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In this paper, we study the use of digital holography in the on-axis phase-shifting recording geometry for the
purposes of deep-turbulence wavefront sensing. In particular, we develop closed-form expressions for the field-
estimated Strehl ratio and signal-to-noise ratio for three separate phase-shifting strategies—the four-, three-, and
two-step methods. These closed-form expressions compare favorably with our detailed wave-optics simulations,
which propagate a point-source beacon through deep-turbulence conditions, model digital holography with
noise, and calculate the Monte Carlo averages associated with increasing turbulence strengths and decreasing
focal-plane array sampling. Overall, the results show the four-step method is the most efficient phase-shifting
strategy and deep-turbulence conditions only degrade performance with respect to insufficient focal-plane array
sampling and low signal-to-noise ratios. The results also show the strong reference beam from the local oscillator
provided by digital holography greatly improves performance by tens of decibels when compared with the
self-referencing interferometer. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.00A179

1. INTRODUCTION

Holography has a rich history in applications involving long-
range imaging [1] and wavefront reconstruction [2]. In prac-
tice, we can use these applications in concert to overcome
atmospheric distortions [3–5]. With the advent of robust focal-
plane arrays (FPAs), researchers began to measure and store
holograms digitally [6]. In an effort to characterize the atmos-
phere [7–9], this early research provided the framework needed
for deep-turbulence wavefront sensing using digital holography.

Many applications, such as free-space laser communications,
involve propagation paths which experience deep-turbulence
conditions. Also known as distributed-volume turbulence or
strong turbulence, deep turbulence arises from atmospheric
aberrations being distributed along the propagation path.
Given spatially coherent light, this outcome gives rise to
time-varying constructive and destructive interference. Known
as scintillation, this phenomenon typically hinders wavefront-
sensing performance. While all atmospheric-optical paths expe-
rience scintillation to some degree, the effects of scintillation are
often negligible for the vertical-propagation paths (e.g., those

associated with ground-based telescopes [10], which experience
weak-turbulence conditions) and often appreciable for the
horizontal-propagation paths (e.g., those associated with long-
range imaging systems [11], which experience deep-turbulence
conditions).

Traditional wavefront-sensing methods use localized
irradiance measurements to estimate phase gradients [e.g., the
Shack–Hartmann wavefront sensor (SHWFS)]. Note that
these traditional methods enable near-diffraction-limited opti-
cal systems [10]; however, performance degrades substantially
in the presence of strong scintillation. For all intents and
purposes, strong scintillation occurs when, for example, the
log-amplitude variance, which gives a measure for the amount
of scintillation, becomes greater than 0.2 [12,13]. Given strong
scintillation, branch points arise in the continuous-phase func-
tion, in particular, where there are amplitude nulls in the
real and imaginary parts of the complex-optical field [14].
For gradient-based wavefront sensors, like the SHWFS, these
amplitude nulls cause the wavefront sensor to measure and
reconstruct noise. The branch points also add a rotational
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component to the phase function that gets mapped to the null
space of a least-squares phase reconstructor, which manipulates
the estimated phase gradients into a continuous-phase func-
tion. In turn, traditional wavefront-sensing methods do not
perform well in deep-turbulence conditions.

We can alternatively use interferometric wavefront-sensing
methods, such as the point-diffraction interferometer [15] and
self-referencing interferometer (SRI) [16], to obtain an estimate
of the complex-optical field. This estimate gives us access to the
wrapped-phase function which contains both the irrotational
and rotational phase components [14]. As such, we can use
a branch-point-tolerant phase reconstructor to buy back perfor-
mance when in the presence of strong scintillation [17];
however, this approach has yet to be demonstrated beyond a
scaled-laboratory environment [18]. This last detail is most
likely due to additional constraints caused by deep-turbulence
conditions. For example, with an SRI, the received light is split
to create a spatially filtered reference beam. Typically, research-
ers perform this spatial filtering by coupling the split received
light into a single-mode optical fiber. When in the presence
of strong scintillation, which arises with deep-turbulence
conditions, this coupling results in efficiency losses and creates
low signal-to-noise ratios (SNRs) that quickly lead to perfor-
mance degradations [19].

To overcome the performance degradations caused by deep-
turbulence conditions, we can instead use digital holography
which is another interferometric wavefront-sensing method.
In practice, digital holography is able to resolve the branch
points associated with strong scintillation, since it provides
us with an estimate of complex-optical field and access to
the wrapped-phase function, which contains both the rota-
tional and irrotational phase components [14]. Furthermore,
digital holography is robust against the amplitude nulls caused
by strong scintillation. The use of a strong reference beam from
a local oscillator (LO) allows us to approach the shot-noise
limit, since the signal beam is boosted above the read-noise
floor of the FPA [20]. With these benefits in mind, this paper
evaluates the performance of digital holography in the on-axis
phase-shifting recording geometry (PSRG), as shown in Figs. 1
and 2. This paper, in turn, provides the necessary analysis
needed to design and conduct future deep-turbulence experi-
ments using digital holography in the on-axis PSRG. These
experiments shall investigate both open- and closed-loop
performance in scaled-laboratory and field environments.
Such experiments shall also include additional factors not

investigated in this paper, such as reference-beam nonuniform-
ity, detector nonlinearities, laser practicalities, and vibration
resistance.

It is worth mentioning that this paper builds upon the noise-
less analysis contained in a recent conference proceeding by
Thornton et al. [21]. Specifically, this paper develops and veri-
fies the use of closed-form expressions for the SNR and
field-estimated Strehl ratio with respect to the on-axis PSRG
operating with three separate phase-shifting strategies—the
four-, three-, and two-step methods [22,23]. Using detailed
wave-optics simulations, which propagate a point-source bea-
con through deep-turbulence conditions, model digital holog-
raphy with noise, and calculate the Monte Carlo averages
associated with increasing turbulence strengths and decreasing
focal-plane array sampling, the analysis shows the four-step
method is the most efficient phase-shifting strategy. Furthermore,
deep-turbulence conditions only degrade performance with
respect to insufficient FPA sampling and low SNRs.

