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Abstract

Space is an integral part of not only US military power, but also of US civil

and economic interests. As the US reliance on space increases, the protection of the

important satellites in space is becoming more critical. This protection can only occur

when all of the objects in space, as well as the space environment, are characterized

and understood. The information needed to characterize and understand these objects

and the space environment fall into a broad category known as Space Situational

Awareness (SSA).

Many different sources of information are currently used in SSA, but these alone

are not enough to provide all the answers to this complex problem. New methods

need to be developed to fill in gaps and provide additional SSA information. One

such area is spectral imagery. Spectral images of satellites will provide critical infor-

mation regarding the satellite’s physical characteristics, as well as performance and

capabilities assessments, needed for SSA.

A new sensor, the Advanced Electro-Optical System (AEOS) Spectral Imaging

Sensor (ASIS) has been developed at the Maui Space Surveillance Complex (MSSC).

ASIS is capable of collecting spatially resolved imagery of satellite and other space

objects in up to 100’s of spectral bands. However, the stringent requirements of col-

lecting ground-based images of satellites required a sensor that induces more spectral

blurring than desired. The spectral blurring is due to the large spectral bandwidths

needed for the proper signal level for imaging. Post-processing algorithms to remove

this blurring are needed to fully exploit these spectral images.

This research focuses on developing the reconstruction algorithms to simultane-

ously spatially and spectrally deblur the images collected from ASIS. The algorithms

are based on proven estimation theories and do not require a priori knowledge of

the scene. While the algorithms developed in this research are targeted for use with

iv



ASIS, they can be used on data collected with any system using a filtering technology

known as Electronic Tunable Filters (ETFs).

Previous methods to deblur spectral images collected with ETFs have meet

with some success. However, the reconstruction algorithm developed in this research

provides a lower root mean square error for spectrally deblurring then the previously

investigated methods. This algorithm expands on a method used for increasing the

spectral resolution in gamma-ray spectroscopy. However, in addition to the spectral

reconstruction, the reconstruction of the spatial scene is also included. The algorithm

is able to reconstruct the spatial scene without any loss of the spectral reconstruction

capability.

The research also calculates the Cramér-Rao lower bounds on two key perfor-

mance parameters of the reconstruction algorithm. The spectral resolution and ac-

curacy lower bounds give the best theoretical performance any algorithm can achieve

on ASIS data. Thus the bound provides a quantitative assessment of how well the al-

gorithm is performing. The bounds can also be used to determine the optimal sensor

parameters needed to collect a spectral image. Additionally, the bounds can be used

to determine a performance metric. This metric can be used to compare the ability

of the algorithm to work on different spectral sensors and help select critical image

collections parameters.

v



Acknowledgements

There are many people I need to thank for helping me through this. First and

foremost is my family; without their encouragement and help I’m sure I never

would have made it this far. I hope that I was able to balance my requirements at

school with your needs. I’ve certainly enjoyed the past years and look forward to the

many wonderful times to come.

I’d like to thank my advisor, Lt Col Goda for his tireless aid and encouragement.

I really appreciate the all of his effort at the end of this research so I could complete

all of the degree requirements early. I also appreciate the advice and consultation of

the rest of my committee, especially Dr. Cain. Dr. Cain not only provided the initial

thoughts for this research, but was instrumental in providing direction and insight

that kept me on track throughout this process.

I’d like to thank the sponsors of this research for their continued support and

funding.

A special thanks goes out to the other students who shared in this journey.

George, Marcus, the younger and elder, Flash, Calvin, Pete and the others of the

BARF and penthouse provided the much needed venting and comic relief every grad-

uate student requires.

I’d also like to thank the AFIT Physics lab technicians Mike and Greg for their

aid in setting up and using the equipment in their labs. Without their help, I never

would have been able to finish this research.

Finally, I’d need to thank Ken for all of his help and insight in the design and

operation of the sensor.

Travis F. Blake

vi



Table of Contents
Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Alphabetical List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . xxviii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Space Situational Awareness . . . . . . . . . . . . . . . . 1

1.2 Benefit of Spectral Imaging for SSA . . . . . . . . . . . . 2

1.2.1 Material Classification . . . . . . . . . . . . . . 3
1.2.2 Trending Material Degradation . . . . . . . . . 3

1.2.3 Identifying Hidden Payloads . . . . . . . . . . . 4

1.2.4 Anomaly Detection and Resolution . . . . . . . 4

1.3 AEOS Spectral Imaging Sensor . . . . . . . . . . . . . . 4

1.4 AFIT Spectral Image Reconstruction Test Bench . . . . 5

1.5 Contributed Research . . . . . . . . . . . . . . . . . . . 5
1.5.1 Spatial-Spectral Image Reconstruction . . . . . 5

1.5.2 Spectral-Polarimetric Image Reconstruction . . 6

1.5.3 Performance Bounds and Metrics . . . . . . . . 6
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Current Techniques for SSA . . . . . . . . . . . . . . . . 8

2.1.1 Ground-based Imaging of Satellites . . . . . . . 8

2.1.2 Spectra Measurements . . . . . . . . . . . . . . 9

2.2 Spectral Imaging . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Spectral Bands . . . . . . . . . . . . . . . . . . 11

2.2.2 Spectral Selectors . . . . . . . . . . . . . . . . . 12

2.3 Spectral Image Processing . . . . . . . . . . . . . . . . . 17

2.3.1 Direct Inverse . . . . . . . . . . . . . . . . . . . 18

vii



Page

2.3.2 Singular Value Decomposition . . . . . . . . . . 19

2.3.3 Principal Eigenvalue . . . . . . . . . . . . . . . 20

2.3.4 Statistical Methods . . . . . . . . . . . . . . . . 20
2.4 Expected Results . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III. Model Based Spectral Image Reconstruction . . . . . . . . . . . . 23

3.1 MBSIR Background . . . . . . . . . . . . . . . . . . . . 24

3.2 Image Statistics . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Spectral Image Reconstruction . . . . . . . . . . . . . . 26

3.4 Spectral Reconstruction . . . . . . . . . . . . . . . . . . 28

3.5 Reconstructing Spectral Images . . . . . . . . . . . . . . 29

3.6 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 30

IV. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 AEOS Spectral Imaging Sensor . . . . . . . . . . . . . . 31

4.1.1 AEOS . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Adaptive Optics . . . . . . . . . . . . . . . . . . 32

4.1.3 Sensor Optics . . . . . . . . . . . . . . . . . . . 32

4.1.4 LCTF . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.5 Imaging System . . . . . . . . . . . . . . . . . . 36

4.2 First-Order ASIS Model for MBSIR . . . . . . . . . . . . 37
4.2.1 Atmosphere . . . . . . . . . . . . . . . . . . . . 38

4.2.2 AEOS . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Adaptive Optics . . . . . . . . . . . . . . . . . . 39

4.2.4 Sensor Optics . . . . . . . . . . . . . . . . . . . 39

4.2.5 LCTFs . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.6 Imaging System . . . . . . . . . . . . . . . . . . 41

4.2.7 Overall First-Order Model . . . . . . . . . . . . 41
4.3 Second-Order ASIS Model . . . . . . . . . . . . . . . . . 44

4.3.1 Atmosphere . . . . . . . . . . . . . . . . . . . . 46

4.3.2 AEOS . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Adaptive Optics . . . . . . . . . . . . . . . . . . 46

4.3.4 Sensor Optics . . . . . . . . . . . . . . . . . . . 47

4.3.5 LCTF Calibration . . . . . . . . . . . . . . . . . 47
4.3.6 Imaging System . . . . . . . . . . . . . . . . . . 49

4.3.7 Overall Second Order Model . . . . . . . . . . . 49
4.4 First- and Second-Order ASIS Model Comparison . . . . 49

4.5 AFIT Spectral Image Reconstruction Test Bench . . . . 50

viii



Page

4.5.1 Sensor Optics . . . . . . . . . . . . . . . . . . . 52

4.5.2 LCTF . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.3 Imaging System . . . . . . . . . . . . . . . . . . 53

4.6 ASIR-TB Model . . . . . . . . . . . . . . . . . . . . . . 53
4.6.1 AEOS (Spatial Blurring) . . . . . . . . . . . . . 55

4.6.2 Sensor Optics . . . . . . . . . . . . . . . . . . . 55

4.6.3 LCTFs . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.4 Imaging System . . . . . . . . . . . . . . . . . . 56

4.7 ASIR-TB Experimental Set-up . . . . . . . . . . . . . . 56

4.8 Filter Sampling . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1 Resolution Criteria . . . . . . . . . . . . . . . . . . . . . 64
5.2 ASIR-TB . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Hg(Ar) Spectral Source . . . . . . . . . . . . . . 65

5.2.2 Ne Spectral Source . . . . . . . . . . . . . . . . 67

5.2.3 ASIR-TB Simulation Results . . . . . . . . . . . 71
5.3 ASIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Singlet Star . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Binary Star . . . . . . . . . . . . . . . . . . . . 75

5.3.3 ASIS Simulation Results . . . . . . . . . . . . . 79
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 79

VI. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1 Resolution Criteria . . . . . . . . . . . . . . . . . . . . . 81
6.2 ASIR-TB . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Hg(Ar) Spectral Source . . . . . . . . . . . . . . 81

6.2.2 Ne Spectral Source . . . . . . . . . . . . . . . . 85

6.2.3 ASIR-TB Data Results . . . . . . . . . . . . . . 88
6.3 ASIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Singlet Star . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Singlet Star Reconstruction . . . . . . . . . . . 89

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 92

VII. Bounding Algorithm Performance . . . . . . . . . . . . . . . . . . 93

7.1 Balancing Imaging Time and Algorithm Performance . . 94

7.2 Cramér-Rao Bound for Spectral Resolution . . . . . . . 95

7.2.1 Left vs. Right Resolution . . . . . . . . . . . . . 97

7.2.2 Spectral Resolution CRLB . . . . . . . . . . . . 97

ix



Page

7.2.3 ASIR-TB Spectral Resolution . . . . . . . . . . 100

7.2.4 ASIS Spectral Resolution . . . . . . . . . . . . . 103

7.3 Cramér-Rao Lower Bound for Spectral Accuracy . . . . 106

7.3.1 Spectral Accuracy CRLB . . . . . . . . . . . . . 106

7.3.2 ASIR-TB Spectral Accuracy CRLB . . . . . . . 107

7.3.3 ASIS Spectral Accuracy CRLB . . . . . . . . . 109

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VIII. Algorithm Performance Metrics . . . . . . . . . . . . . . . . . . . 113

8.1 Spectral Reconstruction Capability Metric . . . . . . . . 113

8.2 ASIS Spectral Resolution Capability Metric . . . . . . . 114

8.3 Using the Spectral Resolution Capability Metric . . . . . 115

8.3.1 Effective Filter Sampling . . . . . . . . . . . . . 115

8.3.2 Sensor Trade-offs . . . . . . . . . . . . . . . . . 117
8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 117

IX. Model Based Spectral-Polarimetric Image Reconstruction . . . . . 119

9.1 Image Creation . . . . . . . . . . . . . . . . . . . . . . . 119

9.2 Image Statistics . . . . . . . . . . . . . . . . . . . . . . . 121

9.3 Spectral-Polarimetric Image Reconstruction . . . . . . . 121

9.4 Polarization Effects in ASIS . . . . . . . . . . . . . . . . 123
9.5 ASIS Model for MBSPIR . . . . . . . . . . . . . . . . . 123
9.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.6.1 Spectral-Polarimetric Data Generation . . . . . 124

9.6.2 Spectral-Polarimetric Reconstruction . . . . . . 124

9.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . 127
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 127

X. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.2 Further Research . . . . . . . . . . . . . . . . . . . . . . 134

10.2.1 Algorithm Enhancement . . . . . . . . . . . . . 134

10.2.2 Realistic CRLBs . . . . . . . . . . . . . . . . . 135
10.2.3 Lower bound on Spectral Amplitude . . . . . . 135

10.2.4 New Sensor Concepts . . . . . . . . . . . . . . . 136

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1

x



List of Figures
Figure Page

2.1. A representative spectral image cube [44]. . . . . . . . . . . . . 11

2.2. General concept of spectral imaging [24]. The illuminating spec-

tra of the sun is spectrally reflected off of the satellite and col-

lected by the sensor after propagating through the atmosphere. 12

2.3. Simulated spectral output of an ETF system showing the spectral

blurring that can occur due to the large bandwidths used in the

filters. Two spectral feature, shown in the dashed lines, at 500nm

and 515nm in the VIS and 895nm and 900nm in the NIR are

collected with a ETF having a 20nm bandwidth in the visible and

a 10nm bandwidth in the near-IR. The collected spectra, shown

in the solid lines, show the spectral features are not resolvable. 18

2.4. Simulation of the spectral reconstruction of the previously un-

resolvable spectral features. The spectral features, shown in the

dashed lines, are at 500nm and 515nm in the VIS and 895nm

and 900nm in the NIR. A reconstruction algorithm that improves

spectral resolution will be able to process the spectra so the fea-

tures are resolvable. The reconstructed spectra is shown in the

solid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1. Pictorial representation of the MBSIR algorithm. . . . . . . . . 29

4.1. The Advanced Electro-Optical System (AEOS). AEOS is the en-

trance aperture for ASIS. . . . . . . . . . . . . . . . . . . . . . 33

4.2. Picture of the ASIS optics after the AO bench. The two cameras

to the right of the picture are the ASIS visible imaging channels.

The blue cubes attached to the cameras are the visible LCTFs.

The additional LCTF at the bottom of the picture is the NIR

LCTF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3. Samples of typical transmission vs. wavelength (nm) output of

the VIS and NIR ASIS LCTFs. The passbands shown represent

a tenth of the possible filters passbands. . . . . . . . . . . . . . 36

xi



Figure Page

4.4. QE of the iXon DV887 camera. The BV curve is the QE for the

standard back-illuminated device. The UVB is the QE for the

back-illuminated device with a UV coating [6]. . . . . . . . . . 37

4.5. The Optical Transfer Function of ASIS at 500nm. . . . . . . . 39

4.6. Model of the Aluminium and Protected Silver mirrors used in

ASIS. The points represent the given data and the solid line the

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7. Model of the 50/50 dichroic used for the AO system in ASIS.

The points represent the given data and the solid line the model. 40

4.8. Model of the VIS/NIR and NIR/SWIR dichroics used in ASIS.

The solid line is the S polarization, the dashed line is the P

polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9. Model of the various coatings used in ASIS. The different coating

include BK7, BAK 4, CAF2, F2, SK2, SK15 and SK16. The

points represent the given data and the solid line the model. . . 42

4.10. Model of one transmission profile of the VIS and NIR ASIS

LCTFs. The points represent the given data and the solid line

the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.11. Model of the ASIS camera. The points represent the given data

and the solid line the model. . . . . . . . . . . . . . . . . . . . 43

4.12. Spectral transmission of the first-order ASIS model in the visible

without the LCTFs. The solid lines represent the P polarization,

while the dashed lines are the S polarization. . . . . . . . . . . 44

4.13. Spectral transmission of the first-order ASIS model in the near-IR

without the LCTFs. The solid lines represent the P polarization,

while the dashed lines are the S polarization. . . . . . . . . . . 45

4.14. Overall model error in the spectral radiometry of the ASIS model. 45

4.15. Typical atmospheric transmission profile for a summer tropical

environment at a 10,000’ altitude using the HELEEOS atmo-

spheric simulation. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.16. Measured spectral response of the adaptive optics system in the

visible [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xii



Figure Page

4.17. Measured spectral response of the ASIS optical components in

the visible [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.18. Spectral transmission of the second-order ASIS model in the vis-

ible without the LCTFs. The solid lines represent the P polar-

ization, while the dashed lines are the S polarization. . . . . . . 50

4.19. Overall model differences in peak spectral transmission of the

ASIS first- and second-order models without the LCTFs. . . . . 51

4.20. Difference between the given and the measured peak transmission

for the visible LCTFs. The solid line is the measured data, while

the dashed line is the given values. . . . . . . . . . . . . . . . . 51

4.21. Difference between the given and the measured bandwidth for

the visible LCTFs. The solid line is the measured data, while

the dashed line is the given values. . . . . . . . . . . . . . . . . 52

4.22. QE of a generic CMOS imaging array [31]. . . . . . . . . . . . 54

4.23. QE of the Lumenera Lu-105 imaging array [2]. . . . . . . . . . 54

4.24. The cross-section of the OTF for ASIR-TB with a 0.01mm in-

duced focus error at a wavelength of 600nm. . . . . . . . . . . . 55

4.25. Spectral transmission for the six BK7 optical coatings in ASIR-

TB. The points represent the given data and the solid line the

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.26. The SMF for the visible and near-IR LCTFs. For the visible,

there are 15 selected center wavelengths representing a 20nm

sampling from 420nm to 720nm. For the near-IR, there are the

21 selected center wavelengths, representing a 5nm sampling from

650nm to 750nm. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.27. Quantum efficiency for a generic CMOS imaging array used for

the SMX-110 CMOS imaging array [31]. The points represent

the given data and the solid line the model. . . . . . . . . . . . 57

4.28. Quantum efficiency for the Lu-105 CMOS imaging array. The

points represent the given data and the solid line the model. . . 58

xiii



Figure Page

4.29. The experimental set-up of ASIR-TB for testing the MBSIR al-

gorithm. The system used three lenses to demagnify the spec-

tral source 50 times, while passing collimated light through the

LCTF. The source is located at the end of the optics bench, at

the top right of the figure. . . . . . . . . . . . . . . . . . . . . . 59

4.30. A schematic of the experimental set-up for ASIR-TB testing

the MBSIR algorithm. The system used three lenses to demag-

nify the spectral source 50 times, while passing collimated light

through the LCTF. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.31. The known emission lines of Hg(Ar) [3]. The amplitude of the

lines derived from the dominant Hg emissions [43]. . . . . . . . 60

4.32. The known emission lines of Ne [3]. The amplitude of the lines

are referenced from the dominant line [43]. . . . . . . . . . . . 60

4.33. An image of the two filament like areas of the Newport/Oriel

Hg(Ar) pencil lamp. The image was captured through the LCTF

with a selected center wavelength of 546nm. The Ne source looks

similar when imaged with the NIR filter. . . . . . . . . . . . . . 61

5.1. The Hg(Ar) source used to create a simulation of the spectral

image collection and reconstruction with ASIR-TB. The spatial

image is the scene at 546nm. . . . . . . . . . . . . . . . . . . . 65

5.2. Simulation of the Hg(Ar) source collected by ASIR-TB. The spa-

tial image is the scene at 540nm. The solid lines represent the

spectra of the simulated image, while the dashed lines are the

spectral lines of the source. . . . . . . . . . . . . . . . . . . . . 66

5.3. Simulated reconstruction of the Hg(Ar) scene. Image is the

source at 546nm. The solid lines represent the spectra of the

simulated reconstruction, while the dashed lines are the spectral

lines of the source. . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4. Demonstration of the non-resolved to resolved spatial and spec-

tral profile of the simulated Hg(Ar) source. . . . . . . . . . . . 68

5.5. The Ne source used to create a simulation of the spectral image

collection and reconstruction with ASIR-TB. The spatial image

is the scene at 650nm. . . . . . . . . . . . . . . . . . . . . . . . 68

xiv



Figure Page

5.6. Simulation of the Ne source collected by ASIR-TB. The spatial

image is the scene at 650nm. The solid lines represent the spectra

of the simulated image, while the dashed lines are the spectral

lines of the source. . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7. Simulated reconstruction of the Ne scene. Image is the source

at 650nm. The solid lines represent the spectra of the simulated

reconstruction, while the dashed lines are the spectral lines of

the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8. Demonstration of the non-resolved to resolved spatial and spec-

tral profile of the simulated Ne source. The solid lines represent

the cross-section of the simulated reconstructed image and the

spectra of the simulated reconstruction, while the dashed lines

are the cross-section and spectra of the simulated image. . . . . 71

5.9. Spectral output of a 30000K star. The O class star is assumed

to be a perfect blackbody. . . . . . . . . . . . . . . . . . . . . . 72

5.10. Collected spectra of a 30000K star. The O class star is simulated

to be 2.5 solar units and at a distance of 220 light years. . . . . 73

5.11. Reconstructed spectra of a 30000K star. The solid line repre-

sents the true spectra, while the dashed line is the reconstructed

spectra. The dashed and solid lines overlap in the figure. . . . . 74

5.12. Percent difference between the truth and spectral-only recon-

structed blackbody spectra of the singlet star. The strait line

represents the average percent difference. . . . . . . . . . . . . 74

5.13. Spectral output of a 10000K and 5000K binary star. Both the B

and G class stars are assumed to be perfect blackbodies. . . . . 75

5.14. Spatial image and spectral output of a 0.25su radius 10000K and

a 5su radius 5000K binary star separated by 0.04arcsecs at a

distance of 25 light years in the visible. . . . . . . . . . . . . . 76

5.15. Spatial image and spectral output of a 0.25su radius 10000K and

a 5su radius 5000K binary star separated by 0.04arcsecs at a

distance of 25 light years in the near-IR. . . . . . . . . . . . . . 76

xv



Figure Page

5.16. Spatially and spectrally blurred image and spectral output of a

0.25su radius 10000K and a 5su radius 5000K binary star at 25

light years in the visible. . . . . . . . . . . . . . . . . . . . . . 77

5.17. Spatially and spectrally blurred image and spectral output of a

0.25su radius 10000K and a 5su radius 5000K binary star at 25

light years in the near-IR. . . . . . . . . . . . . . . . . . . . . . 78

5.18. Spatially and spectrally reconstructed image and spectral output

of a 0.25su radius 10000K and a 5su radius 5000K binary star

at 25 light years in the visible. The thin solid line is the recon-

struction and the thick line is a least-squares polynomial fit to

the reconstruction to smooth out some discontinuities. The true

spectra is shown in a dashed line and cannot be seen since it is

coincident with the MMSE fit to the reconstruction. . . . . . . 78

5.19. Spatially and spectrally reconstructed image and spectral output

of a 0.25su radius 10000K and a 5su radius 5000K binary star

at 25 light years in the near-IR. The thin solid line is the recon-

struction and the thick line is a least-squares polynomial fit to

the reconstruction to smooth out some discontinuities. The true

spectra is shown in a dashed line and cannot be seen since it is

coincident with the MMSE fit to the reconstruction. . . . . . . 79

5.20. Pixel percent difference between the truth and reconstructed

blackbody curves of the binary star. The strait lines represent

the average percent difference. . . . . . . . . . . . . . . . . . . 80

6.1. Collected spectral image collected by ASIR-TB. Spatial image is

the image at 540nm and the spectra was collected from 420nm

to 700nm at a 20nm sampling. The dashed lines represent the

location and amplitudes of the spectra of the Hg(Ar) source. . 82

6.2. Reconstruction of the collected Hg(Ar) source. The dashed lines

represent the location and amplitudes of the spectra of the Hg(Ar)

source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xvi



Figure Page

6.3. Demonstration of the non-resolved to resolved spatial and spec-

tral profile of the Hg(Ar) source. The solid lines represent the

cross-section of the reconstructed image and the spectra of the

reconstruction, while the dashed lines are the cross-section and

spectra of the image. The dashed lines show the unresolved spa-

tial and spectral features in the collected image, and the solid

lines show the same features are resolvable after applying the

MBSIR algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4. The spectral accuracy of the reconstruction was improved when

the filter center wavelengths were shifted The reconstruction is

shown in the solid line and the dashed line shows the location of

the spectral feature. With the shifted selected wavelengths, the

difference is now only 1nm. . . . . . . . . . . . . . . . . . . . . 84

6.5. The Hg(Ar) source reconstructed when an initial filter sampling

of 2nm was used. The higher filter sampling leads to a more

accurate reconstruction of the spectral feature amplitudes. . . . 85

6.6. Collected spectral image collected by ASIR-TB of the Ne source.

Spatial image is the image at 650 and the spectra was collected

from 660nm to 750nm at a 5nm sampling. The dashed lines

represent the location and amplitudes of the spectra of the NE

source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.7. Reconstruction of the collected Ne source. The dashed lines rep-

resent the location and amplitudes of the spectra of the Ne source. 87

6.8. Demonstration of the non-resolved to resolved spatial and spec-

tral profile of the Ne source. The solid lines represent the cross-

section of the reconstructed image and the spectra of the recon-

struction, while the dashed lines are the cross-section and spectra

of the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.9. Image of the singlet star Merope (HR1156) at 600nm. The un-

known atmospheric blurring is evident in the non-uniform shape

of the star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.10. Collected spectra of Merope (HR1156) in the visible. . . . . . . 90

xvii



Figure Page

6.11. Normalized spectra reconstruction of Merope (HR1156), a B class

star. While a lack of calibration prevents a complete application

of the spectral only reconstruction algorithm, a normalized re-

construction shows that reconstructed spectra matches the nor-

malized blackbody curve for a star between 10,000K and 20,000K. 91

7.1. Simulated spectral output of ASIS for two spectral feature at

500nm and 515nm in the VIS and 900nm and 910nm in the NIR.

