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Abstract 

This thesis investigated the thermal phase-change properties in Ge2Sb2Te5 (GST) 

chalcogenide-based films and determined the feasibility of coupling the GST with 

photosensitive DNA material for novel optical device applications.  Modeling and testing 

of GST was researched with the approach that GST would react as a resistive 

mechanism through thermal manipulation.  Test structures were fabricated in the 

PolyMUMPs MEMS fabrication process.  GST material was deposited (by RF 

sputtering) on the surface of the test structures.  The GST was analyzed primarily in the 

amorphous to crystalline transition states due to more distinct changes in the resistance 

between partial states.  Using both filtered light (via a monochromator) and non-filtered 

white light was incident on the GST for photo response testing.  A biased voltage was 

applied to the device and the current change was measured.  The GST was tested 

electrically, applying a current sweep across the device and measuring change in 

resistance as the GST changed states.  Data recorded on the thermal properties of GST 

leading to resistive changes from both optical and electrical sources was analyzed. 

The results of this research indicate how future optical and electrical testing of the 

GST can be improved.  The data measured by testing the GST electrically was 

compared to other research data (following similar testing procedures), revealing that 

optimal designs need sub-micro layers of GST with electrodes placed above and below 

the GST.  It was concluded that higher power light sources will be needed to continue 

exploring the optical reaction of GST in future research.
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1 

ANALYSIS OF PHOTOCONDUCTIVE PROPERTIES IN 

Ge2Sb2Te5 (GST) CHALCOGENIDE FILMS FOR 

APPLICATIONS IN NOVEL ELECTRONICS 

1. Introduction 

1.1 Motivation 

As silicon devices begin to reach their performance limit due to physical 

constraints, to keep up with demands and continue to accelerate the capabilities of 

technology, new and creative measures need to be taken.  Currently, many are 

investigating ways in which electronic and computer technology can be modeled more 

like the human brain, a powerful multi-parallel processing unit that consumes very little 

power while operating at great efficiency [1] where the same circuitry can be used for 

logic and memory.  One recent example demonstrating how current research is 

progressing towards technology that operates more like the human brain is a joint 

venture between IBM, Sony, and Toshiba, the development of the Cell Microprocessor, a 

multi-core CPU, designed for parallel physics and artificial intelligence processing.  In 

another example, major computer microprocessor manufacturers to include Intel and 

Advanced Micro Devices have stopped competing for faster clock frequencies and have 

begun the battle of multi-integrated CPUs [1]. 

Currently, the majority of integrated circuit devices suffer from a common design 

characteristic; they all are designed in a way that limits their layout to two dimensions.   
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One specific area that researching Ge2Sb2Te5 (Germanium-Antimony-Tellurium or GST) 

attempts to overcome is this two-dimensional limitation in current device fabrication 

methods due to photolithography techniques by providing a connection between current 

devices and more novel three-dimensional devices, incrementally aiding the advancement 

in technologies that can operate more like the human brain.  Because GST and other 

chalcogenide materials have unique phase-change properties that allow for multiple states 

in the material itself [2], this enables the development of devices using these properties 

that can operate in a pseudo-analog realm with multiple states rather than just two, as 

used in binary computing.   

Researching the optical phase-change properties for multiple-state electronics in 

GST is important.  First, this material shows promising capabilities to perform as a 

multiple-state electronic device [2].  Second, the interface mechanism between current 

technologies and a three-dimensional volumetric memory array currently being 

investigated by the Air Force Research Laboratory requires this multiple-state electronic 

property.  Not only could GST be used for this specific application as a multiple-state 

opto-electronic device, but it shows promising abilities in phase-change memories [3], 

opto-mechanical MEMS [4], organic, bio and chemical semiconductor hybrid circuits, as 

well. 

The Air Force Research Laboratory’s goal is to determine if this material’s 

properties are usable for a photodetector communication device to interface with 3-

dimensional memories for use in space applications.  There are many applications in 
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which chalcogenide detectors could be used to support the Air Force mission, to include 

optical sensors and advanced memory logic devices.  The most important thing to look at 

is that chalcogenide bulk properties are being used rather than devices that use 

semiconductor hole and electron properties; this allows the chalcogenide devices to be 

much more resistant to radiation effects, which is highly desirable in space applications.  

Another important aspect to look at is that current technological research indicates that 

future electronic applications are shifting from electrical to photonic circuitry.  This 

research will further the development of cutting edge technologies and give the Air Force 

more tools to develop high-tech equipment supporting the Air Force’s goal to maintain 

air superiority through advanced technologies. 

1.2 Problem Statement  

The evaluation of photoconductive characteristics in Ge2Sb2Te5 chalcogenide films 

is needed to determine feasibility for its implementation as a photodetector 

communication device to interface with current integrated circuit technologies and three-

dimensional optical memory arrays currently being developed by the Air Force Research 

Laboratory.  Specifically, the feasibility of multiple states within the material through 

radiative stimulation needs to be determined; optimally, it would be desirable if the GST 

exhibits at least seven distinct states due to the material the Air Force Research 

Laboratory is developing out of Japanese salmon sperm DNA for three-dimensional 

memory having seven distinct states.  Currently, both electrical and optical 

characterizations of this material have already been completed, electrically for phase 
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change memories and optically for its opto-mechanical effects [4-9].  What is novel about 

this research project is the type of photoconductive analysis being investigated on the 

chalcogenide material, analyzing its optical response as a resistive measurement in an 

electrical circuit, which has not been performed before, as far as current journal research 

indicates. 

1.3 Scope  

The optical and electrical characteristics of this material will be researched in 

regards to how it responds as a photoconductive detector using a common bolometer 

photodetector model.  The two questions that this research plans to answer are: based on 

the responsivity as a function of wavelength of light and resistivity as a function of 

intensity of light, can there be a way the GST will support changes in its resistance due 

to light and maintain that resistance change at steady state with electrical signals 

passing through the GST?  And second, will the GST scale accordingly in its two-

dimensional area and respond linearly to the scaling of the design as predicted to what 

basic radiometric calculations show?   

Most of the research will be experimental in addition to some theoretical 

modeling, to include expertise within the Air Force Institute of Technologies (AFIT): 

microelectronics clean room lab and the adjacent MEMS test lab.  The research will be 

done by designing a two-dimensional array of various rectangular geometrical gaps 

between surface micromachined electrode sets using the PolyMUMPs fabrication process.  
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Following the fabrication of the electrode array test structure; chalcogenide deposition 

was performed in collaboration with the University of Utah.    

Before the actual experiment is done, a model of the material in FEMLAB finite 

element analysis software well be investigated to predict the results of the experiment.  

After the chalcogenide material is deposited between the electrodes, its resistive response 

will be analyzed while light is incident on the material, using a second set of identical 

electrode pairs with chalcogenide between them with no incident light acting as a noise 

canceling circuit.  Various wavelengths (from ultraviolet to infrared), intensities, and step 

responses of light will be analyzed.  The experiments will be conducted at the Air Force 

Research Laboratory facilities.  These facilities will be used to perform and record the 

actual experimental results due to the current optical equipment setup which has all the 

equipment needed for the experiment and the assisting contractor familiar with this 

equipment, as well as the automated testing software the contractor has designed.  The 

collected data will be analyzed to develop theories and models for feasible chalcogenide 

photodetecting devices. 

Some variables that will not be considered in this experiment are the electrical 

and quantum effects due to the junction between the chalcogenide material and both the 

polysilicon and gold used as the electrodes.  Other variables omitted include the quality 

of the GST being used and factoring in any effects of the doping levels both in the 

PolyMUMPs process and the chalcogenide deposition process. 



 

6 

1.4 Thesis Outline  

Following the introduction in this chapter, chapter two includes a comprehensive 

look at the applicable properties currently known about chalcogenides that will need to 

be considered in modeling the results in FEMLAB software from this experiment.  This 

chapter also includes a brief history of photodetectors, to include a description of the 

current types to help present the benefits and disadvantages of each type being used 

today.  Chapter two concludes with an overview of current research and applications 

being applied to chalcogenides. 

Chapter three presents the theory behind the experimental methods being applied 

in this research and the finite element modeling results from FEMLAB of the 

experiment.  This chapter describes the specific modeling of the GST’s thermal phase-

change properties that will be analyzed in this experiment, not only describing the step 

by step process, but also presents and explains the equations and numerical calculation 

modeling of the actual experiment, forecasting how the experiments should work and the 

expected results based on scalability.  Chapter four details the design and fabrication 

methods used, describing the fabrication processes used and the logic behind the design 

layout, to include explaining why these design and fabrication options were chosen over 

other possible choices. 

Chapter five will cover the experimental procedures describing the facilities, 

equipment, actual setup used to record the results and other lab procedures.  Chapter six 

will present the results and give an analysis of the data regarding the feasibility of the 
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material as a multistate photoconductive device, looking at factors that play a beneficial 

role in the material performance and what possible factors could be hindering its 

performance or be causing unexpected results.  Finally, chapter seven provides a 

summary of the results, presents a conclusion to the analysis in chapter six, and outlines 

the factors being overlooked and what areas of research should follow considering the 

results found here. 

1.5 Summary 

It has been assumed that the chalcogenide film will exhibit a resistive response 

due to its phase-change properties in thermal excitation from the light source similar to 

documented phase-change properties in the GST from thermally excited electrical sources 

[2, 3, 10, 11].  Therefore, the GST is being analyzed for its thermal phase-change 

properties, first through optical manipulation, and if unsuccessful, then by similar 

procedures done in other research the GST, will be tested electrically.  The GST as 

grown from the University of Utah will be analyzed.  Optical evaluation will be 

accomplished by illuminating the surface of the GST at different intensities and applying 

a bias voltage to read the change in resistance via the measured current.  Electrical 

evaluation will be accomplished by applying a current sweeping from 0 to 100 mA and 

determining how the GST changes state through measured.  Currently, the test structure 

layout has been fabricated on a 2-mm x 2-mm MEMS chip with a precision on the order 

of 2-μm.  The GST material will be deposited on the surface of the test structures and 

the devices will be analyzed. 
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2. Literature Review 

2.1 Introduction 

In the past two centuries, the ability to record light through various devices has 

progressed, leading not only to developments in photography, but also to photodetecting 

devices that go beyond photography applications: communications, infrared detection, 

photonic circuitry, and many other applications ranging across the known visible 

spectrum and far into the known radiation spectra.  To further the development of 

devices that detect these radiative waves to provide advancements in optical processing 

circuitry and more robust devices in harsh environments such as space, areas such as 

analog devices and radiation hardened materials are being investigated.  Research found 

on the material properties of chalcogenide materials are showing promising capability to 

be developed in both the ability to operate in a pseudo-analog realm and be resilient to 

radiation environments, since the chalcogenide device operations take advantage of the 

bulk material properties.   In the last century, more than 25 years of research and 

analysis went into the development and advancement of photodetecting devices, as well 

as the study of chalcogenide materials.  This chapter summarizes the work done in these 

fields, including a brief history of and a comparison of current photodetectors, the 

properties of chalcogenide materials, and an overview of the areas where chalcogenides 

have been used thus far. 
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2.1.1 Brief History of Photoconductors 

For thousands of years, mankind has recorded his own history.  Evidence of this 

reaches back to cave paintings, and spans to present time where mankind continues to 

make a record of his existence by recording information, electronically, as digital bits.  

To that end, the development of tools for historical record, art, scientific discovery, and 

more have been achieved.  More recent developments in photographic tools detect 

photons.  These developments can be traced back to the early 1830s [12].  Although 

originating from photography, these tools have begun to take on many other 

applications, such as radar, infrared night vision, spectroscopic analysis, photonic 

computing, and communications.  Only recently with the advances in semiconductor 

devices has this process changed from one of producing permanent images by means of a 

chemical reaction that occurs when light hits a photosensitive film or material, to one 

that records images digitally through advanced semiconductor devices.  These devices, 

known as photodetectors, have not only been used for photograph recording in the visual 

spectrum; there have been a wide range of designs to include many bandwidths of 

radiative energy, including infrared, visible, ultraviolet, and more.  Photodetectors, most 

commonly semiconductor devices, convert optical signals into electrical signals. 

2.2 Comparison of Photodetectors and their Significance 

Photodetectors have allowed not only the simple process of recording radiative 

energy digitally and storing it quickly into various digital media, they have also allowed 

for the ability to rapidly apply advanced processing routines and algorithms on detection 
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and recognition applications, where raw data would not present such clear analysis and 

useful information.  Photodetectors have a broad range of applications (both commercial 

and military), including infrared sensors, fiber-optic communications interfaces, and 

digital imaging. 

Currently, there has been interest for optical devices to bridge the gap and replace 

electrical devices in integrated circuit technologies, creating photonic circuitry.  To date, 

silicon has been the primary material used to build microelectronics.  Silicon electronics 

are cheap to manufacture because silicon has unique properties that allow devices to be 

made easily and reliably in mass quantities.  While the advance in photodetecting 

devices has been phenomenal, technological development naturally continues.  Currently, 

photodetectors are divided into two types, thermal and photonic [13].   Thermal 

detectors are more classical.  More recent are photon detectors which harness the theory 

of quantum physics.  Looking at current technology, both thermal and quantum 

photodetectors, will give some insight why other materials are of interest and may have 

advantages. 

Bolometers, thermocouples, and pyroelectric devices are specifically thermal 

photodetectors.  Thermal photodetectors rely on the bulk properties of the material and 

its coefficient of thermal response:  resistance change for bolometers, voltage change for 

thermocouples, and capacitance change for pyroelectrics.   Thermal photodetectors 

respond to the total radiation energy incident on the detector in a two step process.  

First, the radiation must change the temperature of the detector, and second, the 
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temperature parameter must change, e.g., resistance [14].  This process is slower than 

generation of electron-hole pairs in a photon detector.  These detectors are advantageous 

because their response is much broader, on the order of 10 to 100 times that of photon 

detectors bandwidth, typically visible to 40-μm in wavelength.  Operating temperature 

for infrared wavelength is room temperature as opposed to cryogenic for photonic 

detectors.  Thermal detectors are generally less expensive then photonic detectors [14].  

Photonic photodetectors, on the other hand, have a faster response time and rely 

on the detection of electron-hole pair generation.  They have a much more precise 

measurement of the radiant energy incident on the detector.  The operation of these 

photodetectors involves three steps: electron-hole pair generation by incident light 

through photon absorption, carrier transport by induced electrical current and/or 

multiplication by whatever current gain device may be present, and collection of 

photocurrent in an external circuit to provide the output signal.  There are three 

different mechanisms by which photodetectors operate on the principle of photocarrier 

detection: photoemissive, photoconductive, and photovoltaic detectors.  Photoemissive 

detectors operate when a photon impinges on a solid surface, which is called the 

photocathode, of an evacuated or gas-filled tube containing both a photocathode and one 

or more anodes. This process, where the cathode releases a photoelectron which is 

collected by an electrode at positive electric potential, the anode, is known as the 

external photoelectric effect [15].  A photoconductive detector operates by applying an 

electric potential across the photo-absorbing region which causes an increase in current 
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flow in proportion to the irradiance of the photon energy that exceeds the energy gap 

between the valence and the conduction band [15]; this additional current is known as 

the photocurrent.   

