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Abstract

Instances of spoofing and jamming of global navigation satellite systems
(GNSSs) have emphasized the need for alternative navigation methods.
Aerial navigation by magnetic map matching has been demonstrated as a
viable GNSS-alternative navigation technique. Flight test demonstrations have
achieved accuracies of tens of meters over hour-long flights, but these flights
required accurate magnetic maps which are not always available. Magnetic map
availability and resolution vary widely around the globe. Removing the depen-
dency on prior survey maps extends the benefits of aerial magnetic navigation
methods to small unmanned aerial systems (sUAS) at lower altitudes where
magnetic maps are especially undersampled or unavailable. In this paper, a
simultaneous localization and mapping (SLAM) algorithm known as FastSLAM
was modified to use scalar magnetic measurements to constrain a drifting iner-
tial navigation system (INS). The algorithm was then demonstrated on real
magnetic navigation flight test data. Similar in performance to the map-based
approach, MagSLAM achieved tens of meters accuracy in a 100-minute flight
without the use of a prior magnetic map. Aerial SLAM using Earth's magnetic
anomaly field provides a GNSS-alternative navigation method that is globally
persistent, impervious to jamming or spoofing, stealthy, and locally accurate to
tens of meters without the need for a magnetic map.

1 INTRODUCTION

GNSS-alternative navigation technology is a high-interes
area of recent commercial and military research. GNSS
jamming and spoofing is a threat to the use of GNSS as a
sole means of positioning for the world's critical systems.1,2

A fusion of alternative positioning methods is necessary to
replace the characteristics of GNSS; the world has become
addicted to global availability, passive sensing, absolute
positioning, and submeter level accuracy. Navigation by
matching magnetic measurements to a magnetic map is
an advantageous GNSS-denied method for INS-aiding in
the air,3,4 space,5 on land,6 and underwater.7 This research

primarily builds upon the work of Canciani,8 where aerial
navigation was demonstrated on a long distance flight with
13 m of accuracy using a magnetic anomaly map, precision
scalar atomic magnetometer, barometer, and an INS.

Indoor ambient magnetic anomaly fields have also been
used in conjunction with vector magnetometers for pedes-
trian and robot localization using prior magnetic maps.9-14

Navigation using magnetic field anomalies is an attractive
GNSS-alternative positioning method but requires prior
surveyed magnetic maps. Indoor robotic and pedestrian
magnetic navigation methods have utilized SLAM tech-
niques to remove the dependency on a prior magnetic
map.15-17 Extending MagSLAM techniques to airborne use
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LEE AND CANCIANI

is a difficult problem. When indoors or in an urban envi-
ronment, there exists large repeatable magnetic signals
from man-made infrastructure. The indoor or ground case
can be understood as not only having much larger mag-
netic signal than in the air but also much larger noise.
The airborne case is quite different—in the air, there exists
very weak magnetic signals but very little magnetic noise
besides the actual airborne platform. These domain dif-
ferences have a strong effect on the correct design and
implementation of a magnetic SLAM filter for airborne
use. This work heavily follows from Canciani18 in extract-
ing the magnetic anomaly signal from raw measurements
for use in navigation.

1.1 Magnetic maps
The Earth's core produces a magnetic field which is per-
turbed by magnetically susceptible materials in the Earth's
crust. The resulting deviation from a core field reference
model is known as the magnetic anomaly field. Magnetic
anomaly fields are stable on geological time scales and can
be used as a navigation signal.18 Magnetic anomaly fields
vary in three dimensions and have increased frequency
content at lower altitudes, nearer to the magnetic sources.
This is problematic because magnetic field measurements
cannot be measured at a distance. Creating magnetic maps
requires sensor measurements to be taken at each desired
map location. This means we cannot create low-altitude
magnetic anomaly maps from space using satellites, which
would be relatively cheap and provide global coverage.
Instead, high-resolution maps are created with aircraft,
where the expense scales with the size of the survey flight
and the altitude. Creating maps at lower altitudes requires
many more flight lines in order to fully sample the mag-
netic anomaly field signal. Magnetic anomaly maps cre-
ated at one altitude can be upward continued to higher
altitudes but not downward continued to lower altitudes.
Even if a magnetic map exists over a given area, it does not
fully capture the magnetic signal at altitudes lower than
the map altitude. Achieving global coverage from airborne
surveys in three dimensions is therefore difficult, and no
such fully sampled global map exists. There are two main
sources of magnetic maps. The first are individual mag-
netic surveys flown over regional areas at a single altitude.
These individual surveys are often flown by either govern-
ments or industry for geological investigations of a local
area. The second source of magnetic maps are compila-
tion map products created by entities such as the National
Oceanic and Atmospheric Administration (NOAA). These
products fuse many individual surveys into larger map
products, often involving a large amount of data process-
ing. The North American Magnetic Anomaly Database
(NAMAD) is one such map product over North America FI
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LEE AND CANCIANI