It is also worth mentioning that this paper is a “companion
paper” to the analysis presented by Spencer et al. [24] and Banet
et al. [25] with respect to digital holography in the off-axis
image plane recording geometry (IPRG) and off-axis pupil
plane recording geometry (PPRG), respectively. In practice,
the off-axis IPRG and off-axis PPRG indirectly obtain an esti-
mate of the complex-optical field from Fourier transformations
and digital-signal-processing techniques (i.e., filtering the 2D
spectrum of the digital hologram recorded with the FPA).
Conversely, the on-axis PSRG directly obtains an estimate of
the complex-optical field from multiple digital holograms
being recorded on one or more FPA(s) and straightforward
calculations [20].

In what follows, this paper develops closed-form expressions
for two performance metrics (cf. Section 2), the SNR and field-
estimated Strehl ratio, and verifies their use with detailed
wave-optics simulations, which again, propagate a point-source

Fig. 1. Illustration of digital holography in the on-axis PSRG. Note
that we need phase-shifting optics (PSO) to implement our phase-
shifting strategy (cf. Fig. 2).

Fig. 2. Example of the PSO needed for the four-step method. This
example also contains an illustration of the directional dependence of
the π-phase shift upon reflection from a beam splitter (BS).
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beacon through deep-turbulence conditions, model digital
holography with noise, and calculate the Monte Carlo averages
associated with increasing turbulence strengths and decreasing
focal-plane array sampling. (cf. Section 3). This outcome dem-
onstrates the on-axis PSRG is another valid recording geometry
for deep-turbulence wavefront sensing. Before moving onto the
next section, it is important to note that digital holography in
the on-axis PSRG and the SRI are similar in design, except for
the origin of the reference beam. Therefore, this paper also in-
cludes a comparison between digital holography in the on-axis
PSRG and the SRI to show the benefits of using a strong
reference beam for applications involving deep-turbulence
conditions (cf. Section 4).

2. DEVELOPMENT OF CLOSED-FORM
EXPRESSIONS FOR TWO PERFORMANCE
METRICS

This section provides an overview of the optical setup used for
digital holography in the on-axis PSRG. It also develops esti-
mate and noise models for three separate phase-shifting strat-
egies—the four-, three-, and two-step methods. We then use
the models to develop closed-form expressions for the SNR and
field-estimated Strehl ratio. In the ensuing sections, we verify
the use of these performance metrics via wave-optics simula-
tions and then use them to compare the performance of
digital holography in the on-axis PSRG to the performance
of an SRI, both using the four-step method (i.e., the most
efficient method).

A. Optical Setup
As shown in Fig. 1, to realize digital holography in the on-axis
PSRG, we split a master oscillator laser into two optical legs.
The first leg flood illuminates an unresolved, ball-bearing
object creating a point-source beacon. Then, the reflected
spherical wave propagates through deep-turbulence conditions
and becomes the signal beam US collimated in a pupil. The
second leg creates a LO that gives rise to a reference beam
UR . After the reference and signal beams pass through the
phase-shifting optics (PSO), we use the interference of light
to create multiple holograms and record the resulting hologram
irradiances i�δ�H on the FPA(s).

With Fig. 1 in mind, we show some of the details of the
PSO in Fig. 2 for the four-step method. As shown in
Fig. 2, the purpose of the PSO is to obtain the desired phase
shift δ on the reference beam for the recorded holograms. Note
that, in practice, a phase shift of π occurs with reflections from
the mirrors (M) and 50/50 beam splitters when the light is in-
cident on the side favoring the black dot. The reflected light
incident on the opposing side of the black dot does not incur
a phase shift [26]. Additionally, we obtain a π∕2-phase shift at
the quarter-wave plate. Aggregating these phase shifts for the
reference and signal beams results in the four holograms shown
in Fig. 2 and has been demonstrated in hardware [27,28].

There are two more items to consider with respect to Fig. 2:
optical-path length and polarization. As shown, we do not draw
the optical-path lengths to scale, and in a real system, we would
want to match the optical-path lengths to ensure the proper
phase shifts and minimize any losses in fringe visibility due

to vibrations. Also note that we would need to image the signal
and reference beams onto the FPA(s) to record the resulting
hologram irradiances. To do so, we would need to employ relay
optics (not shown here) to create conjugate pupil planes at the
FPA(s), so that we conserve the phase of the signal and refer-
ence beams in forming our holograms. With respect to the
polarization concerns, maximum fringe visibility only occurs
when the reference and signal beam’s polarization states match.
However, in a real system, the reference beam’s polarization
state is probably different than the signal beam’s polarization
state due to rough-surface scattering from the object.
Therefore, also not shown here are the polarization optics
we would need to use to maximize the fringe visibility in
our holograms. Moving forward in the analysis, we simply as-
sume that we match the polarization states and that we are only
dealing with absolute phase shifts (e.g., there are no piston
errors in the phase shifts).

With the above assumptions in mind, the on-axis PSRG
can employ different phase-shifting strategies to calculate the
complex-optical field [22,23]. In this paper, we analyze three
methods, namely, the four-, three-, and two-step methods. As
previously stated, we show the four-step method’s PSO in
Fig. 2. The three- and two-step methods use similar PSO with
some exceptions. In particular, we can modify the fraction of
transmitted/reflected light off the first beam splitter encoun-
tered for the reference and signal beams to ensure equal
amounts of light for each hologram. We can also exchange
the final beam splitters with beam-combining optics to remove
the unnecessary measurements while preserving the signal
beam. In so doing, we only divide the signal beam by the
number of holograms desired, and the holograms make use
of corresponding strong reference beams to maximize SNR.

