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AFIT/GAE/ENY /06-M02

Abstract

The complete numerical solution of the airflow around a store in extended free
flight is of particular importance to the United States Air Force. Beggar is the primary
CFD program used by the USAF to obtain solutions for store separations. However,
Beggar’s ability to simulate a store in free flight is limited because the store must fall
through a static background mesh, eventually reaching a point where the solution will
fail. The length of any free flight simulation is consequently limited by the height of the
background mesh. Code modifications are made to Beggar to remove this requirement
by pinning the store in the background mesh at its center of gravity. Rotations are
accomplished within the background mesh, but translations are reflected as changes
in the grid speeds of the background mesh. This allows the numerical simulation
to continue indefinitely. Beggar’s ability to model moving components (e.g. control
surfaces) in multi-body problems is fully preserved. The modified code is applied
to the MK-84 AIR model, which demonstrates that the solution of a pinned store
using the modified code adequately matches the solution of a translating store using
the unmodified code. In addition, extended free flight simulations are conducted in
which the dynamic behavior and long term trajectory of the store are observed. The
longest simulation lasts for 135 seconds of solution time. Testing of a generic store
body with multiple moving fins results in good agreement between the unmodified and
modified solution methods. The modified code reduces overall computational cost by
17% for simulations of similar length because of the smaller background mesh. The
combination of indefinite runtime and control surface modeling will make Beggar a

powerful tool for studying the non-linear dynamic behavior of stores in free flight.

v
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FREE FLIGHT STORE SIMULATION

USING BEGGAR

I. Introduction

he United States Air Force (USAF) has a large requirement for numerous, quick
Treaction solutions to the airflow around a wide variety of stores and aircraft.
Knowing the aerodynamic characteristics of these stores prior to any flight testing can
increase efficiency and reduce the danger of unpredicted store behavior during testing.
Unfortunately, with the advent of increasingly complex and accurate weapons systems,
it is getting more difficult to find a “truth source” test instrumentation system to

properly analyze a store via traditional flight testing [32].

Accurate numerical solutions can provide this efficiency and safety while re-
ducing costs when bringing a weapon through the development phase. The Beggar
Computational Fluid Dynamics (CFD) code, developed and maintained by the Air
Force Seek Eagle Office (AFSEQO) at Eglin Air Force Base (AFB), Florida, was de-
veloped for this purpose. It combines a flow solver, six degree-of-freedom ((6+)DOF)
integrator, and overset grid assembler to obtain the solution around the complicated
geometries required for store separation simulations. However, its use to model the
dynamic behavior of stores in free flight has been limited because of Beggar’s require-

ment for an inertially fixed background mesh.

Currently, to simulate a store in free flight, Beggar assembles the store grid and
an inertially fixed background mesh with its Chimera grid assembly system. The
store is placed in its initial position near the top of the tall background mesh. The
coupled flow solver and (6+)DOF integrator contained in Beggar allows the store to
fall through the background mesh in response to the aerodynamic and gravitational
forces acting on it. A simple illustration of this is shown in Figure 1. Eventually the

store will reach a position where grid assembly fails as it moves past the bottom of the
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Figure 1:  Translating Method of Free Flight Store Simulation

background mesh. Hence, the length of the free flight simulation in this case is limited
by the height of the background mesh, impeding the use of Beggar for extended high-
fidelity dynamic free flight simulations. Such a simulation would require a ‘taller’
background mesh, with sufficient density throughout the mesh for successful grid
assembly. Because a longer free flight simulation will result in more stream-wise
displacement from the initial z-location, the required size of the background mesh is

increased yet again.

As the background mesh grows in response to these requirements for extended
simulations, every iteration of the flow solver becomes more computationally expen-
sive. This can result in very large computational problems with long run times and
cumbersome memory requirements. These limitations prevent Beggar from simulating
a store in extended free flight for such purposes as trajectory predictions or dynamic

stability analysis.
1.1 Research Goals

The goal of this research is to modify the Beggar code to remove the require-

ment for an inertially-fixed background mesh, greatly improving the flexibility of the
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Figure 2: Pinned Method of Free Flight Store Simulation

Beggar code. Under the non-inertial simulation approach, the center of gravity (CQG)
of a single store maintains a fixed position relative to a smaller background mesh
(Figure 2). As the simulation progresses, rotations about the CG will be modeled by
rotating the store grids within the background mesh, but translations will be reflected
as changes in the grid velocities of the background mesh. Since the store is no longer
translating relative to background mesh, the simulation can proceed for an indefinite
period of time without grid assembly failure. Because the background mesh is smaller,
the overall computational cost is greatly reduced. In addition, the implementation of
rotational store motion through grid motion simplifies the computation of background

mesh velocities and preserves Beggars ability to model control surface functionality.

The combination of indefinite runtime and control surface modeling will make
Beggar a powerful tool for studying the non-linear dynamic behavior of stores in free
flight. The application of this research to the problem of predicting the dynamic
stability characteristics of stores will be of great benefit to the U.S. Air Force.

1.2 Prior Research

1.2.1 Wind Tunnel Techniques.  Before the advent of Computational Fluid

Dynamics, pre-flight store certification was primarily performed through wind tun-



nel testing. Two main wind tunnel techniques exist to investigate store separation
behavior. The Captive Trajectory System (CTS) uses a complicated setup of a sting-
mounted store and aircraft model integrated with a computer controlled six degree-of-
freedom model. The dynamic equations of motion and measured aerodynamic loads
are used from one time step to calculate the motion of the store, which is moved rela-
tive to the aircraft by a computer-controlled mechanism [12]. The Captive Trajectory
System can also be used to obtain the aerodynamics of the store alone, without the
aircraft model and the associated interference effects. At the end of the separation
event, data from the test can then be used in combination with a 6DOF model to
determine the projected impact point of the weapon [38]. Although this is typically
an accurate approach when validated with flight test data, sting interferences effects
on the store carriage loads have been known to compromise the accuracy of the data

in some situations [9].

The free drop method is the second wind tunnel method available for store
release simulations. A free drop test is performed by placing the aircraft with attached
store in free stream conditions in a wind tunnel and simply dropping the store model
while recording the separation event [12]. The many disadvantages of this method
outweigh any benefit derived from removing the sting and model support system
from the flow field. The store model must be carefully constructed to prevent damage
to the wind tunnel, but then is destroyed when dropped. These models are also
expensive to manufacture because of the inertial characteristics of the store that need
to be simulated in the model. Obtaining undistorted inertial properties within the
model while preserving the correct center of gravity and center of mass locations is
also exceptionally difficult. Ejection forces on the store are also extremely difficult to

simulate by the free drop method.

1.2.2  Test & FEvaluation Techniques.  The trajectory and aerodynamic char-
acteristics of stores can also be obtained through traditional flight testing, with the

accuracy of the test instrumentation limiting the accuracy of the results. Some of



these techniques can also be used to study store separation events, although a full
scale test is obviously required. Current flight testing systems such as the Advanced
Range Data System (ARDS) or radar, LASER, and optical tracking systems are
quickly becoming less desirable with the advent of highly accurate weapons systems.
Typical test instrumentation is expected to be one order of magnitude (10 times) more
accurate than the weapon being tested [32]. For example, if a weapon is accurate to
within 50 feet of a target, the test instrumentation used should be accurate to within
5 feet. This continually places new, more stringent demands on test instrumentation
as more accurate weapons system are being fielded by the United States military.
The Global Positioning System (GPS) led to the development of ARDS, which pro-
vided Time-Space-Position-Information (TSPI) with an unprecedented accuracy of
2-4 meters when it was fielded in the early 1990s. Several Test & Evaluation (T&E)
ranges, such as the White Sands Missile Range and the Air Force Flight Test Center
(AFFTC) range at Edwards AFB, are still using this system today.

The latest test instrumentation system, the Enhanced Range Applications Pro-
gram (EnRAP), will be fielded in 2007. It provides sufficient accuracy and upgrade
capability to continually meet the needs of the Army, Navy, and Air Force in the
future [32]. This system will provide real-time position accuracy of 0.3 meters as well

as a “GPS-denied” TSPI accuracy of 8-16 meters.

The current optical tracking system used at Eglin AFB, Florida uses high-
speed cameras mounted on the test aircraft to determine the store trajectory after
release. These cameras capture the store separation at 200 frames per second, which
is then analyzed by technicians using the Image Data Automated Processing System
(IDAPS) to obtain position and orientation information from the store throughout
the separation event [17]. This method has been used as the primary tool to study

store separation events.

1.2.3 Computational Techniques.  As computational methods mature, more

computational techniques are being integrated into the traditional test methodol-



ogy. Considerable progress has been made in the accuracy of computational models
(especially turbulence models) in recent years, which has lent credibility to computa-
tional methods and increased the demand for computational solutions. Assisting this
progress has been the recent exponential growth in computing capability, especially
processing power and memory capacity, allowing for increased problem sizes and ac-
curacies. The current efforts pressing towards an even greater expansion of computing

capability only beget a larger demand for computational solutions in the future.

1.2.4/ Beggar Development.  The Beggar code originated in 1994 at the U.S.
Air Force Wright Laboratory at Eglin AFB, FL. It has been used exclusively by the
Air Force Seek Eagle Office at Eglin AFB since then and continues to be under devel-
opment by the Computational Aeromechanics Team (CAT) located there. Beggar was
developed specifically to numerically resolve the complicated flow that exists around
multiple geometries in relative motion, such as an aircraft/store combination. It does
this by using blocked and overset grid techniques, with an automated grid assembly

process, flexible flow solution, and (64+)DOF motion model.

The Beggar program has been used extensively by the Air Force to compute
carriage loads and store separation trajectories. These capabilities have been contin-
uously tested and validated while the code has been in production use. An overview

of some of the validation efforts is presented in Section 1.2.6.

The development of the Beggar code is an ongoing process, guided mainly by
the efforts of the Computational Aeromechanics Team at Eglin AFB. The goal of
this development process is to upgrade the capability of the code in order to simulate
the increasingly complex weapons systems being introduced by the U.S. Air Force
[26]. Because of the continually changing state of Air Force weapons development,
the Beggar code is perpetually being upgraded and extended. Another goal is to
continually increase the computational efficiency of the code. Since the flow solver is
still the most computationally intensive part of the code, new solution methods and

turbulence models are always being evaluated.



1.2.5 Rigid Body Motion. As there is greater advancement in the range
of applications for CFD, there have been many more CFD algorithms designed for
moving meshes. The concept of moving meshes may be found in problems involving
mesh deformation or rigid body motion, and especially if the problem involves un-
steady flows. Mesh deformation problems include oscillating airfoils, adapting meshes,
or even hydrodynamic problems with free surfaces. Such applications often involve
stationary boundaries where the mesh only deforms inside the boundaries. Rigid
body motion applications include cases where the mesh and boundaries move rigidly
through the flow as a single body. Such cases include the presently studied problem

of store separation or bodies in relative motion.

Rigid body motion has already been validated in these applications. Biedron,
Vatsa, and Atkins showed that an unsteady flow past a pitching airfoil and pitching
blended-wing body using mesh motion resulted in good agreement between computed
and measured values of pressure coefficients and certain dynamic stability deriva-
tives [5]. Their work also validated a more complex piston-driven synthetic jet with
mesh motion, in which they compared the jet velocities with experimental data. Good
agreement, between experimental and computational data was seen in both the oscil-
lating airfoil and three-dimensional (3D) wing tests in this research. Hughson devel-
oped a 3D unstructured method for dynamic motion which successfully predicts the

unsteady solution about a pitching rectangular wing [16].

Beggar uses the concept of rigid body motion to apply varying grid speeds to
bodies in relative motion. The validation of the mesh motion in Beggar is inherent
to any discussion of the validity of a Beggar solution involving such motion. With
that in mind, rigid body motion has not been applied or validated on a background
mesh in the past. However, the same equations in the flow solver are used on the
background mesh as are used on any other grid, and other grids have commonly been

validated with components of mesh motion present.



1.2.6 Prior Validation.  The research done by Coleman, Jolly, Chesser, and
Brock analyzed Beggar’s capability for a simple store separation event from an F-15E
aircraft with the MK-84 general purpose bomb [10]. The store was released at a
Mach number of 0.90 with the aircraft at an angle of attack of 1.1 degrees. The store
trajectory was computed using an inviscid flow field and compared against wind tunnel
data. The computed position of the center of gravity of the store showed excellent
agreement with the wind tunnel data. The orientation of the store throughout the
separation event also agreed with the wind tunnel data, with the exception of the
store roll angle. The differences in roll angle were attributed to the way the ejector

forces are modeled in Beggar versus in the wind tunnel.

Prewitt, Belk, and Maple investigated the accuracy of Beggar in varying test
cases [25]. Their research addressed the accuracy of the Beggar numerical solution as
compared against wind tunnel data for a store in the carriage position. Good agree-
ment was found between Beggar and the wind tunnel data, with most discrepancies
being attributed to the lack of viscous effects in the numerical solution. They also
compared store trajectories from different test cases against known wind tunnel data,
and found that Beggar’s predictions had good agreement with the wind tunnel data.
Their final test case consisted of ejecting three equivalent stores loaded on a triple
ejector rack. The results from this case were similar to results by Thoms and Jor-
dan [31]. In these differing cases, Beggar proved to be a robust and reliable method

of predicting the behavior of stores.

A fully time accurate solution to the separation of a Joint Direct Attack Muni-
tion (JDAM) GBU-31 from an F-18C aircraft was presented by Noack and Jolly [22].
Two test cases were run, both with the aircraft in a dive at approximately 45 degrees
nose down at transonic speeds (Mach 0.962 and Mach 1.055). Inviscid solutions were
obtained for both Mach numbers, and a viscous solution was obtained for the Mach
0.962 case. Overall, the numerical solutions were found to agree well with flight ob-
servations. Some differences were found between the inviscid and viscous solutions,

demonstrating that while having higher a computation requirement, the viscous solu-



tion does achieve greater accuracy. This test case validated the use of Beggar in the

more complex, highly non-linear transonic store separation environment.