These spectral features are unresolvable. . . . . . . . . . . . . . 96

7.2. Reconstruction of simulated spectral output for two spectral

feature at 500nm and 515nm in the VIS and 900nm and 910nm in

the NIR. The MBSIR algorithm has made the features spectrally

resolvable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3. Example of the difference in the left and right spectral resolu-

tions. The difference is caused by the spectrally variant ETFs

used in ASIS and ASIR-TB. . . . . . . . . . . . . . . . . . . . 97

7.4. Comparison of the calculated CRLB for the spectral resolution

of ASIR-TB to the simulated spectral resolution and measured

spectral resolution of a Hg(Ar) source in the visible. The spectral

resolution corresponds to ∆γ and the wavelength to γo in spectral

resolution CRLB derivation. . . . . . . . . . . . . . . . . . . . 101

7.5. Comparison of the calculated CRLB for the spectral resolution

of ASIR-TB to the simulated spectral resolution and measured

spectral resolution of a Ne source in the near-IR. The spectral

resolution corresponds to ∆γ and the wavelength to γo in spectral

resolution CRLB derivation. . . . . . . . . . . . . . . . . . . . 101

7.6. Magnified comparison of the calculated CRLB for the spectral

resolution of ASIR-TB to the simulated spectral resolution and

measured spectral resolution of a Ne source in the near-IR show-

ing a close-up of the lower wavelengths. The spectral resolution

corresponds to ∆γ and the wavelength to γo in spectral resolution

CRLB derivation. . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.7. Comparison of the calculated CRLB for the spectral resolution

of ASIS to the simulated spectral resolution for the visible. . . 104

xviii



Figure Page

7.8. Comparison of the calculated CRLB for the spectral resolution

of ASIS to the simulated spectral resolution for the near-IR. . . 105

7.9. The effect of finer filter sampling to the calculated spectral reso-

lution CRLB for the visible wavelengths of ASIS. The points are

the calculated average CRLB for the visible wavelengths and the

line a trend fit to the data. . . . . . . . . . . . . . . . . . . . . 105

7.10. Comparison of the calculated CRLB for the spectral accuracy

of ASIR-TB to the simulated spectral accuracy and measured

spectral accuracy of the Hg(Ar) source in the visible. . . . . . . 108

7.11. Comparison of the calculated CRLB for the spectral accuracy

of ASIR-TB to the simulated spectral accuracy and measured

spectral accuracy of the Ne source in the near-IR. . . . . . . . 109

7.12. Comparison of the calculated CRLB for the spectral accuracy of

ASIS to the simulated spectral accuracy in the visible. . . . . . 110

7.13. Comparison of the calculated CRLB for the spectral accuracy of

ASIS to the simulated spectral accuracy in the near-IR. . . . . 110

7.14. The effect of finer filter sampling to the calculated spectral accu-

racy CRLB for the visible wavelengths of ASIS. The points are

the calculated CRLB and the line a trend fit to the data. . . . 111

8.1. The Spectral Resolution Capability in the visible for the 10nm

filter sampling. A least-squares polynomial is fit to the data

points of the calculated SRCM. . . . . . . . . . . . . . . . . . 114

8.2. The Spectral Resolution Capability in the near-IR for the 5nm

filter sampling. A least-squares polynomial is fit to the data

points of the calculated SRCM. . . . . . . . . . . . . . . . . . 115

8.3. Comparison of the ASIS Spectral Resolution Capability in the

visible for 1nm, 2nm, 5nm, 10nm, and 20nm filter samplings. . 117

8.4. The average ASIS visible SRCM for the five different filter sam-

plings and the imaging time required for those five filter sam-

plings. The SRCM metric shows that the higher the filter sam-

pling the better the SRCM, but the longer the imaging time.

A 2.5nm to 5nm sampling appears to be an effective balance of

resolution and imaging time. . . . . . . . . . . . . . . . . . . . 118

xix



Figure Page

9.1. Spectral-Polarimetric Multi-Cube . . . . . . . . . . . . . . . . . 120

9.2. Assumed Linear Polarimetric Mixing Function. . . . . . . . . . 123

9.3. Linear polarization profile for the output of both binary stars.

The peak output is at 35 degrees of linear polarization. . . . . 124

9.4. Spatial true image and spectral-polarimetric output of a 0.25su

radius 10000K and a 5su radius 5000K binary star at 25 light

years in the visible at 35 degree linear polarization. . . . . . . . 125

9.5. Spatial true image and spectral-polarimetric output of a 0.25su

radius 10000K and a 5su radius 5000K binary star at 25 light

years in the visible at 80 degree linear polarization. . . . . . . . 125

9.6. Spatial image and spectral-polarimetric output of a 0.25su radius

10000K and a 5su radius 5000K binary star at 25 light years with

a preferred linear polarization of 35 degrees in the visible at 0

degree linear polarization of the S channel of ASIS. . . . . . . . 126

9.7. Spatial image and spectral-polarimetric output of a 0.25su radius

10000K and a 5su radius 5000K binary star at 25 light years with

a preferred linear polarization of 35 degrees in the visible at 90

degree linear polarization of the P channel of ASIS. . . . . . . . 126

9.8. Spatial image reconstruction and spectral-polarimetric output of

a 0.25su radius 10000K and a 5su radius 5000K binary star at

25 light years in the visible at 35 degree linear polarization. The

solid line is the true spectral data and the dashed line a linear

interpolation of the reconstruction. . . . . . . . . . . . . . . . . 127

9.9. Spatial image reconstruction and spectral-polarimetric output of

a 0.25su radius 10000K and a 5su radius 5000K binary star at

25 light years in the visible at 80 degree linear polarization. The

solid line is the true spectral data and the dashed line a linear

interpolation of the reconstruction. . . . . . . . . . . . . . . . . 128

9.10. Polarimetric output of a 0.25su radius 10000K and a 5su radius

5000K binary star at 25 light years with a preferred linear po-

larization of 15 degrees in the visible at 500nm. The solid line is

the true polarimetric data and the dashed line the reconstruction. 128

xx



Figure Page

9.11. Percent difference between the truth and reconstructed linear

polarimetric spectra of the binary star. The lines are the average

of the difference. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.1. The simultaneously improved spatial and spectral resolution for

a 20nm filter sampling. The two spatial features are resolved in

the reconstruction. The two spectral features are resolved in both

the simulated data and in the reconstruction. The solid lines are

the simulated spectra and the reconstruction as labeled. The

dashed lines are the spectral features. . . . . . . . . . . . . . . 131

10.2. The simultaneously improved spatial and spectral resolution for a

10nm filter sampling. The two spatial features are resolved in the

reconstruction. The two spectral features are resolvable in the

reconstruction only. The solid lines are the simulated spectra and

the reconstruction as labeled. The dashed lines are the spectral

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.3. The simultaneously improved spatial and spectral resolution for

a 20nm filter sampling. The two spatial features are resolved

in the reconstruction. The two continuous spectra are recon-

structed to a 0.103 RMS error. The solid lines are the simulated

spectra and the reconstruction as labeled. The dashed lines are

the continuous spectral input. . . . . . . . . . . . . . . . . . . 132

10.4. An notional filter transmission profile with a multiple bandpass.

The second bandpass is created by increasing the phase retar-

dance of the Lyot cell. The solid and dashed lines show two

successive filter selections. . . . . . . . . . . . . . . . . . . . . . 137

xxi



List of Tables
Table Page

4.1. Andor iXon Camera Parameters . . . . . . . . . . . . . . . . . 36

4.2. ASIS and ASIR-TB Model Comparison . . . . . . . . . . . . . 52

xxii



List of Symbols
Symbol Page

i(x, y, λ) Spectral Image Cube . . . . . . . . . . . . . . . . . . . . . 24

h1(u, v, γ) Spatial Blurring Function . . . . . . . . . . . . . . . . . . 24

h2(λ, γ) Spectral Blurring Function . . . . . . . . . . . . . . . . . . 24

o(u, v, γ) True spectral scene . . . . . . . . . . . . . . . . . . . . . . 24

(u, v) Spatial Coordinates of the Spectral Scene . . . . . . . . . 24

(γ) Spectral Coordinate of the Spectral Scene . . . . . . . . . 24

(x, y) Spatial Coordinates of the Spectra Image Cube . . . . . . 24

(λ) Spectral Coordinate of the Spectral Image . . . . . . . . . 24

h(u, v, γ) Invariant Blurring Function . . . . . . . . . . . . . . . . . 25

d(x, y, λ) Spectral Data Cube . . . . . . . . . . . . . . . . . . . . . 26

n(x, y, λ) Noise associated with spectral image collection . . . . . . 26

D(x, y, λ) One collection of the Spectral Data Cube . . . . . . . . . 26

OTF (x, y, λ) Optical Transfer Function . . . . . . . . . . . . . . . . . . 38

⊕ Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . 38

P (x, y, λ) Pupil Function . . . . . . . . . . . . . . . . . . . . . . . . 38

bw Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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Reconstructing Spectral Scenes

Using Statistical Estimation

to Enhance Space Situational Awareness

I. Introduction

The characterization of objects in space is essential for US space superiority

and its enabling mission area, Space Situational Awareness (SSA). An in-depth

understanding of objects in orbit is also needed for increased utilization of space by

civil and commercial entities [4]. While the majority of the objects of interest are

man-made satellites, the characterization of some natural space objects is also needed

to analyze the space environment. The Advanced Electro-Optical System (AEOS)

and the Spica spectrometer, both located at the Maui Space Surveillance Complex

(MSSC), have been used to characterize satellites and other space objects to enhance

SSA.

AEOS collects panchromatic images of satellites in Low Earth Orbit (LEO) to

determine the satellite’s geometric characteristics, such as size, shape and general fea-

tures [10]. Spica measures the spectra of satellites in both LEO and Geosynchronous

Earth Orbit (GEO) to determine the satellites more specific physical characteristics

such as predominant material type. [27, 32]. While the images collected with AEOS,

and the spectra captured with Spica, provide useful information for SSA, the combina-

tion of these two sensing modalities would be even more valuable. This synergy would

provide a powerful way to understand detailed physical characteristics of satellites,

such as material mapping, the identification of hidden payloads, as well as anomaly

detection and resolution.

1.1 Space Situational Awareness

The spectral imaging of satellites is a subset of the broad area known as remote

sensing. While general remote sensing is “the attempt to measure something at
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a distance,” spectral imaging of a satellite is an attempt to measure the spatially

resolved spectra of an object in space from a ground-based sensor [44]. By measuring

the resolved spectra of the satellite, increased knowledge of the satellite’s physical

characteristics can be determined. This enhanced satellite characterization is vital

for current and future US space superiority and continued advancements in space

technologies [1,4]. The conduct of Intelligence, Surveillance and Reconnaissance (ISR)

to increase the understanding of satellites and other space objects is included in an

area known as Space Situational Awareness and contribute to the areas of Defensive

Counterspace (DCS) and Offensive Counterspace (OCS) [4].

From the Air Force Space Command Strategic Master Plan, “SSA is the per-

manent crucial enabler for DCS and OCS [4].” SSA describes what capabilities are

in space, as well as what has happened and is happening in space. SSA considers

not only the numerous satellites in orbit, but also the space environment. While this

sounds simple enough, knowing everything that is in, is happening or has happened

in space is difficult to achieve.

SSA begins with the tracking of all space objects. Many years of research and ef-

fort have gone into increasing the capability of the Space Surveillance Network (SSN)

and won’t be discussed further [48]. While SSA begins with space-track, the power of

SSA is the characterization of the satellite. Characterizing a satellite includes under-

standing the satellite’s physical properties, as well as its performance and capabilities.

Different sensors are used to characterize satellites and other space objects.

While these sensors provide valuable information, they sometimes fall short in deter-

mining many of the satellite’s basic physical features. One new source that shows

promise in helping fill in these shortfalls is spectral imaging.

1.2 Benefit of Spectral Imaging for SSA

Spectral imaging will provide valuable information on satellites in four areas.

These areas are 1) material classification, 2) trending material degradation, 3) iden-
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tifying hidden payloads, and 4) anomaly detection and resolution. While current

SSA sources provide some information in these areas, spectral imaging may give more

complete answers. Each of these areas is important for achieving the goals of SSA

and are critical in fulfilling OCS and DCS mission requirements.

1.2.1 Material Classification. The classification of materials on a satellite

is needed for a variety of reasons. Much of the analysis done to support SSA relies

on accurate models of satellites, where the materials in these models are critical.

While spectral imaging cannot determine the materials inside a satellite, it can help

determine the external materials. Classifying the materials on a satellite is a start to

better meeting these material knowledge requirements.

The classification of the material will be done by comparing the collected spectra

to a database of known material spectra. Since the spatial scene is also collected as

part of the spectral image, spectra for different areas of the image can be compared

to the material database. The comparison of the spectra from the entire scene allows

for the material classification of the different parts of the satellite.

1.2.2 Trending Material Degradation. An offshoot of material classification

is trending the change or degradation of the satellite’s materials while the satellite is

on orbit. The degradation of the satellite’s materials, such as the glass covering the

solar panels, could translate into a reduced capability. The reduction in the satellite’s

capability is important knowledge for SSA.

Understanding how a material changes while on-orbit is not only important for

SSA, but also for satellite designers and operators. To date, different missions, such as

the Long Duration Exposure Facility (LDEF), have flown a wide variety of materials

in space and then returned them to Earth for spectral analysis [28].

With a spectral imaging sensor, the spectral analysis can be done while the

spacecraft is on-orbit, providing a time-dependent analysis. The time-dependent anal-

ysis can be done by measuring the spectra of the materials before launch, or just after
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the satellite arrives on orbit. Spectral images of the satellite can be taken periodically

to determine the changes in the materials spectra as the materials are effected by the

space environment.

1.2.3 Identifying Hidden Payloads. A major concern, especially in the DCS

community, is the use of hidden payloads or piggy-back satellites to provide an undis-

closed satellite capability [5]. Since these hidden payloads and sub-satellites could

have different materials than the surrounding host spacecraft, spectrally imaging a

satellite has the potential for identifying areas of interest where these hidden objects

may be located. These areas of interest can be detected by searching for locations of

material discontinuities, seen as changes in the spectra of the satellite. A discontinu-

ity in the satellite’s material located in an unexpected place could be a tip-off for a

hidden payload.

1.2.4 Anomaly Detection and Resolution. Spectral imagery will also help

determine and resolve on-orbit anomalies, when the anomalies are detectable on the

exterior of a satellite. A spectral image will be able to help determine the nature

and extent of the anomaly by measuring the differences in material spectra around

the anomaly. This could provide a detection capability even when the anomaly is too

small or lacks sufficient contrast to be detected in traditional panchromatic images.

This type of data could prove to be extremely valuable in determining the location

and magnitude of the anomaly.

1.3 AEOS Spectral Imaging Sensor

The development of the AEOS Spectral Imaging Sensor (ASIS) was started

in March 2003. The purpose of the project is 1) design, build and install a spectral

imaging sensor as part of AEOS, 2) collect and analyze data, and 3) develop algorithms

to support SSA. By combining a set of highly tunable filter/camera combinations with

the large aperture and atmospheric compensation of AEOS, ASIS is able to collect

images of space objects that have both high spatial and spectral resolution. While
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the exact spatial and spectral resolution depends on the parameters of the sensor

and the geometry of the collection, ASIS is able to differentiate spatial features on

a satellite and spectral features in the satellite’s spectra. ASIS uses commercially

available optics and is scalable for increased sensor performance.

1.4 AFIT Spectral Image Reconstruction Test Bench

While ASIS is the primary sensor used for this research, a second sensor was

constructed to test the post-processing algorithms designed for ASIS data. The AFIT

Spectral Image Reconstruction Test Bench (ASIR-TB) is much less complex then

ASIS, but contains similar elements. ASIR-TB provides the ability to spectrally

image a wide variety of sources without having to compete for limited AEOS mount

time.

1.5 Contributed Research

There are three main areas of research presented in this dissertation. The first

two develop new algorithms to post-process data from spectral imaging sensors that

have overlapping spectral sampling, such as ASIS. These algorithms allow for better

exploitation of the data and meet the third goal of the ASIS project discussed in

section 1.3. The third area is a methodology to quantify how well the algorithms can

perform.

1.5.1 Spatial-Spectral Image Reconstruction. This research provides the first

statistical approach for simultaneously improving the spatial and spectral resolution

of spectral images collected with Electronically Tunable Filters (ETFs), such as the

Liquid Crystal Tunable Filters (LCTFs) used in ASIS. The statistical approach is

different from other methods, such as Singular Value Decomposition or Principal

Eigenvalue, because it requires no a priori knowledge and reduces both the spatial

and spectral blurring. While the method is targeted for data collected with ASIS, it

is applicable to any systems using an ETF with typical detector noise.
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1.5.2 Spectral-Polarimetric Image Reconstruction. The research also de-

velops the first spectral-polarimetric reconstruction algorithm for data collected with

LCTFs. The LCTFs used in ASIS require the creation of separate linear polarimetric

images to capture all of the photons from the object. These linear polarimetric images

can then be summed and used with the spectral reconstruction algorithm, or can be

kept separate for a spectral-polarimetric reconstruction. As with the spectral recon-

struction algorithm, the purpose of the spectral-polarimetric algorithm is to reduce the

effects of sensor blurring on the data. However, for this case a spectral-polarimetric

scene is reconstructed.

1.5.3 Performance Bounds and Metrics. The research provides the first

quantitative measure of the theoretical best performance of any reconstruction algo-

rithm for images collected with an ETF. The quantitative measure is performed by

calculating the performance bounds of the algorithm. For this research, the perfor-

mance bound for the spectral resolution and accuracy will be determined.

The bounds can be used as a way to predict the performance of the post-

processing reconstruction algorithm for different sensor parameters. By comparing

the performance metrics, a set of system parameters can be determined that lead to

improved joint algorithm/sensor performance given different operational constraints.

1.6 Outline

The dissertation is divided into ten chapters. Chapter 2 provides a brief back-

ground on the spectral imaging of satellites, with an emphasis on current non-spectral

imaging and non-imaging spectral sensors. The second chapter concludes with a brief

discussion of other spectral reconstruction methods and introduces the statistical

method used in this research. Chapter 3 provides a derivation of the spectral image

reconstruction algorithm, while the Chapter 4 introduces ASIS and ASIR-TB and

develops a model for each sensor. Chapter 5 presents the simulated reconstruction

of several different sources collected with ASIS and ASIR-TB. Chapter 6 shows the
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performance of the spectral image reconstruction algorithm on data collected with

the sensors. Chapter 7 derives two different Cramér-Rao Lower Bounds on the per-

formance of the spectral reconstruction algorithm used on ASIS and ASIR-TB data.

From these lower bounds, Chapter 8 develops a metric that can be used to compare

performance of different ASIS sensor parameters. Chapter 9 briefly describes how the

spectral image reconstruction algorithm can be extended to estimate the linear po-

larization components in the spectral-polarimetric image. The last chapter discusses

the potential for future research areas and summarizes the research presented in the

dissertation.
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II. Background

Different imaging and non-imaging techniques have been developed to charac-

terize satellites. This chapter will review two of the current techniques that

relate to spectral imaging and describe how ASIS will advance these techniques. The

chapter then gives a general description of spectral imaging, the different methods to

produce spectral images and introduces the versatile filters used for ASIS. The chap-

ter concludes with the focus of this research, a discussion of the processing required

to reduce the spectral blurring when using these filters.

2.1 Current Techniques for SSA

Two techniques related to spectral imaging are currently used to provide infor-

mation for SSA. The first is the imaging of a satellite using a ground-based telescope.

This technique provides the information on physical aspects of the satellite, such as

size, shape, and component location. The second technique is the measurement of

the spectra of the satellite.

2.1.1 Ground-based Imaging of Satellites. Images of space objects have been

available since the advent of the first telescope. Currently, the DoD has two facilities

capable of collecting high-quality images of satellites: Starfire Optical Range (SOR)

and the MSSC. Both sites have multiple telescopes offering different aperture sizes

that can image satellites with varying spatial resolutions. Some of the sensors use an

adaptive optics (AO) system to improve the image’s resolution, while other images

are post-processed [8, 39] Both SOR and the MSSC have been successfully used to

determine the size and shape of both small and large satellites, as well as satellite

component locations and orientations [22]. High resolution images have also been

used to aid in the anomaly investigation of satellites on-orbit [14]. One of the many

advantages of using SOR and MSSC for imaging is the ability of the sensor to track

the object as it transverses across the sky. By watching the object over time, features

can sometimes be seen that are not noticeable in an image from a single orientation.

In addition, the natural rotation of the object as it crosses the sky leads to numerous
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viewing angles that further increases the value of the images [45]. This knowledge

can then be used to build accurate models of space objects used for SSA analysis.

Valuable information has been gained from panchromatic images. However,

other data needed for satellite characterization, such as the type of material used to

construct the satellite and the function of satellite components, cannot be determined

from these images. New methods that enhance the value of the imagery are required.

Collecting the spectra of the satellite, along with the image, is one such method to

more fully, but not completely, characterize the satellite.

2.1.2 Spectra Measurements. Two spectral sensors have been used to

demonstrate the potential for spectral exploitation of satellites. The Space Object

Identification In Living Color (SILC) program and the Spica sensor have measured

the spectra of numerous space objects.

2.1.2.1 SILC. SILC is an Air Force Research Laboratory (AFRL)

program investigating non-imaging techniques to determine GEO satellite identity

and location. The satellites of interest for SILC are in GEO and the spectra of

the satellites is sampled with different broadband spectral filters without resolving

any supporting spatial information. The program looked at two different sets of

four astronomical filters in a 24” telescope [41]. By looking at a color-magnitude

plot of a geosynchronous object, SILC has shown it is possible to identify different

satellites from the spectral signature. This is possible because each satellites has

different materials leading to a unique spectral signature. These signatures do not

vary because the satellite, being in GEO, offers the same perspective to the sensor

over time. Therefore, the spectral signatures observed will remain constant from

measurement to measurement. The location of the satellites can be determined by

tracking these unique signatures [40].

2.1.2.2 Spica. The Spica spectrometer mounted on the 1.6m telescope

at MSSC has been used in support of SILC and for other non-imaging spectral research
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[32]. Experiments with the Spica spectrometer are similar to those conducted in the

SILC program, except the spectral resolution of Spica is much greater due to the use

of a grating spectrometer. As with SILC, the spectra of the satellite is measured

without resolving any spatial information.

Research with Spica is attempting to go beyond conventional non-imaging tech-

niques that only determine satellite identity and location. The Spica spectra mea-

surements are being used in a model-based algorithm for estimating the size and

shape of satellite features, as well as material types [32]. This is done in a model-

based approach. Using an estimated model of a satellite, complete with materials,

the Time-domain Analysis and Simulation for Advanced Tracking (TASAT) software

is used to simulate the spectral return from the satellite. A match is then attempted

between the TASAT simulation and data collected with Spica. Algorithms can then

be used to determine the changes necessary to the size, shape, and materials on the

model to better match the observed data, with continued iterations until the best fit

is achieved [32]. Spica has also been used to attempt to discriminate between different

LEO rocket bodies and satellites and was successfully used to discriminate between

spacecraft with different sized solar panels [23].

Blind deconvolution methods are also being explored in the analysis of Spica

data. Since the spectra of each satellite is collected without any spatial information,

the spectra of the different materials is mixed. An iterative algorithm is being in-

vestigated to jointly estimate the spectra and fractional abundance of the different

materials on the spacecraft [34].

In this research, another method of returning the spectra and abundance of

different materials will be explored. By collecting the spatial scene and the spectra

simultaneously, the blind deconvolution is not needed. Instead, the spectra and ma-

terial properties are measured directly from the post-processed spectral image cube.

An additional benefit is that the locations of the spectra on the satellite can also be

determined.
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Figure 2.1: A representative spectral image cube [44].

2.2 Spectral Imaging

Spectral imaging is the collecting of photons emitted or reflected from an object

into specific wavelength-dependent bins [44]. While the mechanics of the photon

collection are similar to panchromatic imaging, the division of the photons into well-

specified bins makes spectral imaging a more powerful tool for characterizing the

imaged scene. A spectral image cube is created by stacking the individual spectral

scenes in each spectral bin on top of each other as shown in Figure 2.1. From this

image cube, a vector of pixels extending through the image can then be extracted to

give the spectra of the scene at one spatial location [30]. Spectral imaging is similar

to non-imaging spectral analysis, except the spectra of the individual elements of the

object can be recovered [7].

Figure 2.2 gives the general concept of spectral imaging as applied to ASIS.

Sunlight is reflected off of the satellite according to the spectral reflectance of the

satellite’s materials to create the true spectral scene, o(u, v, γ). The scene is then

propagated through the atmosphere where it is subject to spectral losses and spatial

blurring. The scene is collected by the optics, passed through a filter and imaged

onto the imaging array. The data, D(x, y, λ), is the spectral image collected by the

imaging array.

2.2.1 Spectral Bands. For this research, spectral imaging will be defined as

using light from 400nm to 2.5µm in the electromagnetic spectrum. This spectrum will
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Figure 2.2: General concept of spectral imaging [24]. The illuminating spectra of
the sun is spectrally reflected off of the satellite and collected by the sensor after
propagating through the atmosphere.

be divided into distinct subranges that extend from the visible (VIS, 400nm-720nm),

through the near infrared (NIR, 720nm-1µm), to the short-wave infrared (SWIR,

1µm-2.5µm), Spectral images can also be collected in the ultraviolet (UV), starting

at about 300nm, the mid-wave infrared (MWIR, 2.5µm-10µm) and the long-wave

infrared (LWIR, beyond 10µm), but these bands are not used in this research.

2.2.2 Spectral Selectors. Different spectral imaging systems have been de-

veloped and used to image terrestrial objects and scenes for many purposes [44].

These systems come in a wide variety, from ground-based sensors for both lab and

outdoor imaging, to airborne systems such as the Hyperspectral Digital Image Collec-

tion Experiment (HYDICE) and the Advanced Visible/Infrared Imaging Spectrome-

ter (AVIRIS), to even a few satellites such as LANDSAT and the SPOT HRV [44].

The systems range from multispectral (a few to dozens of spectral bands collected

per image) to hyperspectral (hundreds of bands per image) to ultraspectral (several
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hundreds of bands per image) and are used for classifying materials, differentiating

between natural and man-made substances, and monitoring the environment [30].

The systems employ a variety of spectral selectors to separate light for the creation of

a spectral image. The four more prevalent types of spectral selectors include prisms

and gratings, Fourier interferometry, chromotomography, and filters.

2.2.2.1 Prisms and Gratings. Prisms and gratings represent existing

ways of splitting light into its spectral components. With a prism, light is split into

its components due to the wavelength dependence of the prism’s index of refraction

according to Snell’s Law [25]. The grating uses a periodic structure of diffracting

elements to scatter the light into a spectrum [25]. The spectrally separated light is

collected by different pixels in the imaging array.

When only a few spectral bands are collected, multiple 2-D imaging arrays can

be used to collect the spatial and spectral components of the scene simultaneously [30].

For this case, each 2-D array collects the 2-D scene in a different spectral band.

When more than 4-10 bands spectral bands are required, using a 2-D imaging array

to collect the different spectral scenes is usually not possible due to practical space

limitations in the sensor. When many bands are required, a push-broom sensor is

usually employed.In a pushbroom sensor, images are created one line at a time as the

thin sensor field of view (FOV) is scanned along the object of interest [30]. In this

case, a 2-D imaging array is not used to collected the 2-D scene. Instead, one axis is

for the 1-D spatial extent of the scene and the other axis captures the spectra at these

locations. The image cube is obtained by scanning across the scene and combining

the collected data.

The 1-D entrance slit limits the utility of the sensor when imaging non-stationary

objects. The 1-D slit is ideally suited for imaging the ground with a sensor flying

or orbiting above. The inherent motion of the sensor as it sweeps across the ground

provides the natural linear motion needed to collect the vertical spacing in the imaged

scene. However, if the scene changes during collection, the changes in the scene will not
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be well represented in the spectral image cube because of the linear scan. Additionally,

if used to image a satellite from the ground, scanning a 1-D slit across the orbiting

satellite requires precise synchronization of the satellite tracking and the scanning of

the entrance slit. If the tracking of the satellite has any jitter, as is always the case,

this synchronization is difficult.