B. Estimate Model
Provided Figs. 1 and 2, the hologram irradiances i�δ�H take the
following form:

i�δ�H � jUS � URe−jδj2

� jUS j2 � jURj2 � USU �
Re

jδ � U �
SURe−jδ, (1)

where δ is again the desired reference-beam phase shift.
Throughout the analysis, it is important to note that we as-
sume, by choice, a spatially uniform reference beam. With in-
crements of π∕2 phase shifts, the corresponding i�δ�H become

i�0�H � jUS j2 � jURj2 � USU �
R � U �

SUR ,

i�π∕2�H � jUS j2 � jURj2 � jU SU �
R − jU

�
SUR ,

i�π�H � jUS j2 � jURj2 − USU �
R − U

�
SUR ,

i�3π∕2�H � jUS j2 � jURj2 − jU SU �
R � jU �

SUR: (2)

Here, we replace the superscript δ with the appropriate
reference-phase shift and � denotes complex conjugate.

Provided Eq. (2), we can perform algebraic manipulations to
isolate the signal beam US [22]. For each of the phase-shifting
strategies considered in this paper, we arrive at the following
relationships:

4U �
RUS � �i�0�H − i�π�H � − j�i�π∕2�H − i�3π∕2�H � (3)
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for the four-step method,

4U �
RUS � �1� j��i�0�H − i�π∕2�H � � �j − 1��i�π�H − i�π∕2�H � (4)

for the three-step method, and

2U �
RUS � �i�0�H − jUS j2 − jURj2� − j�i�π∕2�H − jUS j2 − jURj2�

(5)

for the two-step method. Notice that the two-step method also
requires that we know the irradiances associated with the signal
and reference beams [cf. Eq. (5)]. To obtain the reference-beam
irradiance, we would need to add a way to monitor the reference
beam. This addition might seem excessive at first; however, in a
real system, this monitoring would also allow us to maintain the
strong reference beam assumption and avoid pixel saturation on
the FPA(s). To obtain the signal-beam irradiance, we can make
use of the following relationship derived by Poon and Liu [29]:

2jUS j2 � i�0�H � i�π∕2�H

− f�2jURj2 � i�0�H � i�π∕2�H �2

− 2�4jURj4 � �i�0�H �2 � �i�π∕2�H �2�g1∕2: (6)

This relationship helps our efforts since the low signal levels
associated with deep-turbulence conditions make the signal-
beam irradiance hard to monitor.

With Eqs. (1)–(6) in mind, we can record the hologram
irradiances i�δ�H with a FPA, which performs a pixel-by-pixel
integration [20]. Thus, for a FPA with M × N pixels,

bi �δ�H �nxp,myp�

� 1

wxwy

ZZ
∞

−∞
i�δ�H �x 0,y 0�rect

�
x 0 −nxp
wx

�
rect

�y 0 −myp
wy

�
dx 0dy 0,

(7)

where m and n are the FPA pixel indices from m � 1 toM and
n � 1 to N , xp and yp are the pixel pitches, wx and wy are the
pixel widths, and

rect�x� �
8<
:

1 0 ≤ jxj < 0.5
0.5 jxj � 0.5
0 jxj > 0.5

(8)

is the rectangle function. Since the FPA detects photoelectrons
[26,30], we determine the per-pixel mean number of hologram
photoelectrons mH �nxp,myp� as

m�δ�
H �nxp,myp� �

ητwxwy

h ν
bi �δ�H �nxp,myp�

� ητ

h ν
i�δ�H �nxp,myp�

� �rect
�
nxp
wx

�
rect

�myp
wy

�
, (9)

where η is the quantum efficiency, τ is the integration time, h is
Planck’s constant, ν is the optical frequency, and �� denotes
2D convolution. Similarly, we determine the per-pixel mean
number of reference photoelectrons mR as

mR � ητwxwy

hν
jURj2, (10)

where again, we drop the pixel coordinates to denote spatial
uniformity. The per-pixel mean number of signal photoelec-
trons mS�nxp,myp� then becomes

mS�nxp,myp� �
ητ

hν
jUS�nxp,myp�j2

� �rect
�
nxp
wx

�
rect

�myp
wy

�
: (11)

We will use these last two relationships in the coming noise
model analysis.

Provided the right-hand sides of Eqs. (3)–(5), which depend
on the measured hologram irradiances, i�δ�H , we can use Eq. (9)
to obtain a generic expression for the signal-beam estimate,bU �s�

S , in terms of the left-hand sides of Eqs. (3)–(5). In particular,

bU �s�
S �nxp,myp� �

κ ffiffi
s

p ητ

hν
U �

RUS�nxp,myp�

� �rect
�
nxp
wx

�
rect

�myp
wy

�
, (12)

where s is the number of shifts or measurements required by the
phase-shifting strategy (e.g., s � 4, 3, and 2 for the four-, three-,
and two-step methods, respectively) and κ is a phase-shifting
constant, such that κ � 4 for the four- and three-step methods
and κ � 2 for the two-step method [cf. the left-hand sides of
Eqs. (3)–(5)]. In using Eq. (12) along with Eqs. (3)–(5), we
define the magnitude of the signal beam at the pupil before
the PSO [hence the exclusion of s and κ in Eq. (11)], so that
we can easily compare the three methods. Also note that we
define the magnitude of the reference beam at the FPA(s), since
we can easily adjust the strength of the reference beam using

Fig. 3. Illustration of how digital holography in the on-axis PSRG allows us to access the wrapped-phase function. Here, we use the interference of
light to create multiple holograms by mixing a phase-shifted reference beam with a signal beam. Note that the number of shifts or measurements
required by the phase-shifting strategy is dependent on the phase-shifting method being used (here, we illustrate the four-step method). After we
record the hologram irradiances with a FPA, we perform a straightforward calculation to obtain the wrapped-phase function from an estimate of
complex-optical field [cf. Eq. (12) along with Eqs. (3)–(5)].
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the LO (cf. Figs. 1 and 2). As such, we are left with a
straightforward calculation to obtain the wrapped-phase func-
tion from an estimate of the complex-optical field. We illustrate
this process for the four-step method in Fig. 3.

