,
σ = 0.046, respectively). The confidence intervals for the ROC curve are
shown at the lower left. The upper right plot shows the observed alphas
for 200 sets of 30 target and 30 non-target samples, where the mean over
many runs should approach 0.10; the observed mean alpha is 0.092. The
lower right plot investigates possible bias; results show the process to be
unbiased, where vertical lines are 90% confidence bars; these bars narrow
as the number of sets increases.
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Note that if the summary alpha value described above results in an ideal alpha, the

confidence intervals of correct detection probability at a particular falsealarm probability

are not necessarily ideal. Thus, it is of interest to evaluate the fraction of sets or runs

where the separate confidence intervals at particular false alarm probabilities enclose

truth. The lower right plot of Figure 4.13 provides an example, where the straight

horizontal line indicates ideal 90% coverage and the vertical error bars describe

uncertainty due to the finite number of test runs (as the number of test runs increases, the

length of each vertical error bar decreases). The coverage of each run is assumed to be

from a binomial density; the figure shows 90% vertical error bars based on this

assumption. The process described above for developing confidence intervalsis optimal

for the assumed models, the assumed priors, and the given input samples.Thus any

deviation in the coverage accuracy of confidence intervals is due to inapplicable model

density forms or inapplicable prior densities of model parameters. Figure 4.14provides

an example for different underlying target and non-target densities.

A similar process is used to develop coverage estimates for AUC value confidence

intervals, CEG curve confidence intervals, and RSD value confidence intervals. Figure

4.15 shows the ROC curve density and density contours that corresponds with the

confidence intervals of Figure 4.14. Coverage estimates for an AUC value example are

shown in Figure 4.16. The upper plot shows the true ROC curve (solid line) and 90%

confidence intervals (dashed line) for a single run of an assumed density model.The

lower plot shows the AUC value estimate (solid curve) and AUC value 90%confidence

intervals (dotted curves) for many separate runs. The calculated alphavalue is 0.0993,

which approximates the ideal AUC value for 90% confidence intervals.

Attempts to describe coverage accuracy often result in an apparent paradox. For

example, assume that 30 target samples and 30 non-target samples are available. Then

form ROC curve confidence intervals as detailed in Section 3.4. While this single set of

samples forms confidence intervals, coverage accuracy estimation requires many sets of
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Figure 4.14 Densities, ROC curves, alphas, and coverage for a different target and non-
target density pair (these beta densities haveµ = 0.65, σ = 0.062, and
µ = 0.745, σ = 0.043, respectively). This figure repeats the analysis of
Figure 4.13 for a different target and non-target density pair.
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Figure 4.15 A ROC curve density and density contours. The ROC curve density and
density contours that correspond with the confidence intervals of Figure
4.14 are shown.
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Figure 4.16 Estimates of ROC curves and AUC value confidence intervals. The upper
plot shows the true ROC curve (solid line), the median ROC curve (dash-
dotted line), and 90% confidence interval contours (dashed lines) for a sin-
gle run of the density model of the top left plot of Figure 4.13. The lower
plot shows the AUC value estimates (solid curve) and AUC value 90% con-
fidence intervals (dotted curves) for many separate runs sorted by lowest
to highest estimated AUC value. The straight horizontal line indicates the
true AUC value for an infinite number of samples. The calculated alpha
value is 0.0993, which approximates the ideal AUC value of 0.10.
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target and non-target samples. However, if these sets of samples areavailable, they may

be concatenated so that the number of target samples and non-target samples ismuch

greater than 30. Thus, if enough information is known to test confidence interval

accuracy, then enough information is known to make the confidence intervals

unnecessary. This discussion identifies a need for representative test data. For such test

data either the underlying target and non-target score sample densities are known,or a

very large number of target and non-target score samples are known (the latter is the case

for the experimental results of the following section).

4.2.3 ROC curve experimental data results.Chapter 3 develops a Bayesian

framework that generates performance metric densities. From this framework, various

descriptive statistics are derived. The framework and descriptive statistics have in large

part been demonstrated with a beta density model; however, they apply to other density

models, such as beta mixture models or Gaussian models. An example of this extension

is described here using experimental data from an actual SUT rather thandata generated

from assumed underlying target and non-target densities. The Air Force Research

Laboratory (AFRL) made this data available by applying a mean-square/generalized

likelihood ratio test (MS /GLRT) algorithm to Moving and StationaryTarget Acquisition

and Recognition (MSTAR) public data (see [Bryant, 2002]).

Figure 4.17 shows the experimental target and non-target data, after normalization to zero

to one. The following procedure selects a full set of target and non-targetsamples,

starting with 588 target scores. The AFRL data has nine sets. Sets 1, 2, and 3 pertain to

SAR images that all contain a BMP2 vehicle. Set 1 is the collection of 196 images of a

selected BMP2 vehicle. Set 2 is the collection of 196 images of a second BMP2 vehicle.

Set 3 is the collection of 196 images of a third BMP2 vehicle. For each of the586

images in these three sets, an MS/GLRT algorithm has been applied by Bryantto obtain

three values [Bryant, 2002]. The first value describes the match of the image to a BMP2,

the second value describes the match of the same image to a BTR70 (armored personnel
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carrier), and the third value describes the match of the same image to aT-72 (tank).

Here, only the first value is of interest (because the BMP2 is assumed to to be a target),

and thus 196 x 3 (588) target scores are obtained. Similarly, 784 non-target scores are

obtained as follows. Sets 4, 5, 6, and 7 each consist of 196 images that contain a selected

BTR70, T-72 (tank 1), T-72 (tank 2), and T-72 (tank 3), respectively. Asin sets 1, 2, and

3, the MS/GLRT algorithm has been applied to each set to obtain three values (the match

of the image to BMP-2, BTR70, and the T-72). Since the target is the BMP-2, only the

first value among the three is retained. Thus there are now 196 x 4 (784) targetscores.

In addition to the sets of 3-dimensional data values, AFRL provided codethat assists in

the above process. Note that there are many options for obtaining example target and

non-target samples in addition to the method described above. An alternative option

takes the three (BMP-2, BTR-70, and T-72) values for each image and retains the highest

among the three real number values. In such an alternative, an SUT achieves success as

long as it correctly identifies that an image contained a weapon system; the SUT would

not necessarily need to identify the specific system.

Sets 8 and 9 are not weapon systems (for example, set 9 contains only bulldozers).

Initial normalization ensures that all values within the nine sets ofdata range from zero to

one. Since many of these values are not used when BMP2 is the assigned target, the 588

target scores and 784 non-target scores have a narrower range than zero to one. The

lowest value among the 588 target scores and 784 target scores is approximately 0.4 and

the highest value is 1. Note that if a score of exactly zero or exactly oneis tested in a

beta density based model, the posterior density equals zero. Therefore, an additional

linear transformation is applied to the data such that all values withinthe nine sets of data

have an upper limit of 0.95 and a lower limit of 0.05.

Here two comparison processes estimate the ROC curve densities and generate ROC

curve confidence intervals. The first process applies a single beta density model. The

second process applies a two-beta mixture density model. Note that in the two-beta
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density model, the number of target and non-target grid points required is large; an

exhaustive iterative search over uniform means and uniform standard deviations is not

used. Instead, grid points are selected in a uniform, random manner over all allowable

means, standard deviations, and ratios, such that an example two-beta density is fully

defined by two means, two standard deviations, and one ratio. The ratio showsthe

relative weighting of the two beta densities that comprise the two-beta density model.

Figures 4.18 and 4.19 show the results. Note that since the underlying densities arenot

known, the experimental data coverage accuracies and alphas are not expected to be as

ideal as in the examples of previous sections. Figure 4.18 assumes a single beta model

for the data. Many sets of 30 target samples and 30 non-target samples aredrawn from

the 588 target scores and 784 non-target scores, and the assumed truth is the ROC curve

formed by all 1372 scores.

The figure shows confidence intervals developed for one run of 30 target and 30

non-target samples (drawn from the 588 target scores and 784 non-target scores)and

coverage accuracy based on 105 such sets. Note that the ideal mean alpha is0.1, and the

observed alpha is 0.2359. Figure 4.19 applies a two-beta mixture model to the same

process. The two beta mixture model has 5 parameters (two means, two standard

deviations, and a ratio of the two beta densities). The mean alpha for this bimodal

two-beta density mixture model is 0.1038≃ 0.10, which improves the single beta model

results.

The lower left plots of both Figure 4.18 and 4.19 show confidence intervals developed by

the single beta models and the two-beta mixture models for the same set of 30 target and

30 non-target samples. The upper left plots of the figures use the same set of target and

non-target samples, and the plots show the target and non-target densities thatcorrespond

to the ROC curve with the highest posterior density or weight (see Figure 3.8).Even

though the target and non-target densities of the highest posterior density forthe single

beta density model do not appear to be of the same form as Figure 4.17, the ROC curve
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Figure 4.17 Experimental target and non-target score histograms. Based on a subset of
data from AFRL/SN [Bryant, 2002], the confidence interval development
process (see Figures 4.5 and 4.13) is applied to the experimental data shown
above. A single beta density model is applied to this data in Figure 4.18,
and a two-beta mixture density model is applied in Figure 4.19. Note that
a beta density model requires scaling of the data (since the data here must
range from 0 to 1).
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Figure 4.18 Densities, ROC curves, alphas, and coverage for 30 target and 30 non-target
samples generated from the experimental data shown in Figure 4.17 and a
single beta model. The data of Figure 4.17 is scaled for a maximum range
of 0.05 to 0.95 rather than 0 to 1 (see text).
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Figure 4.19 Densities, ROC curves, alphas, and coverage for 30 target and 30 non-target
samples generated from the experimental data shown in Figure 4.17 and a
two beta mixture model.
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confidence intervals appear reasonable. This difference emphasizes the benefit of a

Bayesian approach. Further, the two-beta mixture model appears to have better coverage

accuracy over all false alarm probabilities, showing that more complex models may be of

benefit when the density form is not known; such as in this experimental data (for

example, note the small but significant number of target samples between 0.5 and 0.7,

and the small but significant number of non-target samples between 0.4 and 0.6).

Note that the comparison "truth" is actually an estimate of truth as it consists of only 588

target scores and 784 non-target scores. These numbers seem large enough to

approximate truth, but there is uncertainty (see Figures 3.2 and 3.3, and related

discussion). This result also emphasizes the importance of incorporating knowledge of

the actual underlying model, if known. MacKay [MacKay, 2003] discusses the related

concept of importance sampling, which provides the option of using a simpler model

even when it is known that a more complex model is truth.

Additional implementation choices exist. An option is to change the scaling of the data.

If the data were scaled from 0.1 to 0.9 rather than 0.05 to 0.95, the scaling may impact

coverage accuracy. An example for the single beta density case for 0.1 to 0.9 scaling is

shown in Figure 4.20. For this example, the change in scaling has minimal impact onthe

results.

The results presented here show the ability of the framework to evaluate experimental

data. This results presented here do not imply that the two-beta density mixture model

will always have results that improve a single beta model. The single beta density

framework (and two-beta density mixture model extension) have been introduced in this

research as examples to test the framework developed in Chapter 3. Detailed approaches

regarding the appropriate incorporation of more complex models are presented in future

work.
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Figure 4.20 Same as Figure 4.18, except that the experimental sample values arescaled
for a maximum range of 0.1 to 0.9.
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4.2.4 Analysis of CEG curve and RSD value bias.The results that follow in Section

4.2.5 quantify CEG curve confidence band accuracy by repeated runs over many setsof

samples. Before examining this accuracy, consider that RSD values formed by fitting

beta densities to beta density generated data can have a higher bias than AUC values,

particularly for low numbers of samples. For example (see Figure 4.21), select a target

and non-target beta density pair. Generate 30 target and 30 non-target samples fromeach

density. Fit beta densities to the 30 target and 30 non-target samples by matching sample

and density mean and variance. Form a CEG curve and RSD value from thesetwo beta

density estimates. Repeat this process many times for many different sets of 30 target

samples and 30 non-target samples. The mean RSD value generated from this process

may be consistent with the RSD value of the underlying densities. Note that the CEG

curve estimates exhibit a slight bias, but the standard deviation is wide.

In Figure 4.22 a non-target density is assumed, then the RSD value is found for many

target beta densities. If truth is at the minimum of the "bowl" shown, then the verification

process that was used for AUC values is not appropriate for RSD values (compare Figure

4.22 with Figure 4.12). However, RSD values developed here are appropriate: given an

assumed model of beta densities for target and non-target and given targetand non-target

samples, 90% correct confidence intervals for RSD values can be generated. These

confidence intervals are correct, although they may not enclose the truth for 90% of runs.

The verification issue noted here may be illustrated as follows. Suppose 1000 students

take a test of 100 questions. It is known (as a prior) that 999 of the students answer80

questions correctly and one student answers 95 questions correctly. An evaluator is

aware of this information and obtains 10 test questions from a randomly selected student.

Unknown to the evaluator, the selected student is the student who answers95 questions

correctly. The evaluator is to provide 90% confidence intervals for the number of

questions that the student answers correctly. Based on the priors, the evaluator specifies

the upper and lower 90% confidence intervals at 80 questions correct. This process is
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Figure 4.21 Estimates of CEG curves and RSD values. The top two plots show un-
derlying target densities (solid curves) and underlying non-target densities
(dashed curves). The middle left plot shows the CEG curves for the un-
derlying beta densities (solid curve) with CEG curve statistics for 300sets
of 30 target and 30 non-target samples drawn from each density shown in
the top left plot, where the mean of the 300 curves (dash/dotted line) and
this mean plus and minus the standard deviations are plotted (dotted lines).
The lower left plot similarly shows the true RSD value, mean RSD value,
and mean RSD value plus and minus the standard deviation for 300 sets of
3, 10, 30, 50, 100, 200, and 500 target and non-target samples. The middle
right and lower right plots show similar plots for the densities in the upper
right plot.
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Figure 4.22 The RSD values for a fixed non-target density. Here the non-target density
is constant and the target density varies over the full range of possible beta
parameters. Note the bowl appearance, where RSD approaches a mini-
mum at mean of 0.6 and standard deviation of 0.1. If the true density
has the minimum RSD value, then the RSD confidence intervals developed
for small set of samples do not enclose truth because uniform priors over
mean and standard deviation are assumed. The confidence intervals are
reasonable even though they are not necessarily appropriate in the standard
coverage accuracy test used for the CEG curve, ROC curve, and AUC value
confidence intervals. The two plots are the same except for orientation.
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repeated many times. No matter how many sets of 10 questions are provided,when each

set is considered individually, the confidence intervals will never enclose the truth of "95

questions correct".