2.2.2.2 Fourier Spectroscopy. Fourier spectroscopy utilizes an inter-

ferometric approach to analyzing the different wavelengths. An interferometer, such

as a Michelson, can be used to stare at a scene while one of the two mirrors in the

interferometer is moved to create a interferogram for the entire image [20]. While

very high spectral resolution is possible with Fourier spectroscopy, the scene must be

stationary or the motion in the scene must be known [30]. This method is of limited

use when imaging satellites due to the unknowns in the motion of the satellite as it

is being imaged.

2.2.2.3 Chromotomography. Chromotomographic imaging systems

(CTIS) use a rotating grating or prism to image a dispersed view of a scene over

all spectral bands [38]. The advantage of a chromotomographic system is that the

entire spectral image is observed with little or no transmission loss. This allows for

spectrally imaging an entire scene in a short time when the scene provides sufficient

signal-to-noise (SNR). However, as the SNR is reduced, the rotation of the prism must

be slowed, increasing the image collection time.

One drawback of a CTIS is the cone of missing information [38]. The cone of

missing information is the portion of the collected data that cannot be reconstructed

for analysis. Of particular concern is that the cone of missing information makes

recovering the radiometry of the scene very difficult. This is because the missing in-

formation is around the DC region in the spatial frequency domain. Without knowing

the DC level, it is not possible to recover radiometrically accurate spectral cubes.
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Another drawback of chromotomographic systems is that the data must be

reconstructed to be analyzed [16]. The reconstruction is required because the spectral

images are actually overlapped both spatially and spectrally on the array and must

be processed to be sorted back into a spectral image cube. CTIS systems must

reconstruct the spatial and spectral portions of the image simultaneously, since all of

the spatial and spectral information is captured simultaneously on the imaging array.

Because of this, a CTIS imaging system must know the Point Spread Function (PSF)

used to collect the image for every wavelength within the spectral image cube. If the

PSF is not known, then no spectral information can be obtained from the CTIS. This

proves to be a problem since the PSF of the optics is difficult to calculate in CTIS

systems. In situations where a complete spatial reconstruction is not required, a 1-D

CTIS reconstruction can be done [21]. With the 1-D reconstruction, the spectra is

fully captured, but the reconstruction only captures part of the spatial information.

2.2.2.4 Filters. Instead of refracting or diffracting light into its spec-

tral components, filters selectively transmit only a certain portion of the light. Imag-

ing a scene is easier when using filters since the entire 2-D scene can be collected

in one image, but the collected scene is only for the wavelengths transmitted by the

filter. For a full spectral image cube, multiple filtered images must be combined and

aligned so that all pixels represent the same location in the scene. When multiple

filters are used to collect the scene, any differences between the filters must be taken

into account [44]. Since each image of the cube must be collected separately, it may

take longer to collect the spectral image of a scene using filters then other methods.

The limiting factor in the time it takes to collect the spectral image cube is the cycling

time of the filters. For a non-stationary object, the cycling time of the filters must

be less than the time it takes for the object to substantially change its orientation to

the sensor.

2.2.2.5 Electronically Tunable Filters. ASIS requires a spectral selec-

tion scheme that allows for spectrally imaging non-stationary objects in many spectral
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bands. This requirement eliminates the use of a prism or grating system, as well as

Fourier Spectroscopy, because of the difficulties involved with using these systems

that were discussed in the previous sections. A CTIS sensor is not a viable option

because of the radiometric problems due to the cone of missing information.

Filters were the preferred option for ASIS given the sensor requirements, as well

as other consideration such as cost and schedule. However, the filters must 1) have

variable spectral passbands to collect the spectra across a spectral range and 2) be

able to switch rapidly between these passbands. Electronically tunable filters met

both of these criteria. ETFs allowed ASIS to collect a full spectral image cube of a

satellite without any significant change in orientation.

ASIS uses an ETF technology known as LCTF. The LCTFs are an electronically

controllable filter, with one filter providing 100’s of selectable passbands. Selectable

passbands are produced by using multiple phase retarders to destructively interfere

light outside of a narrow bandwidth. The cycling or switching time of LCTFs is

approximately 50ms, which is fast enough to image a satellite in 50-100 spectral bands

without a significant orientation change. One of the drawbacks of using LCTFs are

the low transmission levels, as low as 5% in some cases. To reduce the effect of

the low transmissions, the bandwidth of the filter is kept larger than desired for some

spectral imaging applications. The larger bandwidth, up to 20nm, provides more light

transmission for a greater signal-to-noise which results in better images. However,

the large bandwidth adversely affects the spectral resolution. For some applications,

the reduced spectral resolution will not be critical. For others, it will degrade the

usefulness of the spectral image. While post-processing of ASIS data is not required,

some processing of the images to improve the quality may be beneficial.

Other ETFs, such as Acousto-Optical Tunable Filters (AOTFs), are another

option for ASIS. While AOTFs do have higher transmissions, they provide a smaller

field-of-view, which would limit the utility of ASIS. Additionally, controlling the wave-

length selection in an AOTF is more difficult then in a LCTF. The transmission band
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of the AOTF is varied by varying the frequency of a radio frequency (RF) source

applied to the AOTF crystal. The RF applied to the crystal creates an acoustic wave

that causes the crystal lattice to be alternatively compressed and relaxed [18]. The

compression and relaxation cycle produces a density change that ultimately varies the

crystals index of refraction. This in-turn produces two narrow bandwidth beams of

light that can be used to create a spectral image [17].

While LCTFs are currently used in ASIS, AOTFs or another ETF could be used

in the future. As with the LCTFs, other ETFs can have a bandwidth large enough to

allow for spectral blurring within the spectral image. The same processing that will

reduce the spectral blurring in the LCTF spectral images, will also work with other

ETF technologies.

2.3 Spectral Image Processing

Most spectral images need some basic post-processing. These calibration ori-

ented post-processing steps include: 1) ensuring all the pixels in the image are properly

aligned (also known as registering), 2) correcting for radiometric loses within the sen-

sor, and 3) correcting for external affects, such as atmospheric losses and geometric

considerations.

In addition to the items listed above, many systems using ETFs require methods

to reduce the spectral blurring in the image. By reducing the spectral blurring, the

spectral resolution and spectral accuracy of the image can be increased over an image

with no post-processing. The spectral blurring in ASIS is introduced by the large

bandwidth of the LCTFs. These large bandwidths integrate light from wavelengths

adjacent to the center wavelength when forming the image. The integration of the

wavelengths has the effect of blurring the spectra such that the spectra has been

altered and can no longer be directly retrieved from the data. Figures 2.3 and 2.4

gives an example of spectral blurring. In Figure 2.3, the spectral features shown as

the dashed lines are blurred when collected with the large bandwidth ETFs. An
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Figure 2.3: Simulated spectral output of an ETF system showing the spectral
blurring that can occur due to the large bandwidths used in the filters. Two spectral
feature, shown in the dashed lines, at 500nm and 515nm in the VIS and 895nm and
900nm in the NIR are collected with a ETF having a 20nm bandwidth in the visible
and a 10nm bandwidth in the near-IR. The collected spectra, shown in the solid lines,
show the spectral features are not resolvable.

algorithm that reduces the spectral blurring will reconstruct the spectral features, as

shown in Figure 2.4.

There are four techniques that have been investigated to reduce the spectral

blurring to restore the original collected spectra when using a LCTF. All of these

techniques attempt to develop a method to invert the spectral blurring function.

However, the first three techniques are not applicable to data from a remote sens-

ing system such as ASIS. A variation on the fourth technique used for gamma-ray

spectroscopy and chromotomographic system shows much more promise to reduce

the blurring from images collected with an ETF. This technique has the additional

advantage of being able to reduce the spatial blurring at the same time as the spectral

blurring.

2.3.1 Direct Inverse. The simplest method to remove the spectral blurring

from the image is to directly invert the blurring function. The image of a scene
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Figure 2.4: Simulation of the spectral reconstruction of the previously unresolvable
spectral features. The spectral features, shown in the dashed lines, are at 500nm and
515nm in the VIS and 895nm and 900nm in the NIR. A reconstruction algorithm
that improves spectral resolution will be able to process the spectra so the features
are resolvable. The reconstructed spectra is shown in the solid lines.

collected by the sensor can be viewed as,

i(x, y, λ) = o(x, y, γ)⊗ h2(λ, γ) (2.1)

which states that the image, i(x, y, λ), is the true scene, o(x, y, γ) convolved with

the spectral blurring function, h2(λ, γ) [18]. While it might seem straight forward to

invert the spectral blurring function to retrieve the true scene according to,

o(x, y, γ) = i(x, y, λ)⊗ h−1
2 (λ, γ), (2.2)

it is actually impractical to implement. The spectral mixing function can be viewed as

a matrix of transmission values. The sparseness in this matrix prevents the function

from being invertible. Without an invertible function, this method cannot be used.

2.3.2 Singular Value Decomposition. Since the spectral blurring function is

not directly invertible, a Singular Value Decomposition (SVD) of h2(λ, γ) has been

attempted to provide a pseudo-inverse [18]. With the calculated pseudo-inverse, a
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method can be developed that uses the collected spectra of a known spectral refer-

ence standard, as well as a bright field and dark cube to restore the measured spec-

tra [18]. Without using the reference standard and other calibration measurements,

the pseudo-inverse has shown poor results on collected data due to the noise in the

images [24]. Collecting the required calibration measurements would be difficult with

a remote sensing instrument such as ASIS. It is not practical to either image a bright

field or reference standard given the size of the ASIS aperture.

2.3.3 Principal Eigenvalue. A Principle Eigenvalue (PE) method has been

shown to be useful in retrieving the true spectral scene when the spectra of the scene

is known. In this case, an inverse is developed that uses the “statistical spectral

information of the imaged objects.” The PEs of this object-dependent inverse are

used to create and pseudo-inverse [24]. The PE reduces the noise sensitivity of an

inverse to the spectral response by taking only the vectors corresponding to the n

most significant singular values, where n is a number specified by the user. However,

this technique has only been shown to be successful when the spectrum of the scene

was measured and used in the spectra restoration algorithm. While this is useful for

some applications such as calibrating cameras, it is impractical for any remote sensing

application, since the spectra of the scene is not known.

2.3.4 Statistical Methods. A statistical method based on a maximum like-

lihood (ML) estimator has been used to improve the resolution of the spectra in

gamma-ray spectroscopy and of an image from a CTIS [35]. The ML estimator was

able to double the spectral resolution of the energy-loss spectra from the gamma-ray

spectroscopy. Maximum likelihood estimators have also been shown to be able to

deconvolve the images from a CTIS [21]. These methods are derived from an older

algorithm developed to reconstruct the data for Emission Tomography (PET) [47].
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2.4 Expected Results

In this research, another method has been taken to invert the spectral blurring in

ETF systems such as ASIS. The new method is based on the same ET algorithm, but

includes the specific functionality required when dealing with ETFs. The new method

is similar to the ML estimator used for improving the spectral resolution of gamma-ray

spectroscopy, but expands the estimator to include a three-dimensional (two spatial

dimension and one spectral dimension) image, instead of a one-dimensional spectra.

Despite the inclusion of the spatial reconstruction, the spectral resolution will con-

tinued to be doubled. Therefore, the algorithm will increase the overall capability of

the ML estimator developed for the gamma-ray spectroscopy.

The new algorithm also has better performance then the SVD and PE methods

discussed in the previous section. The algorithm will be able to reduce the root mean

square (RMS) error for the reconstruction of a continuous spectra by half. In addition

to improving the RMS error, the algorithm will improve the reconstruction without

using any a priori knowledge of the images scene.

2.5 Summary

Spectral imaging will provide valuable information to advance SSA. SSA is

required to protect our space assets and to guarantee that those assets will be available

when the nation needs them. While there are no current sensors dedicated to spectral

imaging for space objects, two systems at the MSSC have been successfully used to

collect spatially resolved images and non-resolved spectra. The synergy of these two

technologies will provide the resolved spectral information needed to advance space

awareness.

The requirement for ASIS to image non-stationary objects in space limits the

choice of spectral separators. ETFs provide the only viable option. The ETF tech-

nology chosen for ASIS is the LCTF.
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While most spectral sensors need some post-processing for calibration, infor-

mation from some sensors can be improved through additional post-processing. By

reducing the spectral blurring introduced in the sensor, the spectral resolution can be

increased. The increase in this resolution may not be critical for some applications,

but for others, the increased resolution may prove to be valuable.

There are no methods currently available to improve the spectral resolution

of data from ASIS. Direct inversion techniques are unreliable do to noise and other

pseudo-inverse methods rely on knowing the spectra of the true scene. A statistical

approach has been useful in other application and promises better results. However,

the algorithms for the statistical approach must be derived for the case of an ETF.
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III. Model Based Spectral Image Reconstruction

Most spectral imaging systems that use ETFs have limited spectral resolution

due to the ETFs non-trivial bandwidths. In such systems, the bandwidth

allows a range of wavelengths to be integrated together when the spectral image is

collected. The integration of the wavelengths reduces the sensor’s spectral resolution.

For some applications, the reduction in the spectral resolution is not critical. For

other applications, the reduced spectral resolution will lower the value of the col-

lected data. By understanding the way in which the sensor blurs the wavelengths to

create the spectral image cube, it is possible to use estimation theory to reconstruct

the spectral scene with less spectral blurring. The estimator requires two key ele-

ments: 1) the statistics of the noise in the image and 2) an in-depth knowledge of

the spectral imaging sensor, with an emphasis on understanding the spectral blurring

within the sensor. With knowledge of these two elements, a Model-based Spectral

Image Reconstruction (MBSIR) algorithm can be developed to reduce the spectral

blurring in systems that use ETFs.

In addition to improving the spectral resolution of the images, the MBSIR algo-

rithm simultaneously increases the spatial resolution. The only additional requirement

is to understand the spatial blurring in the sensor.

This chapter steps through the development of the MBSIR algorithm. It starts

with defining a basic underlying assumption for how an image is created and then

moves into deriving the noise statics for the image collection. The MBSIR algorithm

is then developed, followed by a spectral only MBSIR algorithm that is useful in

certain applications. Finally, the stopping criteria for the algorithm is discussed.
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3.1 MBSIR Background

The underlying assumption for MBSIR is that the image created by the spectral

imaging sensor can be mathematically described by [11],

i(x, y, λ) =

∫ ∞∫

−∞

∫
o(u, v, γ)h1(x− u, y − v, γ)h2(λ, γ)dudvdγ (3.1)

or in discrete terms,

i(x, y, λ) =
∑
u,v,γ

o(u, v, γ)h1(x− u, y − v, γ)h2(λ, γ) (3.2)

where i(x, y, λ) is the set of noise-free spectral images calculated when the blurring

functions, h1(u, v, γ) and h2(λ, γ), are applied to the true spectral scene, o(u, v, γ), at

the selected wavelengths (often referred to as the spectral image cube). This image

cube is the result of the inherent blurring, both spatially and spectrally, of the sensor.

The spatial blurring, h1, is described by the sensor’s PSF. The spectral blurring, h2,

is described by the Spectral Mixing Function (SMF) which includes both the effects

of spectral blurring and amplitude attenuation. In Equations (3.1) and (3.2), (u, v, γ)

represents the spatial (u, v) and spectral (γ) coordinates of the spectral scene, and

(x, y, λ) represents the spatial (x, y) and spectral (λ) coordinates of the spectral image

cube. The blurring functions h1 and h2 are separate because the spectral blurring in

ETFs is spectrally variant. As section 4.1.4 will show, the transmission and bandwidth

of the ETFs used in ASIS will vary with the selected center wavelength. For a system

that is spectrally invariant, Equations (3.1) and (3.2) could be written as,

i(x, y, λ) =

∫ ∞∫

−∞

∫
o(u, v, γ)h(x− u, y − v, λ− γ)dudvdγ, (3.3)
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or in discrete terms,

i(x, y, λ) =
∑
u,v,γ

o(u, v, γ)h(x− u, y − v, λ− γ). (3.4)

where h(u, v, γ), represents the invariant spatial and spectral transfer function. Al-

though the MBSIR algorithm is derived for the spectral variant sensor, it will also be

applicable to a sensor that is spectrally invariant, since the spectrally invariant case

is subset of the variant case.

3.2 Image Statistics

The first step in deriving the MBSIR algorithm is to understand the noise statis-

tics within the imaging system. These statistics form the foundation of the estimator

developed for MBSIR. The estimator is developed by maximizing the probability mass

function (PMF) of the measured image. The imaging arrays used for ASIS are low

read noise charge coupled detector (CCD). Additionally, ASIS uses 12-bit imaging

arrays so there will be little quantization noise. The imaging arrays will also be cal-

ibrated for signal to photon conversion. Therefore, for ASIS, the noise statistics will

be dominated by the uncertainty in photon arrival.

ASIS uses polarizers within its spectral filters, so it is an imaging systems that

collects polarized light, also referred to as polarized thermal light [20]. For polarized

light, the statistics of the photon arrival is determined by the count degeneracy pa-

rameter [20]. The imaging time used for ASIS, on the order of milliseconds, will be

much greater than the temporal coherence of the collected incoherent light. The count

degeneracy parameter, physically described as the average number of counts which

occur in a single coherence interval, will therefore approach zero [20]. Therefore, the

noise associated with creating an ASIS spectral image will follow a Poisson distribu-

tion. While the statistics are discussed for ASIS, the image reconstruction will apply

to any spectral imaging systems where the noise follows a Poisson distribution.
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The data collected by an ETF system dominated by Poisson distributed noise,

d(x, y, λ), is related to the image, i(x, y, λ), given in Equation (3.2) by the addition

of Poisson distributed noise, n(x, y, λ) according to,

d(x, y, λ) = i(x, y, λ) + n(x, y, λ). (3.5)

Since the noise in Equation (3.5) is a random variable, and the image is deterministic,

the data will be a random variable with a Poisson distribution.

3.3 Spectral Image Reconstruction

With the Poisson distribution established, a maximum likelihood estimator can

be developed by maximizing the a priori PMF [49]. By maximizing the PMF, the

estimator will provide an estimate of noiseless scene from which the collected image

was created [46]. This ML estimator will be the foundation of the MBSIR algorithm

and is based on an algorithm to reconstruct PET data [47]. The algorithm is similar

to those successfully used for other spectral imaging sensors and image estimation

problems [12,21,35]. However, this estimator is the first developed for reconstructing

both the spatial and spectral elements of a spectral image captured with an ETF.

Using a Poisson distribution and looking at one specific point (xo, yo, λo), the

PMF is given by,

P [d(xo, yo, λo) = D(xo, yo, λo)] =
i(xo, yo, λo)

D(xo,yo,λo)

D(xo, yo, λo)!
e−i(xo,yo,λo), (3.6)

where D(xo, yo, λo) is a particular realization of random variable d(xo, yo, λo) and

i(xo, yo, λo) is the noise free image at one point. Then for all points (x, y, λ), the PMF

is,

P [d(x, y, λ) = D(x, y, λ)∀(x, y, λ)] =
∏

x,y,λ

i(x, y, λ)D(x,y,λ)

D(x, y, λ)!
e−i(x,y,λ), (3.7)

where D(x, y, λ) is the collected spectral data cube. A maximum likelihood estimator

can be developed by maximizing the PMF with respect to o(uo, vo, γo). The natural
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log of the PMF is computed yielding the log likelihood function [49],

ln(P [d(x, y, λ) = D(x, y, λ)]) = ln(
∏

x,y,λ

i(x, y, λ)D(x,y,λ)

D(x, y, λ)!
e−i(x,y,λ)), (3.8)

which can be reduced to,

ln(P [d(x, y, λ) = D(x, y, λ)]) =
∑

x,y,λ

D(x, y, λ) ln(i(x, y, λ))−i(x, y, λ)−ln(D(x, y, λ)!).

(3.9)

Next, the derivative is taken with respect to the true spectral scene at a specific

point (o(uo, vo, γo)) and is set equal to zero to maximize the log likelihood function.

This maximization will also maximize the PMF and an iterative algorithm can be

developed [42]. So Equation (3.9) becomes,

∑

x,y,λ

D(x, y, λ)

i(x, y, λ)

∂

∂o(uo, vo, γo)
i(x, y, λ)− ∂

∂o(uo, vo, γo)
i(x, y, λ) = 0. (3.10)

Using Equation (3.2),

∂

∂o(uo, vo, γo)
i(x, y, λ) = h1(x− u, y − v, γ)h2(λ, γ), (3.11)

Equation (3.10) then becomes,

∑

x,y,λ

[
D(x, y, λ)

i(x, y, λ)
h1(x− u, y − v, γ)h2(λ, γ)− h1(x− u, y − v, γ)h2(λ, γ)

]
= 0. (3.12)

Finally, some algebraic manipulations are accomplished. First, the second term is

moved to the right hand side of the equation,

∑

x,y,λ

[
D(x, y, λ)

i(x, y, λ)
h1(x− u, y − v, γ)h2(λ, γ)

]
=

∑

x,y,λ

[h1(x− u, y − v, γ)h2(λ, γ)] .

(3.13)
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This term is then divided into both sides to yield,

1∑
x,y,λ

h1(x− u, y − v, γ)h2(λ, γ)

∑

x,y,λ

D(x, y, λ)

i(x, y, λ)
h1(x− u, y − v, γ)h2(λ, γ) = 1. (3.14)

Finally, both sides of the equation are multiplied by the spectral scene at one point.

The iteration relation can then be defined as,

onew(uo, vo, γo) =
oold(uo, vo, γo)∑

x,y,λ

h1(x− u, y − v, γ)h2(λ, γ)

∑

x,y,λ

D(x, y, λ)

iold(x, y, λ)
h1(x−u, y−v, γ)h2(λ, γ).

(3.15)

where,

iold(x, y, λ) =
∑
u,v,γ

oold(u, v, γ)h1(x− u, y − v, γ)h2(λ, γ). (3.16)

In Equation (3.15), the new estimate is the old estimate, scaled by the sum of the

blurring functions, and multiplied by the image created from the ratio of the data to

the old image. After given an initial estimate, the likelihood increases with each step

and converges to a maximum likelihood [47].

3.4 Spectral Reconstruction

It will also be useful to have a MBSIR algorithm that only includes the spectral

reconstruction part of Equation (3.15), namely the spectral blurring function, h2.

The MBSIR algorithm in Equation (3.15) can be modified to include on the spectral

blurring by setting the h1 transfer function to a delta function. This essentially

removes the spatial blurring effects given by h1 and leads to the spectral reconstruction

algorithm,

onew(uo, vo, γo) =
oold(uo, vo, γo)∑

λ

h2(λ, γo)

∑

λ

D(x, y, λ)

iold(x, y, λ)
h2(λ, γo), (3.17)
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Figure 3.1: Pictorial representation of the MBSIR algorithm.

where,

iold(x, y, λ) =
∑

γ

oold(u, v, γ)h2(λ, γ). (3.18)

3.5 Reconstructing Spectral Images

Given a model of the sensor defined by the functions h1 and h2, and a spectral

data cube, the estimator in Equation (3.15) can be used to reduce the spatial and

spectral blurring in the data. The initial reconstruction estimate for Equation (3.15)

can be a cube of any non-zero values, but is typically a cube of uniform unit value.

With this initial guess, the iterations continue until the stopping criteria discussed

below is reached. At this point, a balance between the blurring removed and noise

amplification is achieved. If more iterations are performed after this point, the noise

is further amplified with only minimal blur reduction. Figure 3.1 gives a pictorial

description of the algorithm.

3.6 Stopping Criteria

Once given an initial estimate, the MBSIR algorithm iterates until the stopping

criteria is met. The stopping criteria occurs when the variance of the reconstruction
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noise is the same or lower as the mean of the collected data, or

(i(x, y, λ)− d(x, y, λ))2 ≤ d(x, y, λ), (3.19)

where the reconstruction noise is the difference between the current estimate of the

data and the collected data.

Although not an issue with ASIS, the imaging arrays in ASIR-TB has quanti-

zation noise that must be taken into account for the stopping criteria. The ASIR-TB

detectors are only 8-bit detectors, allowing only 256 levels for the photons-to-signal

conversion. Without this adjustment, the iterations within the algorithm will stop

prematurely. This is because the data is perceived to have a lower SNR then it

actually has. The detectors for ASIR were measured to determine the effect of the

quantization and a factor was derived to correct the stopping criteria for the ASIR-TB

data.

3.7 Summary

This chapter develops the MBSIR algorithm to reduce the blurring in spectral

images collected by ETF systems. The algorithm is based on other statistical re-

construction algorithms and starts with an understanding of the noise statistics of

the sensor. The MBSIR algorithm is the first method developed to reduce both the

spatial and spectral blurring in ETF spectral imaging systems.

The algorithm starts with a guess for the true spectral scene, and then iterates

until a balance between the blurring removed and noise amplification is achieved.

While the MBSIR algorithm is applicable to any ETF system, it will be used with

data collected with ASIS and the test sensor, ASIR-TB.
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IV. Models

As Figure 3.1 shows, the critical component to the MBSIR algorithm is the model

of the spectral imaging sensor. Based on experience working with the MBSIR

algorithm, the algorithm will not improve the resolution without an accurate model.

While the algorithm is derived for any ETF system, a specific system must be modeled

to demonstrate the performance of the algorithm.

This chapter will describe the models for two different sensors used in this

research, ASIS and ASIR-TB. Both of these sensors use a LCTF type of ETF. For

ASIS, two versions of the sensor have been modeled. A first order model was developed

based on an initial design to simulate the performance of the sensor and the MBSIR

algorithm. As the sensor was further refined, a second order model was developed.

This chapter will begin by describing the components of ASIS and then will develop of

the first order model. The second order model will be developed next and is followed

by a discussion of the model differences. The ASIR-TB sensor is then described and

modeled. The chapter concludes with a discussion of the connection between the filter

sampling and the reconstruction sampling when using the MBSIR algorithm.

4.1 AEOS Spectral Imaging Sensor

ASIS is composed of five distinct sub-systems. These sub-systems include the

AEOS telescope, adaptive optics for wavefront correction, sensor optics needed for

creating an image, LCTFs for wavelength selection and finally a detector for convert-

ing photons to signal. Each of these areas is discussed in the following sections and

are combined together to form the sensor models needed for the MBSIR algorithm.