built by fusing thousands of individual surveys of varying
quality and incorporating satellite and ground observa-
tions to resolve long magnetic field wavelengths.19 These
large-scale map products can give the appearance of con-
tinental magnetic coverage, but many issues exist in these
maps which make them insufficient for achieving the
best possible navigation accuracies. There are three main
problems which exist in current large-scale magnetic map
products which will now be discussed—map sampling,
potential field continuation, and map unavailability.

1.1.1 Map sampling
The first problem in current large-scale magnetic map
products is map sampling. A magnetic map is consid-
ered “fully sampled” if the Nyquist criteria was satisfied
when conducting the magnetic survey. Using the proper-
ties of potential fields, an easily understood rule of thumb
can be established: if flight lines are spaced approximately
equal to the magnetic survey altitude, the resulting map
will fully capture the frequency content of the underly-
ing magnetic field, and interpolation between map data
points will be accurate.20 Figure 1A illustrates individ-
ual surveys. Survey (L) is fully sampled at 100-m altitude
with 100-m line spacing. Survey (H) is undersampled at
300-m altitude with 500-m line spacing. Map sampling is
a major obstacle for map-based magnetic navigation. Just
because a magnetic map exists over an area does not mean
it is capturing the true underlying magnetic field—it may
be missing many high frequency components from being
undersampled.

1.1.2 Potential field continuation
The second problem in current large-scale map products
relates to potential field continuation. Potential fields can
be modeled as a function of distance through a mathemat-
ical transformation called continuation. Assuming mag-
netic sources are below a survey map of infinite size, a
magnetic anomaly map can be upward continued to higher
altitudes but cannot be accurately downward continued
very far. This causes problems for magnetic navigation at
altitudes lower than the survey map. Unmapped frequency
components will exist in measurements when using maps
at a higher altitude. Depending on the altitude, this could
degrade navigation performance. In the maps in Figure 1A,
(H) can be modeled as the upward continuation of (L),
but (L) cannot be sufficiently modeled as the downward
continuation from (H), even if (H) was fully sampled.20 In
practice, this means magnetic navigation at low altitudes
will generally be more difficult because the map data at
these altitudes are likely to be undersampled. This presents
an interesting trade space where the potential navigation
accuracy is better closer to the ground, but this better accu-

racy is not achieved due to maps not containing the needed
high frequency information.

1.1.3 Map unavailability
The final problem that exists in current large-scale map
products is map unavailability. Map unavailability refers to
the fact that many magnetic maps simply lack data over
certain areas. The World Digital Magnetic Anomaly Map
(WDMAM)21 in Figure 1B highlights a few of the many
unsurveyed regions of the world. The surveyed areas of the
WDMAM still contain errors from fusing undersampled
individual maps at various altitudes.

Unsurveyed regions, undersampled surveys, and down-
ward continuation instability are major obstructions to a
worldwide magnetic anomaly map for navigation.22 This
is especially true for unmanned aerial vehicle (UAV) oper-
ations that potentially fly at low altitudes where all of the
above issues are exacerbated. This paper applied SLAM
techniques from robotics literature to aerial magnetic nav-
igation to remove the dependency on magnetic maps. This
paper presents the methodology, flight test results, and a
discussion of future areas of improvement.