4.2.5 The CEG curve confidence bounds.Figure 4.23 is similar to Figure 4.13,

except that the performance metric examined is the CEG curve rather than the ROC

curve. Using the accuracy description of alpha, as with the ROC curve, CEG curve

confidence interval development is shown to be accurate for the assumed model and

priors. Note that this figure is representative of CEG curve results; similar plots with

sample sizes of 10, 30, 100, and 200 have been tested with similar results (andwith an

additional underlying density for which the CEG curve is near the 45 degree line). The

results are significant because whereas the ROC curve confidence intervalprocess

described here is an improvement over existing techniques, the CEG curveconfidence

interval specification process is without precedent. The results also demonstrate the

general extensibility of the entire Bayesian framework to performance metrics other than

the ROC curve. Figure 4.24 shows an additional example using different underlying

target and non-target densities.

The verification processes that are applied here in Chapter 4 will be used to assist in

comparisons with the literature in Chapter 5.
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Figure 4.23 The alpha metric for a CEG curve. Here the underlying densitiesshown at
the upper left generate 30 target and 30 non-target samples (the beta densi-
ties haveµ = 0.599,σ = 0.021, andµ = 0.479, σ = 0.023, respectively).
Confidence intervals for the corresponding CEG curve are shown in the
lower left with the median CEG curve and the true CEG curve. The upper
right plot shows the observed alphas for 264 sets of 30 target and 30 non-
target samples, where the mean over many runs should approach 0.10; the
observed mean alpha is 0.1035. The lower right plot investigates possible
bias; results show the process to be unbiased, where vertical lines are 90%
confidence bars; these bars narrow as the number of sets increases.
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Figure 4.24 The CEG curve confidence intervals for a single run and coverageaccuracy
over many runs. The left plot shows 90% confidence intervals developed
for 30 target samples and 30 non-target samples (the underlying densities
are the same as in the right plots of Figures 4.11 and 4.21). The right plot
shows the percent coverage of confidence intervals produced for 247 runs,
where each run repeats the process used to generate the left plot.
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5. Quantitative Comparisons

In this chapter quantitative comparisons are made with methods described in the

literature review of Chapter 2. First, the Metz method, which was discussed extensively

in the first part of the literature review section of Chapter 2, is now reviewed and

compared qualitatively and quantitatively with the method developed here. Then other

methods are also reviewed and compared. Here, coverage accuracy and alpha (as

described in Chapter 4) are used to quantify the accuracy of the confidence intervals of

the method developed here with other available methods in the literature. These metrics

provide tools for comparing the accuracy of the developed confidence intervals among

various ROC uncertainty estimation methods.

5.1 Comparison with Metz confidence interval method

Figure 5.1 compares the Metz method [Metzet al., 1998] with the method developed

here. This evaluation uses the software package ROCKIT to execute the Metz method.

Beta densities generate 30 target and 30 non-target samples. Many runs repeatthis

sample generation process, where each run selects a new set of 30 target and 30

non-target samples. Application of the confidence interval calculation method developed

here (see Section 4.1.4) generates unique ROC curve confidence intervals for each run.

Confidence band coverage area evaluation and alpha (coverage accuracy) evaluation

reveal clear advantages of the method developed here over the Metz method. For many

runs of 30 target and 30 non-target samples, the coverage accuracy may be evaluated and

averaged over all false alarm probabilities. For 120 such runs, the method developed

here is 51% closer to the ideal alpha of 0.05 (for 95% confidence intervals) over the range

of the ROC curve. Recall that larger confidence band coverage area without improved

coverage accuracy implies less useful results. Again analyzing the 120 repeated runs of

30 target and 30 non-target samples, the Metz method has 16% larger confidenceband
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Figure 5.1 Alpha and confidence interval lengths for the Metz [Metzet al., 1998]
method and the method developed here. Both methods develop 95% con-
fidence intervals. Beta densities with target mean of 0.805, target standard
deviation of 0.059, non-target mean of 0.715, and non-target standard devi-
ation of 0.805 generate 30 target samples and 30 non-target samples many
times. Note that the Metz method appears to be slightly closer to the ideal
alpha than the method developed here between false alarm probability values
of 0 and 0.02 and 0.11 and 0.13, which is not necessarily advantageous be-
cause the method developed here has greater coverage (approximately 97%)
combined with significantly shorter interval lengths (21% shorter at a false
alarm probability of 0.01, for example) at these values. A similar argument
applies for false alarm probability values between 0.25 and 0.4, as the confi-
dence interval lengths of the two methods are nearly identical, and the Metz
method has wider coverage. For the smallest possible confidence interval
widths that maintain at least (1-alpha) coverage, the method developed here
outperforms the Metz method for every false alarm probability.
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area than the approach developed here, and Metz has larger coverage for thefull range of

critical false alarm probability values between 0 and 0.2. For the smallest possible

confidence interval widths with at least (1-alpha) coverage, the method developed here

outperforms Metz at every false alarm probability. Note that in contrast to the Metz

method, the method developed here requires no assumptions about the shape of the ROC

curve, which is important because for target detection system evaluationit is not

appropriate to presuppose the shape. Comparing the top and bottom plots of Figure 5.1,

note that there is a false alarm probability (near 0.2), where the Metz methodhas a higher

alpha than the method developed here, but also has a larger confidence interval length

than the method developed here. These results are reasonable because confidence

interval length does not indicate whether or not the length is over the appropriate range of

correct detection probabilities.

The Metz method does not allow for ready incorporation of prior assumptions torefine

the ROC curve uncertainty estimates. The choice of a generally convex ROC curve (if

only unintentionally) becomes a choice of a prior. Some adjustment or weighting of the

covariance terms of the binormal approach could change the standard error, but Metz

does not discuss such adjustment. The method developed here permits the ready

incorporation of target and non-target parameter priors, and it may be easily extended to

any density form.

Figure 5.2 shows the ROC curve and example associated confidence bands for the

example of Figure 5.1. Figure 1.3 has already revealed that the confidence intervals for

the Metz approach can result in a significantly larger confidence band areathan the

confidence band area for the method developed here.

Comparison with the Metz method makes clear significant weaknesses in the ability of

the Metz method to adapt to curve forms that are not concave. This comparison shows

that the Metz method is inferior in confidence interval coverage accuracyand confidence

band area compared with the method developed here. However, even disregarding these
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Figure 5.2 Comparison of ROC curve and confidence intervals. Here 30 target and 30
non-target samples are drawn from beta densities for which the solid curve is
the true ROC curve for an infinite set of samples (the target mean is 0.715,the
target standard deviation is 0.01, the non-target mean is 0.715, and the non-
target standard deviation is 0.046). The 90% confidence interval contours
for the method developed here and the Metz method are shown. Figure 5.1
reports the coverage accuracy and confidence interval widths for many runs,
and the plot shown here gives one example of such a run.
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disadvantages, the Metz approach does not apply to the confidence error generation

(CEG) curve or other performance metrics where the assumed form of the performance

metric curve is not a straight line in normal deviate space.

5.2 Comparison with Zhou confidence interval method

The literature considers various ROC-curve bootstrap approaches, i.e.,methods that

generate confidence bounds using subsets of the available target and non-target samples.

This section examines the most recent approach, Zhou [Zhou and Qin, 2005], who

obtains results that improve upon the bootstrap results of Platt [Plattet al., 2000]. A

general advantage for bootstrap methods is that they make no assumptions about the form

of the densities (such as assuming a beta density). Both Platt and Zhou claim reasonable

coverage accuracies for 95% confidence intervals of correct detection probability at false

alarm probabilities of 0.1 and 0.2; Zhou claims smaller confidence interval widths.

Zhou develops two new bootstrap-based approaches; the approach that Zhou regards as

optimal is used here for comparison. In discussing Platt’s work, Zhou points out

disadvantages of bootstrap methods, such as the high number of target and non-target

samples necessary for accurate results. Zhou claims that a binomial correction factor

improves bootstrap-based results, particularly at low numbers of samples. He considers

multiple examples with 20 target samples and 20 non-target samples, whereas Platt’s

research focuses on 100 target samples and 100 non-target samples.

Zhou’s paper only considers results at false alarm probabilities of 0.1and 0.2. Figure

5.3, which corresponds with Zhou’s example 2 and 3, uses Zhou’s method but develops

confidence intervals for other false alarm probabilities. At false alarm probabilities of

0.1 and 0.2, coverage accuracies similar to Zhou’s results are obtained (see the top right

plot of Figure 5.3). The confidence interval widths are also consistent with Zhou’s

findings. As Zhou and Platt both focus only on false alarm probabilities of 0.1 and 0.2,a

key concern is whether or not confidence intervals are accurate over other false alarm
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Figure 5.3 Confidence intervals for one run of the Zhou [Zhou and Qin, 2005] method,
coverage accuracy for many runs, and comparisons with the method devel-
oped here. Zhou examines false alarm probabilities of 0.1 and 0.2, and his
work is extended here to the full range of false alarm probabilities. The
top left plot shows a representative ROC curve with confidence intervalsfor
the Zhou approach with 20 target and 20 non-target samples. The top right
plot shows the percent coverage of the Zhou method for 1700 runs with 90%
coverage vertical confidence bars. The lower two plots compare 116 runs
for the method developed here. Note that in contrast to Zhou, the method
developed here produces smooth confidence bands and ROC curves, and the
coverage is consistent over the full range of false alarm probabilities.
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probabilities. Examining the top right plot of Figure 5.3, the ROC curve for a density

pair that Zhou selects deviates considerably from the ideal 95% coverage between a false

alarm probability of 0.3 and 0.88. Recall that bootstrap methods rely only on the

observed samples (rather than estimates of densities). If the underlying density that

generates the samples is relatively small at a particular score, the corresponding correct

detection probabilities at that score are difficult to estimate with a bootstrap method.

Figures 5.4, 5.5, and 5.6 show the underlying densities that Zhou uses as examples,

results of the Zhou method, and a comparison with the method developed here. In

contrast to Zhou and other bootstrap methods, the method developed here has appropriate

coverage accuracy over the entire range of the ROC curve.

5.3 Comparison with Hall confidence interval method

Hall [Hall et al., 2004] uses a kernel-based approach to form confidence intervals. They

use an updated bandwidth calculation approach that extends previous kernel-based

approaches. The method they develop requires use of 10 different smoothing parameters

to set different bandwidths. They report coverage accuracy results wheresamples are

generated repeatedly from assumed underlying densities and report resultsfor 100 target

samples and 100 non-target samples. These results appear to be generally accurate,

except at the extremes of false alarm probability, where the coverage accuracy often

declines. This result is of concern, as very low false alarm probabilities are often of

particular interest; however, adequate coverage accuracy over the full range of false

alarm probabilities is important as indicated, for example, in the SUT Aand SUT B

example of Chapter 1. (Of course, if it is known a priori that the only false alarm

probability of interest is a false alarm probability of 0.5, then the Hall method performs

well for the examples reported by Hall.) Figures 5.7 and 5.8 show a comparison of the

method developed here and two of the Hall examples. The weaknesses that theHall

method can have at the extremes of false alarm probabilities is apparentin the Figures.
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Figure 5.4 Underlying densities for examples used to compare with the Zhou
[Zhou and Qin, 2005] method. Zhou selects the above beta densities, and
these densities generate target and non-target samples. The solid lines are
target and the dotted lines are non-target. Note that examples 2 and 3 are
combined because Zhou uses the same underlying densities for two exam-
ples (they examine false alarm probabilities of 0.1 and 0.2).
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Figure 5.5 Coverage accuracy for Zhou [Zhou and Qin, 2005] confidence bounds. The
plots show the percent coverage of confidence bounds for each of the four
density pairs of Figure 5.4. Note that Zhou only examines false alarm prob-
abilities of 0.1 and/or 0.2, so examples 2 and 3 have identical underlying
densities. These plots are similar to the top right plot of Figure 5.3, except
that three additional examples are shown, where 1700 sets of 20 target sam-
ples and 20 non-target samples are the inputs.
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Figure 5.6 Percent coverage of comparison bounds for the method developed here. The
plots show the percent coverage of confidence bounds for each of the four
density pairs of Figure 5.4 using the method developed here based upon sets
of 20 target and 20 non-target samples. Zhou considers only false alarm
probabilities of 0.1 and/or 0.2. These plots are similar to Figure 5.3, except
that three additional examples are shown.
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Figure 5.7 uses normal target and non-target densities, and Figure 5.8 shows beta target

and non-target densities. For the method developed here, the normal target and

non-target densities first generate samples, then these samples are transformed so that the

greatest value among the target and non-target samples is 0.95 and the lowestvalue

among the target and non-target samples is 0.05. In addition to comparing favorably

with the Hall approach, the example of Figure 5.7 indicates that the method developed

here isflexible to changes in assumed densities.

5.4 Comparison with Hilgers confidence interval method

Figure 5.9 shows confidence intervals based on the Hilgers [Hilgers, 1991] binomial

method. The Hilgers method is similar to the current AFRL ROC curve confidence

interval estimation approach. The coverages (95% is the objective in theabove case)

tend to be too conservative, and the resulting confidence intervals are too wide(see

discussion in [Schafer, 1994]). The method developed here provides a smoother estimate

of the ROC curve (dash/dotted line) than the Hilgers method, and more significantly it

produces much narrower confidence intervals, particularly for low numbers ofsamples.

The Hilgers approach uses a binomial-based ordered statistics approach and finds 95%

error bars in correct detection probability and false alarm probability ata selected

threshold. The resulting rectangular region then combines two error bars using the

following procedure. First, it finds a best-case upper confidence band point for this

threshold as the minimum false alarm probability and maximum correct detection

probability within the rectangular region. Second, it finds a worst-case lower confidence

band point for this threshold as the maximum false alarm probability and minimum

correct detection probability within the region. Finally, it repeats for all thresholds and

combines results to obtain a lower confidence interval contour and an upper confidence

interval contour. This process generates a 95% ROC curve confidence band. Although

bands obtained by this process enclose at least 95% of the true ROC curve, the bands are
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Figure 5.7 The ROC curve confidence interval coverage accuracies for the Hall
[Hall et al., 2004] method and the method developed here for normal target
and non-target densities. Normal target and non-target densities generate
100 target samples and 100 non-target samples. This process is repeated
many times to determine coverage accuracy. The target density has a mean
of one, the non-target density has mean of zero, and both densities have unit
variance. The plot at left shows Hall’s coverage accuracy at selected false
alarm probability for 1000 sets of samples. The plot at right shows a similar
graph for the method developed here, with 90% vertical confidence bars for
208 sets of samples (90% vertical bars show uncertainty due to the lower
number of runs). Hall’s coverage accuracy is generally accurate, exceptas
false alarm probability approaches zero or one. This inaccuracy is a weak-
ness in the Hall approach, because often the most significant false alarm
probabilities are near zero.
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Figure 5.8 The ROC curve confidence interval coverage accuracies for the Hall
[Hall et al., 2004] method and the method developed here for beta target and
non-target densities. Beta target and non-target densities generate 100 target
samples and 100 non-target samples. This process is repeated many times
to determine coverage accuracy. For the target density the beta parameters
area = 2 andb = 4, and for the non-target density they area = 2 andb = 3.
These figures otherwise use the same process as Figure 5.7. The left plot
shows Hall’s results and the right plot shows results of the method developed
here.
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Figure 5.9 Comparison with the Hilgers [Hilgers, 1991] binomial method. The method
uses techniques similar to the current AFRL approach for generating ROC
curve confidence interval estimates. The top plot shows the 95% confidence
intervals for the Hilgers method. These intervals cover the statedconfidence
interval region, but the confidence intervals are too wide [Schafer, 1994].
The bottom plot shows (also for 95% confidence intervals) that the approach
developed here provides a smoother estimate of the ROC curve (dash/dotted
line), and, more significantly, it produces much narrower confidence inter-
vals.
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conservative in that they are typically larger than necessary. Note that such a band is less

informative than a band with smaller confidence band area provided that both bands have

at least the stated coverage (95% in this case). The top plot of Figure 5.9shows Hilgers’

results for 30 target samples and 30 non-target samples obtained using Medcalc statistical

software (commercially available software that implements Hilgers’ approach in a 2005

update). The bottom plot shows a much narrower confidence band for the same samples

obtained using the method developed here. In addition to the larger band width, the

Hilgers approach also has a general disadvantage in that the rectangular region

connection that forms the confidence band is generated by an ad-hoc method.