C. Noise Model
Moving forward in the analysis, we would like to account for
the effects of shot noise and read noise. For this purpose, we
assume that the shot noise results from the random arrival times
of the photons that are incident on the FPA, and that the read
noise results from the read-out integrated circuitry of the FPA.
We also assume that the shot noise follows a Poisson distribu-
tion, whereas read noise follows a Gaussian distribution.

For a Poisson-distributed random process, the mean is equal to
the variance [26]. In this paper [cf. Eqs. (10) and (11)], themean is
equal to the sum of the per-pixel mean number of photoelectrons
fromthe signal andreferencebeams,mS andmR , respectively.Here,
we drop the FPA coordinates to denote the average over the entire
detection area. Since we set mR to 75% of pixel-well depth of the
FPA,weassumethatmR ≫ mS and that themeannumberofholo-
gram photoelectrons varies little from pixel to pixel because of the
strong referencebeam(mH ≈ mR). In turn, thePoisson-distributed
shotnoise followsaGaussiandistribution (toagoodapproximation
when mR ≫ 1) with variance mR � mS ≈ mR . Armed with these
assumptions, we can add the variances for each Gaussian-
distributed random process and arrive at the noise variance σ2n,
such that

σ2n � mR � σ2r , (13)
where σ2r is the variance of the read noise.

In the analysis that follows, we model the additive Gaussian
noise [20], such that

m�δ�
H�N �nxp,myp� � m�δ�

H �nxp,myp� � σnnk�nxp,myp�, (14)

where m�δ�
H�N is the mean number of hologram photoelectrons

with noise and nk�nxp,myp� is the kth realization of real-valued,
zero-mean, unit-variance Gaussian random numbers.
Correspondingly, the signal-beam estimate with noise U �s�

S�N
takes the following form:bU �s�

S�N �nxp,myp� � bU �s�
S �nxp,myp� �

ffiffiffi
ζ

p
σnN k�nxp,myp�,

(15)
where ζ is a constant resulting from the number of noise-
contributing terms in Eqs. (3)–(5) (i.e., ζ � 4 for the four-
and two-step methods and ζ � 8 for the three-step method),
σ2n is the noise variance [cf. Eq. (13)], and Nk�nxp,myp� is the
kth realization of circular-complex Gaussian random numbers
with zero mean and unit variance. In the signal-beam estimate,bU �s�

S [cf. Eq. (12)], each measured hologram irradiance, i�δ�H ,
adds to the total noise of the estimate and ζ accounts for this
addition. Lastly, we state that ζ � 4 for the two-step method;
however, Eq. (5) has six terms. Since we assume mR ≫ mS , the
noise from the signal-beam irradiance (jUS j2) is negligible and
even more so with the use of Eq. (6). This assumption is a
sound one, as shown in the following analysis.

D. Signal-to-Noise and Field-Estimated Strehl Ratios
In what follows, we formulate the SNR S∕N �s� as the ratio of
the mean signal power to the total noise variance. As such, we
obtain the following relationship:

S∕N �s� � hj bU �s�
S �x, y�j2i

Vf bU �s�
S�N �x, y�g

, (16)

where h·i denotes mean over all pixels, bU �s�
S is the signal-beam

estimate [cf. Eq. (12)], Vf·g denotes the variance operator over
all pixels, and bU �s�

S�N is the is the signal-beam estimate with
noise [cf. Eq. (15)]. Here, we again drop the FPA coordinates
to denote the average over the entire detection area. Provided
Eq. (16) along with Eqs. (10)–(12), we then determine the
mean-signal power as

hj bU �s�
S �x, y�j2i � κ2

s
mRmS , (17)

and the total noise variance as

Vf bU �s�
S�N �x, y�g � ζσ2n: (18)

Substituting Eqs. (17) and (18) into Eq. (16), we obtain the
following closed-form expressions for the SNR:

S∕N �4� � mRmS

mR � σ2r
(19)

for the four-step method,

S∕N �3� � 2

3

mRmS

mR � σ2r
(20)

for the three-step method, and

S∕N �2� � 1

2

mRmS

mR � σ2r
(21)

for the two-step method. If mR ≫ σ2r , then we reach the shot-
noise limit and these closed-form expressions become a func-
tion of only mS. In turn, these closed-form expressions for the
SNR provide a nice metric for the performance of digital
holography in the on-axis PSRG.