Rizk and Lee [27] demonstrated the accuracy of the (64+)DOF by using the Beg-
gar code in the absence of a flow field. The solutions were checked by simply verifying
that they satisfy the dynamic equations of motion. An unconstrained store body was
used in combination with a single store moving component. These components were
represented by a single rod of length 20.0 and a connected rod of length 8.0, respec-
tively. The center of mass of each rod was located at its midpoint, and the combined
system was aligned with the XY plane, resulting in motion within that plane only.
The system was at an initial state of rest with an applied moment in the Z-direction
for the first 2 seconds of motion. A constant force was also applied to the centers of
mass of the components for this initial 2 second period. At the end of this period,

both forces and moments were removed and the system was allowed to rotate freely.

The initial motion consisted of both components rotating and translating in the
XY plane. After the initial period, the angular speed of each component became
periodic, with the period being a function of the geometry and inertial properties of
the system. The resulting motion of the system computed by the (6+)DOF was found
to align exactly with the motion predicted by the equations governing the dynamic

motion.

In the same research, Rizk and Lee also demonstrated the usefulness and accu-
racy of the (6+)DOF solver in the full scale simulation of a store separation from an
F-16 aircraft. The store used was a CBU-89 Gator Mine, a 1,000 pound cluster muni-
tion containing anti-tank and anti-personnel mines. The CBU-89 was equipped with
retractable fins, which are modeled as store moving components (SMC) in Beggar.
These fins remain retracted prior to release, then deploy after the store is released.
Dudley and Westmoreland had previously tested and validated the capability of the
(6+)DOF to model these retractable fins as SMCs under prescribed motion [11]. The

fins must be deployed by means of prescribed motion because of the absence of detailed



Table 1:  Phases of Beggar Code Modifications.

Phase Objective

Phase 1a | Application of mesh motion on the background mesh.

Phase 1b | Correction of flow visualization

Phase 2 | Implementation of pinned SMB
Phase 3 | Implementation of pinned SMB with SMCs

information (such as spring constants and inertial properties) about the mechanisms
that deploy the fins. This setup by Rizk and Lee also tested the capability of the
Chimera grid assembly method because of the overset grids used to represent the fins.
The results of the test, a time history of x,¥y, and z displacement and 6, ¢, and

angles of the munition, showed good agreement to known flight test data.

1.3 Research Approach

1.3.1 Beggar Modifications.  The complete modification to the Beggar code
will be broken down into multiple phases, shown in Table 1. First, modifications will
be made to the Beggar code to enable the application of mesh motion to the back-
ground mesh. Next, the flow visualization will be corrected to include this component
of mesh motion. The major modification will be removing the inertially fixed back-
ground mesh by pinning the store at its center of gravity in the background mesh.
This will first be done for the simplest case: a single store body. Then the code will
be adapted for the multi-body problem consisting of the store main body (SMB) with

multiple fins modeled as moving components.

1.3.2 Testing Approach. Since mesh motion and the visualization of that
motion are interdependent, the first testing will occur after Phase 1. This test is
designed to be a simple confirmation that the mesh motion and flow visualization
corrections are properly applied by using a supersonic compression ramp. The solution

of any combination of mesh and flow motion over the ramp should result in a similar
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shock angle and flow field. These two measures of merit are easily verified against the

exact solution obtained from the oblique shock relations.

The next testing occurs after Phase 2 through the simulation of MK-84 AIR
single body store. A “tall” background mesh with extended vertical height is used
to find the reference solution of the store translating in response to the gravitational
and aerodynamic forces acting on it. A smaller background mesh is used to find the
solution of the pinned store at the same initial conditions, using the modified code
to remove the inertially fixed background mesh. A simple comparison is conducted
between the two solution methods, and the results should match closely. Extended
free flight simulations will also be accomplished with the MK-84 AIR to demonstrate

the capacity of these modification.

Finally, testing of the multi-body problem will be completed. This testing will
use a generic store body with multiple fins that rotate in response to a prescribed
motion input by the user. Another simple comparison solution between the translating

case and pinned case will be run.

1.4 Document Organization

The governing equations are presented in Chapter II, along with an overview of
Beggar’s implementation of those equations. A detailed description of the overset grid
capability and the (6+)DOF model used in Beggar is also given. Emphasis is placed
on the internal methods Beggar uses for coordinate systems and transformations, since
an understanding of these methods is crucial to this research. Chapter III presents an
overview of the methodology used in this research, including the code modifications
and specific test cases. Results are given in Chapter IV along with a discussion
of the pertinent findings. Conclusions and recommendations for future research are
presented in Chapter V. The appendices are used for the presentation of extended
results and detailed methodology that are not discussed directly in Chapter I1I or IV

but are relevant to the research.
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II. Computational Theory

he Beggar code was developed specifically to address the flow interactions
Taround multiple geometries in relative motion, such as a store separation events
[19]. The flow in such a scenario can be extremely difficult to solve for a number
of reasons. Complicated geometries such as the aircraft itself, stores, pylons, and
weapons bays make grid generation difficult. These geometries introduce acoustic
and aerothermodynamic flow phenomena which can be difficult to simulate numeri-
cally [29]. In addition, the store separation problem adds moving components to the

flow solution which must be accounted for.

Beggar simplifies grid generation around these geometries through the use of
blocked, patched, and overset grid techniques, which decompose these geometries
into subdomains. The generation of the required structured grids is much simpler
around these subdomains. Beggar combines this grid assembly with a versatile flow
solver which solves the Navier-Stokes equations using multiple numerical schemes and
iterative techniques [7]. A 6+ degree-of-freedom ((64+)DOF) model is coupled with
this flow solver and allows for the simulation of moving bodies in response to forces
and moments calculated by the flow solver [27]. After release, the trajectory and

orientation of the store is computed and saved.

The combination of these techniques makes Beggar the foremost tool for such
an analysis by the USAF. The effectiveness and accuracy of this approach has been
proven over and over again through various tests conducted by the AFSEO [7], some

of which have been shown in Section 1.2.6.

2.1 Governing Equations

Beggar is capable of obtaining a numerical solution to the Reynolds-Averaged
Navier-Stokes (RANS) equations, the thin-layer Navier-Stokes equations, or the Eu-
ler equations [35]. The Euler equations may be obtained by simply removing the
viscous terms from the Navier-Stokes equations, which are reviewed here. The RANS

equations are not covered.
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The Navier-Stokes equations refer to the system of equations comprised of the
conservation laws of mass, momentum, and energy [6]. These conservation laws are
derived for a Newtonian fluid in a continuum and apply to the flow of fluid through
a finite control volume. The Navier-Stokes equations are the collection of these laws,
show here in the integral form with no body forces:

9y 4 7{ (ﬁ - 1?) dA =0 (1)

ot
% A

—

where )V represents the volume of the cell. The vector of conservative variables () in
three dimensions is given by:

p
U
pv (2)
pw
E,

Q!
I

The inviscid, convective flux vector (1_5 .) at the surface of a control volume is defined

as:

pU
pulU + pny

el

Q
3
Il

poU + pny, (3)
pwU + pn,
(Bt +p)V + pay

where the motion of the mesh appears through the contravariant face speed (ay),
which is defined as:

Ot = TNy + YNy + 2N, (4)

The x4, y;, z; variables represent the mesh speeds in the z,y and z directions. The

contravariant velocity (U) is written relative to the motion of the mesh and defined
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as:

U=I7-ﬁ=(u—xt)nm-i-(u—yt)ny-l-(u—zt)nz (5)

Total energy (F;) is defined as:

where 4 is the internal energy.

—

The vector of viscous fluxes (F,) contains the viscous stress in the three principle

directions, as well as work and heat conduction terms:

0
TrxTy + Twyny + TxzTlz
FU = Tyzn;v + Tyyny + Tyznz (7)

TogNg + TayTly + T2y

Ozng + Oyny + O,n,

The work done by the viscous stresses and heat conduction ©; is:

oT
O; = u;T; + ka—xz (8)

and the viscous stress tensor (7) is defined from the deformation law for a Newtonian

fluid:

aui 6uj =

When combined with Stokes hypothesis (A + %u = 0), this reduces to:

aui an 2 =
b = — =0;;VV 10
7ij H (8(1}] + ze 3 J ) ( )
2.1.1 Non-dimensionalization. As is customary, Beggar solves the non-

dimensional form of the governing equations. This allows the characteristic parame-

ters to be varied independently of the solution [30] and results in the flow variables
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being normalized according to Equation 11 [36], where the asterisks denote the non-
dimensional variables. These equations are substituted into the governing Navier-

Stokes equation to complete the non-dimensionalization process.

p* = ,O/poo E: = Et/pOOa’go p* = p/Pooago t* = ta'oo/Lref (11)

Ut = U/ V' =0/ w* = w/a

2.1.2 Flow Discretization. The Navier-Stokes equations accurately define
the flow at all points in time. However, they are non-linear, non-unique, and com-
plex [36]. Even today, relatively few exact solutions have been found, and those solu-
tions deal with highly simplified problems. Therefore, a numerical solution to these
equations must be obtained, meaning the governing equations must be discretized
across the solution domain. An implicit time integration approach is advantageous
because of the large time steps that can be used without damaging the stability of the
solution [6]. This results in increased computational efficiency over explicit schemes.
The Navier-Stokes equations shown in Section 2.1 are shown again here with an im-
plicit discretization [18]:

LHA; Uy (ﬁ:ﬂ - F:+1) =0 (12)
where the time is discretized with a first order backward Euler discretization [29]
and the superscript n represents the current time step. Equation 12 states that the
change in the conserved variables with time in the cell volume plus the sum of the
fluxes through the cell boundaries must equal zero. These fluxes are linearized in

time [18], resulting in:

oF,
n+l ~, mn c n+l _ n
B e E e (@ @) (13)
OF,
n+l  n v n+l _ Mn
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Using these linearized fluxes in Equation 12 results in:

n+1 n
) A e -9y, 9 20 (Q”+1 Q") = -R" (15)

where the flux Jacobian 22 is defined as:

5
Z <8F" aF") (16)

The left hand side of Equation 15 represents the implicit side, and the right hand side

is the residual (explicit) side, defined as:
RM =% (1?" . ﬁn) (17)

Beggar uses Newton sub-iterations at each time step to accurately compute un-
steady flows. The user may specify the number of Newton iterations or a convergence
criteria. For a generic system of equations given by G(z) = 0, Newton’s method can

be written as [37]:

G (™) (2™ — ™) = —G(z™) (18)
where G’ (z) is given by:
[ aj1(z) ap(z) -+ a(x) ]
G'(z) = az1(z) axn(z) - an(z) (19)
] Un1 () () -+ apn(x) |
and
az-j(x) = (%j (20)

Equation 15 may be rewritten in the form of Equation 18:

n,m ntl _ Qn
(g_g) (Qn+1,m+1 o Qn+1,m) - _ QJFTQV +R" (21)
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To solve this equation,the Q™1™*! term must be isolated. This is difficult because of
the size of the Jacobian (a block-pentadiagonal matrix with dimensions on the order
of millions). Beggar uses a symmetric Gauss-Seidel relaxation scheme to solve this.
The Gauss-Seidel approach solves the generic equation [A] z = b for z by dividing [A]
into

[A] = ([D][-L]) [-U] (22)

where [D], [-L], [-U] are the diagonal part of [A] and the entries below and above

the diagonal, respectively [20]. The following equation is then solved to obtain z:

i1 Jmasx
j=1 j=i+1
These Gauss-Seidel iterations are the “inner” iterations as used in Beggar. For both
steady-state and unsteady problems, the user may specify the number of inner itera-
tions to use, or the iterations may be continued until one of the convergence criteria

are met.

The flux Jacobians of Equation 16 are derived using first-order Steger-Warming
fluxes, while the residual is derived using either second-order Roe flux difference split-
ting or second-order Steger-Warming flux vector splitting schemes [26]. The Steger-
Warming approach splits the convective fluxes into their positive and negative parts
according to the eigenvalues, while the Roe method is an approximate Riemann solver

based on the decomposition of the difference in fluxes over a cell face [6].

2.1.83 Boundary Conditions. Boundary conditions are specified on one or
more regions in Beggar. A region is a subset of a computational grid defined by
the user, which may include a point, line, surface, or volume of a grid. There are a
number of boundary condition types available including tangent (inviscid) wall, no
slip (viscous) wall, farfield, overlap, as well as porous, mass flow, and heat source

boundaries [1].
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Explicit boundary conditions are the default in Beggar, although fully implicit
boundary conditions can also be used. The implicit boundary conditions are updated
during the Gauss-Seidel solution discussed above. An underrelaxation factor is applied

to improve stability [25].

A tangent, or inviscid, boundary condition is the default surface boundary condi-
tion used in this research. This inviscid boundary defines a surface to be impermeable
with the normal component of the velocity vector at the surface being zero. The effect
is a completely tangential velocity vector at the surface. The values of the flow at
the surface are found through the following equations, where the reference values are

taken from the first cell in the computational domain:

Poody = Pref + PrefOrefUses

Prody = Pref + (Poody — Pref) /02 i

Ubody = Uref — UrefNyp (24)
Ubody = Uref — Upefy

Whody = Wref — U'refnz

where the mesh motion is included in the U,.; term, which equals:

Uref = (Uref - -Tt) Ng + (Uref - yt) Ty + (wref - Zt) n, (25)
The energy at the surface can be calculated through:

Dbod 1
- + 5 Pbody (U’I%ody + ,Ugody + wgody) (26)

E body = 1 9

The characteristic boundary conditions are applied on all far field boundaries in
Beggar. For supersonic flow, all waves run downstream and the boundary values are
always easily specified. In subsonic flow, there are four downstream and one upstream
running waves [33]. The missing information needed to specify the values of the con-

served variables on the boundary comes either from the numerical solution inside the
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computational domain or some specified physical value [15]. Because this differenc-
ing direction is important to the accuracy of the flow at the boundary, it is equally
important to include the motion of the mesh when determining the direction of the

far field flow. This is done by using the contravariant velocity shown in Equation 25.