The results demonstrate the robustness of the method developed here when the overall

model density form assumptions are correct. The method developed here is expected to

improve ROC confidence interval results compared with other approaches in most cases.

The method developed here provides aflexible and robust framework by which target and

non-target samples, model assumptions, and prior densities can be incorporated.

5.5 Additional considerations

In determining which ROC confidence interval approach(es) are appropriate, sample size

and knowledge of the density model form are important factors to consider. The

following provides a few scenarios.

Large numbers of samples are available and there is no prior knowledge of target and

non-target density form.Bootstrap methods may be acceptable. For example, the

bootstrap method of Zhou [Zhou and Qin, 2005] may be acceptable, if a large number

(more than 100) of target and non-target scores are available, and if the form of the target

and non-target scores are not known, but are thought to be non-normal and non-beta.

Figure 5.10 is similar to the Zhou method (Example 2/3) of Figure 5.5, except that rather

than 20 target and 20 non-target samples, various numbers of samples are shown.Note

that while the coverage accuracy improves for increased number of samples, a large
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Figure 5.10 Coverage accuracy for Zhou confidence bounds for various numbers of tar-
get and non-target samples for a beta density model. The plots shown are
the same as the bottom left plot of Figure 5.5, except that instead of 20
target and 20 non-target samples, the number of samples is increased to 40
target and 40 non-target samples, 80 target and 80 non-target samples, etc.
Note that while the coverage accuracy does improve for increased number
of samples, a large number of samples can be required for to achieve good
coverage accuracy.
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number of samples may be required to achieve good coverage accuracy. Coverage

accuracy depends on the target and non-target density being evaluated. An additional

example is shown in Figure 5.11 where the Zhou method forms confidence intervals
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Figure 5.11 Coverage accuracy for Zhou confidence bounds for a normal density model.
The plots shown use samples generated from the same underlying densities
as Figure 5.7. Here runs of 50 target and 50 non-target samples and 100 tar-
get samples and 100 non-target samples are evaluated. The Zhou bootstrap
method is used to obtain the displayed confidence intervals.

based on the samples generated from underlying normal densities (the same underlying

densities previously used in Figure 5.7). For this example, the Zhou confidence bounds

begin to provide appropriate coverage over most false alarm probabilities for somewhat

lower numbers of samples. Thus, a paradox is introduced: the Zhou approach can

provide appropriate coverage for "enough" samples, but in order to known how many

samples are "enough" some knowledge of the underlying densities is needed.

Low numbers of samples are available, there is no prior knowledge of target and

non-target density form, and highly conservative confidence bands are acceptable.Here

the Hilgers [Hilgers, 1991] method is an appropriate choice.

Low numbers of samples are available, target and non-target densities are known to be

normal or normal by some transformation, and the probability of target given score is
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known to monotonically increase for increased score.The binormal approach, which

attempts such assumptions (see Section 2.7.1), may be appropriate in this case.

The objective of the comparison detailed in the previous section is to demonstrate the

viability of the framework developed here, not to prove that a selectedmodel that uses

this framework outperforms other approaches in every case (particularly when the

selected model is not correct). Also, a key objective of the research here is to develop a

performance metric uncertainty estimation approach that extends to theCEG curve.

The amount of time to execute a run (i.e. to move from a set of target and non-target

samples to obtaining a confidence band) must also be considered. For the method

developed here, two primary factors contribute to run time.

First, consider the computation of target and non-target posterior parameter densities,

which are developed prior to any ROC curve formulation. The time to approximate

posterior parameter densities depends on the number of target and non-target parameter

points selected. Consider the parameter point selection process. For the beta density

model, the process implemented here starts with 300 target points uniformlyselected

over mean and standard deviation and 300 non-target points also uniformly selected over

mean and standard deviation. Then the combined posterior weightings are found for the

sample values (see Equation (3.14)). The 16 grid point combinations that are closest to

the mean and standard deviation of the samples are kept (4 target points, and 4 non-target

points), along with any combinations that are greater in combined posterior weighting to

any of these combinations. Then a 10 x 10 grid (100 points) for target means and

standard deviations and a 10 x 10 grid (100 points) for non-target means and standard

deviations is formed over this region, with much smaller grid point spacing. Again the

combined posterior parameter weightings are found for each of the 10,000 grid point

combinations, and only those points that contribute to 99.9% of the total posterior

parameter weighting among these combinations are retained. The retained posterior

parameter weightings then comprise an even smaller region than the previous iteration.
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A second 10 x 10 grid (100 points) for target means and standard deviations and a 10x

10 grid (100 points) for non-target means and standard deviations is then found. Again,

the grid points that contribute to 99.9% of the total posterior parameter weighting among

the 10,000 combinations of grid points are retained. The above operations for an

example set of 20 target and 20 non-target samples takes approximately 70 seconds using

the Matlab code developed here.

The second factor is ROC curve computation time. Each of the retained target and

non-target grid point combinations form ROC curves, and these ROC curves must be

computed (see Figure 3.8). Computation of each ROC curve takes approximately 0.75

seconds; the total run time for this section depends on the number of grid point

combinations that make up the 99.9% of the final set of grid points (which can range

from approximately 200 to 10000). Total run time for 20 target samples and 20

non-target samples generated from the densities of Zhou example 2/3 (see Figure 5.4) for

a single example run is 244 seconds (assuming the beta density model processdescribed

here). Total run time for 50 target samples and 50 non-target samples for this same type

of run is 251 seconds. In comparison, a method that implements Zhou’s process

(adjusted bootstrap with 250 bootstrap replications) in Matlab takes 15.5seconds for the

same 20 target and 20 non-target samples and 33.5 seconds for the same 50 target

samples and 50 non-target samples. Samples generated from other density pairs can take

significantly longer per run for the method developed here. A similar process, again for

Zhou’s example 2/3 for the CEG curve, takes 170 seconds for 20 target and 20 non-target

samples and 154 seconds for 50 target and non-target samples. An increase in target and

non-target samples can result in fewer grid point combinations in the final 99.9%,so run

time may decrease with increase in samples. Also, the computation of aparticular CEG

curve (required for each grid point retained in the final set) is faster than the computation

of a ROC curve, so the process is faster for CEG curve confidence intervals than ROC

curve confidence intervals. An increase in number of target samples leads to a more

highly peaked posterior probability density weighting, so the number of grid points used
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may need adjustment as sample size changes. Figure 5.12 shows coverage examples;

note that results converge as grid point spacing increases.

More complex density models (such as beta mixture models) can require significantly

more grid points to cover the entire relevant parameter space (note also that the regions of

high density weighting may be disjoint). Also, as the number of grid points becomes

large, computation time increases proportional to the number of grid points squared; a

small increase in number of grid points results in a large increase in run time.

Most of the computational challenges in terms of run time are apparent when attempts

are made to verify results by determining coverage accuracy (e.g., the confidence band

development process is repeated many times, such as 100 or more sets of30 target and 30

non-target samples generated from the same underlying target and non-target densities).

Appendix C includes code to generate ROC curve and CEG curve confidence intervals.

The appendix provides code for the beta density model, along with code for the two-beta

mixture model. For the two-beta mixture models there are significantly more parameters

(five versus two for the single beta model), and the above grid point iteration procedure is

not applied. Instead, the process selects two-beta grid points at random, and calculates

the combined posterior weighting for such grid points. The user specifies the number of

random grid points for the two-beta mixture model; a typical number is 10000. The

number of random grid points may be increased until convergence is observed. The

number of points necessary for convergence depends on the specific sample values.

Matlab matrix size limitations constrain the number of grid points to about20000

(depending on the specific sample values). Methods available to improve run time are

noted in the Future Work discussion.

Here the uncertainty estimation methods developed in Chapters 3 and 4 were compared

with the current literature. The next chapter provides a summary of the results of the

research and also identifies areas of interest for future work.
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Figure 5.12 Regions that make up selected percentages of the posterior parameter den-
sity. The four plots show the regions that encompass 10%, 30%, 50%,
and 90% of posterior parameter weighting for an example where a set of
samples is generated from a target beta density.
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6. Accomplishments, Contributions, and Future Work

Section 6.1 reviews the accomplishments and contributions of this research, and Section

6.2 describes areas of interest for future work.

Prior to listing the specific accomplishments of this research (in the next section), the

results of the research presented here are placed in a proper perspective.

The primary contributions of this work are the framework described most fully in

Chapter 3. Theorem 3.2, "ROC curve density", develops an analytical approach for

forming the posterior probability density of the ROC curve. This theorem enables an

exact description of the ROC curve probability density for given target and non-target

samples, density model assumptions, and prior densities of model parameters. Theorem

3.3, "Numerical approximation of ROC curve density", extends this analytical

description to a form that is computationally practical. Also important as a primary

accomplishment is the extension of the probability density developments in Chapter 3 to

confidence intervals (as described in Section 4.1.3).

The potential usefulness of the framework is further emphasized through a verification

and evaluation process that includes comparisons with other methods. Whilethe

comparisons are interesting, it is improper to place undue emphasis on the results of the

verification and evaluation process (Chapters 4 and 5) as primary contributions of this

research, even though these results show promise. The theorems and further descriptions

of Chapters 3 and 4 enable "actual probability density statements" [see Carlin, 2000, pp.

35-36] for a single set (or run) of target and non-target score samples, for givenmodels,

and for given prior assumptions.

Thus, there is no need to evaluate results based on the method developed here over many

runs, although such runs can indicate efficacy. The exactness over one run ofthe

Bayesian approach is arguably more importanty than what occurs "on average" over
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many runs. Alternative methods of obtaining confidence intervals can be accurate (on

average) over many runs, but make no claim regarding the results of any particular run.

The approach introduced here enables an actual probability statement to be made from

only one run, but it is not possible to verify or evaluate correctness except over many

runs. Obviously, it would be desirable to have a process that provides an actual

probability statement for one run and that also behaves appropriately over many runs

(which the method developed here clearly does). In considering which approach is best,

note that there will often be only one set of samples, so making the most appropriate

statement possible based on only one run is arguably more important than what occurs

over many runs.

The density model example assumed in this research is beta-based (predominantly

focused on a unimodal beta density model). This model is merely as an example

application of Theorems 3.2 and 3.3. Because the scores that are inputs in this research

are continuous between zero and one, the beta density seems appropriate (see

[Kaganet al., 1973]); however, this research has not and does not intend to show that the

beta density is effective and/or appropriate when the model density is not known. In

particular, it is not the objective of this research to show that the beta density always

provides a good estimate for all sets of data samples when model form is not known; the

beta density model is simply an example. Thus, a caution on the results in Chapter 5 is

that the comparisons with existing research do not enable true "apples-to-apples"

comparisons; the comparisons made in Chapter 5, while appropriate in demonstrating the

Bayesian framework, do not show that the method developed here is necessarily an

improvement over existing approaches. In simply demonstrating the framework, the

method developed here generally uses samples from beta densities where the parameters

are assumed to be unknown. (The method developed here then uses the samples to

develop probability densities for the unknown parameters.) Also, the comparisons are

generally made with methods that make differing model assumptions. Note that

currently available methods in the literature do not enable the selection of a beta density
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model. As discussed below and in future work, it would be of interest for future

developments to incorporate the results of Chapters 3 and 4 intoflexible software that

enables user selection of densities or model assumptions.

Unless one is guaranteed that a particular model assumption or prior is correct, a

reasonable question concerns the usefulness of the results of the framework developed

here. Consider the available alternatives. Bootstrap based approaches avoid

assumptions, but as is shown in Figure 5.10, unless large numbers of samples are

available, avoiding such assumptions can yield poor results (certainly iflarge numbers of

samples are available, then bootstrapping based approaches are very much of interest).

Existing research, with the exception of bootstrap-based approaches, make model

assumptions; the framework presented here also makes model assumptions. The

difference between the method developed here and other approaches is that theother

approaches develop frameworks that involve restrictive model assumptions.The

framework developed here enablesflexible model assumptions. In this regard (as future

work) the framework developed here could be extended so that, for example, the user

might specify "bi-modal density mixture model", "tri-modal beta densitymixture

model", etc.

Another question is that if it is not known whether or not a set of samples is modeled well

by a beta density model, how could the research presented here possibly be of interest?

Two considerations are as follows. First, as future work, an examination of the fit of a

beta density model to experimental data with fixed end points is of interest. Second, an

extension that also may be of interest for future work is the incorporation of models of

varying complexity, which is possible through regularization (see [Bishop,1995]) and the

use of the Occam factor (see [Gregory, 2005]). Such approaches do not selecta beta

density model or a bi-modal density model, etc., instead they incorporate models of

different complexities; less complex models, such as single beta densities, receive higher

overall weighting, more complex models receive less overall weighting (even though
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there may be specific instances where such weightings fit the data better). The use of

roughness is an alternative approach that incorporates models of variouscomplexity (see

discussion in Future Work, and related results presented in Appendix B).

6.1 Accomplishments and contributions

This research applies a new framework for ROC curve uncertainty estimation that is fully

Bayesian, that is numerically tractable, and that leads to substantial improvements over

existing methods. Quantitative comparisons are made; however, qualitative

improvements are the most important outcome of the research presented here. As

discussed in Chapters 2 and 5, most existing methods make restrictiveassumptions that

inhibit the application of aflexible model framework as presented here; the bootstrap

approaches do not require such assumptions but are of limited applicability forsmall

numbers of samples.