Another performance metric of interest in the analysis is the
field-estimated Strehl ratio S�s�F [24,25,31]. As shown in
Appendix A and Appendix B, we can relate S�s�F to the SNR
S∕N �s� via the following relationship [31]:

S�s�F � 1

1� 1
S∕N �s�

: (22)

Provided Eq. (22) along with Eqs. (19)–(21), we obtain the
following closed-form expressions for field-estimated Strehl
ratio:

S�4�F � mRmS

mRmS � mR � σ2r
(23)

for the four-step method,

S�3�F � 2mRmS

2mRmS � 3�mR � σ2r �
, (24)

for the three-step method, and

S�2�F � mRmS

mRmS � 2�mR � σ2r �
, (25)

for the two-step method. We verify the use of these closed-form
expressions in the next section.
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3. PERFORMANCE METRIC COMPARISON
USING WAVE-OPTICS SIMULATIONS

This section develops the wave-optics simulations employed to
verify the closed-form expressions developed above for the
signal-to-noise and field-estimated Strehl ratios. We conduct
this analysis entirely in MATLAB using the principles from
Schmidt [32] with help from WaveProp [33] and AOTools
[34], which are MATLAB toolboxes written by the Optical
Sciences Company. For further insight on these wave-optics
simulations, we list several references that include additional
detail [21,24,25,35,36].

A. Numerical Model
With Fig. 1 in mind, we modeled the point-source beacon as a
narrow sinc function modulated by a raised-cosine envelope on
a 4096 × 4096 numerical grid. Note that we set the physical
side length of the numerical grid in the object plane, so that
we met Fresnel scaling. We then propagated the point-source
beacon to the pupil plane using the split-step beam propagation
method. Here, we collimated the light and cropped the numeri-
cal grid to 256 × 256, so that it had the same physical side
length as the pupil diameter, D. We provide a list of simulation
parameters in Table 1.

With Table 1 in mind, we modeled five distinct scenarios
with increasing turbulence strengths. Table 2 lists the refractive-
index structure parameter, C2

n, spherical-wave log amplitude
variance (Rytov number), σ2χ−sw, and spherical-wave coherence
length (Fried parameter), r0−sw, for the various scenarios. For a
given C2

n, wavelength λ, and horizontal-path propagation dis-
tance z, we can calculate σ2χ−sw and r0−sw, respectively, using the
following formulas [37]:

σ2χ−sw � 0.124k7∕6z11∕6C2
n (26)

and

r0−sw � 0.33
�

λ2

zC2
n

�
3∕5

, (27)

where k � 2π∕λ is the angular wavenumber. Provided
Eqs. (26) and (27), the turbulence strength becomes propor-
tional to the Rytov number and inversely proportional to
the Fried parameter. Recall for imaging systems, the Fried
parameter provides a measure for resolution relative to the pupil
diameter D; therefore, the larger, the better. Additionally, the
Rytov number provides a measure for the amount of scintilla-
tion. As a rule of thumb, Rytov numbers less than 0.2 provide
weak scintillation and those greater than 0.2 provide strong
scintillation. As shown in Table 2, the turbulence strength
increases from Scenario 1 to Scenario 5.

With respect to the split-step beam propagation method, we
used 10 equally spaced Kolmogorov phase screens to achieve

deep-turbulence conditions. By satisfying Fresnel scaling, we
met all of the sampling requirements set forth by Schmidt
[32], as discussed in Thornton et al. [21]. For model verifica-
tion, the discrete calculations were within 1% error when com-
pared to the continuous calculations [cf. Eq. (26) and (27)].
Additionally, we calculated the Monte Carlo averages associated
with the magnitude of the complex degree of coherence in the
pupil plane using 40 independent realizations for Scenarios 1–5
in Table 2, and the results closely matched theory [21]. We
show an example of one realization of the irradiance and
wrapped phase in Fig. 4 for the simulated signal-beam truth.

In addition to the turbulence strength, we varied the FPA
sampling by changing the number of FPA pixels across a de-
magnified pupil image. For this objective, we interpolated the
simulated signal beam in the pupil plane to match the size of
the FPA. Note that we fixed the square-pixel width, so that the
physical size of the FPA was proportional to the number of pix-
els across. Therefore, we demagnified the simulated signal
beam, such that MT � W ∕D, where MT is the transverse
magnification, W � Npwx,y is the side length of the FPA,
Np is the FPA sampling, and wx,y is the square-pixel width.
After this demagnification via interpolation, we scaled the mean
number of signal photoelectrons mS to vary the signal strength.
For this purpose, we set the characteristics of the FPA, such that
the quantum efficiency was 100%, as well as the pixel fill factor.
Additionally, we assumed a uniform, linear pixel gain from zero
to saturation (100,000 pe). As mentioned before, we then set
the read-noise standard deviation, such that σr � 100 pe, and
the strength of the simulated strong reference beam, so that
mR � 75,000 pe. Put another way, we set the mean number
of reference photoelectrons mR to 75% of pixel-well depth
of the FPA to create a strong reference beam but avoid pixel
saturation and excess shot noise.

Table 1. Simulation Parameters Used in the Wave-
Optics Simulations

λ � 1 μm optical wavelength
D � 30 cm pupil diameter
z � 7.5 km propagation distance
h � 10 m horizontal-path altitude

Table 2. Turbulence Parameters Used for Five-Distinct
Scenarios

Scenario 1 2 3 4 5

C2
n�m−2∕3 × 10−15� 1.00 1.50 2.00 2.50 3.00

σ2χ−sw 0.135 0.202 0.270 0.337 0.404
r0−sw�cm� 9.92 7.78 6.55 5.73 5.14

(b)(a)

Fig. 4. (a) Irradiance and (b) wrapped phase for the simulated
signal-beam truth for one realization of the turbulence (cf. Scenario 5
in Table 2).
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We accounted for each phase-shifting strategy by dividing
the simulated signal beam by the number of measurements
needed for the corresponding method [cf. the factor s in
Eq. (12)]. With this in mind, we then estimated the com-
plex-optical field in the pupil plane with the corresponding
pixel-by-pixel formulas [cf. Eq. (12) along with Eqs. (3)–(5)].
We show an example of one realization of the irradiance
and wrapped phase in Fig. 5 for the simulated signal-beam
estimate.