2.2 Qverset Grids in Beggar

Beggar is strictly a three-dimensional structured grid solver. A structured grid
is a rectangular arrangement of z, y, and z grid points (vertexes) that define a three-
dimensional curvilinear coordinate system of 7, 7, and k points in computational space.
Structured grids are advantageous because of the way the physical domain easily maps
into the computational domain. For viscous problems, structured grids also make it
easier to model the boundary layer efficiently. Unfortunately, a major disadvantage
of structured grids is the process of grid generation for complex geometries, which

any store separation or moving body problem naturally contains.

Figure 3:  Block-to-Block, Patched, and Overlapping Grid Communications [1]
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Beggar uses block-to-block, patched, and overlapping grids to simplify the treat-
ment of these complex geometries, as shown in Figure 3. This means each grid needs
to be generated only once and may be done independently of the other grids. Care
must still be taken to ensure sufficient overlap between grids to enable grid-to-grid
communication and minimize areas of significant grid cell size differences [24]. Points
with no interpolation stencil (orphans) should also be minimized to maintain accuracy

of the solution.

2.2.1 Grid Hierarchy. It is important to understand the grid hierarchy
structure used in Beggar to better understand grid assembly and communication.
The three main structures are the superblock, dynamic group, and super dynamic

group [26].

The superblock is the primary grid structure in the Beggar grid assembly pro-
cess. A superblock may contain one grid or multiple grids grouped together with
block-to-block or patched communication. Computational efficiency can be increased
greatly by using multiple grids grouped together into one superblock. The superblock
construct is beneficial because the ease of domain decomposition allows many config-
urations to be built quickly. In fact, the use of superblocks is required when there is
relative motion between two bodies. Building a superblock out of grids that commu-
nicate with only block-to-block or patched boundaries may be difficult, though. It is
left to the user to decide what approach to take on a particular problem. Figure 4
shows a superblock consisting of two grids with block-to-block boundaries, which is

used as the background mesh in this research.

Often multiple superblocks are used in a problem. The largest superblock,
commonly called the background mesh, is used to simulate the flow far away from the
bodies of interest. The other superblocks are contained inside the background mesh

to model the body of interest.

A dynamic group consists of one or more superblocks that are moving as a

single entity relative to the inertial reference frame. A dynamic group is also used
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Figure 4:  Tall Background Mesh surrounding MK-84 AIR body

to specify values needed for the dynamic problem, such as mass, moments of inertia,
reference lengths, or output specifications. These specifications are contained in the
dynamic specification contained in the Beggar input file. A single force specification
identifies which surfaces to record the coefficients of forces and moments calculated

by the (6+)DOF as well as file output options.

A super dynamic group is used in a multi-body problem such as a store with
attached moving components. The super dynamic group contains the separate dy-
namic groups and dynamic specifications of each component, as well as a dynamic

specification for the control of the super dynamic group.

2.2.2 Grid Communication.  The three types of grid-to-grid boundaries are
shown in Figure 3. The first type, block-to-block, occurs when two grids meet along a
boundary with the alignment of coordinate lines across grids. The two cell faces on the

adjoining boundary must be identical, sharing exact vertex coordinates. In this case,
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the two layers of phantom cells that Beggar uses to apply boundary conditions will be
filled with the dependent variables from the first two layers of cells in the adjoining
grid. This is the most correct and efficient grid-to-grid boundary. It is important to
note that while a singularity (a collapsed boundary face) also meets these conditions,

Beggar treats a singularity like a patched boundary condition.

Patched boundaries are similar to block-to-block except the grid faces do not
have to exactly match. The location of the two layers of phantom cells are extrapo-
lated out from the boundary, and the values therein are interpolated from the cells

inside the adjacent grid.

All communication within a superblock occurs either through blocked or patched
boundary conditions. All communication between superblocks is accomplished through
overlapping grid communication [1]. In this case, grid interpolation is required to ex-
change information between superblocks, which is accomplished with the overset, or
Chimera, grid assembly process. This process finds any region of one grid which lies
within another grid or solid region and then removes that region from the simula-
tion [24]. The automated Chimera grid assembly procedure in Beggar follows several

steps in this process [17]:

—

. Build data structures with grid boundary points.

2. Identify symmetry plane and singularities.

3. Establish grid connections for the point-matched boundaries.

4. Insert the grid boundary facets into the octree.

5. Classify the octree nodes as inside, outside, or on the boundary of the grid.
6. Establish grid connections for the non-point-matched boundaries.

7. Identify far field boundary faces that weren’t specified in the input.

8. Cut holes.

9. Mark fringes, boundaries, and locate interpolation source stencils.
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Beggar fills interior cell values of one grid through interpolation of the eight
surrounding cell centers belonging to the other grid. This value is also weighted
according to the position of the interior cell with respect to the interpolation field.
An edge of a superblock will commonly define a surface of a solid body, the inside
of which is outside the solution domain. In this case, the cells inside the body are
removed from the solution domain (referred to as hole cutting) and the interpolation

is determined for the cells surrounding the hole (fringe points).

For a dynamic problem, this process must occur every iteration as the body
moves. Furthermore, this motion may cause grid cells which were previously inside
the solid body to rejoin the computational domain. This may happen in one of two
ways. If the grid cell is partially uncovered in a single time step, it is treated as a
fringe point and is interpolated. A grid cell which is completely uncovered in a single

time step does not normally happen, so Beggar does not address this.

2.3 Six Degree-of-Freedom Model

Beggar performs four steps to determine a store’s motion in the flow. The
first step is grid assembly, which establishes communication between grids, discussed
previously. Next, the governing equations as presented in Section 2.1 are solved across
the solution domain. The pressures along the body of interest are then integrated to
determine the forces and moments on the body. Finally, the body is moved according

to the solution of dynamic equations of motion obtained by the (6+)DOF solver.

The original Beggar 6DOF solver is improved upon greatly in the current
(6+)DOF solver [27]. The (6+)DOF solver allows each rigid store to have store
moving components such as fins that are modeled separately. These SMCs may ro-
tate independently of the store main body about some axis that is fixed to the SMB.
They may also follow some prescribed motion relative to the SMB around this axis.
In this study, the MK-84 analyzed does not have movable fins, and thus is modeled
as one rigid body. The generic store body used in this research has four moving fins

associated with it, controlled through a prescribed motion set by the user.
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Beggar incorporates this (64+)DOF model into the dynamic solver which allows
bodies and components to move rigidly through the flow. The coupling of the CFD
solver and the Newton-Euler equations for motion allows these bodies to rotate and

translate freely in response to the forces and moments found by the CFD solver [21].

2.3.1 Beggar Coordinate Systems. Every superblock used in Beggar has a
local coordinate system associated with it, which is unique to that grid. To understand
how an object can move in response to the (6+)DOF, it is important to have an

understanding of the coordinate systems internal to Beggar.

For this discussion, it is assumed that the standard CFD orthogonal coordinate
system is used in all the grids, as seen in Figure 5. That is, the positive x-axis points
downstream, the positive y-axis points upwards, and the positive z-axis points out
the left wing (from the pilot’s perspective). As is customary, the grids used in this
research have been generated with the (0, 0, 0) location at the nose of the store and the
x-axis running along the body from nose to tail. Beggar also assumes the customary

positive flow direction in the positive x-axis direction.

Figure 5:  Standard CFD Coordinate System
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When the grids are initially read into Beggar, all grids are assumed to have
been generated in the fixed, global coordinate system, and the grid coordinates are
used exactly as read from the grid files. An object may be placed in a certain initial
orientation in the flow by rotating, translating, or scaling that object’s grid to the
desired position. Any such transformation made to the initial grid locations can be

handled in one of two ways in the initial grid assembly.

If these transformations are specified in the superblock portion of the input,
the grid coordinates are immediately modified and the new coordinates are stored
[1]. Otherwise, if no initial transformation is specified, the grid coordinates are left
unchanged and the initial local coordinate system corresponds to the global coordinate

system.

However, if the initial transformations are specified in the dynamic spec, the
local grid coordinates are not changed [1]. Instead, an initial transformation matrix
is created which positions the local grid relative to the global coordinate system. The
advantage of this approach comes from the way the moments and products of inertia
are defined. These are defined relative to the “mass centered” coordinate axes, which
are aligned with the local coordinate axes, centered at the center of gravity. Because
of this, they remain constant as the store moves. If these were defined relative to the
global axes, they would change with the motion of the store. So, if the transformations
were placed in the superblock scope, the local coordinates would be modified and
may no longer align with the “mass-centered” coordinate axes. The local coordinate
system would still move with the store, but the moments and products of inertia may

no longer be exactly equal to the true properties.

A multi-body problem has multiple coordinate systems associated with each
component. For a fin and store combination, there are the original two coordinate
systems fixed to each body plus two additional coordinate systems. The first is fixed
to the fin at the specified point of rotation with its axes aligned with the fin’s axes.

The second additional coordinate system is fixed to the store with its axes aligned with
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the second fin coordinate system. These two coordinate systems are initially coplanar
and coincident, but this changes as the fin rotates about the axis of rotation. Each

additional fin in a multi-body problem has its own unique coplanar coordinate system.

2.8.2  Transformations in Beggar.  As previously stated, each grid has its own
local coordinate system which remains unchanged after initial grid assembly. Each of
these local grids also has a transformation matrix associated with it which transforms
a point in the local coordinate system to a point in the global coordinate system, and
vice-versa. In the multi-body problem, there are additional transformation matrices
between every component and every other component. When a body is moved in
response to the equations of motion, these transformation matrices are changed, while
the local coordinates continue to remain unchanged. These matrices are used when
finding the interpolation stencils from one grid to another overlapping grid [25]. What
follows here is a fundamental introduction to transformation matrices and how they

are used in Beggar.

Any transformation may be divided into its rotational components and transla-
tional components. This is exactly how Beggar carries the transformations internally.
One variable contains the components of the 3x3 rotational matrix and another vari-
able contains the three components of the translation. The concept of a translation
is simple enough: a vector containing the amount of change in the three directions
([Ty,,2]) is added to the original position vector to obtain the new positions (z',y', 2")

as shown here.

[ o y 7 } = [ T Yy z } + [Toy,] (27)

The subject of rotations is slightly more complex but follows the same principles.
In this discussion, the triplet of Euler angles («, 3, 7) are used to describe the angles of
rotation about the z,y, z axes, as shown in Figure 6. In addition, the common right-
handed convention is used, so that all rotations are positive in the counter-clockwise

direction.
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Figure 6: Euler Rotation Angles

Any three-dimensional rotation can be divided into three separate rotations

about each axis. A rotation about the x-axis using the angle « is accomplished with:

1 0 0
Ry(a) = | 0 cos(a) —sin(a) (28)

0 sin(a) cos(a)
and results in the rotation seen in Figure 7.

Similarly, rotations can be accomplished about the other two axes with the

following rotation matrices:

cos(B) 0 sin(p) cos(a) —sin(w)

0
Ry(B) = 0 1 0 ,R.(7) = | sin(a) cos(a) 0 (29)
1

—sin(B) 0 cos(f) 0 0

These three rotation matrices may be combined into one that describes the rotation

about all three axes and angles:

cos(a) cos(B) — sin(y) sin(a) sin(8) — sin(7y) cos(c)

cos(7y) sin(B3) + sin(a) sin(7y) cos(B)
Ry,y,2(a, B8,7) = | sin(y)cos(B) + cos(vy)sin(a)sin(8)  cos(y) cos(a)

sin(f) sin(y) — cos(y) sin(a) cos(B)
— sin(B) cos(a) sin(a) cos(a) cos(B)
(30)
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Now, the coordinates of a point after a three dimensional rotation may be found with

this single matrix:
[ oty 7 ] = [fﬂ y 2 ] [Ra,y,e] (31)

A full transformation, with rotation and translation, can now be accomplished through:
[y 2] =]y 2| Byl + [Ty (32)

The matrices [Ry 4 ,] and [T}, .| are the transformation matrices contained inside
Beggar, which define the location and orientation of every coordinate system with
respect to every other coordinate system contained in the problem, including the
inertial reference frame. When a grid moves in response to the (64+)DOF, it is these

matrices that are updated to reflect that motion.

Because of the difficulty associated with rotating an object about an arbitrary

axis, Beggar performs four steps to rotate a dynamic group, shown in Figure 8:

1. Translate to (0,0, 0) in global coordinates by subtracting [CGy,y ]

Figure 7:  Rotation about the z axis
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Figure 8: Rotation/Translation Process in Beggar

2. Rotate in response to (6+)DOF
3. Translate in response to (6+)DOF
4. Reverse first translation by adding [CGy,y .|

where [CG,, ] is the matrix containing the z,y, z location of the center of gravity of

the dynamic group. Mathematically, this can be represented as:

y | = y | — | CGy [Rey,e) + T, | +| CGy (33)
Z z CaG, T, CcaG,

The subject of the transformations of store moving components (SMCs) is
slightly more complex but follows the same basic principles. Each SMC has two
coordinate systems associated with it: the fin coordinate system and the coplanar

coordinate system that is aligned with the axis of rotation. The second coordinate
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Table 2:  Coordinate System Abbreviations

Abbr: | Coordinate System
F Fin

FCO Fin Coplanar

FCOI | Fin Coplanar Initial
G Global
S Store

system is coplanar with another coordinate system attached to the store main body
(SMB) with its axis also aligned with the fin’s axis of rotation. These last two coor-
dinate systems are initially coincident on the axis of rotation, with the angle ¢rorcor

between them changing as the fin rotates.

As the dynamic group moves, the fin is pinned at its hinge point adjacent to
the SMB. Therefore, any rotations or translations of the SMB must also be reflected
in the transformations of the fin to know the position of the fin relative to the store
at all times. As discussed earlier, multiple transformation matrices may be combined
through matrix multiplication to obtain a single transformation matrix governing
the position of an object. For the fin, this is accomplished through a long chain
of transformations which connect the transformation matrix between the store and
global reference frame (Agog) to the transformation matrix between the fin and fin

coplanar coordinate systems (Ararco). This relationship is shown in detail here.