Although photoconductive and photovoltaic detectors operate in very similar 

ways, photovoltaic detectors have the ability to generate a voltage potential and a 

photocurrent without applying a biased voltage across the device.  This ability is unique 

to photodiodes, where, when an optical signal is incident on the photodiode, the 

depletion region serves as a boundary between the photogenerated electron-hole pairs 

and the electric current flows in the external circuit [16].  Other photodetectors include 

those that operate by manipulating quantum physics.  These are quantum well and 

quantum dot photodetectors.  They are unique photonic excited photodetectors, because 

rather than operating through normal bulk properties in the material from radiation 

affecting the space charge region, quantum well and dot devices operate on the principle 

of quantum potentials as depicted in Figure 2-1.   

Figure 2-1  Shows how as quantum well of structure decreases, less energy is needed to 

detect the photocurrent. 
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Unfortunately most photodetectors suffer from a common weakness, that is, they 

operate in real time capturing the signal only when it is present.  Chalcogenides, on the 

other hand, have properties that allow for a permanent storage of the image, where when 

a image is placed on the chalcogenide, a image can be permanently burned into the 

material.  Particularly chalcogenides phase change properties and threshold states caused 

by their interaction with light allow for this capability.  These effects will be discussed in 

detail further in this chapter. 

2.3 Chalcogenide Materials 

Chalcogenides are material compounds containing one or more elements from 

Group VI of the periodic table.  Oxygen, sulfur, selenium, and tellurium are part of this 

group, but oxygen is generally treated separately when dealing with chalcogenides for 

traditional reasons [6].  Amorphous chalcogenides are commonly known for their glassy 

material composition, and were used in ancient Egypt for making small sculptures [7].  In 

the early 1950s, researchers working with these materials discovered something new: 

these glassy compounds contained semiconducting properties.  This opened a new field of 

research in semiconductor physics dealing with amorphous semiconductors and 

noncrystalline solids, of which chalcogenides are only a part [7, 14]. 

At first, chalcogenides, like other amorphous semiconductor materials, attracted a 

lot of attention due to their amorphous state and semiconductor properties.  However, 

researchers quickly lost interest in chalcogenides, and for many years, they were thought 

to have very little technological use.  Originally, chalcogenides exhibited only basic 
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intrinsic properties of common semiconductors, and because of their amorphous state, 

they have a much lower mobility than crystalline semiconductors.  Up through the late 

1960s, these materials continued to be seen as uninteresting and thought to have few or 

no valuable properties.  Then, by 1968, two amorphous semiconducting devices were 

successfully developed using chalcogenide materials, demonstrating a novel phase change 

property [10, 17, 18]. 

2.3.1 Fundamental Characteristics and Physical Properties 

Contrary to initial thoughts, chalcogenides materials have some unique properties.  

Unlike common semiconductors (such as silicon and gallium-arsenide) which are 

crystalline, amorphous semiconductors have a very limited long-range periodic order.  

This unique property allows for these amorphous semiconductors to have electrical and 

optical phenomena that are quite unlike those of crystalline semiconductors [17].  There 

are four main factors that play a role in these unique phenomena.  First, chalcogen 

atoms are two-fold coordinated, thereby allowing for a considerable degree of localized 

structural flexibility.  The second is that the electron states at the top edge of the 

valence band and the bottom edge of the conduction band are spatially isolated due to 

the disorder and defects inherent in amorphous materials.  The third is that the top of 

the valence band is composed of chalcogen-derived lone-pair, p-π  electron states 

described by the small polaron theory, also known as weak bonds.  Finally, homopolar, 

similar or like-atom bonds can exist, particularly in non-stoichiometric compositions [5]. 
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To further explain each of these factors, non-radiative electron-hole recombination 

is due to optically-induced electron-hole pair excitation which is aided through the 

trapping of the photo-excited charge carriers in the localized band-tail states, leading to 

a range of local conformational or bond-braking changes.  Excitation of the chalcogen p-

π  states at the top of the valence band can lead to local structural conformation changes 

centered on the structurally flexible chalcogen atoms, e.g., ‘bond-twisting’ displacements 

of chalcogen atoms.  Optically-induced excitation of weak, homopolar bonds in the 

structure can lead to bond-breaking and self-trapping excitons [5].  Not only do these 

theories give rise to the unique properties in chalcogenide and other amorphous 

materials, they also have been noted as the probable causes for the limited electrical 

conduction in these materials, as well.  Chalcogenide materials have a wide variety of  

electrical and photonic properties depending on the exact molecular combination of 

elements [17].  Figure 2-2 shows a representation of a common chalcogenide material 

structure clearly depicting the limited long-range periodic order found in these 

compounds.   

Understanding the structure of the material is important, and is necessary for 

effectively engineering the material in applications such as microelectromechanical 

systems devices.  Although there are established methods of investigating crystalline 

semiconductor materials, a more in-depth understanding of the materials are needed 

when investigating amorphous materials.  For example, when using x-ray diffraction on 

an amorphous semiconductor material, instead of clearly resolving peaks found when 
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Figure 2-2  Schematic bonding topology of Se1-x-yAsxGey outlining the limited long-range 

periodic order common in these compounds [17]. 

 

analyzing crystalline materials, the results will be halos needing additional insight and 

assumptions on their interpretations.  Using techniques that are common for 

characterizing crystalline materials does not provide vague information in the case of 

amorphous materials; rather, with a clearer understanding of certain theories of the 

materials, useful data can be extracted [6]. 
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In the case of GST chalcogenide compound, the atomic formation was found to 

have two possible structures: a stable hexagonal structure and a metastable face centered 

cubic (FCC) lattice.  “Since the metastable phase crystallizes faster, in fast phase-change 

operation, the crystalline GST is always in the FCC phase” [10].  Figure 2-3 depicts the 

lattice structure for both crystalline and amorphous phases, where the dashed line 

represents an example of covalent bonds between tellurium atoms. 

Figure 2-3  (left) Atomic structure of the FCC crystalline GST. (right) Atomic 

configuration of the amorphous GST, where the cubic geometry has been retained for 

reference [10]. 
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Note that the chalcogenide atoms can lie in the fundamental state ( 0
2C ) or in 

differently coordinated defect centers ( 3C+  and 1C− ), where the subscript number 

indicates the number of connecting atoms and the superscript charge indicates the ionic 

charge of that particular atom; these are known as valence alteration pairs (VAP) which 

will be discussed later.  Also note that the stoichiometric compound, Ge2Sb2Te5, presents 

about 20% of structural vacancies in the Ge-Sb sublattice [10]. 

In reality, the chalcogenide structure is slightly distorted.   

“All the atoms have a six-fold coordination, with a sublattice 

randomly occupied by germanium and antimony and the 

other by tellurium atoms.  The two-fold Tellurium atoms are 

linked in chains (dashed lines), while germanium connects 

the tellurium chains to the antimony planes.  At finite 

temperature all glasses contain defects. In semiconductors 

with lone-pairs the most likely defects are VAP.  Depending 

on the stoichiometry, structural vacancies can be observed in 

the Ge–Sb sublattice.  Also in GST about 20% of the Ge–Sb 

atomic sites are indeed vacant [10].” 

The theories provided below should offer a better understanding about how chalcogenide 

and other amorphous materials operate in order to make a good analysis of the data that 

will be recorded in this experiment and help to offer some insight on any unusual data 

that may be discovered. 

2.3.1.1 Defect Theory 

To establish a better understanding of defects in amorphous semiconductors, the 

8-N Rule [6] needs to be explained in describing a nondefective ideal glass.  A glass 
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compound in which all atoms satisfy their valence requirements can be called an ideal 

glass.  To achieve this, the atoms need to obey the 8-N rule in the case of N ≥ 4, where 

N is the number of valence electrons and the coordinate number is given by 8-N.  For 

example, in the case of Ge2Sb2Te5 (GST), this means that all the gallium and antimony 

atoms are two-fold coordinated and tellurium atoms are five-fold coordinated.  In 

addition, to attain a short range of order, stoichiometry should be maintained; in an 

ideal glass, all of the outer shell electrons of a particular atom are involved with chemical 

bonds to the nearest-neighbor atoms and no ‘wrong’ homopolar bonds such as Ge-Ge or 

Te-Te should exist [6, 17]. 

In chalcogenides, the bonds are often flexible because the glass-forming regions are 

quite large and the material deviates from stoichiometry.  This means that the presence 

of homopolar bonds are inevitable.  There are some types of defects which describe the 

compositions within chalcogenide materials: negative-u defects, coordination defects, 

wrong bonds, and some other alternative theories that are not as agreed upon and 

accepted [6, 18].  Out of these different types of defects, the defect theory most focused 

on for chalcogenides is the coordination defect theory.  This theory seems to give a 

reasonable explanation for the structural defects, known as lone-pair compounds, which 

are found in chalcogenides.  Chalcogenides are known as loan-pair compounds because of 

the four outer electrons, p-orbital or π-orbital, characteristic of the chalcogenide used for 

bonding.  Known as the valence alternation model, the formation of over-coordinated 

defects through interaction of lone-pair electrons is explained by an empty orbital of a 



 

20 

positively-charged dangling bond that has been argued to interact with lone-pair 

electrons of the neighboring chain, forming a three-fold coordination defect [6].  “The 

gain in energy due to the formation of an extra bond was considered to be the driving 

force for compensating the energy cost for creation of the doubly occupied site at the 

negatively charged dangling bond [6].” 

In the VAP model, defects form according to the following reaction: 

  0
2 3 12C C C+ −→ +   (2-1) 

 

where C stands for a chalcogen molecule, the subscripts describe the coordination, and 

the superscripts correspond to the ionization charge.  The positive sites are three-fold 

coordinated and the negative sites are singly coordinated.  Regarding the stability of 

natural species, the triply coordinated center was concluded [6] to be more stable than a 

singly coordinated one (a simple dangling bond).  Energy levels of the various defects 

configurations are schematically shown in Figure 2-4.  The circles indicate the different 

electron orbitals in both s and p states and the lines in the middle of them represent 

unbonded valence electron charge(s).  Most important to note for this research are 

dangling bonds (lines in Figure 2-4), which can be effected by radiative energy leading to 

faster absorption times improving its efficiency [5]. 
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Figure 2-4  Structure and energy for different bonding configurations of elemental 

chalcogens [6]. 

 

The VAP model was developed before being applied to chalcogenides, so when 

applied to chalcogenides, the conclusions of the VAP model are based on highly 

simplified molecular orbital diagrams and are considered “somewhat speculative” [6].  

Defects in amorphous chalcogenides were generally found to have both positive 

correlation energy and a simple dangling bond (the most stable natural defects).  These 
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two conclusions differ from that of the original VAP model [6].  The reaction given in 

Figure 2-4 is exothermic, and therefore, the creation of the VAP 3C+  and 1C−  is preferred 

over the neutral 0
2C  since it lowers the energy of the system.  In addition to the valence 

alteration pairs, there has also been some recent evidence for states shallower than the 

valence alteration pairs.  These shallower states, called three-center bonds, are formed 

from other structural deviations [17]. 

2.3.1.2 Energy Band and Density of States Properties 

Originally, quantum theory in semiconductors was based completely on the 

presence of long-range order and on the periodicity of the crystalline structures.  

Furthermore, it was believed that since amorphous solids do not have long range periodic 

order, they cannot be described by energy band diagrams nor do they behave like 

standard semiconductors.  However, around the mid 1950s, it was discovered that the 

key in understanding the properties of solids is not their periodic structure but the 

chemical nature of their molecular combination [10].  Sometime after this discovery, 

chalcogenide glasses were found to act as semiconductors with an energy gap as well [11].  

The covalent interatomic bonds produce the usual bonding in the valence band and 

create anti-bonding in the conduction band.  However, since each chalcogenide atom has 

lone-pairs, band-tailing and non-bonding in the density of states appears near the top of 

the valence band-edge.  Because these states are very localized, their carrier mobility is 

correspondingly very low [10]. 
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Further investigation of amorphous semiconductors has shown that the density of 

states drops off sharply at the edge of the energy bands.  The energy band structure of 

the material directly relates to its mobility.  Observing the rapid reduction in the density 

of states at the energy band edge indicates how the electrons will be able to propagate 

through the material within the bands and will not propagate within the band gap [17].  

In Figure 2-5, the energy versus density of states diagram depicts these two relationships.  

Also note there are states in the band gap from particular defects that can effect the 

mobility and other material parameters. 

Figure 2-5  Schematic band structure of crystalline and amorphous GST [10]. 

 

Another model, commonly known as the Cohen-Fretzsche-Ovinsky (CFO) model 

[6], presents the main theory for the density of states in amorphous semiconductors 
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showing how the overlapping band tails from lone pairs effect both the conduction band 

and the valence band, which is depicted in Figure 2-6 [10]. 

Figure 2-6  Overlapping band tails in amorphous semiconductors, CFO model (left), 

rather weak tails protruding into the gap due to VAP (right) [6]. 

 

The states within the gap are due to the large number of traps in the material 

created by dangling bonds and other nonperiodic bonding defects within the material, 

also known as deviant electron configurations.  Neutral dangling bonds containing 

unpaired electrons form a positive and a negative trap according to theories [17].  It is 

also important to note that slight deviations in the bond lengths and angles, as well as 

other structural imperfections, occur when widening of the band edge takes place, 
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making the band-tailing less abrupt than crystalline materials which helps to explain the 

CFO model in Figure 2-6. 

VAP and three center bond traps form additional states between the band gap in 

the energy band structure of the material.  Figure 2-7 is a visual representation of these 

VAP and three center bond traps. 

Figure 2-7  Sketch of three center bonds (TCB) and VAP where Ch circles designate 

chalcogenide atoms, (a and b) indicate the chalcogenide in a periodic form and the 

arrows indicate the possible transitions which are affected by VAP resulting in (c) with 

TCB and solid empty circles mark lone-pair non-bonding TCB electrons, straight dotted 

lines indicate covalent TCB, and the solid lines where the D indicates positive and 

negative dangling bonds (d) [17]. 
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The energy gap in the CFO model indicates trapped electrons and holes by ionic 

attraction within the band gap causing the lifetimes of carriers in chalcogenide materials 

to be dramatically reduced in comparison to crystalline materials.  To control the 

electronic properties of the material, such as mobility, impurities need to be added that 

either add or remove states in the energy band gap.  These impurities, documented by 

Dr. Ovshinsky in the mid 1980s, either increase the mobility of the material by 

preventing dangling bonds from forming or decrease the mobility by causing more 

bonding deviations to form [17].   

2.3.2 Unique Properties Due to Direct Electrical and Photonic Interaction 

The development of chalcogenide materials and their research began somewhat 

slowly, but as discoveries were made about the unique physical properties within 

chalcogenides, this fostered other areas of research and exploration that continued to lead 

to new and very unique findings about these materials.  The literature suggests two main 

applications identified as being heavily researched and sought after concerning unique 

chalcogenide properties.  The first, which is being looked at very extensively for new 

memory applications, is the phase-change properties in chalcogenides, allowing them to 

shift between amorphous and crystalline structures through a thermal mechanism using 

electrical pulses to change the states of the material.  The second application uses the 

same thermal mechanism, but through optical manipulation, where the bulk materials 

(as a thin layer) one used for their phase-change properties as higher (crystalline) or 

lower (amorphous) reflectivity in DVD-RAM media [19].  However, little research has 
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been done that combines the two areas, looking at phase-changing the material optically 

for electrical circuit implementation as a variable resistor.  A brief look at these two 

properties will give a better understanding of chalcogenides. 