B. Numerical Results
The results of the wave-optics simulations presented here cover
a threefold trade space with respect to the four-, three-, and
two-step methods. In particular, we quantify performance by

1. varying the signal strength,
2. varying the turbulence strength, and
3. varying the FPA sampling.

As shown in Fig. 6, we verify the use of Eqs. (16)–(25).
Here, we compare both the numerical field-estimated Strehl
ratio SF and numerical SNR S∕N to theory. Note that the
differences between the theoretical lines and data points are less
than 1% for the Monte Carlo averages from 40 independent
realizations of turbulence and 30 independent realizations of
noise for all of the scenarios given in Table 2. To calculate
SF , we made use of the following relationship (cf. Appendix A):

SF � jhUS�x, y� bU �
S�N �x, y�ij2

hjUS�x, y�j2ihj bUS�N �x, y�j2i
, (28)

where US�x, y� is the signal-beam truth and bUS�N �x, y� is the
signal-beam estimate with noise. Similarly, to calculate S∕N ,
we made use of the following relationship:

S∕N � hj bUS�N j2 − j bUN j2i
Varf bUN g

, (29)

where bUN is the noise estimate associated with reconstructing
only the strong reference beam [cf. Eq. (12) along with
Eqs. (3)–(5)].

With the results of Fig. 6 in mind, in Fig. 7 we compare the
numerical field-estimated Strehl ratio SF as a function of signal

strength mS to theory [cf. Eqs. (23)–(25)]. Again, the observed
error between theory and the numerical results is less than 1%
for the Monte Carlo averages from 40 independent realizations
of turbulence and 30 independent realizations of noise for
Scenario 1 and 5 in Table 2. From the results, we see that
the four-step method is the most efficient phase-shifting strat-
egy, despite having the most required signal-beam splits. The
complete sampling of the phase in π∕2 steps, in practice, results
in a more precise estimate of the complex-optical field. Put
another way, the ζ term within the total noise variance ζσn
[cf. Eq. (16)] introduces less noise into the estimate for the
four-step method.

(b)(a)

Fig. 5. (a) Irradiance and (b) wrapped phase for the simulated
signal-beam estimate for one realization of turbulence (cf. Scenario 5
in Table 2). Fig. 6. Numerical field-estimated Strehl ratio SF versus the numeri-

cal SNR S∕N with a comparison to theory. Shown here are the Monte
Carlo averages from 40 independent realizations of turbulence and 30
independent realizations of noise for all of the scenarios given in
Table 2 and the three separate phase-shifting strategies of interest
in this paper. Note that Np � 256 for all of these results.

Fig. 7. Numerical field-estimated Strehl ratio SF versus the signal
strength mS with a comparison to theory. Shown here are the Monte
Carlo averages from 40 independent realizations of turbulence and 30
independent realizations of noise for Scenario 1 and Scenario 5 in
Table 2 and the three separate phase-shifting strategies of interest
in this paper. Note that Np � 256 for all of these results. Also note
that the open circles represent the results from Scenario 1, whereas the
plus signs represent the results from Scenario 5.
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It is important to note that the results contained in Figs. 6
and 7 made use of a FPA with 256 pixels across the simulated
demagnified pupil image (i.e.,MT � 1). With that said, Fig. 8
shows the relative percent difference between the theoretical
and numerical field-estimated Strehl ratios for Scenarios 1
and 5 from Table 2 and the four-step method. Here,MT varied
such that the modeled, square FPA size ranged from 16 to
256 pixels across (Np), and as such, the signal-beam estimate’s
grid size varied from 16 × 16 to 256 × 256. To compare the
signal-beam estimate to the simulated signal-beam truth
(256 pixels across), we upsampled via linear interpolation.
We plot the results as a function of the FPA sampling Np
(y axis) and the signal strength mS (x axis). In Fig. 8, we
calculate the relative percent difference as

ΔSF � SF − S�4�F

S�4�F

× 100, (30)

where S�4�F is the theoretical result [cf. Eq. (23)]. Provided
Eq. (30), positive values represent the case where SF > S�4�F ,
whereas negative values represent the case where SF < S�4�F .

With Fig. 8 in mind, a couple of features become apparent
in the analysis. First, we reach steady-state differences between
the theoretical and numerical results when mS ≳ 10, which is
where the S∕N ≳ 10 and SF ≳ 0.9. As we increase the turbu-
lence strength, the induced sampling errors also increase, and

the results for Scenarios 2–4 also follow this trend. Thus, tur-
bulence strength only affects the FPA sampling requirements.
The largest differences occur with smaller values of Np and
stronger turbulence strengths. Second, at low SNRs
(S∕N < 10), the differences vary greatly with Np. This out-
come is due to the smoothing that occurs given the coarser
FPA sampling [cf. the 2D convolution in Eq. (12)]. It also
shows that when we properly sample the Fried parameter
[cf. Eq. (27)], digital holography estimates the complex-optical
field exceptionally well [38].

4. SRI COMPARISON

As discussed above, the SRI is an alternative interferometric
wavefront-sensing method [16]. The primary difference be-
tween digital holography and the SRI is that the SRI splits
the received signal beam to create a reference beam via spatial
filtering, typically with a single-mode optical fiber. With that
said, Rhoadarmer and Klein provide further discussion on the
design of an SRI [28]. Various phase-shifting strategies also ex-
ist for the SRI, but similar to digital holography in the on-axis
PSRG, the four-step method has the best performance [39].