The rotational transformation matrix from the fin to the global reference frame
is found through Equation 34, where [A] refers to the rotational transformation matrix
between the two coordinate systems listed in the subscripts. A list of the different

coordinate systems used here is given in Table 2.

[AFQG] = [AS2G] [[ASZFCOI]il [AFC’OQFCOI]] [AFZFCO] (34)

- -
-~

AFrcoa2s
N g
v

AFrco2a
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Then the fin to store transformation matrix ([A2s]) can be found through :

[Aras] = [Agas] [Arac] (35)

Finally, the translation of the fin ([Tr;x]) is found from the translations of the SMB

and the position vector from the fin to global coordinate system ([prac]).

(Trin] = [Tsms] + [Toasus] + [As2c] ([[Aras] [pn2r]] pr2s]) (36)

PS2F
N >y
v

PF2G

where [pror] and [pras| are the position vectors from the hinge to fin and hinge to
store, respectively. The translations of the SMB are separated into two parts; one
part is the translations associated with the center of gravity ([Tcgg,,]), and the other
part is the non-zero component of translations that result from the rotational process

in Equation 33 and Figure 8.

2.3.3 Dynamic Equations of Motion. The equations used in the Beggar
implementation of the (6+)DOF are presented here. Newton’s Second Law of motion

can be applied to the store main body through the form [27]:

T
P + Z Fine=m'S () (37)
The superscripts s,j and ¢ denote the centers of mass of the store main body, the
4% SMC (out of J total moving components) and the entire store, respectively. The
quantity F, , is the applied forces experienced by the SMB, which consists of aero-
dynamic and gravitational forces, as well as ejector forces. The quantity FZ* . is the
constraint force exerted by the store moving components on the store main body,
keeping in mind that equal and opposite forces are exerted by the SMB on the SMCs.

These constraint forces cause the equations of motion to be coupled. The time deriva-

tive & E is the time derivative as observed from the inertial reference frame.
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The equation governing the angular velocity of the store main body is shown
here. This relationship is derived from the law that says the rate of change of the
angular momentum of a store component is equal to the moment of the forces experi-
enced by that component, all about the center of mass (CM) of that component [27].

s S dI 5,,8
Ns (appl) + Z Nz - (I ) (38)

constr)

where N? is the moment of applied forces on the SMB and N’? is the moment

s(appl) s(constr)
of the constraint force exerted by the j** store moving component on the store main
body about the center of mass. The SMB inertia tensor about the center of mass is
denoted with /7 and the angular velocity is denoted with w. The equation governing
the angular velocity of the SMCs is the same, except with the appropriate subscripts
denoting the moving components:

. si dI o
ij'(appl) + ZNj(]const'r) = % (Ijjwj) (39)

The constraint forces of the SMCs on the SMB are now rewritten in terms of
the applied forces and dependent variables [27].

chgnstr = mja] F] (40)

appl

where a; is the acceleration of the center of mass of the j** moving component. The

constraint moment on the SMB by the 5 moving component is:

Ns](sconstr) - (Ns(]constr) + Psj X Fonst’r) (41)

where p;; is the is the position vector of the SMC center of mass relative to the SMB

center of mass. The SMB also applies a constraint force to the j* SMC, which can
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be expressed as:
N;(]constr) = (Niij(constr) + Pijh; X cho]nstr) (42)
where h; is the hinge point between two components.

For the single body problem, the equations of motion simplify to:

dI
:ppl = msa (,Us) (43)
dI
;(appl) = % (I;ws) (44)

The above equations govern the velocity and angular velocity of the store main

body. The trajectory of the SMB center of mass can be computed through:

where the position vector of the SMB center of mass is contained in z;.

The orientation of the store must now be obtained. This is done using the
coordinate systems and transformation matrices discussed in Section 2.3.2. The i, s
and j coordinate systems used here are fixed to the inertial reference frame, SMB,
and the j* SMC, respectively. To maximize computational efficiency, Beggar uses
quaternions internally to define the orientation and state of the SMB [25]. Only
a brief overview of quaternions is provided here. A fundamental understanding of

quaternion mathematics may be gained from [3,13,28|.

Quaternions are scaled vectors specifically used for Eigen-axis rotations of co-
ordinate systems [34], which are advantageous because operations on them can be
computed more efficiently. In addition, they have no pitch singularity as the Euler
angles have [23]. Each quaternion is a hypercomplex number consisting of one real

and three imaginary parts through the form:

4=q+q+aq+4 (46)
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This may also be interpreted as a scalar component and a vector component [28],
where the scalar part of the quaternion is defined by ¢, and the rest of the quaternion
is the vector component ¢g,. When considering a rotation angle # about some axis of
rotation, the scalar part is equal to cos(6/2) while the vector part is a unit vector
along that axis multiplied by sin(6/2) [27]. An extra constraint is required with

quaternions [23]: ¢2 + ¢2 + q§ +q =1

The quaternion elements may be found at any point in time through the two

equations:
d 1
— (s = ——qpw* 47
e’ 5 B (47)
d! 1 1
v — 74s s —w* v 4
dtq 505 +2w X q (48)

A transformation matrix defining the orientation of the SMB with respect to the
inertial reference frame may now be found at any point in time through the quaternion

elements as shown in Equation 49:

2 (CI; + qz) —1 2 (qu - QZs) 2 (qqcz + qys)
T = | 2(qoy+as) 2@+ —1  2(qy: — us) (49)
2 (q$2 o qys) 2 (qyz + Qa:s) 2 (qﬁ + (]Z) -1

where, for example, g,, is the multiplication of the two quaternions elements: ¢, =
GzQy-

To show that this is equal to transformation matrices obtained in Section 2.3.2,
we can simulate a rotation about the x-axis, setting the quaternion ¢ = cos(6/2) +

sin(6/2) + 0+ 0. This results in the transformation matrix:

1 0 0
T%=10 2(cos(8/2)’) =1  2(—sin(8/2)cos (6/2)) (50)
0 2(sin(0/2)cos (6/2)) 2 (cos (0/2)%) — 1

which, after some trigonometric simplification, results in Equation 28.
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2.3.4 Equation of Motion Solution Method. — The applied forces and moments
acting on the SMB are a required input to the (64+)DOF solver. The solution of
the flow solver provides the pressure and viscous stress distributions along the body
surfaces [26]. Numerical integration after every iteration provides the forces and

moments acting on the body [25].

A system of linear, ordinary differential equations may be set up with the dy-
namic equations of motion, shown in Equations 43 to 45 and 47, 48. This system
is solved in Beggar using a fourth order Runge-Kutta scheme [25]. The fourth order
Runge-Kutta scheme is defined as [8]:

h
Ynt1 = Yo+ ¢ (ki + 2ko + 2k3 + ky) (51)

where h is the time step and the coefficients ki, ko, k3, and k4, are shown here for

completeness:

kl:f(mn:yn)
h hk
2
b (ot P 2
3 — Tn 27yn 2

k‘4 = f (J3n + h, Yn + hk‘g)

Although the aerodynamic forces are assumed constant over a time step, the gravita-
tional force changes because it is a function of position in the local coordinate system.
Therefore, after every Runge-Kutta step, the SMB state vector must be updated, and

the transformation matrices, forces and moments are recalculated [2].

2.4 Current Approach

The current research seeks to remove the translations of the store through the
background mesh and reflect the translational velocities of the store as changes in the

grid speeds of the background mesh through the convective flux vector. This must
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be done without affecting the flow solution, forces and moments, or telemetry data of

the Beggar solution.

As seen in Section 2.3.2, there are four steps that are needed to move the store
in response to the forces and moments, and three of these steps are translations. In
order to correctly rotate the store, the first and last translations must be preserved
because of the way any rotation must be performed about the origin. In other words,
if all the translations associated with a dynamic group are continually set to zero,
the transformation matrix will be incorrect. Instead of removing all translations, the
correct translation to remove is the third step in that process, shown in Figure 7. If
that translation, which is done in response to the forces acting on the store, is removed
when Beggar is building the transformation matrices, then the dynamic group will
effectively be pinned at whatever location it is initially placed in the background mesh.
This will allow the non-zero translations of Steps 2 and 4 of the rotation process to
remain in the store’s transformation matrix, as they must do for correct positioning

of the store.

The removal of the inertial reference frame presents some problems when de-
termining the accurate location of the store. The effect of these modifications is that
the background mesh travels with the store as it falls through the air. Consequently,
the location of the store is not able to be measured from this new reference frame.
The changes in the store’s location and orientation are instead measured against
the saved, unmodified transformation matrix, which is the original inertial reference
frame. This allows the store’s position and orientation in extended free flight to be

accurately calculated throughout the solution.

Now the translational velocities of the store may be applied to the grid speed of
the background mesh. This is done through the convective flux vector (ﬁ’ ¢) shown in
Equation 3. These changes will allow successful grid assembly to continue throughout
the simulation while preserving the forces and moments acting on the store. Effec-

tively, the simulation may now proceed for an indefinite amount of time.
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III. Methodology

ode modifications to Beggar are the first step required in this research. These
C modifications are made in phases, with the appropriate testing also being com-
pleted in phases. The first phase of modification entails applying some arbitrary
mesh motion to the background mesh and confirming the successful application of
that mesh motion. In addition, the flow solution output is corrected to include the
mesh motion in this phase. This is confirmed through the use of a simple supersonic
compression ramp. The second phase involves the pinning of the store body in the
background mesh and the application of the store velocities to the background mesh
motion. The most extensive testing is done after this stage, with comparisons of
the MK-84 AIR store forces and moments, velocities, and telemetry data being con-
ducted. Finally, modifications are made to enable the use of store moving components
on the pinned store main body. A test case of a pitching generic store body is then
conducted to demonstrate the usefulness of this research to the analysis of dynamic

flight characteristics.

3.1 Beggar Modifications

The latest version of Beggar (version 114j) was obtained from the Air Force
Seek Eagle Office and used as the starting point for all modifications required for this
research. Some enhancements to this version include improved parallel processing
capabilities, an extended force output, and a new, two-stage Euler scheme for solving

the dynamic equations of motion.

3.1.1 Mesh Motion. Prior to applying a velocity to the background mesh,
the translational velocity of the store is obtained. Every dynamic group created
in Beggar carries the state vectors of its components in an internal data structure.
This information is available to every processor, which is beneficial considering the
store grids and background grids may not necessarily exist on the same processor in
a parallel run. In the main iteration loop of the flow solver, prior to looping over

the superblocks, the code is modified to loop over the dynamic groups present and
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extract the u,v, and w velocities from the store state vector. Three new variables
are created to hold these values. When the solver enters the main superblock loop,
the time metrics (the local grid speeds) are calculated on the first dt iteration of
each time step. Normally, the background mesh is inertial and does not have any
grid speed associated with it. This code is modified to apply the newly found store
velocity to the background mesh. This is done by passing the velocity variables into a
redesigned metrics routine. Instead of completely transforming the spacial metrics and
calculating the grid speeds like the normal metrics routine, this new routine simply
accepts the passed values of the store u, v, and w as the grid speeds and applies them
directly to the background mesh, whose identifying grid number is also passed into
this routine. The solver then continues as normal and solves the governing equations

with the applied mesh motion in the convective flux vectors as shown in Equation 3.

3.1.2  Flow Visualization. Because the mesh contains some portion of the
motion in the system, the conserved variable vector 5) no longer represents the total
flow velocity. However, the @ vector is all that is normally written to the solution
file. Thus, some adjustments are needed to correctly output the total flow velocity to
the file. Because of Beggar’s ability to output solution files at any iteration interval,
this correction cannot be made to the @ vector itself. Instead, this correction is
made to temporary variables that are created in Beggar’s output routine and used to
write the flow solution. The modifications to the temporary conserved variables are

accomplished according to the following equations:

p=p
pu = pu — p;

(53)
pv = pv — py;
pw = pw — pz;
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The total energy of the flow field is corrected through:

E, = o + g ((u— )" + (v =) + (w— zt)Z) (54)
These new values are then written to the file, and accurately reflect the total flow

properties that the store is experiencing.

3.1.8  Translation Eliminations. As discussed in Section 2.3.2, a matrix of
transformation matrices exist in Beggar which are able to transform a point in one
coordinate system to any other coordinate system contained in a problem, including
the inertial reference frame. Achievement of the present goal hinges on the success-
ful modification of these matrices. Complications arise because of the different ways
these transformations are employed in Beggar. The main usage of transformation
matrices is for grid interpolation. Some of the specific grid interpolation applications
are: transforming a bounding box, hole cutting, grid communication, and stencil op-
erations [2]. In order to simulate the store being pinned, the transformation matrices

used in these areas should not include the translations of the SMB.

The second usage is when finding and applying forces and moments to the store.
For example, the point that the moments are calculated about exists only in the local
coordinate system of the dynamic group. The same is true of the dynamic group’s
center of gravity. The transformation matrix between the dynamic group and the
global coordinate system is used to find these values in the global reference frame.
These global values are then used to calculate additional moments about the CG in
the global reference frame due to aerodynamic forces [2]. In addition, when applying
ejector forces at a fixed point and direction in the global coordinate system, the
current location of the dynamic group CG must first be found in global coordinates.
The transformation matrix between the dynamic group and global coordinate system
is also used here. In both of these cases, it is essential that the transformation
matrix Beggar uses does contain the translations of the SMB. If it does not, the force

coefficients and CG locations obtained will be incorrect and lead to a flawed solution.
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To satisfy these two distinct uses of transformation matrices, two transformation
matrices are built and carried in the modified code. The first is built without the
translations of the SMB CG (Step 3 in Figure 8) included. The second transformation
matrix is built with the translations of the SMB CG included. The function that
transforms a value between two coordinate frames is duplicated; the second function
is now modified to use the second transformation matrix. Now, two transformation
matrices and transformation functions between each coordinate system exist. The
first does not contain the translations of the store, and is used for grid assembly only.
The second does include the store translations, and is used solely for the purposes of

determining and applying forces and moments.