4.1.1 AEOS. The AEOS telescope, shown in Figure 4.1, is the entrance

aperture to ASIS. The telescope has a large 3.6m primary mirror partially obscured

by a 72cm central obscuration. The optics of the AEOS telescope create a f/200

ray bundle that follows a Coude path around the telescope mount to a Coude room

containing the adaptive optics bench. A pupil relay demagnifies the telescope entrance
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pupil to present a 4” ray bundle to the experiment room containing the bench optics

for ASIS [26].

4.1.2 Adaptive Optics. The AO system consists of a tracker, a wave-front

sensor (WFS), real-time reconstructor (RTR) hardware, servo loop compensation,

and a deformable mirror (DM) [9]. While using the AO system leads to higher spatial

resolution imagery, it comes at a cost. Approximately half of the light in the visible

wavelengths is split off for the WFS and tracker in the AO system. This reduces

the amount of light available for imaging. However, using AO substantially increases

the peak irradiance at the detector, typically resulting in a higher SNR and a fainter

visual magnitude capability [26].

4.1.3 Sensor Optics. The AEOS telescope directs light to an experiment

room via a rotating flat mirror. A 16”commercially available Ritchey-Chretien input

telescope is utilized in an off-axis configuration in conjunction with a third concave

mirror to yield a 5X all-reflective pupil reduction with approximately a 20mm diameter

exit pupil. The collimated ray bundle is then folded and de-rotated by a custom

designed 3-mirror K-mirror rotation assembly. After de-rotation, the beam path is

separated into two channels using a dichroic beam splitter that reflects 400nm to 950

nm light and transmits light 950 nm and above. The reflected visible to near-IR

light (400-950nm) is passed through a pair of counter rotating dispersion prisms that

provide compensation for the differential bending of light at different wavelengths

that results from the atmosphere. Finally, the visible to near-IR path is split into two

channels using a dichroic beam splitter. [26]. Figure 4.2 is a picture of ASIS showing

the optical elements.

4.1.4 LCTF. Due to stringent imaging requirements, LCTFs are used in

ASIS for the spectral wavelength selection. The CRI VariSpecTM LCTFs were chosen

because of the filters have no mechanical parts, fast switching times, and are easily

integrated into the optics of the sensor.
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Figure 4.1: The Advanced Electro-Optical System (AEOS). AEOS is the entrance
aperture for ASIS.
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Figure 4.2: Picture of the ASIS optics after the AO bench. The two cameras to the
right of the picture are the ASIS visible imaging channels. The blue cubes attached
to the cameras are the visible LCTFs. The additional LCTF at the bottom of the
picture is the NIR LCTF.

Two types of LCTFs are currently used for wavelength selection for ASIS and

a third will be added in the future. These filters have been shown in many circum-

stances to provide good quality spectral images [24, 36, 37]. The first is a VIS filter,

operating between 400nm and 720nm with a center wavelength selectable to an ac-

curacy of <1nm and a 20nm bandwidth measured at 550nm. The second is a NIR

filter, operating from 650nm to 1100nm with a center wavelength selectable to <1nm

accuracy and a 10nm bandwidth measured at 850nm. The third filter is a SWIR filter

that is not currently installed. The SWIR filter is planned to operate between 1µm

and 2.3µm with a 20nm bandwidth.

As seen in Fig 4.3, the transmission levels through the filters are relatively

low and vary with the selected center wavelength. The very low transmission in

the blue spectrum (400nm - 450nm) may prove this portion unusable for dim to

moderately illuminated objects. As with the transmission, the bandwidth of the

filter is proportional to the selected center wavelength, being narrower at shorter

wavelengths and wider at longer wavelengths.
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The LCTFs are several stages of similar Lyot cells. Each cell consists of a

linear polarizer, a liquid crystal sheet used to introduce a variable retardance, and a

fixed retarder, where the thickness of the fixed retarders of successive cells increases in

size [36]. The filter’s passband is tuned by applying a set retardance to each cell which

introduces a phase delay that destructively interferes light outside a small bandwidth.

Multiple cells are needed in each filter to achieve the range of wavelength selection

and bandwidth desired [18].

One of the challenges in using a LCTF is overcoming the filter’s inherent po-

larization. The LCTFs have a series of aligned linear polarizers within the filter that

linearly polarizes the incoming light. This presents a spectral radiometry problem

when the LCTFs are used to spectrally image a satellite. The materials on a satellite

will polarize the randomly polarized sunlight. The optical elements of ASIS will alter

the polarization of polarized light, making it difficult to determine the light’s original

linear polarization. Using only a single LCTF, an unknown number of photons of

the orthogonal polarization will be lost. Without an precise photon count, it is not

possible to accurately determine the spectra of the object.

A sensor design can overcome this problem. A second filter in the same band

was placed so that the polarizers are orthogonal to the polarizers in the original filer.

The filters were placed in separate optical paths behind a polarization beam splitting

(PBS) cube [36]. A custom PBS cube was designed to precisely match the opti-

cal thickness and dispersion characteristic of the LCTF for which the intermediate

imaging lens had been originally optimized [26]. The two LCTFs are rotated so the

orthogonal linear polarizations match the PBS cube output states and are mounted

between the final relay and the sensor detector. By precisely synchronizing the inte-

gration time of the two sensors, the contributions of the two orthogonal polarization

states can be imaged. All photons reflected from the satellite can now be accounted

for by summing the images.
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Figure 4.3: Samples of typical transmission vs. wavelength (nm) output of the VIS
and NIR ASIS LCTFs. The passbands shown represent a tenth of the possible filters
passbands.

Table 4.1: Andor iXon DV887 Parameters. [6]
Parameter Value

Active Pixels 512x512
Pixel Width (WxH; µm) 16x16
Image Area (mm) 8.2x8.2
Active Area pixel well depth (e−; typical) 220,000
Gain Register pixel well depth (e−; typical) 800,000
Max Readout Rate (MHz) 10
Frame Rate (frames per second) 32 to several 100’s
Read Noise (e−) <1 to 62 at 10MHz

4.1.5 Imaging System. The imaging system for each channel consists of an

Andor Technology iXon DV887 camera operating at −60oC. This advanced camera

has a back illuminated electron multiplying charge coupled device (EMCCD) for single

photon counting capability. The camera achieves a maximum Quantum Efficiency

(QE) of 92.5% at 0.575µm and has maximum flexibility in the readout of the 512x512,

16µm pixels in the CCD array through both binning and multiple read-out rates. The

camera also can operate with extremely low noise, from ≤1e− to 62e− of read noise [6].

The high QEs and the low read noise in this camera make it a good choice to mitigate

the low transmission rates of the LCTFs. Table 4.1 gives the key parameters of the

cameras used for ASIS and Fig 4.4 gives the QE for the camera.
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Figure 4.4: QE of the iXon DV887 camera. The BV curve is the QE for the standard
back-illuminated device. The UVB is the QE for the back-illuminated device with a
UV coating [6].

4.2 First-Order ASIS Model for MBSIR

All of the five components described in the previous section and the atmosphere

were used to create the first-order model of ASIS. This early model was created

while ASIS was still being constructed and uses a summation of predicted models

of the ASIS’s individual components. The second-order model replaces some of the

individual component models with a measured sensor spectral response.

Both the first and second order models for the sensor are broken down into three

sub-models: 1) a sub-model that describes the spatial blurring in the sensor, 2) one

describing the spectral blurring and 3) one that describes the spectral radiometry (the

spectral photon losses). The first sub-model is described in the h1 function, while the

second and third sub-models are given by the h2 function in Equation (3.15). In both

of the models, only the diffraction caused by the AEOS aperture causes any spatial

blurring (although other affects can be added, such as known sensor abberations or

estimated atmospheric blurring) and spectral blurring is caused only by the LCTFs.

However, all of the elements in ASIS contribute to the spectral radiometry sub-model.
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For some of the optical elements, such as the dichroics, there are different spectral

transmissions for the orthogonal polarizations.

The first-order model for ASIS is designed to be as flexible as possible. While

much of the data used to derive the model is given for specific wavelengths, the model

is designed to interpolate values for wavelengths where no truth data is provided.

This is done in one of three ways. The first is the derivation of analytic equations

for the response of the element, or collection of elements, for any given wavelength.

The second is the creation of a high-degree polynomial fit to known spectral response

data. The final way is a high resolution look-up table of transmission values. Each is

done to minimize the overall error in the model.

4.2.1 Atmosphere. The first-order model will assume that all spatial blurring

due to atmospheric turbulence will be corrected for with the AO system. Also, the

first-order ASIS model will assume the spectral transmission of the atmosphere is

100%.

4.2.2 AEOS. The AEOS system contributes to both the spatial blurring

and the spectral radiometry of ASIS. The spatial blurring is based on the optical

transfer function (OTF) of the AEOS aperture. The OTF can be computed from the

aperture based on the well known relation [19],

OTF (fx, fy, λ) = P (x, y, λ)⊕ P (x, y, λ) |fx=λzix,fy=λziy, (4.1)

which states the OTF (x, y, λ) is the autocorrelation (⊕) of the pupil, P (x, y, λ). Since

the scaling for the OTF is dependent on the wavelength, there will be a different OTF

for each wavelength. For ASIS, the pupil is the AEOS entrance aperture and consists

of a primary mirror with the obscuration. The cross-section of the OTF at 500nm is

shown in Figure 4.5.

In addition to the spatial blurring described by the OTF, the AEOS mirrors

and Coude window effect the spectral radiometry. The primary mirror is coated
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Figure 4.5: The Optical Transfer Function of ASIS at 500nm.

with aluminum and the secondary, tertiary, and four additional Coude mirrors are

coated with protected silver. The Coude window has a flat spectral transmission of

approximately 97% for 400-2300nm. Figure 4.6 shows the modeled spectral reflectance

versus the given data for the aluminum and protected silver mirrors.

4.2.3 Adaptive Optics. The adaptive optics is an extremely complex system

and is not modeled component by component. However, if the AO system is perform-

ing well, it effectively cancels out most atmospheric blurring. The components of the

AO system do substantially contribute to the spectral radiometry modeling of ASIS.

The AO system has 11 protected silver mirrors and the 50/50 dichroic. Figure 4.7

shows the modeled spectral transmission versus the given data for the 50/50 dichroic.

4.2.4 Sensor Optics. The sensor optics has nine protected silver mirrors for

the visible light and ten for the near-IR. Included in these mirrors are the reduction

telescope, the de-rotator and several turning flats. Also, the sensor optics includes

two dichroic elements for wavelength separation. Figure 4.8 shows the spectral trans-

mission for the ASIS dichroics. Modeling the SWIR and VIS/NIR dichroics with the

same method as the other ASIS elements (the polynomial fitting method) is especially
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Figure 4.6: Model of the Aluminium and Protected Silver mirrors used in ASIS.
The points represent the given data and the solid line the model.
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Figure 4.7: Model of the 50/50 dichroic used for the AO system in ASIS. The points
represent the given data and the solid line the model.
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Figure 4.8: Model of the VIS/NIR and NIR/SWIR dichroics used in ASIS. The
solid line is the S polarization, the dashed line is the P polarization.

difficult. The sharp cut-offs did not lend itself to this method. Therefore the dichroic

model is a look-up table of values at a 0.1nm sampling.

The optical elements for the atmospheric dispersion corrector, imaging lenses

and relays have many different types of coatings. Figure 4.9 shows the modeled

spectral transmission versus given data for these coatings.

4.2.5 LCTFs. The LCTFs are the only spectral blurring element and form

the basis for the SMF. The transmission through the LCTFs is modeled as a Gaussian

curve. The maximum transmission and bandwidth are derived from provided truth

data. These values are then used to construct a Gaussian profile corresponding to the

filter transmission for any filter setting. Figure 4.10 shows a model LCTF transmission

versus the manufacture provided data for the LCTF.

4.2.6 Imaging System. The imaging system is a high gain/low noise camera.

For this camera, the QE curve is part of the spectral radiometry and is modeled.

Figure 4.11 gives the modeled QE of the camera versus given data.

4.2.7 Overall First-Order Model. Combining all of these elements together

gives the first-order model of the ASIS sensor. Figures 4.12 and 4.13 show the overall

first-order model of the spectral transmission of ASIS in the visible and near-IR
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Figure 4.9: Model of the various coatings used in ASIS. The different coating include
BK7, BAK 4, CAF2, F2, SK2, SK15 and SK16. The points represent the given data
and the solid line the model.
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Figure 4.10: Model of one transmission profile of the VIS and NIR ASIS LCTFs.
The points represent the given data and the solid line the model.

400 500 600 700 800 900 1000 1100 1200
0

10

20

30

40

50

60

70

80

90

100
Andor iXon DV887 QE at −70 deg C

wavelengths (nm)

Q
E

 (%
)

Figure 4.11: Model of the ASIS camera. The points represent the given data and
the solid line the model.
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Figure 4.12: Spectral transmission of the first-order ASIS model in the visible
without the LCTFs. The solid lines represent the P polarization, while the dashed
lines are the S polarization.

without including the LCTFs. In the figures, the S and P polarizations refer to

the orthogonal vertical and horizontal polarization states. As Figure 4.14 shows this

model has a reasonably close match to the best available truth data for the spectral

radiometry of the sensor. As Figure 4.14 shows, the model has an average maximum

error of less than 3% in the visible to near-IR range.

4.3 Second-Order ASIS Model

After ASIS was fully constructed, several calibration measurements were taken

to determine the actual sensor response. Additionally, the atmospheric transmission

effects were taken into account by simulating the conditions at the MSSC. Both of

these steps were accomplished to create a second-order model of the sensor. Since the

visible channels is the only fully operational channel, containing the dual filter/array

sub-channels for polarization collection, the calibration measurements were made for

the visible only. Similar measurements will be made for the NIR when the full NIR

channel is completed. Until the NIR measurements are made, the first order model

for the optical components in the NIR will be used.
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Figure 4.13: Spectral transmission of the first-order ASIS model in the near-IR
without the LCTFs. The solid lines represent the P polarization, while the dashed
lines are the S polarization.
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Figure 4.14: Overall model error in the spectral radiometry of the ASIS model.
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The measurements changed the modeling of the AO system and sensor optics.

Instead of using the individual optical element transmission and reflection values,

the measured total spectral response is used. The LCTF model uses the results of

calibration measurements instead the measured data provided by the manufacturer.

Because actual spectral response measurements are used, the sampling resolution of

the second-order model is limited to the spectral resolution of the measurements,

which is 1nm.

4.3.1 Atmosphere. The transmission losses associated with the atmosphere

are implemented in the second-order ASIS model through the atmospheric simulator

in the High Energy Laser End-to-End Operational Simulator (HELEEOS) software.

HELEEOS is an AFIT developed simulation for high energy laser propagation through

the atmosphere. Part of the HELEEOS software includes an atmospheric simulation

that provides atmospheric transmission losses for a variety of elevations, ranges and

environmental conditions. For the second-order model, an elevation of 10,000 ft is used

in a tropical summer environment for the typical conditions at the MSSC. Figure 4.15

gives the output of the HELEEOS atmospheric simulation for the visible to the near-

IR. Spatially, the AO system is still assumed to correct any spatial blurring due to

the atmospheric turbulence.

4.3.2 AEOS. Calibrating the spectral response of the AEOS system is

difficult due to the location and size system of the entrance aperture. Therefore, the

results of the first-order model will be carried forward unchanged for the second-order

model.

4.3.3 Adaptive Optics. The calibration of the AO and other sensor optics

was accomplished by using an Integrating Sphere (IS) placed in two locations within

the ASIS path. By taking the difference of the data collected in the two locations, the

spectral response was determined. Using this method two sets of calibrated spectral

response were calculated. The first spectral response is for the optics in the AO
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Figure 4.15: Typical atmospheric transmission profile for a summer tropical envi-
ronment at a 10,000’ altitude using the HELEEOS atmospheric simulation.

system. For this measurement, the IS was placed just before and then just after the

AO bench. Figure 4.16 shows the calculated spectral response for the AO system.

Both the S and P polarizations were collected to measure the different polarization

dependent spectral responses.

4.3.4 Sensor Optics. The second spectral response is for the rest of the

optics in ASIS. The integrating sphere was placed in front of the optics after the AO

system and then just after these optics. Again, the difference was taken between

these two measurements to calculate the spectral response for the ASIS optics shown

in Figure 4.17. Again, both the S and P polarizations were collected to measure the

different polarization dependent spectral responses.

4.3.5 LCTF Calibration. The transmission values for different filter center

wavelengths were measured using a Varian Cary 5000 UV-Vis-NIR Spectrophotome-

ter. The results of these measurements were used in the second-order model for ASIS.

Several different calibration measurements were taken for the visible wave-

lengths. The Cary 5000 uses a grating spectrometer to measure the spectral transmis-

sion of the filters, so the spectral light is polarized. Therefore, the P and S polariza-

tions need to be collected independently for each calibration measurement to ensure
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Figure 4.16: Measured spectral response of the adaptive optics system in the visible
[26].
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Figure 4.17: Measured spectral response of the ASIS optical components in the
visible [26].
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that the full spectral response of the filter was captured. Three scans were collected

to measure the repeatability of the spectral transmission, based on a 1nm scan across

the range of the filter. For both the VIS filter 50845 and 50928, the transmission was

repeatable to less than 1% difference. Scans were also completed at higher 0.1nm and

0.5nm resolutions to obtain an average spectral throughput for the LCTF model.

The temperature dependence of the filters was also measured. The 1nm filter

scans were repeated with the 50845 filter 11oC and the 50928 filter 12oC higher than

the previous scans. The elevated temperature affected the amplitude of the peak

transmission, but did not substantially alter the bandwidth. For the 50845 filter the

mean peak transmission was 15.5% higher while the bandwidth was 0.76% lower. For

the 50928 filter, the transmission was 18% higher and the bandwidth was 0.035%

higher. Because of the increase in the peak transmission, the LCTFs must be re-

measured for the operating temperature of the filters is changed.

4.3.6 Imaging System. The imaging arrays were not calibrated for the

second-order model. The first-order model will be carried forward for use in the

second-order model.

4.3.7 Overall Second Order Model. The elements in this section were com-

bined to give the second order model of ASIS. Figure 4.18 shows the overall second-

order model transmission of ASIS.

4.4 First- and Second-Order ASIS Model Comparison

Figure 4.19 shows how the combination of the measured elements has changed

the model of ASIS. The figure shows the difference between the overall first and

second-order spectral transmission models without the LCTFs. The difference be-

tween the models average 3% across the visible range. The most significant change

is due to the addition of the spectral atmospheric effects. The model differences are
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Figure 4.18: Spectral transmission of the second-order ASIS model in the visible
without the LCTFs. The solid lines represent the P polarization, while the dashed
lines are the S polarization.

larger near the atmospheric absorption line just below 700nm and at the dichroic at

700nm.

Figures 4.20 and 4.21 show the difference of the peak transmission and the

bandwidth between the given data for the visible LCTFs and measured values. The

average difference in the peak transmission is 13% and 7% of filters 50845 and 50928.

The average difference in the bandwidth is 2.5% and 1%.

4.5 AFIT Spectral Image Reconstruction Test Bench

As mentioned previously, the ASIR-TB sensor is similar to ASIS, but is less

complicated, cheaper, and does not require scheduling to use. From a modeling

perspective, the two sensors share many of the same elements. ASIR-TB has three

basic subsystems as compared to six for ASIS. The basic ASIR-TB subsystems include

the sensor optics, filters for wavelength selection and a imaging array, while those for

ASIS add the atmosphere, AEOS, and the adaptive optics.

In the ASIS data collections, diffraction of the aperture was the only assumed

spatial blurring in the collected images. Using diffraction is not practical for ASIR-TB
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Figure 4.19: Overall model differences in peak spectral transmission of the ASIS
first- and second-order models without the LCTFs.
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Figure 4.20: Difference between the given and the measured peak transmission for
the visible LCTFs. The solid line is the measured data, while the dashed line is the
given values.

51



400 500 600 700 800
0

5

10

15

20

25

30

35
Bandwidth comparison − 50928

wavelength (nm)

ba
nd

w
id

th
 (

nm
)

400 500 600 700 800
0

5

10

15

20

25

30

35
Bandwidth comparison − 50845

wavelength (nm)

ba
nd

w
id

th
 (

nm
)

Figure 4.21: Difference between the given and the measured bandwidth for the
visible LCTFs. The solid line is the measured data, while the dashed line is the given
values.

Table 4.2: ASIS and ASIR-TB Model Comparison.
ASIS ASIR-TB

Atmosphere Spectral Trans. None
AEOS (Spatial blurring) Diffraction Focus Error
Adaptive Optics Spectral Trans. None
Sensor Optics Spectral Trans. Spectral Trans.
LCTFs Yes Yes
Imaging Array Si CMOS

given the sizes of the lenses and distance limitations. Instead, for ASIR-TB, a known

defocus will be used to spatially blur the two filaments of the sources.

The main element that both ASIS and ASIR-TB share are the filters for selecting

the spectral wavelength to image. Both sensors use the same LCTFs as the spectral

selection element. Table 4.2 provides a comparison the model elements of ASIS and

ASIR-TB.

4.5.1 Sensor Optics. ASIR-TB has three lenses all of which have a diameter

of 2.54cm and have a BK7 coating. The initial lens has a focal length of 7.56cm. With

the source placed 45cm in front of this lens, this lens forms an image of the source

9cm behind the lens, with the image reduced in magnification 5 times. Located 50cm
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behind this intermediate image plane is a 50cm focal length lens which serves to

collimate the image. After this collimating lens is a 5.02cm focal length imaging lens

which takes the incoming collimated light and forms an image on the imaging array.

The combination of the second and third lenses provide a further 10 times reduction

in the image size of the source. The complete system offers a 50 times demagnification

of the source image.

4.5.2 LCTF. Placed in the collimated space between the second and third

lenses is the same VIS and NIR CRI VariSpecTM LCTF used for wavelength selection

in ASIS. ASIR-TB will only collected randomly polarized sources so dual orthogonal

polarization channels are not needed.

4.5.3 Imaging System. Located behind the third lens is are two differ-

ent imaging arrays. The first is a SUMIX SMX-110 Complementary Metal Oxide

Semiconductor (CMOS) imaging array used to collect the image of the source after

passing through the LCTFs with the visible filter. For the NIR filter, a Lumenera

Lu-105 CMOS imaging array is used as this higher quality camera became available

for the NIR collections. While these simple arrays are not low noise, they are suffi-

cient for collecting the spectral image cube for the MBSIR algorithm since the signal

level is controllable. Both arrays are 1.3 megapixel and have 7.5µm pixels for the

SMX-110 and 5.2µm pixels for the Lu-105. Both arrays are capable of multiple read

out rates and binning to most effectively record the ASIR-TB data. No QE curve was

given for the SMX-110, so a generic CMOS QE curve was assumed and is shown in

Figure 4.22. The QE curve for the Lu-105 was provided and is given in Figure 4.23.

4.6 ASIR-TB Model

To apply the MBSIR algorithm, a model of ASIR-TB must be created. The

parts of the ASIR-TB model are similar to those of ASIS, except that ASIR-TB does

not include any atmospheric effect or adaptive optics.
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Figure 4.22: QE of a generic CMOS imaging array [31].

Figure 4.23: QE of the Lumenera Lu-105 imaging array [2].
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Figure 4.24: The cross-section of the OTF for ASIR-TB with a 0.01mm induced
focus error at a wavelength of 600nm.

4.6.1 AEOS (Spatial Blurring). While ASIR-TB does not use AEOS as

its entrance aperture, an abberation is introduced to spatially blur the blubs of the

source. For ASIR-TB, this abberation is a known focus error. The focus error is

created by intentionally defocusing the imaging array. The abberation is described by

placing the phase corresponding to the focus error in the description of the entrance

aperture. For ASIR-TB, the entrance aperture is the first lens in the optical path.

Figure 4.24 shows the OTF corresponding to the phase of the focus error.

4.6.2 Sensor Optics. The sensor optics for ASIR-TB is modeled by looking

at the spectral transmission of the coating on the three lenses in the sensor. While

the spectral transmission does not contribute to the spatial or spectral blurring, it

does go into the third part of the model describing the spectral transmission. Since

all of the lenses have the same BK7 coating, the spectral transmission of the sensor

optics will be the transmission of six BK7 coatings, or one coating for each side of the

three leses. Figure 4.25 shows the modeled transmission of the six BK7 coatings.
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Figure 4.25: Spectral transmission for the six BK7 optical coatings in ASIR-TB.
The points represent the given data and the solid line the model.

4.6.3 LCTFs. The calibration measurements discussed in section 4.3.5 are

used to model the VIS LCTFs in ASIR-TB. The NIR filter uses the interpolated data

described in the first-order model of ASIS. Figure 4.26 shows the spectral transmission

that will be used for ASIR-TB.

4.6.4 Imaging System. As with the sensor optics, the imaging system will

contribute to the spectral radiometry of the sensor. The spectral radiometry is given

in the quantum efficiency of the CMOS imaging arrays. Figures 4.27 and 4.28 show

the modeled quantum efficiency.

4.7 ASIR-TB Experimental Set-up

The experimental set-up of ASIR-TB is shown in Fig 4.29. For this research,

Mercury Argon (Hg(Ar)) and Neon (Ne) Newport/Oriel Spectral Pencil lamps are

used and emit persistent lines in the VIS and NIR ranges as shown in Fig 4.31 and 4.32

[3]. The location and relative amplitude for each line of the sources was measured

with a spectrometer and verified in a database of atomic spectra [43].
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Figure 4.26: The SMF for the visible and near-IR LCTFs. For the visible, there are
15 selected center wavelengths representing a 20nm sampling from 420nm to 720nm.
For the near-IR, there are the 21 selected center wavelengths, representing a 5nm
sampling from 650nm to 750nm.
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Figure 4.27: Quantum efficiency for a generic CMOS imaging array used for the
SMX-110 CMOS imaging array [31]. The points represent the given data and the
solid line the model.
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Figure 4.28: Quantum efficiency for the Lu-105 CMOS imaging array. The points
represent the given data and the solid line the model.

The pencil lamps consists of a single bulb that is bent back on itself so that two

filament like areas can be seen. These two filaments are approximately 3mm wide

and are separated by approximately 0.5mm. An image of the source taken with the

experimental set-up given in Fig 4.29 is show in Fig 4.33.