2 METHODOLOGY

SLAM estimates a path and map concurrently. We present
an extension of the FastSLAM algorithm used on a
Roomba-style robot with a vector magnetometer by Valli-
vaara, Haverinen, Kemppainen, and Roning,15 shown in
Algorithm 1, to the flight test dataset used by Canciani3

for aerial magnetic map-based navigation. Using identi-
cal measurement data, we achieve similar performance
to the map-based method, despite starting off with no
prior map. We modified the common FastSLAM algorithm
to estimate INS errors and used them to correct an air-
craft state estimate as illustrated in Figure 2. An INS pro-
duces a system state estimate. Then, FastSLAM uses scalar
magnetometer observations and an INS error model to
simultaneously estimate the drifting INS position errors
and a magnetic anomaly map. Finally, the INS errors are
removed from the original INS solution, resulting in a cor-
rected whole state estimate, ie, INS Position Estimate +
INS Position Errors = Corrected Position Estimate.

While the concept of SLAM has been around since
198623 FastSLAM was first introduced by Montemerlo in
2003 as a factored solution to SLAM with unknown data
association.24 Murphy25 first presented the factorization of
the full SLAM posterior into a product of N+1 recursive
estimators: one estimator over robot paths and N indepen-
dent estimators over landmark positions, each conditioned
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FIGURE 2 The system loosely couples an INS solution to
magnetic intensity measurements to correct for state errors [Color
figure can be viewed at wileyonlinelibrary.com and www.ion.org]

on the path estimate

p(x1∶t, 𝜃1∶n|z1∶t,u1∶t,n1∶t)
= p(x1∶t|z1∶t,u1∶t,n1∶t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

trajectory posterior

ΠN
n=1p(𝜃n|x1∶t, z1∶t,u1∶t,n1∶t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
landmark estimators

.

(1)
This factorization can be efficiently approximated with a

Rao-Blackwellized particle filter (RBPF), where each parti-
cle is a sample path of the vehicle. Each particle maintains
its own hypothesized map and independently determines
when it revisits a portion of its path. The general Bayesian
recursion problem is solved here with a linearized dynam-
ics model and nonlinear measurement equation from the
marginalized particle filter paper by Schön, Gustafsson
and Nordlund,26 specifically Algorithm I: Model 4. The
error state variable x was partitioned into two horizon-
tal position error particle states xn, and seven linearized
error states xl: altitude, three-dimensional velocity, and
three-dimensional tilt.

x = [xn xl]T (2)

The linearized Pinson error dynamics model F,
described in Appendix A.1, was discretized at each time
step to form the matrix A which was then partitioned into
nonlinear and linear components for the linear dynamics
model in Equations (4a) and (4b). The nonlinear mea-

surement function which maps magnetic measurements
to system states is represented in Equation (4c).

A =

[
An

n An
l

Al
n Al

l

]
= eF·dt (3)

xn
t+1 = An

n,tx
n
t + An

l,tx
l
t + wn

t , (4a)

xl
t+1 = Al

n,tx
n
t + Al

l,tx
l
t + wl

t, (4b)

𝑦t = h(xn
t ) + et (4c)

The strength of the driving noise is defined by Q, with wn
t =

 (0,Qn), wl
t = 

(
0,Ql), and et =  (0,R). Q is defined

in Appendix A.1.
The filter began with a known global position as

assumed to be the case in the loss of GNSS availability.
Particles were cast as potential aircraft paths based on
the nine-state Pinson INS error model.27 Increasing iner-
tial errors would eventually make the INS error model
invalid but was not a problem in this instance due to
the high-quality inertial system used over a relatively
short time period. Longer flights could periodically apply
INS feedback to keep the model valid. The propagation
of particles approximated a proposal distribution of INS
errors. When particles hypothesized path revisits, they
interpolated expected intensities from a shared set of mea-
surements conditioned to their individual paths, com-
pared them to the current actual measurements, and were
weighted using a Gaussian residual weighting function.
Over time, particles with the most self-consistent magnetic
intensity measurements at path revisits survived resam-
pling to approximate the errors in the overall flight path.