2.3.2.1 Electrical Phase-change Crystallization Behavior 

In the 1960s, researchers began to investigate the chemical and metallurgic 

properties of amorphous semiconductors and discovered some distinguishing 

characteristics of the chalcogenide materials:  two types of reversible switching 

phenomena between an amorphous and poly-crystalline state [11].  The first 

transformation, called ovonic threshold switching, is an electrical field-assisted and 

reversible transition, which makes an amorphous semiconductor switch from a highly 

resistive to a conductive state.  Once the amorphous resistivity drops, a second 

transformation, called ovonic memory switching, occurs in which a reversible phase-

change from the amorphous to the crystalline state is induced by heating due to current 

flow through the material [10]. 

The phase-change behavior in this type of chalcogenide material, known as 

bistable material, is accompanied by a change in the atomic structure.  While the 

structural change within the material is not completely understood, the shifting has been 

hypothesized to involve a combination of electrical and thermal processes.  Given a 

bistable chalcogenide with an amorphous structure, thermal energy supplied to the 

material will allow for bond breaking between neighboring atoms in the material.  In an 

unbonded state, the structure of the material is free to align in any form.  The atoms will 
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tend to form a poly-crystalline structure due to the fact that this arrangement has a 

lower energy than an amorphous one.  Finally, the amount of the structure that is 

crystalline formed in the bistable structure is directly proportional to the amount of time 

the energy is applied.  It has been documented that given the correct crosslinking of 

atoms in particular compositions of chalcogenides such as GST, the structure of the 

material can be switched between the pseudobinary line depicted in Figure 2-8 [17, 20].  

Figure 2-8  Phase diagram of the Ge-Sb-Te ternary alloy system indicating how 

reversible changes can occur between the atomic structure of ordered and disordered 

phases along the pseudobinary line [20]. 

 

Within the class of GST materials, the compounds along the pseudobinary GeTe-

Sb2Te3 tie-line, as shown in Figure 2-8, have fast crystallization properties.  

Crystallization times down to 20 ns and user data rates up to 35 Mb/s have been 

documented in optical disk media for phase change optical recording [20].  

Furthermore, from a poly-crystalline state, the bistable material can be 

transitioned back into an amorphous structure through a similar process of applying 
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thermal energy.  Thus, the material has more of a tristable capability between 

crystalline, polycrystalline, and amorphous states.  By applying enough thermal energy 

to break the atomic bonds and rapidly removing the energy, this process, known as 

‘quenching’, locks in the random arrangement in the bonds of the material when 

returning the melted material back to a solid [17].  Research into this phenomenon has 

shown that when an applied current sweep across the GST material is performed, the 

resultant current versus voltage curve is as depicted in Figure 2-9, where when the GST 

is in amorphous form the voltage increased rapidly as current is increase due to GST 

being highly resistive in amorphous form, and then as the material begins to melt and 

form a more crystalline structure, the resistance in the GST drops as indicated in Figure 

2-9 by the voltage drop during the current sweep.  Once the GST is crystalline, the 

current sweep is indicated by the (full set) curve in Figure 2-9. 

Figure 2-9  Current versus voltage plot for GST characteristics during material 

transitions between amorphous and crystalline states [21, 22]. 
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2.3.2.2 Photoinduced Phenomena 

As well as electrically modifying the structure and properties of an amorphous 

solid through releasing energy during nonradiative recombination, these amorphous 

semiconductors exhibit a large variety of photoinduced metastable phenomena, as well.  

Reversible photoinduced structural changes are a phenomenon unique to glassy 

amorphous chalcogenides and are not observed either in amorphous Group IV 

semiconductors or in innate crystalline chalcogenides.  This is a metastable state because, 

as the chalcogenide expands in one direction and contracts in the other, there is a 

limiting amount of radiated energy the chalcogenide can absorb before it begins to 

soften.  There are specific reasons for this uniqueness being restricted to vitreous, or 

glassy, chalcogenides, but first, an understanding of photodarkening is needed for these 

reasons to become clear [6].  

Photodarkening is an effect, occurring when the chalcogenide is illuminated, when 

the absorption edge shifts to lower energies, meaning the energy gap decreases 

corresponding to longer wavelengths.  Later annealing near the glassy-transition 

temperature leads to a recovery, however, never complete, of the initial parameters of the 

film.  The curve in Figure 2-10 corresponding to the annealed state occupies an 

intermediate position between the curves describing the current evaporated and 

illuminated states.  Should the annealed film be illuminated, one would have a 

completely reversible behavior during the illuminated process and annealed states.  

Similar changes can be observed in most Ge- and As- based chalcogenides [6].  This is 
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important to note, because while this experiment is not going to anneal the GST, the 

initial change in the material should be different then any following test on the material 

due to transforming the material from amorphous to crystalline and back to amorphous, 

which has similar effects on the material as annealing. 

Figure 2-10  Reversible shift of the absorption edge of typical chalcogenide glasses, As2S3 

and As2Se3, under photoillumination and thermal annealing [6]. 

 

The reason for reversible photostructural changes being restricted to glassy 

chalcogenides is described as follows.  “The top of the valence band in chalcogenides is 

formed by chalcogen lone-pair electrons and it is believed that the change in the 

interaction of lone-pair electrons resulting from the structural change is responsible for 

the photodarkening.  The importance of the chalcogen lone-pair electrons is further 
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emphasized by the fact that photodarkening disappears in metal-doped chalcogenides 

[6].” 

Another important factor found in the photoinduced phenomena of chalcogenide 

materials besides photodarkening is photoanisotropy.  Although this experiment does not 

consider different aspects of polarized light and its effect on the phase-change transitions 

for an optical-analogue memory, this is something to consider for future experimental 

testing, because it has not been applied to this type of an experiment and seems to have 

a significant impact on the material. 

If chalcogenide glasses are illuminated by linearly polarized light, along with 

photodarkening, light-induced anisotropic effects will occur, such as photoinduced 

dichroism, “the property of absorbing one of two or more plane-polarized components of 

transmitted light more strongly than the another,” [6] and birefringence.  A 

comprehensive study of photoinduced vectoral effects found that photodarkening and 

photodichroism appear with different kinetics in amorphous materials.  Photodichroism 

reached saturation much earlier than did photodarkening in these experiments.  

Photoinduced dichroism can be reorientated by changing the polarization of the light, in 

which case, the existing dichroism is reduced at a much faster rate than that of its 

creation.  In the case of circularly polarized or nonpolarized light, the dichroism in each 

and every direction would cancel out the others [6].  Figure 2-11 shows the time 

dependence of the quantity of 2( ) /( )I I I I⊥ ⊥− + , where I  and I⊥  are intensities of light 
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in arbitrary units transmitted through the sample with the electric vector parallel or 

perpendicular, respectively, to that of the inducing light [6]. 

Figure 2-11  Kinetics of photodarkening (dashed line) and photoinduced dichroism 

(solid line) in an As50Se50 film: (arrow) light polarization; (circle) unpolarized (or 

circularly polarized) light [6]. 

 

One group of models which explain photoinduced anisotropy rather well suggests 

that the anisotropy will be a result of bond flipping at the intimate VAP sites.  The 

authors of this model argue that the concentration of native defects present in 

amorphous chalcogenides is adequate to explain these defects.  In the case of linearly 
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polarized light, the light induced reversible anisotropic dilatation and contraction, and it 

was argued that these formations of dynamic interlinked bonds were “followed by the 

redistribution of special orientation of bonding and nonbonding electrons” [6].  Figure 

2-12 schematically illustrates this anisotropy due to bond flipping at intimate valence 

alteration pairs. 

Figure 2-12  A flip of the valence alteration pairs pyramid from left to right showing the 

effects of photoinduced anisotropy in chalcogenide materials [6].   

 

2.3.3 Summary of Chalcogenide Material Properties 

It is important to note that not all the different properties of chalcogenides have 

been presented here.  In this chapter, the material presented outlines the main area of 

chalcogenide material properties that are believed to be most relevant in this thesis work.  

The investigation into what these materials hold for both electrical and photonic 

properties will provide the needed background for further discussions.  A close look into 

the physical and electrical properties of chalcogenide materials has shown that, through 
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added impurities the density of states can be controlled and ultimately affect the ability 

to phase change between amorphous and crystalline states [3, 10, 17].  Even though 

doping was investigated for electrical phase switching applications, this could play an 

important role in photoinduced reaction in the chalcogenide material, as well.  More 

importantly for this research are the photoexcited properties.  Photostructural changes 

result from bond switching via the formation of dynamic bonds of unpaired electrons 

from the nonbonding orbitals.  A crucial role played by lone-pair electrons in the 

formation of dynamic bonds provides an explanation of why photoinduced structural 

changes are limited to amorphous chalcogenides [6].  Much effort is being given to 

understanding the nature of photoinduced anisotropy.  Despite considerable progress, a 

complete understanding of its mechanisms is not clear [6]. 

2.4 Summary of Applications Using Chalcogenide Materials 

Chalcogenide materials continue to show promising capabilities in a variety of 

applications and are gaining a lot of interest in many fields of semiconductor 

applications, quite ironic to how they were initially perceived.  Just as unique as the 

properties in chalcogenide materials are the applications being investigated and utilized 

by them.  Chalcogenides were originally developed for applications and testing in 

amorphous semiconductor devices as early as the 1950s [6, 17, 18, 23], but following the 

discoveries of their more unique properties, they began to be used in many optics 

applications from various wave guides [24] such as Bragg reflectors [25], thin films used 

in solar cells, and infrared applications [26, 27].  Another note to mention about 
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chalcogenide glasses is that the presence of homopolar bonds, as discussed earlier, plays a 

decisive role in some applications such as photoresists and electron beam resists.  These 

types of resist allow for the ability of submicron-level lithography processing [6].  Due to 

their density of states and energy bandgap, chalcogenide materials are ideal for mid-

infrared applications both in absorbing and emitting in these wavelengths [6, 13, 27].  

Because chalcogenides are easily pressed into various shapes, they are also found in 

applications for moldable lenses for use in optics, infrared, and microlenses for 

microelectromechanical systems [6, 24, 28, 29].   

One of the most recent areas being pursued with great enthusiasm is 

chalcogenides’ ability to shift phases reversibly with low hysteresis from both amorphous 

and crystalline states for applications in nonvolatile memories, such as flash technologies.  

In just the past few, years flash memory applications have exploded, most widespread as 

the ‘digital film’ for digital camera memory.  Other applications include portable flash 

drives, hard drive components in space equipment such as the recent missions to Mars, 

and media storage in every aspect of electronic equipment: MP3 players, cell phones, 

BIOS chips, PDAs, etc.  Chalcogenides show promising results in this area because of 

their nonvolatile ability to maintain different logic states based on their phase change 

properties and high speed program rate of less then 100 ps [10, 17, 21, 30].  Other 

research with chalcogenide materials, where applying the unique photoinduced anisotropy 

effects to thin film layers of chalcogenide on microelectromechanical systems cantilevers, 
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creating an opto-mechanical reaction based on polarized light incident, is being 

investigated.  These devices allow for a completely optically actuated device [5].   

Current searches in the electronic journals reveal new and frequent research in 

unique applications of chalcogenide materials.  More the 700 articles in IEEE and over 

800 in ScienceDirect the first half of this year have been published referencing 

chalcogenides.  With all the new research occurring so quickly, it is hard to make the 

claim that the research in this thesis has not already been done, but to the best efforts 

given in this literature search, the research of chalcogenide materials, specifically for 

Ge2Sb2Te5, applications dealing with photodetection using the threshold phase change 

properties outline earlier, appears novel. 
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3. Theory and Modeling 

3.1 Introduction 

Although this research is focused heavily on understanding GST through 

experimental research, accurate modeling can help to provide insight into how the 

experiment should be approached and the types of procedures used.  Modeling can also 

provide a better understanding when unexpected results occur.  The design and modeling 

in this chapter follow the actual design described in chapter four which is used in the 

experiment.  This design was optimized for optical testing of the GST, where the surface 

area of the GST was important for both optical excitation and the ability to couple the 

GST with marine DNA for future application research into novel volumetric memories.  

The idea was to create a surface test area that could both allow for optical testing and 

the ability to place thin layers of the marine DNA for device and material coupling.  

3.2 Marine DNA – Large Capacity Multistate Optoelectronic Memories 

Salmon and their eggs are a popular cuisine in Japan.  Currently, Japan harvests 

thousands of tons of salmon per year, with one of the waste products being salmon 

sperm.  Although the salmon and their eggs are highly desired, the sperm are disposed of 

as waste, estimated at 10,000 tons per year [31].  The amount of waste was even 

considered an environmental pollutant because of the sheer volume by which it is 

disposed.   
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Recently scientists were interested in finding usefulness in this natural resource.  

Since DNA can be crystallized [32], it could be explored for semiconducting properties 

and possibly provide a new material for integrated circuit technologies.  One researcher, 

Dr. Naoya Ogate of the Chitose Institute of Science and Technology in Hakkaido, Japan, 

began looking at the salmon sperm DNA and found it to have some interesting 

properties reacting with light, and the ability to hold multiple states within the material 

structure due to optically-induced phenomenon [31]. 

This material shows promising capabilities, not only in optical applications and 

optoelectronics, but as cellular membranes, as well.  The Air Force Research Laboratory 

sees this material as a resource to support research in biochromophores and nonlinear 

optical polymers [31].  The Information Directorate (AFRL/IF) is interested in this 

material as an avenue to develop novel three-dimensional or volumetric memory 

technologies with an end goal to develop cognitive optical computing. Cognitive 

computing is where the computer memory and logic are one and the same, enabling 

dynamic data storage and restructuring of logic processing and enabling the computer to 

learn, similar to the human brain.  Coupling the DNA with a multistate semiconducting 

material such as GST would allow the DNA material to operate with current integrated 

circuit (IC) technologies using the GST as an interface, bridging the gap between today’s 

technologies and those of the future. 
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3.3  Chalcogenide: Multistate Interface Design 

Since chalcogenide materials have been researched extensively for both their 

electrical and optical properties and exhibit multistate capabilities as an amorphous 

semiconductor, they appeared to be an ideal material to interface current technologies 

with the marine DNA polymer.  The driving interest in this chalcogenide, GST, is the 

capability to change states [10, 21, 30], (amorphous, semi-crystalline, and crystalline) 

through thermal interaction [4, 9].  This would allow researchers to develop new 

multistate devices, coupling the DNA with GST to record and maintain the varying 

states of the polymer within the GST. 

There are three steps this research is interested in modeling in order to determine 

the capability of GST as an interface material for the DNA and current IC technologies, 

two in modeling the GST to accurately predict and understand how it will interface with 

the polymer and a third to understand how the GST can be modeled for finite element 

analysis such as in a SPICE program.  The first two models are to determine the 

required irradiance to sufficiently change the GST between states and identify the scaling 

factor of irradiance to surface area of GST for different surface area sizes.  The third 

model is to analyze the GST’s photoresponse as a function of wavelength; by using the 

transfer function from that data to equate the device characteristics to a finite element, 

large scale SPICE modeling can be achieved.  Simple transfer functions are characterized 

as low-pass, band-pass, or high-pass filters.  For example, a frequency response from a 

device that had good frequency response in lower frequency but greatly attenuates higher 
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frequencies would be considered a low-pass filter.  Using Laplace transforms, the 

frequency response data can be characterized by an equation called a transfer function, 

not only for simple models but more complex ones, as well.   A two port finite element 

circuit (using simple elements, capacitors, resistors, and inductors) can be derived from 

the GST’s frequency response transfer function as an equivalent model of the GST test 

circuit, allowing for large scale integrated circuit analysis in a SPICE program.  Although 

there is interest in this third model, due to time constraints, this research will only model 

the first two and discuss the third model in chapter seven under future 

recommendations. 