Special consideration is given to the multi-body problem when pinning the store
in the background mesh. Any moving components must continue to rotate around
the original axis of rotation relative to the store, which is no longer translating. Even
though the store is not translating, a SMC may appear to translate because of its
position relative to the SMB center of gravity. The rotations of the SMC are calculated
through Equation 34 by using the relationship between the global, fin coplanar, and
fin coordinate systems. The translations of the moving component are then calculated
according to Equation 36. The translations of the SMB CG are plainly included in
this calculation. However, in the pinned case, these translations must not be included
in this equation to obtain the correct position of the SMCs relative to the store.
This is implemented by removing the addition of the store main body translations
([Tsnp]) from this equation. The CG position of the SMB is still included through

the [Tsap.cg] term, but this of course remains constant.

These adaptations to Beggar allow the store CG to remain pinned at its location
in the background mesh while rotating freely about that point, yet allow the forces and
moments to be calculated as if the store were really following its numerical trajectory.

In addition, the important ability to simulate SMCs is preserved.
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3.2 Supersonic Compression Ramp
The compression ramp, shown in Figure 9, was designed to provide a very simple

means of confirming the correct application of mesh motion and flow visualization.
This simple three dimensional grid has dimensions of 199 x 50 x 11 for a total of
Because the turning

109,450 cells. The turning angle of the ramp is 15 degrees.
angle and flow velocity are known, any supersonic flow over the ramp will produce

an easily verifiable shock wave and Mach number behind the shock. In addition, any
a shock wave

combination of flow and mesh motion over the ramp should produce

corresponding to the total flow velocity.

15 degrees

Figure 9:  Supersonic Compression Ramp

If the mesh motion and flow visualization corrections are applied correctly, the
correct shock angle and free stream Mach number will be seen in the post-processing

visualization. If the combined Mach number is wrong, the shock angle will be wrong.

If the shock angle is correct but the visualized Mach number in the flow solution is
wrong, then the visualization corrections are miscalculated.
Three test cases were run using this compression ramp, shown in Table 3. All
cases were run at sea level standard day conditions with a common total Mach number
of 2.0. A CFL number of 5 was used to run the solution out for 1000 iterations. A

reduction of four orders of magnitude in the Lo norm is desired to indicate solution
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Table 3: Compression Ramp Test Cases

Mesh Mach Number | Flow Mach Number

Case 1 0 2.0
Case 2 0.5 1.5
Case 3 1.5 0.5

convergence. The 2.8 Ghz Pentium 4 Xeon® workstations with 4 GB of memory were

used to obtain these single processor solutions.

The inviscid Euler solver is used with tangent boundary conditions on the bot-
tom and side surfaces of the ramp. Far field boundary conditions are set on the
inlet, outlet, and top surfaces. Beggar is inherently a 3D solver, but these boundary

conditions provide a two-dimensional (2D) approximation of the flow over the ramp.

The first case is the reference case with no mesh motion, using the unmodified
Beggar Code. The other two cases consist of varying combinations of applied mesh
motion and flow velocity using the modified code. Being the only grid in this problem,
the ramp is considered the background mesh and will demonstrate the modified code’s

ability to apply mesh motion to a background mesh.

3.8 MK-84 AIR

For this proof-of-concept research, a simple, ubiquitous store was desired in order
to lighten the computational requirements and reduce restrictions on the presentation
of numerical data. To meet these needs, the MK-84 low-drag, general purpose (GP)
bomb, shown in Figure 10, was chosen. Often called a “dumb bomb”, the MK-84 is
an unguided munition used by the Air Force, Army, and Navy against a wide variety
of targets [14]. For more precise bombing requirements, the Air Force commonly
attaches a guidance kit to the Mk-84 to create laser guided bombs such as the GBU-
10 Paveway II or GBU-24 Paveway III. Being the product of a 1950’s development
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Figure 10: MK-84 General Purpose Bomb

effort to reduce aerodynamic drag on munitions, the MK-80 family of weapons is very

streamlined, and the MK-84 is no exception.

The MK-84 AIR used in this research is a variant of the MK-84 modified with
a BSU-50/B high drag tail assembly, used only by the Air Force. This tail assembly
is made of a canister containing a ballute (combination of a balloon and parachute)
retardation device. The ballute deploys from this canister to quickly slow the bomb
by increasing drag, allowing the aircraft to escape the blast effects during high-speed,
low-altitude bombing. For this research, the MK-84 AIR is modeled in the low-drag
mode, with the ballute permanently stored. Some MK-84 specifications as given in

Jane’s Air-Launched Weapons are shown in Table 4.

3.3.1 Grid Generation. The computer model used to simulate the MK-84
AIR is shown in Figure 11. The MK-84 AIR geometry is modeled by four grids, each
making up one quadrant of the store, shown in Figure 12. Initially, these grids were
received from the AF Seek Eagle Office. They were then regenerated using Gridgen®

to remove areas of high skew and uneven cell size. The radial distribution of cells was

Figure 11: MK-84 AIR Computational Model
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Figure 12: MK-84 AIR Superblock

also smoothed around the bomb body. Care was taken to preserve the asymmetric

fins as defined by the original MK-84 grids.

Two background grids are generated and used. The first, shown in Figure 4,
is designed to allow the bomb to fall through the mesh and thus is relatively ‘tall’.
The second, shown in Figure 13, was designed for the pinned cases where the bomb
does not translate through the mesh, and is only half the size of the first background

mesh.

Table 4: MK-84 General Purpose Bomb Specifications

Primary Function: | 2,000 b GP bomb.
Weight: 2019 lbs.

Length: 10.75 ft.

Diameter: 18 in.

Tailspan: 25 in.

Explosive: 943 Ib Tritonal
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Figure 13:  Small Background Mesh Surrounding MK-84 AIR Body

A simple cartesian grid consisting of relatively small cell sizes is used as an
interface grid between the store grids and the background mesh. This grid is just large
enough to surround the store grids and provide enough distance for grid interpolation

with the larger cells of the background mesh.

3.3.2 Grid Dimensions.  The dimensions of the grids used in this problem are
shown in Table 5. With the four equally sized quadrants, there are 881,280 cells in the
MK-84 AIR superblock. For the translating problem, the total number of grid cells in

the computational domain is approximately 2.1 million; and for the pinned problem,

Table 5:  MK-84 AIR Grid Dimensions

Grid Size
MK-84 AIR Superblock | 881,280 cells
Tall Background Mesh | 970,140 cells
Small Background Mesh | 456,950 cells
Cartesian Interface Mesh | 564,376 cells
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only 1.6 million cells are used. This shows the obvious computational advantage of

removing the inertially fixed background mesh.

3.3.3 MK-84 AIR Testing. Before any solutions involving motion of the
store are computed, the steady-state static solution is obtained. To keep the solution
stable at all times, the time step is ramped from a small initial time step of 4.5 to a
larger, 24.5 time step in 75 iterations. These time steps are given in non-dimensional
quantities, and correspond to approximately 0.36 milliseconds and 1.96 milliseconds,
respectively, depending on the speed of sound selected by the user. The Newton
iterations are also ramped from 1 to 3 in this period. This ramping schedule is shown
in Appendix B.3 and is chosen based on the recommendations of the Computational
Aeromechanics Team. The 24.5 time step is then used to run the static solution out
while monitoring the Ly convergence norm and the forces and moments on the store

body to determine when convergence is reached.

Dynamic testing begins by placing the store in the tall background mesh and
allowing it to fall freely. The same time step of 24.5 is used from the beginning of
this dynamic simulation. The length of the simulation is limited by the height of the
background mesh, which corresponds to approximately 2.3 seconds of free fall for this
background mesh. Care is taken to ensure the store does not approach the bottom of
the background mesh too closely so that the quality of the solution is not corrupted.
The unmodified Beggar code is used in this simulation to predict the motion of the

store.

Next, the store is placed in the small background mesh shown in Figure 13.
This solution is initialized from the static solution obtained in the same background
mesh using the 24.5 non-dimensional time step. The fully modified Beggar code
is used to pin the store in the background mesh and simulate the translations of
the store through applied mesh motion as the solution progresses. Although the

simulation could be run indefinitely, only the same solution time as the translating
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Table 6: MK-84 AIR Test Cases

Freestreamm Mach | Altitude
Case 1 0.6 20,000 ft
Case 2 0.9 10,000 ft

case is needed for this comparison. This process is repeated at the two test conditions

shown in Table 6 to ensure the reproducibility of the results.

Finally, the strength of these modifications is shown by simulating the MK-84
AIR in free fall. Two test cases are run: the first is at Mach 0.6 at sea level standard
conditions and the second case is Mach 0.9 at 10,000 ft. The store is released from
the converged solution at these initial conditions and allowed to fall for an extended
period of physical time. The trajectory, forces and moments, and velocities of the
store are recorded through the free flight simulation. Beggar’s ability to save solution
files at specified intervals is also used to enable visualization of the entire free fall
event. This extended simulation will model the MK-84 in free flight and reveal the

dynamic characteristics of the store.

Beggar was used in conjunction with Parallel Virtual Machine (PVM) to obtain
these solutions on multiple 2.2 Ghz AMD Opteron® processors. Three nodes were
used for each run, where each node contains two of these processors sharing 4 GB of

memory.

3.3.4 MK-84 AIR Numerical Validation. The numerical solution of the
dynamic behavior of this store in free flight is difficult to validate. Difficulty arises
because of the way the store is simply being “released” at altitude in the numerical
simulation. Any flight test data obtained for the MK-84 trajectory and orientation
would obviously involve some initial aircraft /store flow interactions as well as ejector
forces on the store. These interactions would alter the store’s behavior from the
behavior of a clean release at altitude, thus making it difficult to draw any comparisons

between flight test data and Beggar’s extended numerical solution.
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Wind tunnel data does exist for the validation of store separations, but is ob-
tained using ejector forces in systems such as the Captive Trajectory System. In
addition, any dynamic wind tunnel data is only available for a very short time period,
usually on the order of tenths of seconds [10]. Wind tunnel static data is of little use

in validating these dynamic simulations.

Because of these difficulties, the pinned numerical solution will be verified by
simply comparing it to the translating numerical solution computed using the un-
modified Beggar code. The solution from the pinned case should adequately match

the solution from the translating case.

Different types of data are available to use in these comparisons between the
translating and pinned methods. All the data presented in this research is purely
numerical and is output every iteration of the flow solver. Much of the data herein
is distinguished with the use of symbols. Any symbols do not represent a sampling

rate, but are merely representative of that particular solution.

The Guidance & Control (G&C) telemetry data output by Beggar is used to
compare the trajectory and orientation of the store throughout the simulation. This
data is output every time step and contains the time, trajectory, and orientation of
the store. The z,y, and z translations of the CG are given in feet from the origin
of the coordinate system shown in Figure 14. All telemetry data presented in this
research is in this coordinate system. The orientation angles of roll (¢), pitch (), and

yaw (1) about the z,y, z axes, respectively, are given in degrees.

The forces and moments computed by the (6+)DOF are another way to deter-
mine if the store is experiencing similar effects via the pinned method. The forces and
moments are only analyzed from the global reference frame (using the standard CFD
coordinate system in Figure 5). Beggar outputs all forces and moments as coefficients
through the following equations, where F' and M refer to the force and moment and

M, refers to the free stream Mach number.
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Figure 14: G&C Coordinate System

2

Cp=F———— 55
P MZ A, (55)
2
=M —
CM MgoArefLref (56)

Finally, the translational and angular velocities of the store from the global
reference frame are extracted from the solution history files and used as a means
of comparing the two solutions. The translational velocity components (u,v,w) are
output in feet per seconds, while the angular velocities (1, 6, ¢) are output in radians

per second. These are also with respect to the standard CFD coordinate system.

With the capability of indefinite free flight, the store may reach its terminal
velocity at some point in the simulation. The terminal velocity is the velocity at
which the drag acting on the store balances the acceleration due to gravity and the

store can no longer accelerate. This relationship is shown in Equation 57.

| 2w
Vr = 57
T =\ 2cA (57)
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The drag is made up of two components: parasite drag and pressure drag. Because
of the inviscid solver and tangent boundary conditions used in this research, there
will be no parasite drag acting on the store and the base pressure on the store will
be inaccurate. This means that at terminal velocity, the pressure drag will be the
only force balancing the gravitational force. With this consideration in mind, the

numerical terminal velocity is expected to be much higher than the published value

of Mach 1.03 for the MK-84 AIR at sea level.

3.4 Generic Store with Moving Components

To demonstrate the effectiveness of these adaptations for the multi-body prob-
lem, a generic store body is used with four moving components (Figure 15. The SMCs
are modeled as fins in the stable “X” configuration to control the pitching moment of

the store.

3.4.1 Generic Store Grids.  The generic store body superblock is composed
of four grids using block-to-block communication. The fin superblocks are also mod-

eled by four grids each, using block-to-block communication. The fin superblock is

L.

Figure 15:  Generic Store Body Computational Model
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Table 7:  Generic Store Grid Dimensions

Grid Size
Generic Store Body Superblock 53,000 cells
Generic Fin Superblocks 4 x 109,434 cells
Cartesian Interface Mesh 375,000 cells
Small Background Mesh 456,950 cells

read in four times to produce four fins around the store, each with its own force
and dynamic specification. These five superblocks are assembled into a single super

dynamic group, which is the store in its entirety.

These grids were obtained from the AF Seek Eagle Office and used in their
unmodified form. The body surfaces are displayed in Figure 16 with a grid cutplane
through the X Z plane to show the overlapping grids. The same small background
mesh seen in Figure 13 is used as the background mesh in this problem. A different
interface mesh is used, which was generated using Gridgen®. This interface mesh

surrounds the generic store grids with more than enough room for grid interpolation

Figure 16:  Grid Cutplane around Generic Store Body with Fins in “X” configura-
tion
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Figure 17:  Positive Rotation Direction of Upper Fins

to the background mesh. The interface mesh was designed with fine cells to minimize
grid interpolation errors. The dimensions of these grids are seen in Table 7; the system

contains 22 grids and just over 1.3 million cells.