In this section, we model deep-turbulence wavefront sensing
using the SRI in the same fashion as the four-step method for
digital holography in the on-axis PSRG (i.e., in an open-loop
configuration) with a few exceptions. The first exception is that
we set the beam-splitter ratio β, which splits the signal beam to
create the reference beam, so that mS � mR . This choice max-
imizes the SNR [40]. Additionally, we include the effects of a
fiber-coupling efficiency ηc. Wheeler and Schmidt [19] showed
that this efficiency depends on the spatial coherence radius ρ0
or the coherence length r0, since r0 ≈ 2.1ρ0 [41], relative to the
pupil diameter D. From Table 2, the corresponding ηc for
Scenario 1 and Scenario 5 is 10% and 1%, respectively.
Therefore, in the analysis that follows, we make use of the
following three cases: ηc � 100% for the ideal case,
ηc � 10% for Scenario 1, and ηc � 1% for Scenario 5.

Because of the losses encountered with the fiber-coupling
efficiency ηc, we need to introduce a new term: mi, which is
the mean number of incident photoelectrons. For digital holog-
raphy in the on-axis PSRG,mi � mS , since we use 100% of the
signal beam. On the other hand, for the SRI, mS � βmi, which
is the percent of the incident light split for the signal beam, and
mR � �1 − β�ηcmi, which is the percent of the incident light
both split and coupled into the single-mode optical fiber for
the reference beam. In turn, mL � �1 − β��1 − ηc�mi is the per-
cent of the incident light lost due to fiber coupling, so that
mi � mS � mR � mL for the SRI.

Similar to the analysis presented above (cf. Section 2),
Rhoadarmer and Barchers formulated closed-form expressions
for the SRI [31]. With respect to the four-step method, the
SNR S∕N �4�

SRI and field-estimated Strehl ratio S�4�F ,SRI follow as

S∕N �4�
SRI �

1

4

m2
S

mS∕2� σ2r
, (31)

and

S�4�F ,SRI �
m2

S

m2
S � 2mS � 4σ2r

, (32)

Fig. 8. Relative percent difference (ΔSF ) between the theoretical
and numerical field-estimated Strehl ratios for (a) Scenario 1 and
(b) Scenario 5 from Table 2. We plot the results as a function of
the FPA sampling Np and mean signal strength mS for the four-step
method [cf. Eq. (23)]. Shown here are the Monte Carlo averages from
40 independent realizations of turbulence and 30 independent
realizations of noise.
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respectively. Provided Eqs. (31) and (32), we compare the per-
formance of digital holography in the on-axis PSRG to the SRI.

For the comparison, we formulated results from two per-
spectives, as shown in Figs. 9 and 10. Here, we verified the
use of the closed-form expressions for the SRI [cf. Eqs. (31)
and (32)]. Note that the differences between the theoretical
lines and data points are less than 1% for the Monte Carlo

averages from 40 independent realizations of turbulence and
30 independent realizations of noise. Also, we made use of a
FPA with 256 pixels across the simulated demagnified pupil
image. With that said, the results show that digital holography
in the on-axis PSRG outperforms the SRI with respect to the
numerical field-estimated Strehl ratio SF (cf. Fig. 9) and the
numerical SNR S∕N (cf. Fig. 10) by multiple orders of mag-
nitude. As shown in Fig. 10, for example, there are notable
differences in the incident mean number of incident photoelec-
trons mi required to reach an S∕N � 10 with approximately
21 dB difference for the ideal case (green to yellow), 28 dB
difference for Scenario 1 (green to orange), and 37 dB differ-
ence for Scenario 5 (green to red). These differences represent
the necessary SRI signal amplification needed to achieve similar
performance to digital holography in the on-axis PSRG due to
the lack of a strong reference beam from the LO provided by
digital holography.

5. CONCLUSION

The results presented here showcase the strengths of digital
holography in the on-axis PSRG for the purposes of deep-
turbulence wavefront sensing. Throughout this paper, we de-
velop closed-form expressions for the field-estimated Strehl and
signal-to-noise ratios for the two-, three-, and four-step meth-
ods. Using detailed wave-optics simulations, which propagate
a point-source beacon through deep-turbulence conditions,
model digital holography with noise, and calculate the
Monte Carlo averages associated with increasing turbulence
strengths and decreasing focal-plane array sampling, we also
verify the use of these closed-form expressions. Overall, the re-
sults show the four-step method is the most efficient phase-
shifting strategy and deep-turbulence conditions only degrade
performance with respect to insufficient FPA sampling and
low SNRs.

The first result is somewhat counterintuitive since the four-
step method requires the most signal-beam splits. However, the
results of the closed-form expressions and detailed wave-optics
simulations show the four-step method is more concise with
less noise in estimating the complex-optical field. Furthermore,
when the FPA sampling and SNR is sufficient, the percent
difference between the theoretical results and the numerical re-
sults is negligible, regardless of the turbulence strength. In gen-
eral, the results show when the FPA sampling is greater than
32 pixels and the SNR is greater than 10, the field-estimated
Strehl ratios are greater than 0.9 (with respect to the four-step
method).

A comparison to the SRI also shows the benefits of using a
strong reference beam to perform interferometric wavefront
sensing. For this purpose, we modeled the SRI in an ideal
way and included the effects of a fiber-coupling efficiency to
provide more realistic SNRs with increasing turbulence
strengths. In the low-SNR regime, the SRI needs tens of deci-
bels more signal-beam power to achieve similar performance to
digital holography in the on-axis PSRG. As such, this compari-
son provides a performance benchmark for applications
involving deep-turbulence conditions.

In summary, this paper evaluates the performance of digital
holography in the on-axis PSRG and enables the optimal design

Fig. 9. Numerical field-estimated Strehl ratio SF versus the mean
number of incident photoelectrons mi for digital holography in the
on-axis PSRG and the SRI with 100%, 10%, and 1% fiber-coupling
efficiency. Here, the solid lines represent the theoretical results for the
four-step method [cf. Eq. (23) for digital holography in the on-axis
PSRG and Eq. (32) for the SRI]. The open circles represent the
numerical results for Scenario 1, whereas the x’s represent the numeri-
cal results for Scenario 5 (cf. Table 2). Shown here are the Monte Carlo
averages from 40 independent realizations of turbulence and 30 inde-
pendent realizations of noise.