Some research in this area has already been done.  Research from ECD Ovonics 

[33] presents an overview of the properties of GST, but with little to no quantitative 

results and analysis.  The modeling and analysis in this research are not only to 

determine the feasibility of implementing a coupled chalcogenide and marine DNA 

polymer device, but to present some findings similar to Dr. Ovshinsky’s, of ECD 

Ovonics, with quantitative results.  Thus, the basis for the modeling in this research 

follows the properties Dr. Ovshinsky describes [33] as a process of manipulating the 

chalcogenide GST between amorphous and crystalline states.  This is done through 

pulses of energy, where the material stores the amount of energy placed into it, and when 

enough energy is absorbed, the material shifts to a new structural phase as indicated in 

Figure 2-8 along the pseudobinary line between GeTe and Sb2Te3.  Similarly, the reverse 

process can be achieved using variable amplitude pulses of energy where each pulse 
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induces a higher degree of amorphous structure in the material.  Figure 3-1 presents a 

general overview indicating how the resistance changes relative to the current state of 

the material, and shows how energy applied to the device relates to each phase shift. 

Figure 3-1  Resistance characteristics of a GST chalcogenide device, (left) multistate 

phase shifts from amorphous to crystalline states, (right) multistate phase shifts from 

crystalline to amorphous states [33]. 

 

To accurately model how the GST transitions between amorphous and crystalline 

states, a more quantitative understanding in the difference of how the chalcogenide shifts 

between crystalline and amorphous states is needed.  Although structural changes can be 

induced from different types of energy (electrical, optical, etc.), the method to change the 

material is the same: by heating, melting, and then cooling the material.  As shown in 
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Figure 3-2, shifting the material from an amorphous to crystalline state occurs when the 

material is heated between the glass transition temperature, around 300°C, and the 

melting point, around 600°C, and is held at this temperature long enough for the 

supplied energy to crystallize the material.  Alternatively, when the crystallized material 

is heated above the melting point, and then quickly quenched, an effective reset of the 

material to an amorphous state occurs [21, 30, 34]. 

Figure 3-2  General diagram indicating pulse length and intensity of required energy to 

set and reset chalcogenide material for phase-change between amorphous and crystalline 

states [34]. 

 

3.3.1 Heat Transfer Model 

An important step in any experiment is building a model to correctly predict the 

results; this will both give insight in which directions the experiment should be 

investigated and possibly predict any possible problems that could be avoided.  The 
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desired approach in modeling this experiment is to find an accurate model that will 

predict the amount of irradiance (W/m2) needed to shift the material between each 

state: amorphous, varying pseudo-amorphous states, and crystalline.  Another important 

factor to consider for developing a test model is to incorporate a design that can be easily 

fabricated.  This design needs to allow one surface of the GST to be exposed, where the 

light source can directly irradiate the material.  The design for the experiment also needs 

to incorporate a way to test the GST electrically by an external circuit to verify the 

phase changes in the material via measured current-voltage relationships.  Figure 3-3 

represents a simple model meeting these desired requirements. 

Figure 3-3  Heat flux model: GST-filled trench between electrodes is irradiated with 

light such that the surface is heated creating a gradient of heat through the GST. 
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The first parameter needed is determining the irradiance that will raise the surface 

temperature of the material above the glass transition temperature of 300°C but below 

the melting point of 600°C.  This condition will cause a rapid growth of large crystals (in 

the material), shifting the material from an amorphous to a crystalline state.  GST does 

not actually contain pseudo-crystalline states; rather, the cause for this appearance in the 

materials is due to part of the material shifting to crystalline and part of the material 

remaining in a amorphous state.  Both [21] and [34] have identified similar results.  An 

example of this is represented in Figure 3-4.  As the GST within the trench is 

Figure 3-4  GST representation in different states, (top) amorphous state (middle) 

pseudo-crystalline state (bottom) crystalline state, where R1 is high resistance 

amorphous GST and R2 is low resistance crystalline GST. 
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transformed from amorphous to crystalline, the ratio of crystalline to amorphous 

material between the electrodes allows for multiple resistance values relating to multiple 

states for the device.  Crystallization occurs either by nucleation of critically sized 

particles or by growth of crystallites at the amorphous region boundary [22].  Although 

this is a more accurate model, the model that will be used here will assume a more 

general understanding of pseudo-crystalline states, looking at the material properties 

externally through its resistance change and not differentiate between nucleation or 

growth of the crystallization. 

Modeling the GST to determine the irradiant energy required to make state 

changes from amorphous to crystalline is done given a specific flux of energy on the 

surface of the chalcogenide. When this energy is absorbed, assuming 100% absorption, 

the temperature will increase due to photon absorption in the material, creating phonons, 

or quantized lattice vibrations.  Once the surface temperature can be determined, based 

on the intensity of irradiating light, the desired irradiant energy to heat the GST above 

the glass transition temperature but below the melting point to change the state from 

amorphous to crystalline can be determined.  The temperature on the surface of the GST 

can be determined by: 

  ( ) ( )0 infn k T q h T T⋅ ∇ = + −  (3-1) 

 

where n  denotes the outward pointing normal vector, 0q  is the inward heat flux in 

W/m2, h  is the heat transfer coefficient, infT is the external temperature, T  is the 
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temperature at the given point in the material, and k  is thermal conductivity.  

Assuming that the absorption is 100% and only at the surface, the irradiant energy on 

the surface is equal to the inward heat flux, 0q , and the heat transfer coefficient can be 

approximated as the thermal conductivity of the material.  Using the heat transfer 

equation for conduction from Fourier's Law [35], and assuming no convection, one 

obtains:  

  ( ) ρgen
dTk T q C
dt

⎛ ⎞∇ ⋅ − ∇ = − ⎜ ⎟
⎝ ⎠

 (3-2) 

 

where C  is the specific heat, ρ  is the density of the material and genq is the power 

generated per unit volume.  All the material properties are listed in Table 3-1, where 

thermal conductivity, k , specific heat, C , and electrical resistivity, Ρ, were taken from 

[22], and the density of the material was calculated by linear interpolation using Vegard’s 

Law from the densities of Ge, Sb, and Te present: 

  2 2 5
2 2 5ρ[ ] ρ[ ] ρ[ ] ρ[ ]
9 9 9

Ge Sb Te Ge Sb Te= + +  (3-3) 

 

Using the calculated density and the specific heat value of GST from [22], the heat 

capacity was then calculated.  Using the values in Table 3-1 and Equations (3-1) and (3-

2), an accurate model for determining the ratio of energy required to transform the 

chalcogenide to different states can be developed. 
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Table 3-1  GST Material Properties 

Material 

Thermal 

Conductivity 

k  [W/m-K] 

Density 

ρ [kg/m3] 

Specific 

Heat 

C [J/m3-K] 

Heat 

Capacity 

Cp [J/kg-K] 

Electrical 

Resistivity 

Ρ [Ω-m] 

Crystalline 

GST 
0.5 6138 1.2 x 106 195.5 6 x 10-5 

Amorphous 

GST 
0.5 6138 1.2 x 106 195.5 1 x 10-9 

 

 FEMLAB, now known as COMSOL Multiphysics, a finite element analysis 

simulation program, is used to model and simulate the heat transfer equations and the 

given properties of GST with different values of irradiance, and provides the amount of 

irradiance energy required to raise the temperature into the crystallization region.  The 

model design simulated in FEMLAB is depicted in Figure 3-5. 

Figure 3-5  FEMLAB’s model simulation geometry and design parameters. 
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The FEMLAB model was simulated with irradiance values of 0.2, 0.65, 1.1, and 

1.55 mW/mm2.  A more ideal simulation would be to model a transient analysis for 

periods of around 3 sec, 30 sec and maybe 5 min.  These times could be accomplished in 

the actual experiment.  Figure 3-6 presents the results from these simulations.  Note the 

temperature values are in Kelvin and the required temperature range to transform the 

amorphous GST would be between 700K and 800K, which is indicated in Figure 3-7 by 

colors of white and light yellow.  Pulsing the GST with irradiance above 1.6 mW/mm2 

would be ideal for a fast melting and subsequent quenching to “reset” the GST back to 

an amorphous state as indicated in Figure 3-2.  The first simulation was done at steady 

state with a constant flux of energy, which indicates that at least 1.1 mW/mm2 for long 

periods of time is required to transform the material to crystalline.  Therefore, lower 

energies, such as 0.2 and 0.65 mW/mm2 (which were simulated), would not work.  

Because longer pulse times not only heat up the GST, but also the surrounding device 

structure, preventing an adequate source for a heatsink when resetting the GST back to 

an amorphous state, only very short times will be acceptable (less than a minute) for a 

reset to amorphous state.  Observing the result from longer times, such as a couple of 

minutes, may provide useful data for transitioning the GST to a crystalline form.  
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Figure 3-7  FEMLAB simulation of GST (center) being irradiated by (top to bottom) 

0.2, 0.65, 1.1, and 1.55 mW/mm2 of energy at steady state analysis, degrees in Kelvin. 

 

To accurately determine the energy required for the time of a given pulse of light 

that is irradiated onto the GST, the simulation was modeled to reach the crystallization 

temperature range in the GST between 700 K and 800 K with pulse times of 3 sec, 30 

sec, and 5 min.  The respective input irradiance, assuming 100% absorption to achieve 

this temperature range was 500, 70, and 18 mW/mm2 as is depicted in Figure 3-8. 
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Figure 3-8  Transient thermal modeling of GST with different irradiance values and 

lengths of exposure to raise surface area to the crystallization temperature zone. 
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3.3.2 Scalability 

Understanding the scalability of the GST is important to determine how the 

irradiance required to change states varies for different surface areas of GST.  It is 

assumed the irradiance will be constant with respect to area as a function of light flux 

energy, wavelength, and the length of irradiance and will result in a change of 

temperature on the surface of GST.  This temperature change is a function of 

absorptance (dependant on the wavelength), total time, and surface area.  The equation 

for irradiance with respect to change in temperature is given by: 

  ( ) ( )( ), , , , ,e e eE I t T I t Aλ α λ⇒ Δ  (3-4) 

 

where eE  is a given irradiance with photon energy flux, eI , wavelength of light λ , and 

duration of light, pulsed onto the GST, t .  This irradiant energy on the GST 

corresponds to a change in temperature, TΔ , on the surface of the GST, where the 

temperature change is a function of the absorptance, α , for a given wavelength, the 

photon energy flux, the time exposed to the light and the area, A , exposed by the light.  

The assumption is that, independent of the surface area of the GST test structure which 

is exposed to light, it will take the same amount of irradiance to change the states of the 

GST.  Figure 3-9 shows a general representation of how different surface areas with 

equivalent irradiance changes the states of the GST, independent of the surface area of 

the GST test structure. 
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Figure 3-9  Irradiance to phase-change model, assumes constant irradiance required to 

change states independent of surface area (linear scaling of required total power).  

 

In order to assess the validity of the assumption that GST should scale linearly 

with respect to the total energy required to change the states of the material, GST will 

be tested experimentally.  The test data will provide a better understanding of how GST 

scales and help to determine an optimal device geometry and size.  Since irradiance is in 

units of watts per area, scaling the area should result in the same change of temperature 

given a constant irradiance.  This assumption is indicated by: 

 1 2( ) ( )eE T A T A⇒ Δ = Δ  (3-5) 

 

where 1A  and 2A  are different size areas. 

3.4 Summary 

After better understanding that the mechanism in creating the phase-change in 

GST is a thermal mechanism, which is independent of the energy source (optical or 
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electrical), modeling of this thermal mechanism for phase-change in GST was simulated 

using FEMLAB finite element analysis software.  The modeling indicated the amount of 

thermal energy flux into the GST needed to raise the temperature into the crystallization 

region for phase shift from amorphous to crystalline states.  This model was fairly 

primitive with respect to optical manipulation of the material.  Optical energy into the 

GST would not only be absorbed at the surface, but through the GST by using its 

coefficient of absorption, α, where the absorption into the GST relative to the distance 

from the surface, x, of the GST would be related by e-αx.   

Although the model presented in this research is simpler than, and not as accurate 

as, using a model that incorporates e-αx for absorption into the GST, this model does 

provide an adequate understanding of the optical energy required to shift the states in 

GST.  It also provides an understanding of the relationship between the length of the 

pulse of optical energy and the required optical power density to actuate the phase-

change in the GST.  The scaling factor versus energy required is considered to be linear 

for the range of device geometries considered in this research.  For devices much smaller 

then what is designed in this experiment, thermal density would not dissipate as quickly 

due to surface area effects, and is not considered in the scaling assumption made in this 

chapter.  Ultimately, for research into GST-DNA hybrid devices, whether or not the 

temperature range to activate the phase-change in GST is suitable for the salmon DNA 

needs to be addressed. 
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4. Design and Fabrication 

4.1 Introduction 

In any research that involves experimental testing, a test device needs to be 

manufactured; optimizations for test parameters, time and availability of resources, and 

benefit and cost analysis are all factors that are important and need to be carefully 

considered when designing a test device.  This chapter covers these areas, including a 

brief outline of the design objective and some background into the interest of this 

research.  The resources, cost, and benefits of possible fabrication methods are outlined.  

The solution, using AFIT’s MEMS lab L-Edit design layout software and the 

PolyMUMPs fabrication process, is discussed in detail.  Post processing procedures of the 

fabricated devices before the GST is grown is explained.  Finally, the University of 

Utah’s GST growth process is discussed, and the GST that is received back is imaged 

under an SEM and analyzed. 

4.2 Design Objectives 

The design of a test circuit and selection of an appropriate fabrication method for 

this test circuit were driven by a few factors.  One of the factors that needed to be 

considered when testing the GST material was scalability for ideal size integration in 

future chalcogenide devices.  AFRL wanted a test circuit at sizes comparable to 

integrated circuit devices, i.e. in the micron and submicron levels.  A design process was 
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needed that could meet this requirement, while also a compatible surface and test 

structure was needed for the deposition of the GST from a third party.  This design 

needed to allow for direct analysis from the surface of the test structure to an external 

circuit, i.e. a design that would contain the test electrodes on the surface of the chip. 

First, a design was needed to feasibly test the material with optical energy 

through an external circuit.  The most common method is to drive the circuit with an 

external current via an applied voltage across the test material and detect the additional 

current (photocurrent) generated by the optical excitation incident on the GST.  The 

test device needed a surface area with GST exposable to the light and to be connected to 

the external circuit with as little noise (external light) as possible.  The design of the test 

circuit must have electrodes that connect to the GST in a way to test the material and 

also provide other benefits such as redundancy for any damage that could possibly 

happen to the test chips, allow for external noise reduction, test other desired factors 

such as scalability, and be simple in design for modeling, calculations, and feasibility of 

acquisition, i.e. low cost and readily available manufacturing resources. 

4.3 Resources, Cost, and Availability 

There are various avenues that could be taken for fabricating the test circuits.  

Fabrication processes, either at AFIT or AFRL, or hiring a commercial company were all 

available options.  Not only did fabrication costs need to be considered, the timeline and 

quality of production were important as well.  At AFIT, the clean room would suffice for 

fabrication purposes, but the materials that could be deposited with the current 
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equipment are limited, and there was no easy way to fabricate and acquire masks for the 

designs quickly enough to complete the thesis given the AFIT master’s program timeline. 