To demonstrate the MBSIR algorithm, a spectral data cube of the sources was

collected with the experimental set-up described in this section. A known amount of

focus error was induced to spatially blur the bulbs together. The LCTF was set to

collect a coarse spectral scan of the source. For the visible, this scan was started at

420nm and went to 700nm in 20nm steps. For the NIR, the spectral sampling was

from 650nm to 750nm in 5nm steps. The NIR scan was only collected from 650nm

to 750nm because the lines over 750nm are not intense enough to be collected. These

fifteen images in the VIS and 21 images in the NIR comprised the spectral data

cube. The course spectral resolution blurred the spectral lines of the source. The

spectral blurring made the spectral lines at 546 and 576/579nm in the visible and

lines at 653nm and 660nm; 693nm and 703nm; and 717nm and 724nm in the NIR

unresolvable.
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Figure 4.29: The experimental set-up of ASIR-TB for testing the MBSIR algorithm.
The system used three lenses to demagnify the spectral source 50 times, while passing
collimated light through the LCTF. The source is located at the end of the optics
bench, at the top right of the figure.

Figure 4.30: A schematic of the experimental set-up for ASIR-TB testing the MB-
SIR algorithm. The system used three lenses to demagnify the spectral source 50
times, while passing collimated light through the LCTF.
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Figure 4.31: The known emission lines of Hg(Ar) [3]. The amplitude of the lines
derived from the dominant Hg emissions [43].
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Figure 4.32: The known emission lines of Ne [3]. The amplitude of the lines are
referenced from the dominant line [43].
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Figure 4.33: An image of the two filament like areas of the Newport/Oriel Hg(Ar)
pencil lamp. The image was captured through the LCTF with a selected center
wavelength of 546nm. The Ne source looks similar when imaged with the NIR filter.

4.8 Filter Sampling

The sampling for the collection of the spectral data cube (“filter sampling”) is

critical for the quality of the reconstruction. The MBSIR algorithm functions best

when the algorithm is provided shared spectral information between successive images

in the spectral data cube. The shared information comes from the overlapping of the

bandwidths of the selected filter transmissions. A balance must be reached between

too little and too much overlap. Too little overlap yields a lack of shared spectral

content in the data reducing the achievable post-processed spectral resolution. Too

much overlap provides excessive spectral repetition within the collected data. The

over-sampled data increases the required time to collect the spectral image cube while

not providing any increase in the post-processed spectral resolution. The effect of filter

sampling on the quality of the reconstruction will be further discussed in Chapter VII.

The filter sampling and the sampling of the reconstruction can be chosen inde-

pendently. Typically, the filter sampling is dependent on time constraints required

to image a non-stationary satellite. The faster the object is moving, the coarser the
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sampling. However, the coarse filter sampling will degrade the performance of the

MBSIR algorithm. The reconstruction sampling is typically 1nm, and is limited by

the sampling limitations of the model.

The critical filter sampling can be determined by examining at the cut-off of

the Fourier transform of the Gaussian-shaped filter transmission. However, since

the Fourier transform of a Gaussian is another Gaussian, a cut-off is never reached.

Therefore, assuming that the transformed Gaussian reaches its cut-off when it reaches

1% of its maximum value, the critical sampling is given by,

∆λ =
2πbw√
−2ln(1%)

, (4.2)

where bw is the bandwidth of the transmission of the filter for a certain wavelength

selection. Using 5nm as the minimum fixed bandwidth for the visible and near-IR

filters, the critical fixed filter sampling is 2.59nm. However, a non-linear filter sampling

can also be used. For this case, the filter sampling of each image is dependent on the

bandwidth of the previous image. Since the bandwidth of the filter increase with

wavelength, employing the non-linear sampling is the most effective way to sample

the filter, while maintaining the overlap required to reconstruct the spectral image.

Finding the minimum number of images required for spectral reconstruction is critical

when imaging non-stationary objects.

4.9 Summary

This chapter developed the three models that are needed in this research. These

models are critical to optimize performance of the MBSIR algorithm, and will be

used in rest of the research. The first-order model was created while ASIS was still

being constructed and uses a summation of predicted models of the ASIS’s individual

components. The second-order model replaces some of the individual component

models with a measured sensor spectral response after the sensor was constructed.

The results of the two models are very similar. While either model can be used, the
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second-order model is considered more accurate since it used the measured data, but

it has a limited spectral sampling.

The other model developed in this chapter was the ASIR-TB model. This model

was done as a mixture of the element by element method and calibration method.

The lenses and imaging array were modeled separately, but the model for the visible

LCTF was constructed from calibration measurements.

The chapter also contains a brief discussion of some sampling issues between

the filter and the MBSIR reconstruction. The finer the filter sampling, the better the

results. However, the finer filter sampling increases the amount of time it takes to

collect the spectral data cube.
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V. Simulations

Simulations provide a way to determine the expected performance of the MBSIR

algorithm. The models developed in the previous chapter were used for simula-

tions of both the ASIR-TB and ASIS sensors. The first two simulations are a visible

and near-IR spectral source as collected by the ASIR-TB sensor. The purpose of the

simulations is to show that the ASIR-TB sensor will blur the spectral source such

that the source cannot be resolved spatially or spectrally. The MBSIR algorithm was

then applied to the simulated data to show the post-processed data can be resolved

using the defined criteria.

The third and fourth simulations were simulations of a singlet and binary star

collected with the ASIS sensor. The purpose of these simulations is to show the

algorithm can reconstruct the spectra of the stars. For the singlet star, a spectral

only reconstruction was done. For the binary star, the reconstruction included both

spatial and spectral elements.

5.1 Resolution Criteria

In this research two resolution criteria need to be defined. The first is spatial

resolution. Two spatial features are resolved if the features can be distinguished in

a spatial sense using the familiar Rayleigh criteria [25]. The spectral resolution is

defined as the ability to differentiate between two closely spaced spectral features.

The criteria to differentiate the two features will be based on the Rayleigh criteria.

The spectral features will be defined to be resolvable if the minimum value between

the two features is less than 86% of the amplitude of the smaller feature.

5.2 ASIR-TB

A visible and near-IR spectral source collection was simulated with ASIR-TB

to show the benefits of the MBSIR algorithm. The visible source was Hg(Ar) and

the near-IR source was Ne. In both cases, ASIR-TB blurred the source such that

the spatial and spectral features were not resolvable using the defined criteria. The
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Figure 5.1: The Hg(Ar) source used to create a simulation of the spectral image
collection and reconstruction with ASIR-TB. The spatial image is the scene at 546nm.

MBSIR algorithm was applied and the blurring was reduced so the features were

resolvable.

5.2.1 Hg(Ar) Spectral Source. This simulation began with the creation of

a Hg(Ar) source with the same spatial and spectral profile as the actual source. The

simulated spatial and spectral scene is shown in Figure 5.1. This spectral cube of the

source has 321 image plans, or one image plane for every 1nm from 400nm to 720nm.

5.2.1.1 Hg(Ar) Simulated Data Generation. The ASIR-TB model

developed in section 4.5 was used to create a simulated spectral data cube of the

source. The OTF was calculated for each wavelength and was used to spatially blur

the image of the simulated source in Figure 5.1. Each of the images in the scene was

then multiplied by the spectral transmission profiles of the LCTF. The application of

the spectral mixing function reduced the image cube from 321 planes for the source

to 15 planes for the data. These 15 image planes correspond to the selected LCTF

sampling of 20nm from 420nm to 720nm. Poisson noise was added to the simulated

data cube to account for the expected statistical noise of the collected image. One
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Figure 5.2: Simulation of the Hg(Ar) source collected by ASIR-TB. The spatial
image is the scene at 540nm. The solid lines represent the spectra of the simulated
image, while the dashed lines are the spectral lines of the source.

image of the simulated spectral data cube is shown in Figure 5.2. Notice that the two

filaments in the image and the lines at 546nm and 577/579nm in the spectra are no

longer resolvable.

5.2.1.2 Hg(Ar) Simulated Reconstruction. The MBSIR algorithm was

then applied to the simulated spectral data cube. Starting with an initial guess

of unity for the scene, the MBSIR algorithm iterated to reduce the blurring. The

application of the MBSIR algorithm produced a reconstructed source with 321 image

planes, or a plane for every 1nm from 400nm to 720nm. The reconstructed source

scene and spectra are shown in Figure 5.3.

5.2.1.3 Hg(Ar) Simulation Results. A closer examination of the re-

sults show that, in the simulation, the MBSIR algorithm was able to resolve the two

filaments in the image and the 546nm and 577/579nm lines in the spectra. A close

up of these areas is shown in Figure 5.4, where the solid line represents the resolv-

able features in the reconstruction and the dashed line the unresolvable features as
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Figure 5.3: Simulated reconstruction of the Hg(Ar) scene. Image is the source at
546nm. The solid lines represent the spectra of the simulated reconstruction, while
the dashed lines are the spectral lines of the source.

they were prior to processing. Thus, the MBSIR algorithm has been demonstrated in

simulation to improve both the spatial and spectral resolution of a spectral image.

The simulation does show the reconstruction was not able to place the features

at the correct locations, or with the correct amplitudes. These differences will be

discussed in the next chapter.

5.2.2 Ne Spectral Source. As with the Hg(Ar) source, the NIR simulation

began with the creation of a simulated Ne source. The simulated spatial and spectral

scene was shown in Figure 5.5 and has the same spatial and spectral profile as the

actual source. This spectral cube of the source has 101 image plans, or one image

plane for every 1nm from 650nm to 750nm. The NIR wavelength range was reduced

because the lines for Ne over 750nm and not detectable with ASIR-TB. Including

these undetectable lines greatly increase the computation time for the algorithm with

no benefit.
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Figure 5.4: Demonstration of the non-resolved to resolved spatial and spectral
profile of the simulated Hg(Ar) source.
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Figure 5.5: The Ne source used to create a simulation of the spectral image collec-
tion and reconstruction with ASIR-TB. The spatial image is the scene at 650nm.
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Figure 5.6: Simulation of the Ne source collected by ASIR-TB. The spatial image
is the scene at 650nm. The solid lines represent the spectra of the simulated image,
while the dashed lines are the spectral lines of the source.

5.2.2.1 Ne Simulated Data Generation. The ASIR-TB model devel-

oped in section 4.5 was used to create a simulated spectral data cube of the source.

The OTF was calculated for each wavelength and was used to spatially blur the im-

age of the simulated source in Figure 5.5. Each of the images in the scene was then

multiplied by the spectral transmission profiles of the LCTF. The application of the

spectral mixing function reduced the simulated data cube from 101 planes for the

source to 21 planes for the data. These 21 image planes correspond to the selected

LCTF sampling of 5nm from 650nm to 750nm. Poisson noise was added to the sim-

ulated data cube to account for the expected statistical noise of the collected image.

The simulated spectral data cube is shown in Figure 5.6. Notice that the two filaments

in the image and the lines at 653nm and 660nm; 693nm and 703nm; and 717nm and

724nm in the spectra are no longer resolvable.

5.2.2.2 Ne Simulated Reconstruction. The MBSIR algorithm was then

applied to the simulated data. Starting with an initial guess of unity for the scene, the

MBSIR iterated on the estimate of the scene until the algorithm reduced as much of
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Figure 5.7: Simulated reconstruction of the Ne scene. Image is the source at 650nm.
The solid lines represent the spectra of the simulated reconstruction, while the dashed
lines are the spectral lines of the source.

the blurring as possible. The application of the algorithm produced a reconstructed

source with 101 image planes, or a plane for every 1nm from 650nm to 750nm. The

reconstructed source scene and spectra are shown in Figure 5.7.

5.2.2.3 NIR Simulation Results. A closer examination of the results

show that, in the simulation, the MBSIR algorithm was able to resolve the two fila-

ments in the image and the 653nm and 660nm; the 693nm and 703nm; and the 717nm

and 724nm lines in the spectra. A close up of these areas is shown in Figure 5.8, where

the solid line represents the resolvable features in the reconstruction and the dashed

line the unresolvable features in the simulated image. Thus, the MBSIR algorithm

has demonstrated the ability to improve both the spatial and spectral resolution of

a spectral image. As with the Hg(Ar) simulation, the reconstruction shows similar,

but not quite as pronounced, difference in the reconstructed feature locations and

amplitudes from truth. These differences will also be discussed in the next chapter.
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Figure 5.8: Demonstration of the non-resolved to resolved spatial and spectral
profile of the simulated Ne source. The solid lines represent the cross-section of the
simulated reconstructed image and the spectra of the simulated reconstruction, while
the dashed lines are the cross-section and spectra of the simulated image.

5.2.3 ASIR-TB Simulation Results. The simulations for the Hg(Ar) and

the Ne sources show that the MBSIR algorithm can successful reduce the blurring of

a spectral image. While the exact image scene is not reconstructed, the algorithm is

able to resolve both spatial and spectral features in the images after post-processing,

that were not resolvable when the image was collected.

5.3 ASIS

To simulate the performance of the MBSIR algorithm on data collected with

ASIS, two different simulations were used. The first simulation was a spectral only

reconstruction of a singlet star. A binary star was then used to simulate the perfor-

mance of the algorithm with the added spatial component.

For the both star simulations, the first-order ASIS model developed in section 4.2

was used. For the singlet star simulation, the filter sampling will be set at 5nm, so 57

images will be collected in the visible (every 5nm between 420nm and 700nm) and 69

images in the near-IR (every 5nm between 660nm and 1050nm). For the binary star

simulation, the filter sampling will be set at 1nm, so 321 images will be collected in the
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Blackbody curve of a 30000 K star

Figure 5.9: Spectral output of a 30000K star. The O class star is assumed to be a
perfect blackbody.

visible (every 1nm between 420nm and 700nm) and 391 images will be collected in the

near-IR (every 1nm between 660nm and 1050nm). For both simulations, the MBSIR

algorithm was used to reconstruct the spectra of the scene to a 1nm resolution, but

with the blurring reduced. For the binary star, diffraction in the ASIS aperture was

the only spatial blurring.

5.3.1 Singlet Star. The first simulation was a spectral only reconstruction of

a 30,000K singlet star. For this simulation, no spatial blurring was used. The spectra

of the star will be blurred and then reconstructed using a spectral only reconstruction.

According to the Planck blackbody equation, the 30,000K star has the spectra

like the one shown in Figure 5.9 [15]. This was the input to the vector representing

the spectra of the true scene. Since this was a spectral only reconstruction, there was

no spatial component.

5.3.1.1 Singlet Star Data Generation. The blackbody curve in Fig-

ure 5.9 was used with the first-order model of ASIS to produce the simulated spectra.

For radiometric purposes in this scenario, the following parameters for the singlet star
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Figure 5.10: Collected spectra of a 30000K star. The O class star is simulated to
be 2.5 solar units and at a distance of 220 light years.

were used; the star is at a distance of 220 light years and has a radius of 2.5 solar

units. A set integration time of 1s was used for the sensor imaging arrays. Poisson

noise was added to the simulated data to account for the expected noise. Figure 5.10

shows the simulated singlet star data.

5.3.1.2 Singlet Star Reconstruction. The spectral-only MBSIR algo-

rithm from Equation (3.17) was then applied to the spectra shown in Figure 5.10. The

reconstruction was started with an initial guess of unity for the entire reconstruction

vector. The result of the spectral-only MBSIR algorithm are shown in Figure 5.11.

5.3.1.3 Singlet Star Simulation Results. As Figure 5.12 shows, the

average percent difference between the reconstruction and the truth data for the

visible and near-IR spectra is approximately 0.5% for this scenario. Therefore, the

simulation shows the reconstruction was able to undo much of the spectral blurring

inherent in ASIS. The reconstruction is worse near the upper and lower wavelengths

of the spectra. This is due to the algorithm estimating the spectra at the edges of the

filter settings where there is a lack information needed for reconstruction.
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Figure 5.11: Reconstructed spectra of a 30000K star. The solid line represents the
true spectra, while the dashed line is the reconstructed spectra. The dashed and solid
lines overlap in the figure.
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Figure 5.12: Percent difference between the truth and spectral-only reconstructed
blackbody spectra of the singlet star. The strait line represents the average percent
difference.
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Figure 5.13: Spectral output of a 10000K and 5000K binary star. Both the B and
G class stars are assumed to be perfect blackbodies.

5.3.2 Binary Star. The binary star simulation expands on the singlet star

simulation in the previous section and shows the performance of the algorithm when

the spatial blurring was introduced.

According to the Planck blackbody equation, a 10,000K and 5,000K binary star

has the spectral output like that shown in Figure 5.13. This was the spectral input

to the spectral image cube representing the true image scene. The spatial component

of this true scene was two point sources. The point sources were separated by one

pixel, which represents a 0.04 arc second separation of the two stars. The visible and

near-IR true spectral cubes are shown in Figures 5.14 and 5.15.

5.3.2.1 Binary Star Spectral Data Generation. The blackbody curves

in Figures 5.14 and 5.15 are then used with the first-order model of ASIS to produce

the simulated data. For radiometric purposes the following parameters for the binary

star were used; both stars are at a distance of 25 light years and star one has a radius of

0.25 solar units and star two has a radius of 5 solar units. A set integration time of 1s

was used for the sensor imaging arrays. Poisson noise was then added to anticipate the
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Figure 5.14: Spatial image and spectral output of a 0.25su radius 10000K and a
5su radius 5000K binary star separated by 0.04arcsecs at a distance of 25 light years
in the visible.
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Figure 5.15: Spatial image and spectral output of a 0.25su radius 10000K and a
5su radius 5000K binary star separated by 0.04arcsecs at a distance of 25 light years
in the near-IR.
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Figure 5.16: Spatially and spectrally blurred image and spectral output of a 0.25su
radius 10000K and a 5su radius 5000K binary star at 25 light years in the visible.

expected noise. The model of the sensor blurred the true image scene both spatially

and spectrally in the visible and near-IR as shown in Figures 5.16 and 5.17.

5.3.2.2 Binary Star Reconstruction. The MBSIR algorithm from

Equation (3.15) was then applied to the spatially and spectrally blurred images shown

in Figures 5.16 and 5.17. Again, the reconstruction was started with an initial guess

of unity for the entire spectral image cube. The results of the MBSIR algorithm are

shown in Figures 5.18 and 5.19. In these figures, a least-squares polynomial line is

fit to the final reconstruction is used to smooth out some of the discontinuities in

the estimation. The discontinuities are a results of residual spatial blurring in the

reconstruction cube. The spatial portion of the MBSIR algorithm did not place all of

the photons back into the proper pixel locations. This results in a spectra difference

when looking a singe pixel location. These discontinuities are not seen in the spectral

only reconstruction, as seen in the singlet star reconstruction shown in Figure 5.11.

5.3.2.3 Binary Star Simulation Results. As Figures 5.18 and 5.19.

show, the two stars are resolvable after applying the MBSIR algorithm. Additionally,

as Figure 5.20 shows, the average percent difference between the reconstruction and
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Figure 5.17: Spatially and spectrally blurred image and spectral output of a 0.25su
radius 10000K and a 5su radius 5000K binary star at 25 light years in the near-IR.
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Figure 5.18: Spatially and spectrally reconstructed image and spectral output of
a 0.25su radius 10000K and a 5su radius 5000K binary star at 25 light years in the
visible. The thin solid line is the reconstruction and the thick line is a least-squares
polynomial fit to the reconstruction to smooth out some discontinuities. The true
spectra is shown in a dashed line and cannot be seen since it is coincident with the
MMSE fit to the reconstruction.
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Figure 5.19: Spatially and spectrally reconstructed image and spectral output of
a 0.25su radius 10000K and a 5su radius 5000K binary star at 25 light years in the
near-IR. The thin solid line is the reconstruction and the thick line is a least-squares
polynomial fit to the reconstruction to smooth out some discontinuities. The true
spectra is shown in a dashed line and cannot be seen since it is coincident with the
MMSE fit to the reconstruction.

the truth data for the visible approximately 4% for both stars in the visible and 5.5%

and 3% in the near-IR. Therefore, the simulation shows that the reconstruction was

able to undo much of the blurring in ASIS. As with the singlet star, the edges of the

spectra are less accurate.

5.3.3 ASIS Simulation Results. As the two simulations show, the spectra of

the stars collected with ASIS were blurred. Using the MBSIR algorithm successfully

reduced the blurring in the simulated images to recover the blackbody curves of the

stars.

5.4 Summary

The purpose of the simulations in this chapter was to show the benefit of the

MBSIR algorithm. These simulations showed that the MBSIR algorithm can signif-

icantly improve the resolution of images collected with ASIR-TB and ASIS. While

the reconstructed image scenes are not perfect, the algorithm is capable of resolving
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Figure 5.20: Pixel percent difference between the truth and reconstructed black-
body curves of the binary star. The strait lines represent the average percent differ-
ence.

features that were not resolvable in the simulated data. The next step is to apply the

algorithm to collected data.
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VI. Data

This chapter will repeat the processing from the previous chapter, but the MBSIR

algorithm will be used on data collected with ASIR-TB and ASIS. The Hg(Ar)

and Ne source collected with ASIR-TB will be shown first, followed by a singlet

star collected with ASIS. The goal of this chapter is to demonstrate the resolution

improvements shown in the simulations are possible with actual data. The results in

this chapter will show the MBSIR algorithm will improve the resolution of spectral

images.

6.1 Resolution Criteria

The same resolution criteria used for the simulations in the previous chapter

will be used for the data in this chapter. The spatial resolution will be defined by

the familiar Rayleigh criteria [25]. The spectral resolution is based on the Rayleigh

criteria. Two spectral features is defined as resolved if the minimum value between

the two features is less than 86% of the spectral amplitude of the smaller feature.

6.2 ASIR-TB

The ASIR-TB sensor was configured to collect the Hg(Ar) and Ne spectral

sources as described in section 4.7. The same parameters used for the simulations are

applied to the data collection.

6.2.1 Hg(Ar) Spectral Source. ASIR-TB was set-up to collect data of the

Hg(Ar) source with the same parameters given for the simulation. Fifteen images were

collected of the source, one image for each 20nm sampling from 420nm to 700nm.

One of the collected images of the source and the collected spectra are shown in

Figure 6.1. As with the simulated image, the filaments and the spectral lines at

546nm and 577/579nm are not resolvable.

6.2.1.1 Hg(Ar) Reconstruction. The MBSIR algorithm was then ap-

plied to the collected data. As with the simulation, the reconstruction produced 321
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Figure 6.1: Collected spectral image collected by ASIR-TB. Spatial image is the
image at 540nm and the spectra was collected from 420nm to 700nm at a 20nm
sampling. The dashed lines represent the location and amplitudes of the spectra of
the Hg(Ar) source.

images, or one spectral image plane for every 1nm from 400nm to 720nm. The results

of the reconstruction are shown in Figure 6.2.

6.2.1.2 Hg(Ar) Results. An examination of the results of the MBSIR

algorithm shows that after applying the algorithm, the filaments and the spectral lines

are resolvable. The areas of interest are shown in Figure 6.3, where the solid lines

are the resolvable features in the reconstruction and the dashed lines the unresolvable

features in the collected data.

While the features are resolvable, the algorithm did not place the resolved fea-

tures at the correct wavelengths. The algorithm placed the 546nm feature at 539nm

and the 577/579nm feature at 575nm. These differences of 7nm and 4nm are consistent

with the simulated results. In the simulation, the 546nm feature was reconstructed

at 541nm and the 577/579nm feature at 575nm for a difference of 5nm and 3nm.

The inaccuracy in the placement of the reconstructed spectral features is due to the

coarse spectral scan used and the selected filter sampling wavelengths. At a higher
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Figure 6.2: Reconstruction of the collected Hg(Ar) source. The dashed lines repre-
sent the location and amplitudes of the spectra of the Hg(Ar) source.
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Figure 6.3: Demonstration of the non-resolved to resolved spatial and spectral
profile of the Hg(Ar) source. The solid lines represent the cross-section of the recon-
structed image and the spectra of the reconstruction, while the dashed lines are the
cross-section and spectra of the image. The dashed lines show the unresolved spatial
and spectral features in the collected image, and the solid lines show the same features
are resolvable after applying the MBSIR algorithm.
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Figure 6.4: The spectral accuracy of the reconstruction was improved when the
filter center wavelengths were shifted The reconstruction is shown in the solid line
and the dashed line shows the location of the spectral feature. With the shifted
selected wavelengths, the difference is now only 1nm.

resolution spectral scan, as Chapter VII will show, a more accurate reconstruction can

be expected. In addition, if the same coarse sampling is used, but the selected center

wavelengths are shifted to be 426nm to 686nm with a 20nm sampling, the accuracy

also improves. To show this, the processing was repeated, but with the shifted center

wavelengths. As Figure 6.4 shows, the reconstruction shown in the solid line, now

only differs from the location of the spectral feature shown in the dashed line, by

1nm. The improved accuracy is due to the alignment of the feature location with the

filter’s selected center wavelength.

The results also show a difference in the anticipated and reconstructed amplitude

of the spectral features. In the original Hg(Ar) scene, the ratio of the persistent line

amplitudes is approximately 10. In the reconstruction, the features are not completely

reconstructed back to a single wavelength bin. Instead, there is some residual spectral

blurring around the location of the features. The blurring is due to the coarse 20nm

filter sampling used to collect the image. The coarse resolution led to photons that

should have been placed in the 546nm feature to be placed near the 577/579nm feature
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Figure 6.5: The Hg(Ar) source reconstructed when an initial filter sampling of 2nm
was used. The higher filter sampling leads to a more accurate reconstruction of the
spectral feature amplitudes.

during reconstruction. This lowered the amplitude of the 546nm feature, while raising

the 577/579nm amplitude, resulting in the incorrect ratio.

If a higher spectral scan is used then the amplitudes are reconstructed to the

proper ratio. Figure 6.5 shows the reconstruction of the Hg(Ar) scene when the data

was collected with a 2nm filter sampling. The 2nm sampling allows the algorithm to

properly place the photons of the two features. As the figure shows, the reconstruction

of the higher filter sampling reconstructs the feature amplitudes to a ratio of 10,

matching the measured truth for the source.

6.2.2 Ne Spectral Source. ASIR-TB was set-up to collect data of the Ne

source with the same parameters given for the simulation. Twenty-one images were

collected of the source, or one image for a 5nm sampling from 650nm to 750nm. One

of the collected images of the source and the collected spectra are shown in Figure 6.6.

As with the simulated image, the filaments and the spectral lines at 653nm and 660nm;

693nm and 703nm; and 717nm and 724nm are not resolvable.
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Figure 6.6: Collected spectral image collected by ASIR-TB of the Ne source. Spatial
image is the image at 650 and the spectra was collected from 660nm to 750nm at a
5nm sampling. The dashed lines represent the location and amplitudes of the spectra
of the NE source.

6.2.2.1 Ne Data Reconstruction. The MBSIR algorithm was then

applied to the collected data. As with the simulation, the reconstruction produced

391 images, or one spectral image plane for every 1nm from 660nm to 1050nm. The

results of the reconstruction are shown in Figure 6.7.