The INS solution was adjusted by the weighted sum of the
particles' position errors to provide a new position esti-
mate. We will now describe each step of Algorithm 1 for
a single time step. Central to understanding the algorithm
is the concept of a revisiting particle. A particle is said
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FIGURE 3 Updating each particle weight depends on whether or
not it hypothesizes a revisit

to be a revisiting particle if that particle determines that
it is nearby its own past trajectory. Note that each parti-
cle stores a hypothesized trajectory, and these trajectories,
along with the magnetic measurements, create hypothe-
sized magnetic maps. On line 2, the ith of N particles uses
its previous state x[i]t−1 and control input ut to propagate
to its current state x[i]t according to the nine-state Pinson
INS error dynamics and noise model further described in
the Appendix. On line 3, a particle compares its current
state x[i]t and measurement zt to its map model m[i]

t−1 and
returns an updated weight q[i]

t and list of currently revis-
iting particles, ActiveList. On line 4, a particle updates its
individual map m[i]

t−1 with the latest measurement x[i]t and
trajectory estimate zt. The weights of the particles that did
not hypothesize a revisit are multiplied by the mean of par-
ticle weights on the ActiveList as shown in line 6. Line 8
states that if the number of effective particles falls below
half of the total number of particles, systematic resampling
occurs to replace poorly weighted particles with duplicates
of highly weighted particles. The process concludes one
iteration with an updated set of particles Xt approximating
the current state estimate.

Our contributions primarily involve the particle weight-
ing function in line 3 of Algorithm 1 and resampling
in line 8. The update_particle_weight(·) function is fur-
ther expanded with a flow chart in Figure 3. We will
now step through each part of the process outlined in
Figure 3.

2.1 Detect particle revisit
Effectively detecting particle revisits was key to capturing
spatial correlation from magnetic intensity measurements
across time. A particle declared a path revisit when enough
points from its previous trajectory lay within an experi-

mentally tuned trigger radius. In defining a particle revisit,
there were four primary considerations.

1. Choosing too small of a trigger radius creates false neg-
atives. This makes a particle highly unlikely to ever
detect previous discrete trajectory points which are
spaced out as a function of data rate and vehicle motion.

2. Choosing too large of a trigger radius yields false pos-
itives. This does not provide a valid set of points to
interpolate with and compare to current magnetic mea-
surements.

3. Sequential weight updates for a particle during what is
actually a single revisit event has a negative effect on
filter performance.

4. Evaluating all particle's proximity to all previous points
in its trajectory scales poorly in computational cost over
time without using a hierarchical data structure. We
downsampled points to reduce computation time. This
increased the effective distance between discrete data
points in our particles' paths and increased our required
trigger radius.

2.2 Interpolate an expected
measurement
Once a particle detected a path revisit, it selected a set
of points s from its previous path and magnetic measure-
ments from within a radius for interpolation as shown
in Figure 4B. A sequence of the most recent values was
ignored to prevent biasing the result of interpolation.15

Gaussian process regression (GPR) evaluated the inter-
polation point locations and associated magnetic mea-
surements from the set of points s as a realization of
a zero-mean multivariate Gaussian process.28 The GPR
expected measurement function is written as follows:

[ẑ[i]t ,R[i]
t ] = GPR(x[i]t , [x[i]s , zs], 𝜎se, l, 𝜎n). (5)

GPR returned an expected value ẑ[i]t for a query point, in
this case, the ith particle's current position x[i]t , as well as a
covariance R[i]

t at that point in time. The hyper-parameters
𝜎se, l, and 𝜎n were used in the squared exponential ker-
nel function and were experimentally determined to be
50, 150, and 1, respectively. More research is required for
possible uses of R[i]

t since the current filter used a tuned
value of R = 102 for the weighting function (9) below. The
function estimated

ẑ[i]t |(x[i]t , x[i]s , zs) = 
(
K∗K−1zs. K∗∗ − K∗K−1KT

∗
)
, (6)

where K, K∗, and K∗∗ were built by a squared exponential
function as described by Ebden.28 The function to compute
the individual cross terms between some x1 and x2 in K was

k(x1, x2) = 𝜎2
seexp( (x1 − x2)(x1 − x2)T

2l2 ) + 𝜎2
n𝛿(x1, x2). (7)
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FIGURE 4 Gaussian process regression estimating a grid of points given some circled input points. A, GPR expected values and covariance
around a line of points. B, GPR prediction around a set of scattered points [Color figure can be viewed at wileyonlinelibrary.com and
www.ion.org]

GPR assumes a zero-mean multivariate Gaussian pro-
cess. Therefore, a prior-mean correction was applied by
removing the mean of the measurements of each particle's
interpolation points. Equation (6) becomes

ẑ[i]t |(x[i]s , zs) = 
(
(K∗K−1(zs − E(zs))

+E(zs) K∗∗ − K∗K−1KT
∗
)
.