Before looking elsewhere, the availability of a fabrication process funded by 

AFIT/ENG for the Introduction to Microelectromechanical Systems (MEMS) course was 

determined to be a fast, reliable, and economical route to produce the design and 

fabricate the desired test circuits.  AFIT has been using this commercial fabrication 

process, it is well established, and multiple copies of the design are fabricated which is 

ideal for protection against mishaps which could happen during the experiment.  L-Edit 

by EAD Tanner is a software package used to layout MEMS structures at AFIT.  In 

addition, bimonthly fabrication runs are available which can be useful to optimize the 

test circuit.  This foundry process saved considerable time and possible unforeseen costs 

that could occur by fabricating the test circuit at AFRL, which would require obtaining 

custom designed masks and the appropriate materials to fabricate a working test 

structure. 

4.4 L-Edit Design Layout 

L-Edit was used to create the test circuit designs for fabrication.  L-Edit allows 

for a fast and simple way to design two-dimensional test circuits.  Using L-Edit 

simplified the design process by allowing the user to setup each individual layer, to view 

the layer(s) together or individually, and to analyze the layout for possible design errors. 

A key benefit of L-Edit is that one can design a simple structure in a cell, then, this cell 

can be copied and arrayed within the master cell to accelerate the circuit layout.  If 
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changes to the master cell are necessary, the original cell can be modified and thus all 

instanced cells will be changed, updated simultaneously, therefore allowing quick and 

efficient design modifications.  These specific aspects of L-Edit were used in the design of 

the array of test electrodes for this experiment.  See Figure 4-1, a top view of the 

complete test circuit design created in L-Edit.  The gold squares are bond-pads which 

allow for the chip to be connected to an external circuit, the thinner gold rectangles are 

Figure 4-1  Top view of chalcogenide test chip designed in L-Edit. 

 

the arrays of electrode pairs to test the GST material in this experiment, and the pink 

lines are the polysilicon conducting surface wires. 
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4.5 Fabrication Process 

The three layer PolyMUMPs process begins with a 100-mm n-type (100) silicon 

wafer of 1-2 Ω-cm resistivity.  Using POCl3 as a dopant source the surface of the wafers 

are heavily doped with phosphorus using a standard diffusion furnace to help reduce and 

prevent charge feedthrough to the substrate from electrostatic devices on the surface 

(MEMS electrostatic devices that are being fabricated alongside the test devices).  A 600-

nm layer of silicon nitride (Si3N4) is deposited by low-stress LPCVD (Low Pressure 

Chemical Vapor Deposition) on the silicon surface to act as an insulating layer between 

the substrate and the conducting polysilicon layers.  Next the first of three polysilicon 

layers is deposited at 500-nm thick by LPCVD and patterned using standard 

semiconductor photolithography techniques with an accompanying reactive ion etch 

(RIE) process.  The polysilicon layer is followed by a 2-μm sacrificial oxide, polysilicon-

glass (PSG), deposited by LPCVD and annealed at 1050ºC for one hour; the PSG is 

patterned by RIE as well [36].  Figure 4-2 illustrates the possible combinations and 

patterning of the layers available in the PolyMUMPs fabrication process. 
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Figure 4-2  Cross section view of the three-layer PolyMUMPs process outlining the 

possible combinations of layer configurations [37]. 

 

After the first PSG layer, a second 2-μm polysilicon layer is deposited using the 

same process as the first polysilicon layer.  A second 750-nm oxide layer is deposited 

next, using the same process as the first, followed by the final 1.5-μm layer of polysilicon.  

This oxide layer can be selectively patterned in two ways by creating either a via 

between the second and third polysilicon layers, or, where there is no second polysilicon 
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layer, the etch depth will reach the first polysilicon layer or Si3N4 in the absence of the 

initial polysilicon layer.  Following this etch, the final 1.5-μm layer of polysilicon is 

deposited and etched with RIE.  Lastly, the final layer in this fabrication process is a 

500-nm gold layer with a 20-nm chromium layer acting as an adhesive connecting the 

gold to the polysilicon.  The gold layer is patterned using a standard lift-off method [36]. 

4.5.1 MEMSCAP PolyMUMPs Fabrication Process 

The MEMSCAP company provides commercial polysilicon MEMS fabrication 

services for industry, university, and government research as a cost effective, proof of 

concept fabrication process.  Their process, known as Multi-User MEMS Process 

(MUMPs), offers three different design and fabrication capabilities which are 

PolyMUMPs (a three layer polysilicon surface micromachined process), MetalMUMPs (a 

five layer electroplated nickel process), and SOIMUMPS (a four layer silicon on insulator 

micromachined process).  Through the MEMS program at AFIT the PolyMUMPs 

process is used as an integral part of the course, by allowing students to not only learn 

the concepts of MEMS, but also to create their own designs. 

Although this fabrication process is designed for MEMS device fabrication; 

accurate two-dimensional circuit wiring layouts can also be fabricated on a small-scale 

surface (2-μm minimum feature size) chip to test the GST in this experiment.  Another 

benefit to this fabrication process is that multiple layers of polysilicon are available to 

create different structures which enable the design of the trench between the electrodes.  

Figure 4-3 shows a pair of electrodes (6-μm gap) fabricated in the PolyMUMPs process. 
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Figure 4-3  SEM top view of 6-μm electrode pair with a 4.5-μm trench. 

 

The electrode height consists of all three polysilicon layers and one gold layer 

available in the PolyMUMPs process. This maximized the electrode height, which 

resulted in a trench depth between the electrodes of 4.5-μm.  Since the chalcogenide is 
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deposited everywhere on the surface of the test chip, the relatively deeper trench depth 

to feature size was ideal for better electrical isolation and less fringing effects.  Using a 

design on the surface of the test chip is beneficial to this experiment, when compared to 

other efforts [21, 34, 38] which required the use of a heater element and electrodes 

beneath the chalcogenide to set, reset, and read the GST.  This experimental design is 

optimized for light detection on the surface of the GST material. 

4.5.2 Safety Procedure and Post Processing 

When the 1-cm by 1-cm chips are returned from MEMSCAP, there is an array of 

25 different chips processed together on a single die.  The chips are sent out to Micro 

Dicing Corp. to be sub-diced down to their 2-mm by 2-mm size.  After the fabrication 

and subdicing processes are completed, some post processing needs to be completed at 

AFIT prior to the chips being shipped for chalcogenide deposition.  The chips are 

received from the MUMPS foundry with all sacrificial oxide layers intact and a top 

photoresist layer for general protection of the MEMS parts.  In order for the chips to 

function properly, these protective layers need to be removed by chemical etching. 

Prior to release, all equipment (tweezers, dish, etc.) needs to be cleaned using the 

following cleaning procedure: blow dry with N2 gas, rinse with acetone, then methanol, 

and finally with de-ionized water (DIW).  Lastly, dry with N2 gas [39].   

To release the oxide on the PolyMUMPs chips, they first need to be cleaned 

thoroughly.  The chips were placed in a petri dish with acetone for 10 minutes to remove 

the bulk of photoresist and silicon dust from the subdicing process.  This is followed by 
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placing the chips in fresh acetone for another 5 minutes to remove residual photoresist.  

The chips are then placed in methanol for 5 minutes to remove residue from the acetone 

cleaning steps.  Finally the chips were placed in DIW until the HF setup was ready [39]. 

The sacrificial oxide release of the chips was done using 48% HF for 3 and a half 

minutes.  The chips are then immediately placed in DIW for 5 minutes to stop the HF 

reaction.  Normally the chips are dried using a supercritical point CO2 drier to prevent 

stiction.  However, these steps were omitted in this experiment due to no moving parts 

on the designed chips.  Having no concern regarding stiction effects, the chips were dried 

on a hot plate at 90ºC for 10 minutes.  The chips were then placed in a gel-pack 

container to hold the chips securely.  Once the chips were ready for chalcogenide 

deposition they were shipped to the University of Utah for the deposition process. 

4.6 Deposition of Chalcogenide (University of Utah) 

The University of Utah processed and deposited Ge2Sb2Te5 onto the test circuits 

designed for this experiment.  University of Utah’s growth process was examined using 

dispersive x-ray spectroscopy and secondary ion mass spectrometry, where their GST 

was found to be within ± 2 atomic % of the original sputtering targets.  The electrical 

and optical characteristics of the GST layer were also analyzed using electron spin 

resonance (ESR) and photothermal deflection spectroscopy (PDS). The GST had an ESR 

signal when not illuminated implying a large defect density around 1019 cm-3 within the 

bandgap, indicating higher resistance in amorphous state, and the PDS tests showed that 
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the absorption edge in the GST was much broader than in standard (GeSe2, As2Se3) 

chalcogenide glasses [40] indicating more efficient photo absorption. 

Using RF sputtering, the GST was grown to 4-μm at 6Å/s, creating a low oxygen 

(3x1019 cm-3) impurity concentration, and 3Å/s creating a medium oxygen (8x1019 cm-3) 

impurity concentration [40].  The GST was grown to 4-μm, given the design of the 

electrode heights of 4.5-μm to fill but not over fill the trenches between the electrodes. 

Later, the decision to grow the GST at 6Å/s for 500-nm was made for two 

reasons.  First, the faster growth rate yielded a lower oxygen impurity concentration and 

as depicted in Figure 4-4 for GST, the faster growth rate (lower oxygen impurity 

concentration) yields a higher absorbance.  A higher absorbance would require less 

irradiance energy to phase-shift the material.  This is ideal for efficient operation of the 

devices.  Second, the choice of depositing 500-nm of chalcogenide rather than 4-μm 

follows other current research on GST for use as a phase-change memory device.  Others 

[34, 38] have shown that working with GST layers (180-nm to 220-nm) are ideal rather 

than working with larger layers of GST due to faster switching speeds and less energy 

required for a phase-change because the energy required is a function of the total volume 

of GST that is changed.  Growing 500-nm was determined more functional as opposed to 

[34, 38] due to the unique design used in this experiment. 
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Figure 4-4  Absorption vs. photon energy in electron-volts (left) for G2S2T5 and GeTe 

(right) at different growth rates reflects the effects of higher oxygen impurities at lower 

growth rates [41]. 

 

After receiving the samples back from the University of Utah, before any experimental 

tests were performed, images of the devices were taken using both SEM and optical 

instruments.  One of the concerns regarding the process of GST deposition was whether 

or not the surface contours of the devices would still be identifiable or whether the 

surface would all look the same (making device testing vary).   Figure 4-5 shows an SEM 

image of one test chip that indicates that the device structure is still identifiable which is 

desirable for locating and testing individual devices on the chip.  A closer look at the 

edges of the devices indicates that the deposition was conformal growth, as indicated in 

Figure 4-6 where 4-μm of chalcogenide was deposited.  



 

67 

Figure 4-5  SEM image of test chip array with GST deposition at 4-μm, low oxygen 

impurity concentration, coating entire chip surface. 

Figure 4-6  Electrode Pair (top) before GST deposition, (bottom) with 4-μm of GST. 
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Looking closer at the chalcogenide material that the University of Utah deposited, 

the amorphous structure is apparent as shown in Figure 4-7 where random disordered 

pyramids about the side of 100-nm make up the structure on the surface of the GST. 

Figure 4-7  Chalcogenide material in amorphous state as grown through sputtering by 

the University of Utah; images from first batch of samples received in December. 

 

It was important for the material to be grown in amorphous state because, as indicated 

by Figure 3-1 and Figure 3-2, varying states occur from amorphous to crystalline due to 

a longer set time and are more identifiable (further separated in resistance levels), as 

opposed to the change from crystalline to amorphous where most of the different states 

occur relatively close in resistance values. 
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4.7 Summary 

After considering the possible avenues for the fabricating of a test structure to 

analyze GST in this experiment, the PolyMUMP’s commercial fabrication process was 

chosen for its reliability, ease of use, cost, quick turnaround, and well established 

connection with AFIT.  The AFIT MEMS program already had funding for the use of 

this commercial process, so using this process was done at no additional cost.  The 

University of Utah was chosen to grow the GST for this experiment; they had already 

been growing GST for AFRL/VSSE in Kirtland and because of this established venture 

the University of Utah agreed to grow GST on the test devices in this experiment at no 

cost.  Ultimately, these two avenues were chosen because of their ready availability, 

quick attainability, and lack of additional costs.  After the test samples were designed 

and fabricated, the preparatory release processes were performed before GST deposition, 

and then the test samples were sent to the University of Utah and had GST grown on 

them.  The University of Utah provided several options of growth parameters, which 

were: oxygen impurity level (3x1019, 8x1019, and 8x1020 cm-3), growth depth, and grown in 

either crystalline or amorphous form.  For experiment procedures, test device layout, and 

optimal absorption ability, most of the GST was grown in amorphous form, with 3x1019 

cm-3 oxygen impurity level (the lowest possible from their growth process), and a film 

thickness of 4-μm.  Finally, before any testing was done, the GST was examined using an 

SEM to take images of the GST material structure. 
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5. Experiment and Setup 

5.1 Introduction 

The importance of experimental research is not only collecting the data and 

analyzing it.  It is also important to identify and outline a clear methodology of the data 

recording procedures.  Documenting the procedures that are performed in an experiment 

can help to explain inconsistencies or unexpected data, and they allow other research to 

more accurately reproduce the same experiment or identify possible errors in the 

experimental procedures.  This chapter covers the steps taken in measuring the results in 

chapter six.  The test setup and equipment parameters are given and the methodology 

for the different measurements is explained (responsivity vs. wavelength, resistance vs. 

intensity, and scalability).   Table 5-1 outlines the general test matrix of the data that is 

desired. 

Table 5-1  Test Matrix 
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5.2 Lab Equipment and Test Setup 

In order to measure the resistance change of GST as a function of irradiance, 

accurate equipment is needed to not only capture the change in resistance of the 

material, but also to measure the intensity of light incident on the material.  Two of the 

devices used in measuring the signal from the material were a Stanford Research Labs 

(SR) Lock-in Amplifier (SR530) and a SR Low Noise Current Preamplifier (SR570), 

where the noise level, using the equipment manuals specification sheet, was calculated to 

be at 115  10−×  amps rms.  This level of accuracy was determined to be more than 

sufficient without using a Wheatstone bridge.  Originally it was planned that there 

would be a Wheatstone bridge circuit setup to amplify the resistance change in the 

material in order to mitigate noise in the circuit and to cancel out ambient light noise by 

using two chips in the Wheatstone bridge where one was illuminated and the other was 

covered.  Since the activating switch in the material is thermal, the major noise factor 

was determined to be from ambient light which was adequately removed using a cloth 

shroud to cover the probe station from most of the ambient light.  Because of low noise 

level in the measurement instrumentation and adequate ambient light shielding, no 

Wheatstone bridge circuit was implemented. 

The light source that was setup for this experiment was a tungsten 1500 W 

halogen bulb.  Using a standard magnifying lens the light was focused through an optical 

chopper and into an Arc Spectra Pro-150 monochromator.  The chopper was regulated 

by an HP3325A synthesizer/function generator where both the chopper and the 
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monochromator were controlled by a PC using a USB to IEEE488 bus converter with a 

visual basic (VB) macro programmed into an excel spreadsheet.  The light was 

channeled through a fiber optic cable from the monochromator into the microscope on 

the probe station.  Using an objective of 50x, the light was reduced to a 100-μm spot 

size, illuminating only one pair of electrodes. 