6.2.2.2 Ne Data Results. As in the simulation of the Ne source, the

filaments and the spectral lines are resolvable. A close up of the areas of interest is

shown in Figure 6.8, where the solid lines are the resolvable features in the recon-

struction and the dashed lines the unresolvable features in the collected data.

The location of the reconstructed features in the Ne are more accurate then

the Hg(Ar) reconstruction, with the Ne averaging an accuracy error of 1.3nm to the

average 5.5nm accuracy error for the Hg(Ar). The increased accuracy of the Ne source

is due to the finer filter sampling used for the Ne data. All of the resolved spectral

features in the Ne data, except for the 667nm feature, have only a 1nm accuracy
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Figure 6.7: Reconstruction of the collected Ne source. The dashed lines represent
the location and amplitudes of the spectra of the Ne source.

error. The 667nm feature was reconstructed at 670nm for a 3nm inaccuracy. The

1nm difference is consistent with the simulation of the Ne reconstruction.

While the 5nm sampling improves the spectral accuracy, the sampling is still not

fine enough to reconstruct the spectral amplitudes. Figure 6.7 shows two differences

between the reconstruction and the spectra. For wavelengths greater than 675nm, the

amplitude ratios of the closely spaced features are lower than the spectra. The lower

ratios are due to the same spectral blurring and reconstruction that occurred with

the Hg(Ar) source. For wavelengths lower than 675nm, there is an additional error

with the reconstruction amplitudes; the 653nm, 660nm and 667nm spectral feature

amplitudes are also higher than expected.

As Figure 5.7 showed, these feature amplitudes in the simulation were much

closer to the spectra. There are three potential reasons for the higher than expected

results for the features in the data. The first is an error with the MBSIR algorithm.

This is not considered to be the error given the success of the algorithm for the visible

data and the higher wavelengths in the near-IR data. The second potential error is

the spectra of the Ne source used is incorrect. This is also not considered to be the
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Figure 6.8: Demonstration of the non-resolved to resolved spatial and spectral
profile of the Ne source. The solid lines represent the cross-section of the reconstructed
image and the spectra of the reconstruction, while the dashed lines are the cross-
section and spectra of the image.

error since the Ne spectra was measured with a spectrometer. The third possible

error is that the spectral radiometry part of the ASIR-TB sensor model is incorrect

for wavelengths between 650nm and 675nm. This is the most likely cause for the high

amplitudes for the three features. To resolve this error, the spectral throughput of

the ASIR-TB sensor needs to be more accurately measured.

6.2.3 ASIR-TB Data Results. As the results in the previous sections show,

the MBSIR algorithm was able to improve the resolution of data collected with ASIR-

TB. The results of the algorithm applied to the data from ASIR-TB are similar to

the results expected from the simulations, with the exception of the 650nm to 675nm

wavelengths of the Ne reconstruction. While the algorithm did not perfectly recon-

struct the spectral scene, it does resolve both spatial and spectral features that were

not resolvable in the collected data. The accuracy of the placement and amplitudes

of the spectral features is strongly dependent on the sampling used when collecting

the data.
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6.3 ASIS

Although many test data sets were collected during the construction of ASIS,

few of the data sets are complete enough to be processed with the MBSIR algorithm.

Most of the data sets were collected with parameter settings useful for sensor check-

out, but not for reconstruction. The data showing the most promise for applying the

MBSIR are singlet stars.

Many of the data collections occurred during nights with poor seeing conditions,

leading to a fair amount of atmospheric blurring even with the AO system active.

Without knowing the exact atmospheric blurring, a spatial and spectral reconstruction

is very difficult. The unknown spatial blurring due to the atmosphere prevents the

algorithm from reconstructing the spatial scene. Since the spatial scene cannot be

reconstructed, the algorithm cannot process a closely spaced binary, where the spectra

of the binary star pair will be overlapping. However, singlet stars can be processed

with a spectral only reconstruction.

6.3.1 Singlet Star. The singlet star, Harvard Reserve (HR) 1156, also know

as Merope, is a B-Class star in the Pleiades of Taurus. The large star, estimated to

be 14,000K, is 385 light years from Earth, and is 4.3 times larger than the sun [29].

Merope was collected in September 2005 with a dual-channel visible scan from 420nm

to 650nm with a 5nm filter sampling. Figure 6.9 shows an image of Merope at 600nm,

where the atmospheric effects are easily seen. To remove the unknown spatial effects of

the atmosphere, all of the photons above the background noise were summed together

in each image of the spectral cube and were placed in a single pixel. This has the

effect of artificially forcing a perfect spatial reconstruction and allows for a spectral

only reconstruction to be preformed on the resultant spectra. Figure 6.10 shows the

collected spectra of Merope with the spatial blurring removed.

6.3.2 Singlet Star Reconstruction. The spectra shown in Figure 6.10 was

processed with the 1st-order model of ASIS. The 1st-order model was used because
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Image of Merope at 600nm

Figure 6.9: Image of the singlet star Merope (HR1156) at 600nm. The unknown
atmospheric blurring is evident in the non-uniform shape of the star.
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Figure 6.10: Collected spectra of Merope (HR1156) in the visible.
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Figure 6.11: Normalized spectra reconstruction of Merope (HR1156), a B class
star. While a lack of calibration prevents a complete application of the spectral
only reconstruction algorithm, a normalized reconstruction shows that reconstructed
spectra matches the normalized blackbody curve for a star between 10,000K and
20,000K.

the data was collected when ASIS was in an initial configuration for sensor check-out.

The calibration that occurred after ASIS was in a more complete configuration is not

applicable to this data. Since a full calibration of ASIS has not been accomplished,

the results of the spectral only reconstruction are normalized to 600nm. The result

of the reconstruction is shown in Figure 6.11. In the figure, the reconstruction is

compared to the normalized blackbody curves of 5,000K, 10,000K, and 20,000K stars.

Since every blackbody curve has a unique shape, an approximate spectra match can

be accomplished by matching the shape of the reconstruction to the shape of the

normalized blackbody curve. This is done by fitting a 2nd order polynomial to the

reconstruction and matching it to the blackbody curves. As seen in Figure 6.11,

the reconstruction matches a bright B or O class star, with a temperature between

10,000K and 20,000K. Further analysis of the reconstructed spectra indicates that the

star has a temperature of 10,750K.
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6.4 Summary

This chapter demonstrated that the MBSIR algorithm improves the resolution

of spectral data. The improvement in the resolution was similar to those seen in

the simulation of the last chapter. The most obvious example of the resolution im-

provement was seen in the application of the algorithm to images collected of spectral

sources with the ASIR-TB sensor. Both the spatial and spectral resolution of the

Hg(Ar) source in the visible and the Ne source in the near-IR were improved. In the

initial data, neither the filaments or some spectral features were resolvable. After the

algorithm was applied to the data, the filaments and features were resolvable.

While much of the ASIS data is not suitable for processing with the MBSIR

algorithm, some of the singlet star data showed promising results. The unknown spa-

tial blurring prevented a full MBSIR processing on the data. However, when the data

was pre-processed to allow a spectral only reconstruction, the results matched what

would be expected. Since ASIS is not is its final configuration, a full calibration of

the system has not been accomplished. Therefore, the results cannot give a full ra-

diometric reconstruction. But, the normalized results of the reconstruction do match

the unique normalized shape of the blackbody curve of the estimated temperature of

the star. This indicates that the MBSIR algorithm is not giving completely erroneous

results and is showing some promise.

A natural next step is to ask how well the MBSIR algorithm could improve the

spectral data collected with ASIS. To help quantify this answer, the lower bounds on

the algorithm performance will be calculated.
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VII. Bounding Algorithm Performance

The Cramér-Rao Lower Bound (CRLB) is one measure to how well the MBSIR

algorithm performs [49]. Two CRLBs will be examined in this chapter. The

first is the bound on spectral resolution and the second is the bound on the spectral

accuracy. The spectral resolution lower bound examines the best possible spectral

resolution that data processed with MBSIR can achieve. The spectral accuracy lower

bound measures the limit of the ability of the MBSIR algorithm to reconstruct a

spectral feature at the correct wavelength.

For the resolution CRLB, the calculated lower bound will be compared to the

resolution for ASIR-TB and ASIS. The resolution is determined through simulation

and represents the minimum distance two spectral features can be separated so that

the features are resolved after processing with the MBSIR algorithm. A similar com-

parison is also made for the spectral accuracy lower bound. For this case, the accuracy

lower bound is compared to the simulated spectral accuracy for both ASIR-TB and

ASIS.

The CRLBs calculated in this chapter are the ultimate lower bounds for the

spectral resolution and accuracy. The lower bound will be calculated by estimating the

spectra at only two wavelengths for the spectral resolution and at only one wavelength

for the spectral accuracy. When the CRLBs are compared to the simulations, the

CRLBs may be significantly lower than the simulated performance. The main reason

for this potential difference is the way the simulation was run. In the simulation, the

spectra was estimated for all of the visible and near-IR wavelengths. A simulation

that estimates the spectra at all wavelengths will have decreases performance over a

simulation that only estimates the spectra at a few wavelengths. However, simulating

the resolution and accuracy by estimating the spectra at all wavelengths represents

a more realistic application of the MBSIR algorithm. Therefore, the comparison

between the CRLBs and the realistic simulations will be made, but it is with the

possibility that the CRLBs may be significantly lower. However, the CRLBs will still

provide insight on the performance of the algorithm.
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For the bounds examined in this section, only the spectral portion of the MBSIR

algorithm is used. This can be done since the spatial and spectral parts of the MBSIR

algorithm can be separated. Looking at the spectral only bounds provides a cleaner

way to examine the improvement in spectral resolution.

7.1 Balancing Imaging Time and Algorithm Performance

For ASIS, the CRLB can be used to balance the performance of the MBSIR

algorithm with the time required to collected a spectral image. Because ASIS was

designed to collected spectral images of satellites in orbit, it has a limited amount of

time to collect the spectral image. The amount of time depends on several factors,

including the altitude and elevation of the satellite, and the sun illumination angle. In

general, ASIS needs to complete the collection of the spectral image before the aspect

of the satellite toward the sensor changes significantly. The amount of time before

a significant change in aspect is usually several seconds for low altitude satellites, to

several minutes for the high altitude satellites.

Since ASIS uses LCTFs to collect the spectral image, care must be taken in the

setting of the filter sampling. The filter sampling is the number of selected center

wavelength that will be used to crete the spectral image. The LCTFs have a 50ms

nominal switching time. Therefore, each selected center wavelength will take 50ms

plus the integration time of the imaging arrays. Using a typical integration time of

200ms, the image from each center wavelength setting takes approximately 250ms.

One way to select the filter sampling is to estimate the time that the satellite will

present the same aspect to the sensor, then determine how many center wavelength

settings can be accomplished in that interval.

Another method to determine the filter sampling is to look at the CRLB and

determine the point at which finer filter sampling leads to little increased performance

of the MBSIR algorithm. Instead of simply basing the sampling on the amount of

estimated time available, using the CRLB allows a quantifiable approach to selecting

the filter sampling. For this method, the total signal collected for the different filter
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samplings will be kept constant. The constant collected signal is the same as fixing

the imaging time for each CRLB calculation. This allows for a fair comparison of the

bounds determined for each sampling. The constant signal collection will be done

by increasing the signal received in the coarser samplings as compared to finer filter

samplings. This method will be investigated further after looking at the CRLBs in

each of the following two sections.

7.2 Cramér-Rao Bound for Spectral Resolution

The first CRLB of interest is the lower bound on the spectral resolution. This

CRLB calculates the best possible spectral resolution improvement the MBSIR algo-

rithm can achieve. The CRLB for spectral resolution provides a statistical represen-

tation for the resolvability of different spectral features. The CRLB will determine

the variance of the estimated distance between the two features when the MBSIR

algorithm is applied. When this variance, or uncertainty, in the distance between the

two features is equal to the distance between the two features, the features are not

resolvable.

This is an important bound since it gives a measure of the spectral resolution

improvement the MBSIR algorithm can provide. Figures 7.1 and 7.2 give a simulated

example of the spectral resolution improvement the MBSIR algorithm provides over

unprocessed spectral images from ASIS. In the Figure 7.1, the spectral features are

unresolvable. In Figure 7.2, the same features are resolvable when the MBSIR algo-

rithm is applied. The purpose of the spectral resolution CRLB is to determine the

minimum distance between two spectral features such that the features are resolvable

after processing with the algorithm. When the MBSIR algorithm is applied to the

data from the sensor, it may or may not come close to meeting this bound, but on

average, it should never be expected to exceed this bound. Therefore, the spectral

resolution bound gives a quantitative measure of the best possible spectral resolution

improvement the algorithm will provide when used to post-process the data.
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Figure 7.1: Simulated spectral output of ASIS for two spectral feature at 500nm
and 515nm in the VIS and 900nm and 910nm in the NIR. These spectral features are
unresolvable.
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Figure 7.2: Reconstruction of simulated spectral output for two spectral feature
at 500nm and 515nm in the VIS and 900nm and 910nm in the NIR. The MBSIR
algorithm has made the features spectrally resolvable.
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Figure 7.3: Example of the difference in the left and right spectral resolutions. The
difference is caused by the spectrally variant ETFs used in ASIS and ASIR-TB.

7.2.1 Left vs. Right Resolution. Since the spectral blurring for ASIS and

ASIR-TB is variant, there are actually two spectral resolutions for each wavelength.

The spectral resolution to the right of the feature and the left of the feature are

slightly different. Figure 7.3 shows an example of the difference in the left and right

spectral resolutions. The figure shows what the simulated minimum resolution is

for two spectral features collected with ASIS and then processed with the MBSIR

algorithm. The first spectral feature was placed at the wavelength corresponding to

the wavelength on the x-axis. The second feature was placed to the left to get the

left resolution, and then to the right to get the right resolution.

Either the left or the right resolution can be used for this chapter since Figure 7.3

shows both resolutions are similar. Since normal convention is to read from left to

right, the second feature will be assumed to be the right of the first feature. This

leads to a right spectral resolution being used for this chapter.

7.2.2 Spectral Resolution CRLB. Since each element of the true spectral

scene is estimated with the ML Bayesian estimator, the bound on the estimator

will be a non-random multiple parameter bound. The bound on the variance of the
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estimator, that is the difference of the estimated value, âi(R), from the true value, Ai,

will be determined by the diagonal of the inverse of the Fisher information matrix,

Fi,j, according to [49],

V ar[âi(R)− Ai] ≥ F−1
i,j . (7.1)

Where the entries in the information matrix will be given by,

F = −E[
∂2

∂α2
(ln(P [d(xo, yo, λo) = D(xo, yo, λo)]))] (7.2)

where α = [I1, I2, ∆γ], the parameters of interest for this bound. For these parameters,

I1 is the intensity of the first spectral feature, I2 is the intensity of the second spectral

feature and ∆γ is the distance between the two features. The partial derivatives

within the expected value can be expanded into a matrix where each of the entries is

the second partial of two of the parameters, I1, I1 and ∆γ. Expanding Equation (7.2)

leads to,

F = −E




∂2

∂I2
1
ln(P ) ∂2

∂I1∂I2
ln(P ) ∂2

∂I1∂∆γ
ln(P )

∂2

∂I2∂I1
ln(P ) ∂2

∂I2
2
ln(P ) ∂2

∂I2∂∆γ
ln(P )

∂2

∂∆γ∂I1
ln(P ) ∂2

∂∆γ∂I2
ln(P ) ∂2

∂∆γ2 ln(P )


 (7.3)

where P is the probability given in Equation (3.7), repeated below,

P [d(x, y, λ) = D(x, y, λ)∀(x, y, λ)] =
∏

x,y,λ

i(x, y, λ)D(x,y,λ)

D(x, y, λ)!
e−i(x,y,λ).

Performing the partial derivatives on the entries and looking at the spectral part of

the bound only, the entries in the matrix are,

∂2

∂I2
1

ln(P ) =
∑

λ

−D(λ)

i2(λ)
(

∂

∂I1

i(λ))2 +
D(λ)

i(λ)

∂2

∂I2
1

i(λ)− ∂2

∂I2
1

i(λ), (7.4)

∂2

∂I2
2

ln(P ) =
∑

λ

−D(λ)

i2(λ)
(

∂

∂I2

i(λ))2 +
D(λ)

i(λ)

∂2

∂I2
2

i(λ)− ∂2

∂I2
2

i(λ), (7.5)
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∂2

∂∆γ2 ln(P ) =
∑

λ

−D(λ)

i2(λ)
(

∂

∂∆γ
i(λ))2 +

D(λ)

i(λ)

∂2

∂∆γ2 i(λ)− ∂2

∂∆γ2 i(λ), (7.6)

∂2

∂I1∂I2

ln(P ) =
∑

λ

−D(λ)

i2(λ)

∂

∂I1

i(λ)
∂

∂I2

i(λ) +
D(λ)

i(λ)

∂2

∂I1∂I2

i(λ)− ∂2

∂I1∂I2

i(λ), (7.7)

∂2

∂I1∂∆γ
ln(P ) =

∑

λ

−D(λ)

i2(λ)

∂

∂I1

i(λ)
∂

∂∆γ
i(λ) +

D(λ)

i(λ)

∂2

∂I1∂∆γ
i(λ)− ∂2

∂I1∂∆γ
i(λ),

(7.8)
∂2

∂I2∂∆γ
ln(P ) =

∑

λ

−D(λ)

i2(λ)

∂

∂I2

i(λ)
∂

∂∆γ
i(λ) +

D(λ)

i(λ)

∂2

∂I2∂∆γ
i(λ)− ∂2

∂I2∂∆γ
i(λ),

(7.9)
∂2

∂I1∂I2

ln(P ) =
∂2

∂I2∂I1

ln(P ), (7.10)

∂2

∂I1∂∆γ
ln(P ) =

∂2

∂∆γ∂I1

ln(P ), (7.11)

∂2

∂I2∂∆γ
ln(P ) =

∂2

∂∆γ∂I2

ln(P ). (7.12)

The Fisher matrix can be simplified to,

F =




∑
λ

1
i(λ)

( ∂
∂I1

i(λ))2
∑
λ

1
i(λ)

∂
∂I1

i(λ) ∂
∂I2

i(λ)
∑
λ

1
i(λ)
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∂∆γ
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i(λ))2
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∑
λ
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i(λ)

∂
∂I2
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∂I1

i(λ)
∑
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1
i(λ)

∂
∂∆γ

i(λ) ∂
∂I2

i(λ)
∑
λ

1
i(λ)

( ∂
∂∆γ

i(λ))2




(7.13)

using,

−E[−D(λ)] = i(λ). (7.14)

For this CRLB, the two spectral features in the scene will be assumed to be

narrow-band Gaussian functions for mathematical convenience. Since the features

need to be differentiated, using Gaussian functions greatly reduces the complexity of

the math and allows for the Fisher information matrix to be invertible. With the
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narrow-band Gaussian assumption as the spectra, the image produced is,

i(λ) =
∑

γ

I1

σ
√

2π
e
−(γ−γo)2

2σ2 h2(λ, γ) +
∑

γ

I2

σ
√

2π
e
−(γ−(γo+∆γ))2

2σ2 h2(λ, γ). (7.15)

Equation (7.15) has the following partial derivatives needed to compute the spectral

resolution CRLB,
∂

∂I1

i(λ) =
∑

γ

1

σ
√

2π
e
−(γ−γo)2

2σ2 h2(λ, γ), (7.16)

∂

∂I2

i(λ) =
∑

γ

1

σ
√

2π
e
−(γ−(γo+∆γ))2

2σ2 h2(λ, γ), (7.17)

∂

∂∆γ
i(λ) =

∑
γ

(
−I2

σ3
√

2π
+

I2(γ − (γo + ∆γ))2

σ5
√

2π
)e

−(γ−(γo+∆γ))2

2σ2 h2(λ, γ). (7.18)

All of the above equations are combined together to compute the Fisher matrix

for the spectral resolution lower bound. A lower bound on the spectral resolution can

be determined by inverting this matrix and looking at the (3,3) entry of the matrix.

This value will correspond to the resolution of the spectral reconstruction for the

value of ∆γ, given the spectral feature intensities, I1 and I2 and the spectral feature

location γo. The spectral resolution for the sensor is then determined by allowing γo

to be all the wavelengths of the sensor.

7.2.3 ASIR-TB Spectral Resolution. The CRLB for the spectral resolution

of ASIR-TB was calculated for the same scene used to simulate the spectral sources

in Chapter V. These results were then compared to the simulated minimum spectral

resolution for the same source. The CRLB and the minimum spectral resolution were

then compared to the actual resolved data shown in Chapter VI. Figures 7.4 and 7.5

shows the comparisons described above. Figure 7.6 gives a closer view of the lower

wavelengths shown in Figure 7.5.

As expected, the calculated CRLB is lower than the minimum spectral resolution

for each of the spectral sources. Additionally, the resolution of the data is greater

100



400 450 500 550 600 650 700 750
0

5

10

15

20

25

30

35
ASIR−TB VIS Spectral Resolution CRLB (20nm)

wavelength (nm)

sp
e

ct
ra

l r
e

so
lu

tio
n

 (
n

m
)

 

 
CRLB
Sim
Data

Figure 7.4: Comparison of the calculated CRLB for the spectral resolution of ASIR-
TB to the simulated spectral resolution and measured spectral resolution of a Hg(Ar)
source in the visible. The spectral resolution corresponds to ∆γ and the wavelength
to γo in spectral resolution CRLB derivation.
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Figure 7.5: Comparison of the calculated CRLB for the spectral resolution of ASIR-
TB to the simulated spectral resolution and measured spectral resolution of a Ne
source in the near-IR. The spectral resolution corresponds to ∆γ and the wavelength
to γo in spectral resolution CRLB derivation.

101



650 660 670 680 690 700 710 720 730 740 750
0

2

4

6

8

10

12

14

16

18

20
ASIR−TB NIR Spectral Resolution CRLB (5nm)

wavelength (nm)

sp
e

ct
ra

l r
e

so
lu

tio
n

 (
n

m
)

 

 
CRLB
Sim
Data

Figure 7.6: Magnified comparison of the calculated CRLB for the spectral resolution
of ASIR-TB to the simulated spectral resolution and measured spectral resolution of
a Ne source in the near-IR showing a close-up of the lower wavelengths. The spectral
resolution corresponds to ∆γ and the wavelength to γo in spectral resolution CRLB
derivation.

than the simulation. The fact that the spectral resolution of the visible data is higher

than the simulated spectral resolution is expected. This is because the minimum

spectral resolution is the minimum spectral separation, which is less than the spectral

separation of the fixed spectral features of the sources. If the persistent lines of

the sources were somehow adjustable, then the spectral lines could be moved close

together and the resolved feature separation from the data could be more closely

matched to the simulated minimum resolution. The data in the near-IR more closely

matches the calculated spectral resolution because the spectral lines are closer to the

minimum distance required for resolvability.

The coarse 20nm and 5nm visible and near-IR filter sampling cause the oscil-

lations in the CRLBs in Figures 7.4 and 7.5. The coarse sampling leads to a lack

of shared spectral information between successive images. When the wavelength for

which the spectral resolution is being calculated is close to a center wavelength of the

filter sampling, the spectral resolution increases. The spectral resolution decreases
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when the wavelength for which the spectral resolution is being calculated moves away

from the sampled filter wavelengths. This in turn leads to an increasing and decreas-

ing spectral resolution cycling as the selected center wavelengths in the filter sampling

coincide with the wavelengths in the x-axis. The oscillations are reduced at the higher

wavelengths, where the larger bandwidths increase the amount of shared information

between the successive images. Both the visible and near-IR CRLBs decrease at the

higher wavelengths. For the visible, the decreased resolution occurs when the CRLB

is calculated for features at wavelengths higher then the maximum selected filter set-

ting of 700nm. At wavelengths over 700nm, there are no successive images to share

the spectral information and the resolution decreases. For the near-IR, the signal

reduction is due to the low quantum efficiency of the imaging array at wavelengths

higher than 950nm. As the signal is reduced, the spectral resolution decreases. This

is because the lower signal provides less information required to resolve the features.

7.2.4 ASIS Spectral Resolution. A comparison similar the one for ASIR-TB

was done for ASIS, except no data points are available for comparison. Addition-

ally, instead of the scene of the spectral sources, two spectral features of the same

intensity were used as the spectral scene. These features provided for a SNR of 30.

Figures 7.7 and 7.8 show the lower bound for the spectral resolution of a 10nm filter

sampling in the visible and 5nm sampling in the near-IR. Each of these bounds is

compared to the simulated spectral resolution. As with the ASIR-TB bounds, the

CRLB is lower than the simulated spectral resolutions.

The CRLBs for ASIS do not show the same amount of oscillations seen in

the ASIR-TB CRLBs, because a finer filter sampling is used for the ASIS CRLB

calculation. The ASIS CRLBs do show the same decrease in the resolution due to

the reduced signal. This can be seen in the near-IR CRLB shown in Figure 7.8. The

signal in the lower wavelengths of the figure is reduced because of the dichroic located

at 700nm. The signal reduction at the higher wavelengths is due to the low quantum
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Figure 7.7: Comparison of the calculated CRLB for the spectral resolution of ASIS
to the simulated spectral resolution for the visible.

efficiency of the imaging array above 1000nm. The visible CRLB in Figure 7.7 also

shows the effect of the reduced signal due to the dichroic located at 700nm.

The spectral resolution lower bound can be used to aid in determining the most

efficient filter sampling to achieve the optimal resolution versus imaging time. In

Figure 7.9, the average spectral resolutions for the CRLB is shown for different filter

samplings in the visible wavelengths. In the figure, each data point represents the

CRLB averaged across the visible wavelengths, where the CRLB is calculated for the

filter sampling given in the x-axis. A least-squares polynomial line was then fit to

the data points of the calculated spectral resolution CRLBs. The trend line shows

that a filter sampling of less than 5nm will not substantially improve the resolution of

the post-processed ASIS data. Limiting the filter sampling to 5nm, instead of using

the finest sampling of 1nm, will decrease the image collection time by 500% while

achieving almost the same post-processed spectral resolution.
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Figure 7.8: Comparison of the calculated CRLB for the spectral resolution of ASIS
to the simulated spectral resolution for the near-IR.
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Figure 7.9: The effect of finer filter sampling to the calculated spectral resolution
CRLB for the visible wavelengths of ASIS. The points are the calculated average
CRLB for the visible wavelengths and the line a trend fit to the data.