(8)

This method is illustrated in Figure 4A,B. Note that for
a single line of past magnetic data as in Figure 4A, GPR
simply fits the data to a plane—there is no information
in the perpendicular direction of the trajectory. Contrast
this to Figure 4B where there are two past trajectory lines
yielding a more complex predicted field. Magnetic inten-
sity scalar fields are guaranteed to be continuous. GPR has
the benefit of modeling the field as a smooth best fit of mea-
surements. As the filter interpolation area gets smaller,
it approximately models a linear plane as visualized in
Figure 4.

FIGURE 5 Sander Geophysics Limited (SGL) Cessna 208B31

[Color figure can be viewed at wileyonlinelibrary.com and
www.ion.org]

2.3 Calculate weight
Gaussian residual weighting evaluated the quality of a
particle's hypothesis by comparing the expected magnetic
intensity with the actual measurement:

q[i]
t = q[i]

t−1exp
⎛⎜⎜⎜⎝−

(
zt − ẑ[i]t

)2

2R

⎞⎟⎟⎟⎠ , (9)

where q[i]
t was an active particle's weight at the current

time t, q[i]
t−1 was the particle's previous weight, zt was the

current measurement, ẑ[i]t was the particle's expected mag-
netic intensity from the measurement function h(·), and
R was the filter measurement covariance term experimen-
tally tuned to 100 nanoteslas. For both Vallivaara et al29

and the results seen here, an experimentally determined
constant value of R for all particles returned better perfor-
mance than the covariance value from GPR. The weight-
ing of particles posed challenges when not all particles
hypothesized revisiting at the same time. Vallivaara et al29

addressed this by weighting nonvisiting particles by the
average weight of the visiting particles. We expanded on
this by only resampling from particles which appeared on
the ActiveList since the previous resampling step. Since
information only entered the system during line revisits,
this technique prevented the disproportionate favoring of
particles which hypothesized many revisits over equally
valid particles which were not revisiting as often. This
change ended up being an essential factor in obtaining
good algorithm performance.
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FIGURE 6 Gridded and SLAM flight patterns. A, Flight patterns in latitude and longitude. B, Flight paths in relative horizontal distance
over an interpolated magnetic anomaly field intensity [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

FIGURE 7 Components of the magnetic intensity measurements. A, 2015 WMM model over the flight area. B, Diurnal variations during
SLAM flight. C, Isolated magnetic anomaly field over flight area. D, Aircraft disturbance effects [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]
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FIGURE 8 Northing and easting drift of actual INS [Color figure
can be viewed at wileyonlinelibrary.com and www.ion.org]

2.4 Resampling
The standard particle filter criteria from Liu30 was used to
determine when to resample:

Ne𝑓𝑓 = 1
N∑

i=1
(q(i))2

, Resample If Ne𝑓𝑓 <
N
2
, (10)

where N is the total number of particles. Importantly,
only particles which appeared on the ActiveList since the
previous resampling step were resampled.

3 FLIGHT TEST

A Cessna 208B like the one shown in Figure 5 col-
lected magnetic intensity measurements, barometric alti-
tude measurements, an unaided INS solution, and a
GNSS-aided INS truth trajectory. This dataset was col-
lected by Sander Geophysics Limited under United States
Air Force contract in July of 2015.

Two flight patterns were flown over a 9- by 12-km area,
150 m above ground level (AGL) in Louisa, Virginia as
shown in Figure 6A. The first was a gridded survey to
map the magnetic intensity field. The second was a loop-
ing flight pattern. These flights originally demonstrated
map-based aerial magnetic navigation32 achieving 13-m
distance root mean squared (DRMS) error over a 1-hour
flight. The second flight's many loops and path cross-
ings made it a viable dataset to apply SLAM techniques.
Figure 6B illustrates the magnetic anomaly intensity vary-
ing horizontally over the flight area.