To measure the reaction from the light source, two probes on the probe station 

were connected to the low noise current preamplifier which applied the bias voltage.  The 

current was swept across the device and amplifying the return signal by 1x104, then 

passing the signal to the lock-in amplifier the signal at the frequency of the AC signal 

generated from the chopped light source was measured.  The applied bias from the 

preamplifier was also controlled through the VB macro, and the return signal from the 

lock-in amplifier was sent back to the VB macro to be recorded.  Originally, the VB 

macro program was not completed when testing began so an HP4156A Precision 

Semiconductor Parameter Analyzer was connected to the probes for initial testing of the 

devices, applying the bias voltage and measuring the return signal from the devices.  

During this test phase the monochromator was controlled manually through an older PC 

(386).  The equipment setup is depicted in Figure 5-1 using wavelengths ranging from 

300-nm to 1100-nm in steps of 20-nm. 
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Figure 5-1  Experiment equipment configuration.  

 

5.3 Experiment 

The basis for the experimental methods in each of the three areas of the 

experiment (for responsivity vs. wavelength, resistance vs. intensity, and scalability) were 

very similar; the procedure was done by applying the light source to the surface of the 

device irradiating the material and recording the change in resistance in the GST 

through the change in current generated and voltage supplied.  Originally, the 

responsivity versus wavelength measurements were going to be taken first, determining 
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the optimal wavelength for the other tests at the peak responsivity in the GST.  Since 

the VB macro (control program) was still being developed and there were delays in the 

monochromator working properly, some preliminary resistance versus intensity 

measurements were taken first. 

5.3.1 Resistance vs. Intensity 

Using the parameter analyzer and the microscope’s variable white light source, 

darkcurrent and photocurrent at variable intensities were measured.  The light intensities 

were measured by removing the test devices from the probe station and placing a DP 

series photodetector PIN-10DP under the microscope, then measuring the current and 

voltage output on the photodetector with the preamplifier and lock-in amplifier.  The 

irradiant energy was calculated using: 

  /eE I V A= ×  (5-1) 

 

where eE  is irradiance in mW/mm2 and I  is current in amps, V is electric potential in 

volts, and A  is area (spot size of light on the photodetector) in mm2.  The same 

technique was used with the monochromator to determine the irradiance output at 

individual wavelengths.  Measuring the darkcurrent and various intensities of 

photocurrent using the parameter analyzer was performed using applied voltage ranges 

from -1.0 V  to 1.0 V on some devices and then - 0.5 V  to 0.5 V  on the rest of the devices 

because there was some concern that using the -1.0 V  to 1.0 V range might actually 

modify the states in the GST electrically [3]. 
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Once initial testing was performed and the control program was operational for 

using the tungsten light source with the monochromator, resistance versus intensity at 

particular wavelengths was measured.  To measure the photocurrent generated from the 

light source the function generator was set to 800 Hz which resulted in a chopping 

frequency of 80 Hz.  This frequency was determined to be desirable because an 80 Hz 

signal will help mitigate noise coming from the ambient 60 Hz light.  

5.3.2 Responsivity vs. Wavelength 

There are many different figures of merit that give insight into the performance of 

photodetectors.  Not only can photodetectors be characterized or quantified in this 

fashion, any optically reactive material can be classified similarly.  The general equation 

for current responsivity is given by [13]: 
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where iℜ  indicates responsivity in terms of current as a function of wavelength λ  and 

electrical chopping frequency f , η  is the quantum efficiency, q  is electron charge, h  is 

Plank’s constant, c  is the speed of light, G  is the photoconductive gain, and τ  is the 

time constant.  Using the chopped light and monochromator this model of responsivity 

will be used.  The responsivity data is collected by using the control program to 

automate the process of measuring the photoconductive gain over the range of 

wavelengths (between 300-nm and 1100-nm).  For simplicity the efficiency is set to 100% 
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and the responsivity is calculated from the measured data.  If it is found that the GST 

exhibits no photocurrent properties a more reasonable bolometric responsivity model (in 

W/V) will be used given by [42]: 

  D
i b
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where bI  is the DC bias current through the detector, and D

L

dR
dP

 is the change in 

resistance due to the power absorption in the GST.  Since this experiment relies on 

thermal actuation, not quantum effects, the responsivity of the devices are assumed to be 

fairly constant. 

5.3.3 Scalability 

To determine effects of scaling on the GST devices in relation to the required 

irradiance power required to change the state of the GST, different geometries were 

tested.  The gap between the electrodes where the GST was deposited ranges from 2-μm 

to 30-μm in increments of 4-μm, and the lengths of the electrodes for each of these gaps 

are either 100-μm or 200-μm.  By measuring the required irradiance that changes the 

state of the GST at different geometries, a relationship of scalability can be determined.  

This relationship will provide insight in determining what benefits, in power consumption 

and speed of operation, are gained from scaling the devices.  The electrode pairs were 

tested individually with varying intensities of light.  Using the same setup as described in 

section 5.2.1, chopped light from the monochromator irradiated the GST, the 
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preamplifier applied the bias voltage and the measured signal was sent to the lock-in 

amplifier to record the measured photocurrent.  The photocurrent was recorded as a 

function of light intensity and gap distance, and data was grouped by gap size, then by 

intensity of light. 

5.4 Electrical Testing 

Following the optical testing of the devices, electrical testing of the phase-change 

properties in the GST was performed.  Other research [3, 21] presented effective testing 

methods by applying a current sweep across the electrode through the GST.  The 

parameters that were desired were: the voltage threshold Vth required at the point where 

the GST shifts from amorphous to crystalline, the current level Ic where the GST is fully 

set to a crystalline state, and what effects scaling the gap size had on both Vth and Ic.  

The electrical testing was done using the parameter analyzer to apply the current sweep 

and measure the resulting voltage levels. 

5.5 Summary 

Initially, the experimental procedures were planned to be only in the nature of 

optical testing the GST as explained in this chapter.  Because of the modeling in chapter 

three (completed during the middle of the experimental testing) and the results from the 

optical testing, another form for testing the thermal phase-change mechanism in the GST 

was determined to be necessary.  So, electrical testing and analysis of the GST was then 

performed to analyze its phase-change properties. 
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6. Results and Analysis 

6.1 Introduction 

This chapter presents the steps taken and the results from the optical 

experiments, as well as the results and analysis from the data collected through electrical 

testing of the chalcogenide samples.  Although the experiment as described in chapter 1 

and in section 5.2 posed a problem in collecting the desired optical data (due to available 

equipment), the overall results from the experiment were successful in testing the 

electrical properties of the GST samples and provided beneficial information for future 

research.  Initial optical testing of the chalcogenide was performed before accurate 

modeling of the material was completed.  Using the modeling data from FEMLAB and 

measuring the output power from the available optical power sources, it was later clear 

there was not enough optical power to change the state of the GST.  This finding also 

agreed with the results collected from the optically tested data.  The chalcogenide could 

still be coupled with the salmon DNA electrically using other optically sensitive devices, 

and so testing the electrical properties of the material was also a feasible solution.  Thus, 

it was important to test the GST samples from the University of Utah and compare their 

GST to the literature for reliability in future research and device fabrication. 
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6.2 Photo Analysis 

The initial photo testing data of the chalcogenide seemed to indicate that these 

GST samples did in fact exhibit photocurrent properties as well as the ability to change 

and hold multiple states within the material through photo actuation as shown in Figure 

6-1. 

Figure 6-1  Current vs. Voltage plot of initial photo testing data, 6Å/s Low Oxygen 

GST with gap of 14-μm, indicating three possible states. 

6Å/s Low Oxygen 

14-μm Gap Device 

Test# 
Power 

mW/mm2 
Time s 

1,2,9,10 0.00 N/A 

3,4 0.02 ~20 

5,6,7,8,10 0.07 20-30 
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Figure 6-1 represents the data taken by using the microscope light to illuminate 

the material as described in section 5.2.  Initial photo testing of the chalcogenide samples 

was done via the microscope light source using the parameter analyzer due to delays in 

completing the control program for the monochromator.  This initial data (resistance vs. 

intensity) of the GST was thought to be ideal for two reasons.  First, the data indicated 

that GST had multiple states, as depicted in the three lower plots in Figure 6-1, where 

each subplot represents a different state in the GST.  As more light were irradiated onto 

the samples, the material exhibited changes in resistance which were measured using a -1 

to 1 voltage sweep and extracting the resistance from the recorded current.   

The second reason the data appeared ideal was because the results support a 

photocurrent phenomena.  Tests one and two were done as dark current with no light 

except the ambient room light on the material.  Then test three and four were done with 

the microscope light set to the lowest setting, measured to be 0.02 mW/mm2, using a 

10DP series photodetector to measure the power output assuming the reflectance and 

absorbance of the detector was equivalent to that of the GST samples.  The drop in the 

resistance between tests one and two and tests three and four was believed to be a 

photocurrent effect.  The next test that was performed as the data was presenting ideal 

results was setting the light source to 50% of the maximum power the microscope light 

provided.  The voltage sweep was again applied -1 to 1 volt and measured as tests five 

through eight.  Note, with each illuminated test the light source was incident on the 

GST approximately 20 s for low levels and between 15 to 30 s when at 50% power.  
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Using the same procedures as before, with the photodetector, the output power of the 

microscope light at 50% was measured as 0.07 mW/mm2. 

The next measurements, tests five to eight, presented data that showed a 

significant change (four times less) in resistance as compared to the previous results 

(tests one to four).  It was thought that the material had changed to a new state 

between crystalline and completely amorphous.  To see if the material had changed to a 

new fixed state, the light source was turned off and the data was recorded as test nine in 

Figure 6-1.  The results showed a slight increase in resistance, which is represented by 

the drop in current (test nine, Figure 6-1).   This indicated there could possibly be 

photocurrent in the GST.  The microscope light source was turned back on to low power 

(50% power was not used due to concern of changing the state of the material again) to 

see if the material would drop in resistance and exhibit an I-V curve similar to tests five 

to eight.  The data measured presented no change, being identical to test nine.  Next, it 

was desired to test the GST to determine if the material could change to a new state 

again.  The total irradiance time was added, the time each of the light pulse was incident 

on the device for tests three to eight, which came to about three minutes, and was used 

for the next desired irradiance time.  The GST was intended to be irradiated for three 

minutes to induce a second phase-change, but actually ended up being irradiated a little 

over five minutes before test ten data was measured while the light source was still at 

50% power.  It appeared that the GST sample had changed states again by the dramatic 

decrease in resistance.  This was confirmed by removing the light source and testing the 
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sample again and measuring the same data as in test ten.  Other electrodes on the same 

sample where then tested and all tested appeared to exhibit the same data as in test ten.  

Since the entire sample was irradiated by the light source it was believed that the light 

source was the cause of the change between states in the material, and the slight 

variations in resistance levels such as between tests two and three, indicated a dark 

current photocurrent relationship in the GST. 

A -1 to 1 volt sweep was determined to be a safe voltage range due to current 

research being done using that voltage range.  Although other research used this voltage 

range to actually change the states of their GST [3, 21], the samples in this experiment 

were on the order of ten times or larger (the path the current must take between 

electrodes) of those using a -1 to 1 V range to change the states of the material, and thus 

it was determined that this voltage range would not change the states in the GST 

samples.  To verify that using this voltage range was not effecting the change in the GST 

samples, the next chip test was identical to the first, a 4-μm layer of GST deposited over 

the test structure at 6 Å/s for low oxygen content (the low oxygen content as discussed 

in section 4.5 increases the absorbance of photoenergy as depicted in Figure 4-4).   

Using a -0.5 to 0.5 voltage range, which is below the threshold voltage to change 

the GST from amorphous to crystalline even with GST layers as small as 90-nm [21], 

was determined very safe in not effecting the material states.  Unfortunately, all the 

measurements taken from the second chip tests produced results similar to test ten 

shown in Figure 6-1; subsequent testing of this sample produced the same results.  Either 
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through fabrication or other unknown means, the data from this sample indicated that it 

was already in a crystalline state.   

Although chalcogenide material can be reset back to an amorphous state, there 

were some concerns about the process of resetting the GST in this experiment due to the 

eutectic temperature of gold and polysilicon being 636 K (a known phenomenon 

regarding gold and polysilicon in the PolyMUMPs process).  Because the electrodes were 

gold on polysilicon, it was uncertain what effect this would have on the GST during 

transition between states.  Using a microscope light or a chopped light source through a 

monochromator was thought to be too small of a power source to raise the surface of the 

GST to the needed temperatures for crystallization at 750 K.  If the first sample was 

changed to crystalline due to the microscope light, it would be impossible to change 

these devices back electrically such as many other researchers have done because the 

unmasked device layout was entirely exposed during the GST deposition, and 

consequently each chip was entirely covered with the GST.  Because the light source 

irradiated the GST on the entire chip, and if this did cause the GST to become 

crystalline, the entire sample would be covered with a conductive layer of material.  This 

prevented further testing of the particular sample.  Electrically resting the state of the 

material across the electrodes was not possible because of the conductive layer of GST 

coating the entire chip resulting in the current flow not being guided through designed 

layout.  The only way conceivable way to recover and reset the GST, if this was the 

case, would be to some how reset the GST on the entire sample optically. 
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At this point in the experiment the control program was completed and ready to 

operate the monochromator.  Since the initial testing indicated that the GST exhibited 

photocurrent properties, which was ideal for using the chopped light source and 

measuring an AC signal (photocurrent generated) on the lock-in-amplifier as described in 

sections 5.1 and 5.2, fine spectrum light source testing of the other samples was 

performed using the monochromator setup.  The spectrum of 300-nm to 1100-nm was 

swept in increments of 20-nm on the other four samples, two samples with 4-μm GST 

grown at 3 Å/s (medium oxygen concentration) and two samples with 0.5-μm GST 

grown at 6 Å/s (low oxygen concentration).  Both sample types exhibited no AC signal 

from these wavelengths with a noise level of 5 x 10-11 A-rms, implying the signal was less 

than the noise level from the instrumentation or there was no signal present and the 

material was not exhibiting photocurrent properties. 

If the GST was actually capable of generating a photocurrent, a possible reason 

why these samples were not exhibiting this behavior was concluded to be that for the 3 

Å/s (medium oxygen concentration) samples, the absorbance would be lower as the 

oxygen impurity concentration increased as described in section 4.5.  Thus these samples 

might not allow enough photoenergy to be absorbed to generate any significant signal.  

One conclusion for the other samples that had the same material properties as the first 

two samples, 6 Å/s (low oxygen concentration), except that the chalcogenide layers were 

0.5-μm versus 4.0-μm, was that the thickness of the GST layer affected the absorbance 

ability.  That is, as the unabsorbed photons passed further into the material, more 
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photons would be absorbed and generate a greater photocurrent.  For the 0.5-μm layer 

GST samples, it was concluded that the thickness was not adequate for optical 

absorption, thereby being the possible cause for the results measured. 

The next step was to use the microscope light which was on the order of ten times 

more irradiance then the monochromator, which measured 9.2 μW/mm2.  Unfortunately, 

since the microscope light is unfiltered white light (all wavelengths), measuring for 

responsivity versus wavelength (individual wavelengths) could not be done, but 

measurements using this light source could yield data that indicated the power required 

to shift the GST material between states.  The other disadvantage of using the 

microscope light was that the spot size was 3.5-mm on the surface of the probe-stage, 

versus the light from the monochromator via fiber optic which had a spot size of 60-μm 

on the probe-stage.  Since the data from the first chip indicated that testing the samples 

via the microscope light yielded reasonable data, using this method again on the next 

chip was the next logical step.   