3.4.2 Generic Store Testing. The static solution around the generic store
body is first obtained with the same solver conditions and time step ramping schedule
used in the MK-84 model. The solution is run for 350 iterations to determine sufficient
convergence of the flow field. The steadiness of the force and moment coefficients is

used as the convergence criterion.

The same comparison approach will be used to verify the accuracy of the addi-
tion of moving components to a pinned store body. A single test case will be used with
the initial conditions of Mach 0.6 at a standard altitude of 20,000 feet. The dynamic
motion of the body will be controlled through three stages of motion. A simple pitch
up motion will be prescribed on the store by rotating the fins in the direction shown
in Figure 17 over the first 0.3 physical seconds. Over the next 0.3 seconds, the fins
will be rotated back down to their initial position. For the remainder of the solution
time, the fins will remain fixed with respect to the store body. This cycle is shown

in Figure 18. Only the top two fins rotate in response to this cycle. The bottom two
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Figure 18: Prescribed Fin Deflection vs. Time Profile for Upper Fins

fins are held fixed throughout the simulation by increasing the motion start time far
above the expected solution time. The details of the prescribed motion of each fin

are shown in the dynamic specifications in Appendix B.4.

The goal of this testing is to simply confirm the motion of the pitching store
between the two solution methods. The store’s response to the applied force from the
fins should be similar between the translating and pinned cases. The same numerical
data output by Beggar used in the MK-84 test cases will be used here to verify the

similarity of these solutions.

3.5 Beggar Inputs

Beggar inputs are split into several different files. The main input file contains
such things as the Mach number, (6+)DOF inputs, flow solver options, and grid
inputs. Other inputs such as the force specification and dynamic specification may
be separated into other files that are referenced from the input deck, or written in the

input deck itself. The force specification outputs force and moment coefficients to a
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data file at a user-specified frequency. The user inputs reference values for the body

and selects regions on which the forces and moments are output.

The dynamic specification controls the dynamic and super dynamic groups.
This specification contains the grids that are to move in response to the forces as
well as the inertial properties of those bodies. In the multi-body problem, the dy-
namic specification of the main body must be followed by the dynamic specification
of each moving component. These component specifications allow the user to input

the properties and prescribed motions of the components separately.

The MK-84 AIR input file is shown in Appendix B, along with the file containing
the boundary conditions for the MK-84 AIR body. The generic store input and
boundary conditions files are similar. The force and dynamic specifications of the

generic store problem are shown in Appendix B.4.
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IV. Results & Discussion

esults from the three computational models are presented next. The first model,
Rthe supersonic compression ramp, is used in three test cases to verify the minor
code modifications of background mesh motion and total flow visualization. The
second model, the MK-84 AIR, is used in two test cases to compare the pinned
solution to the reference solution in which the store translates. These two test cases
are also used to simulate the MK-84 AIR in extended free flight. The final model,
the generic store body with multiple moving components, is used to test the final
modifications of the code in a single comparison test and an extended free flight

simulation test.

4.1 Supersonic Compression Ramp

The ramp grid is used as a single mesh problem to test the ability of the modified
code to apply mesh motion to the background mesh. In this problem, the ramp grid
and the background mesh are one and the same, so any application of mesh motion
to the background mesh will be easily viewable on the ramp. The flow visualization

corrections, which output the total flow solution, are also verified in this model.

4.1.1  Ramp Convergence History.  The Ly convergence norm was analyzed
to confirm the convergence of the flow field over the compression ramp. A reduction
of four orders of magnitude was desired for full convergence. As seen in Figure 19, the
convergence norm descended four to five orders of magnitude for each test case within
1000 iterations. Accordingly, the test cases are considered to be fully converged. This

rapid convergence is typical for supersonic flow over a compression ramp.

4.1.2 Ramp Results. The three test cases in Table 3 are used to evaluate
success of application of mesh motion to the background mesh. The first case consists
of pure flow motion and is used as a reference case to check the Beggar solution. With
this Mach 2.0 flow over the 15° ramp, the exact solution is easily obtained from the

oblique shock relations [4]. The resulting flow field should have a shock present at
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Figure 19: Convergence History of the Compression Ramp

a 45° angle, with a Mach number of 1.45 behind the shock. Beggar produces this
solution, seen in Figure 20. There is a noticeable reflection behind the shock due to

the imperfect far field boundary conditions on the upper surface.

The next two cases consist of lower levels of flow motion and some amount
of mesh motion. In these cases, Beggar is programmed to apply a speed to the
background mesh (the ramp) to bring the total flow to Mach 2.0. In the second

case, the input Mach number is 1.5 and the mesh Mach number is programmed to

R

H 1.72

Figure 20: Ramp Case 1: Mach 2.0 Flow, No Mesh Motion
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be 0.5; and in the third case, the input Mach is 0.5 and the mesh Mach is 1.5. Both
of these cases result in similar flow solutions as the pure flow case. To demonstrate
this, a plot of the Mach number in the x direction across the ramp for all cases is
shown in Figure 21. It can be seen that with each combination of mesh and flow
motion, a shock wave of similar strength is produced in a similar location over the
ramp. The exact location of the shock and Mach number behind the shock (M3) does
vary slightly between solutions. This may be due to the closeness and small size of
the grid cells around the shock location, causing that location to vary slightly and
produce a slightly different M,. Plots showing the contours of Mach number across

the compression ramp for the second two cases are shown in Appendix A.1.

This confirms that this method of applying the mesh motion to the background
mesh is effective and accurate. In addition, the flow visualization corrections are also

shown to be accurate through this test case.
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Figure 21:  Comparison of Mach number across the ramp with varying amounts of
mesh motion
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Table 8  Standard Deviations of Forces and Moments in the Final
200 Iterations of the MK-84 AIR Static Solution

Fx Fy Fz Mx My Mz
Std. Deviation: | 6.77E-4 | 8.18E-4 | 2.17E-4 | 1.35E-5 | 6.49E-4 | 2.5TE-3

4.2 MK-84 AIR Results

4.2.1 Convergence History.  Following the static solution approach outlined
in Section 3.3.3, the forces and moments on the store in the small background mesh are
observed to completely level out in 500 time steps (Figures A.3- A.4). The standard
deviations of the forces and moments in the final 200 iterations are shown in Table 8.
Because of these low standard deviations of the forces and moments, the solution
is considered to be converged after 500 iterations. This same procedure is used to
obtained the static solutions for the store in the tall background meshes, with similar

results.

4.2.2  Comparison Test Results.  All test cases are initialized from the appro-
priate converged static solution. The reference case refers to the old method whereby
the store is translating through the tall background mesh in response to the forces
acting on it. The modified method of free flight simulation where the store remains
fixed in the background mesh is referred to as the pinned method. The translating
method is run for the longest amount of time possible, remembering that this time
is limited by the height of the background mesh. The pinned case uses the smaller

background mesh and is manually restricted to the same amount of solution time.

4.2.2.1 Test Case 1.  The first test case was run at an initial Mach of
0.6 at 20,000 feet for 2.37 seconds. The store was observed to fall approximately 90
feet vertically while accelerating to Mach 0.603. The impressive amount of spin sta-
bilization in the MK-84 design is seen by the high roll rate of the store, which quickly
accelerates to almost -8 radians per second after release because of the asymmetric

fins.
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The force and moment coefficients acting on the store are shown in Figures 22
and 23. These show reasonable agreement between solution methods. However, there
is increasing disparity between the methods as time progresses. Despite these dif-
ferences in the forces and moments, the velocities show excellent agreement between
methods throughout the duration of the solution (Figures 24 and 25). The periodic
nature of the pitch and yaw rates of the store is clearly seen in Figure 25, and the

data matches well throughout these oscillations.

The G&C telemetry data is perhaps the most impressive result, and also one
of the most important. In both trajectory and orientation, the pinned method very
accurately matches the solution from the translating method. Figures 26 and 27 show
these results over the duration of the solution. The high amount of spin stabilization
is seen as the MK-84 rolls through almost two complete revolutions in the 2.37 seconds

after release.

The difference between the forces and moments calculated by two methods grows
as the solution progresses in time. This trend is also seen in the translational velocity
data and the trajectory. In the translating case, the store grids and all grids associated
with the dynamic group must interpolate their values from the background mesh as
they move. As this happens, discrete variations in the solution result which contribute

to error in the solution.

As the store moves, the solid body uncovers holes. These holes are areas where
a numerical solution was previously not possible because the cells were inside the solid
body. As a hole is gradually uncovered over several time steps, it is treated as a fringe
point. The values for these fringe points are interpolated from the surrounding cells
and thus contain an interpolated value before they completely rejoin the computa-
tional domain. The translating case must interpolate values much more as the store is
displaced more than in the pinned case. This interpolation difference may contribute

to differences in the solution.
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Figure 22:  Force History on MK-84 AIR body at Mach 0.6 at 20,000 ft
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Figure 23:  Moment History on MK-84 AIR body at Mach 0.6 at 20,000 ft
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Figure 24: ~MK-84 AIR Velocity History at Mach 0.6 at 20,000 ft
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Figure 25: MK-84 AIR Angular Velocity History at Mach 0.6 at 20,000 ft
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Figure 27:  MK-84 AIR Orientation at Mach 0.6 at 20,000 ft
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In addition, the store is initialized in the center of the background mesh, giving
the maximum distance between the store and the boundaries. As the store translates
away from this ideal position, it moves closer to the boundaries. Although care
was taken to ensure adequate distance at all times, these boundary effects may also

contribute slightly to error in the solution of the translating case.

These differences are especially seen in the forces and moments (Figure A.5
and A.6). The forces from the translating case are quite oscillatory, whereas the
pinned case results in smoother forces following the similar trends. The same tendency
is seen in the moments. Although the pinned case also moves and must interpolate
new positions, these movements are in response to rotations only and thus require

smaller interpolation jumps, causing less error.

Because the maximum difference between methods is at the end of the solution
time, the differences at this point are analyzed. The percent differences are found by
dividing the difference by the average value. The forces and moments for Case 1 are
shown in Table 9. Most of these percent differences are very small, with the exception
of the coefficients Cr, and Cjry. These percent differences are much larger because
the average measured value lies close to zero. Though these percentages are large,

the actual deviation between the values is still very small.

Similar small differences in the velocities are seen in Table 10, with the exception
of the w component of velocity. The same reason applies: even though the actual
difference is small, the percentage is large because this velocity component is so close
to zero. All telemetry differences are also small (Table 11), with the exception of the
yaw angle (¢). Even though the pinned yaw angle is an order of magnitude different
than the translating angles, both methods result in a near-zero yaw angle. Because
the store is flying straight through the air, it makes sense that this yaw angle would

be close to zero.

4.2.2.2 Test Case 2. Test case 2 (initially M = 0.9, 10,000 ft) was
run for 2.27 seconds of solution time. The MK-84 behavior in this case is slightly
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Table 9: MK-84 AIR Test Case 1: Forces and Moments after 2.36
seconds
Force Coeflicient [-] Moment Coefficient [-]
x y zZ X y z
Ref Case: 0.1200 | -0.0180 | -8.90E-04 | -0.0163 | -0.0024 | -0.0651
Pinned Case: | 0.1163 | -0.0219 | 2.90E-03 | -0.0153 | -0.0128 | -0.0676
Difference (%): | 3.16 19.78 200.00 6.52 138.12 3.65

Table 10: MK-84 AIR Test Case 1: Velocities after 2.36 seconds
Velocity [ft/s] Angular Velocity [rad/s]
u A% w ¢ 9 1/}
Ref Case: 1.8347 | -75.6352 | 5.85E-04 | -7.8349 | 0.0463 | 0.0537
Pinned Case: | 1.8029 | -75.6842 | 2.55E-03 | -7.8669 | 0.0456 | 0.0493
Difference (%): | 1.75 0.06 125.38 8.61 1.42 | 041

Table 11:
2.36 seconds

MK-84 AIR Test Case 1: Trajectory and Orientation after

Translation [ft]

Orientation [degrees]

X y z (4 0 ¢
Ref Case: -2.1584 | -0.0481 | 89.2929 | -0.00403 | -7.1293 | 686.712
Pinned Case: | -2.1318 | -0.0443 | 89.3350 | -0.04256 | -7.1515 | 688.159
Difference: 0.0266 | 0.0038 | -0.0421 | -0.0385 | -0.0223 | -1.447
Difference (%): | 1.24 8.15 0.05 165.41 0.31 0.21
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different but realistic considering the different initial conditions. The store falls a
similar vertical distance, but pitches less and rolls much more. In fact, the roll rate
of the store is over double the first test case. This is expected because the magnitude
of the forces acting on the fin is larger due to the greater density and velocity in this

case.

Plots showing the time histories of the pertinent data from this case are shown
in Appendix A.3 and the differences at the end of the solution time are tabulated in
Tables 12 to 14. The agreement between the force and moment coefficients in this
case is much better; the highest percent difference seen is 44% in the Cj;, component
(Table 12). With the exception of the spike in percent differences because of the near-
zero values of yaw and pitch velocities, the velocities of the store show much better
agreement between solutions than the forces and moments do (Table 13). Very low
differences are seen in the trajectory and orientation between the two methods. The

percent difference between the yaw angle is very large as both values are near zero.

Overall, the two test cases show good agreement between the translating and
pinned solutions. In both cases, the forces and moments seem to be the most different.
However, this difference does not have a large effect on the velocities and telemetry,

which are very similar between solution methods.