A significant aspect of this research is that the uncertainty estimation process developed

here transitions to CEG curves. The CEG curve is a critical metric for AFRL in

determining the usefulness of target detection systems. With a typically limited amount

of data and with no appropriate methods for CEG curve uncertainty estimation,AFRL

has previously been able to make only limited use of this metric. Withthe methods

developed here, the CEG curve can be applied and its uncertainty can be estimated even

for low numbers of samples.

The research reported here demonstrates the application of ROC curve uncertainty

estimation methods from the medical community to target detection. It also provides

more comprehensive qualitative and quantitative comparisons of alternative ROC curve

and AUC value uncertainty estimation approaches than any available in the literature.

ROC curve density and confidence interval generation.This research applies a

Bayesian framework to develop new methods for ROC curve density generation which

6-4



are also applicable to other target detection performance metrics. The framework is

provided within Chapter 3 (which includes four theorems, a lemma and a procedure);

more specifically, Theorems 3.2 provides an analytical approach for formingthe

probability density of the ROC curve, and Theorem 3.3 extends this analytical

description into a form that is practical to evaluate analytically. Notethat while ROC

curve definitions are examined in the previous literature (see [Lloyd,2002] and

[Zhou and Qin, 2005]), the probability density results obtained here are unprecedented.

Computations of confidence bands or confidence intervals (as described in Section 4.1.3)

can be made from the performance metric densities in a straightforward manner. This

capability contrasts with previous methods in the literature, which generally are

applicable only to specific band or interval definitions and which can not be easily

extended. Application of the Bayesian framework allows the user of a SUT to better

understand conclusions from performance metrics, especially if they are based on limited

data.

This research presents the results of simulations and real-data experiments that

demonstrate the significance of the new uncertainty estimation methods. Computational

techniques that implement the methods are demonstrated, and they are shown to yield

accurate results that are otherwise not analytically tractable. Significantly, the methods

developed here enable the calculation of actual performance metric probability densities

for given target and non-target score samples, given density forms for the scores, and

given prior densities for the parameters in these forms.

Representative ROC curve generation.This research develops methods that generate

representative ROC curves (samples from a ROC curve density) from given sets of target

and non-target samples. Numerical implementation of the method for generating the

ROC (and CEG) curve densities results in the generation of representative ROC (and

CEG) curves. Macskassy [Macskassy and Provost, 2004] [Macskassyet al., 2005] most
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recently emphasizes the critical need for such representative ROC curves and the lack of

such ROC curves in the literature. From such representative ROC curves (or

representative CEG curves), many descriptive statistics, such as mean and median ROC

curves and AUC values and confidence bands and intervals for them, are obtained. The

results are shown to be robust when the overall model density form assumptions are

correct.

CEG curve density, representative CEG curve generation, and confidence interval

generation. The methods developed here can be applied to CEG curves. The lack of a

proven means for obtaining confidence intervals for the CEG curve was a primary

motivation for AFRL sponsorship of this research. The research reported here goes

beyond simply adapting an existing ROC curve confidence interval estimationmethod

and applying it to the ROC curve. Instead, it applies a Bayesian framework to create,

demonstrate, and validate new methods that can be applied beyond the uncertainty

estimation problem originally addressed.

Target and non-target densityflexibility. Although the examples considered here use

beta densities, the methods developed here can be directly applied to other density forms.

In contrast, the binormal ROC curve in predominant use implies a nearly convex ROC

curve form and restricts curve estimation to this form. The methods developed here are

particularly important for cases where sample size is small, as is typical in target

detection problems. Thus, this research is expected to alter the way thatthe target

detection evaluation community approaches ROC and CEG curve uncertainty estimation.

6.2 Future work

The success of this research should motivate further investigation in several areas:
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1. Improve the efficiency of target and non-target density posterior parameter

computation.As the number of parameter evaluation points increases (see Figure 4.9),

the ROC curve density converges (see Theorem 3.3) provided that the relative spacing of

the points does not change (for example, the spacing is kept uniform over mean and

standard deviation). More computationally efficient methods to obtain sufficient

numbers of evaluation points should be investigated. This optimization wouldassist in

the transfer of the Bayesian framework to more complex density models. Jordan

[Jordanet al., 1999] focuses on a variational approach and references alternatives such as

the pruning algorithm, bounding conditioning, search-based methods, and localized

partial evaluation. Bos [Bos, 2002] describes alternatives such as Gibbssampling and

importance sampling. Madigan [Madigan and Raftery, 1994], Raftery

[Rafteryet al., 2003], and Hoeting [Hoetinget al., 1999] reference Bayesian model

averaging and Occam’s window for reducing the computational complexity of posterior

parameter density evaluation.

2. Develop integrated confidence band computation approaches.As noted in Section

2.7, while the framework used and the methods developed here apply to many typesof

ROC curve uncertainty estimation, there are other approaches that may be acceptable in

particular cases. For example, the binomial approach provides bands that encompass

greater than or equal to 95% coverage for 95% confidence bands. Confidence bands

based on the binomial approach are overly conservative but may be applied as an upper

bound to ROC curve confidence bands for the method developed here. Thus, relevant

aspects of each of the approaches may be combined to achieve joint-method ROC curve

confidence bands.

3. Test the methods developed here with other density models.Example alternative

density models include hybrid models that combine Gaussian densities, beta densities, or

both. In such a combination approach, density models that have higher complexity,even

if they fit the data well, may be regarded as less likely to represent the true model (see
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[MacKay, 1992b]). Here complexity could refer to the number of parameters inthe

model, e.g., a single-beta density has two parameters (mean and standard deviation) and a

two-beta mixture density has five parameters (two means and standard deviations plus an

amplitude ratio). Regularization techniques can combine models of varying numbers of

parameters (see Bishop [Bishop, 1995]). To avoid the possible over-fittingeffects of

more complex densities, target and non-target score density function roughness orROC

or CEG curve roughness could be used to quantify complexity. Appendix B addresses

related issues by first examining interpolation methods that have desirable extrapolation

properties based on roughness; it then describes an analytical approach for roughness

computation, where the roughness of a function is defined as its integrated squared

second derivative. Approaches that incorporate roughness recognize, for example, that a

density function with large roughness that describes the data well may be lessdesirable

than a density function that describes the data less well but that has lowroughness.

4. Apply the methods developed here to additional performance metrics.Once the ROC

curve density is developed, the research presented here shows that transition to the CEG

curve density is straightforward. This transition could be made to other performance

metrics, including the Dice similarity coefficient (see Zou [Zouet al., 2004]), mutual

information (see Zou [Zouet al., 2004]), partial AUC (see [Dodd and Pepe, 2003]), and

the Youden index (see Faraggi [Faraggi, 2003]).
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Appendix A. Analytical Derivations and Numerical Approximations

A.1 Derivation of ROC curve

Theorem Score-threshold ROC curve

Let f(s; u) andg(s; v) be densities ofs givenu andv, wheres is a scalar andu andv are

vectors, assume thatf(s; u) andg(s; v) are integrable∀ u, v and let

F̂ (t;u) =
∫∞
t
f(s; u)ds andĜ(t; v) =

∫∞
t
g(s; v)ds. Also letw = [u1 u2 ... v1 v2 ...] and

F̂ (t;u) = 1− F (t;u) andĜ(t; u) = 1− F (t; u) whereF (t;u) andG(t; v) are

cumulative probability distributions. Letx = F̂ (t; u) andy = Ĝ(t; v). Assume there is

a unique correspondence ofs to F̂ (s; u) such that0 ≤ F̂ (s; u) ≤ 1 andF̂−1 is invertible

(by the Implicit and Inverse function theorems; see [Olmstead, 1961]). Then

y = r(x;w), wherer = ĜF̂−1.

Proof

If F (s;u) ≡
∫ s̃
−∞ f(s̃; u)ds is a cumulative distribution function (CDF), then [Stark and

Woods, 1986, pp. 42]

Pu(s1 < X < s2) = F (s2; u)− F (s1; u) ≥ 0 for s1 < s2. (A.1)

If f(s;u) is a probability density function (PDF), then [Stark and Woods, 1986, pp. 44]

∫ s2

s1

f(s;u)ds = Pu(s1 ≤ S ≤ s2). (A.2)

By Equations (A.1) and (A.2),

∫ s2

s1

f(s;u)ds = F (s2;u)− F (s1;u). (A.3)
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Also [Stark and Woods, 1986, pp. 41],

F (−∞; u) = 0, F (∞; u) = 1. (A.4)

By Equations (A.3) and (A.4),

∫ ∞

si

f(s; u)ds = F (∞; u)− F (si; u) = 1− F (si;u). (A.5)

Since it has been defined thatx =
∫∞
t
f(s;u)ds = F̂ (t;u), by Equation (A.5)

x =

∫ ∞

t

f(s; u)ds = 1− F (t; u) = F̂ (t;u). (A.6)

Using an identical argument,

y =

∫ ∞

t

g(s; v)ds = 1−G(t; v) = Ĝ(t; v). (A.7)

Further, sinceF (s; u) = 1− F̂ (s;u), and sinceF (s1; u) ≤ F (s2; u) for s1 ≤ s2,

F̂ (s1;u) ≥ F̂ (s2;u). (A.8)

SinceF is continuous from the right [Stark and Woods, 1986, pp. 44], i.e.,

F (s; u) = limǫ→0 F (s+ ǫ;u), ǫ > 0, and sinceF (s; u) = 1− F̂ (s; u),

F̂ (−∞; u) = 0; F̂ (∞; u) = 1, (A.9)

F̂ is continuous from the left, i.e.,̂F (s; u) = limǫ→0 F̂ (s− ǫ;u), ǫ > 0.
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SinceF̂−1 is invertible and unique for eachu, then for anyx, 0 ≤ x ≤ 1,

x =
∫∞
t
f(s; u)ds for some unique thresholdt = F̂−1(x;u), Ĝ ◦ F̂−1(x;w) = Ĝ(t̂;u),

x = F̂ (t; u), and it follows thaty = r(x;w), wherer = Ĝ ◦ F̂−1(x;w).

Comments

If f(s;u) andg(s; v) are modeled by beta probability densities, thenu andv are

two-element vectors, and

f(s;u) =
sũ1−1(1− s)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

, 0 ≤ s ≤ 1, (A.10)

g(s; v) =
sṽ1−1(1− s)ṽ2−1

Γ(ṽ1)Γ(ṽ2)
Γ(ṽ1+ṽ2)

, 0 ≤ s ≤ 1, (A.11)

whereũ andṽ are related tou andv by

ũ1 = u1[
u1(1− u1)

u2
− 1] (A.12)

ũ2 = ũ1[
1

u1
− 1] (A.13)

ṽ1 = v1[
v1(1− v1)

v2
− 1] (A.14)

ṽ2 = ṽ1[
1

v1
− 1] (A.15)

and where

Γ(a) =

∫ ∞

0

e−tta−1dt, a > 0. (A.16)

Thus,x = F̂ (t; u) =
∫∞
t
f(s; u)ds may be expressed

x =

∫ 1

t

sũ1−1(1− s)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

ds, (A.17)
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Γu1Γ

u2

Γu1+
u2

u1

u2

Γu1Γ

u2

Γu1+
u2

u1

u2

Figure A.1 HereΓ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

is shown as a function of̃u1 andũ2.

wheret is a selected threshold and0 ≤ t ≤ 1. Figure A.1 shows the relation of̃u1, ũ2, to
Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

.

Evaluation using Weierstrass’ product [Korn and Korn, 2000, pp. 822], shows that
Γ(a)Γ(b)
Γ(a+b)

may be factored into the infinite sum

1

Γ(z)
= zeCz

∞∏

k=1

[(1 +
z

k
)e−z/k], (A.18)

where C≈ 0.5772157 is the Euler-Mascheroni constant and

Γ(a)Γ(b)

Γ(a+ b)
=
a+ b

ab

∞∏

k=1

(k + a+ b)(k)

(k + a)(k + b)
. (A.19)

Note (see [Patelet al., 1976]) that

∫ t

0

sũ1−1(1− s)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

ds =
Bt(ũ1, ũ2)
Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

= It(ũ1,ũ2), (A.20)
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where

Bt(ũ1, ũ2) =

∫ t

0

sũ1−1(1− s)ũ2−1ds (A.21)

andIt is the incomplete beta function ratio. Also note that

∫ 1

t

sũ1−1(1− s)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

ds = 1−

∫ t

0

sũ1−1(1− s)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

ds (A.22)

so that ∫ 1

t

sũ1−1(1− s)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

ds = 1− It(ũ1,ũ2). (A.23)

For the incomplete beta function ratio [Patelet al., 1976, pp. 246]

It(ũ1,ũ2) = 1− I1−t(ũ2,ũ1), (A.24)

so that ∫ 1

t

sũ1−1(1− s)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

ds = 1− (1− I1−t(ũ2,ũ1)). (A.25)

Therefore ∫ 1

t

sũ1−1(1− s)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

ds = I1−t(ũ2,ũ1). (A.26)

From above, and noting that Equations (A.12)-(A.14) may be manipulated to solvefor

u1, u2,v1, andv2 usingu1 = ũ1
ũ1+ũ2

, u2 =
ũ1ũ2

(ũ1+ũ2+1)(ũ1+ũ2)2
, v1 =

ṽ1
ṽ1+ṽ2

, and

v2 =
ṽ1ṽ2

(ṽ1+ṽ2+1)(ṽ1+ṽ2)2
,

x = I1−t(ũ2,ũ1) = F̂ (t;
ũ1

ũ1 + ũ2
,

ũ1ũ2
(ũ1 + ũ2 + 1)(ũ1 + ũ2)2

), (A.27)

and similarly

y = I1−t(ṽ2,ṽ1) = Ĝ(t;
ṽ1

ṽ1 + ṽ2
,

ṽ1ṽ2
(ṽ1 + ṽ2 + 1)(ṽ1 + ṽ2)2

). (A.28)
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Therefore, for a beta density model and for given values ofu andv,

y = r(x;w) = Ĝ ◦ F̂−1(x;w) = I1−F̂−1(x;w)(ṽ2,ṽ1) andF̂ (t; u) = I1−t(ũ2,ũ1). (A.29)

Thus, whereas there are various ways to describer (such as an infinite series of products,

gamma functions, and the incomplete beta function ratio), such expressions are

impractical to further evaluate analytically. Even if they were practical to evaluate, the

analytical expressions would be for the ROC curve, not for the ROC curve density.
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A.2 Derivation of ROC curve density

Theorem 3.2 ROC curve density

Let d = {si : i = 1, ..., I} be a set of independent and identically distributed samplessi

from distributionf . Leth = {qj : j = 1, ..., J} be a set of independent and identically

distributed samplesqj from distributiong, and letpu(u) andpv(v) be prior densities of

the random parameter vectorsu andv. Let Ã be the admissible set ofu andv

parameters. Then

py|x(y|x, d, h) = C̃0

∫∫

Ã

py|x(y|x, u, v)
∏

i

f(si; u)
∏

j

g(qj ; v)pu(u)pv(v)dudv, (A.30)

where the constant̃C0 depends ond andh.