Measuring the resistance change using the parameter analyzer, sweeping the 

voltage from either -0.5 to 0.5 V or later -1 to 1 V with the GST both shielded from light 

and being illuminated, presented no change in the resistance of either test sample, the 3 

Å/s growth GST with layer thickness of 4-μm or the 6 Å/s growth GST with layer 

thickness of 0.5-μm.   These results implied that there were no photocurrent effects 

occurring.  Because all available samples were tested, it was concluded that the light 

sources available were not powerful enough to manipulate the current GST samples 
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thermally and that these samples were not photoconductive.  More data was needed, so a 

second batch of seven chips was fabricated to test if they would be photoconductive.  

Five were fabricated with the same conditions as the first sample tested, and two with a 

growth rate of 9 Å/s to 4-μm.  These two samples were hoped to have an even lower 

oxygen content due to the faster growth rate and thus have a higher photo absorbance.  

This growth process had never been done before by the growers and unfortunately the 

growth process failed to come out as desired.  One of the resulting samples is shown in 

Figure 6-2, where the test structures have been completely covered and are 

unrecognizable.  The other five samples grown to the specification of the first sample 

tested were fabricated without any problems. 

Figure 6-2  Test Chip with growth of GST at 9 Å/s to 4-μm thick (no usable devices). 
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While the new samples were being fabricated the modeling was completed using 

FEMLAB as discussed in section 3.2.1.  The modeling results agreed with the conclusions 

that the light sources available did not produce enough power to heat the GST to the 

point of changing from an amorphous to a crystalline state.  Although this conclusion did 

not agree with the results from the first sample, more testing was needed to confirm 

whether or not GST shifted states optically or through the applied voltage bias when 

measuring the devices.  This modeling did not rule out the light sources to be used to 

generate photocurrent if these new samples were able to do so.  Because the first sample 

of 6Å/s (low oxygen content) with layer thickness of 4-μm seemed to produce 

photocurrent effects, although all other samples did not, it could not be concluded 

whether the GST that the University of Utah produced was capable of producing 

photocurrent effects or not. 

After extensively testing the new batch of samples using both the monochromator 

setup with the lock-in-amplifier and the microscope light setup with the parameter 

analyzer, the data measured using either test method, with the GST being both shielded 

from light or illuminated, produced the same results.  This indicated that the new 

samples of GST did not produce any photocurrent effects.  It would have been concluded 

that this chalcogenide material was not photoconductive, but there was some 

inconclusive evidence due to structural differences in the two batches that was found 

using the SEM.  Figure 6-3 compares SEM images of samples (taken before testing), 

from both batches showing (left) the second batch, and (right) the first batch, both 
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grown at the same parameters of 6Å/s grown to 4-μm thick; indicating the two batches 

of GST were not the same material or material structure. 

Figure 6-3  GST material structure both at 45k magnification, batch one (right), batch 

two (left), both grown at 6Å/s (low oxygen content) to 4-μm thick. 

 

These new samples produced no photoreaction; SEM images before and after 

optical testing showed identical material structure.  Because of the difference in the 

material structure between the two batches, the measured data could not be conclusive 

in ruling out that the first sample in batch one did not exhibit photocurrent.  The next 

step was to determine if this GST behaved electrically like those in other research 

articles. 

6.3 Electrical Analysis 

Following test procedures for electrically testing the GST similar to [3] and [21], 

the parameter analyzer was used to sweep a current across the devices to test their 
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ability to change states between amorphous and crystalline.  By applying current sweeps 

of 0 to 0.5 mA and then 0 to 1 mA, the voltages were measured for dark and illuminated 

samples showing no change in the state of the GST.  A change in the state of the GST is 

indicated when, while sweeping a voltage across the device, the voltage rises quickly (in 

amorphous state) and when reaching the voltage threshold Vth of the GST a sharp drop 

in voltage is seen as the current is steadily increased.   

The current sweeps were increased gradually until noticeable effects, reaching Vth, 

in the GST occurred.  Although other researchers used current sweeps around 0.5 and 1 

mA, the tests in this experiment used current sweeps upwards to 100 mA to produce 

changes in the GST states.  Figures 6-4 through 6-6 represent the data collected in these 

tests with electrode gaps of 2-μm, 6-μm, and 10-μm respectively.  Other data was 

collected on similar tests with wider electrode gaps but these results indicated that larger 

electrode gaps were not likely (14 to 20-μm gaps) to change states, or no state changes 

occurred at all (24 – 100-μm gaps) due to the available current generated by the testing 

equipment.  This was believed to be caused by larger gaps having a larger volume of 

GST and thus more GST acting as a heatsink, requiring more current to heat up the 

GST to the needed crystallization zone temperature to change the states reliably.  

Comparing these results to those other researchers have collected, see Figure 2-9; there 

are both similarities and differences between the data. 
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Figure 6-4  GST current sweep test of two separate devices with electrode gap of 2-μm. 
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Figure 6-5  GST current sweep test of two separate devices with electrode gap of 6-μm. 
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Figure 6-6  GST current sweep test of two separate devices with electrode gap of 10-μm. 
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 It was concluded that to reach Vth and change the state in the GST for these tests 

required more energy, as compared to other research, even for the smallest geometries of 

2-μm.  This was because these geometries were not only much larger, as compared to 

[21], which used an electrode gap filled with the GST of 90-nm, the design in [21] was 

also much better insulated from heat dissipation effects in contrast to the design used in 

this experiment having large areas of GST between the electrodes making contact with 

the surface of the chip.  One interesting detail about the data collected and presented in 

Figures 6-4 through 6-6 in contrast to Figure 2-9 is that in Figure 2-9 there is only one 

voltage threshold where the chalcogenide shifts from amorphous to crystalline.  In 

Figures 6-4 through 6-6 there is a pattern of two major points where the material reaches 

a voltage threshold in amorphous state (higher resistance) then abruptly drops 

resistance, i.e. changing to a more crystalline form.  After the second drop in resistance 

(around 60 mA for a 2-μm gap and 80-90 mA for larger gaps) the state is believed to be 

changed to fully crystalline.  This conclusion was supported by subsequent current 

sweeps, where the plots were characterized by an exponential line at a much lower 

resistance level than the initial test.  The data represented in these figures is important 

because it indicates where the voltage threshold, Vth, for the given geometries in this 

experiment and shows the trend of how Vth changes with respect to the change in 

geometry of the test structure. 

The jaggedness from the current sweeps in the changes in voltage indicates how, 

because of the open geometry preventing a guided current path, the current has dynamic 
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and unpredictable paths across the GST between the electrodes.  New current paths are 

sporadically created, where spots in the GST across the electrodes cools and forms 

crystalline, or heats up quickly then cools quickly creating amorphous regions and forcing 

the current in a new direction where lower resistance is.  This dynamic change in the 

path of the current flow is the cause of the jaggedness and sporadic changes in the 

voltage being measured.  The reason the subsequent current sweeps appear exponential is 

because when the initial current sweep set the material to crystalline, a complete path 

between the electrodes of GST may be crystalline, but this path could also be very 

narrow.  As the current increases, the crystalline path of GST heats up the surrounding 

amorphous GST, lowering the equivalent resistance, but not reaching Vth to cause 

growth of more permanent crystalline in the GST. 

6.3.1 Phase-change Results Comparison to Other Research 

There are a couple of theories why the phenomenon of two major Vth is occurring 

in contrast to other research data having only one Vth.  One theory is due to scalability 

and the other, which seems to be the more significant theory likely to explain this effect, 

is the eutectic temperature between gold and polysilicon.  To change the states within 

GST a temperature of about 760 K is needed.  The design of the electrodes, having both 

polysilicon and gold (where the eutectic temperature is 636 K), adjacent to the GST 

being tested, this lower (eutectic) temperature is reached before the GST reaches the 

temperature to crystallize fully.  Because the eutectic bonding of the gold and polysilicon 

creates a new material with a higher resistance, the crystalline path of GST between the 
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electrodes is cut off by the higher resistance.  Thus, this is believed to be the reason 

behind this partial shift in phase, before the GST fully shifts to crystalline form, where 

the second shift leading up to the Vth at a greater current is caused by the current 

making a new crystallized path through the GST. 

Figure 6-4 presents the data collected over a 2-μm gap which indicates only one 

shift to a crystallization form, or a minor second shift as depicted in the bottom plot of 

Figure 6-4 at 50 mA which is where the other 2-μm gap test completely changed to 

crystalline.  It was concluded that because the gap is much smaller, the GST can heat up 

and crystallize, then cool down before generating enough heat to affect the surrounding 

gold and polysilicon to induce the eutectic phenomenon.  However, as shown in the 

bottom plot of Figure 6-4, this is not necessarily true, but more likely than test devices 

with larger gaps.  Figure 6-7 shows the before and after effects of a 6-μm gap electrode 

pair and GST from applying a current sweep of 0 to 100 mA and inducing crystallization 

in the GST.  Looking at the tested electrode pair in Figure 6-7 under a microscope 

reveals coloring (lighter grayish-purple) changes in the electrodes that match those 

commonly found after the eutectic phenomenon during testing of other MEMS devices 

using the same fabrication process. 

 

 

 

 



 

96 

Figure 6-7  Electrical test of GST before (left) amorphous, and after (right) current 

sweep 0 to 100 mA, transitioning GST around electrodes to crystalline form. 

 

6.3.2 Scalability Analysis 

Looking at the scalability electrically is much different then optically; the original 

design was laid out to support a large exposed surface area where light could irradiate 

the test device.  Electrically, the large geometries prove ineffective in changing the 

material states and appear unreliable.  Figures 6-4 through 6-6 not only indicate in the 

initial current sweep the voltage thresholds and shifts from amorphous to crystalline, and 

in the subsequent current sweeps a crystalline state, they also have other, smaller, 

random and abrupt changes in the resistance of the GST both in the initial sweep and 

subsequent sweeps of current.  Looking at this data and other data measured from larger 

electrode gaps indicates a trend that as the gap between the electrodes increases so does 

the frequency and unpredictability of these random shifts in resistance occur.  Since the 

current flow will take the path of least resistance, larger gaps present problems in 
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providing a single current path between the electrodes.  Areas where the material began 

to heat up and crystallized begin to cool down and not form a completely crystallized 

path between the electrodes, while other areas begin to heat up and form a crystallized 

path between the electrodes.  This randomness and less isolated control of the exact 

current flow between the electrode is understood to be the cause of these other minor 

and random changes in the resistance level within the GST. 

One useful part in comparing the data for scalability in the tests depicted in 

Figures 6-4 through 6-6, as suspected, is that as the gap between the electrodes increases 

so does the required Vth needed to shift the GST to a crystalline state.  For the 2-μm 

gap, the trend to reach Vth was 6-7 V.  At 6-μm Vth increased to 12 V on average and 

sometime a little higher, and at 10-μm Vth is over 14 V.  This is due in part because of 

more energy needed from a larger surface area of GST that is being cooled by the 

substrate between the electrodes.  Also, since there is more material (a longer path for 

the current to flow through the GST) the resistance will be higher and the needed 

voltage to attain the same amperage across the electrodes will increase.  This indicates 

that as the devices scale down, the threshold voltage required scales at a magnitude 

greater than the scaling factor alone, meaning that smaller devices sizes would be more 

efficient from benefits other then the geometry alone. 

6.4 Summary 

The initial results, from optically testing the first GST sample (growth parameters 

of 6Å/s and a layer thickness of 4-μm), indicated ideal characteristics that this GST 
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sample responded to light, generating a photocurrent and showing permanent changes in 

resistance due to phase-change in the GST.  This sample was tested, optically, until it 

was believed to have transitioned to a crystalline state, which due to the test chip design 

was no longer testable.  The only other sample with identical growth parameters 

indicated, from its initial test results, that it was already in a crystalline form (cause 

unknown).  The other four samples, with growth parameters of 3Å/s and a layer 

thickness of 4-μm, and of 6Å/s and a layer thickness of 0.5-μm, had test results which 

indicated no photoresponse for either photocurrent generation, or ability to change states 

with the applied optical power density (equal to that irradiated on the first sample).  It 

was concluded that the growth parameters from the first sample were optimal and for 

further optical testing, new samples with these growth parameters were needed.   

A new batch of test chips had GST grown on them identical to the growth 

parameters of the first sample test, which produced ideal results.  Following the same 

experimental procedures, none of the new samples provided any optical response.  It was 

concluded that a higher optical power density, then that which was available, was 

needed to shift the GST from amorphous to crystalline, and it was uncertain why the 

first sample reacted to the low optical power density.  SEM imaging of the GST samples 

comparing the two batches revealed that the two batches had a very different structure, 

further leading to inconclusive findings from the test data between the two batches.   

Electrical testing of the GST was also performed to analyze the phase-change 

capabilities, provide insight in scalability based on the design geometries used in this 
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experiment, and to identify the voltage threshold, Vth.  The Vth value measured, which is 

the required voltage level to shift the GST from amorphous to crystalline, indicated 

unique results as compared to other research using similar test procedures.  The 

uniqueness in the results measured in this experiment presented a second rise in voltage 

and a second Vth before a fully crystallized path between the electrodes was created.  It 

was concluded that this was the result of the eutectic phenomenon occurring between the 

gold and polysilicon in the electrodes.  Other then this unique second Vth, at a higher 

current level, these test results presented data very similar to other research, indicating a 

predictable Vth in the GST when the material changed from amorphous to crystalline.  

Subsequent current sweeps confirmed the change to a crystalline state in the GST by a 

predictable lower resistance level in the GST, indicated by the lower voltage as the 

current was increased (as compared to that of the initial, amorphous state current 

sweep).   

The electrical manipulation of the phase-change in the GST also indicated a trend 

in the scalability with relation to the device geometry, that as the device size was 

reduced, the scaling factor of energy required to shift the state in the GST was reduced 

by a factor greater then that of the size scaling factor alone.  It was concluded that these 

results, for the power scaling factor, were affected not only by the size of the device, but 

of the surface area ratio as well.  The smaller device sizes reduce the percent of surface 

area, leading to less heat loss in the GST and allowing for more efficient operation for 

the required power to shift the GST from amorphous to crystalline. 
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7. Conclusion and Future Recommendations 

7.1 Research Summary 

This research examined the phase-change capabilities of GST for novel photonic 

applications, determining the feasibility of coupling GST with light sensitive DNA for 

new volumetric memory applications.  Although the experimental data desired 

(resistance vs. intensity, and responsivity vs. wavelength) was not attained, the modeling 

and data that was gathered provided useful results for analysis of GST.  The unique 

properties of chalcogenides were researched and ones applicable to this study explained in 

the literature review.  GST’s thermal behavior, due to interaction of photo absorption, 

was modeled using finite element analysis software (FEMLAB) in steady state and 

suitable pulse times of 3 sec, 30 sec, and 5 min for the experiments performed in this 

research.  

The theoretical data calculated the photon energy required to change the state 

within the GST assuming 100% absorption of photon energy.  Methods and designs of 

the test device used in this experiment were considered and an analysis of benefits, costs, 

and time were applied to the fabricated samples.  Details of the fabrication processes 

used were explained and SEM images of the final samples obtained.  Optical and 

electrical testing of the GST samples for phase-change capabilities were performed and 
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the results analyzed.  The results from the electrical testing of the GST samples were 

also compared and contrasted to other similar research. 