Table 15 shows the total amount of wall clock time needed for the 1200 time

steps used in the both solution methods of these cases. The benefit of using the

Table 12: MK-84 AIR Test Case 2: Forces and Moments after 2.27
seconds

Force Coefficient [-] Moment Coefficient [-]

X y z X y Z

Ref Case: 0.1149 | 0.0258 | -1.12E-02 | -0.0009 | 0.0116 | 0.0213

Pinned Case: | 0.1133 | 0.0203 | -9.31E-03 | -0.0008 | 0.0074 | 0.0189

Difference (%): | 1.37 | 23.78 18.78 8.48 44.00 | 12.03
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Table 13: MK-84 Case 2: AIR Test Velocities after 2.27 seconds
Velocity [ft/s] Angular Velocity [rad/s]

u v W ¢ 0 b

Ref Case: 6.0640 | -72.5411 | -3.81E-02 | -0.0144 | -0.0439 | -15.2003

Pinned Case: | 6.0037 | -72.7319 | -4.73E-02 | -0.0439 | -0.0139 | -15.2012

Difference (%): | 1.00 0.26 21.71 101.17 | 103.70 0.01

Table 14: MK-84 AIR Test Case 2: Trajectory and Orientation after
2.27 seconds

Translation [ft] Orientation [degrees]
X y zZ P 0 [0)
Ref Case: -6.8403 | -0.0047 | 82.3965 | 0.07656 | -4.1965 | 1586.8100

Pinned Case: |-6.7927 | 0.0176 | 82.7352 | 0.06802 | -4.1970 | 1588.1415

Difference (%): | 0.70 200.00 0.41 11.81 0.01 0.08

modified code with the 24% smaller background mesh is seen here as a 17% reduction

in solution time. This reduction is the same for both test cases.

4.2.3 Free Flight Simulation Results.  Once the modified code was verified,
extended simulations of the MK-84 AIR in free flight were conducted. The first test
case simulated was the MK-84 AIR with an initial Mach of 0.6 at sea level standard

conditions, depicted in Figure 28. This simulation lasted for 135 seconds of solution

Table 15:  Wall Clock Times for MK-84 AIR Test Cases

Case 1 | Case 2
Translating Method | 5.9 hrs | 5.9 hrs
Pinned Method 4.9 hrs | 4.9 hrs
Gain 17% 17%
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time, taking 74,000 iterations. This required 324 hours (13.5 days) of wall clock time

using eight processors.

The store fell 167,000 feet in this time, reaching a final pitch angle of 86.2 degrees
nose down. The store accelerates to Mach 1.47, as shown in Figure 29, but does not
appear to reach a conclusive terminal velocity speed. This Mach number is far above
the experimental terminal velocity of Mach 1.03. The difference is attributed to the

lack of viscous effects in this simulation, which removes the parasitic drag component.

The MK-84 AIR remains stable throughout the simulation. The pitch and yaw
oscillations immediately following the release are the largest, and become damped
out as the solution progresses. The supersonic regime is entered in 31 seconds as
seen in Figure 30. This is accompanied by the expected wave drag rise in both the
x and y directions (Figure 31). After the store goes supersonic, the y component of
drag continues to increase as the store accelerates and pitches nose down. As the
store continues to pitch nose down, the y component of drag will continue to become

greater until it is balanced by the gravitational force at the terminal velocity speed.

Mach

I1.50

0.30

Figure 28:  Contours of Mach showing the MK-84 AIR in its pre-release position at
Mach 0.6 at Sea Level
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The moments show the wave drag even more clearly than the forces do. As seen
in Figure 32, there is a sharp rise in the y and z moment coefficients as the store
passes the sound barrier. This may be due to a non-zero angle of attack as the store
passes the sound barrier. Any shock wave forming on the store with a non-zero angle
of attack would produce asymmetric wave drag, leading to increased moments. This
rise is quickly damped out in less than 10 seconds and the moments continue to damp

slightly for the rest of the solution.

This effect can also be seen in the history of the angular velocities, shown in
Figure 33. The pitch and yaw oscillations begin to damp out as the simulation begins,
until the supersonic point is reached. Then there is a small spike in the pitch and yaw
rates, which quickly damps out. These rates continue to damp well into the solution,

showing the stability of the MK-84 AIR.

The history of the position and orientation of the store are shown for complete-

ness. It is interesting to note that the y translations (in the G&C coordinate frame),
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Figure 29:  Mach History of Extended MK-84 AIR Simulations
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Figure 30: Contours of Mach showing the MK-84 AIR just after entering the su-
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Figure 31: Extended Force History on MK-84 AIR body at Mach 0.6 at Sea Level
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Figure 32: Extended Moment History on MK-84 AIR body at Mach 0.6 at Sea
Level

reach a maximum of about 900 feet by the end of the solution (Figure 34). This
shows that the MK-84 AIR did not fly perfectly along its original heading, but devi-
ated slightly over the course of the simulation. The orientation history shows that the
store is approaching a 90 ° nose down orientation, with the maximum reached here
being 86.2 ° nose down (Figure 35). The non-zero yaw component is also clearly seen
here. The history of the total roll angle is not shown because of the extremely large

values reached.

Contours of Mach number showing the flow field around the MK-84 in its final

position at the end of this simulation are shown in Figure 36.

The second test case, Mach 0.9 at 10,000 feet, is run for 56.8 seconds of solution
time in 30,000 iterations, with much more interesting results. The store falls 43,069
feet with a final pitch angle of -67.7 degrees. The spin stabilization of the store follows
a profile similar to the first case, as seen in the history of the roll rate. The sound

barrier is reached in only 20.2 seconds due to the higher initial Mach. The store
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Figure 36:

Contours of Mach around the MK-84 AIR after 135 seconds of free flight
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accelerates to Mach 1.34, with no signs of leveling off at a terminal Mach number as

shown in Figure 29.

The solution in the transonic and supersonic region is especially interesting. The
forces and moments on the store body are shown in Figures 37 and 38. The amplitude
of the force and moment oscillations begins to increase slowly in the transonic region.
The flow in this regime is already reaching supersonic speeds as it passes over the
curvature of the body. As the store approaches the sonic point, the yaw and pitch
oscillations increase dramatically. This happens at approximately 18 seconds into
the solution. The store appears to be departing from stable flight; however, as the
solution continues the stability of the MK-84 is observed. The forces and moments
begin to damp out, until almost 30 seconds later when they return to values similar

to those seen before the instability occurs.

Similar behavior is seen in the pitch and yaw rates of the store (Figure 39).
These rates also encounter an instability near the sonic point, which damps out as

the simulation continues. The pitch amplitude during this period is +/- 10 degrees
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Figure 37:  Extended Force History on MK-84 AIR body at Mach 0.9 at 10,000 ft
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Figure 39: Extended Velocity History of MK-84 AIR at Mach 0.9 at 10,000 ft
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and the yaw amplitudes are +/- 15 degrees around zero (Figure 41). Once damped,

the solution continues in a stable fashion until it ends at 56 seconds.

The increased forces during this time slows the acceleration of the store, which
can be seen from the plot of Mach number vs. Time in Figure 29. It is not until the
large oscillations damp out that the acceleration returns to the value initially seen in
the solution. This may be one reason this test case does not appear to approach a
terminal velocity similar to the first test case. The trajectory of this case is depicted

in Figure 40, and the orientation throughout the simulation is shown in Figure 41.

The exact cause of these unexpected oscillations is unknown. One contributing
factor may be the formation of asymmetric wave drag as the store passes the sonic
point. However, this wave drag did have such an affect on the first test case. An
analysis of the pressures around the store during this event revealed little. A small
imbalance in the distribution of pressures around the fins was observed slightly before

this event occurred; however, what causes this imbalance is unknown. Nevertheless,
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Figure 40: Extended Trajectory of MK-84 AIR at Mach 0.9 at 10,000 ft
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Figure 41: Extended Orientation History of MK-84 AIR at Mach 0.9 at 10,000 ft

the benefit of the ability to indefinitely simulate a store in flight is demonstrated by

this event.

4.3 Generic Store Results

To verify the correct effect of moving components on the store motion while using
the modified code, another comparison test case is used. The initial conditions of Test
Case 1 (M=0.6 at 20,000 ft) are used in this case to first obtain the static solution
around the generic store body. The coefficients of force and moments are analyzed
to determine the convergence of the flow field around this body. These coefficients

were found to reach a steady state solution in 350 iterations, shown in Appendix A.4.

Table 16: Standard Deviations of Forces and Moments in the Final
100 iteration of Generic Store Static Solution

Fx Fy Fz Mx My Mz
Std. Deviation: | 1.44E-4 | 4.74E-6 | 5.25E-6 | 0.00 | 4.84E-6 | 2.40E-6
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Figure 42:  Contours of Static Pressure over the Generic Store in Initial Pitch at

Mach 0.6 at 20,000 ft

The standard deviations over the final 100 iterations are given in Table 16. The low
standard deviations indicate that the solution is sufficiently converged and that the

dynamic simulation may begin.

The prescribed pitching motion is applied over the first 0.6 seconds using the
upper fins only, after which all fins remain fixed relative to the store body. Because
of its low mass and high drag, the generic store quickly travels backwards in the
translating case. The simulation can only be run for 1.4 seconds before the body
moves too close to a boundary for the solution to continue without error. However,

this is enough time to observe the prescribed motion and the initial response.

The store reaches a maximum attitude of 7.3° nose up in the initial pitching
motion, shown in Figure 42. The pitch rate begins to steady out after the fin deflection
is removed and is accompanied by the damping of the actual pitch angle. The generic
store has a strong tendency to roll, rolling left 30° by the end of the solution. The store

also experiences a slight yaw rate which damps out over the simulation. The final yaw
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angle remains close to zero. The cause of the high roll rate of the generic store in the
“X” configuration is unknown. However, because similar roll rates are seen in both
solution methods, the probable cause is the geometry and not the solution method.
Figures 43 to 48 show the time histories of the pertinent data and the differences at
the end of the solution are tabulated in Tables 17 to 19.

The histories of the force and moment coefficients are shown in Figures 43
and 44. The greatest difference between methods seems to appear in the values of
Cr. However, when considering the percent difference, the values of Cr, vary by less
than 10% the entire solution. At the end of the solution, the greatest differences are
seen in the values of Cr,, Cuy, and Chyy. While these percent differences are large,

the values of these coefficients are near zero for both simulation methods.

The velocities over the solution are shown in Figures 45 and 46. The pitch rate,

which is the point of interest because of the prescribed pitch up motion, agrees very

Table 17:  Generic Store Body: Forces and Moments after 1.4 seconds

Force Coefficient [-] Moment Coefficient [-]

X y z X y v/

Reference Case: | 0.0745 | 0.0057 | -4.00E-05 | 6.00E-05 | -0.0008 | 0.0004

Pinned Case: | 0.0793 | 0.0060 | -7.00E-05 | 5.00E-05 | -0.0008 | -0.0009

Difference (%): | 6.18 5.50 54.55 18.18 8.70 200.00

Table 18:  Generic Store Body: Test Velocities after 1.4 seconds

Velocity [ft/s] Angular Velocity [rad/s]

u A% w (b 9 1/’

Reference Case: | 13.1663 | -43.4651 | -3.08E-02 | 0.3391 | 0.0321 | 0.0244

Pinned Case: | 13.9865 | -43.4421 | -4.59E-02 | 0.4219 | 0.0329 | 0.0222

Difference (%): | 6.04 0.05 39.44 21.76 | 2.37 9.70
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Figure 43:

Force History on Generic Store Body at Mach 0.6 at 20,000 ft
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Table 19:  Generic Store Body: Trajectory and Orientation after 1.4
seconds

Translation [ft] Orientation [degrees]
X y z (0 0 0
Reference Case: | -9.1565 | -0.0364 | 29.7614 | 0.16547 | -4.0257 | -30.8461

Pinned Case: | -9.7397 | -0.0257 | 29.7878 | 0.16736 | -3.8951 | -34.6990

Difference (%): 6.17 34.36 0.09 1.14 3.30 11.76

well throughout the solution. The final difference in pitch rate after 1.4 seconds is
only 2.4%. The yaw rate, which also oscillates in response to the applied motion,
shows 9.7% error at the end of the solution. Most of the differences between the other
velocities remain small at the end of the solution, with the exception of w-velocity
and the roll rate. The w-velocities from both methods have values near zero. The roll
rate, however, is not close to zero. There is less agreement in roll rate between the
two methods than the other angular velocities, although it follows the same trend in
each method. Grid interpolation differences in the region of the moving components

may contribute to these differences.

The trajectory and orientation histories of the store are shown in Figures 47
and 48. At the end of the solution, close agreement is seen between solutions (Ta-
ble 19). The difference of the vertical translation of the store is less than 1%, and
the difference in the final pitch angle is only 3.3%. The greatest difference is in the
y-translations, which are both close to zero because of the low yaw rate of the store.
While the roll rate shows slight differences through the solution, the difference in the

actual roll angle grows slowly to a maximum of 11.8% at the end of the solution.

Overall, the two methods show close agreement in this model. The difference
between methods grows as time progresses, as seen in the MK-84 AIR testing. These
differences may be attributed to the grid interpolation errors, which increase as the

store gains velocity and larger interpolation jumps are required between time steps.
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Such errors may be smaller in the pinned case because the dynamic group does not

translate.

Because of the success of the comparison tests, the pinned solution was continued
until 4 seconds of solution time was reached. Figures 49 to 54 show the history of the
generic store over this time. This solution captures the entire response of the store to
the initial pitching motion, something the unmodified Beggar code was unable to do.
The store falls 250 feet in this time. As the store rotates nose down, Cy, increases as
Cr, decreases. The forces and moments damp out within 2 seconds, as do the pitch
and yaw rates. The simulation ends with the store in a final orientation of 12° nose
down, having rolled left 87°. The final yaw angle remains close to zero. Although
this simulation is relatively short compared to the length of the extended MK-84 AIR
simulations, it shows the potential usefulness of these modifications when predicting

the dynamic stability of a store.
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Figure 49: Extended Force History on Generic Store Body at Mach 0.6 at 20,000 ft
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V. Conclusions

eggar, the premier CFD code developed by and for the United States Air Force,
Bhas been successfully modified to enable the extended simulation of a store
in free flight. The implementation of mesh motion on the background mesh was
confirmed to be successful through the use of a supersonic compression ramp. Testing
used different combinations of flow and mesh motion, which all resulted in the same
flow solution over the ramp. Furthermore, the flow visualization corrections, designed

to include that mesh motion, were found to work correctly through these tests.