Proof

Letw be the concatenation ofu andv (i.e.,w = [u1 u2 ... v1 v2 ...]), and let D be the

concatenation ofd andh.

By marginalization

py|x(y|x,D) =

∫

Ã

py|x(y|x,w)pwD(w|D)dw, (A.31)

and by Bayes’ rule,

pw|D(w|D) = C̃1pD|w(D|w)pw(w), (A.32)

where the constant̃C1 depends onD.
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Thus, by independence

pD|w(D|w) = C̃2

I∏

i=1

f(si; u)
J∏

i=1

g(qj ; v), (A.33)

where the constant̃C2 depends ond andh.

and

pw(w) = pu(u)pv(v). (A.34)

Combining Equations (A.32), (A.33), and (A.34) shows that Equation (A.31) is

equivalent to

py|x(y|x,D) = C̃0

∫∫

A

py|x(y|x, u, v)
∏

i

f(si; u)
∏

j

g(qj ; v)pu(u)pv(v)du dv, (A.35)

where the constant̃C0 depends ond andh.

Note thatÃ is used here rather thanA because notation earlier in this document (see

Equation (3.3)) refers to the admissible set for the beta density model asA, and this proof

is not restricted to the beta density model.

Comments

For a beta density,

pyx(y|x,D) = C̃0
∫∞
1

∫∞
1

∫∞
1

∫∞
1
pyx(y|x, ũ1,ũ2, ṽ1,ṽ2)

∏

i

f(si; ũ1,ũ2)
∏

j

g(qj; ṽ1,ṽ2)

·pu(
ũ1

ũ1+ũ2
, ũ1ũ2
(ũ1+ũ2+1)(ũ1+ũ2)2

)pv(
ṽ1

ṽ1+ṽ2
, ṽ1ṽ2
(ṽ1+ṽ2+1)(ṽ1+ṽ2)2

)dũ1dũ2dṽ1dṽ2,

andpyx(y|x, ũ1, ũ2, ṽ1,ṽ2) = δ(y − r(x;w)),
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where

r(x; ṽ2,ṽ1, ũ2,ũ1) = Ĝ ◦ F̂−1(x; ṽ2,ṽ1, ũ2,ũ1) = I1−F̂−1(ṽ2,ṽ1), F̂ (t; ũ) = I1−t(ũ2,ũ1)

(A.36)

andu andv are related tõu andṽ by Equations (A.12)-(A.14). Also,

∏

i

f(si|ũ1,ũ2) =
∏

i

s
ũ1−1
i (1−si)ũ2−1

Γ(ũ1)Γ(ũ2)
Γ(ũ1+ũ2)

∏

j

g(qj|ṽ1,ṽ2) =
∏

j

q
ṽ1−1
j (1−ṽi)ṽ2−1

Γ(ṽ1)Γ(ṽ2)
Γ(ṽ1+ṽ2)

.

One example choice of parameter density prior haspu(u1,u2) equal to a constant over all

values ofu1 andu2 for which the beta density is defined, whereu1 is mean andu2 is

standard deviation. With an identical choice of priors forpv(v1,v2), the following bounds

apply:

pu(u1,u2) = 1, 0 ≤ u1 ≤ 0.5, andu2 ≤ 1−u1
u1(u1+2)(u1+1)2

pu(u1,u2) = 1, 0.5 ≤ u1 ≤ 1, andu2 ≤
u1(1−u1)2
2−u1

pu(u1,u2) = 0, 0 ≤ u1 ≤ 0.5, andu2 > 1−u1
u1(u1+2)(u1+1)2

pu(u1,u2) = 0, 0.5 ≤ u1 ≤ 1, andu2 >
u1(1−u1)2
2−u1

pv(v1,v2) = 1, 0 ≤ v1 ≤ 0.5, andv2 ≤ 1−v1
v1(v1+2)(v1+1)2

pv(v1,v2) = 1, 0.5 ≤ v1 ≤ 1, andv2 ≤
v1(1−v1)2
2−v1

pv(v1,v2) = 0, 0 ≤ v1 ≤ 0.5, andv2 > 1−v1
v1(v1+2)(v1+1)2

pv(v1,v2) = 0, 0.5 ≤ v1 ≤ 1, andv2 >
v1(1−v1)2
2−v1 .

Even for the case of uniform prior density over admissible mean and standard deviations

and with single beta densities (simple in comparison with beta mixture models), there are
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no less than six incomplete gamma functions inside the integral. Without considering the

definition forpy|x(y|x,D), since the gamma function is itself analytically described by an

integral, an analytical solution, even for a single beta density, is not feasible (multiple

analytic terms inside the four part integral would consist of

Γ(a) =
∫∞
0
e−tta−1dt, a > 0). However, using Monte Carlo methods, a convergent

numerical result may be obtained. Further, rather than the restrictive solution that an

analytical development would produce (restricted to single beta models), the numerical

development may be extended to beta mixture models or other families of density

models. Thus, based on the analytic framework it is clear that a numericalevaluation is

needed. The evaluation points of Figure 3.6, shown within the allowed standard

deviation versus mean plots, are sampling points used to estimate the full Bayesian

posterior, which may be visualized as a three-dimensional density. The oval regions of

the two left plots of this figure, shown in the vicinity of the target and non-target mean

and standard deviation, indicate confidence interval bounds for the posterior probability.

Similarly, the darkened regions of Figure 5.12 indicate 10%, 30%, 50%, and 90%

confidence interval bounds for the posterior probability.
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Appendix B. Analytical derivation of Roughness for Cardinal

Interpolation

B.1 Introduction and background on cardinal interpolation

Gustafson, Parker, and Martin [Gustafsonet al., 2006] apply Bayesian methods to find

the probability density of certain interpolating functions, where this density has desirable

extrapolation properties that define cardinal interpolation. In this appendix, cardinal

interpolation and roughness are introduced and then an analytical extension to Gustafson,

Parker, and Martin [Gustafsonet al., 2006] is provided. As described in future work

(Section 6.2), incorporating roughness into a target or non-target density modelcan

provide a means to characterize and control models of various complexity for

performance metric uncertainty.

Development of the cardinal interpolation density provided an early example for the

development of densities for ROC and CEG curves that is the key advance reported here.

Calculation of the cardinal interpolation density is facilitated by an analytical derivation

of roughness of a sum of Gaussian functions, where roughness is defined as integrated

squared second derivative of the sum of the functions. The use of roughness hereis the

degree of smoothness in Bishop (see [Bishop, 1995, pp. 173]). See [Bishop, 1995] and

[MacKay 1992a, 1992b] for the related discussion of regularization.

The following summarizes the cardinal interpolation concept and its use of theanalytical

derivation of roughness. Gustafson, Parker, and Martin [Gustafsonet al., 2006] provide

a full description.

The cardinal interpolation density combines a linear model with a Gaussian radial basis

function model. When estimating points that are far from observed data points, an

appropriate model is assumed to be a least squares line; when estimating points that are
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close to observed data points, an appropriate model is assumed to be an interpolator (in

this case a Gaussian radial basis function interpolator). Let data points D =

(x1, y1), (x2, y2), . . . , (xn, yn) with x1 < x2 < . . . < xn be samples from a Gaussian

probability density iny relative to a line (see [Bishop, 1995]). By marginalization, the

probability densityp(y|x,D) of y givenx andD for a linear model is
∫
p(y|x, a, b)p(a, b|D)da db, wherea is the intercept andb is the slope of the line. By

Bayes’ rule,p(a, b|D) is proportional top(D|a, b)p(a)p(b) for independenta andb,

wherep(D|a, b) is the product ofp(y|x,D)evaluated at each of the data points and is thus

proportional to the deviation weightexp[−
∑
(yi − a− bxi)

2/(2σ2)]. The result is a

density for the linear model (see [Bishop, 1995]) that has a mean which is the least

squares line at D.

The cardinal interpolation density uses the above linear model with a Gaussian radial

basis interpolating model. The combined model is

y(x; a, b, c) = a+ bx+
∑

Aiexp[−(x− xi)
2/(2c2)], where each basis function has its

mean at a pointx value, has variancec2, and has amplitudeAi such thatyi = y(xi; a, b, c)

so that the points are interpolated. Regularization (see [Bishop, 1995]) yieldsweighting

that depends on roughnessr(a, b, c). The cardinal interpolation density is developed by

requiring that the roughness weightexp(−Kr(a, b, c) equal the above deviation weight,

whereK is such that both types of weights have the same minimum.

B.2 Analytical roughness expression

The following expression for roughness has been verified for many sum of Gaussian

functions using numerical integration. The use of this expression can greatlyreduce the

number of required computations as compared with numerical integration.
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Theorem

Let a, b ∈ R andc > 0 andx1,x2,..., xn ∈ R, A1,A2,..., An ∈ .R, and

y(x; a, b, c) = a+ bx+
n∑

i=1

Aie
− (x−xi)

2

2c2 (B.1)

for x ∈ R.

Then roughness,r(a, b, c) is

r(a, b, c) =

∫ ∞

−∞
(y′′(x; a, b, c))2dx =

√
π

c3

n∑

i=1

n∑

j=1

AiAje
γ

{
3

4
+ 3γ + γ2

}
, (B.2)

where

γ =
−(xi − xj)

2

4c2
. (B.3)

Proof

Note that

∂Aie
−( (x−xi)

2

2c2
)

∂x
= −Ai

c2
e−1/2[

(x−xi)
2

2c2
] − Ai

c4
(x− xi)

2e−1/2[
(x−xi)

2

2c2
],

and

∂2Aie
−( (x−xi)

2

2c2
)

∂x2
=
AiAj
c4

e−1/2(
(x−xi)

2

c2
)e−1/2(

(x−xj )
2

c2
)

−AiAj
c6

e−1/2(
(x−xi)

2

c2
)e−1/2(

(x−xj )
2

c2
)(x− xj)

2

−AiAj
c6

e−1/2(
(x−xi)

2

c2
)e−1/2(

(x−xj)
2

c2
)(x− xi)

2
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−AiAj
c8

e−1/2(
(x−xi)

2

c2
)e−1/2(

(x−xj)
2

c2
)(x− xi)

2(x− xj)
2. (B.4)

Then roughness for n points is

r(a, b, c) =

∫ ∞

−∞

n∑

i=1

n∑

j=1

(
AiAj
c4

e−1/2(
(x−xi)

2

c2
)e−1/2(

(x−xj )
2

c2
)

−AiAj
c6

e−1/2(
(x−xi)

2

c2
)e−1/2(

(x−xj )
2

c2
)(x− xj)

2

−AiAj
c6

e−1/2(
(x−xi)

2

c2
)e−1/2(

(x−xj)
2

c2
)(x− xi)

2

AiAj
c8

e−1/2(
(x−xi)

2

c2
)e−1/2(

(x−xj )
2

c2
)(x− xi)

2(x− xj)
2)dx. (B.5)

Note that terms that may be separately integrated, and that three general forms appear in

Equation (B.5).

First general form

The first general form isHJ
c4

∫∞
−∞ e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)dx, and

HJ

c4

∫ ∞

−∞
e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)dx =

HJ

c4

∫ ∞

−∞
elx

2+wx+kdx, (B.6)

wherel = −1
2c2
(2), w = −1

2c2
(2s− 2t), andk = −1

2c2
(s2 + t2).
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Substitutep = 1/c2, q = −w/2l = s+t
2
, andv = k + pq2, into Equation (B.6):

∫ ∞

−∞
e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)dx =

∫ ∞

−∞
elx

2+wx+kdx = ev
∫ ∞

−∞
e−p(x−q)

2

dx. (B.7)

Note applying the definition of a Gaussian probability density,1√
2πd

∫∞
−∞ e−

(x−s)2

2d2 dx = 1,

yields the following progression:

er
∫ ∞

−∞
e−p(x−q)

2

dx = ev
√
πc. (B.8)

Thus
HJ

c4

∫ ∞

−∞
e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)dx =

HJ

c4
ev
√
π, (B.9)

wherev = k + pq2 andk = −1
2c2
(s2 + t2), p = 1/c2, andq = s+t

2

Second general form

HJ

c4

∫ ∞

−∞
e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)(x− t)2dx (B.10)

Similar to Equation (B.6), let

∫ ∞

−∞
e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)(x− t)2dx =

∫ ∞

−∞
elx

2+wx+k(x− t)2dx. (B.11)

Then, similar to Equation (B.7),
∫∞
−∞ elx

2+wx+k(x− t)2dx = er
∫∞
−∞ e−p(x−q)

2
(x− t)2dx.

Note thater
∫∞
−∞ e−p(x−q)

2
(x− t)2dx =

t2er
∫∞
−∞ e−p(x−q)

2
dx− 2tev

∫∞
−∞ xe−p(x−q)

2
dx+ er

∫∞
−∞ x2e−p(x−q)

2
dx.

Similar to Equation (B.8),t2ev
∫∞
−∞ e−p(x−q)

2
dx = t2ev

√
πc.

Substitutez = x− q. Thenx = z + q, and
∫∞
−∞ xe−p(x−q)

2
dx =

∫∞
−∞(z + q)e−p(z)

2
dx =

∫∞
−∞ ze−p(z)

2
dz + q

∫∞
−∞ e−p(z)

2
dz.
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Note that
∫∞
−∞ ze−p(z)

2
dz = 0.

(Recall thatp = 1/c2.)

Then−2tev
∫∞
−∞ xe−p(x−q)

2
dx = −2tev(0 + q

√
2π c√

2
) = −2tevq√πc.

Similar to above, letz = x− q, and
∫∞
−∞ x2e−p(x−q)

2
dx =

∫∞
−∞(z + q)2e−p(z)

2
dz.

Then

∫∞
−∞(z + q)2e−p(z)

2
dz =

∫∞
−∞(z

2 + 2qz + q2)e−p(z)
2
dz =

∫∞
−∞ z2e−p(z)

2
dz +

∫∞
−∞ 2qze

−p(z)2dz +
∫∞
−∞ q2e−p(z)

2
dz.

Note that
∫∞
−∞ 2qze

−p(z)2dz = 0, and similar to Equation (B.8),
∫∞
−∞ q2e−p(z)

2
dz = q2

√
πc.

∫∞
−∞ z2e−p(z)

2
dz = ( c

2
)2
√
2π( c

2
)2 = c3

2

√
π.

Thus

HJ
c4

∫∞
−∞ e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)(x−t)2dx = t2ev

√
πc−2tevq√πc+ev c3

2

√
π+evq2

√
πc.

Note that factoring:

t2ev
√
πc− 2tevq√πc+ ev c

3

2

√
π + evq2

√
πc = ev

√
πc[t2 − 2tq + c2

2
+ q2].