7.2 GST for Multistate and Hybrid Applications 

Applications using GST as a phase-change semiconductor are still developing and 

the understanding of its unique properties is incomplete.  Both electrical and optical 

applications have been developed and fine tuned, but these applications are very specific.  

The ability to combine these two applications of optically changing the material, and 

electrically reading the state of the material, has not been developed yet. 

7.2.1 Optical Manipulation of GST 

Optical applications using GST material have been implemented in the use of 

DVD-RAM discs where GST is the writable material with 18% and 30% reflectivities.  

Phase-change implementation for this application is effective, because when a 20 to 30 

mW laser [43] modifies the GST with a spot size diameter around 600-nm, the process of 

reading back the recorded data is also done optically by the reflectiveness on the surface 

of the GST.  Simulations done in this research indicate that only a very thin layer near 

the surface of the GST is effected by light energy at short pulses, even for higher energy 

levels than necessary to change the material adequately between states.  Only by 

applying the optical energy for long periods, such as the steady state analysis done in 

chapter three, does the GST further from the surface react as well.  Long pulse times are 

ineffective because not only is the GST heated, but also the surrounding material, 
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adversely affecting the ability to quench the material during a reset back to an 

amorphous state.  Therefore, longer pulse times would only be suitable for set times, 

such as the five minutes test done in this experiment.  Short pulse times are adequate for 

optically reading back the reflectivity of the surface of the GST, but electrically; 

measuring the resistance level (the state of the GST) with an applied voltage and current 

across the GST could require more crystallized GST than a thin layer on the surface.  

Otherwise negative effects can occur, such as when current density increases, unwanted 

heating effects would occur, that could alter and degrade the reliability of the device; this 

could be mitigated by reducing the read voltage and current, but further research is 

needed. 

One point to note that emerged during the optical testing of the GST was that 

Dr. Fritz Schuermeyer (photonics and chalcogenide specialist assisting with the 

experiment) believed the chalcogenide to be a photoconductive material, having 

properties beyond thermal effects with optical energy.  Photoconductivity was also an 

important property in producing responsivity versus wavelength plots to determine the 

most effective wavelength to use for optical manipulation of the GST.  Using the 

experimental setup as described in chapter five with the chopped light and the 

monochromator, the lab equipment was setup to detect signals above a noise level of 

115  10−× A-rms.  No photocurrent was detected in the second batch, indicating that GST 

does not possess photoconductive properties (at least not these test samples).  The first 

batch was found inconclusive because of mixed results between the first sample and the 
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others tested.  Finally, the results from the second batch could not provide conclusive 

evidence about the photoconductive properties in the first batch because there were 

significant differences in the GST structure between the two batches of samples.  Further 

research is needed to solidify these conclusions about the photoconductiveness in GST. 

For thermal activation using optical testing, the GST samples indicated that the 

photo energy needed was greater than available light sources produced.  Ultimately, it 

was concluded that optical manipulation of GST in a design where the GST state is read 

electrically is ineffective and could cause reliability issues.  Other concerns dealing with 

coupling this type of application with the marine DNA discussed in chapter three needs 

to be investigated further, such as comparison of the needed temperatures of the DNA 

polymer to the temperature of the GST to reset to an amorphous state. 

7.2.2 Electrical Manipulation of GST 

Current research in the electrical manipulation of GST and other phase-change 

materials is of high interest.  GST offers great benefits compared to current flash 

memories due to its high program to failure rate of 1013 as compared to flash memory 

having 105 read/writes before failure [34].  Also, it is much more resilient to radiation 

effects due to storing information in the material state as compared to flash memory that 

stores information through capacitance, which is more easily affected by radiation. 

The electrical testing of GST in this experiment mostly provided insight for 

optimizations in future research, and showed how unexpected factors can occur (in the 

sense of the design used).  The geometry, size, and other materials coupled in testing the 
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GST in this investigation were all factors that can be improved for future research.  It is 

not completely unexpected that the design used yielded good, but not optimal data for 

an electrical test of the GST since the design was developed for optical testing.  Some 

conclusions for more optimal designs were: minimizing the possible paths the current flow 

can take, reducing excessive heatsink loss through insulation layers such as described in 

[22], and optimizing device design to reduce additional unknown and/or unwanted effects 

(such as with the eutectic phenomenon between gold and polysilicon that occurred in this 

experiment). 

Applications using GST as a data storage material by reading the state of the 

material electrically seem most effective through electrical manipulation of the states 

within the GST.  This research showed theoretically how optical energy can change the 

states within the GST, but the implementation of electrical manipulation has been 

determined to be more effective and reliable due to a more complete change of the state 

of the GST between the electrodes.  Electrical testing of the GST samples was analyzed, 

showing that the phase-change properties in the GST through I-V curves matched (with 

some differences) other research [21] that indicate how GST shifts between states.  The 

differences between the data collected in this research and others [3, 21] were concluded 

to be effects caused from two things: the larger scale of the test structures in this 

experiment, and the eutectic temperature between gold and polysilicon, which the 

electrodes in this design were made of both gold and polysilicon.  The eutectic 

temperature of polysilicon and gold is lower than the crystallization and melting points 
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of the GST.  The electrical testing results also indicated a nonlinear effect in power 

consumption to drive the devices (changing the state of the GST), where smaller scale 

devices improve by a factor greater than scaling size alone.  Note that the scaling factor, 

for power required to changes states, is only relevant to the geometry and design 

presented in this experiment.  Overall the capability of GST in applications using 

electrical manipulation of the material state either for binary or multistate functions 

appears to be reliable for future research, and other research [3, 21, 22], supports this 

with results that are very reliable and predictable through electrical manipulation of the 

phase-change within the GST.   

7.2.3 Reliability 

One of the key factors in any research is knowing the test parameters.  This 

means ensuring all the variables are the same for each test, or accounting for and 

understanding the difference in the parameters between tests, and mitigating other 

unwanted, unknown, effects through tightly controlled experimentation.  Part of this 

research dealt directly with some unexpected differences in the test samples, which is a 

concern in the reliability of the GST grown by the University of Utah.  As shown in 

Figure 6-3 the material structure of the GST from the first test batch and the second are 

considerably different.  Feedback from the grower indicated there were no significant 

differences in the sputtering of the two batches, only that the basic vacuum pressure (the 

pressure before argon is put into the system) was different. The pressure during the first 

batch of samples was 6~7x10-7 mTorr, while the second batch pressure was only 4x10-6 
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mTorr.  When the pressure goes below 10-5 mTorr, the growers consider this vacuum 

level good to sputter. The grower noted that the vacuum system didn't work during the 

second batch.  Other than these factors it is unknown why the two batches of GST 

samples are different.  It is essential that the reliability of the GST is constant for each 

of the tests in order to produce reliable data.  Unfortunately, because of the unknown 

difference in the GST, additional testing is needed to provide more conclusive results. 

7.2.4 Design and Fabrication 

Another important part of measuring accurate and successful results is setting up 

the experimental conditions for optimal data collection.  In the case of this experiment, 

part of this was the fabrication of the test structure on which the GST was deposited 

and tested.  Knowing all the test parameters beforehand is a vital key to accomplishing a 

successful design for the test structure.  For the most part the conditions in this 

experiment and design parameters for the test structure corresponded well with the 

procedures of testing the optical properties of the GST.  Due to the timeline of this 

research, an understanding of the GST was still being researched while design of the test 

structures was created.  This led to a design that placed gold on the polysilicon 

electrodes to allow better conductivity to the GST, and consequently caused the problem 

with the gold and polysilicon fusing together at their eutectic temperature of 636 K 

which is below the transition temperature of the GST.  Fusing together the gold and 

polysilicon created a new material with a higher resistance and added more unknown and 

unwanted effects to the results of the experiment. 
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Although the data collected was adequate and provided insight to the electrical 

phase-change properties of GST, conditions would have been more favorable if these 

additional effects could have been removed by a better understanding of all the 

parameters involved with the experiment.  Having to deal with this additional 

phenomenon only reinforces the necessity of understanding the whole picture of the 

experiment as much as possible before design and testing begin to insure accurate and 

desired data collection. 

7.2.5 Summary of Conclusions 

Even though this research theoretically models GST using optical actuation to 

modify the state within the material, the results of short pulse times equating to only a 

very shallow surface of the GST being manipulated indicated that for reading the GST 

electrically, optical control of the phase-change is ineffective.  Electrical manipulation 

(through the same mechanism of Joule heating – ohmic losses) of the phase-change in the 

GST appears to be more effective, reliable, and predictable.  Although the design used in 

this experiment was not optimal for electrical testing of the GST, the results indicated 

areas where improvements in the test design could be made.  Specifically, smaller 

geometries are desired to mitigate random and less specifics paths for the current to flow 

across the electrode through the GST as seen in section 6.3.  Smaller geometries using 

thin layers of GST and fabricating the electrodes as thin layers both above and below the 

GST would also help improve efficiency at a greater than linear rate, help reduce 

unwanted heat loss, and allow for faster device operations (set and reset times).  
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Accuracy and reliability for the experiment are always important.  This experiment 

found that more research is needed to determine the quality of the GST and why there is 

a difference between the first and second batch of samples.  Fabrication and test 

structure material uses in this research caused additional undesired effects which need to 

be considered in future testing. 

7.3 Lessons Learned 

Unknown and unwanted factors are always issues to cause problems in an 

experiment.  Not all of these factors can be found ahead of time and dealt with 

appropriately, but planning ahead as much as possible and knowing the experiment 

clearly before design and setup will greatly reduce these problems. 

7.3.1 Test Equipment 

It always takes longer than planned to learn how to use the equipment, configure 

appropriately, and verify the condition when sharing resources with others.  Relying on 

others for assistance is acceptable when learning the equipment; otherwise it is better to 

know how to use the equipment appropriately and thoroughly for the experiment.   Most 

of the difficulties in the experiment, causing a lot of the extra time, were related to the 

crucial other 10% of the equipment procedures that had to be learned independently. 
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7.3.2 Design 

A design should only be created after the experiment is clearly and fully 

understood.  This will help reduce the many possible undesirable difficulties that can 

arise within the experiment because of premature planning and design implementation. 

7.3.3 Experience 

One of the most important lessons that came about because of this research was 

the understanding of the experience gained, and the experience itself.  Future research 

may be similar or different, but the experience gained has given insight to experimental 

research that will greatly help to prevent problems like overlooking the eutectic 

phenomenon of gold and polysilicon with respect to the heating of the GST.  This 

experience has also helped in instilling the importance of finishing the modeling 

beforehand for accurate testing and appropriate use of equipment, such as knowing the 

power requirements to optically change the GST.  Acquiring higher power and smaller 

spot size optical sources such as lasers would have enabled more effective testing of the 

GST. 

7.4 Recommendations for Future Research 

Using GST to store the information from the DNA as needed in a multistate 

application could be possible.  Direct coupling and optical manipulation appears 

impractical due the high temperature required to changes states and lower temperatures 

needed for the DNA, 300 to 400ºC max (as indicated by AFRL).  Since the DNA 
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operates optically, other interface devices are needed to capture the DNA information, 

such as current photonic photodetectors, holographic imaging, etc., that can operate at 

lower temperatures.  Then, electrically the information could be stored in the GST.  Dr. 

Ovshinsky’s research [33] indicates there are actually more transitional states when 

transitioning from crystalline to amorphous than when transitioning from amorphous to 

crystalline; see Figure 3-1, which indicated that GST has multistate capabilities and 

could be useful for use as data storage for the DNA, although this research found results 

indicating more of a binary state in the GST.  If it is found in future research that GST 

does exhibit photocurrent properties, looking at the responsivity vs. wavelength of the 

material would be something that would allow for a characteristic transfer function of 

the GST to be derived for large scale modeling in SPICE of GST devices. 

For future research in coupling the DNA with GST, other avenues, such as more 

optically sensitive devices coupled with the DNA which can transfer a signal to be 

amplified and stored in a GST memory array, are suggested for providing an interface 

from the DNA to the GST or other electrical devices.  Research on GST seems very 

promising in its phase-change properties through electrical manipulation.  Since there are 

some definite benefits to GST in regards to its lifetime and its durability in harsh 

environments, developing applications using GST as an electrically actuated phase-

change memory cell appears desirable.  Future research would benefit this type of 

application by researching more optimal geometries, less interactive materials 

surrounding the GST, and accurately growing quality GST material.  Another issue to 
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look at when designing a test circuit that is exposed completely to the deposition of the 

GST is proper masking of probe pads to remove GST from those areas.  This is 

important because it will reduce such things as buildup of material on the probes causing 

variation in the measurements due to inadequate contact between the probes and the 

probe pads. 
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Appendix A – FEMLAB Procedures 

STEP 1: Run COMSOL Multiphysics v3.2.  The first window you will see is the 

Model Navigator window. 
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STEP 2: Choose 2D for space dimensions, and under Application Modes choose 

COMSOL Multiphysics, then Heat Transfer, then Conduction.  Finally, 

click OK. 

STEP 3: The COMSOL Multiphysics general layout window will open up.  Select 

the rectangle/square button from the toolbar on the left.  This will allow 

you to draw rectangular objects that can later be modified for material 

properties to apply boundary or internal thermal effects and more. 
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STEP 4: Using the rectangle/square button from the toolbar on the left, the model 

from chapter three is created.  Four rectangles are drawn as shown. 

 

STEP 5: In this step the material properties of each of the rectangles will be set.  

Go up to Physics menu at the top and choose Subdomain Settings… 
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 Select the two regions next to the GST in the subdomain selection 

window, then click on Load button for Library Material, and choose Poly-

Si.  Follow the same procedures for selecting the bottom thin rectangle, 

set it to Si3N4.  Then, manually input the material properties from Table 

3-1 for GST as the center square.  Before this step is complete, make sure 

all subdomains have the ambient and internal temperature set to 300 K. 
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STEP 6: In this step the boundary settings will be configured for the desired 

simulation.  Go to the Physics menu again and choose Boundary 

Settings…  By default all external boundaries are set to thermal 

insulators.  Select the number in the boundary selection window that 

corresponds to the bottom of the Si3N4 layer, and choose temperature from 

the boundary condition dialogue box.  Set the temperature, T0, to 300 K. 

 

 

 Select (by clicking on the line) the top surface of the GST and choose heat 

flux from the boundary condition dialogue box and set the inward heat 

flux, q0, to 1550 W/m2. 
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STEP 7: Run the simulation with the current settings by clicking on the Solve 

button on the top toolbar (an equal sign).  This solution (default settings) 

runs a steady state analysis given the set parameters. 
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STEP 8: Configure the simulation for transient analysis.  First the inward heat flux 

will be raised for the shorter time being irradiated.  Using the procedures 

in step six, set the top surface of the GST to an inward heat flux of 

500,000 W/m2.  Next, click on the Solve Parameters button from the top 

toolbar (an equal sign with a question mark over it).  Change the option 

in the Solver window from stationary nonlinear to time dependant, and set 

the time stepping settings (time option) to 0:0.01:3. 
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STEP 9: Run the simulation again for transient analysis. 
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Appendix B – GST SEM Images 

Figure B-1  GST material from batch one, test sample one (left) before any testing was 

performed in amorphous state, and (right) after optical testing was performed and the 

data from Figure 6-1 was recorded, now believed to be in a crystalline state. 

 

 

 

 

 

 

 

 

 

 

Figure B-2  GST batch two after electrical testing where GST is in a crystalline state. 
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Appendix C – Test Matrix Data 

Table C-1  GST Test Matrix Data 
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