3.1 Isolating Earth's magnetic anomaly
field
The navigation signal used in this filter was created by
perturbations in Earth's core magnetic intensity field from
magnetically susceptible crustal formations. Magnetic
intensity measurements primarily include Earth's core
field, the crustal anomaly signal, aircraft disturbances, and
temporally varying space weather effects known as diurnal
magnetic variations.18

Bmeasured = BCore + BDiurnal + BAircra𝑓 t + BAnomal𝑦 (11)

The anomaly signal was approximated by removing the
World Magnetic Model (WMM) core model, diurnal vari-
ations, and aircraft affects from the magnetic measure-
ments. The WMM is produced by the US National Oceanic
and Atmospheric Administration's National Geophysical
Data Center (NOAA/NGDC) and the British Geological
Survey (BGS) as the standard model used for navigation,
attitude, and heading referencing systems using the geo-
magnetic field. It is also used widely in civilian navigation
and heading systems.33 Earth's core magnetic intensity
field was planar over the flight areas as the WMM shows
in Figure 7A. Diurnal measurements observed at a sepa-
rate ground station were recorded during the SLAM flight
as shown in Figure 7B. Aircraft disturbance effects were
determined through prior aircraft characterization by the
geo-surveying company and are shown in Figure 7D. The
crustal anomaly field provides the most spatial variation
of the magnetic intensity field as shown by contrasting the
WMM in Figure 7A, with the crustal field in Figure 7C.
Note how the WMM is highly planar within this flight
area, while the magnetic anomaly has much higher spatial
frequency content.

3.2 Drifting INS state estimate
The INS measures the relative motion between the local
vehicle body frame and the inertial reference frame. Vehi-
cle dynamics are estimated by integrating measured accel-
eration and angular rate disturbances in the body frame
and then transforming them to the local navigation frame
to determine position and velocity estimates. Multiple
integrations of measurement noise in the INS inevitably
lead to a drifting navigation solution. State estimation
uses linearized models to estimate the accumulating error
states in the INS. The Pinson INS error model from Tit-
terton and Weston27 was used to shape additive Gaussian
white noise into angular and velocity random walk errors,
which were coupled to form drifting horizontal and verti-
cal position estimates. A navigation grade INS provided a
real-time navigation solution. The drifting horizontal posi-
tion errors in northing and easting components are shown
in Figure 8.
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FIGURE 9 Comparing the INS estimate, SLAM estimate, and GPS truth trajectories overlaid with the same set of zero-mean magnetic
intensity measurements emphasizes the correlation between position errors and measurement inconsistencies [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]

4 RESULTS

SLAM estimates a vehicle path and map concurrently. The
filter performance can be illustrated in its ability to correct
the magnetic map. The INS, filter, and truth trajectories are
plotted in Figure 9. The colors correspond to the same set of
magnetic intensity measurements with the mean removed.
Comparing the INS estimate, SLAM solution, and GNSS
truth trajectories overlaid with the same set of zero-mean
magnetic intensity measurements illustrates how the posi-
tion errors lead to measurement inconsistencies at path
intersections. The drifting INS trajectory in Figure 9 has
path crossings with different colors. This is clearly an error
as there should be common magnetic measurements at
common locations. Compare this to the SLAM or truth
trajectory in Figure 9 and it is clear these maps are far
more self-consistent. Although SLAM provides both a map
and path estimate, this research focused on its navigation
potential. The relative position error is defined here as the
root mean square of the zero-mean filter error as written
in Equation (12).

x̄error = Filter Solution − Truth,
Relative Position Error = RMS (x̄error − mean(x̄error))

(12)
The filter converged to a relative position solution with

a self-consistency of better than 20 m as seen in Table 1
and Figure 10. Table 1 compares the original error of the
INS to the performance of the filter. Interestingly, the filter
performed only 15% worse when using raw measurements
uncompensated for aircraft effects or diurnal variation.
This can be partly attributed to relatively minor magnetic

disturbances from the specialized geo-surveying aircraft.
Additionally, the short time span between revisiting trajec-
tories relative to the time-varying components of diurnal
variation and WMM fluctuation kept the actual magnetic
field approximately time invariant for this flight. In other
words, the spatial variation in the magnetic anomaly field
dominated the time variant components of space weather
effects over a short time span and the spatial variation from
the WMM.