Thus,

HJ

c4

∫ ∞

−∞
e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)(x− t)2dx = ev

√
πc[t2 − 2tq + c2

2
+ q2]. (B.12)

Third General Form

A similar progression yields
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HJ

c4

∫ ∞

−∞
e−1/2(

(x−s)2

c2
)e−1/2(

(x−t)2

c2
)(x− x)2(x− t)2dx =

cev
√
π{q4 + c2(3q2) +

3c4

4
+ [(−2s− 2t)(q3 + 3qc

2

2
)]

+[(s2 + t2 + 4st)(q2 + (
c2

2
))].

+[(q)(−2st2 − 2s2t)] + [s2t2]}. (B.13)

Applying Equations (B.9), (B.12), and (B.13) to roughness formula:

r(a, b, c) = {
√
π

c3

n∑

i=1

n∑

j=1

AiAje
v−q2

c2 [1− 2s
2

c2
+
4sq

c2
− 2q

2

c2
− 1

+
q4

c4
+
3q2

c2
+
3

4
+
−2sq3
c4

+
−3qs
c2

+
−2tq3
c4

+
−3qt
c2

+
s2q2

c4
+

s2

2c2
+
t2q2

c4
+

t2

2c2

+
4stq2

c4
+
2st

c2
+
−2st2q
c4

+
−2s2tq
c4

+
s2t2

c4
]}1/2. (B.14)

Note that the following terms

q4

c4
+
−2sq3
c4

+
−2tq3
c4

+
s2q2

c4
+
t2q2

c4
+
4stq2

c4
+
−2st2q
c4

+
−2s2tq
c4

+
s2t2

c4
, (B.15)

factor as follows.
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The second and third terms of Equation (B.15) are

−2sq3
c4

+
−2tq3
c4

=
−2q3(s+ t)

c4
=
−4(s+ t)q3

2c4
=
−4q4
c4

, (B.16)

and thus the first second and third terms of Equation (B.15) are

q4

c4
+
−2sq3
c4

+
−2tq3
c4

=
−3q4
c4

. (B.17)

Note that the seventh and eighth terms of Equation (B.15) are

−2st(s+ t)q

c4
=
−4st(s+ t)q

2c4
=
−4stq2
c4

, (B.18)

and thus the sixth, seventh and eighth terms in Equation (B.15) are:

4stq2

c4
+
−4stq2
c4

= 0. (B.19)

Note that Equation (B.15) is equal to

c4 terms =
−3q4
c4

+
s2q2

c4
+
t2q2

c4
+
s2t2

c4
(B.20)

Note that the second and third terms in Equation (B.20) simplify to:

s2q2

c4
+
t2q2

c4
=
q2(s2 + t2)

c4
=
q2[(s+ t)2 − 2st]

c4
=
4q2[(s+ t)2 − 2st]

4c4
, (B.21)

and that
4q2[(s+ t)2 − 2st]

4c4
=
4q2(s + t)2

4c4
+
4q2(−2st)
4c4

. (B.22)

Note that
4q2(s+ t)2

4c4
+
4q2(−2st)
4c4

=
4q4

c4
+
4q2(−2st)
4c4

(B.23)
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Therefore, Equation (B.20) simplifies to:

c4 terms =
−3q4
c4

+
4q4

c4
+
4q2(−2st)
4c4

+
s2t2

c4
(B.24)

From above equation:

c4 terms =
q4

c4
+
−2q2st
c4

+
s2t2

c4
(B.25)

Substitutev = st.

c4 terms =
q4

c4
+
−2q2v
c4

+
v2

c4
=
(q2 − v)2

c4
(B.26)

Next, examine the 11 terms with denominator ofc2 :

c2 terms =
−t2
c2
+
2tq

c2
+
−2q2
c2

+
−s2
c2
+
2sq

c2
+
3q2

c2
+
−3qs
c2

+
−3qt
c2

+
s2

2c2
+
t2

2c2
+
2st

c2
(B.27)

Note that the seventh and eighth terms in Equation (B.27) simplify to

−3qs
c2

+
−3qt
c2

=
−3q(s+ t)

c2
=
−6q(s+ t)

2c2
=
−6q2
c2

(B.28)

Combining the third, sixth, seventh, and eighth terms in Equation (B.27):

−2q2
c2

+
3q2

c2
+
−6q2
c2

=
−5q2
c2

(B.29)

Now, Equation (B.27) is simplified as

c2 terms =
−t2
c2
+
2tq

c2
+
−5q2
c2

+
−s2
c2

+
2sq

c2
+

s2

2c2
+

t2

2c2
+
2st

c2
(B.30)

Note that the second and fifth terms in Equation (B.30) are:

2tq

c2
+
2sq

c2
=
2q(s+ t)

c2
=
4q(s+ t)

2c2
=
4q2

c2
, (B.31)
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and thus Equation (B.30) simplifies to:

c2 terms =
−t2
c2
+
−q2
c2

+
−s2
c2

+
s2

2c2
+

t2

2c2
+
2st

c2
(B.32)

Combining the first, third, fourth, and fifth terms of Equation (B.32):

−t2
c2
+
−s2
c2

+
s2

2c2
+

t2

2c2
=
−t2
2c2

+
−s2
2c2

(B.33)

Now, Equation (B.32) simplifies to:

c2 terms =
−t2 − s2

2c2
− q2

c2
+
2st

c2
(B.34)

Replace(s+t)
2

for q in the above equation, and use a common denominator to obtain:

c2 terms=
−2t2 − 2s2

4c2
− (s+ t)2

4c2
+
8st

4c2
(B.35)

Therefore,

c2 terms=
−2t2 − 2s2 − (s2 + 2st+ t2) + 8st

4c2
=
−2t2 − 2s2 − s2 − 2st− t2 + 8st

4c2
,

(B.36)
−2t2 − 2s2 − s2 − 2st− t2 + 8st

4c2
=
−3t2 − 3s2 + 6st

4c2
, (B.37)

and

c2 terms=
−3(t2 + s2 − 2st)

4c2
=
−3((s+ t)2 − 4st)

4c2

=
−3q2
c2

+
12v

4c2
=
−3q2
c2

+
3v

c2
=
3(v − q2)

c2
. (B.38)
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Combining thec4, c2, and constant terms, and inserting into the roughness formula:

r(a, b, c) =

{√
π

c3

n∑

i=1

n∑

j=1

AiAje
v−q2

c2

{
3

4
+
(3)(v − q2)

c2
+
(v − q2)2

c4

}}1/2
(B.39)

Substituteγ = v−q2
c2

.

Note that

γ =
v − q2

c2
=

v

c2
− q2

c2
=
st

c2
− (s+ t)2

4c2
=
4st− (s+ t)2

4c2
=
4st− (s2 + 2st+ t2)

4c2
,

(B.40)

and

γ =
4st− s2 − 2st− t2

4c2
=
−(s2 − 2st+ t2)

4c2
=
−(s− t)2

4c2
(B.41)

Thus,

r(a, b, c) =

∫
(y′′(x; a, b, c))2dx =

√
π

c3

n∑

i=1

n∑

j=1

AiAje
γ

{
3

4
+ 3γ + γ2

}
, (B.42)

where

γ =
−(xi − xj)

2

4c2
. (B.43)
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Appendix C. ROC Curve and CEG Curve Probability Density and

Confidence Interval Software

Appendix C-1 details code [Parker, 2005] that computes median estimatesof ROC curves

and AUC values, with confidence intervals, for any set of target and non-target input

score samples, assuming beta target and non-target densities. AppendixC-2 is identical

in purpose, except that it assumes two-beta mixture target and non-target densities.

These appendices contain instructions for additional code that assumes target and

non-target densities with fixed, user-specified parameters. This additional code generates

many sets of representative target and non-target samples from the fixed densities, and it

provides corresponding ROC curve coverage accuracies. Appendix C-3 and C-4

describe code identical in purpose to C-1 and C-2, but for CEG curves and RSD values.

The end of Section 5 compares the beta and two-beta density approaches; the principal

approach applied in the research reported here is the single beta model. The code for

each of the Matlab files that comprise the user interface is also provided here. The

remaining Matlab files are functions that are called upon execution of theuser interface.
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Appendix C-1 
ROC curve /AUC value Estimation and Confidence Interval 

Matlab Instructions 
Beta Density Target and Non-target Model 

 
A. Provide a set of target samples, non-target samples, and confidence bound value.  Then compute 
the confidence intervals based on these samples.   

 
1. Place the following files into a common directory. 

(For example: c:\matlab_sv12\work\) 
  
beta_mean_w_a_b_r.m 

 conditioned_calc_2_r.m 
 find_max_variance_r.m 
 get_aurc_val_r.m 
 get_density_vals_r.m 
 get_grid_points_closest_r.m 
 get_grid_points_n_closest_r.m 
 get_grid_points_r.m 
 get_pd_pfa_matrix_10_r.m 
 get_pd_pfa_pairs_pdfs2_r.m 
 high_low_grid_weight_r.m 
 mean_variance_to_pdf_2_r.m 
 pd_pfa_from_mean_std_r.m 
 pfa_pd_to_hundredths_r.m 
 script_for_samples_r.m 

uni_pdf_for_samples_r 
 

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu, if 
the directory is not already in the path. 

 
3. Execute the following in Matlab.  An example is contained in ‘script_for_samples_r.m’.   

 
Enter (or load) a vector of target scores into the variable ‘new_target_scores’.   
Enter (or load) a vector of nontarget scores into the variable ‘new_nontarget_scores’. 

 
Execute the following matlab code to produce ROC curve and AUC value estimates with confidence intervals: 

 
uni_pdf_for_samples_r(new_target_scores,new_nontarget_scores,.95); 

  
 Replace .95 by alternate confidence interval coverage if desired (e.g. .90, .80). 
 
To obtain the upper and lower confidence interval limit values for false alarm probabilities 0, .01, …, .99, 
1, (rather than an on-screen plot), execute the following: 
  
[ci_median, ci_upper, ci_lower, auc_median, auc_upper, auc_lower] = … 
uni_pdf_for_samples_r(new_target_scores,new_nontarget_scores,bound_value); 
ci_median –  ROC curve estimate 
ci_upper -      Upper ROC curve confidence interval contour 
ci_lower -      Lower ROC curve confidence interval contour 
auc_median -  AUC value estimate 
auc_upper -  Upper AUC value confidence interval estimate 
auc_lower -          Lower AUC value confidence interval estimate 



 
B. Generate many sets of samples for selected underlying target and nontarget densities, and then 
obtain confidence intervals and estimates for the ROC / AUC for each set of samples and compute 
confidence interval accuracy (e.g. alpha) among all sets.   This process assumes a single beta model 
for target and non-target. 

 
1. Place the following files into a common directory. 

 
For example: c:\matlab_sv12\work\roc\ 

 
 beta_mean_w_a_b_r.m 
 conditioned_calc_2_r.m 
 find_max_variance_r.m 
 generic_rnd.m 
 get_aurc_val_r.m 
 get_density_vals_r.m 
 get_grid_points_closest_r.m 
 get_grid_points_n_closest_r.m 
 get_grid_points_r.m 
 get_pd_pfa_matrix_10_r.m 
 get_pd_pfa_pairs_pdfs2_r.m 
 high_low_grid_weight_r.m 
 mean_variance_to_pdf_2_r.m 
 pd_pfa_from_mean_std_r.m 
 pfa_pd_to_hundredths_r.m 
 run_choose_sample.m 
 run_Uu_aurc_95_r.m 
 sample_gen_uni_test_r.m 
 sample_gen_user_input_r.m 
 script_ROC_AUC_CIs_with_coverage_accuracy.m  

uni_pdf_aurc_95_r.m 
 

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu.   
 

3. Open the File ‘script_ROC_AUC_CIs_with_coverage_accuracy.m’. 
 

Lines 7-18.  Specify number of target samples, number of non-target samples, specify a beta 
density by mean and variance of assumed target beta density, mean and variance of assumed non-
target beta density number of runs, or provide any density form as input (Lines 23-24 provide an 
example). 

 
Evaluate Lines 1 through 88.  [Note in Matlab this can be achieved by highlighting these line.  
Then right click to obtain a menu.  Then choose ‘Evaluate Selection’.]  After each run, the full set 
of results are saved in Line 88.   
 
ROC curve for a single run with confidence intervals: 
 
a. Form a plot of estimated ROC with confidence intervals [with true ROC] by Evaluating Lines 

92-105.  Note that run_number on line 92 may be adjusted to any run among the set specified 
in step 3 above. 

 
Obtain coverage for the full set of runs by Evaluating Lines 111-176.  The mean alpha for AUC 
over many runs is displayed at the top of the plot.   
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Appendix C-2 
ROC curve /AUC value Estimation and Confidence Interval 

Matlab Instructions 
Two-Beta Mixture Target and Non-Target Density Model 

 
A. Provide a set of target samples, non-target samples, and confidence bound value.  Then compute 
the confidence intervals based on these samples (assumes a two-beta mixture model).   

 
1. Place the following files into a common directory. 

(For example: c:\matlab_sv12\work\) 
  

 beta_mean_w_ab_2br.m 
 combine_beta_pdf_2br.m 
 conditioned_calc_2_2br.m 
 find_max_variance_2br.m 
 get_aurc_val_2br.m 
 get_pd_pfa_matrix_10_2br.m 
 get_pd_pfa_pairs_pdfs2_2br.m 
 mixture_pdf_2br.m 
 pfa_pd_to_hundredths_2br.m 
 rand_two_beta_density_2br.m 
 roc_from_density_2br.m 
 sample_gen_bimodal_2br.m 
 two_beta_script_for_given_samples_2br.m 
 two_beta_roc_truth_not_known_2br.m 
        

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu, if 
the directory is not already in the path. 

 
3. Execute the following in Matlab.  An example is contained in 

‘two_beta_script_for_given_samples_2br.m’.   
Enter (or load) a vector of target scores into the variable ‘new_target_scores’.   
Enter (or load) a vector of nontarget scores into the variable ‘new_nontarget_scores’. 

 
Execute the following matlab code to produce ROC curve and AUC value estimates with confidence intervals: 

 
two_beta_roc_truth_not_known(new_target_scores,new_nontarget_scores,10000,.95); 

  
 Replace 10000 by the desired number of random draws (lower numbers of draws decrease 

computational time).  An approach is to begin with a low number of draws and gradually increase 
until convergence of confidence interval solution is observed.  

              Replace .95 by alternate confidence interval coverage if desired (e.g. .90, .80). 
 