Fig. 10. Numerical SNR S∕N versus the mean number of incident
photoelectrons mi for digital holography in the on-axis PSRG and the
SRI with 100%, 10%, and 1% fiber-coupling efficiency. Here, the
solid lines represent the theoretical results for the four-step method
[cf. Eq. (19) for digital holography in the on-axis PSRG and
Eq. (31) for the SRI). The open circles represent the numerical results
for Scenario 1, whereas the x’s represent the numerical results for
Scenario 5 (cf. Table 2). Shown here are the Monte Carlo averages
from 40 independent realizations of turbulence and 30 independent
realizations of noise.
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of such a deep-turbulence wavefront sensor. By employing four
π∕2 phase shifts, we minimized the total noise and improved
system performance in terms of both the SNR and field-
estimated Strehl ratio. System performance also approached
theoretical limits when we sampled the four digital holograms
with at least five pixels across the Fried parameter. Since digital
holography provides a strong reference beam from a LO, we
then showed it outperforms the SRI in low signal-to-noise con-
ditions for deep-turbulence applications. In turn, this paper
provides the necessary analysis needed to design and conduct
future deep-turbulence experiments using digital holography in
the on-axis PSRG.

APPENDIX A: FIELD-ESTIMATED STREHL
RATIO

The field-estimated Strehl ratio SF is a performance metric that
allows us to investigate the estimation accuracy of the various
interferometric wavefront sensing methods [15,24,25,31]. In
practice, SF results from the Cauchy–Schwartz Inequality,
such that

jhU ,V ij2 ≤ hU ,U ihV ,V i, (A1)

where U and V are 2D arbitrary vectors in the field of complex
numbers and h·, ·i is the inner-product operator. By dividing
both sides of Eq. (A1) by the right, we reach the following
inequality:

1 ≥
jhU ,V ij2

hU ,U ihV ,V i , (A2)

which gives the properties of a Strehl ratio. This inequality
ranges from 1, when U � V , to 0, when U is orthogonal
to V , and is proportional to the similarity between the two
complex vectors. However, the definition of SF uses expecta-
tion values instead of inner products. The inner product for the
complex vectors here is

hU ,V i �
Xm, n
i, j�1

U ijV �
ij, (A3)

where m, n is the number of elements in the corresponding i, j
dimensions and the superscript � denotes complex conjugate.
We can ignore the customary transpose, since we desire a point-
by-point comparison and linearize the 2D vectors to 1D space.
In this particular case, the expectation value is mathematically
similar to the inner product, such that

hUV �i � 1

mn

Xm, n
i, j�1

U ijV �
ij �

1

mn
hU ,V i: (A4)

Here, the nuance between the inner-product operator h·, ·i and
expectation-value operator h·i is negligible in the calculation of
SF , since the factor of 1∕�mn�2 cancels in the numerator from
the denominator. If we substitute the two complex vectors U
and V with bUS for the truth complex-optical field and bUS�N
for the estimated complex-optical field with noise, then SF
becomes

SF � jh bUS�x, y� bU �
S�N �x, y�ij2

hj bUS�x, y�j2ihj bUS�N �x, y�j2i
: (A5)

For all intents and purposes, we repeat Eq. (A5) above
in Eq. (28).

APPENDIX B: FIELD-ESTIMATED STREHL
RATIO AS A FUNCTION OF SNR

Rhoadarmer and Barchers [31] used the following relationship:

SF � 1

1� 1
S∕N

(B1)

to write the field-estimated Strehl ratio SF as a function of the
SNR S∕N . Here, we show how these two metrics are related in
Eq. (B1). For this purpose, bUS is the estimated complex-optical
field and bUS�N is the estimated complex-optical field with
noise, such that

bUS�N �x, y� � bUS�x, y� �
σnffiffiffi
2

p Nk�x, y�, (B2)

where σn is the noise standard deviation and Nk is the kth reali-
zation of complex-circular Gaussian random numbers with zero
mean and unit variance. Note that the factor of

ffiffiffi
2

p
in Eq. (B2)

normalizes the variance since Nk has both real and imaginary
parts. In turn, the numerator of SF [cf. Eq. (A5)] follows as

jh bUS�x, y� bU �
S�N �x, y�ij2 � jhj bUS�x, y�j2ij2, (B3)

since the additive-noise term has zero mean. Recall that
jURj ≫ jUS�x, y�j; thus, we can assume that j bUS�x, y�j ≈
j bUS j in writing Eq. (B3). The second term in the denominator
of SF then follows as

hj bUS�N �x, y�j2i � hj bUS�x, y�j2i � σ2n, (B4)

where the cross terms go to zero, since again the additive-noise
term has zero mean. Substituting Eqs. (B3) and (B4) into
Eq. (A5), the new form of SF becomes

SF � jhj bUS�x, y�j2ij2
hj bUS�x, y�j2i�hj bUS�x, y�j2i � σ2n�

: (B5)

Here, a factor of hj bU �x, y�j2i in the numerator cancels the first
term in the denominator. Thus, we arrive at the following
relationship:

SF � 1

1� σ2n

hjbUS �x, y�j
2i

, (B6)

where it is apparent that the second term in the denominator is
the inverse of the SNR S∕N , since

S∕N � hj bUS�x, y�j2i
σ2n

: (B7)

For all intents and purposes, we repeat Eq. (B7) above
in Eq. (16).
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