It is interesting to note the uncertainty growing at the
beginning of filter operation. This is due to the fact that
single flight line crossings simply do not contain enough
information to constrain the filter solution. As more and
more flight lines cross their own past trajectories, stronger
aiding information becomes available, and the filter uncer-
tainty begins to decline. Note that these flights were
conducted at only 150 m above ground level. The spa-
tial variation in the magnetic anomaly field is greater
nearer the crust and thereby has the best navigation poten-
tial. The real takeaway here is the similar performance
to map-based aerial magnetic navigation without a map
using SLAM techniques. An opportunity for improvement
would be to incorporate a more realistic INS error model
which includes accelerometer and gyroscope bias terms
which are a significant source of INS drift. A better INS
error model would represent a better proposal distribu-
tion and could provide a more accurate filter. There is
significant potential for computational improvements as
this research did not leverage the binary tree particle his-
tory structure of FastSLAM. It is also worth exploring
graph-based methods, which have had promising results
in WiFi SLAM. 34
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TABLE 1 Filter performance after convergence Method Npart North RMS /𝜎(m) East RMS/𝜎(m) DRMS/𝜎 (m)
INS ∼ 320.6/170.2 438.8/176.5 543.5/239.3

Filter 1000 9.4/9.4 14.2/14.1 17.0/9.1

FIGURE 10 Filter errors and 1𝜎 bounds using 1000 particles and R = 100. A, Northing position error. B, Easting position error. C,
Euclidean distance error [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

5 CONCLUSIONS

There are many research efforts to provide viable
GNSS-alternative navigation methods. Magnetic naviga-
tion shows promise as one such method but is limited
by the requirement for globally available and accurate
magnetic maps. These maps greatly vary in quality and
altitude. Fully sampled, low-altitude magnetic maps are
expensive to create which presents barriers to using mag-
netic navigation on low-flying platforms such as UAVs.
SLAM uses previous measurements and a revisiting trajec-
tory to create a map and use it to navigate at the same time.
This removes the dependency on a prior magnetic map for
aerial magnetic navigation, especially for low-flying UAVs
or in areas without magnetic maps. This paper introduced

an RBPF that loosely coupled magnetic intensity measure-
ments with an INS solution to constrain drifting errors to
a relative position solution of tens of meters on real flight
test data. This research has shown that the map depen-
dency in aerial navigation can be removed by leveraging
magnetic SLAM techniques common in robotics. Aerial
magnetic SLAM is a powerful navigation technique that it
is a globally available, passively sensed, and unjammable
GNSS-alternative navigation method that does not require
a prior magnetic map.
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APPENDIX A: IMPLEMENTATION DETAILS

This appendix presents details pertaining to the INS error
model and scalar magnetometer description.

A.1 Nine-state Pinson INS error model
Inertial navigation systems are used to measure the rel-
ative motion between a vehicle's local body frame and
an inertial reference frame. The dynamic motion of the
vehicle can be determined by integrating acceleration
and angular rate disturbances, correcting for Coriolis and
gravitational effects, and then determining position and
velocity estimates resolved in the local navigation frame.
Twice-integrated accelerometer and gyroscope biases and
noise inevitably lead to a navigation estimate that drifts
over time. State space estimation models INS solution to
estimate the whole state or the accumulating errors in the
INS instead.

This section introduces a fundamental nine-state INS
error model from Titterton and Weston. 27

The generic nine-state Pinson error model states are x =[
𝛿p 𝛿v 𝛿𝜺

]T , where 𝛿p, 𝛿v, and 𝛿𝜺 are three-dimensional
position, velocity, and tilt error vectors, respectively. The
Pinson error model states propagate according to the linear
dynamics equation .x = Fx + w, where F is the linearized
dynamics model and w is white Gaussian noise character-

ized by w ∼  (0,Q). This F matrix can be broken up into
nine submatrices relating position, velocity, and tilt errors
to each other:⎡⎢⎢⎣

.
𝛿p.
𝛿v.
𝛿𝜺

⎤⎥⎥⎦ =
[ Fpp Fpv Fp𝜀

Fvp Fvv Fv𝜀
F𝜀p F𝜺v F𝜺𝜺

][
𝛿p
𝛿v
𝛿𝜺

]
. (A1)

The following notation described in Table A1 will remain
consistent throughout the remainder of this section.