The MK-84 AIR comparison tests found good agreement between the modified
and unmodified code for the two test cases used. This confirms the success of the
pinned method which removes the requirement for an inertially-fixed background
mesh. Additionally, two extended simulations of the MK-84 AIR were run. The
long-term dynamic behavior of the store was observed, demonstrating the strength
of these modifications. These simulations (56 and 135 seconds in length) would have
been intractable by the Beggar code in the past. For a short term simulation, there
is an impressive reduction in computational cost using the pinned method with a

smaller background mesh.

After the successful removal of the inertial background mesh, the generic store
tests verified the pinned solution with moving components present that applied a pitch
up motion to the store. The motion was found to closely agree between the translating
and pinned methods. The original, translating method of free flight simulation could
not totally capture the store’s dynamic response to the initial pitch. However, with
the current modifications, a extended simulation adequately captured the entire long-

term dynamic response of the store to this prescribed motion.

The errors in all comparison tests were observed to increase with time. The
probable cause of this is the grid interpolation of the store. As the store gains velocity,
it takes larger interpolation jumps and results in increased error. These interpolation

jumps are larger in the translating case because the interpolations in the pinned
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case occur in response to rotation only. Therefore, the pinned solution may actually

contain less grid interpolation error than the translating solution.

5.1 Future Research

While this research has shown that indefinite free flight simulations with Beggar
are possible, more work needs to be done to implement this for all possible scenarios.
Beggar has the ability to simulate many different types of prescribed motion and con-
straint forces in single and multi-body problems. How the current modifications affect
these additional constraints and motion options is unknown. In addition, these mod-
ifications have not been applied to the moving chute or kone capabilities of Beggar.

For these cases, further modifications must be accomplished.

Currently, atmospheric reference values are taken from the initial conditions
input by the user in the form of density and speed of sound. Beggar holds these
values constant and uses them throughout the simulation, even as the store falls
thousands of feet. In reality, these values obviously change as the store falls. Because
of this, the accuracy of any extended free flight simulation would benefit from the

addition of an atmospheric model to Beggar.

These modifications could be employed to predict the dynamic stability of a
store. This would be an invaluable extension of the Beggar code, providing increased
flexibility and capacity for weapons certification. Additionally, the removal of the
inertial background mesh introduces the potential capability to simulate store sepa-
ration events from maneuvering aircraft. However, further research and adaptations

to the Beggar code must first be accomplished.

These results have confirmed the success of removing the inertial background
mesh requirement for the single and multi-body problems. This has enabled the
previously impossible simulation of a store in indefinite free flight using Beggar. This
research has expanded Beggar’s capability and will allow it to continue to meet the

growing weapons certification demands of the United States Air Force.
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Appendiz A. FExtended Results

Supporting figures for each of the three computational test models are given here.

A.1 Compression Ramp Case Results

R

| B

Figure A.1: Ramp Case 2: Mach 1.5 flow and Mach 0.5 mesh motion

1.43

R

B

Figure A.2: Ramp Case 3: Mach 0.5 flow and Mach 1.5 mesh motion

1.43
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A.2 MK-8} AIR Convergence History
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Figure A.3:
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Convergence of Static Moments on MK-84 AIR

90




A.3 MK-8; AIR Comparison Test Case 2
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Figure A.5:

Force History on MK-84 AIR body at Mach 0.9 at 10,000 ft
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Figure A.6:
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Figure A.7: MK-84 AIR Velocity History at Mach 0.9 at 10,000 ft
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A.4 Generic Store

Body Convergence History
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Figure A.11:  Convergence of Static Forces on Generic Store Body
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Appendix B. Beggar Input Files

r I \he various input files needed for the MK-84 AIR and generic store body simu-

lations are provided in this Appendix.

B.1 MK-84 AIR Input File

MK—84 AIR TESTING)

INITALIZATION PARAMETERS

F FH HF FH*

verbose = 3

mach = 0.60

ptol = le-5

nopatch

dt= 10.0

#

# SIX+DOF PARAMETERS

#

sixdof gravity = <0.0,-32.18,0> # ft/s"2 for AOA = 0 deg
sixdof density = 0.001262 # Slug/ft "3 @ 20k ft
sixdof soundspd =1037. # ft/s @ 20k ft
sixdof refl = 0.083333 # Ref length conversion
#

# FLOW SOLVER PARAMETERS

#

inner = 40

inner_tol=1.e—8
inner_tol_ratio=1l.e+4
stencil=inviscid?2

solver=second order, full, euler, steg_warm_xair jacobians ,
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implicit bcupdate, primitive extrap,steger_ warming right_side
limiter = vanalbada
#
# GRID ASSEMBLY
#

readgrids ’../grid/cube.grd’ as plot3d ascii

readgrids ’../grid/cart.p3ds’ as plot3d binary
tag 'mk84air_cart_grid_SB’

include ’../beg/mk84airinv.beg’

#
# GRID INITIALIZATION

#

sb 1

init from ’'mk84_restart’ 1

sb 2

init from ’mk&4_restart’ 2

sb 3

init from ’'mk84 _restart’ 3

i
# FORCE SPECIFICATIONS

#

forcespec "mk84air_tot_fspec”: dump every 1 to ”store_forces.dat”

with noheader

with refl=——  #Approx diameter of store

with refa=——  #Approx cross sectional area using body diameter
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with mcenter = <——————>

forcespec "mk84air_tot_fspec”: add ”"mk84air_body” ,” mk84air_fin”

#
# INERTIAL AND DYNAMIC SPECIFICATIONS

#

dynamicspec ”"mk84air_body_ds”:
add sb ’mk84air_inv ’;
add sb 'mk84air_cart_grid_SB ’;

?

add fspec mk&84air_tot_fspec ’;

mass = 62.7; # Slug

ixx = ———; # Slug ft "2

iyy = ———; # Slug ft "2

izz = ———; # Slug ft "2

ixy = ———; iyz = ——; ixz = ———;
g = <——— > # feet!
trelease = 0;

dump idaps left release;

dump gandc z down

H

SET WORLDSIDE FOR CCUT OPTIONS

H

sb 1

g1
set (1,1,1) (2,2,2) to worldside
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B.2 MK-84 AIR Boundary Conditions

The configuration file “mk84airinv.beg” containing the surface boundary con-

ditions of the MK-84 AIR is shown here:

readgrids ’../grid/mk84 new.grd’ as plot3d ascii

tag ’'mk84air_inv’

g1
set ”"mk84air_body” = (1,1,1) (%,%*,1) to tangent
set ”mk84air_fin” = (43,1,1) (69,1,29) to tangent

set ?mk84air_fin” += (43,%,1) (69,%,29) to tangent
g 2

set ”mk84air_ body” += (1,1,1) (*,%,1) to tangent

set "mk84air_fin” += (43,1,1) (69,1,29) to tangent

set ?mk84air_fin” += (43,%,1) (69,%,29) to tangent

set ”mk84air_body” += (1,1,1) (*,*,1) to tangent
set "mk84air_fin” += (43,1,1) (69,1,29) to tangent
set "mk84air_fin” += (43,%,1) (69,%,29) to tangent

set ”"mk84air_body” += (1,1,1) (*,%*,1) to tangent
set ?mk84air_fin” 4= (43,1,1) (69,1,29) to tangent
set "mk84air_fin” += (43,x,1) (69,%,29) to tangent

B.3 MK-84 AIR Time Step Ramping Schedule

The time step and Newton iteration ramping schedule are shown here. The time
steps are input as non-dimensional time, and correspond to different physical time
steps depending on the initial conditions of the case. The physical time step for the

20,000 ft cases are shown.

apply_-at_iter=1
dtiter=1
dt=4.5 # 0.000361469 seconds @ 20k ft
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apply_at_iter=25

dt=14.5 # 0.001164735 seconds @ 20k ft
apply_-at_iter=75

dtiter=3

dt=24.5 # 0.001968812 seconds @ 20k ft

B.} Generic Store Body Specifications

The force and dynamic specifications used in the input file for the generic store

body problem are shown here. As seen, each SMC and the SMB require their own

force and dynamic specification. The SMB dynamic spec is immediately followed

by the dynamic specs of the four fins. The auxiliary input file with the additional

prescribed motion cycle designed to rotate the fins back to zero is also shown.

i
# FORCE SPECIFICATIONS

#

forcespec ”finlfs”: add ”finl” forcespec ”"finlfs”: dump every 1 to
”?finl.force”

with refl=1.5 # Grid units (length of fin)

with refa=3.17 # Grid units (fin area)

with mcenter=<0.0,4.5,0.0> # mcenter Local grid units

forcespec "fin2fs”: add ”fin2” forcespec ”fin2fs”: dump every 1 to
7fin2 . force”

with refl=1.5 # Grid units (length of fin)

with refa=3.17 # Grid units (fin area)

with mcenter=<0.0,4.5,0.0> # mcenter Local grid units

forcespec "fin3fs”: add ”fin3” forcespec ”"fin3fs”: dump every 1 to
7fin3 . force”

with refl=1.5 # Grid units (length of fin)

with refa=3.17 # Grid units (fin area)
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with mcenter=<0.0,4.5,0.0> # mcenter Local grid units

forcespec "findfs”: add ”find4” forcespec ”findfs”: dump every 1 to
7fin4 . force”

with refl=1.5 # Grid units (length of fin)

with refa=3.17 # Grid units (fin area)

with mcenter=<0.0,4.5,0.0> # mcenter Local grid units

forcespec ”bodyfs”: add ”body” forcespec "bodyfs”: dump every 1 to
”body . force”
with refl=2.26 # Grid units ( diameter of body)
with refa=63.314 # Grid units ( 2 pi r h)
with mcenter=<4.45,0.0,0.0> # mcenter Local grid units

I

# INERTIAL AND DYNAMIC SPECIFICATIONS
7

dynamicspec ”bodyds”:
add fspec ’bodyfs’;

add sb ’body’;

add sb ’cart_grd_sb ’;

mass = 0.776; # 25 / 32.2 = slugs

ixx = 0.00001; #represents a solid cylinder 1”7 rad by 9” long
iyy = 0.0364; #represents a solid cylinder 1”7 rad by 9” long
izz = 0.0364; #represents a solid cylinder 1” rad by 9” long

ixy = 0.0; iyz = 0.0; ixz = 0.0;

cg = <0.333, 0.0, 0.0>; # in feet NOT inches
trelease = 0.0;

dump idaps left release;

dump gandc z down
dynamicspec ”finlds”:

add sb ’finl ’;
add fspec ’finlfs ’;
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store moving component with prescribed motion (optionl);
vector along smc axis of rotation = <0.0,0.5,0.5>;

point on smc axis of rotation = <0.687499725,0.0,0.0>;

time motion begins = 0.0;

time acceleration ends = 0.15;
time deceleration begins = 0.15;
time motion ends = 0.3;

maximum angular velocity = 0.9;
mass = 0.031; #1 /] 32.2

ixx

0.0000832; # slug ft "2

iyy = 0.0000403; +# slug ft"2

izz = 0.0001214; # slug ft "2

ixy = 0.0; iyz = 0.0; ixz = 0.0;

cg = <0.0, 0.04, 0.0>; # in feet NOT inches
dump idaps left release;

dump gandc z down;

trelease = 0.0

dynamicspec ”fin2ds”:
add sb ’fin2 ’;
add fspec ’'fin2fs ’;

store moving component with prescribed motion (optionl);
vector along smc axis of rotation = <0.0,—0.5,0.5>;

point on smc axis of rotation = <0.687499725,0.0,0.0>;

time motion begins = 50.0;

time acceleration ends = 50.15;
time deceleration begins = 50.15;
time motion ends = 50.3;

maximum angular velocity = 0.9;
mass = 0.031; # 1/ 32.2

ixx = 0.0000832; # slug ft"2
iyy = 0.0000403; +# slug ft" 2

izz = 0.0001214; 4 slug ft" 2
ixy = 0.0; iyz = 0.0; ixz = 0.0;
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cg = <0.0, 0.04, 0.0>; # in feet NOT inches
dump idaps left release;
dump gandc z down;

trelease = 0.0

dynamicspec ”fin3ds”:
add sb ’fin3 ’;
add fspec ’'fin3fs ’;

store moving component with prescribed motion (optionl);
vector along smc axis of rotation = <0.0,0.5,0.5>;

point on smc axis of rotation = <0.687499725,0.0,0.0>;

time motion begins = 50.0;

time acceleration ends = 50.15;
time deceleration begins = 50.15;
time motion ends = 50.3;

maximum angular velocity = 0.9;
mass = 0.031; # 1/ 32.2

ixx = 0.0000832; +# slug ft 2

iyy = 0.0000403; +# slug ft 2

izz = 0.0001214; # slug ft"2

ixy = 0.0; iyz = 0.0; ixz = 0.0;

cg = <0.0, 0.04, 0.0>; # in feet NOT inches
dump idaps left release;

dump gandc z down;

trelease = 0.0

dynamicspec ”fin4dds”:
add sb ’fin4 ’;
add fspec ’findfs ’;
store moving component with prescribed motion (optionl);
vector along smc axis of rotation = <0.0,-0.5,0.5>;
point on smc axis of rotation = <0.687499725,0.0,0.0>;
time motion begins = 0.0;

time acceleration ends = 0.15;
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time deceleration begins = 0.15;

time motion ends = 0.3;
maximum angular velocity = 0.9;
mass = 0.031; # 1/ 32.2
ixx = 0.0000832; +# slug ft 2

iyy 0.0000403; # slug ft"2
izz = 0.0001214; # slug ft" 2

ixy = 0.0; iyz = 0.0; ixz = 0.0;
cg = <0.0, 0.04, 0.0>; # in feet NOT inches
dump idaps left release;

dump gandc z down;

trelease = 0.0
#
# GSB Auxiliary Input File
#
override

dynamicspec ’finlds ’:
additional prescribed motion cycle;
time motion begins = 0.304;
time acceleration ends = 0.454;
time deceleration begins = 0.454;
time motion ends = 0.604;

maximum angular velocity =-0.9

dynamicspec ’findds ’:

additional prescribed motion cycle;

time motion begins = 0.304;
time acceleration ends = 0.454;
time deceleration begins = 0.454;
time motion ends = 0.604;
maximum angular velocity =-0.9
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