105



7.3 Cramér-Rao Lower Bound for Spectral Accuracy

The second CRLB of interest is the lower bound on spectral accuracy. This

bound determines the accuracy of the MBSIR algorithm; measuring how well the

algorithm reconstructs a spectral feature at the correct wavelength. It is important

to not only resolve the spectral features, but also to resolve the features at the correct

wavelength.

7.3.1 Spectral Accuracy CRLB. The spectral accuracy CRLB is similar to

the spectral resolution CRLB. However, instead of calculating the variance of the

minimum resolved distance between two features, the variance in the location of one

feature is determined. The CRLB for spectral accuracy starts the same as the spectral

resolution CRLB, except the Fisher matrix is reduced by one parameter since only

one spectral feature is needed,

F = −E[
∂2

∂2α
(ln(P [d(xo, yo, λo) = D(xo, yo, λo)]))] (7.19)

where α = [γo, Io] are the parameters of interest in this bound. These parameters

correspond to the accuracy of the spectral reconstruction for the value of γo, given

spectral feature intensity, Io. Expanding this and looking only at the spectral part

leads to,

F = −E




∂2

∂γ2
o
ln(P ) ∂2

∂γo∂Io
ln(P )

∂2

∂Io∂γo
ln(P ) ∂2

∂I2
o
ln(P )


 (7.20)

where P is the probability given in Equation (3.7).

Preforming the partial derivatives the entries in the matrix become,

∂2

∂I2
o

ln(P ) =
∑

λ

−D(λ)

i2(λ)
(

∂

∂Io

i(λ))2 +
D(λ)

i(λ)

∂2

∂I2
o

i(λ)− ∂2

∂I2
o

i(λ), (7.21)

∂2

∂γ2
o

ln(P ) =
∑

λ

−D(λ)

i2(λ)
(

∂

∂γo

i(λ))2 +
D(λ)

i(λ)

∂2

∂γ2
o

i(λ)− ∂2

∂γ2
o

i(λ), (7.22)
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∂2

∂γo∂Io

ln(P ) =
∑

λ

−D(λ)

i2(λ)

∂

∂γo

i(λ)
∂

∂Io

i(λ) +
D(λ)

i(λ)

∂2

∂γo∂Io

i(λ)− ∂2

∂γo∂Io

i(λ), (7.23)

∂2

∂Io∂γo

ln(P ) =
∂2

∂γo∂Io

ln(P ). (7.24)

Using Equation 7.14, the Fisher matrix can be simplified to,

F =




∑
λ

1
i(λ)

( ∂
∂γo

i(λ))2
∑
λ

1
i(λ)

∂
∂γo

i(λ) ∂
∂Io

i(λ)

∑
λ

1
i(λ)

∂
∂Io

i(λ) ∂
∂γo

i(λ)
∑
λ

1
i(λ)

( ∂
∂Io

i(λ))2


 (7.25)

For this lower bound, the spectral features in the true spectral scene are again

assumed to be narrow-band Gaussian functions. For the spectral accuracy lower

bound, the image is,

i(λ) =
∑

γ

Io

σ
√

2π
e
−(γ−γo)2

2σ2 h2(λ, γ), (7.26)

which has the following partial derivatives,

∂

∂Io

i(λ) =
∑

γ

1

σ
√

2π
e
−(γ−γo)2

2σ2 h2(λ, γ), (7.27)

∂

∂γo

i(λ) =
∑

γ

Io(γ − γo)

σ3
√

2π
e
−(γ−γo)2

2σ2 h2(λ, γ). (7.28)

All of the above equations are combined together to compute the Fisher matrix

for the spectral accuracy lower bound. A lower bound on the spectral accuracy at

one wavelength is determined by inverting this matrix and looking at the (1,1) entry

of the inverted matrix. The spectral accuracy for the sensor is then determined by

stepping through all possible values of γo for the given feature intensity.

7.3.2 ASIR-TB Spectral Accuracy CRLB. The bound comparison described

in section 7.2.3 is repeated for the spectral accuracy CRLB. The spectral accuracy

CRLB is computed and is the compared to the simulated spectral accuracy. The

spectral accuracy CRLB and simulated spectral accuracy are then compared to the
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Figure 7.10: Comparison of the calculated CRLB for the spectral accuracy of ASIR-
TB to the simulated spectral accuracy and measured spectral accuracy of the Hg(Ar)
source in the visible.

measured accuracy from the reconstructed Hg(Ar) and Ne data. Figures 7.10 and 7.11

shows the comparisons described above.

As with the spectral resolution CRLBs, the lower bound of the spectral accuracy

is lower than the calculated spectral accuracy. As first discussed in section 6.2.1.2,

the accuracy of the Hg(Ar) reconstruction, shown in Figure 7.10 is worse than the

simulated accuracy because of the coarse 20nm filter sampling and the selected center

wavelengths for the filter. The reconstructed Ne data accuracy, shown in Figure 7.11,

is closer to the calculated accuracy because of the finer 5nm filter sampling.

In both Figures 7.10 and 7.11 the difference in the CRLB and the simulation

discussed in the introduction of this chapter is clearly noticeable. The CRLB for the

spectral accuracy is several orders of magnitude lower than the simulated spectral

accuracy. Additionally, for both cases, the calculated spectral accuracy CRLBs are

different from the simulated accuracy because of the fidelity of the simulation. In

simulating the spectral accuracy, the accuracy was limited to 0.1nm because of the

processing time required for the simulation. This limit prevents some of the data

points from be closer to the calculated lower bound.
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Figure 7.11: Comparison of the calculated CRLB for the spectral accuracy of ASIR-
TB to the simulated spectral accuracy and measured spectral accuracy of the Ne
source in the near-IR.

7.3.3 ASIS Spectral Accuracy CRLB. The spectral accuracy for ASIS was

also computed for a 10nm sampling in the visible and a 5nm sampling in the near-IR.

Figures 7.12 and 7.13 show the comparison of the CRLB and the simulated values,

for the spectral accuracy.

Similar to the ASIR-TB spectral accuracy CRLB, the CRLB is orders of mag-

nitude lower than the simulated accuracy. The reason for this difference is the same

as discussed in the ASIR-TB section. The only difference is that the ASIS simulation

was done to a 0.01nm fidelity, allowing the simulated accuracy to be closer to the

calculated bound.

As with the spectral resolution lower bound, looking at the average spectral

accuracy for different filter samplings provides a guideline for selecting the optimal

sensor parameters to balance the performance of the MBSIR algorithm with the re-

quired imaging time. Figure 7.14 shows the average lower bound on the spectral

accuracy for five filter samplings with a least-square polynomial line fit to the data.

As the figure shows, the algorithm will not have substantial accuracy errors with a

filter sampling of less than 10nm.
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Figure 7.12: Comparison of the calculated CRLB for the spectral accuracy of ASIS
to the simulated spectral accuracy in the visible.
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Figure 7.13: Comparison of the calculated CRLB for the spectral accuracy of ASIS
to the simulated spectral accuracy in the near-IR.
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Figure 7.14: The effect of finer filter sampling to the calculated spectral accuracy
CRLB for the visible wavelengths of ASIS. The points are the calculated CRLB and
the line a trend fit to the data.

7.4 Summary

This chapter developed two lower bounds on the performance of the MBSIR

algorithm. The spectral resolution and accuracy lower bounds are critical measure-

ments in determining how well the algorithm improves the spectral resolution of an

image. The spectral resolution lower bound measures the minimum resolvable dis-

tance between two spectral features. The spectral accuracy lower bound measures the

accuracy in the location of the reconstructed spectral feature. These lower bounds

were calculated for both of the ASIR-TB data collections, and compared well with

the simulated and measured resolution and accuracy. The bounds for ASIS were also

calculated. While the bounds were used to calculate the filter sampling that balances

the performance of the MBSIR algorithm and imaging time, there is no ASIS data

for comparison.

In the next chapter, these lower bounds will be used to compute a performance

metric for the algorithm. This metric can be used to compare the benefits of the

MBSIR algorithm on different sensors and can provide a quantitative way to select
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key sensor design parameters to get the maximum benefit from the MBSIR post-

processing.
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VIII. Algorithm Performance Metrics

A measure of the spectral image reconstruction performance, known as the Spec-

tral Reconstruction Capability Metric (SRCM), can be found by looking at

the calculated lower bounds for the spectral accuracy and resolution of the ASIS

image reconstruction. When comparing different spectral reconstruction algorithms,

the better spectral reconstruction algorithm would provide: 1) the highest spectral

resolution, and 2) the highest spectral accuracy.

This chapter will develop a set of SRCMs for the MBSIR algorithm and ASIS,

from the spectral resolution and accuracy lower bounds. Then the SRCMs will be

determined for ASIS using the 10nm and 5nm bounds calculated in the last chapter.

The chapter will also discuss how the SRCM can be used.

8.1 Spectral Reconstruction Capability Metric

A set of SRCMs can be derived for the reconstruction algorithm. The first is a

measure of the algorithm SRCM per spectral wavelength. This SRCM is calculated by

inverting the product of the lower bound on the spectral reconstruction and accuracy

for each corresponding wavelength, or

SRCM(λ) = (CRLBres(λ)CRLBacc(λ))−1[nm−2]. (8.1)

Since smaller values of spectral accuracy and resolution represent better performance,

inverting the product of these two leads to a SRCM with the larger value having the

better the performance. The maximum SRCM(λ) can then be found by looking at

the highest value across the wavelengths and an average SRCM(λ) can be found by

taking the average value across the wavelength range, or,

SRCMmax = max(SRCM(λ))[nm−2], (8.2)

SRCMmean = mean(SRCM(λ))[nm−2]. (8.3)
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Figure 8.1: The Spectral Resolution Capability in the visible for the 10nm filter
sampling. A least-squares polynomial is fit to the data points of the calculated SRCM.

With these performance measures, an assessment can be made between different spec-

tral reconstruction algorithms and spectral sensors.

8.2 ASIS Spectral Resolution Capability Metric

Figure 8.1 and 8.2 shows the SRCM for the MBSID algorithm with the ASIS

system for the 10nm and 5nm filter samplings in the visible and near-IR respectively.

A least-squares polynomial was fit to both sets of data to smooth out the numerous

discontinuities present in the spectral resolution and accuracy lower bounds. The

discontinuities are due to the oscillatory nature of the resolution and accuracy lower

bounds and occur when the oscillating minimums in the lower bounds align. For the

visible, the maximum SRCM is 488 and the average SRCM is 163. In the near-IR,

the maximum SRCM is 2586 and the average SRCM is 1184. The near-IR SRCM

is approximately 7 times better than the visible. This is because the near-IR has a

smaller bandwidth, allowing for the near-IR to have a lower spectral resolution and

higher spectral accuracy. However, the smaller bandwidth allows fewer photons to

the imaging array, leading to a lower SNR or longer integration times.
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Figure 8.2: The Spectral Resolution Capability in the near-IR for the 5nm filter
sampling. A least-squares polynomial is fit to the data points of the calculated SRCM.

8.3 Using the Spectral Resolution Capability Metric

There are two uses for the SRCM. The first is as a way to balance sensor settings

with operational requirements. The second is a way to compare different sensor trade-

offs.

8.3.1 Effective Filter Sampling. As seen in the last chapter, the lower

bounds could be used to determine an effective filter sampling. An effective filter

sampling is the coarsest filter sampling that provides the desired resolution improve-

ment, while maintaining spectral accuracy. By using a coarser filter sampling, the

image can be collected in a shorter amount of time when compared to a finer filter

sampling. However, the resolution of the image will not suffer because the image will

be processed with the MBSIR algorithm. So the effective filter sampling allows for

shorter imaging time to spectrally image a non-stationary object, and still achieve

the desired resolution by using the MBSIR algorithm.

The SRCM combines the separate resolution and accuracy effective filter sam-

plings into one overall measurement. By calculating the SRCM for different filter
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samplings an optimum sampling can be determined that will allow for the most effec-

tive use of the sensor. Figure 8.3 shows the calculated SRCM for ASIS in the visible

for filter samplings of 1nm, 2.5nm, 5nm, 10nm, and 20nm. The figure shows that

the SRCM increases as the filter sampling gets finer, for the shorter wavelengths, but

the 2.5nm SRCM is better than the 1nm at longer wavelengths. This is due to the

constant signal collection constraint used when the spectral resolution and accuracy

lower bounds were calculated. The 2.5nm filter sampling collects the spectral cube at

a higher signal per filter sample than the 1nm sampling. At the shorter filter center

wavelengths, the increased signal in the 2.5nm sampling does not overcome the advan-

tage finer filter sampling advantage of the 1nm sampling. At the longer filter center

wavelengths, the higher signal in the 2.5nm sampling provides better performance

over the 1nm. This is because the increased bandwidth of the filter transmission at

the longer center wavelengths allows the 2.5nm to match the sampling performance

of the 1nm sampling.

This is verified by removing the constant signal collection constraint and re-

looking at the calculated lower bounds. When this is done, the 1nm filter sampling

out performs the 2.5nm filter sampling at center wavelengths below approximately

570nm. At center wavelengths of over 570nm, the 2.5nm and 1nm filter samplings have

the same performance. This is also seen in Figure 8.3, at approximately 570nm, the

2.5nm and 1nm filter samplings have the same SRCM. However, at center wavelengths

over 600nm, the increased signal in the 2.5nm sampling, from the constant signal

constraint, gives the 2.5nm filter sampling a higher SRCM.

By using the average of the SRCMs the effective filter sampling for ASIS can be

determined. Figure 8.4 shows the average of the SRCMs shown in Figure 8.3 and the

imaging time required for those filter settings. For the imaging time, 50ms is used as

the filter transition time and 200ms is used as the integration time. While the 1nm

filter setting has the highest SRCM, the SRCM is turning away from a linear increase

and has an imaging time of over 1.25min. From the figure, the most effective filter

sampling appears to be around 2.5nm. Near this sampling, the SRCM is larger, but
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Figure 8.3: Comparison of the ASIS Spectral Resolution Capability in the visible
for 1nm, 2nm, 5nm, 10nm, and 20nm filter samplings.

the imaging time is around 30secs. This filter sampling also agrees with the critical

filter sampling calculated in section 4.8 for the Gaussian shaped filter transmission.

8.3.2 Sensor Trade-offs. The second use of the SRCM is to compare differ-

ent sensor trade-offs when designing a new spectral imaging sensor that will process

the collected data with the MBSIR algorithm. By modeling different sensor deigns,

with different selected parameters, a SRCM can be calculated for each design. A

comparison of the different SRCMs can show which design allows for the most im-

provement with the data is processed when the MBSIR algorithm. The best sensor

design given by the SRCM can be balanced with other system requirements to provide

the optimum design. By using the SRCM in the design of the sensor, the parameters

of the sensor are better optimized to take advantage of the processing available to

improve the image resolution.

8.4 Summary

This chapter introduces the Spectral Reconstruction Capability and developed

a method for calculating the SRCM, a maximum SRCM and an average SRCM.
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Figure 8.4: The average ASIS visible SRCM for the five different filter samplings
and the imaging time required for those five filter samplings. The SRCM metric shows
that the higher the filter sampling the better the SRCM, but the longer the imaging
time. A 2.5nm to 5nm sampling appears to be an effective balance of resolution and
imaging time.

The SRCM is a metric derived from the spectral resolution and spectral capability

lower bounds and measures the reconstruction capability of the MBSIR algorithm

when the algorithm is used to post-process the data. The SRCM is a useful metric to

qualitatively compare both parameter settings when operating a sensor and parameter

trade-offs when designing a new sensor.
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IX. Model Based Spectral-Polarimetric Image

Reconstruction

The MBSIR algorithm can be expanded to take advantage of the polarizations in

the LCTFs. Instead of summing the linearly polarized sub-channels to account

for all photons as described in section 4.1.4, the separate spectral-polarimetric im-

ages are used to estimate the true spectral-polarimetric scene. Spectral-polarimetric

imaging provides even more information for satellite characterization, especially for

material identification and degradation analysis. The additional polarization infor-

mation provides new material characterization data that cannot be determined with

spectral information alone. Since only the linear polarizations are collected, only

the linear polarizations are estimated. However, if the full four Stokes images were

collected, the algorithm could be expanded to reconstruct the full polarimetric image.

This chapter develops the model-based spectral-polarimetric image reconstruc-

tion algorithm (MBSPIR). The MBSPIR algorithm is very similar to the MBSIR

algorithm. The difference between the two is the addition of a fourth polarimetric

dimension into the algorithm. The chapter will also discuss how the model of ASIS

has to be modified and will provide some simulated results.

9.1 Image Creation

The image created by the spectral-polarimetric imaging sensor can be mathe-

matically described by,

i(x, y, λ, π) =

∫ ∞∫

−∞

∫ ∫
o(u, v, γ, φ)h1(x− u, y − v, γ)h2(λ, γ)h3(π, φ)dudvdγdφ.

(9.1)

or in discrete terms,

i(x, y, λ, π) =
∑
u,v,γ

o(u, v, γ, φ)h1(x− u, y − v, γ)h2(λ, γ)h3(π, φ), (9.2)
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Figure 9.1: Spectral-Polarimetric Multi-Cube

Where h3(π, φ) is known as the Linear Polarimetric Mixing Function (LPMF). Two

polarization terms, (φ) and (π) are added to describe the polarization angle in the

true spectral-polarimetric scene and the collected spectral-polarimetric image. The

spectral-polarimetric image collected is then, i(x, y, λ, π) which is the super-set of

spectral images of the true scene collected in the desired wavelengths. In this case,

i(x, y, λ, π) is referred to as the spectral-polarimetric image multi-cube. As Figure 9.1

shows, the image multi-cube is the collection of spectral image cubes, with one cube

for each linear polarization. As with the spectral blurring function in the MBSIR

algorithm, the polarimetric blurring will also be treated as variant. The resultant

image is the h1, h2, and h3 blurring functions applied to the unblurred, true scene,

o(u, v, γ, φ).
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The variant spectral and polarimetric blurring is the general case. For the

specific invariant spectral and polarimetric blurring, Equations (9.1) and (9.2) are,

i(x, y, λ, π) =

∫ ∞∫

−∞

∫ ∫
o(u, v, γ, φ)h(x− u, y − v, λ− γ, π − φ)dudvdγdφ, (9.3)

or in discrete terms,

i(x, y, λ, π) =
∑

u,v,γ,φ

o(u, v, γ, φ)h(x− u, y − v, λ− γ, π − φ), (9.4)

where the spatial, spectral and polarimetric blurring is described by the impulse

response, h(u, v, γ, φ).

9.2 Image Statistics

The statistics of the image formation are identical to those for the MBSID

algorithm, given in section 3.2. Therefore the bases of both algorithms is the reduction

in Poisson noise.

9.3 Spectral-Polarimetric Image Reconstruction

The ML estimator developed for the spectral-polarimetric reconstruction begins

the same as that for the spectral reconstruction, except there is an additional dimen-

sion for linear polarization. Again, starting with the Poisson distribution and looking

at one specific point (xo, yo, λo, πo), the probability mass function is,

P [d(xo, yo, λo, πo) = D(xo, yo, λo, πo)] =
i(xo, yo, λo, πo)

D(xo,yo,λo,πo)

D(xo, yo, λo, πo)!
e−i(xo,yo,λo,πo).

(9.5)

where D(x, y, λ, π) is a particular realization of random variable d(x, y, λ, π) and

i(xo, yo, λo, πo) is the noise free image created from the true scene. For all points
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(x, y, λ, π), the probability is,

P [d(xo, yo, λo, πo) = D(xo, yo, λo, πo) ∀ (x, y, λ, π)] =
∏

x,y,λ,π

i(x, y, λ, π)D(x,y,λ,π)

D(x, y, λ, π)!
e−i(x,y,λ,π).

(9.6)

Repeating the use of the natural log of both sides to remove the exponential, the

probability on the left side of Equation (9.6) can be maximized by taking the derivative

of Equation (9.6) with respect to the true spectral-polarimetric scene, or truth multi-

cube, at a specific point o(uo, vo, γo, φo), setting this equal to zero and solving for this

truth multi-cube. So Equation (9.6) becomes,

∑

x,y,λ,π

d(x, y, λ, π)

i(x, y, λ, π)

d

do(uo, vo, γo, φo)
i(x, y, λ, π)− d

do(uo, vo, γo, φo)
i(x, y, λ, π) = 0.

(9.7)

Since

d

do(uo, vo, γo), φo

i(x, y, λ, π) = h1(x− uo, y − vo, γo)h2(λ, γ)h3(π, φ), (9.8)

Equation (9.7) then becomes,

∑

x,y,λ,π

[[
d(x, y, λ, π)

i(x, y, λ, π)
− 1]h1(x− uo, y − vo, γo)h2(λ, γ)h3(π, φ)] = 0. (9.9)

Using the same algebraic manipulation as the MBSIR algorithm, the following

iteration relation can be developed,

onew(uo, vo, γo, φo) =

oold(uo,vo,γo,φo)∑
x,y,λ,π

h1(x−uo,y−vo,γo)h2(λ,γ)h3(π,φ)

∑
x,y,λ,π

D(x,y,λ,π)
iold(x,y,λ,π)

h1(x− uo, y − vo, γo)h2(λ, γ)h3(π, φ).

(9.10)

where,

iold(x, y, λ, π) =
∑

u,v,γ,φ

oold(u, v, γ, φ)h1(x− uo, y − vo, γo)h2(λ, γ)h3(π, φ). (9.11)
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Figure 9.2: Assumed Linear Polarimetric Mixing Function.

9.4 Polarization Effects in ASIS

Unlike the spatial and spectral blurring in ASIS, the polarimetric blurring is not

known and has never been accurately measured. Therefore, the LPMF given by h3

must be assumed and the MBSPIR algorithm cannot be applied to actual ASIS data

at this time. Efforts are on-going to measure the changes in polarization induced by

ASIS, but these efforts will take some time to complete.

Given an assumed LPMF and the other functions from section 3.3, the ML

estimator in Equation (9.10) can now be used to reduce much of the spatial, spectral

and linear polarimetric blurring in the data from ASIS. As with the MBSIR, the initial

reconstruction guess for Equation (9.10) can be a multi-cube of uniform unit value,

and the iterations continue until the stopping criteria is reached.

9.5 ASIS Model for MBSPIR

The MBSPIR algorithm will use the first-order model of ASIS, with the addition

of an assumed linear polarimetric mixing function. For simplicity, a broad gaussian

will be used as the LPMF, and is shown in Figure 9.2. Figure 9.2 shows the LPMF

for two orthogonal linear polarizations (S and P).
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Figure 9.3: Linear polarization profile for the output of both binary stars. The
peak output is at 35 degrees of linear polarization.

9.6 Simulation

The simulation in section 5.3.2 can be expanded to include a linear polarimetric

reconstruction. To add the linear polarimetric dimension to the simulation, the linear

polarization output profile shown in Figure 9.3 is used. This output is used to give

the binary stars with a preferred linear polarization angle.

The spectral-polarimetric simulation looked at the binary stars in the visible

wavelengths only. However, two different polarization angles were examined. The

first angle was the linear polarization angle of greatest output and the second was an

additional angle away from the primary. Figures 9.4 and 9.5 give the spatial image

and spectral output for the two polarization angles of interest.

9.6.1 Spectral-Polarimetric Data Generation. The first-order ASIS model

with the linear-polarimetric mixing was used to generate the spectral-polarimetric

image multi-cubes. Figures 9.6 and 9.7 give the images for the S and P orthogonal

linear polarizations collected by ASIS.

9.6.2 Spectral-Polarimetric Reconstruction. The MBSPIR algorithm from

Equation (9.10) was then applied to the spatially, spectrally and polarimetrically
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Figure 9.4: Spatial true image and spectral-polarimetric output of a 0.25su radius
10000K and a 5su radius 5000K binary star at 25 light years in the visible at 35 degree
linear polarization.
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Figure 9.5: Spatial true image and spectral-polarimetric output of a 0.25su radius
10000K and a 5su radius 5000K binary star at 25 light years in the visible at 80 degree
linear polarization.
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Spectral−Polar Image at 500nm
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Figure 9.6: Spatial image and spectral-polarimetric output of a 0.25su radius
10000K and a 5su radius 5000K binary star at 25 light years with a preferred lin-
ear polarization of 35 degrees in the visible at 0 degree linear polarization of the S
channel of ASIS.
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Figure 9.7: Spatial image and spectral-polarimetric output of a 0.25su radius
10000K and a 5su radius 5000K binary star at 25 light years with a preferred lin-
ear polarization of 35 degrees in the visible at 90 degree linear polarization of the P
channel of ASIS.
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Reconstructed Image at 500nm
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Figure 9.8: Spatial image reconstruction and spectral-polarimetric output of a
0.25su radius 10000K and a 5su radius 5000K binary star at 25 light years in the
visible at 35 degree linear polarization. The solid line is the true spectral data and
the dashed line a linear interpolation of the reconstruction.

blurred images shown in Figures 9.6 and 9.7. The reconstruction was started with

an initial guess of unity for the entire spectral-polarimetric image multi-cube. The

results of the MBSPID algorithm are shown in Figures 9.8 and 9.9.

Another way to look at how well the spectral-polarimetric reconstruction worked

is to look in the linear polarimetric dimension only. Figure 9.10 shows the true and

reconstructed polarimetric spectra of the binary stars at 500nm.

9.6.3 Results. As Figure 9.11 shows, the average percent difference be-

tween the reconstruction and the truth data for the visible polarization spectra is

5%. Therefore, the reconstruction is not only able to undo much of the spectral and

spatial blurring, but also the induced linear polarimetric blurring assumed for ASIS.