To obtain the upper and lower confidence interval limit values for false alarm probabilities 0, .01, …, .99, 
1, (rather than an on-screen plot), execute the following: 
[ci_median, ci_upper, ci_lower, auc_median, auc_upper, auc_lower] = … 
two_beta_roc_truth_not_known(new_target_scores,new_nontarget_scores,10000,.95); 
ci_median –  ROC curve estimate 
ci_upper -      Upper ROC curve confidence interval contour 
ci_lower -      Lower ROC curve confidence interval contour 
auc_median -  AUC value estimate 
auc_upper -  Upper AUC value confidence interval estimate 
auc_lower -          Lower AUC value confidence interval estimate 



B. Generate many sets of samples for selected underlying target and nontarget densities, and then 
obtain confidence intervals and estimates for the ROC curve / AUC value for each set of samples and 
compute confidence interval accuracy (e.g. alpha) among all sets.   This process assumes a two-beta 
mixture model for target and non-target. 

 
1. Place the following files into a common directory. 

 
For example: c:\matlab_sv12\work\roc\ 

 
 beta_mean_w_ab_2br.m 
 combine_beta_pdf_2br.m 
 conditioned_calc_2_2br.m 
 find_max_variance_2br.m 
 get_aurc_val_2br.m 
 get_pd_pfa_matrix_10_2br.m 
 get_pd_pfa_pairs_pdfs2_2br.m 
 mixture_pdf_2br.m 
 pfa_pd_to_hundredths_2br.m 
 rand_two_beta_density_2br.m 
 roc_from_density_2br.m 
 sample_gen_bimodal_2br.m 
 two_beta_script_for_many_runs_2br.m 
 twobeta_run_nonempirical_2br.m 
 two_beta_unipdf_aurc_1000_2br.m 
 

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu.   
 

3. Open the File ‘two_beta_script_for_many_runs_2br.m’. 
 

Lines 4-22.  Specify number of target samples, number of non-target samples, specify the five 
parameters for the target density for a two-beta mixture model (two means, two standard 
deviations, and a ratio), the five parameters for the non-target density, the number of 
random_draws desired (e.g. 2000), confidence interval desired (ci_range; example is .90 for 90% 
confidence intervals), and the number of test runs (number_of_runs; example is 100 if 100 test 
runs are desired).   An example is provided; change these values as desired.   

 
Evaluate Lines 1 through 77.  [Note in Matlab this can be achieved by highlighting these lines.  
Then right click to obtain a menu.  Then choose ‘Evaluate Selection’.]  After each run, the full set 
of results are saved in Line 88.   
 
ROC curve for a single run with confidence intervals: 
 
a. Form a plot of estimated ROC with confidence intervals [with true ROC] by Evaluating Lines 

78-93.  Note that run_number on line 79 may be adjusted to any run among the set specified 
in step 3 above. 

 
b.     Obtain coverage for the full set of runs by Evaluating Lines 100-179.  The mean alpha for 

AUC over many runs is displayed at the top of the plot.   
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0
.
7
9
3
5
;
.
.
.
 

 
3
 
0
.
7
9
5
9
;
 
0
.
8
0
2
7
;
 
0
.
8
0
3
5
;
 
0
.
8
0
4
3
;
 
0
.
8
0
4
9
;
 
0
.
8
0
6
6
;
 
0
.
8
1
4
1
;
 
0
.
8
1
8
3
;
 
0
.
8
1
8
9
;
 
0
.
8
2
0
2
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.
.
.
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0
.
8
2
6
2
;
 
0
.
8
3
2
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;
 
0
.
8
4
7
9
;
 
0
.
8
4
8
7
;
 
0
.
8
5
0
5
;
 
0
.
8
6
3
7
;
 
0
.
8
7
0
1
;
 
0
.
8
7
1
8
;
 
0
.
8
7
5
3
;
 
0
.
8
8
3
1
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.
.
 

 
5
 
0
.
8
8
8
0
;
 
0
.
8
9
5
3
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;
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7
 
n
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w
_
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o
n
t
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r
g
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_
s
c
o
r
e
s
 
=
 
[
0
.
5
9
8
8
;
 
0
.
6
3
3
1
;
 
0
.
6
3
9
6
;
 
0
.
6
6
4
2
;
 
0
.
6
6
5
2
;
 
0
.
6
6
8
8
;
 
0
.
6
7
3
4
;
.
.
.
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;
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7
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;
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8
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;
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9
5
4
;
 
0
.
6
9
9
0
;
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;
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;
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.
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;
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;
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2
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;
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3
4
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;
 
0
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7
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;
 
0
.
7
6
4
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;
 
0
.
7
6
4
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;
 
0
.
7
7
8
5
;
.
.
.
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0
 
0
.
7
7
9
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;
 
0
.
7
9
4
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;
 
0
.
8
0
3
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]
;
 

1
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2
 
c
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n
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.
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;
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3
 
n
u
m
b
e
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_
r
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n
d
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_
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r
a
w
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=
 
2
0
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;
 

1
4
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5
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l
u
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,
 
u
n
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l
u
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_
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,
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n
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l
u
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_
3
,
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n
i
_
v
a
l
u
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_
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,
 
u
n
i
_
v
a
l
u
e
_
5
,
 
u
n
i
_
v
a
l
u
e
_
6
]
 
=
 
t
w
o
b
e
t
a
_
r
o
c
_
t
r
u
t
h
_
n
o
t
_
k
n
o
w
n
_
2
b
r

(
n
e
w
_
t
a
r
g
e
t
_
s
c
o
r
e
s
,
n
e
w
_
n
o
n
t
a
r
g
e
t
_
s
c
o
r
e
s
,
n
u
m
b
e
r
_
o
f
_
r
a
n
d
o
m
_
d
r
a
w
s
,
c
i
_
r
a
n
g
e
)
;
 

1
6
 
 

1
7
 
u
n
i
_
c
i
_
m
e
d
i
a
n
 
=
 
u
n
i
_
v
a
l
u
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1
;
 

1
8
 
u
n
i
_
c
i
_
u
p
p
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=
 
u
n
i
_
v
a
l
u
e
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2
;
 

1
9
 
u
n
i
_
c
i
_
l
o
w
e
r
 
=
 
u
n
i
_
v
a
l
u
e
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3
;
 

2
0
 
a
u
r
c
_
m
e
d
i
a
n
 
=
 
u
n
i
_
v
a
l
u
e
_
4
;
 

2
1
 
a
u
r
c
_
u
p
p
e
r
 
=
 
u
n
i
_
v
a
l
u
e
_
5
;
 

2
2
 
a
u
r
c
_
l
o
w
e
r
 
=
 
u
n
i
_
v
a
l
u
e
_
6
;
 

2
3
 
 

2
4
 
p
l
o
t
(
0
:
.
0
1
:
1
,
u
n
i
_
c
i
_
m
e
d
i
a
n
,
'
k
-
.
'
)
;
 

2
5
 
h
o
l
d
 
o
n
;
 

2
6
 
p
l
o
t
(
0
:
.
0
1
:
1
,
u
n
i
_
c
i
_
u
p
p
e
r
,
'
k
:
'
)
;
 

2
7
 
h
o
l
d
 
o
n
;
 

2
8
 
p
l
o
t
(
0
:
.
0
1
:
1
,
u
n
i
_
c
i
_
l
o
w
e
r
,
'
k
:
'
)
;
 

2
9
 
h
o
l
d
 
o
n
;
 

3
0
 
a
x
i
s
 
e
q
u
a
l
;
 

3
1
 
a
x
i
s
(
[
-
.
1
 
1
.
1
 
-
.
1
 
1
.
1
]
)
;
 

3
2
 
 

3
3
 
 

3
4
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t
w
o
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e
t
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_
s
c
r
i
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_
f
o
r
_
m
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y
_
r
u
n
s
_
2
b
r
.
m

1
 
o
f
 
5

 
 
1
 
 

 
 
2
 
c
l
e
a
r
 
a
l
l
;
 

 
 
3
 
 

 
 
4
 
n
u
m
b
e
r
_
o
f
_
t
a
r
g
e
t
_
s
a
m
p
l
e
s
 
=
 
3
0
0
;
 

 
 
5
 
n
u
m
b
e
r
_
o
f
_
n
o
n
t
a
r
g
e
t
_
s
a
m
p
l
e
s
 
=
 
2
5
0
;
 

 
 
6
 
 

 
 
7
 
%
 
F
i
r
s
t
 
o
b
t
a
i
n
 
t
h
e
 
u
n
d
e
r
l
y
i
n
g
 
t
a
r
g
e
t
 
a
n
d
 
c
l
u
t
t
e
r
 
d
e
n
s
i
t
y
:
 

 
 
8
 
m
e
a
n
_
t
a
r
g
e
t
_
1
 
=
 
.
8
;
 

 
 
9
 
s
t
d
_
t
a
r
g
e
t
_
1
 
=
 
.
0
8
;
 

 
1
0
 
m
e
a
n
_
t
a
r
g
e
t
_
2
 
=
 
.
6
;
 

 
1
1
 
s
t
d
_
t
a
r
g
e
t
_
2
 
=
 
.
1
;
 

 
1
2
 
r
a
t
i
o
_
t
a
r
g
e
t
 
=
 
.
5
;
 

 
1
3
 
 

 
1
4
 
m
e
a
n
_
n
o
n
t
a
r
g
e
t
_
1
 
=
 
.
6
;
 

 
1
5
 
s
t
d
_
n
o
n
t
a
r
g
e
t
_
1
 
=
 
.
0
8
;
 

 
1
6
 
m
e
a
n
_
n
o
n
t
a
r
g
e
t
_
2
 
=
 
.
4
;
 

 
1
7
 
s
t
d
_
n
o
n
t
a
r
g
e
t
_
2
 
=
 
.
1
;
 

 
1
8
 
r
a
t
i
o
_
n
o
n
t
a
r
g
e
t
 
=
 
.
3
;
 

 
1
9
 
 

 
2
0
 
n
u
m
b
e
r
_
o
f
_
r
a
n
d
o
m
_
d
r
a
w
s
 
=
 
2
0
0
0
;
 

 
2
1
 
c
i
_
r
a
n
g
e
 
=
 
.
9
0
;
 

 
2
2
 
n
u
m
b
e
r
_
o
f
_
r
u
n
s
 
=
 
1
;
 

 
2
3
 
 

 
2
4
 
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
 
=
 
1
;
 

 
2
5
 
p
l
o
t
_
u
n
i
_
c
i
_
m
e
d
i
a
n
_
v
e
c
t
o
r
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
2
6
 
p
l
o
t
_
u
n
i
_
c
i
_
u
p
p
e
r
_
v
e
c
t
o
r
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
2
7
 
p
l
o
t
_
u
n
i
_
c
i
_
l
o
w
e
r
_
v
e
c
t
o
r
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
2
8
 
p
f
a
_
v
e
c
t
o
r
_
t
r
u
e
_
c
u
r
v
e
_
v
e
c
t
o
r
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
2
9
 
p
d
_
v
e
c
t
o
r
_
t
r
u
e
_
c
u
r
v
e
_
v
e
c
t
o
r
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
3
0
 
a
l
p
h
a
_
d
i
f
f
_
m
a
n
y
_
r
u
n
s
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
)
;
 

 
3
1
 
 

 
3
2
 
p
l
o
t
_
u
n
i
_
c
i
_
m
e
d
i
a
n
_
v
e
c
t
o
r
_
o
l
d
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
3
3
 
p
l
o
t
_
u
n
i
_
c
i
_
u
p
p
e
r
_
v
e
c
t
o
r
_
o
l
d
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
3
4
 
p
l
o
t
_
u
n
i
_
c
i
_
l
o
w
e
r
_
v
e
c
t
o
r
_
o
l
d
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
3
5
 
p
f
a
_
v
e
c
t
o
r
_
t
r
u
e
_
c
u
r
v
e
_
v
e
c
t
o
r
_
o
l
d
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
3
6
 
p
d
_
v
e
c
t
o
r
_
t
r
u
e
_
c
u
r
v
e
_
v
e
c
t
o
r
_
o
l
d
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
0
1
)
;
 

 
3
7
 
 

 
3
8
 
a
u
r
c
_
m
e
d
i
a
n
_
m
a
n
y
_
r
u
n
s
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
)
;
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_
r
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_
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r
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2
 
o
f
 
5

 
3
9
 
a
u
r
c
_
u
p
p
e
r
_
m
a
n
y
_
r
u
n
s
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
)
;
 

 
4
0
 
a
u
r
c
_
l
o
w
e
r
_
m
a
n
y
_
r
u
n
s
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
)
;
 

 
4
1
 
a
l
p
h
a
_
a
u
r
c
_
m
a
n
y
_
r
u
n
s
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
)
;
 

 
4
2
 
t
r
u
e
_
a
u
r
c
_
m
a
n
y
_
r
u
n
s
 
=
 
z
e
r
o
s
(
l
e
n
g
t
h
_
r
u
n
_
n
u
m
b
e
r
,
1
)
;
 

 
4
3
 
 

 
4
4
 
r
u
n
_
n
u
m
b
e
r
 
=
 
1
;
 

 
4
5
 
 

 
4
6
 
r
u
n
_
n
u
m
b
e
r
_
s
t
a
r
t
 
=
 
1
;
 

 
4
7
 
r
u
n
_
n
u
m
b
e
r
_
e
n
d
 
=
 
n
u
m
b
e
r
_
o
f
_
r
u
n
s
;
 

 
4
8
 
 

 
4
9
 
f
o
r
 
r
u
n
_
n
u
m
b
e
r
 
=
 
r
u
n
_
n
u
m
b
e
r
_
s
t
a
r
t
:
r
u
n
_
n
u
m
b
e
r
_
e
n
d
 

 
5
0
 
 

 
5
1
 
 

 
5
2
 
 
 
 
 
[
p
l
o
t
_
u
n
i
_
c
i
_
m
e
d
i
a
n
,
p
l
o
t
_
u
n
i
_
c
i
_
u
p
p
e
r
,
p
l
o
t
_
u
n
i
_
c
i
_
l
o
w
e
r
,
u
n
i
_
c
o
n
f
_
c
h
e
c
k
_
v
a
l
,
p
f
a
_
v
e
c
t
o
r
_
t
r
u
e
_
c
u
r
v
e
,

p
d
_
v
e
c
t
o
r
_
t
r
u
e
_
c
u
r
v
e
,
m
s
e
_
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n
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,
t
e
s
t
_
u
n
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,
a
l
p
h
a
_
d
i
f
f
,
a
u
r
c
_
m
e
d
i
a
n
,
a
u
r
c
_
u
p
p
e
r
,
a
u
r
c
_
l
o
w
e
r
,
a
l
p
h
a
_
a
u
r
c
,
t
r
u
e
_
a
u
r
c
]
 
=
 

t
w
o
b
e
t
a
_
r
u
n
_
n
o
n
e
m
p
i
r
i
c
a
l
_
2
b
r
.
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.
 