Titterton and Weston express north and east position
errors in radians for latitude and longitude and vertical
position error as positive upward altitude error,27 resulting
in the following nine F submatrices:

Fpp =
⎡⎢⎢⎢⎣

0 0 −vn
R2

eve tan L
Re cos L

0 − ve
R2

e cos L
0 0 0

⎤⎥⎥⎥⎦ , (A2)

Fpv =
⎡⎢⎢⎢⎣

1
Re

0 0
0 1

Re cos L
0

0 0 −1

⎤⎥⎥⎥⎦ , (A3)

Fp𝜺 = 03x3, (A4)

Fvp =

⎡⎢⎢⎢⎢⎣
ve(2Ω cos L + ve

Recos2L
) 0 v2

e tan L−vnvd

R2
e

2Ω(vn cos L − vd sin L) + vnve
Recos2L

0 −ve(vn tan L+vd)
R2

e

2Ωve sin L 0 v2
n+v2

e
R2

e

⎤⎥⎥⎥⎥⎦
,

(A5)

Fvv =
⎡⎢⎢⎢⎣

vd
Re

−2(Ω sin L + ve tan L
Re

) vn
Re

2Ω sin L + ve tan L
Re

vn tan L+vd
Re

2Ω cos L + ve
Re−2vn

Re
−2(Ω cos L + ve

Re
) 0

⎤⎥⎥⎥⎦ ,
(A6)

Fv𝜀 =
⎡⎢⎢⎣

0 −𝑓d 𝑓e
𝑓d 0 −𝑓n
−𝑓e 𝑓n 0

⎤⎥⎥⎦ , (A7)

TABLE A1 Pinson nomenclature

Variable Description Value
L Latitude
vn North velocity
ve East velocity
vd Down velocity
Re Earth radius 6353000 m
𝑓n Measured specific force

(North direction)
𝑓e Measured specific force

(East direction)
𝑓d Measured specific force

(Down direction)
Ω Earth rotation rate 7.2921151467 ×10−5
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TABLE A2 Scalar magnetometer characteristics

Characteristic Value
Type Self-oscillating split-beam Cesium vapor
Operating range 20 000 to 100 000 nT
Heading error ± 0.15 nT
Absolute accuracy < 3 nT
Sensitivity 0.003 nT at 10 Hz

F𝜀p =
⎡⎢⎢⎢⎣

−Ω sin L 0 −ve
R2

e
0 0 vn

R2
e

−Ω cos L − ve
Recos2L

0 ve tan L
R2

e

⎤⎥⎥⎥⎦ , (A8)

F𝜺v =
⎡⎢⎢⎢⎣

0 1
Re

0
− 1

Re
0 0

0 − tan L
Re

0

⎤⎥⎥⎥⎦ , (A9)

F𝜺𝜺 =
⎡⎢⎢⎢⎣

0 −(Ω sin L + ve
Re tan L

) vn
Re

Ω sin L + ve tan L
Re

0 Ω cos L + ve
Re−vn

Re
−Ω cos L − ve

Re
0

⎤⎥⎥⎥⎦ .
(A10)

The model adds white Gaussian noise into the velocity
and tilt states which are integrated which become random
walk errors. The white noise strength is characterized by
the matrix:

Q = diag(
[

0 𝛔2
VRW 𝛔2

ARW

]
)9x9. (A11)

A.2 Sensor description
Magnetic intensity measurements were collected with a
self-oscillating split-beam Cesium-pumped vapor scalar
magnetometer. These precision magnetometers are able
to precisely resolve the intensity of a magnetic field with
heading errors on the order of tenths of nanoteslas. A
scalar magnetometer's characteristics similar to the one
used in the survey are listed in Table A2.

107


	MagSLAM: Aerial Simultaneous Localization and Mapping using Earth's Magnetic Anomaly Field
	Recommended Citation

	MagSLAM: Aerial simultaneous localization and mapping using Earths magnetic anomaly field
	Abstract
	INTRODUCTION
	Magnetic maps
	Map sampling
	Potential field continuation
	Map unavailability


	Methodology
	Detect particle revisit
	Interpolate an expected measurement
	Calculate weight
	Resampling

	Flight Test
	Isolating Earths magnetic anomaly field
	Drifting INS state estimate

	Results
	CONCLUSIONS
	References
	Appendix A : Implementation details
	Nine-state Pinson INS error model
	Sensor description