9.7 Summary

In this chapter the MBSIR algorithm was expanded to include an estimation

for linear polarization. The MBSPIR algorithm uses the orthogonal sub-channels

required when using the LCTFs to collect polarized sources to provide the necessary

spectral-polarimetric data for the reconstruction. The MBSPIR algorithm is very
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Reconstructed Image at 500nm

400 500 600 700
0

20

40

60

80

100

120

140

wavelength (nm)

flu
x 

(k
ph

ot
on

s/
se

c)

Spectra at 80o polarization

10,000K

5,000K

Figure 9.9: Spatial image reconstruction and spectral-polarimetric output of a
0.25su radius 10000K and a 5su radius 5000K binary star at 25 light years in the
visible at 80 degree linear polarization. The solid line is the true spectral data and
the dashed line a linear interpolation of the reconstruction.
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Figure 9.10: Polarimetric output of a 0.25su radius 10000K and a 5su radius 5000K
binary star at 25 light years with a preferred linear polarization of 15 degrees in the
visible at 500nm. The solid line is the true polarimetric data and the dashed line the
reconstruction.
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Figure 9.11: Percent difference between the truth and reconstructed linear polari-
metric spectra of the binary star. The lines are the average of the difference.

similar to the MBSIR algorithm, except the MBSPIR algorithm includes a LPMF to

model the polarimetric blurring within the sensor. Since the LPMF for the complex

optics of ASIS has not been measured, an assumed LPMF was used for simulating

the reconstruction of a spectral-polarimetric binary star image. The simulation shows

that the MBSPIR algorithm can reduce the blurring in the simulated data, including

the spatial, spectral and linear polarimetric structure.
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X. Summary

This research developed the first spectral image reconstruction algorithm which

simultaneously improves the spatial and spectral resolution of spectral images

collected with ETFs. The algorithm, known as the Model-based Spectral Image Re-

construction algorithm, is based on statistical estimation and requires no knowledge

of the imaged scene. The algorithm uses a model of the imaging sensor to iteratively

reduce the spectral and spatial blurring that occurs within the sensor. The qual-

ity of the reconstruction depends directly on the accuracy and quality of the model

developed for the sensor.

For this research, the algorithm was developed for the AEOS Spectral Imaging

Sensor, and new spectral imaging sensor installed at the MSSC. ASIS is used to take

atmospherically compensated spectral images of satellites, to enhance the understand-

ing of the satellite’s performance and capabilities. The sensor will provide valuable

information to advance the knowledge to achieve a more robust Space Situational

Awareness.

10.1 Results

The algorithm developed in this research was expected to expand on the decon-

volution method developed for gamma-ray spectroscopy. The deconvolution algorithm

used for the gamma-ray spectroscopy was able to double the spectral resolution of

the collected spectra [35]. As Figures 10.1 and 10.2 show, the MBSIR algorithm is

also able to double the spectral resolution. However, the MBSIR algorithm has si-

multaneously resolved two spatial features. The spectral features in the 20nm filter

sampling were resolvable without the MBSIR algorithm. The algorithm was required

to resolve the features in the 10nm filter sampling.

The MBSIR algorithm was also used to reconstruct a continuous spectra to

show the improvement of the MBSIR algorithm over other spectral reconstruction

methods, such as PE. In the PE method, a 20nm filter sampling was used and the

PE method reconstructed the continuous spectra of three color samples to a RMS
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Figure 10.1: The simultaneously improved spatial and spectral resolution for a
20nm filter sampling. The two spatial features are resolved in the reconstruction. The
two spectral features are resolved in both the simulated data and in the reconstruction.
The solid lines are the simulated spectra and the reconstruction as labeled. The
dashed lines are the spectral features.
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Figure 10.2: The simultaneously improved spatial and spectral resolution for a
10nm filter sampling. The two spatial features are resolved in the reconstruction.
The two spectral features are resolvable in the reconstruction only. The solid lines
are the simulated spectra and the reconstruction as labeled. The dashed lines are the
spectral features.
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Figure 10.3: The simultaneously improved spatial and spectral resolution for a
20nm filter sampling. The two spatial features are resolved in the reconstruction.
The two continuous spectra are reconstructed to a 0.103 RMS error. The solid lines
are the simulated spectra and the reconstruction as labeled. The dashed lines are the
continuous spectral input.

error of 0.243 [24]. For comparison, the MBSIR algorithm was used to reconstruct

the continuous blackbody spectra of a binary star. Figure 10.3 shows the results of

the binary star reconstruction. The mean RMS error for the reconstructions is 0.103,

which is approximately half the RMS error for a similar reconstruction using the PE

method. Additionally, the RMS error is reduced without the need for any a priori

knowledge of the imaged scene required by the PE method. The MBSIR algorithm

also reconstructs the spatial scene which is not included in the PE method.

After the derivation of the MBSIR algorithm, several simulations were shown in

Chapter V to demonstrate the expected benefit of the algorithm for the data collected

in Chapter VI. In the simulations, the algorithm showed how it can be used to resolve

both spatial and spectral features of a spectral source, where the features were not

resolvable when the data was collected. The algorithm was also used to simulate the

reconstruction of the spectra of a singlet star and the spatial scene and spectra of a
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binary star. For both of the singlet and binary star simulations, the algorithm was

able to reconstruct the spectra of the stars.

While some data has been collected with ASIS, much of the data is not suitable

for MBSIR processing because of the incomplete collection or coarse filter sampling.

To demonstrate the use of the algorithm on data a second sensor was constructed.

The AFIT Spectral Imaging Reconstruction Test Bench is much less complex that

ASIS, but is very similar to ASIS from a modeling perspective. Two data sets were

collected with ASIR-TB that show how the algorithm improves the resolution on

data from a spectral imaging sensor. Hg(Ar) and Ne spectral calibration sources

were collected in the visible and near-IR with a intentional defocus and coarse filer

sampling that served to blur the spatial and spectral features in the data so the

features were unresolvable. When the MBSIR algorithm was applied to the data,

the same features were resolvable. The criteria used to resolve the features was the

Rayleigh criteria for the spatial features and a Rayleigh like criteria for the spectral

features. Figures 6.3 and 6.8 most clearly show the spatial and spectral resolution

enhancement the MBSIR algorithm can provide.

After showing the algorithm can be used successfully on data collected with a

spectral imaging sensor, the CRLBs were determined for two important reconstruction

parameters. The lower bounds for the spectral resolution and spectral accuracy were

calculated for both the ASIR-TB and ASIS sensors. These two lower bounds measure

the best possible resolution and accuracy that the processing algorithm can achieve

when used to process data from ASIR-TB or ASIS. The spectral resolution lower

bound for the algorithm determines the minimum separation between two spectral

features that the algorithm can resolve, while the spectral accuracy bound measures

the capability of the algorithm to place a spectral feature at the correct wavelength.

The lower bounds can be combined together to give a spectral reconstruction

performance metric known as the Spectral Reconstruction Capability Metric. The

SRCM can be used to determine the optimal operational parameters for the sensor.
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The SRCM can show the most efficient filter sampling, helping balance resolution

enhancement and imaging time. For the ASIS visible channel, this was determined to

be 2.5nm. Additionally, the SRCM can be used to perform design parameter trade-

offs for new imaging systems. By looking at the SRCM, the sensor can be designed

to make the optimum use of the resolution enhancement that the MBSIR algorithm

can provide.

The filters used for ASIS allow for the collection of a spectral-polarimetric image.

Since the orthogonal linear polarizations for every spectral image is collected, it is

possible to perform a complete spectral-polarimetric reconstruction. The MBSIR

algorithm can be expanded into the polarimetric dimension to have a Model-based

Spectral-Polarimetric algorithm. However, in order to perform a spectral-polarimetric

reconstruction, the blurring introduced to the polarization with the sensor needs to

be understood and modeled. Currently, this is not known for ASIS. However, using

an assumed polarimetric function, a simulation is shown to demonstrate the potential

improvement achievable using the MBSPIR algorithm.

Finally, while this research has developed a method for improving the resolution

of images collected with ASIS, more algorithm enhancements can be examined. Using

a priori knowledge could improve the results of the algorithm. Also, the algorithm can

be used to show how more unorthodox sensor designs can provide better performance

when the images are first post-processed with an reconstruction algorithm.

10.2 Further Research

While this research has laid a good foundation for enhancing the resolution of

images collected with the AEOS Spectral Imaging Sensor, many more areas are open

to investigation. This chapter will recommend two topics that should be researched

further.

10.2.1 Algorithm Enhancement. The use of general a priori knowledge has

been successfully used to improve the quality of images reconstructed with maximum
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likelihood estimators [13,33]. Examples of the a priori knowledge used to improve the

image quality include support, knowing where the images is located within the image

plane, and positivity, enforcing that the signal of the image remain positive. These,

and similar a priori ideas, can be used with the MBSIR algorithm to potentially

improve the quality of the reconstruction.

The research topic would be to determine what a priori knowledge would im-

prove the MBSIR algorithm and quantify the improvement by examining the lower

bounds. Simulations could then be used to show the benefit of the a priori knowledge.

The revised algorithm could then be applied to currently and newly collected data

from ASIS or ASIR-TB.

10.2.2 Realistic CRLBs. As mentioned in the introduction to Chapter VII,

the CRLBs calculated in this research are the ultimate lower bounds. For these

CRLBs, the lower bound to calculated at on two wavelengths for the spectral resolu-

tion and only one wavelength for the spectral accuracy. This leads to a lower bound

that shows better performance than will be achievable.

This research topic will re-calculate the lower bounds to determine the realistic

CRLBs for the spectral resolution and spectral accuracy. The realistic bounds can be

determined by calculating the bound when estimating all wavelengths simultaneously.

10.2.3 Lower bound on Spectral Amplitude. As seen in section 6.2.1.2,

the location and amplitude ratios for the reconstructed spectral features were not

reconstructed as accurately as desired. While section 7.3 investigated a CRLB for

spectral accuracy, there was no CRLB determined for the spectral amplitudes.

This research topic would investigate a CRLB for the spectral amplitude. The

initial CRLB for spectral amplitude was actually derived as part of the CRLB for

spectral accuracy. Instead of looking at the (1,1) entry of the inverted Fisher infor-

mation matrix, the (2,2) entry would be examined. However, a more comprehensive

CRLB for the spectral amplitude could be developed and investigated.
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10.2.4 New Sensor Concepts. Most spectral imaging sensors, including

ASIS, was originally designed to need little to no post-processing to interpret the

spectral images. With small, non-overlapping bandwidths the data from these sensors

need only to be spatially aligned and calibrated. While this makes using the data

simple, it provides for no inherent capability to use image post-processing to improve

the resolution of the image. To use the MBSIR algorithm to post-process the data,

the sensor needs to be used in a way that it would not normally be operated; the

images are collected with significantly overlapping bandwidths.

By knowing that the images will be post-processed to increase the image reso-

lution, a sensor can be more optimally designed to take advantage of the processing.

The first, and most simple way, this can be done is to increase the bandwidth of the

filters. Instead of a 20nm bandwidth in the visible, a 40nm bandwidth could be used.

The larger bandwidth should allow for fewer images to be collected, decreasing the

overall time required to collect an image, while maintaining a good spectral recon-

struction capability. However, the larger bandpasses will not perform as well as the

smaller bandpasses. Since the collected images are of such a large bandwidth, they

may or may not be useful with applying the MBSIR processing.

An even more unorthodox approach is to have a multiple bandpass filter. In-

stead of transmitting one 20nm bandwidth region, two, or even three, 10nm bandpass

regions would be transmitted. Figure 10.4 shows a notional bandpass for this filter

design. The multiple bandpass regions are created by increasing the phase retar-

dance with in the Lyot cell. In this design, fewer images would need to be collected

since multiple bands are collected per image, leading to a decreased imaging time. The

bandpass of each region would remain a 20nm, so would not suffer the decreased spec-

tral resolution due to the large bandwidths. However, because each image contains

photons from multiple bandpasses, the spectral image would be essentially unusable

with post-processing with MBSIR. An additional complicating factor is that the lo-

cation of the second bandpass and the bandwidth are variant; the distance between
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Figure 10.4: An notional filter transmission profile with a multiple bandpass. The
second bandpass is created by increasing the phase retardance of the Lyot cell. The
solid and dashed lines show two successive filter selections.

the two bandpasses and the bandwidth of the second bandpass changes as the center

wavelengths are selected.

This research topic would examine how to best implement the large bandwidth

and multiple bandpass filters. To quantify the impact to the improvement of the

image, the lower bounds would be calculated. Each of the new sensor designs could

be simulated to show the expected performance. While neither sensor design exists,

existing data could be used to provide a first-order example of the new algorithm

working for the multiple bandpass filter. For the multiple bandpass filter, the sen-

sor sampling also needs to be investigated because of the location and bandwidth

invariance.

137



Bibliography

1. “Report of the Commission to assess United States Na-
tional Security Space Management and Organization”.
http://www.defenselink.mil/pubs/space20010111.html, 2001.

2. “Lu-100 Specification Sheet”. http://www.lumenera.com/industrial/lu105.php,
2006.

3. The Newport Resource 2006/2007. Newport, 2006.

4. AFSPC. “Air Force Space Command Strategic Master Plan FY06 and Beyond”.
http://www.peterson.af.mil/hqafspc/library/AFSPCPAOffice/Finaligned!v1.1.pdf,
2003.

5. Andersen, Brian K. “Space Surveillance: Cornerstone of the DoD Strategy for
Space Control”. 2001 AMOS Technical Conference, 46–53, 2001.

6. Andor. “Andor Specification Sheet for iXon DV887”. http://www.andor-
tech.com/.

7. Ball, David W. The Basics of Spectroscopy. SPIE, Bellingham, WA, 2001.

8. Billings, Paul A., Michael F. Reiley, and Bruce E. Stribling. “Mitigating
Turbulence-Induced Image Blur Using Multiframe Blind Deconvolution”. 2001
AMOS Technical Conference, 506–512, 2001.

9. Boeing. “AEOS Adaptive Optics: AEOS Adaptive Optics Performance Report”.
AFRL/DEBI, 2004.

10. Briscoe, David. “AEOS Radiometer Subsystem (ARS) operations and data prod-
ucts on the AEOS 3.67-meter telescope on Maui”. 2001 AMOS Technical Con-
ference, 147–156, 2001.

11. Brodzik, Andrzej K. and Jonathan M. Mooney. “Convex Projections Algorithm
for Restoration of Limited-Angle Chromotomographic Iimages”. J. Opt. Soc. Am.
A, 16(2):246–257, 1999.

12. Cain, Stephen C. “Bayesian-Based Subpixel Brightness Temperature Estimation
From Multichannel infrared GOES Radiometer Data”. IEEE Transactions on
Geoscience and Remote Sensing, 42(1):188–201, 2004.

13. Calef, Brandoch. “Quantifying the Benefits of Positivity”. 2005 AMOS Technical
Conference, 44–51, 2005.

14. Christou, Julian C., Robert Fugate, Robert Johnson, and Rick Cleis. “Deconvolu-
tion of Columbia Images from the Starfire Optical Range”. 2003 AMOS Technical
Conference, 2003.

138



15. Dereniak, E. L. and G. D. Boreman. Infrared Detectors and Systems. John Wiley
& Sons, Inc., New York, NY, 1996.

16. Descour, Michael and Eustace Dereniak. “Computer-tomography Imaging Spec-
trometer: Experimental Calibration and Reconstruction Results”. Appl. Opt.,
34(22):4817–4826, 1995.

17. Dong, Ying, Zheng You, Peng Gao, and Yuncai Hao. “Miniature imaging spec-
trometer based on an acousto-optic tunable filter (AOTF)”. Proc. SPIE Int. Soc.
Opt. Eng., 4897(1):138–146, 2003.

18. Gat, Nahum. “Imaging spectroscopy using tunable filters: a review”. Proc. SPIE
Int. Soc. Opt. Eng., 4056(1):50–64, 2000.

19. Goodman, Joseph W. Introduction to Fourier Optics. McGraw-Hill Companies,
Inc., Boston, MA, 1968.

20. Goodman, Joseph W. Statiscal Optics. John Wiley & Sons, Inc., New York, NY,
1985.

21. Gould, Malcolm and Stephen Cain. “Development of a fast chromotomographic
spectrometer”. Opt. Eng., 44(11):110503–3, 2005.

22. Hall, Doyle, John Africano, Kris Hamada, Paul Kervin, Karl Kremeyer, John
Lambert, Jennifer Okada, Lewis C. Roberts Jr., and Paul Sydney. “AEOS I-
Band Photometry of Moving Targets”. 2003 AMOS Technical Conference, 2003.

23. Hamada, Kris, Paul Sydney, John Africano, Vicki SooHoo, Kira Jorgensen amd
Gene Stansbery, Daron Nishimoto, and Paul Kervin. “Space Object Identification
(SOI) with the Spica spectrometer at the AFRL Maui Optical and Supercomput-
ing (AMOS) site”. 2002 AMOS Technical Conference, 2002.

24. Hardeberg, Jon Y., Francis Schmitt, and Hans Brettel. “Multispectral color image
capture using a liquid crystal tunable filter”. Opt. Eng., 41(10):2532–2548, 2002.

25. Hecht, Eugene. Optics. Addison Wesley, San Fransisco, CA, 2002.

26. Jerkatis, Kenneth J. “AEOS Spectral Imaging Sensor Design Documents”.

27. Jorgensen, Kira, John L. Africano, Eugene G. Stansbery, Paul W. Kervin, Kris M.
Hamada, and Paul F. Sydney. “Determining the material type of man-made
orbiting objects using low-resolution reflectance spectroscopy”. Proc. SPIE Int.
Soc. Opt. Eng., 4490(1):237–244, 2001.

28. Jorgensen, Kira M. “Using Refelectance Spectroscopy to Determine Material
Type of Orbital Debris”. Dissertation, University of Colorado, 2000.

29. Kaler, James B. “Stars”. 2006. URL
http://www.astro.uiuc.edu/ kaler/sow/sowlist.html.

30. Lomheim, Terrence S. “Multispectral and Hyperspectral Image Sensors, SPIE
Short course SC194 notes”. SPIE.

139



31. Lule, S., T.and Benthien, H. Keller, F. Mutze, P. Rieve, K. Seibel, M. Sommer,
and M Bohm. “Sensitivity of CMOS based imagers and scaling perspectives”.
IEEE Transactions on Electronic Devices, 47(11):2110–2122, Nov 2000.

32. Luu, K. Kim, Charles L. Matson, Joshua Snodgrass, S. Maile Griffin, Kris
Hamada, and John V. Lambert. “Object characterization from spectral data”.
2003 AMOS Technical Conference, 2003.

33. Matson, Charles L. “Spatial Frequency Effects of Support Constraints on Decon-
volved Data”. 2004 AMOS Technnical Conference, 138–144, 2004.

34. Matson, Charles L. and Kathy J. Schultze. “Blind Material Identification from
Spectral Traces”. 2004 AMOS Technical Conference, 570–580, 2004.

35. Meng, Ling-Jian and David Ramsden. “An Inter-comparison of Three Spectral-
Deconvolution Algorithms for Gamma-Ray Spectroscopy”. IEEE Trans. on Nuc.
Sci., 47(4):1329–1336, Aug 2000.

36. Miller, Peter J. and Clifford C. Hoyt. “Multispectral imaging with a liquid crystal
tunable filter”. Proc. SPIE Int. Soc. Opt. Eng., 2345(1):354–365, 1995.

37. Miyazawa, Kanae, Kazuhiko Kurashiki, Markku Hauta-Kasari, and Satoru Toy-
ooka. “Broadband color filters with arbitrary spectral transmittance using a liquid
crystal tunable filter (LCTF)”. Proc. SPIE Int. Soc. Opt. Eng., 4421(1):753–756,
2002.

38. Mooney, Jonathan M., Virgil E. Vickers, Myoung An, and Andrezj K. Brodzik.
“High-Throughput Hyperspectral Infrared Camrea”. J. Opt. Soc. Am. A,
14(11):2951–2961, 1997.

39. Neyman, Christopher R., Gene C. Hughes Jr., and Lewis C. Roberts Jr. “AEOS
Adaptive Optics System: One Year of Operations”. 2001 AMOS Technical Con-
ference, 247–255, 2001.

40. Payne, Tamara E., Stephen A. Gregory, Nina M. Houtkooper, and Todd W.
Burdullis. “Classification of geosynchronous satellites using color photometric
techniques”. 2002 AMOS Technical Conference, 2002.

41. Payne, Tamara E., Stephen A. Gregory, Darryl J. Sanchez, Todd W. Burdullis,
and Susan L. Storm. “Color photometry of geosynchronous satellites using the
SILC filters”. Proc. SPIE Int. Soc. Opt. Eng., 4490(1):194–199, 2001.

42. Richardson, B. H. “Bayesian-based Iterative Method of Image Restoration”. J.
Opt. Soc. Am., 62:55–59, 1972.

43. Sansonetti, Jean E. and W. C. Martin. “Handbook of Basic Atomic Spectroscopic
Data”. http://physics.nist.gov/PhysRefData/Handbook/, August 2005.

44. Schowengerdt, Robert A. Remote Sensing: Models and Methods for Image Pro-
cessing. Acedemic Press, San Deigo, CA, 1997.

140



45. Schulz, Timothy, Bruce Stribling, and Jason Miller. “Multiframe Blind Deconvo-
lution with Real Data: Imagery of the Hubble Space Telescope”. Opt. Express,
1:355–362, 1997.

46. Schulz, Timothy J. “Multiframe blind deconvolution of astronomical images”. J.
Opt. Soc. Am. A, 10:1064–1073, 1993.

47. Shepp, Lawrence and Yehuda Vardi. “Maximum Likelihood Reconstruction for
Emission Tomography”. IEEE Trans. on Med. Im., MI-1(2):113–122, 1982.

48. Sridharan, R. and Antonio F. Pensa. “U. S. Space Surveillance Network Capa-
bilities”. Proc. SPIE Int. Soc. Opt. Eng., 3434:88–100, 1998.

49. Trees, Harry L. Van. Detection, Estimation, and Modulation Theory, volume 1.
John Wiley and Sons, 1968.

141



Index

The index is conceptual and does not designate every occurrence of a key-
word. Page numbers in bold represent concept definition or introduction.

Advanced Electro-Optical System, 1

AFIT Spectral Image Reconstruction Test

Bench, see ASIR-TB

Andor iXon DV887

parameters, 36

quantum efficiency, 36

ASIR-TB

description, 50

imaging array, 53

model, 53

purpose, 5

set-up, 56

ASIS

calibration

LCTF, 47

optics, 46

components, 31

CRLB

spectral accuracy, 106

spectral resolution, 95

LPMF, 120

model

Ag mirror coating, 39

Al mirror coating, 39

atmospheric transmission, 46

BAK4 coating, 41

CAF2 coating, 41

comparison, 49

F2 coating, 41

first-order, 37

MBSPIR, 123

NIR/SWIR dichroic, 41

second-order, 44

SK15 coating, 41

SK16 coating, 41

SK2 coating, 41

VIS/NIR dichroic, 41

polarization effects, 123

purpose, 4

SMF, 41

SRCM, 114

binary star

MBSIR simulation, 73

MBSPIR simulation, 124

simulation parameters, 75

camera, see also imaging array

chromotomography, 14

Cramér-Rao Lower Bound, see CRLB

CRLB

fisher information matrix

spectral accuracy, 107

spectral resolution, 99

spectral accuracy equation, 106

spectral accuracy input, 107

spectral resolution equation, 98

spectral resolution input, 99

Electronically Tunable Filters, see ETF

ETF, 15

executive summary, 130

I-1



filters, 15

fourier spectroscopy, 14

gratings, 13

Hg(Ar)

ASIR-TB data, 81

ASIR-TB simulation, 65

persistent lines, 58

imaging time, 94

LCTF

calibration, 47

description, 32

filter sampling, 61

parameters

near-IR, 32

visible, 32

polarization, 35

temperture dependence, 49

Linear Polarimetric Mixing Function, see

LPMF

Liquid Crystal Tunable Filter, see LCTF

LPMF, 120

Lumenera Lu-105, 53

Lyot cells, 34

Maui Space Surveillance Complex, 1

Maximum Likelihood Estimator, see ML

estimator

MBSIR

application, 29

defined, 23

equation

spatial and spectral, 28

spectral only, 28

iteration stopping criteria, 29

poission statistics, 25

reconstruction sampling, 61

MBSPIR

defined, 119

equation, 122

poisson statistics, 121

polarization effects, 123

Mercury Argon, see Hg(Ar)

ML estimator

MBSIR, 26

MBSPIR, 121

spectral only MBSIR, 28

Model-based Spectral Image Reconstruc-

tion, see MBSIR

Model-based Spectral Polarimetric Image

Reconstruction, see MBSPIR

NIR source

ASIR-TB data, 85

ASIR-TB simulation, 67

persistent lines, 58

prisms, 13

remote sensing, 1

resolution criteria, 64

SILC, 9

singlet star

ASIS data, 89

MBSIR simulation, 72

simulation parameters, 72

Space Situational Awareness, see SSA

space track, 2

spectral bands

defined, 11

spectral image cube, 11

spectral image processing

direct inverse, 18

principle eigenvalue, 20

I-2



singular value decomposition, 19

statistical, 20

Spectral Mixing Function, see SMF

Spectral Reconstruction Capability

see SRC, I-1

Spica, 9

SRCM

ASIS, 114

defined, 113

maximum, 113

mean, 113

use, 115

wavelength dependent, 113

SSA

benefits, 2

defined, 1

high-resolution imaging, 8

Starfire Optical Range, 8

SUMIX SMX-110, 53

I-3



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–12–2006 Doctoral Dissertation Sept 2003 — Aug 2006

Reconstructing Spectral Scenes Using Statistical Estimation
to Enhance Space Situational Awareness

ENG06-167

Blake, Travis F., Maj, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/DS/ENG/06-05

Dr. Victor Gamiz
Air Force Research Laboratory, Directed Energy Directorate
3550 Aberdeen Ave. S.E.
Kirtland Air Force Base, NM 87117
(505) 846-4846
victor.gamiz@kirtland.af.mil

Approved for public release; distribution unlimited

A new sensor, the Advanced Electro-Optical System (AEOS) Spectral Imaging Sensor (ASIS) has been developed at the
Maui Space Surveillance Complex (MSSC). ASIS is capable of collecting resolved imagery of space objects in 10’s-100’s of
spectral bands while using an adaptive optics system. However, the stringent requirements of collecting ground-based
images requires a sensor that induced spectral blurring. Post-processing algorithms to remove this blurring are required
to fully exploit these spectral images. This research focuses on developing the reconstruction algorithms, based on proven
estimation theories, required to spectrally deblur the images collected from ASIS. Additionally, the research will expand
the algorithm to also estimate the linear polarizations of the scene. The Cramér-Rao lower bounds on two key
performance parameters, the spectral resolution and accuracy, of the reconstruction algorithm will also be calculated.
Through the examination of these lower bounds a performance metric can be determined. This metric can be used to
compare the ability of the algorithm to work on different spectral sensors.

model-based spectral image reconstruction deconvolution, MBSIR, spectral image reconstruction, , ASIS, multi-spectral,
hyper-spectral, spectral resolution

U U U UU 176

Matthew E. Goda, Lt Col, USAF (ENG)

(937) 255–3636, ext 4614


	Reconstructing Spectral Scenes using Statistical Estimation to Enhance Space Situational Awareness
	Recommended Citation

	tmp.1591644875.pdf.aGrw8