 
5
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(
r
u
n
_
n
u
m
b
e
r
,
n
u
m
b
e
r
_
o
f
_
t
a
r
g
e
t
_
s
a
m
p
l
e
s
,
n
u
m
b
e
r
_
o
f
_
n
o
n
t
a
r
g
e
t
_
s
a
m
p
l
e
s
,
m
e
a
n
_
t
a
r
g
e
t
_
1
,
s
t
d
_
t
a
r
g
e
t
_
1
,
m
e
a
n
_
t
a
r
g
e
t
_
2
,

s
t
d
_
t
a
r
g
e
t
_
2
,
.
.
.
 

 
5
4
 
 
 
 
 
r
a
t
i
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_
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r
g
e
t
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e
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n
_
n
o
n
t
a
r
g
e
t
_
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,
s
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d
_
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n
t
a
r
g
e
t
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e
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n
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o
n
t
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,
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t
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r
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r
a
t
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o
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o
n
t
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r
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e
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n
u
m
b
e
r
_
o
f
_
r
a
n
d
o
m
_
d
r
a
w
s
,
c
i
_
r
a
n
g
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5
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r
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d
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s
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b
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p
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b
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p
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b
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c
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c
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c
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c
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p
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c
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c
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c
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Appendix C-3 
CEG/RSD Estimation and Confidence Interval Matlab Instructions 

Beta Density Target and Non-target Model 
A. Provide a set of target samples and non-target samples.  Then estimate the CEG curve and RSD 
and associated confidence intervals based on these samples, (assuming a single beta density model).   

 
1. Place the following files into a common directory. 

(c:\matlab_sv12\work\ceg\) 
 
beta_mean_c.m 
beta_mean_w_a_b_c.m 
conditioned_calc_2_c.m 
conf_error_new_w_return_c.m 
conf_error_new_weighted_c.m 
find_max_variance_c.m 
get_density_vals_c.m 
get_grid_points_c.m 
get_grid_points_closest_c.m 
get_grid_points_n_closest_c.m 
get_pd_pfa_matrix_10_c.m 
get_pd_pfa_pairs_pdfs2_c.m 
high_low_grid_weight_c.m 
mean_variance_to_pdf_2_c.m 
script_for_samples_c.m 

 uni_ce_pdf_samples_c.m    
 

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu, if 
the directory is not already in the path. 

 
3. Execute the following in Matlab.  An example is contained in ‘script_for_samples_c.m’.   

 
Enter (or load) a vector of target scores into the variable ‘new_target_scores’.   
Enter (or load) a vector of nontarget scores into the variable ‘new_nontarget_scores’. 

 
Execute the following matlab code to produce ROC curve and AUC value estimates with confidence intervals: 

 
uni_ce_pdf_samples_c(new_target_scores,new_nontarget_scores,.95,.5); 

  
 Replace .95 by alternate confidence interval coverage if desired (e.g. .90, .80). 
 
 Replace .5 by prior probability of target. 
 
To obtain the upper and lower confidence interval limit values for false alarm probabilities 0, .01, …, .99, 
1, (rather than an on-screen plot), execute the following: 
[ci_median, ci_upper, ci_lower, rsd_median, rsd_upper, rsd_lower] = … 
uni_pdf_for_samples_c(new_target_scores,new_nontarget_scores,bound_value,prior_target); 
 
 
ci_median –  ROC curve estimate 
ci_upper -      Upper ROC curve confidence interval contour 
ci_lower -      Lower ROC curve confidence interval contour 
rsd_median -  AUC value estimate 
rsd_upper -  Upper AUC value confidence interval estimate 
rsd_lower -          Lower AUC value confidence interval estimate 



B. Generate many sets of samples for selected underlying target and nontarget densities, and then 
obtain confidence intervals and estimates for the CEG curve / RSD value for each set of samples and 
compute confidence interval accuracy (e.g. alpha) among all sets.   This process assumes a single beta 
model for target and non-target. 

 
1. Place the following files into a common directory. 

 
For example: c:\matlab_sv12\work\roc\ 

 
beta_mean_c.m 
beta_mean_w_a_b_c.m 
conditioned_calc_2_c.m 
conf_error_new_w_return_c.m 
conf_error_new_weighted_c.m 
find_max_variance_c.m 
get_density_vals_c.m 
get_grid_points_c.m 
get_grid_points_closest_c.m 
get_grid_points_n_closest_c.m 
get_pd_pfa_matrix_10_c.m 
get_pd_pfa_pairs_pdfs2_c.m 
high_low_grid_weight_c.m 
mean_variance_to_pdf_2_c.m 

 script_CEG_RSD_CIs_with_coverage_accuracy.m 
 run_choose_sample_ceg_c.m 
 run_ceg_check_c.m 
 sample_gen_choose_density_c.m 
 sample_gen_uni_t_extend_c.m 
 

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu.   
 

3. Open the File ‘script_CEG_RSD_CIs_with_coverage_accuracy.m’. 
 

Lines 8-21.  Specify number of target samples, number of non-target samples, specify a beta 
density by mean and variance of assumed target beta density, mean and variance of assumed non-
target beta density, number of runs (how many test runs are desired), and prior probability of 
target.   Alternatively, specify the assumed target density and non-target density by the magnitude 
of the density at each of 1001 evaluation points (lines 24-27 provide an example).    

 
Evaluate Lines 1 through 83.  [Note in Matlab this can be achieved by highlighting these line.  
Then right click to obtain a menu.  Then choose ‘Evaluate Selection’.]  After each run, the full set 
of results can be saved per Line 81.   
 
ROC curve for a single run with confidence intervals: 
 
a. Form a plot of estimated ROC with confidence intervals [with true ROC] by Evaluating Lines 

85-98.  Note that run_number on line 92 may be adjusted to any run among the set specified 
in step 3 above. 

 
Obtain coverage for the full set of runs by Evaluating Lines 104-182.  The mean alpha for RSD 
over many runs is displayed at the top of the plot.   
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Appendix C-4 
CEG/RSD Estimation and Confidence Interval Matlab Instructions 

Two-Beta Mixture Target and Non-Target Density Model 
 

A. Provide a set of target samples, non-target samples, and confidence bound value.  Then compute 
the CEG curve and AUC value median estimates and confidence intervals based on these samples 
(assumes a two-beta mixture model).   

 
1. Place the following files into a common directory. 

(For example: c:\matlab_sv12\work\) 
 

 beta_mean_w_a_b_2bc.m 
 combine_beta_pdf_2bc.m 
 conditioned_calc_2_2bc.m 
 conf_error_new_w_return_2bc.m 
 conf_error_new_weighted_2bc.m 
 find_max_variance_2bc.m 
 mixture_pdf_2bc.m 
 rand_two_beta_density_2bc.m 
 sample_gen_bimodal_2bc.m 
 score_pts_to_hundredths_2bc.m 
 two_beta_script_for_given_samples_2bc.m 
 twobeta_ceg_truth_not_known_2bc.m 
 

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu, if 
the directory is not already in the path. 

 
3. Execute the following in Matlab.  An example is contained in  

‘two_beta_script_for_given_samples_2bc.m’ 
 
Enter (or load) a vector of target scores into the variable ‘new_target_scores’.   
Enter (or load) a vector of nontarget scores into the variable ‘new_nontarget_scores’. 

 
Execute the following matlab code to produce ROC curve and AUC value estimates with confidence intervals: 

 
two_beta_ceg_truth_not_known(new_target_scores,new_nontarget_scores,10000,.95); 

  
 Replace 10000 by the desired number of random draws (lower numbers of draws decrease 

computational time).  An approach is to begin with a low number of draws and gradually increase 
until convergence of confidence interval solution is observed.  

              Replace .95 by alternate confidence interval coverage if desired (e.g. .90, .80). 
 
To obtain the upper and lower confidence interval limit values for scores 0, .01, …, .99, 1, (rather than an 
on-screen plot), execute the following: 
  
[ci_median, ci_upper, ci_lower, rsd_median, rsd_upper, rsd_lower] = … 
two_beta_ceg_truth_not_known(new_target_scores,new_nontarget_scores,10000,.95); 
ci_median –  ROC curve estimate 
ci_upper -      Upper ROC curve confidence interval contour 
ci_lower -      Lower ROC curve confidence interval contour 
rsd_median -  AUC value estimate 
rsd_upper -  Upper AUC value confidence interval estimate 
rsd_lower -          Lower AUC value confidence interval estimate 
 



B. Generate many sets of samples for selected underlying target and nontarget densities, and then 
obtain confidence intervals and estimates for the CEG curve / RSD value for each set of samples and 
compute confidence interval accuracy (e.g. alpha) among all sets.   This process assumes a single beta 
model for target and non-target. 

 
1. Place the following files into a common directory. 

 
For example: c:\matlab_sv12\work\roc\ 

 
 beta_mean_w_a_b_2bc.m 
 combine_beta_pdf_2bc.m 
 conditioned_calc_2_2bc.m 
 conf_error_new_w_return_2bc.m 
 conf_error_new_weighted_2bc.m 
 find_max_variance_2bc.m 
 mixture_pdf_2bc.m 
 rand_two_beta_density_2bc.m 
 sample_gen_bimodal_2bc.m 
 score_pts_to_hundredths_2bc.m 
 two_beta_script_for_many_runs_2bc.m 
 twobeta_run_nonempirical_2bc.m 
 twobeta_unipdf_rsd_1000_2bc.m  
 

2. Add the common directory to the Matlab path by using ‘File / Set Path’ option in Matlab menu.   
 

3. Open the File ‘two_beta_script_for_many_runs_2bc.m’. 
 

Lines 4-23.  Specify number of target samples, number of non-target samples, specify a target beta 
density by the five parameters of an assumed beta density, specify non-target density by the five 
parameters of an assumed beta density, number of runs (how many test runs are desired), and prior 
probability of target.  Also specify the number of random draws; this is a computational constraint, 
the number of draws selects how many grid points to evaluate for the target and non-target 
densities.  An option is to begin at a number that executes quickly (e.g. 2000), then increase until 
observing convergence of computed confidence intervals. 
Evaluate Lines 1 through 71.  [Note in Matlab this can be achieved by highlighting these line.  
Then right click to obtain a menu.  Then choose ‘Evaluate Selection’.]  After each run, the full set 
of results can be saved per Line 69.   
 
ROC curve for a single run with confidence intervals: 
 
a. Form a plot of estimated ROC with confidence intervals [with true ROC] by Evaluating Lines 

73-85.  Note that run_number on line 92 may be adjusted to any run among the set specified 
in step 3 above. 

 
Obtain coverage for the full set of runs by Evaluating Lines 94-173.  The mean alpha for RSD 
over many runs is displayed at the top of the plot.   
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n
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b
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b
e
r
,
1
)
;
 

 
3
4
 
r
s
d
_
u
p
p
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b
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u
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=
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b
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;
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a
l
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h
a
_
r
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d
_
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n
y
_
r
u
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s
 
=
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e
r
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(
l
e
n
g
t
h
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r
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_
n
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m
b
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)
;
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_
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b
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b
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4
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;
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2
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b
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b
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b
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p
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c
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p
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c
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c
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c
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c
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p
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r
s
d
_
l
o
w
e
r
,
a
l
p
h
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r
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=
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o
b
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t
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r
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b
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m
b
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_
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r
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p
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b
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p
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.
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n
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n
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n
t
a
r
g
e
t
_
2
,
s
t
d
_
n
o
n
t
a
r
g
e
t
_
2
,
r
a
t
i
o
_
n
o
n
t
a
r
g
e
t
,

n
u
m
b
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p
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b
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p
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b
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p
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b
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l
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b
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b
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c
k
_
v
a
l
_
m
a
n
y
_
r
u
n
s
(
r
u
n
_
n
u
m
b
e
r
)
 
=
 
u
n
i
_
c
o
n
f
_
c
h
e
c
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b
e
r
)
 
=
 
m
s
e
_
u
n
i
;
 

 
6
0
 
 

 
6
1
 
 
 
 
 
t
e
s
t
_
u
n
i
_
m
a
n
y
_
r
u
n
s
(
r
u
n
_
n
u
m
b
e
r
)
 
=
 
t
e
s
t
_
u
n
i
;
 

 
6
2
 
 
 
 
 
 

 
6
3
 
 
 
 
 
p
l
o
t
_
u
n
i
_
c
i
_
m
e
d
i
a
n
_
v
e
c
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c
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p
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p
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c
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p
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c
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c
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r
v
e
_
v
e
c
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b
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c
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c
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c
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c
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v
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e
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b
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u
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p
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.
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.
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9
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p
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t
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n
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c
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c
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b
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7
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;
 

 
7
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p
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.
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1
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.
0
1
:
.
9
9
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p
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n
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p
p
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c
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r
u
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n
u
m
b
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k
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7
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o
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n
;
 

 
7
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p
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.
0
1
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.
0
1
:
.
9
9
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l
o
t
_
u
n
i
_
c
i
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c
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n
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b
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k
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8
0
 
h
o
l
d
 
o
n
;
 

 
8
1
 
p
l
o
t
(
s
c
o
r
e
_
v
e
c
t
o
r
_
t
r
u
e
_
c
u
r
v
e
_
v
e
c
t
o
r
(
r
u
n
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n
u
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b
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2
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1
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c
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c
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b
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k
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8
2
 
l
e
g
e
n
d
(
'
m
e
d
i
a
n
'
,
'
u
p
p
e
r
 
c
i
'
,
'
l
o
w
e
r
 
c
i
'
,
'
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r
u
t
h
 
(
u
n
d
e
r
l
y
i
n
g
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'
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;
 

 
8
3
 
t
i
t
l
e
(
[
'
a
l
p
h
a
 
e
s
t
.
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'
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n
u
m
2
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t
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1
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n
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e
c
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b
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m
2
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(
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u
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n
u
m
b
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;
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a
x
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e
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;
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i
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l
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;
 

 
8
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9
4
 
[
s
c
o
r
e
_
t
r
u
e
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u
r
v
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o
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,
p
t
s
_
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r
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r
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u
n
d
r
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c
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r
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c
t
o
r
(
1
,
:
)
,

p
t
s
_
v
e
c
t
o
r
_
t
r
u
e
_
c
u
r
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9
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%
 
a
l
p
h
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e
s
t
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m
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t
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p
e
r
 
p
o
i
n
t
 

 
9
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9
8
 
v
e
c
t
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r
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h
e
c
k
 
=
 
[
1
:
n
u
m
b
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r
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o
f
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r
u
n
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9
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1
0
0
 
t
o
t
_
r
u
n
s
_
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o
_
u
s
e
 
=
 
l
e
n
g
t
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v
e
c
t
o
r
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c
h
e
c
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1
0
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1
0
2
 
c
h
e
c
k
_
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l
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v
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c
t
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z
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1
0
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1
0
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l
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n
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1
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1
0
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1
0
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r
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n
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1
0
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b
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l
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0
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n
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h
e
c
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i
n
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l
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r
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1
1
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h
e
c
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t
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s
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